
The Journal of Machine Learning Research
Volume 7
Print-Archive Edition

Pages 1–1384

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

The Journal of Machine Learning Research
Volume 7
Print-Archive Edition

The Journal of Machine Learning Research (JMLR) is an open
access journal. All articles published in JMLR are freely available
via electronic distribution. This Print-Archive Edition is published
annually as a means of archiving the contents of the journal in
perpetuity. The contents of this volume are articles published
electronically in JMLR in 2006.

JMLR is abstracted in ACM Computing Reviews, INSPEC, and
Psychological Abstracts/PsycINFO.

JMLR is a publication of Journal of Machine Learning Research,
Inc. For further information regarding JMLR, including open
access to articles, visit http://www.jmlr.org/.

JMLR Print-Archive Edition is a publication of Microtome
Publishing under agreement with Journal of Machine Learning
Research, Inc. For further information regarding the Print-Archive
Edition, including subscription and distribution information and
background on open-access print archiving, visit Microtome
Publishing at http://www.mtome.com/.

Collection copyright © 2006 The Journal of Machine Learning
Research, Inc. and Microtome Publishing. Copyright of individual
articles remains with their respective authors.

ISSN 1532-4435 (print)
ISSN 1533-7928 (online)

JMLR Editorial Board

Editor-in-Chief

Leslie Pack Kaelbling
Massachusetts Institute of Technology

Managing Editor

Christian R. Shelton
University of California at Riverside

Production Editors

Erik G. Learned-Miller,
University of Massachusetts, Amherst

Rich Maclin
University of Minnesota, Duluth

JMLR Action Editors

Peter Bartlett
University of California at Berkeley, USA

Yoshua Bengio
Université de Montréal, Canada

 Léon Bottou
NEC Research Institute, USA

Claire Cardie
Cornell University, USA

David Maxwell Chickering
Microsoft Research, USA

William W. Cohen
Carnegie-Mellon University, USA

Michael Collins
Massachusetts Institute of Technology,
USA

Nello Cristianini
UC Davis, USA

Sanjoy Dasgupta
University of California at San Diego,
USA

Peter Dayan
University College, London, UK

Charles Elkan
University of California at San Diego,
USA

Stephanie Forrest
University of New Mexico, USA

Yoav Freund
University of California at San Diego,
USA

Nir Friedman
Hebrew University, Israel

Donald Geman
Johns Hopkins University, USA

Zoubin Ghahramani
University of Cambridge, UK

Carlos Guestrin
Carnegie Mellon University, USA

Isabelle Guyon
ClopiNet, USA

Ralf Herbrich
Microsoft Research, Cambridge, UK

Haym Hirsh
Rutgers University, USA

Aapo Hyvärinen
University of Helsinki, Finland

Tommi Jaakkola
Massachusetts Institute of Technology, USA

Thorsten Joachims
Cornell University, USA

Michael Jordan
University of California at Berkeley, USA

John Lafferty
Carnegie Mellon University, USA

Yi Lin
University of Wisconsin, USA

Michael Littman
Rutgers University, USA

G·bor Lugosi
Pompeu Fabra University, Spain

David Madigan
Rutgers University, USA

Sridhar Mahadevan
University of Massachusetts, Amherst, USA

Marina Meila
University of Washington, USA

Andrew McCallum
University of Massachusetts, Amherst, USA

Melanie Mitchell
Oregon Graduate Institute, USA

Pietro Perona
California Institute of Technology, USA

Greg Ridgeway
RAND, USA

Saharon Rosset
IBM TJ Watson Research Center, USA

Sam Roweis
University of Toronto, Canada

Stuart Russell
University of California at Berkeley, USA

Claude Sammut
University of New South Wales, Australia

Bernhard Schölkopf
Max-Planck-Institut für Biologische
Kybernetik, Germany

Dale Schuurmans
University of Alberta, Canada

Rocco Servedio
Columbia University, USA

John Shawe-Taylor
Southampton University, UK

Manfred Warmuth
University of California at Santa Cruz, USA

Chris Williams
University of Edinburgh, UK

Stefan Wrobel
Universität Bonn and Fraunhofer IAIS,
Germany

Bin Yu
University of California at Berkeley, USA

JMLR Editorial Board

Naoki Abe
IBM TJ Watson Research Center, USA

Christopher Atkeson
Carnegie Mellon University, USA

Andrew G. Barto
University of Massachusetts, Amherst, USA

Jonathan Baxter
Panscient Pty Ltd, Australia

Richard K. Belew
University of California at San Diego, USA

Tony Bell
Salk Institute for Biological Studies, USA

Yoshua Bengio
University of Montreal, Canada

Kristin Bennett
Rensselaer Polytechnic Institute, USA

Christopher M. Bishop
Microsoft Research, UK

Lashon Booker
The Mitre Corporation, USA

Henrik Boström
Stockholm University/KTH, Sweden

Craig Boutilier
University of Toronto, Canada

Justin Boyan
ITA Software, USA

Ivan Bratko
Jozef Stefan Institute, Slovenia

Carla Brodley
Purdue University, USA

Peter Bühlmann
ETH Zürich, Switzerland

Rich Caruana
Cornell University, USA

David Cohn
Google, Inc., USA

Walter Daelemans
University of Antwerp, Belgium

Luc De Raedt
Katholieke Universiteit Leuven, Belgium

Dennis DeCoste
Microsoft Live Labs, USA

Saso Dzeroski
Jozef Stefan Institute, Slovenia

Usama Fayyad
DMX Group, USA

Douglas Fisher
Vanderbilt University, USA

Peter Flach
Bristol University, UK

Dan Geiger
The Technion, Israel

Sally Goldman
Washington University, St. Louis, USA

Russ Greiner
University of Alberta, Canada

David Heckerman
Microsoft Research, USA

David Helmbold
University of California at Santa Cruz,
USA

Geoffrey Hinton
University of Toronto, Canada

Thomas Hofmann
Brown University, USA

Larry Hunter
University of Colorado, USA

Daphne Koller
Stanford University, USA

Wei-Yin Loh
University of Wisconsin, USA

Yishay Mansour
Tel-Aviv University, Israel

David J. C. MacKay
University of Cambridge, UK

Tom Mitchell
Carnegie Mellon University, USA

Raymond J. Mooney
University of Texas, Austin, USA

Andrew W. Moore
Carnegie Mellon University, USA

Klaus-Robert Muller
University of Potsdam, Germany

Stephen Muggleton
 Imperial College London, UK

Una-May O’Reilly
Massachusetts Institute of Technology,
USA

Fernando Pereira
University of Pennsylvania, USA

Foster Provost
New York University, USA

Dana Ron
Tel-Aviv University, Israel

Lorenza Saitta
Universita del Piemonte Orientale, Italy

Lawrence Saul
University of Pennsylvania, USA

Robert Schapire
Princeton University, USA

Jonathan Shapiro
Manchester University, UK

Jude Shavlik
University of Wisconsin, USA

Yoram Singer
Hebrew University, Israel

Satinder Singh
University of Michigan, USA

Alex Smola
Australian National University, Australia

Padhraic Smyth
University of California, Irvine, USA

Richard Sutton
University of Alberta, Canada

Moshe Tennenholtz
The Technion, Israel

Sebastian Thrun
Stanford University, USA

Naftali Tishby
Hebrew University, Israel

David Touretzky
Carnegie Mellon University, USA

Larry Wasserman
Carnegie Mellon University, USA

Chris Watkins
Royal Holloway, University of London, UK

JMLR Advisory Board

Shun-Ichi Amari
RIKEN Brain Science Institute, Japan

Andrew Barto
University of Massachusetts at Amherst,
USA

Thomas Dietterich
Oregon State University, USA

Jerome Friedman
Stanford University, USA

Stuart Geman
Brown University, USA

Geoffrey Hinton
University of Toronto, Canada

Michael Jordan
University of California at Berkeley, USA

Michael Kearns
University of Pennsylvania, USA

Steven Minton
University of Southern California, USA

Thomas Mitchell
Carnegie Mellon University, USA

Stephen Muggleton
Imperial College London, UK

Nils Nilsson
Stanford University, USA

Tomaso Poggio
Massachusetts Institute of Technology, USA

Ross Quinlan
Rulequest Research Pty Ltd, Australia

Stuart Russell
University of California at Berkeley, USA

Terrence Sejnowski
Salk Institute for Biological Studies, USA

Richard Sutton
University of Alberta, Canada

Leslie Valiant
Harvard University, USA

Stefan Wrobel
Universität Bonn and Fraunhofer IAIS,
Germany

JMLR Web Master

Luke Zettlemoyer
Massachusetts Institute of Technology

Journal of Machine Learning Research Vol. 7 2006

 1 Statistical Comparisons of Classifi ers over Multiple Data Sets
 Janez Demšar

 31 Incremental Algorithms for Hierarchical Classifi cation
 Nicolò Cesa-Bianchi, Claudio Gentile, Luca Zaniboni

 55 On the Complexity of Learning Lexicographic Strategies
 Michael Schmitt, Laura Martignon

 85 Generalized Bradley-Terry Models and Multi-Class
 Probability Estimates
 Tzu-Kuo Huang, Ruby C. Weng, Chih-Jen Lin

117 Bounds for Linear Multi-Task Learning
 Andreas Maurer

141 Active Learning in Approximately Linear Regression Based
 on Conditional Expectation of Generalization Error
 Masashi Sugiyama

167 MinReg: A Scalable Algorithm for Learning Parsimonious
 Regulatory Networks in Yeast and Mammals
 Dana Pe’er, Amos Tanay, Aviv Regev

191 Learning the Structure of Linear Latent Variable Models
 Ricardo Silva, Richard Scheine, Clark Glymour, Peter Spirtes

247 In Search of Non-Gaussian Components of a High-
 Dimensional Distribution
 Gilles Blanchard, Motoaki Kawanabe, Masashi Sugiyama,
 Vladimir Spokoiny, Klaus-Robert Müller

283 Some Discriminant-Based PAC Algorithms
 Paul W. Goldberg

307 Kernels on Prolog Proof Trees: Statistical Learning in the
 ILP Setting (Special Topic on Inductive Programming)
 Andrea Passerini, Paolo Frasconi, Luc De Raedt

343 Using Machine Learning to Guide Architecture Simulation
 Greg Hamerly, Erez Perelman, Jeremy Lau, Brad Calder,
 Timothy Sherwood

 www.jmlr.org

379 Superior Guarantees for Sequential Prediction and Lossless
 Compression via Alphabet Decomposition
 Ron Begleiter, Ran El-Yaniv

413 Geometric Variance Reduction in Markov Chains: Application
 to Value Function and Gradient Estimation
 Rémi Munos

429 Inductive Synthesis of Functional Programs: An Explanation
 Based Generalization Approach
 (Special Topic on Inductive Programming)
 Emanuel Kitzelmann, Ute Schmid

455 Optimising Kernel Parameters and Regularisation Coeffi cients
 for Non-linear Discriminant Analysis
 Tonatiuh Peña Centeno, Neil D. Lawrence

493 Learning Recursive Control Programs from Problem Solving
 (Special Topic on Inductive Programming)
 Pat Langley, Dongkyu Choi

519 Learning Coordinate Covariances via Gradients
 Sayan Mukherjee, Ding-Xuan Zhou

551 Online Passive-Aggressive Algorithms
 Koby Crammer, Ofer Dekel, Joseph Keshet,
 Shai Shalev-Shwartz, Yoram Singer

587 Toward Attribute Effi cient Learning of Decision Lists
 and Parities
 Adam R. Klivans, Rocco A. Servedio

603 A Direct Method for Building Sparse Kernel
 Learning Algorithms
 Mingrui Wu, Bernhard Schölkopf, Gökhan Bakir

625 Stochastic Complexities of Gaussian Mixtures in Variational
 Bayesian Approximation
 Kazuho Watanabe, Sumio Watanabe

645 Pattern Recognition for Conditionally Independent Data
 Daniil Ryabko

665 Learning Minimum Volume Sets
 Clayton D. Scott, Robert D. Nowak

705 Some Th eory for Generalized Boosting Algorithms
 Peter J. Bickel, Ya’acov Ritov, Alon Zakai

 733 QP Algorithms with Guaranteed Accuracy and Run Time
 for Support Vector Machines
 Don Hush, Patrick Kelly, Clint Scovel, Ingo Steinwart

 771 Policy Gradient in Continuous Time
 Rémi Munos

 793 Learning Image Components for Object Recognition
 Michael W. Spratling

 817 Consistency and Convergence Rates of One-Class SVMs
 and Related Algorithms
 Régis Vert, Jean-Philippe Vert

 855 Infi nite-σ; Limits For Tikhonov Regularization
 Ross A. Lippert, Ryan M. Rifk in

 877 Evolutionary Function Approximation for
 Reinforcement Learning
 Shimon Whiteson, Peter Stone

 919 Rearrangement Clustering: Pitfalls, Remedies,
 and Applications
 Sharlee Climer, Weixiong Zhang

 945 Segmental Hidden Markov Models with Random Eff ects
 for Waveform Modeling
 Seyoung Kim, Padhraic Smyth

 971 Lower Bounds and Aggregation in Density Estimation
 Guillaume Lecué

 983 Quantile Regression Forests
 Nicolai Meinshausen

1001 Sparse Boosting
 Peter Bühlmann, Bin Yu

1025 One-Class Novelty Detection for Seizure Analysis from
 Intracranial EEG
 Andrew B. Gardner, Abba M. Krieger,
 George Vachtsevanos, Brian Litt

1045 A Graphical Representation of Equivalence Classes of
 AMP Chain Graphs
 Alberto Roverato, Milan Studený

1079 Action Elimination and Stopping Conditions for the
 Multi-Armed Bandit and Reinforcement Learning Problems
 Eyal Even-Dar, Shie Mannor, Yishay Mansour

1107 Step Size Adaptation in Reproducing Kernel Hilbert Space
 S. V. N. Vishwanathan, Nicol N. Schraudolph, Alex J. Smola

1135 New Algorithms for Effi cient High-Dimensional
 Nonparametric Classifi cation
 Ting Liu, Andrew W. Moore, Alexander Gray

1159 A Very Fast Learning Method for Neural Networks Based
 on Sensitivity Analysis
 Enrique Castillo, Bertha Guijarro-Berdiñas,
 Oscar Fontenla-Romero, Amparo Alonso-Betanzos

1183 Computational and Th eoretical Analysis of Null Space
 and Orthogonal Linear Discriminant Analysis
 Jieping Ye, Tao Xiong

1205 Worst-Case Analysis of Selective Sampling
 for Linear Classifi cation
 Nicolò Cesa-Bianchi, Claudio Gentile, Luca Zaniboni

1231 Nonparametric Quantile Estimation
 Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, Alexander J. Smola

1265 Th e Interplay of Optimization and Machine Learning Research
 (Special Topic on Machine Learning and Optimization)
 Kristin P. Bennett, Emilio Parrado-Hernández

1283 Second Order Cone Programming Approaches for
 Handling Missing and Uncertain Data
 (Special Topic on Machine Learning and Optimization)
 Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya,
 Alexander J. Smola

1315 Ensemble Pruning Via Semi-defi nite Programming
 (Special Topic on Machine Learning and Optimization)
 Yi Zhang, Samuel Burer, W. Nick Street

1339 Linear Programs for Hypotheses Selection in
 Probabilistic Inference Models
 (Special Topic on Machine Learning and Optimization)
 Anders Bergkvist, Peter Damaschke, Marcel Lüthi

1357 Bayesian Network Learning with Parameter Constraints
 (Special Topic on Machine Learning and Optimization)
 Radu Stefan Niculescu, Tom M. Mitchell, R. Bharat Rao

 1385 Learning Sparse Representations by Non-Negative
 Matrix Factorization and Sequential Cone Programming
 (Special Topic on Machine Learning and Optimization)
 Matthias Heiler, Christoph Schnörr

 1409 Fast SDP Relaxations of Graph Cut Clustering
 Transduction, and Other Combinatorial Problems
 (Special Topic on Machine Learning and Optimization)
 Tijl De Bie, Nello Cristianini

 1437 Maximum-Gain Working Set Selection for SVMs
 (Special Topic on Machine Learning and Optimization)
 Tobias Glasmachers, Christian Igel

 1467 Parallel Soft ware for Training Large Scale Support
 Vector Machines on Multiprocessor Systems
 (Special Topic on Machine Learning and Optimization)
 Luca Zanni, Th omas Serafi ni, Gaetano Zanghirati

 1493 Building Support Vector Machines with Reduced
 Classifi er Complexity
 (Special Topic on Machine Learning and Optimization)
 S. Sathiya Keerthi, Olivier Chapelle, Dennis DeCoste

 1517 Exact 1-Norm Support Vector Machines Via
 Unconstrained Convex Diff erentiable Minimization
 (Special Topic on Machine Learning and Optimization)
 Olvi L. Mangasarian

 1531 Large Scale Multiple Kernel Learning
 (Special Topic on Machine Learning and Optimization)
 Sören Sonnenburg, Gunnar Rätsch,
 Christin Schäfer, Bernhard Schölkopf

 1567 Effi cient Learning of Label Ranking by Soft
 Projections onto Polyhedra
 (Special Topic on Machine Learning and Optimization)
 Shai Shalev-Shwartz, Yoram Singer

 1601 Kernel-Based Learning of Hierarchical Multilabel
 Classifi cation Models
 (Special Topic on Machine Learning and Optimization)
 Juho Rousu, Craig Saunders, Sandor Szedmak,
 John Shawe-Taylor

 1627 Structured Prediction, Dual Extragradient and
 Bregman Projections
 (Special Topic on Machine Learning and Optimization)
 Ben Taskar, Simon Lacoste-Julien, Michael I. Jordan

1655 Active Learning with Feedback on Features and Instances
 Hema Raghavan, Omid Madani, Rosie Jones

1687 Large Scale Transductive SVMs
 Ronan Collobert, Fabian Sinz, Jason Weston, Léon Bottou

1713 Considering Cost Asymmetry in Learning Classifi ers
 Francis R. Bach, David Heckerman, Eric Horvitz

1743 Learning Factor Graphs in Polynomial Time and
 Sample Complexity
 Pieter Abbeel, Daphne Koller, Andrew Y. Ng

1789 Collaborative Multiagent Reinforcement Learning by
 Payoff Propagation
 Jelle R. Kok, Nikos Vlassis

1829 Estimating the “Wrong” Graphical Model: Benefi ts in the
 Computation-Limited Setting
 Martin J. Wainwright

1861 Streamwise Feature Selection
 Jing Zhou, Dean P. Foster, Robert A. Stine, Lyle H. Ungar

1887 Linear Programming Relaxations and Belief Propagation
 -- An Empirical Study
 (Special Topic on Machine Learning and Optimization)
 Chen Yanover, Talya Meltzer, Yair Weiss

1909 Incremental Support Vector Learning: Analysis,
 Implementation and Applications
 (Special Topic on Machine Learning and Optimization)
 Pavel Laskov, Christian Gehl, Stefan Krüger,
 Klaus-Robert Müller

1937 A Simulation-Based Algorithm for Ergodic Control
 of Markov Chains Conditioned on Rare Events
 Shalabh Bhatnagar, Vivek S. Borkar, Madhukar Akarapu

1963 Learning Spectral Clustering, With Application To
 Speech Separation
 Francis R. Bach, Michael I. Jordan

2003 A Linear Non-Gaussian Acyclic Model for Causal Discovery
 Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen,
 Antti Kerminen

 2031 Walk-Sums and Belief Propagation in Gaussian
 Graphical Models
 Dmitry M. Malioutov, Jason K. Johnson, Alan S. Willsky

 2065 Distance Patterns in Structural Similarity
 Th omas Kämpke

 2087 A Hierarchy of Support Vector Machines
 for Pattern Detection
 Hichem Sahbi, Donald Geman

 2125 Adaptive Prototype Learning Algorithms:
 Th eoretical and Experimental Studies
 Fu Chang, Chin-Chin Lin, Chi-Jen Lu

 2149 A Scoring Function for Learning Bayesian
 Networks based on Mutual Information and
 Conditional Independence Tests
 Luis M. de Campos

 2189 Noisy-OR Component Analysis and its Application
 to Link Analysis
 Tomáš Šingliar, Miloš Hauskrecht

 2215 Learning a Hidden Hypergraph
 Dana Angluin, Jiang Chen

 2237 An Effi cient Implementation of an Active Set Method
 for SVMs
 (Special Topic on Machine Learning and Optimization)
 Katya Scheinberg

 2259 Causal Graph Based Decomposition of Factored MDPs
 Anders Jonsson, Andrew Barto

 2303 Accurate Error Bounds for the Eigenvalues of the
 Kernel Matrix
 Mikio L. Braun

 2329 Point-Based Value Iteration for Continuous POMDPs
 Josep M. Porta, Nikos Vlassis, Matthijs T.J. Spaan,
 Pascal Poupart

 2369 Learning Parts-Based Representations of Data
 David A. Ross, Richard S. Zemel

2399 Manifold Regularization: A Geometric Framework
 for Learning from Labeled and Unlabeled Examples
 Mikhail Belkin, Partha Niyogi, Vikas Sindhwani

 2435 Consistency of Multiclass Empirical Risk Minimization
 Methods Based on Convex Loss
 Di-Rong Chen, Tao Sun

2449 Bounds for the Loss in Probability of Correct
 Classifi cation Under Model Based Approximation
 Magnus Ekdahl, Timo Koski

2481 Estimation of Gradients and Coordinate Covariation
 in Classifi cation
 Sayan Mukherjee, Qiang Wu

2515 Expectation Correction for Smoothed Inference in Switching
 Linear Dynamical Systems
 David Barber

2541 On Model Selection Consistency of Lasso
 Peng Zhao, Bin Yu

2565 Stability Properties of Empirical Risk Minimization
 over Donsker Classes
 Andrea Caponnetto, Alexander Rakhlin

2585 Linear State-Space Models for Blind Source Separation
 Rasmus Kongsgaard Olsson, Lars Kai Hansen

2603 On Representing and Generating Kernels by Fuzzy
 Equivalence Relations
 Bernhard Moser

2621 A Robust Procedure For Gaussian Graphical Model Search
 From Microarray Data With p Larger Th an n
 Robert Castelo, Alberto Roverato

2651 Universal Kernels
 Charles A. Micchelli, Yuesheng Xu, Haizhang Zhang

2669 Machine Learning for Computer Security
 (Special Topic on Machine Learning for Computer Security)
 Philip K. Chan, Richard P. Lippmann

2673 Spam Filtering Using Statistical Data Compression Models
 (Special Topic on Machine Learning for Computer Security)
 Andrej Bratko, Gordon V. Cormack, Bogdan Filipič,
 Th omas R. Lynam, Blaž Zupan

2699 Spam Filtering Based On Th e Analysis Of Text Information
 Embedded Into Images
 (Special Topic on Machine Learning for Computer Security)
 Giorgio Fumera, Ignazio Pillai, Fabio Roli

2721 Learning to Detect and Classify Malicious Executables
 in the Wild
 (Special Topic on Machine Learning for Computer Security)
 J. Zico Kolter, Marcus A. Maloof

2745 On Inferring Application Protocol Behaviors in
 Encrypted Network Traffi c
 (Special Topic on Machine Learning for Computer Security)
 Charles V. Wright, Fabian Monrose, Gerald M. Masson

Journal of Machine Learning Research 7 (2006) 1–30 Submitted8/04; Revised 4/05; Published 1/06

Statistical Comparisons of Classifiers
over Multiple Data Sets

Janez Dem̌sar JANEZ.DEMSAR@FRI.UNI-LJ.SI

Faculty of Computer and Information Science
Tržǎska 25
Ljubljana, Slovenia

Editor: Dale Schuurmans

Abstract
While methods for comparing two learning algorithms on a single data set have been scrutinized for
quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple
data sets, which is even more essential to typical machine learning studies, has been all but ignored.
This article reviews the current practice and then theoretically and empirically examines several
suitable tests. Based on that, we recommend a set of simple, yet safe and robust non-parametric
tests for statistical comparisons of classifiers: the Wilcoxon signed ranks test for comparison of
two classifiers and the Friedman test with the correspondingpost-hoc tests for comparison of more
classifiers over multiple data sets. Results of the latter can also be neatly presented with the newly
introduced CD (critical difference) diagrams.

Keywords: comparative studies, statistical methods, Wilcoxon signed ranks test, Friedman test,
multiple comparisons tests

1. Introduction

Over the last years, the machine learning community has become increasingly aware of the need for
statistical validation of the published results. This can be attributed to the maturity of the area, the
increasing number of real-world applications and the availability of open machine learning frame-
works that make it easy to develop new algorithms or modify the existing, and compare them among
themselves.

In a typical machine learning paper, a new machine learning algorithm, a partof it or some new
pre- or postprocessing step has been proposed, and the implicit hypothesis is made that such an
enhancement yields an improved performance over the existing algorithm(s). Alternatively, various
solutions to a problem are proposed and the goal is to tell the successful from the failed. A number
of test data sets is selected for testing, the algorithms are run and the quality ofthe resulting models
is evaluated using an appropriate measure, most commonly classification accuracy. The remaining
step, and the topic of this paper, is to statistically verify the hypothesis of improved performance.

The following section explores the related theoretical work and existing practice. Various re-
searchers have addressed the problem of comparing two classifiers ona single data set and proposed
several solutions. Their message has been taken by the community, and the overly confident paired
t-tests over cross validation folds are giving place to the McNemar test and 5×2 cross validation.
On the other side, comparing multiple classifiers over multiple data sets—a situation which is even
more common, especially when general performance and not the performance on certain specific

c©2006 Janez Dem̌sar.

DEMŠAR

problem is tested—is still theoretically unexplored and left to variousad hocprocedures that either
lack statistical ground or use statistical methods in inappropriate ways. To see what is used in the
actual practice, we have studied the recent (1999-2003) proceedings of the International Conference
on Machine Learning. We observed that many otherwise excellent and innovative machine learning
papers end by drawing conclusions from a matrix of, for instance, McNemar’s tests comparing all
pairs of classifiers, as if the tests for multiple comparisons, such as ANOVA and Friedman test are
yet to be invented.

The core of the paper is the study of the statistical tests that could be (or already are) used for
comparing two or more classifiers on multiple data sets. Formally, assume that we have testedk
learning algorithms onN data sets. Letc j

i be the performance score of thej-th algorithm on the
i-th data set. The task is to decide whether, based on the valuesc j

i , the algorithms are statistically
significantly different and, in the case of more than two algorithms, which arethe particular algo-
rithms that differ in performance. We will not record the variance of thesescores,σc j

i
, but will only

assume that the measured results are “reliable”; to that end, we require that enough experiments
were done on each data set and, preferably, that all the algorithms wereevaluated using the same
random samples. We make no other assumptions about the sampling scheme.

In Section 3 we shall observe the theoretical assumptions behind each testin the light of our
problem. Although some of the tests are quite common in machine learning literature,many re-
searchers seem ignorant about what the tests actually measure and which circumstances they are
suitable for. We will also show how to present the results of multiple comparisons with neat space-
friendly graphs. In Section 4 we shall provide some empirical insights into theproperties of the
tests.

2. Previous Work

Statistical evaluation of experimental results has been considered an essential part of validation
of new machine learning methods for quite some time. The tests used have however long been
rather naive and unverified. While the procedures for comparison of apair of classifiers on a single
problem have been proposed almost a decade ago, comparative studieswith more classifiers and/or
more data sets still employ partial and unsatisfactory solutions.

2.1 Related Theoretical Work

One of the most cited papers from this area is the one by Dietterich (1998). After describing the
taxonomy of statistical questions in machine learning, he focuses on the question of deciding which
of the two algorithms under study will produce more accurate classifiers when tested on a given data
set. He examines five statistical tests and concludes the analysis by recommending the newly crafted
5×2cv t-test that overcomes the problem of underestimated variance and the consequently elevated
Type I error of the more traditional paired t-test over folds of the usualk-fold cross validation.
For the cases where running the algorithm for multiple times is not appropriate,Dietterich finds
McNemar’s test on misclassification matrix as powerful as the 5×2cv t-test. He warns against t-
tests after repetitive random sampling and also discourages using t-tests after cross-validation. The
5×2cv t-test has been improved by Alpaydın (1999) who constructed a more robust 5×2cv F test
with a lower type I error and higher power.

2

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

Bouckaert (2003) argues that theoretical degrees of freedom areincorrect due to dependencies
between the experiments and that empirically found values should be used instead, while Nadeau
and Bengio (2000) propose the corrected resampled t-test that adjusts the variance based on the
overlaps between subsets of examples. Bouckaert and Frank (Bouckaert and Frank, 2004; Bouck-
aert, 2004) also investigated the replicability of machine learning experiments,found the 5×2cv
t-test dissatisfactory and opted for the corrected resampled t-test. For a more general work on the
problem of estimating the variance of k-fold cross validation, see the work of Bengio and Grandvalet
(2004).

None of the above studies deal with evaluating the performance of multiple classifiers and nei-
ther studies the applicability of the statistics when classifiers are tested over multiple data sets. For
the former case, Salzberg (1997) mentions ANOVA as one of the possible solutions, but afterwards
describes the binomial test with the Bonferroni correction for multiple comparisons. As Salzberg
himself notes, binomial testing lacks the power of the better non-parametric testsand the Bonfer-
roni correction is overly radical. V́azquez et al. (2001) and Pizarro et al. (2002), for instance, use
ANOVA and Friedman’s test for comparison of multiple models (in particular, neural networks) on
a single data set.

Finally, for comparison of classifiers over multiple data sets, Hull (1994) was, to the best of our
knowledge, the first who used non-parametric tests for comparing classifiers in information retrieval
and assessment of relevance of documents (see also Schütze et al., 1995). Brazdil and Soares (2000)
used average ranks to compare classification algorithms. Pursuing a different goal of choosing the
optimal algorithm, they do not statistically test the significance of differences between them.

2.2 Testing in Practice: Analysis of ICML Papers

We analyzed the papers from the proceedings of five recent International Conferences on Machine
Learning (1999-2003). We have focused on the papers that compareat least two classifiers by
measuring their classification accuracy, mean squared error, AUC (Beck and Schultz, 1986), preci-
sion/recall or some other model performance score.

The sampling methods and measures used for evaluating the performance ofclassifiers are not
directly relevant for this study. It is astounding though that classification accuracy is usually still
the only measure used, despite the voices from the medical (Beck and Schultz, 1986; Bellazzi and
Zupan, 1998) and the machine learning community (Provost et al., 1998; Langley, 2000) urging that
other measures, such as AUC, should be used as well. The only real competition to classification
accuracy are the measures that are used in the area of document retrieval. This is also the only
field where the abundance of data permits the use of separate testing data sets instead of using cross
validation or random sampling.

Of greater interest to our paper are the methods for analysis of differences between the algo-
rithms. The studied papers published the results of two or more classifiers over multiple data sets,
usually in a tabular form. We did not record how many of them include (informal) statements about
the overall performance of the classifiers. However, from one quarter and up to a half of the papers
include some statistical procedure either for determining the optimal method or for comparing the
performances among themselves.

The most straightforward way to compare classifiers is to compute the average over all data sets;
such averaging appears naive and is seldom used. Pairwise t-tests areabout the only method used for
assessing statistical significance of differences. They fall into three categories: only two methods

3

DEMŠAR

1999 2000 2001 2002 2003
Total number of papers 54 152 80 87 118
Relevant papers for our study 19 45 25 31 54

Sampling method [%]
cross validation, leave-one-out 22 49 44 42 56

random resampling 11 29 44 32 54
separate subset 5 11 0 13 9

Score function [%]
classification accuracy 74 67 84 84 70

classification accuracy -exclusively 68 60 80 58 67
recall, precision. . . 21 18 16 25 19

ROC, AUC 0 4 4 13 9

deviations, confidence intervals 32 42 48 42 19

Overall comparison of classifiers [%] 53 44 44 26 45
averages over the data sets 0 4 6 0 10

t-test to compare two algorithms 16 11 4 6 7
pairwise t-test one vs. others 5 11 16 3 7
pairwise t-test each vs. each 16 13 4 6 4

counts of wins/ties/losses 5 4 0 6 9
counts ofsignificantwins/ties/losses 16 4 8 16 6

Table 1: An overview of the papers accepted to International Conference on Machine Learning
in years 1999—2003. The reported percentages (the third line and below) apply to the
number of papers relevant for our study.

are compared, one method (a new method or the base method) is compared to theothers, or all
methods are compared to each other. Despite the repetitive warnings against multiple hypotheses
testing, the Bonferroni correction is used only in a few ICML papers annually. A common non-
parametric approach is to count the number of times an algorithm performs better, worse or equally
to the others; counting is sometimes pairwise, resulting in a matrix of wins/ties/lossescount, and the
alternative is to count the number of data sets on which the algorithm outperformed all the others.
Some authors prefer to count only the differences that were statistically significant; for verifying
this, they use various techniques for comparison of two algorithms that werereviewed above.

This figures need to be taken with some caution. Some papers do not explicitly describe the
sampling and testing methods used. Besides, it can often be hard to decide whether a specific
sampling procedure, test or measure of quality is equivalent to the general one or not.

3. Statistics and Tests for Comparison of Classifiers

The overview shows that there is no established procedure for comparing classifiers over multiple
data sets. Various researchers adopt different statistical and common-sense techniques to decide
whether the differences between the algorithms are real or random. In thissection we shall examine

4

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

several known and less known statistical tests, and study their suitability forour purpose from the
point of what they actually measure and of their safety regarding the assumptions they make about
the data.

As a starting point, two or more learning algorithms have been run on a suitable set of data
sets and were evaluated using classification accuracy, AUC or some othermeasure (see Tables 2
and 6 for an example). We do not record the variance of these results over multiple samples, and
therefore assume nothing about the sampling scheme. The only requirementis that the compiled
results provide reliable estimates of the algorithms’ performance on each dataset. In the usual
experimental setups, these numbers come from cross-validation or from repeated stratified random
splits onto training and testing data sets.

There is a fundamental difference between the tests used to assess the difference between two
classifiers on a single data set and the differences over multiple data sets. When testing on a single
data set, we usually compute the mean performance and its variance over repetitive training and
testing on random samples of examples. Since these samples are usually related, a lot of care is
needed in designing the statistical procedures and tests that avoid problemswith biased estimations
of variance.

In our task, multiple resampling from each data set is used only to assess the performance
score and not its variance. The sources of the variance are the differences in performance over
(independent) data sets and not on (usually dependent) samples, so the elevated Type 1 error is
not an issue. Since multiple resampling does not bias the score estimation, various types of cross-
validation or leave-one-out procedures can be used without any risk.

Furthermore, the problem of correct statistical tests for comparing classifiers on a single data
set is not related to the comparison on multiple data sets in the sense that we wouldfirst have to
solve the former problem in order to tackle the latter. Since running the algorithms on multiple data
sets naturally gives a sample of independent measurements, such comparisons are even simpler than
comparisons on a single data set.

We should also stress that the “sample size” in the following section will refer tothe number of
data sets used, not to the number of training/testing samples drawn from eachindividual set or to
the number of instances in each set. The sample size can therefore be as small as five and is usually
well below 30.

3.1 Comparisons of Two Classifiers

In the discussion of the tests for comparisons of two classifiers over multiple data sets we will make
two points. We shall warn against the widely used t-test as usually conceptually inappropriate and
statistically unsafe. Since we will finally recommend the Wilcoxon (1945) signed-ranks test, it will
be presented with more details. Another, even more rarely used test is the sign test which is weaker
than the Wilcoxon test but also has its distinct merits. The other message will be that the described
statistics measure differences between the classifiers from different aspects, so the selection of the
test should be based not only on statistical appropriateness but also on what we intend to measure.

3.1.1 AVERAGING OVER DATA SETS

Some authors of machine learning papers compute the average classification accuracies of classifiers
across the tested data sets. In words of Webb (2000), “it is debatable whether error rates in different
domains are commensurable, and hence whether averaging error rates across domains is very mean-

5

DEMŠAR

ingful”. If the results on different data sets are not comparable, their averages are meaningless. A
different case are studies in which the algorithms are compared on a set ofrelated problems, such as
medical databases for a certain disease from different institutions or various text mining problems
with similar properties.

Averages are also susceptible to outliers. They allow classifier’s excellent performance on one
data set to compensate for the overall bad performance, or the opposite,a total failure on one domain
can prevail over the fair results on most others. There may be situations in which such behaviour
is desired, while in general we probably prefer classifiers that behavewell on as many problems as
possible, which makes averaging over data sets inappropriate.

Given that not many papers report such averages, we can assume that the community gener-
ally finds them meaningless. Consequently, averages are also not used (nor useful) for statistical
inference with the z- or t-test.

3.1.2 PAIRED T-TEST

A common way to test whether the difference between two classifiers’ resultsover various data sets
is non-random is to compute a paired t-test, which checks whether the average difference in their
performance over the data sets is significantly different from zero.

Let c1
i andc2

i be performance scores of two classifiers on thei-th out ofN data sets and letdi

be the differencec2
i − c1

i . The t statistics is computed asd/σd and is distributed according to the
Student distribution withN−1 degrees of freedom.

In our context, the t-test suffers from three weaknesses. The first iscommensurability: the t-test
only makes sense when the differences over the data sets are commensurate. In this view, using
the paired t-test for comparing a pair of classifiers makes as little sense as computing the averages
over data sets. The average differenced equals the difference between the averaged scores of the
two classifiers,d = c2 − c1. The only distinction between this form of the t-test and comparing
the two averages (as those discussed above) directly using the t-test forunrelated samples is in the
denominator: the paired t-test decreases the standard errorσd by the variance between the data sets
(or, put another way, by the covariance between the classifiers).

Webb (2000) approaches the problem of commensurability by computing the geometric means
of relative ratios,(∏i c

1
i /c2

i)
1/N. Since this equals toe1/N∑i(lnc1

i −lnc2
i), this statistic is essentially

the same as the ordinary averages, except that it compares logarithms of scores. The utility of this
transformation is thus rather questionable. Quinlan (1996) computes arithmeticmeans of relative
ratios; due to skewed distributions, these cannot be used in the t-test without further manipulation.
A simpler way of compensating for different complexity of the problems is to divide the difference

by the average score,di =
c1

i −c2
i

(c1
i +c2

i)/2
.

The second problem with the t-test is that unless the sample size is large enough (∼ 30 data
sets), the paired t-test requires that the differences between the two random variables compared are
distributed normally. The nature of our problems does not give any provisions for normality and the
number of data sets is usually much less than 30. Ironically, the Kolmogorov-Smirnov and similar
tests for testing the normality of distributions have little power on small samples, thatis, they are
unlikely to detect abnormalities and warn against using the t-test. Therefore, for using the t-test we
need normal distributions because we have small samples, but the small samples also prohibit us
from checking the distribution shape.

6

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

C4.5 C4.5+m difference rank
adult (sample) 0.763 0.768 +0.005 3.5
breast cancer 0.599 0.591 −0.008 7

breast cancer wisconsin 0.954 0.971 +0.017 9
cmc 0.628 0.661 +0.033 12

ionosphere 0.882 0.888 +0.006 5
iris 0.936 0.931 −0.005 3.5

liver disorders 0.661 0.668 +0.007 6
lung cancer 0.583 0.583 0.000 1.5

lymphography 0.775 0.838 +0.063 14
mushroom 1.000 1.000 0.000 1.5

primary tumor 0.940 0.962 +0.022 11
rheum 0.619 0.666 +0.047 13
voting 0.972 0.981 +0.009 8

wine 0.957 0.978 +0.021 10

Table 2: Comparison of AUC for C4.5 withm = 0 and C4.5 withm tuned for the optimal AUC. The
columns on the right-hand illustrate the computation and would normally not be published
in an actual paper.

The third problem is that the t-test is, just as averaging over data sets, affected by outliers which
skew the test statistics and decrease the test’s power by increasing the estimated standard error.

3.1.3 WILCOXON SIGNED-RANKS TEST

The Wilcoxon signed-ranks test (Wilcoxon, 1945) is a non-parametric alternative to the paired t-test,
which ranks the differences in performances of two classifiers for each data set, ignoring the signs,
and compares the ranks for the positive and the negative differences.

Let di again be the difference between the performance scores of the two classifiers oni-th out
of N data sets. The differences are ranked according to their absolute values; average ranks are
assigned in case of ties. LetR+ be the sum of ranks for the data sets on which the second algorithm
outperformed the first, andR− the sum of ranks for the opposite. Ranks ofdi = 0 are split evenly
among the sums; if there is an odd number of them, one is ignored:

R+ = ∑
di>0

rank(di)+
1
2 ∑

di=0

rank(di) R− = ∑
di<0

rank(di)+
1
2 ∑

di=0

rank(di).

Let T be the smaller of the sums,T = min(R+,R−). Most books on general statistics include a
table of exact critical values forT for N up to 25 (or sometimes more). For a larger number of data
sets, the statistics

z=
T − 1

4N(N+1)
√

1
24N(N+1)(2N+1)

is distributed approximately normally. Withα = 0.05, the null-hypothesis can be rejected ifz is
smaller than−1.96.

7

DEMŠAR

Let us illustrate the procedure on an example. Table 2 shows the comparisonof AUC for C4.5
with m (the minimal number of examples in a leaf) set to zero and C4.5 withm tuned for the opti-
mal AUC. For the latter, AUC has been computed with 5-fold internal cross validation on training
examples form∈ {0,1,2,3,5,10,15,20,50}. The experiments were performed on 14 data sets from
the UCI repository with binary class attribute. We used the original Quinlan’sC4.5 code, equipped
with an interface that integrates it into machine learning system Orange (Demšar and Zupan, 2004),
which provided us with the cross validation procedures, classes for tuning arguments, and the scor-
ing functions. We are trying to reject the null-hypothesis that both algorithms perform equally well.

There are two data sets on which the classifiers performed equally (lung-cancer and mushroom);
if there was an odd number of them, we would ignore one. The ranks are assigned from the lowest
to the highest absolute difference, and the equal differences (0.000,±0.005) are assigned average
ranks.

The sum of ranks for the positive differences isR+ = 3.5+9+12+5+6+14+11+13+8+
10+ 1.5 = 93 and the sum of ranks for the negative differences equalsR− = 7+ 3.5+ 1.5 = 12.
According to the table of exact critical values for the Wilcoxon’s test, for aconfidence level of
α = 0.05 andN = 14 data sets, the difference between the classifiers is significant if the smaller of
the sums is equal or less than 21. We therefore reject the null-hypothesis.

The Wilcoxon signed ranks test is more sensible than the t-test. It assumes commensurability of
differences, but only qualitatively: greater differences still count more, which is probably desired,
but the absolute magnitudes are ignored. From the statistical point of view, the test is safer since it
does not assume normal distributions. Also, the outliers (exceptionally good/bad performances on
a few data sets) have less effect on the Wilcoxon than on the t-test.

The Wilcoxon test assumes continuous differencesdi , therefore they should not be rounded to,
say, one or two decimals since this would decrease the power of the test dueto a high number of
ties.

When the assumptions of the paired t-test are met, the Wilcoxon signed-rankstest is less pow-
erful than the paired t-test. On the other hand, when the assumptions are violated, the Wilcoxon test
can be even more powerful than the t-test.

3.1.4 COUNTS OFWINS, LOSSES ANDTIES: SIGN TEST

A popular way to compare the overall performances of classifiers is to count the number of data
sets on which an algorithm is the overall winner. When multiple algorithms are compared, pairwise
comparisons are sometimes organized in a matrix.

Some authors also use these counts in inferential statistics, with a form of binomial test that
is known as the sign test (Sheskin, 2000; Salzberg, 1997). If the two algorithms compared are, as
assumed under the null-hypothesis, equivalent, each should win on approximatelyN/2 out ofN data
sets. The number of wins is distributed according to the binomial distribution; thecritical number
of wins can be found in Table 3. For a greater number of data sets, the number of wins is under
the null-hypothesis distributed according toN(N/2,

√
N/2), which allows for the use of z-test: if

the number of wins is at leastN/2+ 1.96
√

N/2 (or, for a quick rule of a thumb,N/2+
√

N), the
algorithm is significantly better withp < 0.05. Since tied matches support the null-hypothesis we
should not discount them but split them evenly between the two classifiers;if there is an odd number
of them, we again ignore one.

8

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

#data sets 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
w0.05 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18
w0.10 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17

Table 3: Critical values for the two-tailed sign test atα = 0.05 andα = 0.10. A classifier is signifi-
cantly better than another if it performs better on at leastwα data sets.

In example from Table 2, C4.5+m was better on 11 out of 14 data sets (counting also one of
the two data sets on which the two classifiers were tied). According to Table 3 this difference is
significant withp < 0.05.

This test does not assume any commensurability of scores or differencesnor does it assume
normal distributions and is thus applicable to any data (as long as the observations, i.e. the data
sets, are independent). On the other hand, it is much weaker than the Wilcoxon signed-ranks test.
According to Table 3, the sign test will not reject the null-hypothesis unlessone algorithm almost
always outperforms the other.

Some authors prefer to count only the significant wins and losses, wherethe significance is
determined using a statistical test on each data set, for instance Dietterich’s 5×2cv. The reasoning
behind this practice is that “some wins and losses are random and these should not count”. This
would be a valid argument if statistical tests could distinguish between the random and non-random
differences. However, statistical tests only measure the improbability of the obtained experimental
result if the null hypothesis was correct, which is not even the (im)probability of the null-hypothesis.

For the sake of argument, suppose that we compared two algorithms on one thousand different
data sets. In each and every case, algorithm A was better than algorithm B,but the difference was
never significant. It is true that for each single case the difference between the two algorithms can
be attributed to a random chance, but how likely is it that one algorithm was just lucky in all 1000
out of 1000 independent experiments?

Contrary to the popular belief, counting only significant wins and losses therefore does not make
the tests more but rather less reliable, since it draws an arbitrary thresholdof p< 0.05 between what
counts and what does not.

3.2 Comparisons of Multiple Classifiers

None of the above tests was designed for reasoning about the means of multiple random variables.
Many authors of machine learning papers nevertheless use them for thatpurpose. A common ex-
ample of such questionable procedure would be comparing seven algorithmsby conducting all 21
paired t-tests and reporting results like “algorithm A was found significantly better than B and C,
and algorithms A and E were significantly better than D, while there were no significant differences
between other pairs”. When so many tests are made, a certain proportion ofthe null hypotheses is
rejected due to random chance, so listing them makes little sense.

The issue of multiple hypothesis testing is a well-known statistical problem. The usual goal is
to control thefamily-wise error, the probability of making at least one Type 1 error in any of the
comparisons. In machine learning literature, Salzberg (1997) mentions a general solution for the

9

DEMŠAR

problem of multiple testing, the Bonferroni correction, and notes that it is usually very conservative
and weak since it supposes the independence of the hypotheses.

Statistics offers more powerful specialized procedures for testing the significance of differences
between multiple means. In our situation, the most interesting two are the well-known ANOVA
and its non-parametric counterpart, the Friedman test. The latter, and especially its corresponding
Nemenyi post-hoc test are less known and the literature on them is less abundant; for this reason,
we present them in more detail.

3.2.1 ANOVA

The common statistical method for testing the differences between more than two related sample
means is therepeated-measures ANOVA(or within-subjects ANOVA) (Fisher, 1959). The “related
samples” are again the performances of the classifiers measured acrossthe same data sets, preferably
using the same splits onto training and testing sets. The null-hypothesis being tested is that all
classifiers perform the same and the observed differences are merely random.

ANOVA divides the total variability into the variability between the classifiers, variability be-
tween the data sets and the residual (error) variability. If the between-classifiers variability is signif-
icantly larger than the error variability, we can reject the null-hypothesis and conclude that thereare
some differences between the classifiers. In this case, we can proceedwith a post-hoc test to find
out which classifiers actually differ. Of many such tests for ANOVA, the twomost suitable for our
situation are the Tukey test (Tukey, 1949) for comparing all classifiers with each other and the Dun-
nett test (Dunnett, 1980) for comparisons of all classifiers with the control (for instance, comparing
the base classifier and some proposed improvements, or comparing the newlyproposed classifier
with several existing methods). Both procedures compute the standard error of the difference be-
tween two classifiers by dividing the residual variance by the number of data sets. To make pairwise
comparisons between the classifiers, the corresponding differences inperformances are divided by
the standard error and compared with the critical value. The two procedures are thus similar to a
t-test, except that the critical values tabulated by Tukey and Dunnett are higher to ensure that there
is at most 5 % chance that one of the pairwise differences will be erroneously found significant.

Unfortunately, ANOVA is based on assumptions which are most probably violated when ana-
lyzing the performance of machine learning algorithms. First, ANOVA assumesthat the samples
are drawn from normal distributions. In general, there is no guarantee for normality of classification
accuracy distributions across a set of problems. Admittedly, even if distributions are abnormal this
is a minor problem and many statisticians would not object to using ANOVA unlessthe distributions
were, for instance, clearly bi-modal (Hamilton, 1990). The second and more important assumption
of the repeated-measures ANOVA is sphericity (a property similar to the homogeneity of variance
in the usual ANOVA, which requires that the random variables have equal variance). Due to the
nature of the learning algorithms and data sets this cannot be taken for granted. Violations of these
assumptions have an even greater effect on the post-hoc tests. ANOVA therefore does not seem to
be a suitable omnibus test for the typical machine learning studies.

We will not describe ANOVA and its post-hoc tests in more details due to our reservations about
the parametric tests and, especially, since these tests are well known and described in statistical
literature (Zar, 1998; Sheskin, 2000).

10

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

ANOVA
p < 0.01 0.01≤ p≤ 0.05 0.05< p

Friedman p < 0.01 16 1 0
test 0.01≤ p≤ 0.05 4 1 4

0.05< p 0 2 28

Table 4: Friedman’s comparison of his test and the repeated-measures ANOVA on 56 independent
problems (Friedman, 1940).

3.2.2 FRIEDMAN TEST

The Friedman test (Friedman, 1937, 1940) is a non-parametric equivalent of the repeated-measures
ANOVA. It ranks the algorithms for each data set separately, the best performing algorithm getting
the rank of 1, the second best rank 2. . . , as shown in Table 6. In caseof ties (like in iris, lung cancer,
mushroom and primary tumor), average ranks are assigned.

Let r j
i be the rank of thej-th of k algorithms on thei-th of N data sets. The Friedman test

compares the average ranks of algorithms,Rj = 1
N ∑i r

j
i . Under the null-hypothesis, which states

that all the algorithms are equivalent and so their ranksRj should be equal, the Friedman statistic

χ2
F =

12N
k(k+1)

[

∑
j

R2
j −

k(k+1)2

4

]

is distributed according toχ2
F with k−1 degrees of freedom, whenN andk are big enough (as a

rule of a thumb,N > 10 andk > 5). For a smaller number of algorithms and data sets, exact critical
values have been computed (Zar, 1998; Sheskin, 2000).

Iman and Davenport (1980) showed that Friedman’sχ2
F is undesirably conservative and derived

a better statistic

FF =
(N−1)χ2

F

N(k−1)−χ2
F

which is distributed according to the F-distribution withk−1 and(k−1)(N−1) degrees of freedom.
The table of critical values can be found in any statistical book.

As for the two-classifier comparisons, the (non-parametric) Friedman testhas theoretically less
power than (parametric) ANOVA when the ANOVA’s assumptions are met, butthis does not need
to be the case when they are not. Friedman (1940) experimentally compared ANOVA and his test
on 56 independent problems and showed that the two methods mostly agree (Table 4). When one
method finds significance atp < 0.01, the other shows significance of at leastp < 0.05. Only in 2
cases did ANOVA find significant what was insignificant for Friedman, while the opposite happened
in 4 cases.

If the null-hypothesis is rejected, we can proceed with a post-hoc test. TheNemenyi test (Ne-
menyi, 1963) is similar to the Tukey test for ANOVA and is used when all classifiers are compared to
each other. The performance of two classifiers is significantly differentif the corresponding average
ranks differ by at least the critical difference

CD = qα

√

k(k+1)

6N

11

DEMŠAR

#classifiers 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

(a) Critical values for the two-tailed Nemenyi test

#classifiers 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773
q0.10 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

(b) Critical values for the two-tailed Bonferroni-Dunn test; the number ofclassifiers include the control
classifier.

Table 5: Critical values for post-hoc tests after the Friedman test

where critical valuesqα are based on the Studentized range statistic divided by
√

2 (Table 5(a)).

When all classifiers are compared with a control classifier, we can insteadof the Nemenyi test
use one of the general procedures for controlling the family-wise errorin multiple hypothesis test-
ing, such as the Bonferroni correction or similar procedures. Althoughthese methods are generally
conservative and can have little power, they are in this specific case more powerful than the Ne-
menyi test, since the latter adjusts the critical value for makingk(k−1)/2 comparisons while when
comparing with a control we only makek−1 comparisons.

The test statistics for comparing thei-th and j-th classifier using these methods is

z= (Ri −Rj)

/
√

k(k+1)

6N
.

Thezvalue is used to find the corresponding probability from the table of normal distribution, which
is then compared with an appropriateα. The tests differ in the way they adjust the value ofα to
compensate for multiple comparisons.

The Bonferroni-Dunn test (Dunn, 1961) controls the family-wise errorrate by dividingα by the
number of comparisons made (k−1, in our case). The alternative way to compute the same test is
to calculate the CD using the same equation as for the Nemenyi test, but using thecritical values
for α/(k−1) (for convenience, they are given in Table 5(b)). The comparison between the tables
for Nemenyi’s and Dunn’s test shows that the power of the post-hoc testis much greater when all
classifiers are compared only to a control classifier and not between themselves. We thus should not
make pairwise comparisons when we in fact only test whether a newly proposed method is better
than the existing ones.

For a contrast from the single-step Bonferroni-Dunn procedure, step-up and step-down proce-
dures sequentially test the hypotheses ordered by their significance. Wewill denote the orderedp
values byp1, p2, ..., so thatp1 ≤ p2 ≤ . . . ≤ pk−1. The simplest such methods are due to Holm
(1979) and Hochberg (1988). They both compare eachpi with α/(k− i), but differ in the order

12

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

of the tests.1 Holm’s step-down procedure starts with the most significantp value. If p1 is be-
low α/(k− 1), the corresponding hypothesis is rejected and we are allowed to comparep2 with
α/(k−2). If the second hypothesis is rejected, the test proceeds with the third, andso on. As soon
as a certain null hypothesis cannot be rejected, all the remaining hypotheses are retained as well.
Hochberg’s step-up procedure works in the opposite direction, comparing the largestp value withα,
the next largest withα/2 and so forth until it encounters a hypothesis itcan reject. All hypotheses
with smallerp values are then rejected as well.

Hommel’s procedure (Hommel, 1988) is more complicated to compute and understand. First,
we need to find the largestj for which pn− j+k > kα/ j for all k = 1.. j. If no such j exists, we can
reject all hypotheses, otherwise we reject all for whichpi ≤ α/ j.

Holm’s procedure is more powerful than the Bonferroni-Dunn’s and makes no additional as-
sumptions about the hypotheses tested. The only advantage of the Bonferroni-Dunn test seems to
be that it is easier to describe and visualize because it uses the same CD forall comparisons. In turn,
Hochberg’s and Hommel’s methods reject more hypotheses than Holm’s, yetthey may under some
circumstances exceed the prescribed family-wise error since they are based on the Simes conjecture
which is still being investigated. It has been reported (Holland, 1991) thatthe differences between
the enhanced methods are in practice rather small, therefore the more complexHommel method
offers no great advantage over the simple Holm method.

Although we here use these procedures only as post-hoc tests for the Friedman test, they can be
used generally for controlling the family-wise error when multiple hypothesesof possibly various
types are tested. There exist other similar methods, as well as some methods thatinstead of control-
ling the family-wise error control the number of falsely rejected null-hypotheses (false discovery
rate, FDR). The latter are less suitable for the evaluation of machine learningalgorithms since they
require the researcher to decide for the acceptable false discovery rate. A more complete formal
description and discussion of all these procedures was written, for instance, by Shaffer (1995).

Sometimes the Friedman test reports a significant difference but the post-hoc test fails to detect
it. This is due to the lower power of the latter. No other conclusions than that some algorithms do
differ can be drawn in this case. In our experiments this has, however, occurred only in a few cases
out of one thousand.

The procedure is illustrated by the data from Table 6, which compares fouralgorithms: C4.5
with m fixed to 0 andcf (confidence interval) to 0.25, C4.5 withm fitted in 5-fold internal cross
validation, C4.5 withcf fitted the same way and, finally, C4.5 in which we fitted both arguments,
trying all combinations of their values. Parameterm was set to 0, 1, 2, 3, 5, 10, 15, 20, 50 andcf to
0, 0.1, 0.25 and 0.5.

Average ranks by themselves provide a fair comparison of the algorithms. On average, C4.5+m
and C4.5+m+cf ranked the second (with ranks 2.000 and 1.964, respectively), and C4.5 and C4.5+cf
the third (3.143 and 2.893). The Friedman test checks whether the measured average ranks are
significantly different from the mean rankRj = 2.5 expected under the null-hypothesis:

χ2
F =

12·14
4·5

[

(3.1432 +2.0002 +2.8932 +1.9642)− 4·52

4

]

= 9.28

FF =
13·9.28

14·3−9.28
= 3.69.

1. In the usual definitions of these proceduresk would denote the number of hypotheses, while in our case the number
of hypotheses isk−1, hence the differences in the formulae.

13

DEMŠAR

C4.5 C4.5+m C4.5+cf C4.5+m+cf
adult (sample) 0.763 (4) 0.768 (3) 0.771 (2) 0.798 (1)
breast cancer 0.599 (1) 0.591 (2) 0.590 (3) 0.569 (4)

breast cancer wisconsin 0.954 (4) 0.971 (1) 0.968 (2) 0.967 (3)
cmc 0.628 (4) 0.661 (1) 0.654 (3) 0.657 (2)

ionosphere 0.882 (4) 0.888 (2) 0.886 (3) 0.898 (1)
iris 0.936 (1) 0.931 (2.5) 0.916 (4) 0.931 (2.5)

liver disorders 0.661 (3) 0.668 (2) 0.609 (4) 0.685 (1)
lung cancer 0.583 (2.5) 0.583 (2.5) 0.563 (4) 0.625 (1)

lymphography 0.775 (4) 0.838 (3) 0.866 (2) 0.875 (1)
mushroom 1.000 (2.5) 1.000 (2.5) 1.000 (2.5) 1.000 (2.5)

primary tumor 0.940 (4) 0.962 (2.5) 0.965 (1) 0.962 (2.5)
rheum 0.619 (3) 0.666 (2) 0.614 (4) 0.669 (1)
voting 0.972 (4) 0.981 (1) 0.975 (2) 0.975 (3)

wine 0.957 (3) 0.978 (1) 0.946 (4) 0.970 (2)
average rank 3.143 2.000 2.893 1.964

Table 6: Comparison of AUC between C4.5 withm = 0 and C4.5 with parametersm and/orcf tuned
for the optimal AUC. The ranks in the parentheses are used in computation ofthe Friedman
test and would usually not be published in an actual paper.

With four algorithms and 14 data sets,FF is distributed according to theF distribution with
4−1= 3 and(4−1)×(14−1) = 39 degrees of freedom. The critical value ofF(3,39) for α = 0.05
is 2.85, so we reject the null-hypothesis.

Further analysis depends upon what we intended to study. If no classifier is singled out, we
use the Nemenyi test for pairwise comparisons. The critical value (Table 5(a)) is 2.569 and the

corresponding CD is 2.569
√

4·5
6·14 = 1.25. Since even the difference between the best and the worst

performing algorithm is already smaller than that, we can conclude that the post-hoc test is not
powerful enough to detect any significant differences between the algorithms.

At p=0.10, CD is 2.291
√

4·5
6·14 = 1.12. We can identify two groups of algorithms: the perfor-

mance of pure C4.5 is significantly worse than that of C4.5+m and C4.5+m+cf.We cannot tell
which group C4.5+cf belongs to. Concluding that it belongs to both would bea statistical nonsense
since a subject cannot come from two different populations. The correct statistical statement would
be thatthe experimental data is not sufficient to reach any conclusion regarding C4.5+cf.

The other possible hypothesis made before collecting the data could be that itis possible to
improve on C4.5’s performance by tuning its parameters. The easiest way toverify this is to compute
the CD with the Bonferroni-Dunn test. In Table 5(b) we find that the critical value q0.05 for 4

classifiers is 2.394, so CD is 2.394
√

4·5
6·14 = 1.16. C4.5+m+cf performs significantly better than

C4.5 (3.143−1.964= 1.179> 1.16) and C4.5+cf does not (3.143−2.893= 0.250< 1.16), while
C4.5+m is just below the critical difference, but close to it (3.143− 2.000= 1.143≈ 1.16). We
can conclude that the experiments showed that fittingm seems to help, while we did not detect any
significant improvement by fittingcf.

For the other tests we have to compute and order the corresponding statisticsandp values. The

standard error isSE=
√

4·5
6·14 = 0.488.

14

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

i classifier z= (R0−Ri)/SE p α/i
1 C4.5+m+cf (3.143−1.964)/0.488= 2.416 0.016 0.017
2 C4.5+m (3.143−2.000)/0.488= 2.342 0.019 0.025
3 C4.5+cf (3.143−2.893)/0.488= 0.512 0.607 0.050

The Holm procedure rejects the first and then the second hypothesis since the correspondingp
values are smaller than the adjustedα’s. The third hypothesis cannot be rejected; if there were any
more, we would have to retain them, too.

The Hochberg procedure starts from the bottom. Unable to reject the last hypothesis, it check
the second last, rejects it and among with it all the hypotheses with smallerp values (the top-most
one).

Finally, the Hommel procedure finds thatj = 3 does not satisfy the condition atk = 2. The
maximal value ofj is 2, and the first two hypotheses can be rejected since theirp values are below
α/2.

All step-down and step-up procedure found C4.5+cf+m and C4.5+m significantly different from
C4.5, while the Bonferroni-Dunn test found C4.5 and C4.5+m too similar.

3.2.3 CONSIDERINGMULTIPLE REPETITIONS OFEXPERIMENTS

In our examples we have used AUCs measured and averaged over repetitions of training/testing
episodes. For instance, each cell in Table 6 represents an average over five-fold cross validation.
Could we also consider the variance, or even the results of individual folds?

There are variations of the ANOVA and the Friedman test which can consider multiple observa-
tions per cellprovided that the observations are independent (Zar, 1998). This is not the case here,
since training data in multiple random samples overlaps. We are not aware of any statistical test that
could take this into account.

3.2.4 GRAPHICAL PRESENTATION OFRESULTS

When multiple classifiers are compared, the results of the post-hoc tests can be visually represented
with a simple diagram. Figure 1 shows the results of the analysis of the data fromTable 6. The top
line in the diagram is the axis on which we plot the average ranks of methods. The axis is turned so
that the lowest (best) ranks are to the right since we perceive the methodson the right side as better.

When comparing all the algorithms against each other, we connect the groups of algorithms that
are not significantly different (Figure 1(a)). We also show the critical difference above the graph.

If the methods are compared to the control using the Bonferroni-Dunn testwe can mark the
interval of one CD to the left and right of the average rank of the control algorithm (Figure 1(b)).
Any algorithm with the rank outside this area is significantly different from thecontrol. Similar
graphs for the other post-hoc tests would need to plot a different adjusted critical interval for each
classifier and specify the procedure used for testing and the corresponding order of comparisons,
which could easily become confusing.

For another example, Figure 2 graphically represents the comparison of feature scoring mea-
sures for the problem of keyword prediction on five domains formed fromthe Yahoo hierarchy
studied by Mladeníc and Grobelnik (1999). The analysis reveals that Information gain performs
significantly worse than Weight of evidence, Cross entropy Txt and Odds ratio, which seem to have

15

DEMŠAR

4 3 2 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..C4.5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...C4.5+cf

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. C4.5+m

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... C4.5+m+cf

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
CD

(a) Comparison of all classifiers against each other with the Nemenyi test. Groups of classifiers that are not
significantly different (atp = 0.10) are connected.

4 3 2 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..C4.5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...C4.5+cf

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. C4.5+m

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... C4.5+m+cf

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) Comparison of one classifier against the others with the Bonferroni-Dunn test. All classifiers with ranks outside
the marked interval are significantly different (p < 0.05) from the control.

Figure 1: Visualization of post-hoc tests for data from Table 6.

6 5 4 3 2 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................Information gain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..Mutual information Txt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...Term frequency

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...Weight of evidence for text

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...Cross entropy Txt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...Odds ratio

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
CD

Figure 2: Comparison of recalls for various feature selection measures;analysis of the results from
the paper by Mladenić and Grobelnik (1999).

equivalent performances. The data is not sufficient to conclude whether Mutual information Txt
performs the same as Information gain or Term Frequency, and similarly, whether Term Frequency
is equivalent to Mutual information Txt or to the better three methods.

4. Empirical Comparison of Tests

We experimentally observed two properties of the described tests: their replicability and the likeli-
hood of rejecting the null-hypothesis. Performing the experiments to answerquestions like “which
statistical test is most likely to give the correct result” or “which test has the lowest Type 1/Type 2
error rate” would be a pointless exercise since the proposed inferentialtests suppose different kinds

16

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

of commensurability and thus compare the classifiers from different aspects. The “correct answer”,
rejection or non-rejection of the null-hypothesis, is thus not well determinedand is, in a sense,
related to the choice of the test.

4.1 Experimental Setup

We examined the behaviour of the studied tests through the experiments in whichwe repeatedly
compared the learning algorithms on sets of ten randomly drawn data sets and recorded thep values
returned by the tests.

4.1.1 DATA SETS AND LEARNING ALGORITHMS

We based our experiments on several common learning algorithms and their variations: C4.5, C4.5
with m and C4.5 with cf fitted for optimal accuracy, another tree learning algorithm implemented in
Orange (with features similar to the original C4.5), naive Bayesian learnerthat models continuous
probabilities using LOESS (Cleveland, 1979), naive Bayesian learner with continuous attributes
discretized using Fayyad-Irani’s discretization (Fayyad and Irani, 1993) and kNN (k=10, neighbour
weights adjusted with the Gaussian kernel).

We have compiled a sample of forty real-world data sets,2 from the UCI machine learning
repository (Blake and Merz, 1998); we have used the data sets with discrete classes and avoided
artificial data sets like Monk problems. Since no classifier is optimal for all possible data sets,
we have simulated experiments in which a researcher wants to show particularadvantages of a
particular algorithm and thus selects a corresponding compendium of data sets. We did this by
measuring the classification accuracies of the classifiers on all data sets in advance by using ten-fold
cross validation. When comparing two classifiers, samples of ten data sets were randomly selected
so that the probability for the data seti being chosen was proportional to 1/(1+e−kdi), wheredi is
the (positive or negative) difference in the classification accuracies onthat data set andk is the bias
through which we can regulate the differences between the classifiers.3 Whereas atk = 0 the data
set selection is random with the uniform distribution, with higher values ofk we are more likely
to select the sets that favour a particular learning method. Note that choosing the data sets with
knowing their success (as estimated in advance) is only a simulation, while the researcher would
select the data sets according to other criteria. Using the described procedure in practical evaluations
of algorithms would be considered cheating.

We decided to avoid “artificial” classifiers and data sets constructed specifically for testing the
statistical tests, such as those used, for instance, by Dietterich (1998). In such experimental proce-
dures some assumptions need to be made about the real-world data sets and thelearning algorithms,
and the artificial data and algorithms are constructed in a way that mimics the supposed real-world
situation in a controllable manner. In our case, we would construct two or more classifiers with
a prescribed probability of failure over a set of (possible imaginary) datasets so that we could,

2. The data sets used are: adult, balance-scale, bands, breast cancer (haberman), breast cancer (lju), breast cancer
(wisc), car evaluation, contraceptive method choice, credit screening, dermatology, ecoli, glass identification, hayes-
roth, hepatitis, housing, imports-85, ionosphere, iris, liver disorders, lung cancer, lymphography, mushrooms, pima
indians diabetes, post-operative, primary tumor, promoters, rheumatism, servo, shuttle landing, soybean, spambase,
spect, spectf, teaching assistant evaluation, tic tac toe, titanic, voting, waveform, wine recognition, yeast.

3. The function used is the logistic function. It was chosen for its convenient shape; we do not claim that such relation
actually occurs in practice when selecting the data sets for experiments.

17

DEMŠAR

knowing the correct hypothesis, observe the Type 1 and 2 error ratesof the proposed statistical
tests.

Unfortunately, we do not know what should be our assumptions about thereal world. To what
extent are the classification accuracies (or other measures of success) incommensurable? How
(ab)normal is their distribution? How homogenous is the variance? Moreover, if we do make
certain assumptions, the statistical theory is already able to tell the results of theexperiments that
we are setting up. Since the statistical tests which we use are theoretically well understood, we do
not need to test the tests but the compliance of the real-world data to their assumptions. In other
words, we know, from the theory, that the t-test on a small sample (that is, on a small number of
data sets) requires the normal distribution, so by constructing an artificial environment that will
yield non-normal distributions we can make the t-test fail. The real question however is whether the
real worlddistributions are normal enough for the t-test to work.

Cannot we test the assumptions directly? As already mentioned in the description of the t-test,
the tests like the Kolmogorov-Smirnov test of normality are unreliable on small samples where they
are very unlikely to detect abnormalities. And even if we did have suitable testsat our disposal, they
would only compute the degree of (ab)normality of the distribution, non-homogeneity of variance
etc, and not the sample’s suitability for t-test.

Our decision to use real-world learning algorithms and data sets in unmodified form prevents
us from artificially setting the differences between them by making them intentionally misclassify
a certain proportion of examples. This is however compensated by our method of selecting the
data sets: we can regulate the differences between the learning algorithms by affecting the data
set selection through regulating the biask. In this way, we perform the experiments on real-world
data sets and algorithms, and yet observe the performance of the statistics at various degrees of
differences between the classifiers.

4.1.2 MEASURES OFPOWER AND REPLICABILITY

Formally, the power of a statistical test is defined as the probability that the testwill (correctly) reject
the false null-hypothesis. Since our criterion of what is actually false is related to the selection of the
test (which should be based on the kind of differences between the classifiers we want to measure),
we can only observe the probability of the rejection of the null-hypothesis, which is nevertheless
related to the power.

We do this in two ways. First, we set the significance level at 5% and observe in how many
experiments out of one thousand does a particular test reject the null-hypothesis. The shortcoming
of this is that it observes only the behaviour of statistics at aroundp= 0.05 (which is probably what
we are interested in), yet it can miss a bigger picture. We therefore also observed the averagep
values as another measure of “power” of the test: the lower the values, themore likely it is for a test
to reject the null-hypothesis at a set confidence level.

The two measures for assessing the power of the tests lead to two related measures of replica-
bility. Bouckaert (2004) proposed a definition which can be used in conjuction with counting the
rejections of the null-hypothesis. He defined the replicability as the probability that two experiments
with the same pair of algorithms will produce the same results, that is, that both experiments accept
or reject the null-hypothesis, and devised the optimal unbiased estimator of this probability,

R(e) = ∑
1≤i< j≤n

I(ei = ej)

n(n−1)/2

18

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

whereei is the outcome of thei-th experiment out ofn (ei is 1 if the null-hypothesis is accepted, 0 if
it is not) andI is the indicator function which is 1 if its argument is true and 0 otherwise. Bouckaert
also describes a simpler way to computeR(e): if the hypothesis was accepted inp and rejected in
q experiments out ofn, R(e) equals(p(p−1)+ q(q−1))/n(n−1). The minimal value ofR, 0.5,
occurs whenp = q = n/2, and the maximal, 1.0, when eitherp or q is zero.

The disadvantage of this measure is that a statistical test will show a low replicability when the
difference between the classifiers is marginally significant. When comparingtwo tests of different
power, the one with results closer to the chosenα will usually be deemed as less reliable.

When the power is estimated by the average ofp values, the replicability is naturally defined
through their variance. The variance ofp is between 0 and 0.25; the latter occurs when one half of
p’s equals zero and the other half equals one.4 To allow for comparisons with Bouckaert’sR(e), we
define the replicability with respect to the variance ofp as

R(p) = 1−2·var(p) = 1−2
∑i(pi − p)2

n−1
.

A problem with this measure of replicability when used in our experimental procedure is that
when the biask increases, the variability of the data set selection decreases and so doesthe variance
of p. The size of the effect depends on the number of data sets. Judged by the results of the
experiments, our collection of forty data sets is large enough to keep the variability practically
unaffected for the used values ofk (see the left graph in Figure 4.c; if the variability of selections
decreased, the variance ofp could not remain constant).

The described definitions of replicability are related. SinceI(ei = ej) equals 1− (ei −ej)
2, we

can reformulateR(e) as

R(e) = ∑
1≤i< j≤n

1− (ei −ej)
2

n(n−1)/2
= 1−∑

i
∑

j

(ei −ej)
2

n(n−1)
= 1−∑

i
∑

j

((ei −e)− (ej −e))2

n(n−1)
.

From here, it is easy to verify that

R(e) = 1−2
∑i(ei −e)2

n−1
.

The fact that Bouckaert’s formula is the optimal unbiased estimator forR(e) is related to∑i(ei −
e)2/(n−1) being the optimal unbiased estimator of the population variance.

4.2 Comparisons of Two Classifiers

We have tested four statistics for comparisons of two classifiers: the pairedt-test on absolute and on
relative differences, the Wilcoxon test and the sign test. The experiments were run on 1000 random
selections of ten data sets, as described above.

The graphs on the left hand side of Figure 3 show the averagep values returned by the tests as
a function of the biask when comparing C4.5-cf, naive Bayesian classifier and kNN (note that the
scale is turned upside down so the curve rises when the power of the test increases). The graphs
on the right hand side show the number of experiments in which the hypothesiswas rejected at

4. Since we estimate the population variance from the sample variance, the estimated variance will be higher by
0.25/(n−1). With any decent number of experiments, the difference is however negligible.

19

DEMŠAR

α = 5%. To demonstrate the relation between power (as we measure it) and Bouckaert’s measure of
replicability we have added the right axis that showsR(e) corresponding to the number of rejected
hypothesis.

Note that atk= 0 the number of experiments in which the null hypothesis is rejected is not 50%.
Lower settings ofk do not imply that both algorithms compared should perform approximately
equally, but only that we do not (artificially) bias the data sets selection to favour one of them.
Therefore, atk = 0 the tests reflect the number of rejections of the null-hypothesis on a completely
random selection of data sets from our collection.

Both variations of the t-test give similar results, with the test on relative differences being
slightly, yet consistently weaker. The Wilcoxon signed-ranks test givesmuch lowerp values and is
more likely to reject the null-hypothesis than t-tests in almost all cases. The signtest is, as known
from the theory, much weaker than the other tests.

The two measures of replicability give quite different results. Judged byR(p) (graphs on the
left hand side of Figure 4), the Wilcoxon test exhibits the smallest variation ofp values. For a
contrast, Bouckaert’sR(e) (right hand side of Figure 4) shows the Wilcoxon test as the least reliable.
However, the shape of the curves on these graphs and the right axes inFigure 3 clearly show that
the test is less reliable (according toR(e)) when thep values are closer to 0.05, so the Wilcoxon test
seems unreliable due to its higher power keeping it closer to p=0.05 than the other tests.

Table 7 shows comparisons of all seven classifiers withk set to 15. The numbers below the
diagonal show the averagep values and the related replicabilityR(p), and the numbers above the
diagonal represent the number of experiments in which the null-hypothesiswas rejected atα = 5%
and the relatedR(e). The table again shows that the Wilcoxon test almost always returns lowerp
values than other tests and more often rejects the null hypothesis. Measured byR(p), the Wilcoxon
test also has the highest replicability.R(e), on the other hand, again prefers other tests withp values
farther from the critical 0.05.

Overall, it is known that parametric tests are more likely to reject the null-hypothesis than the
non-parametric unless their assumptions are violated. Our results suggestthat the latter is indeed
happening in machine learning studies that compare algorithms across collections of data sets. We
therefore recommend using the Wilcoxon test, unless the t-test assumptions are met, either because
we have many data sets or because we have reasons to believe that the measure of performance
across data sets is distributed normally. The sign test, as the third alternative,is too weak to be
generally useful.

Low values ofR(e) suggest that we should ensure the reliability of the results (especially when
the differences between classifiers are marginally significant) by runningthe experiments on as
many appropriate data sets as possible.

4.3 Comparisons of Multiple Classifiers

For comparison of multiple classifiers, samples of data sets were selected with the probabilities
computed from the differences in the classification accuracy of C4.5 and naive Bayesian classifier
with Fayyad-Irani discretization. These two classifiers were chosen for no particular reason; we
have verified that the choice has no practical effect on the results.

Results are shown in Figure 5. When the algorithms are more similar (at smaller values ofk),
the non-parametric Friedman test again appears stronger than the parametric, ANOVA. At greater

20

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

..+ T-test ..± T-test (rel) ..� Wilcoxon ..× Sign test

0 5 10 15 20
0.30

0.25

0.20

0.15

0.10

0.05

0.00

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
....
...
...
...
..
...
....
...
...
...
...
....
...
...
...
...
...
....
....
....
....
....
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
.....
......
......
..

+
+

+
+
++

+
++

++++++++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
...
...
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
.............

.......
..
..
..
..
..
..
..
..
....
...
...
...
...
....
...
...
...
...
...

±
±
±
±±

±±
±±±

±±±±
±±

..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
..
..
....
...
...
...
...
....
..
..
..
..
..
..
..
....
....
....
....
....
...
...
..
...
...
....
......
......
.....
..
..
..
..
..
..
..
..
.............

.....

��
��

��
�
��

�
���

����
����

..
...
...
...
...
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....
....
....
....
...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
...
..

××
××

×
×××

××

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.00

.....................
......
......
...........
........
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
..
..
..
..
..
..
..
..
..
.....................

...
...
...
...
...
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.........
........
........
.......
....
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
....
...
...
...
...
....
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
......
..........
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
........
.......
.....
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..

+++++++++
+++

+++++
++++

.......................................
.....
.....
.....
....
....
....
....
...
...
...
...
....
..
..
..
..
..
..
..
..
......................

...
...
...
...
..
...
..
..
..
..
..
..
..
..
.............

........................
..
..
..
..
..
..
..
..
..
...
......
......
.......................

..
..
..
..
..
..
..
....
....
....
....
....
..
..
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.

±±±±±±
±±±±±±

±±±±±
±±±

±

.....
.....
.....
....
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
...
...
...
...
...
...
..

���
�
�
�
��

��
��

��
���

����

...........................
.....................

........
.....
.....
......................

...
...
...
...
......
.................

....
....
....
....
..
..
..
..
..
..
..
....
....
....
....
......................

..
..
..
..
..
..
..
..
.........................

......
......
...
...
...
...
...
.....................

..
..
..
..
..
..
..
..
..
....
...
...
...
...
......
......
......
......
.....
.....
..

×××××××××
××××××

××××
××

(a) C45-cf vs. naive Bayes

0 5 10 15 20
0.30

0.25

0.20

0.15

0.10

0.05

0.00

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
....
...
...
...
...
....
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....
...
...
...
...
..........
..........
..
..
..
..
..
..
..
..
...
...
...
...
...
...
....
...
...
...
...
....
...
...
...
...
....................

+

+
+

+
+
+
++

++++++++++

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
...
...
...
...
...
.............

......
..
..
..
..
..
..
..
..
..
....
...
...
...
...
....
...
...
...
...
....
...
...
...
...
...
..................

±
±

±
±
±±

±±
±±±±

±±±±±

..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
.
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
....
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
..
...
..
..
..
..
..
..
..
..
....
...
...
...
...
....
...
...
...
...
.....................

..
..
..
..
..
..
..
..
.............

........
....
....
....
.......
......
.......................

��
�

�
��

��
���

�����
�����

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
...
..
..
..
..
.
..
..
..
..
..
..
.
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
......
......
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................

..
..
..
..
..
..
..
..
....
...
...
...
...
......
......
......
.

×
×
×
×
××

××
××

××
×××××

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.00

...
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
....
...
...
...
...
....
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
....
....
....
.....
..
..
..
..
..
..
..
..
..
.....
....
....
....
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...................

++
+
++

+
+
++

+
++++

+++++++

...
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....
...
...
...
...
....
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
..
..
..
..
..
..
..
..
......
.....
.....
....
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...................

±±
±
±±

±±
±±

±±
±±±

±±±±
±±±

..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
......................

..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
....
...
...
...
...
.....
......
......
.....
...
...
...
...
....
....
....
....
....

��
�
�
�
��

��
��

���
���

����

........
........
...
..
..
..
..
..
..
..
....
....
....
....
....
...
...
...
...
...
.....
....
....
....
....
...
...
...
...
...
..
..
..
.
..
..
..
.
..
..
..
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
..
..
..
..
..
..
..
..
...
.....
.....
.....
...
..
..
..
..
..
..
..
..
...
...
...
...
...
...
....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...................

×××××
××

×××
××××

×××
××××

(b) C45-cf vs. kNN

0 5 10 15 20
0.30

0.25

0.20

0.15

0.10

0.05

0.00

..
..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.............

......
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................

..
..
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
..
..
.....................................

..
..
..
..
..
..
..
..
..
..
.....................

...
...
...
...
..

+
+
++

++
++

+++
+++

.

..
..
.
..
..
..
..
..
..
.
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....................
..
..
..
..
..
..
..
..
..
..
.....................

..
..
..
..
..
..
..
..
..
...
............

.......................
..
..
..
..
..
..
..
..
..
......................

...
...
...
...
..

±±
±±

±±±±
±±±±±±

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
...
...
...
...
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
..............................

.......
...
...
...
...
...
.....................

...
...
...
...
..

�
��

��
��

��
����

�������
�

...
...
...
...
...
...
...
...
...
...
...
........................

....
....
....
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

× ×××
××

×

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.00

.......
.......
............
..........
...
...
...
...
........................

....
....
....
.....................

...
...
...
...
........................

....
....
....
.....................

...
...
...
...
..

...
...
...
...
.........................

......
........
........
..

+++++++++++++++++++++
....................

...
...
...
...
..........
..............................

....
....
....
.....................

...
...
...
...
.........
...........
.......
.......
..........
...........
..........
........
.....
.....
..

..............
.....
.....
......
....
....
....
....................................±±±±±±±±±±±±±±±±±±±±±

..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................

..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....
...
...
...
...
.....
.....
.....
.....
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
....
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
...
..
..
..
..
..
..
..
..
...
...
...
...
...
...
....
...
...
...
...
.......................

...
...
...
...
...

��
�
���

��
���

����
���

���

....................................
....
....
....
...........................

.......
............
..........
...
...
...
...
..............................

...........................
...
...
..
...
...
...

.........
....
....
....
..

...
...
...
...
................................

....

×××××××××××××××××××××

(c) Naive Bayes vs. kNN

Figure 3: Power of statistical tests for comparison of two classifiers. Left:p values as a func-
tion of bias (k). Right: number of times the hypothesis was rejected (left axis) and the
Bouckaert’sR (right axis).

21

DEMŠAR

..+ T-test ..± T-test (rel) ..� Wilcoxon ..× Sign test

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0

.......
.......
.....
...
...
...
...
....
.
..
..
..
.
..
..
..
.
..
..
..
.
...
..
..
..
..
..
..
..
..
.....
....
....
....
...
..
..
..
..
..
..
..
..
......
.....
.....
....
..
..
..
..
..
..
..
....
...
...
...
...
....
....
....
....
.....
..........
.......
...
...
..
...
...
....
...
...
...
...
...
..............................

.............
...........
.....
.....
.....
.........................

.......
......
....
....
....
..

+

+

.....
.....
.....
....
...
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
....
...
...
...
...
.....
....
....
....
....
...
...
...
...
...
........
.......
......
....
....
....
....
...
...
...
...
....
....
....
....
......................

...
...
...
...
...
....
....
....
....
..........
....................

.............................
.......
.............................

.......
........
.......
.....

∓

∓
...

.......
.......
........
.......
........
.......
........
.......
.......
...........
.........
....
....
....
............
...............

...........
....
....
....
.......................

..................
..........
...........
.................................

.......
..............

.......

�
�

....
....
....
....
......
.....
.....
.......................................

..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
...
...
...
...
...
..
...
..
..
..
..
..
..
..
..
..
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................

..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...................

.....
.....
.....
.

×

×

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

...
....
....
....
...
..

.......

+

+

.....
.....
.....
..

..............
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
........................

...
...
...
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................

±

±

.

....
...
....
...
....
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

....
....
....
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
.
..
..
..
.
..
..
..
.
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..

�

�

..
..
..
..
..
..
..
..
..
...
....
....
....
.......................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
....
...
....
...
....
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

....
....
....
...
....
.....
...
....
...
....
...
....
....................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
....
....
....
.

×

×

(a) C45-cf vs. naive Bayes

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0

........................
....
....
....
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
.....
....
....
....
...
..
..
..
..
..
..
..
..
....
...
...
...
...
.......................

.......
.......
..
..
..
..
..
..
..
..
.........................

.......
.......
.....
.....
..............

..
.......

+

+

.....................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
..
...
...
...
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
.....
....
....
....
.......................

.....
.....
....
..
..
..
..
..
..
..
..
......................

....
....
....
......
.....
.....
..................

.....................................
..........
.....

∓

∓
.......................................

.....
.....
......
....
....
....
......
.....
.....
.....
...
...
...
...
....
....
....
....
........................

....
....
....
........
.......
..............................

.........
.....
.....
................................

..............
.....................

....................
.....................................

�
�

.......
.......
....
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
......................

...
...
...
...
......................

..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
....................

...
...
...
...
...
...
..
..
..
..
..
..
..
..
.....................

...
...
...
...
....
...
...
..
...
...
.............................

........

×

×

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
....
....
...
..
..
..
..
..
..
..
..
.....
..........
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
......................

...
...
...
...
....
..
.
..
..
..
..
..
.
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..

+

+

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............
...

........
..
...
...
...
...
....
...
...
...
...
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................

..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

÷

÷

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....................
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........
.......
.....................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
..� �

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.........................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..

×

×

(b) C45-cf vs. kNN

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0

...
..
..
..
..
..
..
..
.....
.......
........
.................

..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
....
....
....
....
.....
...
...
...
...
...
...
..
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....
...
...
...
...
..............................

........
..
..
..
..
..
..
..
..
.......................

.....
.....
...................

+

+

...
....
....
....
...........
.........................

..
..
..
..
..
..
..
..
..
..
..
........
.......
.....
...
...
...
...
....
....
....
....
.....
..
..
..
..
..
..
..
..
......................

...
...
...
...
....
..
..
..
..
..
..
..
..
....
...
...
...
...
..........................

.......
.....
..
..
..
..
..
..
..
..........................

.......
....................

∓

∓..........
...............................

.......
.......
.....
.....
.......................

....
....
....
.........
...............................

....
....
....
...........
............................

....
....
....
...................

.......
.......
...................................

...
........................

�
�

..........
........
...
...
...
...
...
.............................

........
..
..
..
..
..
..
..
..
..
.......................................

...
...
...
...
....
....
....
....
....
...
...
...
...
...
..

........
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
............................

.....
.....
......
.....
.....
.....
..
..
..
..
..
..
..
...................

×
×

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0
...

..
..
..
..
..
..
..
..
..
..
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
............................

...........
....
...
....
...
....
...

..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..

+

+

...
....
....
....
..

...
...
...
...
..

..
..
..
..
..
..
..
..
.....
...
....
...
....
...
...........................

...
...
...
...
....
..
..
..
..
..
..
..
..

÷

÷

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................
.......
.......
...

..........
.........................

...
...
...
...
...
..
..
..
..
..
..
..
..
..
...................................

�

�

.....
.....
.....
..........
...............................

...
...
...
...
..

.....
.....
.......................

...
...
...
...
..

..
..
..
..
..
..
..
..
............................

.....
.....
.....
....
....
....
......................

×

×

(c) Naive Bayes vs. kNN

Figure 4: Replicability of tests for comparison of two classifiers: variance-basedR(p) (left) and
Bouckaert’sR(e) (right).

22

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

c45 c45-m c45-cf tree bayes disc-bayes knn
c45 154/.74 709/.59 818/.70 178/.71 0/1.00 151/.74

c45-m .16/.96 307/.57 909/.83 300/.58 0/1.00 376/.53
c45-cf .05/.99 .10/.98 758/.63 335/.55 0/1.00 167/.72

tree .04/.98 .02/1.00 .05/.98 679/.56 162/.73 592/.52
bayes .15/.96 .12/.97 .11/.97 .05/.99 0/1.00 2/1.00

disc-bayes .41/.92 .20/.95 .28/.92 .18/.94 .20/.97 981/.96
knn .16/.96 .10/.98 .14/.97 .06/.99 .35/.94 .01/1.00

(a) Paired t-test

c45 c45-m c45-cf tree bayes disc-bayes knn
c45 75/.86 592/.52 809/.69 181/.70 0/1.00 184/.70

c45-m .17/.96 238/.64 848/.74 314/.57 0/1.00 438/.51
c45-cf .06/.99 .11/.98 729/.60 361/.54 0/1.00 216/.66

tree .04/.99 .03/1.00 .06/.98 662/.55 79/.85 584/.51
bayes .16/.95 .12/.97 .11/.97 .05/.99 0/1.00 1/1.00

disc-bayes .36/.94 .20/.96 .27/.94 .19/.95 .24/.98 970/.94
knn .14/.96 .09/.98 .13/.97 .06/.99 .35/.95 .01/1.00

(b) Paired t-test on relative differences

c45 c45-m c45-cf tree bayes disc-bayes knn
c45 521/.50 884/.79 897/.82 662/.55 81/.85 618/.53

c45-m .08/.98 774/.65 983/.97 710/.59 351/.54 750/.62
c45-cf .03/1.00 .04/.99 854/.75 804/.68 172/.71 720/.60

tree .02/1.00 .01/1.00 .03/1.00 915/.84 521/.50 920/.85
bayes .06/.99 .05/.99 .04/.99 .02/1.00 94/.83 102/.82

disc-bayes .22/.96 .11/.98 .16/.97 .08/.98 .18/.97 999/1.00
knn .07/.98 .04/.99 .05/.99 .02/1.00 .22/.96 .00/1.00

(c) Wilcoxon signed-ranks test

c45 c45-m c45-cf tree bayes disc-bayes knn
c45 157/.74 323/.56 653/.55 171/.72 48/.91 110/.80

c45-m .21/.90 205/.67 863/.76 299/.58 156/.74 256/.62
c45-cf .10/.98 .16/.93 513/.50 423/.51 95/.83 229/.65

tree .05/.99 .02/1.00 .09/.97 460/.50 210/.67 486/.50
bayes .19/.89 .13/.94 .08/.97 .08/.97 0/1.00 1/1.00

disc-bayes .29/.89 .18/.93 .25/.89 .18/.93 .52/.78 850/.74
knn .25/.85 .14/.93 .15/.93 .07/.97 .45/.86 .01/1.00

(d) Sign test

Table 7: Tests for comparisons of two classifiers: averagep-values andR(p) (below diagonal), and
the number of null-hypothesis rejections andR(e) (above diagonal).

23

DEMŠAR

...+ ANOVA ...� Friedman test

0 5 10 15 20
0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.5

0.6

0.7

0.8

0.9

1.0

................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
....
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
....
...
...
...
...
.....
....
....
......
......
......
.....
....
....
......
......
.......
......
......
............
.....

++
+
+
+++++++++++++++++

................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
....
..
...
..
..
...
....
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
.....
....
....
....
.....
....
....
......
......
.......
....
....
....
.......
......
....

+

+
..................

...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
....
...
...
...
...
....
...
...
...
...
....
...
...
...
.....
....
....
....
.......
......
......
....
....
......
......
......
.....
....
....
.........
...........
......
......
.......
......
...........
..........
......
........
...........
.............

....

������
�������

��������

..................
...
...
...
....
..
...
..
...
...
....
...
...
...
...
....
..
...
..
..
...
...
...
..
...
..
...
....
...
...
...
....
...
...
...
...
.....
....
....
.....
...
...
...
...
.....
....
....
.....
....
....
....
.....
....
....
......
......
......
.......
......
.......
......
.......
......
......
.............

........
......
.........
..........

�

�

(a) Averagep values (left axis) andR(p) (no symbols
on lines, right axis)

0 5 10 15 20
0

200

400

600

800

1000

0.5

0.6

0.7

0.8

0.9

1.0

..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....
...
...
...
...................................

...
...
...
...
.......
......
........
........
......................

.....
...........................

.......
..............

..

+++
+
+
+
+++++++++++++++

.....................
......
....
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
...........................

.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
....
...
...
...
...
...................

..
..
..
..
..
..
..
...................

..
..
..
..
..
..
....
....
....
....
.

+

+

..
..
..
..
..
..
..
..
...
...
...
...
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
....
....
....
....
..
..
..
..
..
..
...
..
..
..
..
..
..
..
.....................

....
....
.....
.....
.....
.....
...
...
...
...
.......
......
.......................

.....
.....................

........
............
.........

���
��

��
�����

���������

..
..
..
..
..
..
..
..
...
...
...
...
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..................

..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
.
..
..
..
..
..
...
..
..
..
..
..
..
..
......................

..
..
..
..
..
..
..
..................

...
...
...
...
....
.....
.....
....

�

�

(b) Number of experiments in which the null-
hypothesis was rejected (left axis) and the correspond-
ing R(e) (no symbols on lines, right axis)

Figure 5: Comparison of ANOVA and Friedman test

differences between the algorithms (k at around 10, in our experimental setup), ANOVA catches up
and the two tests give similar results.

Replicability of the Friedman test is higher than that of ANOVA when measured by R(p) and,
due to the similar power of the tests, comparable when measured byR(e). Altogether, replicabil-
ity seems somewhat smaller than the replicability of the tests for comparisons of twoclassifiers.
Therefore, as common sense would suggest, when comparing multiple classifiers, it is even more
important to conduct the tests on as many data sets as possible.

Figure 6 shows the comparison between the parametric Tukey and the non-parametric Nemenyi
test. We counted the number of times they rejected the equivalence of C4.5-cfand naive Bayesian
classifier and the equivalence of C4.5-cf and kNN (the comparison between the naive Bayesian clas-
sifier and kNN, which was included in previous tests, was less interesting since the null hypothesis
was very seldom rejected). The two graphs on the left represent experiments in which the selec-
tion was based on the differences between the two algorithms compared on thegraph, while for the
right two graphs we used differences between the C4.5-cf and the average of the other six classifiers
tested. In all cases, we have compared all seven algorithms, but presented only the number of rejec-
tions for the pair on the graph. The non-parametric test again more often rejects the null-hypothesis
than the parametric one.

We do not show thep values and the corresponding replicabilities since they cannot always be
computed or compared in all procedures due to different orders of testing.

Figure 7 compares post hoc tests for comparisons with a control classifier, using the same two
ways of selecting data sets as in Figure 6. When the differences are large, the power of all tests is
comparable, while when they are smaller the number of rejections for the parametric test seems to
lag behind (we have observed this same pattern on other combinations of algorithms). The order
of the non-parametric tests is as expected from the theory, although it is interesting to note that the
Holm and Hochberg tests give practically equal results.

24

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

..+ Tukey� Nemenyi

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.00

...................
....
....
....
...
...
...
...
....
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..................

..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
....
....
....
....
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
...
..
...
..
...
.

+++++
++

+++
++

+++++++++

....
....
....
....
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
..
..
.
..
..
..
.
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
.....
.....
.....
..
..
..
..
..
..
..
..
...
...
...
...
...
.....
.....
.....
....
..
..
..
..
..
..
..
....
...
...
...
....
..
..
...
..
...
...

���
�
�
��

��
�
���

���
����

�

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.00

.....
.....
........
.............

...
...
...
...
....
..
..
..
..
..
..
..
....
....
....
....
..................

..
..
..
..
..
..
.....
.......
........
........
.........................

......
......
.....
.....
........
........
...

...
...
...
..

+++++++++++++++++++++
...
...
..
...
..
....
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
....
...
...
...
...
....
...
...
...
.....
....
....
....
....
...
...
...
.....
....
....
....
.........
........
...
...
...
...
....
..
..
..
..
..
..
..
.......
..............................

..
..
..
..
..
..
..
...
...
...
...
...
....................

..
..
..
..
..
..
..
...................

��
��

���
������

��������

(a) C45-cf vs. naive Bayes

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.00

..
........
...........
........
...
...
...
...
.......
......
...................

..
..
..
..
..
..
..
....................

...
...
...
.....
....
....
....
...
..
..
..
..
..
..
....
....
....
....
..............

...........
........
...
...
...
...
....
....
....
....
...............................

+++++++++++++++++++++
........
........
....
....
....
............
......
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
.....
.....
.....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
....................

...
...
...
...
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
.......................

......
.....
...
...
...
...
.

�����
��

���
��

����
�����

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.00

...
.......
..

......
.......................................

......
............................

............................
...............................

...............
.....................+++++++++++++++++++++.......

.......
.....
....
....
.....................

........
......
...
...
...
...
....................

....
....
.....................................

....
....
......................

....
....
......................

......
...........................

......
.......
......
......
....
....
....
................................

������������������
���

(b) C45-cf vs. kNN

Figure 6: Power of statistical tests for comparison of multiple classifiers. Biasis defined by the
difference in performance of the two classifiers on the graph (left) or between the C4.5-cf
and all other classifiers (right). The left scale on each graph gives thenumber of times
the hypothesis was rejected and the right scale gives the correspondingR(e).

These experiments again seem to favour the non-parametric tests over the parametric ones al-
though not always as convincingly as in the case of comparisons of two classifiers. Due to the
theoretical and practical advantages of the Friedman test (ease of computation and interpretation,
the ability to present the overall performance of classifiers in form of ranks instead of the dubious
averages), the Friedman test should be preferred over ANOVA. The corresponding non-parametric
post-hoc tests give similar results, so it is upon the researcher to decide whether the slightly more
powerful Hommel test is worth the complexity of its calculation as compared to the much simpler
Holm test.

25

DEMŠAR

..+ Dunnett ..� Bonferroni ..? Holm ..∗ Hochberg ..• Hommel

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.0

..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
.....
....
....
....
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....................

....
....
.....
...
...
...
...
...
..
..
..
..
..
..
..
..
.........
........
..
..
..
..
..
..
..
..
.

+++
+
+
++

+
+
+++

+++++++++

...
...
...
...
...
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....
....
....
....
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
.....
....
....
....
..
..
..
..
..
..
..
..
..
.

���
��

��
�
�
��

��
���

����
�

...
...
...
...
...
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...........
......
..
..
..
..
..
..
..
...
..
..
..
..
..
..
....
...
...
...
...
....
...
...
...
...
...
..
..
..
..
..
..
..
..
..
.

???
?
?
?
?
?
?
?
????

??????
?

...
...
...
...
...
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
.
..
..
..
.
..
..
..
.................

..
..
..
..
..
..
..
...
...
...
...
...
....
...
...
...
...
....
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..

∗∗∗
∗∗

∗
∗∗

∗
∗∗

∗∗
∗∗∗

∗∗∗∗
∗

..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
...
...
..
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...
...
...
....
..
..
..
..
..
..
..
..
.......
......
.....
...
...
...
...
...
..
..
..
..
..
..
..
..
.

••
•
•
•
•
••

•
••

•••
•••••

••

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.0

..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
........
.......
..............

....
..
..
..
..
..
..
..
....................

..
..
..
..
..
..
..
......................

.....
......
..
..
..
..
..
..
..
..
..

..
...
..
...
..................

+++
+
++

+++++++++++++++

..
...
..
...
...
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
...
...
...
...
....
...
...
...
...
......
.......
......
...
...
...
...
...
..
..
..
..
..
..
..
..
.....................

...
...
...
....
..
..
..
..
..
..
..
..
..
...
.......................................

......
........
........
....
..
..
..
..
..
..
..
................

��
��

�
���

���
����

������

..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
.
..
..
..
.
..
..
..
.
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
......
.....
......
.............

...
..
..
..
..
..
..
..
..
....................

...
...
...
....
..
..
..
..
..
..
..
..
.........
.............................

...
...
...
...
..................

..
..
..
..
..
..
..
.................

??
??

?
??????

??????????

..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
....
..
...
..
...
..
...
..
..
..
..
..
..
..
.....
....
....
.........
..........
..
..
..
..
..
..
..
..
..
...................

...
...
...
....
..
..
..
..
..
..
..
..
........
.......
......................

...
...
...
....................

..
..
..
..
..
..
..
..
................

∗∗
∗∗

∗∗
∗∗∗∗∗

∗∗∗∗∗∗∗∗
∗∗

..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...................

..
...
..
...
..
...
..
..
..
..
..
..
..
..................

..
..
..
..
..
..
..
....
...
...
...
...
...
..
..
..
..
..
..
........................

..
..
..
..
..
..
..
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................

••
••

••
••

••••••
•••••

••

(a) C45-cf vs. naive Bayes

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.0

.......
.......
..............

....
...
...
...
...
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
....
...
...
...
....
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
....
...
...
...
....
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
...
...
...
...
...
.
..
..
.
..
..
..
.
..
..
..
.
..................

..
..
..
..
..
..
..
..
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....
....
....
...

++++++
++

+++++++
++

+
+
++

..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....
....
....
....
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...
..
..
..
..
..
..
..
......
.....
......
..
..
..
..
..
..
..
..
......................

....
....
......
......
......

��
�
�
��

��
�
��

���
���

����

..
..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
....
.
.
..
..
..
.
..
..
.
..
..
..
....
...
...
...
....
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
...
...
...
...
..........
........
..
..
..
..
..
..
..
..
..
....................

...
...
...
.....
......
......
.

?
?
?
?
?
?

??
?
??

??????
????

.

..
.
..
..
..
.
..
..
..
.
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
....
.
.
..
..
..
.
..
..
.
..
..
..
....
...
...
...
....
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
...
...
...
...
.......
........
...
..
..
..
..
..
..
..
..
.....................

...
...
...
.....
.....
.....
...

∗∗
∗
∗
∗∗

∗∗
∗∗

∗∗
∗∗∗

∗∗∗∗∗∗

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
......
.....
......
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
....
....
....
....
...........
......
..
..
..
..
..
..
..
...................

..
..
..
..
..
..
..........
.......

•
•
•
•
•
•
••

••
•••

••••••••

0 5 10 15 20
0

200

400

600

800

1000

1.00

0.68

0.52

0.52

0.68

1.0

.......
.......
...................

...
...
...
.........
.................

.........
...
...
...
...
...........................

.......
...
...
...
...
.......................

.......
.....
....
....
......................

....
....
..........................

...........
...............................

.....
......
....
....
....
..

+++++++++++++++++++++
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.........
........
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..................

...
...
...
...
...
..
..
..
..
..
..
..
..
.....
....
....
...................................

..
..
..
..
..
..
..
......
.....
......
...
..
...
..
...
...........................

.......................
..
..
..
..
..
..
..
..
.

�
��

�
���

�������
�������

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
.....
......
.......
.......
........
..
..
..
..
..
..
..
..
..
.......................

......
...............

......
...
...
...
....
...
...
...
...
....
...
...
...
...
........................

.......
..................

..
..
..
..
..
..
..

?
?
?
?
??

????
???????????

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
.....
.......
.......
......
......
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....................

.....
.....................

...
...
...
...
....
...
...
...
...
....
...
...
...
...
....................

....
....
....................

..
..
..
..
..
..
..

∗
∗∗

∗
∗∗

∗∗∗∗
∗∗∗∗∗∗∗∗∗∗

∗

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
.........
........
...
...
...
...
....
..
..
..
..
..
..
..
...
.....
.....
...................................

...
...
...
...
....
...
...
...
...
....
...
...
...
...
....................

...
...
...
...
..................

..
...
..
...
...
.

•
•
••

••
••••

••••••••
•••

(b) C45-cf vs. kNN

Figure 7: Power of statistical tests for comparison of multiple classifiers with a control. Bias is
defined by the difference in performance of the two classifiers on the graph (left) or be-
tween the C4.5-cf and the average of all other classifiers (right). The left scale on each
graph gives the number of times the hypothesis was rejected and the right scale gives the
corresponding Bouckaert’sR.

5. Conclusion

Our analysis of the papers from the past International Conferences on Machine Learning has shown
that many authors feel that the algorithms they propose should be comparedover a set of problems
and that the results can be used for drawing general conclusions. There is however no golden stan-
dard for making such comparisons and the tests performed often have dubious statistical foundations
and lead to unwarranted and unverified conclusions.

While comparisons using a single data set are pestered by the biased variance estimations due
to dependencies between the samples of examples drawn from the data set, incomparisons over
multiple data set the variance comes from the differences between the data sets, which are usually

26

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

independent. Our setup is therefore free from the elevated Type 1 error that is common on the single
data set testing procedures. The problems with the multiple data set tests are quite different, even
in a sense complementary: the measurements from different data sets are usually incommensurate,
and the normality of their distributions and the homogeneity of variance is questionable at best.

We theoretically and empirically analyzed three families of statistical tests that canbe used for
comparing two or more classifiers over multiple data sets: parametric tests (the paired t-test and
ANOVA), non-parametric tests (the Wilcoxon and the Friedman test) and the non-parametric test
that assumes no commensurability of the results (sign test). In the theoretical part, we specifically
discussed the possible violations of the tests’ assumptions by a typical machinelearning data. Based
on the well known statistical properties of the tests and our knowledge of themachine learning data,
we concluded that the non-parametric tests should be preferred over theparametric ones.

We have observed the behaviour of the proposed statistics on several real-world classifiers and
data sets. We varied the differences between the classifiers by biasing theselection of data sets,
and measured the likelihood of rejection of the null-hypothesis and the replicability of the test. We
have indeed found that the non-parametric tests are more likely to reject the null-hypothesis, which
hints at the presence of outliers or violations of assumptions of the parametrictests and confirms
our theoretical misgivings about them. The empirical analysis also shows that replicability of the
tests might be a problem, thus the actual experiments should be conducted on as many data sets as
possible.

In the empirical study we provided no analysis of Type 1/Type 2 error rates. The main reason for
this is that the correct result—rejection or non-rejection of the null-hypothesis—is not well defined
and depends upon the kind of difference between the algorithms we intend tomeasure. Besides,
conducting the experiments in which we knew the true hypotheses would require artificial data sets
and classifiers with the prescribed probabilities and distributions of errors. For this we would need to
make some assumptions about the real-world distributions; these assumptions are, however, exactly
what we were testing in the first place.

Overall, the non-parametric tests, namely the Wilcoxon and Friedman test are suitable for our
problems. They areappropriatesince they assume some, but limited commensurability. They
aresafer than parametric testssince they do not assume normal distributions or homogeneity of
variance. As such, they can be applied to classification accuracies, error ratios or any other measure
for evaluation of classifiers, including even model sizes and computation times. Empirical results
suggest that they are alsostronger than the other tests studied. The latter is particularly true when
comparing a pair of classifiers.

We have proposed a visual representation of the post-hoc analysis when multiple classifiers are
compared. CD diagrams are “space-friendly” and thus suitable when the length of the paper is an
issue, yet they present the order of the algorithms, the magnitude of differences between them (in
terms of ranks) and the significance of the observed differences much more clearly than it can be
done in textual or in a pure numerical form.

There is an alternative opinion among statisticians that significance tests should not be per-
formed at all since they are often misused, either due to misinterpretation or by putting too much
stress on their results (Cohen, 1994; Schmidt, 1996; Harlow and Mulaik, 1997). Our stance is that
statistical tests provide certain reassurance about the validity and non-randomness of the published
results. For that to be true, they should be performed correctly and the resulting conclusions should
be drawn cautiously. On the other hand, statistical tests should not be the deciding factor for or
against publishing the work. Other merits of the proposed algorithm that arebeyond the grasp of

27

DEMŠAR

statistical testing should also be considered and possibly even favoured over pure improvements in
predictive power.

Acknowledgments

I wish to thank my colleagues from Artificial Intelligence Laboratory and Cognitive Modeling Lab-
oratory at the Faculty of Computer and Information Science in Ljubljana, Slovenia, especially Blǎz
Zupan and Aleks Jakulin for their invaluable remarks and suggestions.

References

E. Alpaydın. Combined 5×2 F test for comparing supervised classification learning algorithms.
Neural Computation, 11:1885–1892, 1999.

J. R. Beck and E. K. Schultz. The use of ROC curves in test performance evaluation.Arch Pathol
Lab Med, 110:13–20, 1986.

R. Bellazzi and B. Zupan. Intelligent data analysis in medicine and pharmacology: a position state-
ment. InIDAMAP Workshop Notes at the 13th European Conference on Artificial Intelligence,
ECAI-98, Brighton, UK, 1998.

Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold cross-validation.
Journal of Machine Learning Research, 5:1089–1105, 2004.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

R. R. Bouckaert. Choosing between two learning algorithms based on calibrated tests. In T. Fawcett
and N. Mishra, editors,Machine Learning, Proceedings of the Twentieth International Confer-
ence (ICML 2003), August 21-24, 2003, Washington, DC, USA. AAAI Press, 2003.

R. R. Bouckaert. Estimating replicability of classifier learning experiments. InC Brodley, edi-
tor, Machine Learning, Proceedings of the Twenty-First International Conference (ICML 2004).
AAAI Press, 2004.

R. R. Bouckaert and E. Frank. Evaluating the replicability of significancetests for comparing
learning algorithms. In D. Honghua, R. Srikant, and C. Zhang, editors,Advances in Knowledge
Discovery and Data Mining, 8th Pacific-Asia Conference, PAKDD 2004, Sydney, Australia, May
26-28, 2004, Proceedings. Springer, 2004.

P. B. Brazdil and C. Soares. A comparison of ranking methods for classification algorithm selection.
In Proceedings of 11th European Conference on Machine Learning. Springer Verlag, 2000.

W. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the Amer-
ican Statistical Association, 74:329–336, 1979.

J. Cohen. The earth is round (p< .05). American Psychologist, 49:997 1003, 1994.

28

STATISTICAL COMPARISONS OFCLASSIFIERS OVERMULTIPLE DATA SETS

J. Dem̌sar and B. Zupan.Orange: From Experimental Machine Learning to Interactive Data Min-
ing, A White Paper. Faculty of Computer and Information Science, Ljubljana, Slovenia, 2004.

T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning al-
gorithms.Neural Computation, 10:1895–1924, 1998.

O. J. Dunn. Multiple comparisons among means.Journal of the American Statistical Association,
56:52–64, 1961.

C. W. Dunnett. A multiple comparison procedure for comparing several treatments with a control.
Journal of American Statistical Association, 50:1096–1121, 1980.

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous valued attributes for
classification learning. InProceedings of the 13th International Joint Conference on Artificial
Intelligence, pages 1022–1029, Chambery, France, 1993. Morgan-Kaufmann.

R. A. Fisher.Statistical methods and scientific inference (2nd edition). Hafner Publishing Co., New
York, 1959.

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance.Journal of the American Statistical Association, 32:675–701, 1937.

M. Friedman. A comparison of alternative tests of significance for the problem of m rankings.
Annals of Mathematical Statistics, 11:86–92, 1940.

L. C. Hamilton.Modern Data Analysis: A First Course in Applied Statistics. Wadsworth, Belmont,
California, 1990.

L. L. Harlow and S. A. Mulaik, editors.What If There Were No Significance Tests?Lawrence
Erlbaum Associates, July 1997.

Y. Hochberg. A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75:
800–803, 1988.

B. Holland. On the application of three modified Bonferroni procedures topairwise multiple com-
parisons in balanced repeated measures designs.Computational Statistics Quarterly, 6:219–231,
1991.

S. Holm. A simple sequentially rejective multiple test procedure.Scandinavian Journal of Statistics,
6:65–70, 1979.

G. Hommel. A stagewise rejective multiple test procedure based on a modified Bonferroni test.
Biometrika, 75:383–386, 1988.

D. A. Hull. Information Retrieval Using Statistical Classification. PhD thesis, Stanford University,
November 1994.

R. L. Iman and J. M. Davenport. Approximations of the critical region of theFriedman statistic.
Communications in Statistics, pages 571–595, 1980.

29

DEMŠAR

P. Langley. Crafting papers on machine learning. InProc. of Seventeenth International Conference
on Machine Learning (ICML-2000), 2000.

D. Mladeníc and M. Grobelnik. Feature selection for unbalanced class distribution and naive bayes.
In I. Bratko and S. Ďzeroski, editors,Machine Learning, Proceedings of the Sixteenth Inter-
national Conference (ICML 1999), June 27-30, 2002, Bled, Slovenia, pages 258–267. Morgan
Kaufmann, 1999.

C. Nadeau and Y. Bengio. Inference for the generalization error.Advances in Neural Information
Processing Systems, 12:239–281, 2000.

P. B. Nemenyi.Distribution-free multiple comparisons. PhD thesis, Princeton University, 1963.

J. Pizarro, E. Guerrero, and P. L. Galindo. Multiple comparison procedures applied to model selec-
tion. Neurocomputing, 48:155–173, 2002.

F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for comparing induc-
tion algorithms. In J. Shavlik, editor,Proceedings of the Fifteenth International Conference on
Machine Learning (ICML-1998), pages 445–453, San Francisco, CA, 1998. Morgan Kaufmann
Publishers.

J. R. Quinlan. Bagging, boosting, and c4.5. InProc. Thirteenth National Conference on Artificial
Intelligence, pages 725–730, Portland, OR, 1996. AAAI Press.

S. L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended approach.Data
Mining and Knowledge Discovery, 1:317–328, 1997.

F. L. Schmidt. Statistical significance testing and cumulative knowledge in psychology.Psycholog-
ical Methods, 1:115–129, 1996.

H. Scḧutze, D. A. Hull, and J. O. Pedersen. A comparison of classifiers and document represen-
tations for the routing problem. In E. A. Fox, P. Ingwersen, and R. Fidel,editors,SIGIR’95,
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 229–237. ACM Press, 1995.

J. P. Shaffer. Multiple hypothesis testing.Annual Review of Psychology, 46:561–584, 1995.

D. J. Sheskin.Handbook of parametric and nonparametric statistical procedures. Chapman &
Hall/CRC, 2000.

J. W. Tukey. Comparing individual means in the analysis of variance.Biometrics, 5:99–114, 1949.

E. G. Vázquez, A. Y. Escolano, and J. P. Junquera P. G. Riaño. Repeated measures multiple com-
parison procedures applied to model selection in neural networks. InProc. of the 6th Intl. Conf.
On Artificial and Natural Neural Networks (IWANN 2001), pages 88–95, 2001.

G. I. Webb. Multiboosting: A technique for combining boosting and wagging.Machine Learning,
40:159–197, 2000.

F. Wilcoxon. Individual comparisons by ranking methods.Biometrics, 1:80–83, 1945.

J. H. Zar.Biostatistical Analysis (4th Edition). Prentice Hall, Englewood Clifs, New Jersey, 1998.

30

Journal of Machine Learning Research 7 (2006) 31–54 Submitted 3/05; Revised 11/05; Published 1/06

Incremental Algorithms for Hierarchical Classification

Nicolò Cesa-Bianchi CESA-BIANCHI @DSI.UNIMI .IT
Dipartimento di Scienze dell’Informazione
Universit̀a degli Studi di Milano
via Comelico 39
20135 Milano, Italy

Claudio Gentile CLAUDIO .GENTILE@UNINSUBRIA.IT
Dipartimento di Informatica e Comunicazione
Universit̀a dell’Insubria
via Mazzini 5
21100 Varese, Italy

Luca Zaniboni ZANIBONI @DTI .UNIMI .IT
Dipartimento di Tecnologie dell’Informazione
Universit̀a degli Studi di Milano
via Bramante 65
26013 Crema (CR), Italy

Editor: Michael Collins

Abstract
We study the problem of classifying data in a given taxonomy when classifications associated

with multiple and/or partial paths are allowed. We introduce a new algorithm that incrementally
learns a linear-threshold classifier for each node of the taxonomy. A hierarchical classification is
obtained by evaluating the trained node classifiers in a top-down fashion. To evaluate classifiers
in our multipath framework, we define a new hierarchical lossfunction, the H-loss, capturing the
intuition that whenever a classification mistake is made on anode of the taxonomy, then no loss
should be charged for any additional mistake occurring in the subtree of that node.

Making no assumptions on the mechanism generating the data instances, and assuming a linear
noise model for the labels, we bound the H-loss of our on-linealgorithm in terms of the H-loss of
a reference classifier knowing the true parameters of the label-generating process. We show that,
in expectation, the excess cumulative H-loss grows at most logarithmically in the length of the data
sequence. Furthermore, our analysis reveals the precise dependence of the rate of convergence on
the eigenstructure of the data each node observes.

Our theoretical results are complemented by a number of experiments on texual corpora. In
these experiments we show that, after only one epoch of training, our algorithm performs much
better than Perceptron-based hierarchical classifiers, and reasonably close to a hierarchical support
vector machine.

Keywords: incremental algorithms, online learning, hierarchical classification, second order per-
ceptron, support vector machines, regret bound, loss function

1. Introduction

In this paper, we investigate the problem of classifying data based on the knowledge that the graph of
dependencies between the classes is a tree forest. The trees in this forest are collectively interpreted

c©2006 Nicol̀o Cesa-Bianchi, Claudio Gentile and Luca Zaniboni.

CESA-BIANCHI ET AL .

as a taxonomy. That is, we assume that every data instance is labelled with a (possibly empty) set
of class nodes and, whenever an instance is labelled with a certain nodei, then it is also labelled
with all the nodes on the path from the root of the tree wherei occurs down to nodei. A distinctive
feature of our framework is that we also allow multiple-path labellings (instances can be labelled
with nodes belonging to more than one path in the forest), and partial-path labellings (instances can
be labelled with nodes belonging to a path that does not end on a leaf).

We introduce a new algorithm that incrementally learns a linear-threshold classifier for each
node of the taxonomy. A hierarchical classification is then obtained by evaluating the node classi-
fiers in a top-down fashion, so that the final labelling is consistent with the taxonomy.

The problem of hierarchical classification, especially of textual information, has been exten-
sively investigated in past years (see, e.g., Dumais and Chen, 2000; Dekel et al., 2004, 2005; Gran-
itzer, 2003; Hofmann et al., 2003; Koller and Sahami, 1997; McCallum et al.,1998; Mladenic, 1998;
Ruiz and Srinivasan, 2002; Sun and Lim, 2001, and references therein). The on-line approach to
hierarchical classification, which we analyze here, seems well suited when dealing with scenarios in
which new data are produced frequently and in large amounts (e.g., data produced by newsfeeds—
considered in this paper, or the speech data considered in Dekel et al., 2005).

An important ingredient in a hierarchical classification problem is the loss function used to
evaluate the classifier’s performance. In pattern classification the zero-one loss is traditionally used.
In a hierarchical setting this loss would simply count one mistake each time, on a given data instance,
the set of class labels output by the hierarchical classifier is not perfectly identical to the set of true
labels associated to that instance. Loss functions able to reflect the taxonomy structure have been
proposed in the past (e.g., Dekel et al., 2004; Hofmann et al., 2003; Sunand Lim, 2001), but none
of these losses works well in our framework where multiple and partial pathsare allowed. In this
paper we define a new loss function, the H-loss (hierarchical loss), whose simple definition captures
the following intuition: “if a mistake is made at nodei of the taxonomy, then further mistakes
made in the subtree rooted ati are unimportant”. In other words, we do not require the algorithm
be able to make fine-grained distinctions on tasks where it is unable to make coarse-grained ones.
For example, if an algorithm failed to label a document with the classSPORTS, then the algorithm
should not be charged more loss because it also failed to label the same document with the subclass
SOCCERand the sub-subclassCHAMPIONS LEAGUE.

We bound the theoretical performance of our algorithm using the H-loss. In our analysis, we
make no assumptions on the mechanism generating the data instances; that is, we bound the H-loss
of the algorithm for any arbitrary sequence of data instances. The hierarchical labellings associated
to the instances, instead, are assumed to be independently generated according to a parametric
stochastic process defined on the taxonomy.

Following a standard approach in the analysis of on-line algorithms, we measure the predictive
performance using the cumulative regret, a quantity measuring the difference between the cumula-
tive H-loss of the classifiers incrementally generated by the on-line algorithmduring its run and the
cumulative H-loss of a fixed reference classifier. Our main theoretical result is a bound on the regret
of our hierarchical learning algorithm with respect to a reference hierarchical classifier based on the
true parameters of the label-generating process. More specifically, we bound the contribution to the
cumulative regret of each node classifier in terms of quantities related to the position of the node
in the taxonomy and the data process parameters. This interaction between node position and data
process parameters captures the hierarchical nature of the classification problem since the contribu-
tion of each node to the overall cumulative regret decreases as we proceed downward from a root

32

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

in the forest. In general, the overall cumulative regret is seen to grow atmost logarithmically in the
lengthT of the data sequence.

From the theoretical point of view, the novelty of this line of research is twofold:

1. The use of hierarchically trained linear-threshold classifiers is common toseveral of the pre-
vious approaches to hierarchical classification (e.g., Dumais and Chen, 2000; Dekel et al.,
2004, 2005; Granitzer, 2003; Hofmann et al., 2003; Koller and Sahami, 1997; McCallum
et al., 1998; Mladenic, 1998; Ruiz and Srinivasan, 2002; Sun and Lim, 2001). However, to
our knowledge, this research is the first one to provide a rigorous performance analysis of hi-
erarchical classification algorithms in the presence of multiple and partial pathclassifications.

2. The core of our analysis is a local cumulative regret bound showing that the instantaneous
regret of each node classifier vanishes at a rate 1/T. The precise dependence of the rate
of convergence on the eigenstructure of the data each node observesis a major contribution
of this paper. This turns out to be similar in spirit to early (and classical) workin least-
squares linear regression (e.g., Lai et al., 1979; Lai and Wei, 1982).But unlike these previous
investigations, our analysis is not asymptotic in nature and studies a specific classification
setting, instead of a regression one.

To support our theoretical findings we also describe some experiments concerning a more practical
variant of the algorithm we actually analyze. These experiments use large corpora of textual data
on which we test different batch and incremental classifiers. The experiments show that our on-line
algorithm performs significantly better than Perceptron-based hierarchical classifiers. Furthermore,
after only one epoch of training, our algorithm achieves a performance close to that of a hierar-
chical support vector machine, the popular batch learning algorithm for which, to the best of our
knowledge, no theoretical performance bounds are known in hierarchical classification frameworks.

The paper is organized as follows. Section 2 defines the notation used throughout the paper. In
Section 3 we introduce the H-loss function. Our hierarchical algorithm is described in Section 4.
In Section 5 and 6 we define the data model, the learning model, and our theoretical performance
measure: the cumulative regret. The analysis of our algorithm is carried out in Section 7, while in
Section 8 we report on the experiments. Finally, in Section 9 we summarize our results and mention
a few open questions.

2. Notation

We assume data elements are encoded as unit-norm vectorsx ∈ R
d, which we callinstances. A

multilabel for an instancex is any subset of the set{1, . . . ,N} of all labels, including the empty
set. We represent the multilabel ofx with a vectorv = (v1, . . . ,vN) ∈ {0,1}N, wherei ∈ {1, . . . ,N}
belongs to the multilabel ofx if and only if vi = 1.

A taxonomyG is a forest whose trees are defined over the set of labels. A multilabelv∈ {0,1}N

is said torespecta taxonomyG if and only if v is the union of one or more paths inG, where each
path starts from a root but need not terminate on a leaf, see Figure 1. We assume the data-generating
mechanism produces examples(x,v) such thatv respects some fixed underlying taxonomyG with
N nodes (see Section 5). The set of roots inG is denoted byROOT(G). We usePAR(i) to denote the
unique parent of nodei, ANC(i) to denote the set of ancestors ofi, SUB(i) to denote the set of nodes
in the subtree rooted ati (including i), andCHILD(i) to denote the set of children of nodei.

33

CESA-BIANCHI ET AL .

22 33

5544

66

77 88 99

10 11

11P(V1 |x)

P(V11|V8,x)P(V4 |V3,x)

Figure 1: A forest made of two disjoint trees. The nodes are tagged with thename of the la-
bels, so that in this caseN = 11. According to our definition, the multilabelv =
(1,1,1,0,0,1,0,1,0,1,0) respects this taxonomy (since it is the union of paths 1→ 2,
1 → 3 and 6→ 8 → 10), while the multilabelv = (1,1,0,1,0,0,0,0,0,0,0) does not,
since 1→ 2 → 4 is not a path in the forest. Associated with each nodei is a {0,1}-
valued random variableVi distributed according to a conditional probability function
P(Vi |VPAR(i), x) —see Section 5.

We denote by{φ} the Bernoulli random variable which is 1 if and only if predicateφ is true. In
our analysis, we repeatedly use simple facts such as{φ∨ψ} = {φ}+ {ψ∧¬φ} ≤ {φ}+ {ψ} and
{φ} = {φ∧ψ}+{φ∧¬ψ} ≤ {φ∧ψ}+{¬ψ}, whereψ is another predicate.

3. The H-Loss

Two very simple loss functions, measuring the discrepancy between the prediction multilabel̂y =
(ŷ1, . . . , ŷN) and the true multilabelv = (v1, . . . ,vN), are the zero-one loss̀0/1(ŷ,v) = {∃i : ŷi 6= vi}
and the symmetric difference loss`∆(ŷ,v) = {ŷ1 6= v1}+ . . .+{ŷN 6= vN}. Note that the definition of
these losses is based on the set{1, . . . ,N} of labels without any additional structure. A loss function
that takes into account a taxonomical structure defined over the set of labels is

`H(ŷ,v) =
N

∑
i=1

{ŷi 6= vi ∧ ŷ j = v j , j ∈ ANC(i)} .

This loss, which we call H-loss (hierarchical loss), can also be definedas follows: all paths inG
from a root down to a leaf are examined and, whenever a nodei is encountered such thatŷi 6= vi ,
then 1 is added to the loss, while all the loss contributions in the subtree rooted at i are discarded.
Note that, with this definition,̀0/1 ≤ `H ≤ `∆. A graphical representation of the H-loss and related
concepts is given in Figure 2.

In the next lemma we show an important (and intuitive) property of the H-loss:when the mul-
tilabel v to be predicted respects a taxonomyG then there is no loss of generality in restricting to
predictions which respectG. Formally, given a multilabel̂y∈ {0,1}N, we define theG-truncation
of ŷ as the multilabel̂y′ = (ŷ′1, . . . , ŷ

′
N) ∈ {0,1}N where, for eachi = 1, . . . ,N, ŷ′i = 1 if and only if

ŷi = 1 andŷ j = 1 for all j ∈ ANC(i). Note that theG-truncation of any multilabel always respects
G. The next lemma states that ifv respectsG, then`H(ŷ,v) cannot be smaller thaǹH(ŷ′,v).

34

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

(a) (b) (c) (d)

Figure 2: A one-tree forest (repeated four times). Each node corresponds to a class in the taxonomy
G, hence in this caseN = 12. Gray nodes are included in the multilabel under consid-
eration, white nodes are not. (a) A generic multilabel whichdoes notrespectG; (b) its
G-truncation. (c) A second multilabel that respectsG. (d) Superposition of multilabel (b)
on multilabel (c): Only the checked nodes contribute to the H-loss between (b) and (c).
Hence the H-loss between multilabel (b) and multilabel (c) is 3. Here the zero-one loss
between (b) and (c) is 1, while the symmetric difference loss equals 4.

Lemma 1 Let G be a taxonomy, v, ŷ∈ {0,1}N be two multilabels such that v respects G, andŷ′ be
the G-truncation of̂y. Then

`H(ŷ′,v) ≤ `H(ŷ,v) .

Proof. Since`H(ŷ′,v) = ∑N
i=1{ŷ′i 6= vi ∧ ŷ′j = v j , j ∈ ANC(i)} and`H(ŷ,v) = ∑N

i=1{ŷi 6= vi ∧ ŷ j =
v j , j ∈ ANC(i)}, it suffices to show that, for eachi = 1, . . . ,N, ŷ′i 6= vi andŷ′j = v j for all j ∈ ANC(i)
implies ŷi 6= vi andŷ j = v j for all j ∈ ANC(i).

Pick somei and supposêy′i 6= vi andŷ′j = v j for all j ∈ ANC(i). Now supposêy′j = 0 (and thus
v j = 0) for somej ∈ ANC(i). Thenvi = 0 sincev respectsG. But this implieŝy′i = 1, contradicting
the fact that theG-truncation̂y′ respectsG. Therefore, it must be the case thatŷ′j = v j = 1 for all
j ∈ ANC(i). Hence theG-truncation of̂y left each nodej ∈ ANC(i) unchanged, implyinĝy j = v j for
all j ∈ ANC(i). But, since theG-truncation of̂ydoes not change the value of a nodei whose ancestors
j are such that̂y j = 1, this also implieŝyi = ŷ′i . Thereforêyi 6= vi and the proof is concluded. �

4. A New Hierarchical Learning Algorithm

In this section we describe our on-line algorithm for hierarchical classification. Its theoretical per-
formance is analyzed in Section 7.

The on-line learning model we consider is the following. In the generic time stept = 1,2, . . .
instancext is revealed to the algorithm which outputs the predictionŷt = (ŷ1,t , . . . , ŷN,t) ∈ {0,1}N.
This is viewed as a guess for the multilabelvt = (v1,t ,v2,t , . . . ,vN,t) associated with the current
instancext . After each prediction, the algorithm observes the true multilabelvt and adjusts its
parameters for the next prediction.

Our algorithm computes ˆy1,t , . . . , ŷN,t usingN linear-threshold classifiers, one for each node in
the taxonomy. These node classifiers are evaluated, starting from each root, in the following top-
down fashion: the root is labelled by evaluating its node classifier; if a nodehas been labelled 1,
then each child is labelled by evaluating its node classifier. On the other hand,if a node is labelled

35

CESA-BIANCHI ET AL .

Algorithm H-RLS.
Initialization: Weight vectorswi,1 = (0, . . . ,0), i = 1, . . . ,N.

For t = 1,2, . . . do

1. Observe instancext ∈ {x∈ R
d : ||x|| = 1};

2. For eachi = 1, . . . ,N compute predictions ˆyi,t ∈ {0,1} as follows:

ŷi,t =

{w>
i,txt ≥ 0} if i is a root node,

{w>
i,txt ≥ 0} if i is not a root node and ˆy j,t = 1 for j = PAR(i),

0 if i is not a root node and ˆy j,t = 0 for j = PAR(i),

where

wi,t = (I +Si,Q(i,t−1)S
>
i,Q(i,t−1) +xtx

>
t)−1×

×Si,Q(i,t−1) (vi,i1,vi,i2, . . . ,vi,iQ(i,t−1)
)>

Si,Q(i,t−1) = [xi1 xi2 . . . xiQ(i,t−1)
] i = 1, . . . ,N.

3. Observe multilabelvt and update weights.

Figure 3: The hierarchical learning algorithmH-RLS.

0 thenall of its descendants are labelled 0. Note that this evaluation scheme can only generate
multilabels that respect the underlying taxonomy.

Let w1, . . . ,wN be the weight vectors defining the linear-threshold classifiers used by thealgo-
rithm. A feature of the learning process, which is also important for its theoretical analysis, is that
the classifier at nodei is only trained on the examples that are positive for its parent node. In other
words,wi is considered for update only on those instancesxt such thatvPAR(i),t = 1.

Let Q(i, t) denote the number of times theparentof nodei observes a positive label up to time
t, i.e., Q(i, t) = |{1 ≤ s≤ t : vPAR(i),s = 1}|. The weight vectorwi,t stored at timet in nodei is a
(conditional) regularized least squares estimator given by

wi,t =
(

I +Si,Q(i,t−1)S
>
i,Q(i,t−1) +xtx

>
t

)−1
Si,Q(i,t−1) (vi,i1, . . . ,vi,iQ(i,t−1)

)>, (1)

whereI is thed×d identity matrix,Si,Q(i,t−1) is thed×Q(i, t −1) matrix whose columns are the
instancesxi1, . . . ,xiQ(i,t−1)

, and(vi,i1, . . . ,vi,iQ(i,t−1)
)> is theQ(i, t −1)-dimensional (column) vector of

the corresponding labels observed by nodei.
The estimator in (1) is a slight variant of the regularized least squares estimator for classifi-

cation (Cesa-Bianchi et al., 2002; Rifkin et al., 2003) where we include the current instancext in
the computation ofwi,t (see, e.g., Azoury and Warmuth, 2001; Vovk, 2001, for analyses of simi-
lar algorithms in different contexts). Efficient incremental computations of the inverse matrix and

36

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

dual variable formulations of the algorithm are extensively discussed by Cesa-Bianchi et al. (2002)
and Rifkin et al. (2003).

The pseudocode of our algorithm, which we callH-RLS (Hierarchical Regularized Least Squares)
is given in Figure 3.

5. A Stochastic Model for Generating Labels

While no assumptions are made on the mechanism generating the sequencex1,x2, . . . of instances,
we base our analysis on the following stochastic model for generating the multilabel associated to
an instancext .

A probability distribution fG over the set of multilabels is associated to a taxonomyG as fol-
lows. Each nodei of G is tagged with a{0,1}-valued random variableVi distributed according to
a conditional probability functionP(Vi |VPAR(i), x). To model the dependency between the labels of
nodesi and j = PAR(i) we assume

P(Vi = 1 |Vj = 0, x) = 0 (2)

for all nonroot nodesi and all instancesx. For example, in the taxonomy of Figure 1 we have
P(V4 = 1 |V3 = 0, x) = 0 for all x∈ R

d. The quantity

fG(v | x) =
N

∏
i=1

P(Vi = vi |Vj = v j , j = PAR(i), x)

thus defines a joint probability distribution onV1, . . . ,VN conditioned onx being the current instance.
This joint distribution puts zero probability on all multilabelsv∈ {0,1}N which do not respectG.

Through fG we specify an i.i.d. process{V1,V2, . . .} as follows. We assume that an arbitrary
and unknown sequence of instance vectorsx1,x2, . . . is fixed in advance, where‖xt‖ = 1 for all
t. The multilabelVt is distributed according to the joint distributionfG(· | xt). We call each pair
(xt ,vt), wherevt is a realization ofVt , anexample.

Let us now introduce a parametric model forfG. With each nodei in the taxonomy, we associate
a unit-norm weight vectorui ∈ R

d. Then, we define the conditional probabilities for a nonroot node
i with parentj as follows:

P(Vi = 1 |Vj = 1, x) =
1+u>i x

2
. (3)

If i is a root node, the above simplifies to

P(Vi = 1 | x) =
1+u>i x

2
.

Our choice of a linear model for Bernoulli random variables, as opposed to a more standard log-
linear model, is mainly motivated by our intention of proving regret bounds with no assumptions on
the way the sequence of instances is generated. Indeed, we are not aware of any analysis of logistic
regression holding in a similar classification setup.

Note also that, in this model, the labels of the children of any given node are independent ran-
dom variables. This is motivated by the fact that, unlike previous investigations, we are expliciteply
modelling labellings involving multiple paths. A more sophisticated analysis could introduce arbi-
trary negative correlations among the labels of the children nodes. In this paper, however, we do not
follow this route.

37

CESA-BIANCHI ET AL .

6. Regret and the Reference Classifier

Assuming the stochastic model described in Section 5, we compare the performance of our algo-
rithm to the performance of the fixed hierarchical classifier built on the trueparametersu1, . . . ,uN

governing the label-generating process. This reference hierarchical classifier has the same form as
the classifiers generated byH-RLS. More precisely, let the multilabely= (y1, . . . ,yN) for an instance
x be computed as follows:

yi =

{u>i x≥ 0} if i is a root node,

{u>i x≥ 0} if i is not a root andy j = 1 for j = PAR(i),

0 if i is not a root andy j = 0 for j = PAR(i).

(4)

To evaluate our algorithm against the reference hierarchical classifierdefined in (4), we use the
cumulative regret. Given any loss function` (such as one of the three defined in Section 3), we
define the (instantaneous)regretof a classifier assigning labelŷt to instancext as

E`(ŷt ,Vt)−E`(yt ,Vt) ,

whereyt is the multilabel assigned by classifier (4), and the expectation is with respectthe random
draw ofVt (as specified in Section 5). We measure the performance ofH-RLS through its cumulative
regret on a sequence ofT examples:

T

∑
t=1

(
E`(ŷt ,Vt)−E`(yt ,Vt)

)
. (5)

The regret bound we prove in Section 7 holds when` = `H , and is shown to depend on the interaction
between the spectral structure of the data generating process and the structure of the taxonomy on
which the process is applied.

7. Analysis

We now prove a bound on the cumulative regret ofH-RLS with respect to the H-loss functioǹH .
Our analysis hinges on proving that for any nodei, the estimated marginw>

i,txt is an asymptotically
unbiased estimator of the true marginu>i xt , and then on using known large deviation arguments to
obtain the stated bound. For this purpose, we bound the variance of the margin estimator at each
node and prove a bound on the rate at which the bias vanishes.

Theorem 2 Consider a taxonomy G with N nodes. Pick any set of model parameters u1, . . . ,uN ∈
R

d such that‖ui‖= 1 for i = 1, . . . ,N, and pick any sequence of instance vectors x1,x2, . . .∈R
d such

that ‖xt‖ = 1 for all t. Then the cumulative regret of theH-RLS algorithm (described in Figure 3)
satisfies, for each T≥ 1,

T

∑
t=1

(
E`H(ŷt ,Vt)−E`H(yt ,Vt)

)
≤ 16(1+1/e)

N

∑
i=1

Ci

∆2
i

E

[
d

∑
j=1

log(1+λi, j)

]
,

where
∆i,t = u>i xt , ∆2

i = min
t=1,...,T

∆2
i,t , Ci = |SUB(i)|,

λi,1, . . . ,λi,d are the eigenvalues of matrix Si,Q(i,T) S>i,Q(i,T), and e is the base of natural logarithms.

38

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

Before delving into the proof, it is worth making a few comments.

Remark 3 Since H-RLS can be cast in dual variables, we can run it in any reproducing kernel
Hilbert space (e.g., Schölkopf and Smola, 2002). The regret bound contained in Theorem 2 remains
true once we observe that the nonzero eigenvalues ofSi,Q(i,T) S>i,Q(i,T) coincide with the nonzero

eigenvalues of the Gram matrixS>i,Q(i,T) Si,Q(i,T), and we replace the sum over all input dimensions

d with the sum over the (at mostT) nonzero eigenvalues ofS>i,Q(i,T) Si,Q(i,T). We refer the reader to
the work by Cesa-Bianchi et al. (2002) for additional details.

Remark 4 It is important to emphasize the interplay between the taxonomy structure and the
process generating the examples, as expressed by the above regret bound. Recall that we de-
note byλi,1, . . . ,λi,d the eigenvalues of matrixSi,Q(i,T) S>i,Q(i,T). From the previous remark we have

∑d
j=1 λi, j = trace

(
S>i,Q(i,T) Si,Q(i,T)

)
= Q(i,T) since‖xt‖ = 1 ∀t, and

d

∑
j=1

log(1+λi, j) ≤ max

{
d

∑
j=1

log(1+µj) :
d

∑
j=1

µj = Q(i,T)

}
= d log

(
1+

Q(i,T)

d

)
.

Moreover,Q(i,T) is the sum ofT Bernoulli random variables, where thet-th variable takes value
1 when the parent of thei-th node in the taxonomy observes labelVPAR(i),t = 1 at time t. The
probability of this event clearly equals

∏
j∈ANC(i)

(
1+∆ j,t

2

)
.

Thus

E

[
d

∑
j=1

log(1+λi, j)

]
≤ dE

[
log

(
1+

Q(i,T)

d

)]
(6)

≤ d log

(
1+

EQ(i,T)

d

)

(from Jensen’s inequality)

= d log

1+
∑T

t=1 ∏ j∈ANC(i)

(
1+∆ j,t

2

)

d

 . (7)

Bound (6) is obviously a logT cumulative regret bound, sinceQ(i,T) ≤ T anyway. It is important,
however, to see how the regret bound depends on the taxonomy structure. Let us focus on (7). Ifi
is a root node thenEQ(i,T) = Q(i,T) = T (since a root node observes all labels). As we descend
along a path,EQ(i,T) tends to decrease with a rate depending on the margins achieved by the
ancestors of nodei. Bound (7) thus makes explicit the contribution of nodei to the overall regret.
If i is a root node, then its contribution to the overall regret is roughly logT. On the other hand, the
deeper is nodei within the taxonomy the smaller is the contribution of nodei to the overall regret.
A very deep leaf node observes a possibly small subset of the instances, but it is also required to
produce only a small subset of linear-threshold predictions, i.e., the associated weight vectorwi,t

might be an unreliable estimator, but is also used less often. Therefore, thecontribution of leaf node
i is smaller than logT because the hierarchical nature of the problem (as expressed by the H-loss)
lowers the relative importance of the accuracy of estimatorwi,t when computing the overall regret.

39

CESA-BIANCHI ET AL .

Remark 5 Nothing prevents us from generalizing the H-loss by associating fixed cost coefficients
to each taxonomy node:

`H(ŷ,v) =
N

∑
i=1

ci {ŷi 6= vi ∧ ŷ j = v j , j ∈ ANC(i)} ,

where the cost coefficientsci are positive real numbers. It is straightforward to see that with this
definition of H-loss, the statement of Theorem 2 still holds, once we generalize the regret factors
Ci asCi = ∑k∈SUB(i) ck. Note that this would involve changes neither in our learning algorithm nor
in our reference predictor. In fact, we are measuring regret againsta reference predictor that is not
Bayes optimal for the data model at hand. This is not immediate to see when the cost coefficientsci

defining the H-loss are all set to 1 but, as we mentioned, it is generally evinced by the fact that both
the reference predictor (4) and our learning algorithm do not depend on theci .

Remark 6 From the proof of Theorem 2 below, the reader can see that there are several ways
one can improve the bounds. In fact, we made no special effort to minimize themain constant
16(1+ 1/e) and, in general, we disregarded quite a lot of constant factors throughout. Moreover,
though we decided to cast the bounds in terms of the worst-case margin∆2

i = mint=1,...,T ∆2
i,t , it is

straighforward to modify the proof to obtain a bound depending on some sort of average squared
margin. Since this sharper bound would hide the clean dependence on the eigenstructure of the data,
we decided not to pursue this optimization any further.

We are now ready to prove Theorem 2.

Proof of Theorem 2.We fix a nodei and upper bound its contribution to the total instantaneous
regret. Since for any four predicatesφ,ψ,χ,ζ we have{φ∧ψ}−{χ∧ζ} ≤ {φ∧ψ∧¬χ}+{φ∧ψ∧
χ∧¬ζ}, we see that

{ŷi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t}−{yi,t 6= Vi,t , ∀ j ∈ ANC(i) : y j,t = Vj,t}
≤
{

ŷi,t 6= Vi,t , yi,t = Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t
}

(8)

+
{

ŷi,t 6= Vi,t , yi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t , ∃ j ∈ ANC(i) : y j,t 6= Vj,t
}

. (9)

We bound the two terms (8) and (9) separately. We can write:

(8) = {ŷi,t 6= Vi,t , yi,t = Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t = 1}
(sinceŷ j,t = Vj,t = 0 for some ancestorj implies ŷi,t = Vi,t = 0)

≤ {ŷi,t 6= yi,t , Ki,t} ,

where we have introduced the short-handKi,t = “∀ j ∈ ANC(i) : Vj,t = 1”. By the same token, we
have

(9) = {ŷi,t 6= Vi,t , yi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t = 1, ∃ j ∈ ANC(i) : y j,t 6= Vj,t}
= {ŷi,t 6= Vi,t , yi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t = 1, ∃ j ∈ ANC(i) : ŷ j,t 6= y j,t}
≤ {∃ j ∈ ANC(i) : ŷ j,t 6= y j,t , Ki,t}
≤ ∑

j∈ANC(i)

{ŷ j,t 6= y j,t , Ki,t}

≤ ∑
j∈ANC(i)

{ŷ j,t 6= y j,t , K j,t} ,

40

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

where the last inequality holds becauseKi,t impliesK j,t for all j ∈ ANC(i). Using our bounds for (8)
and (9), and summing overi yields

`H(ŷt ,Vt)− `H(yt ,Vt)

=
N

∑
i=1

(
{ŷi,t 6= Vi,t , ∀ j ∈ ANC(i) : ŷ j,t = Vj,t}−{yi,t 6= Vi,t , ∀ j ∈ ANC(i) : y j,t = Vj,t}

)

≤
N

∑
i=1

∑
j∈ANC(i)∪{i}

{ŷ j,t 6= y j,t , K j,t}

=
N

∑
i=1

{ŷi,t 6= yi,t , Ki,t} ∑
j∈SUB(i)

1

=
N

∑
i=1

Ci {ŷi,t 6= yi,t , Ki,t} .

We then take expectations and sum overt:

T

∑
t=1

(
E`H(ŷt ,Vt)−E`H(yt ,Vt)

)
≤

T

∑
t=1

N

∑
i=1

Ci P(ŷi,t 6= yi,t , Ki,t)

=
N

∑
i=1

Ci

T

∑
t=1

P(ŷi,t 6= yi,t , Ki,t) . (10)

Equation (10) is a conveniently simple upper bound on the cumulative regret.This allows us to
focus on bounding from above the one-node cumulative expectation∑T

t=1P(ŷi,t 6= yi,t , Ki,t).
For brevity, in the rest of this proof we use the notations∆i,t = u>i xt (the target margin onxt)

and∆̂i,t = w>
i,txt (the algorithm margin onxt). As we said earlier, our argument centers on proving

that for any nodei, ∆̂i,t is an asymptotically unbiased estimator of∆i,t , and then on using known
large deviation techniques to obtain the stated bound. For this purpose, we need to study both the
conditional bias and the conditional variance of∆̂i,t .

Recall Figure 3. Since the sequencex1,x2, . . . is fixed, the multilabel vectorsVt are statisti-
cally independent. Also, for anyt = 1,2, . . . and for any nodei with parent j, the child’s labels
Vi,i1, . . . ,Vi,iQ(i,t−1)

are independent when conditioned on the parent’s labelsVj,1, . . . ,Vj,t−1. We use
the notation

Ei,t = E[· |Vj,1, . . . ,Vj,t−1] .

By definition of our parametric model (3) we haveEi,t [(Vi,i1, . . . ,Vi,iQ(i,t−1)
)>] = S>i,Q(i,t−1)ui . Recall-

ing the definition (1) ofwi,t , this implies (for conciseness we writeQ instead ofQ(i, t −1))

Ei,t [∆̂i,t] = u>i Si,QS>i,Q(I +Si,QS>i,Q +xtx
>
t)−1xt .

Note that

∆i,t = Ei,t [∆̂i,t]+u>i (I +xtx
>
t)(I +Si,QS>i,Q +xtx

>
t)−1xt = Ei,t [∆̂i,t]+Bi,t ,

whereBi,t = u>i (I + xtx>t)(I + Si,QS>i,Q + xtx>t)−1xt is the conditional bias ofwi,t . It is useful to
introduce the short-hand notation

r i,t = x>t (I +Si,QS>i,Q +xtx
>
t)−1xt .

41

CESA-BIANCHI ET AL .

Also, in order to stress the dependence1 of r i,t onQ = Q(i, t −1), we denote it byr i,t,Q.
The conditional bias is bounded in the following lemma (proven in the appendix).

Lemma 7 With the notation introduced so far, we have

Bi,t ≤
√

r i,t,Q + |∆i,t | r i,t,Q .

As far as the conditional variance of∆̂i,t is concerned, from Figure 3 we see that

∆̂i,t =
Q

∑
k=1

Vi,ik Zi,t,k ,

where

Z>
i,t = (Zi,t,1, . . . ,Zi,t,Q) = S>i,Q

(
I +Si,QS>i,Q +xtx

>
t

)−1
xt . (11)

The next lemma (proven in the appendix) handles the conditional variance‖Zi,t‖2.

Lemma 8 With the notation introduced so far, we have

‖Zi,t‖2 ≤ r i,t,Q .

Armed with these two lemmas, we proceed through our large deviation argument.
We can write

{ŷi,t 6= yi,t ,Ki,t}
≤

{
∆̂i,t ∆i,t ≤ 0, Ki,t

}

≤
{
|∆̂i,t −∆i,t | ≥ |∆i,t |, Ki,t

}

≤
{
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |− |Bi,t |, Ki,t

}

≤
{
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |/2, Ki,t

}
+{|Bi,t | ≥ |∆i,t |/2, Ki,t} . (12)

We can further bound the second term of (12) by using Lemma 7. We obtain

{
|Bi,t | ≥ |∆i,t |/2, Ki,t

}
≤ {√r i,t,Q + |∆i,t | r i,t,Q ≥ |∆i,t |/2, Ki,t}

≤
{(

r i,t,Q ≥ |∆i,t |2/16∨ r i,t,Q ≥ 1/4
)
, Ki,t

}

=
{

r i,t,Q ≥ |∆i,t |2/16, Ki,t
}

1. As it turns out, many of the quantities appearing in the present proof, including the bias termBi,t and the variance
vectorZi,t defined later on, are algorithm-dependent, hence they do actually depend onQ= Q(i, t−1). However, this
dependence is made notationally explicit only for the quantityr i,t = r i,t,Q since, we believe, this specific dependence
is key to the proof.

42

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

the equality following from the fact that|∆i,t |2/16≤ 1/16 < 1/4. We plug back into (12), take
expectations, and sum overt. We have

E

[
T

∑
t=1

{ŷi,t 6= yi,t , Ki,t}
]

≤ E

[
T

∑
t=1

({
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |/2, Ki,t

}
+
{

r i,t,Q ≥ |∆i,t |2/16, Ki,t
})
]

= E

[
T

∑
t=1

{Ki,t} Ei,t

{
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |/2

}]
(13)

+ E

[
T

∑
t=1

{
r i,t,Q ≥ |∆i,t |2/16, Ki,t

}
]

, (14)

where in (13) we used the fact thatKi,t is determined givenVPAR(i),1, . . . ,VPAR(i),t−1.
We now bound the two expectations (13) and (14) separately. Letj = PAR(i). To bound the

first expectation, we exploit the fact thatVi,i1, . . . ,Vi,iQ are independent under the lawPi,t = P
(
· |

Vj,1, . . . ,Vj,t−1
)
, andZi,t,1, . . . ,Zi,t,Q defined in (11) are determined givenVj,1, . . . ,Vj,t−1. Hence,

we can apply Chernoff-Hoeffding inequality (Hoeffding, 1963) to the sum ∆̂i,t = Vi,i1Zi,t,1 + . . .+

Vi,iQZi,t,Q of independent random variables, whereEi,t [∆̂i,t] = ∆i,t − Bi,t and (Vi,i1Zi,t,1)
2 + . . . +

(Vi,iQZi,t,Q)2 ≤ r i,t,Q by Lemma 8. Recalling that∆2
i = mint=1,...,T ∆2

i,t , we can write

T

∑
t=1

{Ki,t}Pi,t

(
|∆̂i,t +Bi,t −∆i,t | ≥ |∆i,t |/2

)
≤ 2

T

∑
t=1

{Ki,t}exp

(
− ∆2

i

8r i,t,Q

)
.

This quantity can be further upper bounded using the following lemma (proven in the appendix).

Lemma 9 Let α, M be positive constants. Then

max

{
n

∑
t=1

e−α/at : a1 ≥ 0, . . . ,an ≥ 0,
n

∑
t=1

at = M

}
≤ M

eα
.

If we let

Mi =
T

∑
t=1

{Ki,t}r i,t,Q = ∑
t :{Ki,t}=1

r i,t,Q

we immediately see that Lemma 9 implies

T

∑
t=1

{Ki,t}exp

(
− ∆2

i

8r i,t,Q

)
= ∑

t :{Ki,t}=1

exp

(
− ∆2

i

8r i,t,Q

)
≤ 8

e∆2
i

Mi .

Therefore,

(13) ≤ 16

e∆2
i

EMi .

43

CESA-BIANCHI ET AL .

To bound (14) we can argue as follows (note that, by definition,r i,t,Q ≥ 0, since it is the value of a
quadratic form with a positive definite matrix):

Mi =
T

∑
t=1

{Ki,t} r i,t,Q

=
T

∑
t=1

{r i,t,Q ≥ ∆2
i /16, Ki,t} r i,t,Q +

T

∑
t=1

{r i,t,Q < ∆2
i /16, Ki,t}r i,t,Q

≥
T

∑
t=1

{r i,t,Q ≥ ∆2
i /16, Ki,t}∆2

i /16 .

Hence

(14) = E

[
T

∑
t=1

{r i,t,Q ≥ ∆2
i /16, Ki,t}

]
≤ 16

∆2
i

EMi .

We have thus obtained the following bound

T

∑
t=1

P(ŷi,t 6= yi,t , Ki,t) ≤
16(1+1/e)

∆2
i

EMi .

To conclude, we need to upper boundEMi . Observe thatMi is a sum only over time stepst such that
{Ki,t} = 1; i.e., over thoset such that the weight vectorwi,t gets actually updated. Therefore, since
we would like to relateMi to the spectral structure of the data correlation matricesSi,Q(i,T)S

>
i,Q(i,T),

we can proceed through the standard upper bounding argument (Azoury and Warmuth, 2001; Cesa-
Bianchi et al., 2002) given below.

Mi =
T

∑
t=1

{Ki,t}r i,t,Q

=
T

∑
t=1

(
1−

det(I +Si,Q(i,t−1)S
>
i,Q(i,t−1))

det(I +Si,Q(i,t)S>i,Q(i,t))

)

(using Lemma 2, part 1, in Lai and Wei, 1982)

≤
T

∑
t=1

log
det(I +Si,Q(i,t)S

>
i,Q(i,t))

det(I +Si,Q(i,t−1)S>i,Q(i,t−1))
(since 1−x≤− logx for all x > 0)

= log
det(I +Si,Q(i,T)S

>
i,Q(i,T))

det(I)

=
d

∑
j=1

log(1+λi, j) .

Putting together as in (10) concludes the proof. �

Our analysis of Theorem 2 is similar in spirit to the work of Lai et al. (1979) on least-squares
regression. In particular, they also assume the sequencex1,x2, . . . be arbitrary while the real-valued
labelsyt are defined asyt = u>xt + εt , whereεt are i.i.d. random variables with finite variance.

A regret bound similar to the one established by Theorem 2 can be proven for the zero-one
loss using the fact that this loss can be crudely upper bounded by the H-loss (with all cost coeffi-
cients set to 1). Indeed, a more direct (and sharper) analysis could beperformed for the zero-one

44

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

loss, following the same lines as the proof of Theorem 2. As far as the symmetric difference loss
`∆ is concerned, a regret analysis might be obtained through a method we developed in earlier
work (Cesa-Bianchi et al., 2004). As a matter of fact, the analysis by Cesa-Bianchi et al. (2004)
rests on several side assumptions about the way datax1, . . . ,xT are generated. We have been unable
to apply the theoretical arguments employed in the present paper to`∆. In any case, since these two
loss functions are unable to capture the hierarchical nature of our classification problem, we believe
the resulting bounds are less relevant to this paper.

8. Experimental Results

We tested the empirical performance of our on-line algorithm on data sets extracted from two pop-
ular corpora of free-text documents. The first data set consists of thefirst (in chronological order)
100,000 newswire stories from the Reuters Corpus Volume 1 (Reuters, 2000). The associated tax-
onomy of labels, which are the document topics, contains 101 nodes organized in a forest of 4
trees. The forest is shallow: the longest path has length 3 and the distribution of nodes, sorted by
increasing path length, is{0.04,0.53,0.42,0.01}. The average number of paths in the multilabel
of an instance is 1.5. For this data set we used the bag-of-words vectorization performed by Xerox
Research Center Europe within the EC project KerMIT (see Cesa-Bianchi et al., 2003, for details).
The 100,000 documents were divided into 5 equally sized groups of chronologicallyconsecutive
documents. We then used each adjacent pair of groups as training and test set for an experiment
(here the fifth and first group are considered adjacent), and then averaged the test set performance
over the 5 experiments.

The second data set includes the documents classified in the nodes of the subtree rooted in
“Quality of Health Care” (MeSH code N05.715) of the OHSUMED corpus ofmedical abstracts (Hersh,
1994). Since OHSUMED is not quite a tree but a directed acyclic graph, and since the H-loss is
defined for trees only, we removed from this OHSUMED fragment the few nodes that did not
have a unique path to the root. This produced a hierarchy with 94 classes and a data set with
55,503 documents. The choice of this specific subtree was motivated by its structure only; in
particular: the subtree depth is 4, the distribution of nodes (sorted by increasing path length) is
{0.26,0.37,0.22,0.12,0.03}, and there is a reasonable number of partial and multiple path multil-
abels (the average number of paths per instance is 1.53). The vectorization of the documents was
carried out similarly to RCV1. After tokenization, we removed all stopwords and also those words
that did not occur at least 3 times in the corpus. Then, we vectorized the documents using the BOW
library (McCallum, 2004) with a log(1+TF) log(IDF) encoding. We ran 5 experiments by randomly
splitting the corpus in a training set of 40,000 documents and a test set of 15,503 documents. Test
set performances are averages over these 5 experiments. In the training set we kept more docu-
ments than in the RCV1 splits since the OHSUMED corpus turned out to be a harder classification
problem than RCV1. In both data sets instances have been normalized to unitlength.

Since the space complexity ofH-RLS grows linearly with training time, due to the need of
storing each training instance in the matricesSi,t —see (1), we had to make some modifications
to the algorithm in order to be able to carry out experiments on data sets of this size. For this
purpose, we have developedSH-RLS, a space-efficient variant ofH-RLS that we used in all of our
experiments.

The performance ofSH-RLS is compared against five baseline algorithms: a flat and a hierarchi-
cal version of the Perceptron algorithm (Novikov, 1962; Rosenblatt, 1958), a flat and a hierarchical

45

CESA-BIANCHI ET AL .

version of Vapnik’s support vector machine (see, e.g., Vapnik, 1998;Scḧolkopf and Smola, 2002),
and a flat version ofSH-RLS. Note that support vector machines are not trained incrementally;
we include them in our pool of baseline algorithms to show that on-line learners, processing each
training example only once, can have a performance level close to that of batch learners.

Note also that, unlike our theoretical analysis based on cumulative regret, inthe experiments
we distinguish a training phase, where the hierarchical classifiers are built, and a test phase, where
the performance of the hierarchical classifiers obtained in the training phase is measured on fresh
data. This allows us to use a single measure, the test error, to compare both batch and incremental
learners.

The first algorithm we consider,H-PERC, is a simple hierarchical version of the Perceptron.
Its functioning differs fromH-RLS described in Figure 3 only in the way weights are updated. In
particular,H-PERC learns a hierarchical classifier by training a linear-threshold classifier ateach
node via the Perceptron algorithm. At the beginning, the weight vector of each node classifier is
set to the zero vector,wi,1 = (0, . . . ,0) for i = 1, . . . ,N. Upon receiving an example(xt ,vt), H-PERC

considers for an update only those classifiers sitting at nodesi satisfying eitheri ∈ ROOT(G) or
vPAR(i),t = 1. If {w>

i,txt ≥ 0} 6= vi,t for such a nodei, then the weight vectorwi,t is updated using the
Perceptron rulewi,t+1 = wi,t + vi,txt ; on the other hand, if{w>

i,txt ≥ 0} = vi,t , thenwi,t+1 = wi,t (no
update takes place at nodei).

During the test phase,H-PERCcomputes the multilabel̂y= (ŷ1, . . . , ŷN) of a test instancex using
the same top-down process described in Figure 3,

ŷi =

{w>
i x≥ 0} if i is a root node,

{w>
i x≥ 0} if i is not a root node and ˆy j = 1 for j = PAR(i),

0 if i is not a root node and ˆy j = 0 for j = PAR(i).

(15)

The second incremental algorithm considered isSH-RLS, our sparse variant ofH-RLS. The two
algorithms,H-RLS and SH-RLS operate in the same way (see Figure 3) with the only difference
that SH-RLS performs fewer updates in the training phase. In particular, given a training example
(xt ,vt), both algorithms consider for an update only those classifiers sitting at nodes i satisfying
either i ∈ ROOT(G) or vPAR(i),t = 1. However, whereasH-RLS would update the weightwi,t of
all such nodesi, SH-RLS also requires the margin condition|w>

i,txt | ≤
√

(5lnt)/Ni,t , whereNi,t is
the number of instances stored at nodei up to timet − 1. The choice of the margin threshold√

(5lnt)/Ni,t is motivated by Cesa-Bianchi et al. (2003) via a large deviation analysis.
We also tested a hierarchical version of SVM (denoted byH-SVM) in which each node is an

SVM classifier trained using a batch version of our hierarchical learningprotocol. More precisely,
each nodei was trained only on those examples(xt ,vt) such thatvPAR(i),t = 1. The resulting set
of linear-threshold functions was then evaluated on the test set using the hierarchical classification
scheme (15). We tried both theC andν parametrizations (Schölkopf et al., 2000) for SVM and found
the settingC = 1 to work best2 for our data (recall that all instancesxt are normalized,‖xt‖ = 1).

We finally tested the “flat” variants ofH-PERC, SH-RLS andH-SVM, denoted byPERC, S-RLS

andSVM, respectively. In these variants, each node is trained and evaluated independently of the
others, disregarding all taxonomical information. All SVM experiments werecarried out using the
libSVM implementation (Chang and Lin, 2004) and all the algorithms ran with a linearkernel. The

2. It should be emphasized that this tuning ofC was actually chosen in hindsight across the interval [0.1,10] with no
cross-validation.

46

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

RCV1
Algorithm zero-one loss uniform H-loss ∆-loss
PERC 0.702(±0.045) 1.196(±0.127) 1.695(±0.182)
H-PERC 0.655(±0.040) 1.224(±0.114) 1.861(±0.172)
S-RLS 0.559(±0.005) 0.981(±0.020) 1.413(±0.033)
SH-RLS 0.456(±0.010) 0.743(±0.026) 1.086(±0.036)
SVM 0.482(±0.009) 0.790(±0.023) 1.173(±0.051)
H-SVM 0.440(±0.008) 0.712(±0.021) 1.050(±0.027)

OHSUMED
Algorithm zero-one loss uniform H-loss ∆-loss
PERC 0.899(±0.024) 1.938(±0.219) 2.639(±0.226)
H-PERC 0.846(±0.024) 1.560(±0.155) 2.528(±0.251)
S-RLS 0.873(±0.004) 1.814(±0.024) 2.627(±0.027)
SH-RLS 0.769(±0.004) 1.200(±0.007) 1.957(±0.011)
SVM 0.784(±0.003) 1.206(±0.003) 1.872(±0.005)
H-SVM 0.759(±0.002) 1.170(±0.005) 1.910(±0.007)

Table 1: Experimental results on two hierarchical text classification tasks under various loss func-
tions. We report average test errors along with standard deviations (in parentheses). In
bold are the best performance figures among the incremental algorithms (allincremental
algorithms were run for one epoch over the training data).

performance of these algorithms was evaluated against three different loss measures (see Table 1).
The first two losses are the zero-one loss and the H-loss with cost coefficients set to 1 (denoted by
uniform H-loss in Table 1). The third loss is the symmetric difference loss (∆-loss in Table 1).

A few remarks on Table 1 are in order at this point. As expected,H-SVM performs best, but the
good performance ofSVM (flat support vector machine) is surprising. As for the incremental algo-
rithms, SH-RLS performs better than its flat variantSH-RLS, and far better than bothH-PERCand
PERC. In addition, and perhaps surprisingly, after a single epoch of trainingSH-RLS performs gen-
erally better thanSVM and comes reasonably close to the performance ofH-SVM. Finally, note that
the running times of bothS-RLS andSH-RLS scale quadratically in the number of stored instances,
whereas the running time of Perceptrons scales only linearly. Thus, as usual, the performance ben-
efit has to be traded-off against computational cost.

To give an idea of how flat and hierarchical algorithms compare in terms of running times, we
mention that hierarchical algorithms turned out to be roughly four times fasterthan the correspond-
ing flat algorithms running on the same data sets.

The (uniform) H-loss does not provide any information on the distribution ofmistakes across
the different hierarchy levels. Therefore, we counted the “H-loss mistakes” made at each level,
distinguishing between false positive (FP) and false negative (FN) mistakes. Fix an example(x,v)
and let̂y be the guessed multilabel. Then nodei makes an H-loss mistake on(x,v) if

ŷi 6= vi ∧ ŷ j = v j = 1, j ∈ ANC(i) .

47

CESA-BIANCHI ET AL .

RCV1
Depth H-PERC SH-RLS H-SVM

FP 4144(±2431) 1449(±79) 1769(±163)
0

FN 2690(±851) 2436(±112) 2513(±148)

FP 6769(±2509) 1361(±108) 1317(±81)
1

FN 7961(±838) 8135(±476) 7260(±450)

FP 1161(±261) 413(±32) 380(±28)
2

FN 1513(±833) 937(±51) 624(±23)

FP 161(±314) 14(±16) 20(±26)
3

FN 88(±44) 115(±31) 94(±24)

OHSUMED
Depth H-PERC SH-RLS H-SVM

FP 7916(±2638) 3192(±88) 3062(±60)
0

FN 12639(±1418) 12888(±64) 12587(±49)

FP 1816(±730) 828(±14) 839(±11)
1

FN 1606(±373) 1594(±33) 1542(±25)

FP 88(±20) 30(±6) 37(±7)
2

FN 86(±31) 54(±4) 55(±2)

FP 10(±5) 2(±1) 3(±1)
3

FN 16(±11) 13(±3) 14(±1)

FP 3(±2) 1(±1) 4(±1)
4

FN 5(±6) 1(±1) 2(±1)

Table 2: Distribution across the hierarchy levels of false positive (FP) andfalse negative (FN) H-
loss mistakes on the two hierarchical text classification tasks RCV1 and OHSUMED. We
report the average number of mistakes at each level of the hierarchy trees with standard
deviation in parentheses (recall that we made 5 experiments on different splits of the two
data set).

48

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

Thus, nodei makes a false positive mistake if

ŷi = 1∧ vi = 0∧ ŷ j = v j = 1, j ∈ ANC(i)

and makes a false negative mistake if

ŷi = 0∧ vi = 1 ∧ ŷ j = v j = 1, j ∈ ANC(i) .

Table 2 shows the H-loss mistake distribution for RCV1 and OHSUMED over hierarchy levels.
The average values contained in Table 2 are also plotted in Figure 4. A quickvisual comparison

reveals the close similarity between the distributions obtained bySH-RLS andH-SVM, whereas the
behavior ofH-PERClooks quite different.

9. Conclusions, Ongoing Research, and Open Problems

We have introducedH-RLS, a new on-line algorithm for hierarchical classification that maintains
and updates regularized least-squares estimators on the nodes of a taxonomy. The linear-threshold
classifications, obtained from the estimators, are combined to produce a single hierarchical multil-
abel through a simple top-down evaluation model.

Our algorithm is suitable for learning multilabels that include multiple and/or partial paths on
the taxonomy. To properly evaluate hierarchical classifiers in this framework we have defined the
H-loss, a new hierarchical loss function, with cost coefficients possiblyassociated to each taxonomy
node—see Remark 5.

Our main theoretical result states that, on any sequence of instances, the cumulative H-loss of
H-RLS is never much bigger than the cumulative H-loss of a reference classifier tuned with the pa-
rameters of the stochastic process generating the multilabels for the given sequence of instances.
Our theoretical findings are complemented by experiments on the hierarchical classification of tex-
tual data, in which we compare the performance of a sparsified variant ofH-RLS to that of standard
batch and incremental learners, such as simple hierarchical versions ofthe Perceptron algorithm and
the SVM. The experiments show that one epoch of training of our algorithm isenough to achieve a
performance close to that of the hierarchical SVM.

Our investigation leaves a number of open questions. The first open question is the derivation
of a hierarchical algorithm especially designed to minimize the H-loss. We are currently exploring
efficient ways to approximate the Bayes optimal classifier for the H-loss, given our data model.
Since such optimal classifier turns out to be remarkably different from thehierarchical classifiers
produced byH-RLS, a related theoretical question is to prove any reasonable bound on the regret
with respect to the Bayes optimal classifier.

Additional open problems concern the data model. First, it would be useful tomodify the label-
generating model to introduce dependencies among the children’s labels. This could allow a better
fitting of data sets when the rate of multiple paths in multilabels is limited. Second, further investi-
gation, both of empirical and theoretical nature, might be devoted to the issueof using regularized
logistic regressors at each node.

Acknowledgments

The authors would like to thank Michael Collins for his timely editorial work, as well as the anony-
mous reviewers, whose comments and suggestions greatly improved the presentation of this paper.

49

CESA-BIANCHI ET AL .

 0

 2000

 4000

 6000

 8000

 10000

 12000

3210

M
is

ta
ke

s

Level

H-PERC mistake distribution on RCV1

FP
FN

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

43210

M
is

ta
ke

s

Level

H-PERC mistake distribution on OHSUMED

FP
FN

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

3210

M
is

ta
ke

s

Level

SH-RLS mistake distribution on RCV1

FP
FN

(c)

 0

 2000

 4000

 6000

 8000

 10000

 12000

43210

M
is

ta
ke

s

Level

SH-RLS mistake distribution on OHSUMED

FP
FN

(d)

 0

 2000

 4000

 6000

 8000

 10000

 12000

3210

M
is

ta
ke

s

Level

H-SVM mistake distribution on RCV1

FP
FN

(e)

 0

 2000

 4000

 6000

 8000

 10000

 12000

43210

M
is

ta
ke

s

Level

H-SVM mistake distribution on OHSUMED

FP
FN

(f)

Figure 4: Plot of the average values contained in Table 2 for the H-loss mistake distribution over
hierarchy levels.

50

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

This work was supported in part by the IST Programme of the European Community under the PAS-
CAL Network of Excellence IST-2002-506778. This publication only reflects the authors’ views.

Appendix A

This appendix contains the proofs of Lemmas 7, 8, and 9 mentioned in the main text. Throughout
this appendixA denotes the positive definite matrixI +Si,QS>i,Q, while r denotes the quadratic form

x>t (A+xtx>t)−1xt .

Proof of Lemma 7

We have

Bi,t = u>i (I +xtx
>
t)(A+xtx

>
t)−1xt

= u>i (A+xtx
>
t)−1xt +∆i,t r

≤
√

x>t (A+xtx>t)−2xt + |∆i,t | r
≤

√
r + |∆i,t | r

where the first inequality follows fromu>i z≤ max‖ui‖=1u>i z= ‖z‖, with z= (A+xtx>t)−1xt , and the
second inequality follows fromx>(A+ xx>)−2x ≤ x>(A+ xx>)−1x, holding for anyx and for any
positive definite matrixA whose eigenvalues are not smaller than 1 (notice that this condition makes
(A+xx>)−1− (A+xx>)−2 a positive semidefinite matrix). �

Proof of Lemma 8

Setting for brevityH = S>i,QA−1xt anda = x>t A−1xt we can write

‖Zi,t‖2 = x>t
(

A+xtx
>
t

)−1
Si,QS>i,Q

(
A+xtx

>
t

)−1
xt

= x>t

(
A−1− A−1xtx>t A−1

1+x>t A−1xt

)
Si,QS>i,Q

(
A−1− A−1xtx>t A−1

1+x>t A−1xt

)
xt

(by the Sherman-Morrison formula—e.g., Horn and Johnson, 1985, chap. 0)

= H>H − a
1+a

H>H − a
1+a

H>H +
a2

(1+a)2H>H

=
H>H

(1+a)2

=
x>t A−1Si,QS>i,QA−1xt

(1+a)2

=
x>t A−1/2A−1/2Si,QS>i,QA−1/2A−1/2xt

(1+a)2

≤

∥∥A−1/2xt
∥∥
∥∥∥A−1/2Si,QS>i,QA−1/2

∥∥∥
∥∥x>t A−1/2

∥∥

(1+a)2

=
a

(1+a)2

∥∥∥A−1/2Si,QS>i,QA−1/2
∥∥∥ , (16)

51

CESA-BIANCHI ET AL .

where
∥∥∥A−1/2Si,QS>i,QA−1/2

∥∥∥ is the spectral norm of matrixA−1/2Si,QS>i,QA−1/2.

We continue by bounding the two factors in (16). Observe that

a
(1+a)2 ≤ a

1+a
= r

where the equality derives again from the Sherman-Morrison formula. Asfar as the second factor
is concerned, we just note that the two matricesA−1/2 and Si,QS>i,Q have the same eigenvectors.

Furthermore, ifλ j is an eigenvalue ofSi,QS>i,Q, then 1/
√

1+λ j is an eigenvalue ofA−1/2. Therefore

∥∥∥A−1/2Si,QS>i,QA−1/2
∥∥∥= max

j

1√
1+λ j

×λ j ×
1√

1+λ j
≤ 1 .

Substituting into (16) yields‖Zi,t‖2 ≤ r, as desired. �

Proof of Lemma 9

From a simple Kuhn-Tucker analysis3 it follows that if at is larger than 0 at the maximum, thenat

takes some constant valueβ > 0 (independent oft). Hence the maximizing vector(a1,a2, . . . ,an)
has components which can take only two possible values:at = 0 orat = β. Let us denote byN+ the
number oft : at = β. At the maximum we can write

M =
n

∑
t=1

at = ∑
t :at=β

at + ∑
t :at→0+

at = βN+

i.e.,β = M/N+. Hence, at the maximum

n

∑
t=1

e−α/at = ∑
t :at=β

e−α/at + ∑
t :at=0+

e−α/at

= ∑
t :at=β

e−α/β

= N+e−α/β

= N+e−αN+/M .

SinceN+ is not determined by this argument, we can write

max

{
n

∑
t=1

e−α/at : a1 ≥ 0, . . . ,an ≥ 0,
n

∑
t=1

at = M

}
≤ max

x≥0
xe−αx/M =

M
eα

thereby concluding the proof. �

3. The functionf (a) = e−α/a is not defined whena= 0. However, it is clearly possible to extendf by definingf (0) = 0,
preserving (one-sided) differentiability.

52

INCREMENTAL ALGORITHMS FORHIERARCHICAL CLASSIFICATION

References

K. S. Azoury and M. K. Warmuth. Relative loss bounds for on-line densityestimation with the
exponential familiy of distributions.Machine Learning, 43(3):211–246, 2001.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order perceptron algorithm.SIAM Journal
of Computing., 43(3):640–668, 2005.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. Learning probabilistic linear-threshold classifiers via
selective sampling. InProceedings of the 16th Annual Conference on Computational Learning
Theory, pages 373–386. LNAI 2777, Springer, 2003.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. Regret bounds for hierarchical classification with
linear-threshold functions. InProceedings of the 17th Annual Conference on Computational
Learning Theory, pages 93–108. LNAI 3120, Springer, 2004.

C. C. Chang and C. J. Lin. Libsvm: a library for support vector machines, 2004.
Available electronically athttp://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

O. Dekel, J. Keshet, and Y. Singer. An efficient online algorithm for hierarchical phoneme classifi-
cation. InProceedings of the 1st International Workshop on Machine Learning for Multimodal
Interaction, pages 146-158. Springer LNAI 3361, 2005.

O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. InProceedings of the
21st International Conference on Machine Learning. Omnipress, 2004.

S. T. Dumais and H. Chen. Hierarchical classification of web content. InProceedings of the 23rd
ACM International Conference on Research and Development in Information Retrieval, pages
256–263. ACM Press, 2000.

M. Granitzer.Hierarchical Text Classification using Methods from Machine Learning. PhD thesis,
Graz University of Technology, 2003.

W. R. Hersh. The OHSUMED test collection, 1994.
Available electronically athttp://medir.ohsu.edu/pub/ohsumed/.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

T. Hofmann, L. Cai, and M. Ciaramita. Learning with taxonomies: classifying documents and
words. InNIPS 2003: Workshop on syntax, semantics, and statistics, 2003.

R. A. Horn and C. R. Johnson.Matrix Analysis. Cambridge University Press, 1985.

D. Koller and M. Sahami. Hierarchically classifying documents using very few words. InProceed-
ings of the 14th International Conference on Machine Learning, pages 170–178, 1997.

T. L. Lai, H. Robbins, and C. Z. Wei. Strong consistency of least squares estimates in multiple
regression.Proceedings of the National Academy of Sciences USA, 75(7):3034–3036, 1979.

53

CESA-BIANCHI ET AL .

T. L. Lai and C. Z. Wei. Least squares estimates in stochastic regressionmodels with applications
to identification and control of dynamic systems.The Annals of Statistics, 10(1):154–166, 1982.

A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and
clustering, 2004.
Available electronically athttp://www-2.cs.cmu.edu/∼mccallum/bow/.

A. K. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving text classification by
shrinkage in a hierarchy of classes. InProceedings of the 15th International Conference on
Machine Learning, pages 359–367. Morgan Kaufmann Publishers, 1998.

D. Mladenic. Turning yahoo into an automatic web-page classifier. InProceedings of the 13th
European Conference on Artificial Intelligence, pages 473–474, 1998.

A. B. J. Novikov. On convergence proofs on Perceptrons. InProceedings of the Symposium on the
Mathematical Theory of Automata, vol. XII, pages 615–622, 1962.

Reuters. Reuters corpus volume 1, 2000. Available electronically at
http://about.reuters.com/researchandstandards/corpus/.

R. Rifkin, G. Yeo, and T. Poggio. Regularized least squares classification. Advances in Learning
Theory: Methods, Model and Applications. NATO Science Series III: Computer and Systems
Sciences, 190:131–153, 2003.

F. Rosenblatt. The Perceptron: A probabilistic model for information storage and organization in
the brain.Psychological Review, 65:386–408, 1958.

M. E. Ruiz and P. Srinivasan. Hierarchical text categorization using neural networks.Information
Retrieval, 5(1):87–118, 2002.

B. Scḧolkopf and A. Smola.Learning with kernels. MIT Press, 2002.

B. Scḧolkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vectoralgorithms.
Neural Computation, 12:1207–1245, 2000.

A. Sun and E. P. Lim. Hierarchical text classification and evaluation. InProceedings of the 2001
International Conference on Data Mining, pages 521–528. IEEE Press, 2001.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

V. Vovk. Competitive on-line statistics.International Statistical Review, 69:213–248, 2001.

54

Journal of Machine Learning Research 7 (2006) 55–83 Submitted 4/05; Published 1/06

On the Complexity of Learning Lexicographic Strategies

Michael Schmitt MSCHMITTM@GOOGLEMAIL.COM

Ludwig-Marum-Gymnasium
Schlossgartenstraße 11
76327 Pfinztal, Germany

Laura Martignon MARTIGNON@PH-LUDWIGSBURG.DE

Institut für Mathematik und Informatik
Pädagogische Hochschule Ludwigsburg
Reuteallee 46
71634 Ludwigsburg, Germany

Editor: Dana Ron

Abstract
Fast and frugal heuristics are well studied models of bounded rationality. Psychological research
has proposed the take-the-best heuristic as a successful strategy in decision making with limited
resources. Take-the-best searches for a sufficiently good ordering of cues (or features) in a task
where objects are to be compared lexicographically. We investigate the computational complex-
ity of finding optimal cue permutations for lexicographic strategies and prove that the problem is
NP-complete. It follows that no efficient (that is, polynomial-time) algorithm computes optimal
solutions, unless P= NP. We further analyze the complexity of approximating optimal cue permu-
tations for lexicographic strategies. We show that there isno efficient algorithm that approximates
the optimum to within any constant factor, unless P= NP.

The results have implications for the complexity of learning lexicographic strategies from ex-
amples. They show that learning them in polynomial time within the model of agnostic probably
approximately correct (PAC) learning is impossible, unless RP= NP. We further consider greedy
approaches for building lexicographic strategies and determine upper and lower bounds for the
performance ratio of simple algorithms. Moreover, we present a greedy algorithm that performs
provably better than take-the-best. Tight bounds on the sample complexity for learning lexico-
graphic strategies are also given in this article.
Keywords: bounded rationality, fast and frugal heuristic, PAC learning, NP-completeness, hard-
ness of approximation, greedy method

1. Introduction

In many circumstances the human mind has to make decisions when time is scarce and knowledge
is limited. Extensive reflections backed by deep reasoning are impossible in these situations. Cog-
nitive psychology categorizes human judgments made under such constraints as being boundedly
rational if they are “satisficing” (Simon, 1982) or, more generally, if they do not fall too far be-
hind the rational standards. The modeling of bounded rationality has been considered essential for
artificial intelligence. Russell and Wefald (1991), defining artificial intelligence as the problem of
designing systems that “do the right thing”, argue that intelligence seems linked with doing as well
as possible given what resources one has.

c©2006 Michael Schmitt and Laura Martignon.

SCHMITT AND MARTIGNON

A principal family of models for human reasoning that are studied within the context of bounded
rationality are the probabilistic mental models proposed by Gigerenzer et al. (1991). To these be-
longs a kind of simple algorithms termed “fast and frugal heuristics” that were the topic of major
research projects in psychology (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999). Great
efforts have been put into testing these heuristics by empirical means in experiments with human
subjects on the one hand (Bröder, 2000; Br̈oder and Schiffer, 2003; Lee and Cummins, 2004; Newell
and Shanks, 2003; Newell et al., 2003; Slegers et al., 2000) or in simulations on computers on the
other (Br̈oder, 2002; Bullock and Todd, 1999; Hogarth and Karelaia, 2003; Nellen, 2003; Todd
and Dieckmann, 2005). (See also the discussion and controversies documented in the open peer
commentaries on Todd and Gigerenzer, 2000.) To a lesser extent, theoretical studies have been un-
dertaken with analytical methods (Bröder, 2002; Martignon and Hoffrage, 1999, 2002; Martignon
and Schmitt, 1999).

1.1 Take the Best

Among the fast and frugal heuristics there is an algorithm called “take-the-best”1 (TTB) that during
recent years has become one of the workhorses of research into models of bounded rationality.
This algorithm is considered a process model for human judgments based onone-reason decision
making. Which of the two cities has a larger population: (a) Düsseldorf, (b) Hamburg? This is the
task originally studied by Gigerenzer and Goldstein (1996) where German cities with a population
of more than 100,000 inhabitants have to be compared. The available information on each city
consists of the values of nine binary cues, or attributes, indicating presence or absence of a feature.
The cues being used are, for instance, whether the city is a state capital, whether it is indicated on
car license plates by a single letter, or whether it has a soccer team in the national league.

The judgment which city is larger is made on the basis of the two binary vectors,or cue profiles,
representing the two cities. TTB compares the cues one after the other and uses the first cue that
discriminates as the one reason to yield the final decision. In other words, TTB performs a lexico-
graphic strategy of comparison. For instance, if one city has a universityand the other does not it
would infer that the first city is larger than the second. If the cue values ofboth cities are equal, the
algorithm passes on to the next cue.

TTB examines the cues in a certain order. Gigerenzer and Goldstein (1996) introduced ecolog-
ical validity as a numerical measure for ranking the cues. (See Martignon and Hoffrage, 2002, for
further criteria to order cues.) The validity of a cue is a real number in the interval [0,1] that is com-
puted in terms of the known outcomes of paired comparisons. It is defined asthe number of pairs
the cue discriminates correctly (i.e., where it makes a correct inference) divided by the number of
pairs it discriminates (i.e., where it makes an inference, be it right or wrong). TTB always chooses a
cue with the highest validity, that is, it “takes the best” among those cues not yet considered. Table 1
gives an example showing cue profiles and validities for three cities. The data are extracted from
the appendix of Gigerenzer and Goldstein (1996). The ordering defined by the population size of
the cities is given by

{〈 Düsseldorf , Essen〉,〈 Düsseldorf , Hamburg〉,〈 Essen , Hamburg〉},

1. “Take-the-best” is a shortening of “take the best, ignore the rest” (Gigerenzer and Goldstein, 1996).

56

LEARNING LEXICOGRAPHICSTRATEGIES

Soccer Team State Capital License Plate

Hamburg 1 1 0

Essen 0 0 1

Düsseldorf 0 1 1

Validity 1 1/2 0

Table 1: Part of the German cities task of Gigerenzer and Goldstein (1996). Shown are cue profiles
and validities. Validities are computed from the cues of the three cities as givenhere. The
original data has different validities but yields the same ranking for the cues. The meaning
of the cues and the way how to calculate validities are explained in the text.

where a pair〈a,b〉 indicates thata has less inhabitants thanb. As an example for calculating the
validity, the state-capital cue distinguishes the first and the third pair but is correct only on the latter.
Hence, its validity has value 1/2.

The order in which the cues are ranked is crucial for success or failure of TTB. In the example
of Düsseldorf and Hamburg, the car-license-plate cue would yield that Düsseldorf (represented by
the letter “D”) is larger than Hamburg (represented by the two letters “HH”),whereas the soccer-
team cue would favor Hamburg, which is correct. Thus, how successful a lexicographic strategy
is in a comparison task consisting of a partial ordering of cue profiles depends on how well the
cue ranking minimizes the number of incorrect comparisons. Specifically, theaccuracy of TTB
relies on the degree of optimality achieved by the ranking according to decreasing cue validities.
For TTB and the German cities task, computer simulations have shown that TTB discriminates at
least as accurate as other models (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999; Todd
and Dieckmann, 2005). TTB made as many correct inferences as standard algorithms proposed by
cognitive psychology and even outperformed some of them.2

1.2 Accuracy and Complexity

Partial results concerning the accuracy of TTB compared to the accuracy of other strategies have
been obtained analytically by Martignon and Hoffrage (2002). The intention of this article is to sub-
ject the problem of finding optimal cue orderings to a rigorous theoretical analysis. A conceivable
approach would be to reveal conditions under which TTB performs betteror worse. However, the
analysis of TTB per se is not a major topic of this work. Instead, we take a different and more gen-
eral road by employing methods from the theory of computational complexity (Garey and Johnson,
1979).

Obviously, TTB is an algorithm that runs in polynomial time. Given a list of ordered pairs,
it computes all cue validities in a number of computing steps that is linear in the size of the list,

2. Gigerenzer and Goldstein (1996) introduced TTB with an additional feature, the recognition principle. The recog-
nition cue indicates whether the city is recognized or not. A city that is recognized is preferred to an unrecognized
one. The recognition cue is always queried first and, hence, not relevant for the problem of finding optimal cue
permutations considered here.

57

SCHMITT AND MARTIGNON

assuming random access to the values of the cues. This observation directs our attention to studying
the computational complexity of the problem of finding optimal cue permutations. Is there really
an efficient algorithm that solves this problem? We define the decision problem LEXICOGRAPHIC

STRATEGY as the task of determining whether for a given partial ordering, represented as a list
of pairs of cue profiles, and a given threshold there exists a cue permutation such that the number
of incorrect comparisons made by the lexicographic strategy does not exceed this threshold. As a
fundamental result we prove that LEXICOGRAPHICSTRATEGY is NP-complete. It follows that TTB
is not an algorithm for computing optimal cue permutations and, even more, thatno polynomial-
time algorithm exists for solving this task, unless the complexity classes P and NP are equal.

The fact that finding optimal cue permutations turns out to be practically intractable, however,
does not exclude the possibility that the optimum can be efficiently approximated. The second main
topic of this article is an optimization problem called MINIMUM INCORRECT LEXICOGRAPHIC

STRATEGY denoting the task of minimizing the number of incorrect inferences for the lexicographic
strategy on a given list of pairs. Many computational problems are known tobe NP-complete but
have efficient approximation algorithms that are good in the sense that their solutions are never more
than some constant factor away from the optimum. Problems in this class, which isdenoted APX,
are generally considered to be approximable well and efficiently (Ausiello et al., 1999). As the
second major result of this article we show that, unless P= NP, no polynomial-time approximation
algorithm exists that computes solutions for MINIMUM INCORRECTLEXICOGRAPHICSTRATEGY

that are only a constant factor worse than the optimum, unless P= NP. In other words, the approx-
imating factor, also called performance ratio, must grow with the size of the problem.

As an extension of TTB we consider an algorithm for finding cue orderings that was called
“TTB by Conditional Validity” in the context of bounded rationaility. This algorithm is based on
the greedy method, a principle widely used in algorithm design. The greedy algorithm runs in
polynomial time and we derive tight bounds for it, showing that it approximatesthe optimum with
a performance ratio proportional to the number of cues. An important consequence of this result
is a guarantee that for those instances which have a solution that discriminates all pairs correctly,
the greedy algorithm always finds a permutation attaining this minimum. We are not aware that
this quality has been established for any of the previously studied heuristicsfor paired comparison.
Moreover, we show that TTB does not have this property, concluding that the greedy method of
constructing cue permutations performs provably better than TTB.

While the results mentioned so far deal with lexicographic strategies based oncue permutations,
we further consider the possibility to build them by also inverting cues. We present an algorithm
that greedily constructs cue inversions that are always correct on a number of pairs that is at least
half the optimum. In other words, this algorithm is a constant factor approximation algorithm for
the problem of maximizing the number of correct inferences. Interestingly,this algorithm does not
even need to permute any cues to approximate to within a constant factor the optimum taken even
over all inversions and permutations.

1.3 Learning

LEXICOGRAPHIC STRATEGY is a decision problem that requires to minimize a disagreement.
Given a set of pairs, the question is whether a cue permutation can be found that keeps the number of
incorrect comparisons, or disagreements, of the lexicographic strategybelow some prescribed value.
Minimizing disagreement problems play a major role in the context of a computational model of

58

LEARNING LEXICOGRAPHICSTRATEGIES

learning known as agnostic probably approximately correct (PAC) learning (see, e.g., Anthony and
Bartlett, 1999). This model assumes that a learner receives a set of examples, the sample, drawn ac-
cording to some unknown probability distribution. The learner is required to output a function from
a so-called hypothesis class on the condition that, with high probability, the computed hypothesis
is, with respect to the distribution, close to an optimal hypothesis within the class.A fundamen-
tal result is concerned with the question whether agnostic PAC learning with agiven hypothesis
class can be done efficiently, in particular, if there exists an algorithm that needs only a polynomial
number of computation steps to find good hypotheses. The result states thatno such learner can
exist if the minimizing disagreement problem for the hypothesis class is NP-complete, given that
the complexity classes RP and NP are different (see, e.g., Höffgen et al., 1995; Kearns et al., 1994).

The results in this paper have immediate consequences for the question whether lexicographic
strategies can be learned. Adopting the framework of agnostic PAC learning, we assume that pairs
of cue profiles are drawn randomly according to some unknown distribution. The task of the learner
is to find a cue permutation that, with high probability, is close to an optimal one, where closeness
means that the probability of differing inferences is small. This setting seems slightly different from
the original PAC model as in the latter the sample consists of labeled examples, whereas the lexico-
graphic strategy has to be learned from pairs. However, relevant in both cases is that a hypothesis can
be correct or incorrect on a given example. Therefore, applying theabove-mentioned result about
agnostic PAC learning and assuming that RP6= NP, by showing that LEXICOGRAPHICSTRATEGY

is NP-complete we may conclude that efficient learning of lexicographic strategies is impossible.
Moreover, this evidence of impossibility is reinforced by our proving that the optimization problem
M INIMUM INCORRECTLEXICOGRAPHICSTRATEGY cannot be approximated in polynomial time
to within any constant factor.

A further question that models of learning are involved in is the characterization of the ability
to generalize, that is, to find a good hypothesis from only a small number of examples. A principal
result in agnostic PAC learning has established a combinatorial parameter ofa hypothesis class, its
Vapnik-Chervonenkis (VC) dimension, as the relevant measure for this sample complexity (Vapnik
and Chervonenkis, 1971). In particular, to come close to the minimal generalization error it is
necessary and sufficient to draw a number of examples that is proportional to the VC dimension
of the hypothesis class (see, e.g., Anthony and Bartlett, 1999). In this article we determine the
VC dimension of the class of lexicographic strategies exactly. In detail, we show that the class of
lexicographic strategies obtained by cue permutations and inversions has aVC dimension equal to
the number of cues. As a consequence, the number of cues provides a tight bound on the sample
complexity for learning lexicographic strategies.

1.4 Related Work

Research that approaches the investigation of simple heuristics for intelligent systems via the anal-
ysis of computational complexity traces back to Simon and Kadane (1975, 1976). They provided
sufficient conditions under which so-called satisficing search strategiescan be proved to be opti-
mal. Their line of study was resumed by Greiner and Orponen (1996) who obtained estimates for
the sample complexity of such strategies. Regarding the issue of ordering, Greiner (1999) raised a
question relevant for inductive logic programming that is similar to the problems studied here. He
asked whether it is possible to efficiently revise rule-based programs by rearranging the ordering of

59

SCHMITT AND MARTIGNON

the rules. His results include NP-completeness and nonapproximability statements for various types
of logical theories.

Rivest (1987) introduced decision lists as a formalism for the representation of Boolean func-
tions. The procedure for computing the output value of a decision list is similarto a lexicographic
strategy in that both mechanisms are based on one-reason decision making. In fact, we shall show
below that lexicographic strategies are a special case of so-called 2-decision lists. It will also fol-
low from this result that the two function classes do not coincide. Thus, analgorithm that learns
2-decision lists does not necessarily learn lexicographic strategies. On the other hand, an algorithm
that finds optimal cue permutations might not be good in constructing 2-decision lists.

Ordering problems have also been studied by Cohen et al. (1999). Theyconsidered the problem
of putting a set of objects in a total order that maximally agrees with a specified preference function.
They proved this problem to be NP-complete. We shall show later that the problem of finding
cue permutations for the lexicographic strategy can be formulated as such an ordering problem.
However, we shall also argue that the two problems are different, since the cue permutation problem
requires the total order to be implemented as a lexicographic strategy and notevery total order can
be represented this way.

1.5 Outline

We introduce lexicographic strategies in Section 2 and provide there further definitions and proper-
ties. We then draw comparisons with decision lists and discuss the relationship of the problem of
finding optimal cue permutations with the ordering problem studied by Cohen etal. (1999).

Section 3 establishes the NP-completeness of the problem LEXICOGRAPHIC STRATEGY. Ad-
ditionally, we consider the complexity of this problem when the instances meet certain conditions.
We obtain that the problem remains NP-complete under constraints that require the cue profiles to
be sparse, impose a bound on the number of pairs, or suppose the pairs tosatisfy some simple prop-
erties of orderings. In particular, we show NP-completeness to hold wheneach cue profile contains
no more than one 0. In contrast, if the latter condition is met and the pairs are from some partial
order, the problem can be solved in linear time.

The optimization problem MINIMUM INCORRECTLEXICOGRAPHICSTRATEGY is considered
in Section 4. As the main result we show that this problem cannot be approximated in polynomial
time to within any constant factor, unless P= NP. It further emerges, that this result holds even
when the instances satisfy some, albeit not all, of the restrictions considered in Section 3.

Section 5 introduces the greedy algorithm for constructing cue permutations. We tightly deter-
mine the performance ratio of this algorithm, showing that it is proportional to thenumber of cues.
The result implies that the greedy method always finds a correct cue permutation if one exists. In
contrast, we show that this does not hold for TTB. Restrictions under which the lower bound for the
greedy method is still valid are also determined in this section.

In Section 6 we introduce the operation of inverting cues as a means for constructing lexico-
graphic strategies. We show that a greedy method approximates the maximum number of correct
inferences to within a constant factor.

The sample complexity for learning is studied in Section 7. We determine the numberof cues
as the exact value for the VC dimension of the class of lexicographic strategies obtained from cue
permutations and inversions. Section 8 summarizes seven major open questions arising from this
article and Section 9 concludes with final remarks.

60

LEARNING LEXICOGRAPHICSTRATEGIES

We assume that the reader is acquainted with the theory of NP-completeness as propounded, for
instance, by Garey and Johnson (1979). Familiarity with the theory of computational complexity
for approximation problems is not required as we shall explicate the necessary details.

Bibliographic Note. The main result of Section 3 (Theorem 3) was mentioned by Martignon and
Schmitt (1999), but its proof has been available only in an unpublished manuscript (Schmitt and
Martignon, 1999). Parts of Sections 4 and 5 appear in a contribution to a conference (Schmitt and
Martignon, 2006).

2. Lexicographic Strategies

In the following, we introduce lexicographic strategies and the computationalproblem that we study
in this article. After giving formal definitions in Section 2.1, we compare in Section 2.2 lexico-
graphic strategies with a related formalism known as decision lists. The optimization problem for
lexicographic strategies bears some resemblance to ranking problems that have been studied earlier.
In Section 2.3, we discuss the relationship between them and demonstrate thatthey are different
problems.

2.1 Definitions

A lexicographic strategyis a method for comparing elements of a setB⊆{0,1}n of Boolean vectors.
Each component 1, . . . ,n of these vectors is referred to as acue. Given two elementsa,b∈ B, where
a = (a1, . . . ,an) andb = (b1, . . . ,bn), the lexicographic strategy searches for the smallest cue index
i ∈ {1, . . . ,n} such thatai andbi are different. The strategy then outputs one of “< ” or “ > ”
according to whetherai < bi or ai > bi assuming the usual order 0< 1 of the truth values. If no
such cue exists, the strategy returns “= ”. Formally, let diff : B×B→{1, . . . ,n+1} be the function
where diff(a,b) is the smallest cue index on whicha andb are different, orn+1 if they are equal,
that is,

diff(a,b) = min{{i : ai 6= bi}∪{n+1}}.

Then, the functionS: B×B→{“ < ” , “ = ” , “ > ”} computed by the lexicographic strategy is

S(a,b) =

“ < ” if diff (a,b) ≤ n andadiff(a,b) < bdiff(a,b),
“ > ” if diff (a,b) ≤ n andadiff(a,b) > bdiff(a,b),
“ = ” otherwise.

Consideringa andb as binary encodings of natural numbers,S(a,b) is nothing else than the result
of the comparison of these two numbers.

Lexicographic strategies may take into account that the cues come in an order that is different
from 1, . . . ,n. Let π : {1, . . . ,n} → {1, . . . ,n} be a permutation of the cues. It gives rise to a map-
ping π : {0,1}n → {0,1}n that permutes the components of Boolean vectors byπ(a1, . . . ,an) =
(aπ(1), . . . ,aπ(n)). As π is uniquely defined givenπ, we simplify the notation and write alsoπ
for π. The lexicographic strategy under cue permutationπ passes through the cues in the order
π(1), . . . ,π(n), that is, it computes the functionSπ : B×B→{“ < ” , “ = ” , “ > ”} defined as

Sπ(a,b) = S(π(a),π(b)).

61

SCHMITT AND MARTIGNON

The problem we study is that of finding a cue permutation that minimizes the numberof incorrect
comparisons in a given list of element pairs using the lexicographic strategy. An instance of this
problem consists of a setB of elements and a set of pairsL ⊆ B×B. Each pair〈a,b〉 ∈ L represents
an inequalitya≤ b. Given a cue permutationπ, we say that the lexicographic strategy underπ infers
the pair〈a,b〉 correctly if Sπ(a,b) ∈ {“ < ” , “ = ”}, otherwise the inference is incorrect. The task is
to find a permutationπ such that the number of incorrect inferences inL usingSπ is minimal, that
is, a permutationπ that minimizes

INCORRECT(π,L) = |{〈a,b〉 ∈ L : Sπ(a,b) = “ > ”}|.

We recall some definitions about orders on sets. A setL ⊆ B×B is apartial order if it is reflexive
(that is,〈a,a〉 ∈ L for everya∈ B), antisymmetric (that is,〈a,b〉 ∈ L and〈b,a〉 ∈ L impliesa = b),
and transitive (that is,〈a,b〉 ∈ L and〈b,c〉 ∈ L implies 〈a,c〉 ∈ L). Further,L is a total order if it
is a partial order and satisfies〈a,b〉 ∈ L or 〈b,a〉 ∈ L for everya,b∈ B. Finally, L is irreflexive if
〈a,a〉 6∈ L for everya∈ B.

Given some cue permutationπ, consider a relation that is satisfied by a pair〈a,b〉 if and only
if Sπ(a,b) ∈ {“ < ” , “ = ”}. Clearly, this relation defines a total order on any setB ⊆ {0,1}n.
A question that arises immediately is whether every total order has some cue permutation that
represents this order using the lexicographic strategy. It is easy to see that this is not the case.

Proposition 1 For every set B⊆ {0,1}n and every cue permutationπ, the lexicographic strategy
under cue permutationπ defines a total order on B. On the other hand, there are sets B⊆ {0,1}n

with a total order that cannot be represented by any cue permutation.

Proof It is evident that the relation{(a,b) : Sπ(a,b) ∈ {“ < ” , “ = ”}} is a total order. As a coun-
terexample, consider a setB with {(0, . . . ,0),(1, . . . ,1)} ⊆ B. Clearly, under every cue permutation,
(0, . . . ,0) is less than(1, . . . ,1). Thus, the reverse ordering of these two elements cannot be repre-
sented by the lexicographic strategy.

Obviously, the lexicographic strategy applied to a pair〈a,a〉 is always correct, independently
of the cue permutation. Therefore, the identical pairs ofL pose no obstacle for the minimization
problem. Also possible were an alternative setting where〈a,b〉 is interpreted as a strict inequality.
We admit identical pairs, however, to keep the definition more general and allow L to represent some
“natural” relations such as partial or total orders or arbitrary subsets thereof. Nevertheless, all results
presented in the following remain valid if the pairs are assumed to represent strict inequalities.

2.2 Lexicographic Strategies and Decision Lists

Decision lists are computing formalisms that operate quite similar to lexicographic strategies. A
decision listrepresents a Boolean functionf : {0,1}n →{0,1} and is given by a list of pairs

(m1, r1), . . . ,(m`, r`),

where eachmi is a Boolean monomial, that is, a conjunction of Boolean variables with or without
negations (Rivest, 1987). Further, eachr i is 0 or 1, andm` is the constant function 1. The Boolean
function computed by the decision list is defined as follows: Given somea ∈ {0,1}n, the output

62

LEARNING LEXICOGRAPHICSTRATEGIES

value isr i where i is the smallest index such thatmi evaluates to 1 ona. A k-decision list is a
decision list where every monomial has size at mostk.

In the problem of minimizing the number of incorrect comparisons the relevantquestion is
whether the output of the lexicographic strategy is correct, and not whether it is particularly one of
“ < ”, “ = ”, or “ > ”. In other words, we are interested in a binary and not a ternary classification.
Thus, we may consider the lexicographic strategySas a Boolean functionf mapping a setL of pairs
to {0,1}, where for every〈a,b〉 ∈ L we have

f (a,b) = 1 if and only if S(a,b) ∈ {“ < ” , “ = ”}.

Seen in this light, lexicographic strategies exhibit a similarity to decision lists. The following state-
ment, which is easy to derive, makes this relationship precise.

Proposition 2 Let f : {0,1}2n→{0,1} be a Boolean function with variables x1, . . . ,xn and y1, . . . ,yn.
Then f is computed by the lexicographic strategy if and only if f is computed by the2-decision list

(x1y1,0),(x1y1,1), . . . ,(xnyn,0),(xnyn,1),(1,1).

Proof Let a,b∈ {0,1}n. Clearly, if a = b, all monomials of the decision list evaluate to 0, except
for the constant function 1. Ifa 6= b, let i = diff(a,b). In the case thatai < bi , the monomialxiyi is
the first one that evaluates to 1, and the output of the decision list is 1. Similarly, if ai > bi , this is
first detected by the monomialxiyi , and the decision list yields 0.

The proposition shows that the lexicographic strategy has a unique characterization as a 2-
decision list. Thus, finding a cue permutation for the lexicographic strategy amounts to constructing
a 2-decision list with some restrictions concerning the structure of the monomials, the pattern of
the output values, and the length of the list. It is also obvious from Proposition 2, however, that
2-decision lists compute a much richer class of Boolean functions than lexicographic strategies
do. We conclude that cue permutations are not necessarily found using algorithms for constructing
2-decision lists. Further, an optimal cue permutation might not be an optimal 2-decision list.

2.3 Ranking Problems

The problem of minimizing the number of incorrect comparisons in a list of pairsexhibits some
similarity with an optimization problem that occurs in the context of ordering problems and was
studied by Cohen et al. (1999). In this problem, which we here call ranking problem, one receives
a setX, a collection of functionsR1, . . . ,RN mappingX×X to the real interval[0,1], and rational
numbersw1, . . . ,wN ∈ [0,1] whose sum is equal to 1. A solution of the problem is a total orderρ of
X that maximally agrees with the so-called preference function PREF :X×X → [0,1]. The closer
the value of PREF(a,b) is to 1, the morea is to be ranked aboveb. The preference function is
defined as

PREF(a,b) =
N

∑
i=1

wiRi(a,b)

The agreement of the total orderρ with the preference function PREF is quantified by the value of

∑
{(a,b):ρ(a)>ρ(b)}

PREF(a,b) (1)

63

SCHMITT AND MARTIGNON

and a desired total orderρ is one that maximizes this value.
It is not hard to see that the instances of the cue permutation problem are particular instances of

the above problem. Specifically, introduce for each pair〈a,b〉 a functionR〈a,b〉 : B×B→{0,1} that
outputs 1 on(b,a), and 0 otherwise. Further, letw〈a,b〉 = 1/|L|. Then, a total orderρ that maximizes
the value of the expression (1) is one that minimizes the number of incorrect inferences inL.

Cohen et al. (1999) have shown that the ranking problem is NP-complete.The question is,
therefore, whether this hardness result has any implications on the complexity of finding a cue
permutation that minimizes the number of incorrect inferences. However, theranking problem is
different from the cue permutation problem not only in that its instances aremore general. The two
problems also disagree in the type of solutions that are sought. While the ranking problem accepts
any total order that maximizes the agreement with the preference function, the cue permutation
problem requires that the total order can be implemented by a lexicographic strategy. Proposition 1
demonstrates, though, that not every total order can be represented as a cue permutation. Thus, the
space taken by the solutions of the cue permutation problem is narrower thanthe solution space for
the ranking problem described above. Moreover, we show in Section 3 that the cue permutation
problem remains NP-complete even when the instances are known to have a total order. In contrast,
imposing this restriction on the ranking problem results in a problem that is trivially solvable.

A further difference emerges if one considers the problem of approximating optimal solutions as
we do in Section 4. Then the cue permutation problem is a minimization problem while the ranking
problem is a maximization problem. Among the complexity classes of approximation problems
several examples are known where the minimization and the maximization problem have different
degrees of approximability (see, e.g., Amaldi and Kann, 1995, 1998). Consequently, despite the
apparent similarity of the cue permutation problem and the ranking problem, thecomplexities of
the two problems are obviously not related.

3. Complexity of Finding Optimal Cue Permutations

We consider the complexity of the problem to minimize the number of incorrect inferences under
the lexicographic strategy. To show that it is computationally intractable, we formulate this search
problem as a decision problem. The decision problem has as input a set ofbinary vectors, an order-
ing defined on this set in terms of a list of vector pairs, and a bound given as a natural number. The
question is to decide whether the cues can be permuted such that the number ofincorrect inferences
made by the lexicographic strategy when applied with this cue permutation to the listof pairs is not
larger than the given bound. We call this decision problem LEXICOGRAPHICSTRATEGY.

LEXICOGRAPHICSTRATEGY

Instance: A setB⊆ {0,1}n, a setL ⊆ B×B, and a natural numberk.

Question: Is there a permutation of the cues ofB such that the number of incorrect
inferences inL under the lexicographic strategy is at mostk?

Clearly, any polynomial-time algorithm for finding a permutation with a minimal number of in-
correct inferences can be turned into a polynomial-time algorithm that solvesLEXICOGRAPHIC

STRATEGY. However, we show that this problem is NP-hard. Hence, if P6= NP, no polynomial-time
algorithm for the decision problem and, a fortiori, for the search problemexists. The NP-hardness
proof provides a polynomial-time reduction from a problem dealing with graphs and known as
VERTEX COVER (Garey and Johnson, 1979).

64

LEARNING LEXICOGRAPHICSTRATEGIES

VERTEX COVER

Instance: An undirected graphG = (V,E), whereV is the set of vertices andE ⊆
V ×V is the set of edges, and a natural numberk.

Question: Is there a vertex cover of cardinalityk or less forG, that is, a subsetV ′ ⊆V
with |V ′| ≤ k such that for each edge{u,v} ∈ E at least one ofu and v
belongs toV ′?

Theorem 3 LEXICOGRAPHICSTRATEGY is NP-complete.

Proof Obviously, a nondeterministic algorithm can generate a permutation of the cuesand verify
in polynomial time whether the number of incorrect inferences is at mostk. Thus, the problem is a
member of NP. To establish its NP-hardness, we construct a reduction from VERTEX COVER. Let
1i (1i, j) denote then-bit vector with a 1 in every position except for positioni (positionsi and j)
where it has a 0. Further, 1 is then-bit vector with a 1 everywhere. Given the graphG = (V,E),
where the set of vertices isV = {v1, . . . ,vn}, we define a setB of Boolean vectors withn+1 cues,
that isB⊆ {0,1}n+1, in three steps:

1. Let(1,0) ∈ B.

2. Fori = 1, . . . ,n, let (1i ,1) ∈ B.

3. For every{vi ,v j} ∈ E, let (1i, j ,1) ∈ B.

The setL ⊆ B×B of pairs that represents the element ordering is defined such that the element from
step 1 is less than each element constructed in step 2, and each element arising from step 3 is less
than the element from step 1. Formally,

L = {〈(1,0),(1i ,1)〉 : i = 1, . . . ,n} ∪ {〈(1i, j ,1),(1,0)〉 : {vi ,v j} ∈ E}. (2)

Finally, we let the numberk in the instance of LEXICOGRAPHIC STRATEGY be the same as in the
instance of VERTEX COVER. Clearly, the reduction is computable in polynomial time.

We establish the correctness of the reduction by proving that the graphG has a vertex cover of
cardinality at mostk if and only if the associated instance of LEXICOGRAPHIC STRATEGY has a
cue permutation that results in no more thank incorrect inferences. For simplicity, let us call a pair
from the first and second set on the right-hand side of equation (2) a vertex pair and an edge pair,
respectively.

(⇒) Assume thatG has a vertex coverV ′ of cardinality at mostk and, without loss of generality,
let its cardinality be exactlyk, so thatV ′ = {vi1, . . . ,vik}. Further, letV \V ′ = {vik+1, . . . ,vin}. Define
the permutation of the cues as

i1, . . . , ik,n+1, ik+1, . . . , in.

We claim that this cue ranking causes no more thank incorrect inferences inL. Consider an arbitrary
edge pair〈(1i, j ,1),(1,0)〉. As V ′ is a vertex cover, at least one ofi and j occurs ini1, . . . , ik. This
implies that the first cue that distinguishes this pair will have value 0 in(1i, j ,1) and value 1 in(1,0).
Thus, the result of the lexicographic comparison is correct. Next, let〈(1,0),(1i ,1)〉 be a vertex
pair with vi 6∈ V ′. In this case, cuen+ 1 distinguishes this pair with the correct outcome. Finally,
each vertex pair〈(1,0),(1i ,1)〉 with vi ∈ V ′ is distinguished by cuei with a result different from

65

SCHMITT AND MARTIGNON

the ordering given byL. In summary, the only incorrect comparisons arise from vertex pairs with
vi ∈V ′. AsV ′ has cardinalityk, we thus have no more thank incorrect inferences.

(⇐) Now, let π be a permutation of the cues that produces at mostk incorrect inferences inL.
Define the setV ′ of vertices as follows:

1. For every incorrect vertex pair〈(1,0),(1i ,1)〉, let vi ∈V ′.

2. For every incorrect edge pair〈(1i, j ,1),(1,0)〉, let one ofvi ,v j ∈V ′.

Clearly,V ′ has cardinality at mostk. It remains to show thatV ′ is a vertex cover. For the sake of a
contradiction, assume that there is an edge inE, say{vi ,v j}, not covered. This means that neither of
vi ,v j is inV ′, implying that we have correct comparisons for the vertex pairs corresponding tovi and
v j and for the edge pair corresponding to{vi ,v j}. The fact that the edge pair is inferred correctly
implies thatπ must rank cuei or j before cuen+1. But then we have that at least one of the vertex
pairs forvi andv j results in an incorrect comparison. This contradicts the assertion made above that
both vertex pairs have correct comparisons. We conclude thatV ′ is a vertex cover.

The reduction constructed in the previous proof has some properties thatwe exploit in the
following statement to establish the NP-completeness of restricted versions ofLEXICOGRAPHIC

STRATEGY. First, it shows that the setB can be sparse in a certain sense, that is, has elements that
exhibit only very constrained bit patterns. Moreover, the NP-completeness holds even whenL is
not much larger thanB. Finally, the problem remains intractable even ifL does not contain identical
pairs or has some properties of a partial or total order.

Corollary 4 LEXICOGRAPHICSTRATEGY is NP-complete even when the instances satisfy any (or
all) of the following constraints:

1. Each element of B contains at most two0s.

2. The cardinality of L is linearly bounded from above by the cardinality of B,that is, |L| is
O(|B|).

3. L is irreflexive.

4. L is a subset of some partial order.

5. L is a subset of some total order.

Proof We show that all constraints are satisfied by the instances defined in the reduction for the
proof of Theorem 3. That the first condition holds is obvious from the definition of B. Further,
the instances of LEXICOGRAPHIC STRATEGY in this reduction all satisfy|B| = |E|+ n+ 1 and
|L| = n+ |E|. Thus,|B| = |L|−1 and the second constraint is met. Moreover,L does not contain
any pair〈a,a〉 which implies that the third constraint holds. We establish the fourth condition by
checking thatL does not violate any of the requirements for a partial order: Clearly, each a 6= b
does not have both〈a,b〉 and〈b,a〉 in L, and there are no three pairs〈a,b〉,〈b,c〉,〈c,a〉 in L. Fi-
nally, it is easy to see thatL is consistent with the total order resulting from the following ascending
arrangement ofB: We begin with the elements(1i, j ,1), where{vi ,v j} ∈ E, in lexicographic order,
followed by the element(1,0), and complete this sequence at the end by the elements(1i ,1), for

66

LEARNING LEXICOGRAPHICSTRATEGIES

i = 1, . . . ,n, again in lexicographic order. Thus, we have an ordering where any two elements ofB
are comparable, implying that also the last constraint is satisfied.

The first constraint of Corollary 4 gives rise to the question whether the problem is still NP-
complete if each element ofB has no more than one 0. The following two results treat this issue.
First, we show that the problem in general remains NP-complete under this restriction. To estab-
lish this we provide a reduction from the NP-complete problem FEEDBACK ARC SET (Garey and
Johnson, 1979).

FEEDBACK ARC SET

Instance: A directed graphG = (V,E), whereV is the set of vertices andA⊆V ×V
is the set of arcs, and a natural numberk.

Question: Is there a subsetA′ ⊆ A with |A′| ≤ k such thatA′ contains at least one arc
from every directed cycle inG?

Theorem 5 LEXICOGRAPHICSTRATEGY is NP-complete even when restricted to instances where
each element of B contains at most one0.

Proof Clearly, as LEXICOGRAPHIC STRATEGY is in NP, any subproblem of it is in NP as well.
We establish the NP-hardness of the problem by giving a reduction that is asimple rewriting of
FEEDBACK ARC SET. Given the graphG = (V,A) with V = {v1, . . . ,vn} and using the notation
from the proof of Theorem 3, we let

B = {1i : i = 1, . . . ,n},

L = {〈1i ,1 j〉 : (vi ,v j) ∈ A},

and definek to have the same value as in the instance of FEEDBACK ARC SET.
Obviously,A′ ⊆ A contains at least one arc from every directed cycle inG if and only if the

graphG′ = (V,A\A′) is acyclic. Further,G′ is acyclic if and only ifV has a total ordering in
which vi is less thanv j for each(vi ,v j) ∈ A\ A′. Finally, the existence of such a total order-
ing is equivalent to the assertion thatB has a cue permutation with no incorrect comparisons in
L′ = {〈1i ,1 j〉 : (vi ,v j) ∈ A\A′}. With this chain of equivalences, the correctness of the reduction
follows from the fact that|L′| = |L|− |A′|.

We may also add to the assumption of Theorem 5 the restriction that|L| is linearly bounded in
|B|, so that the problem is still NP-complete. In this case, the NP-hardness follows from the fact
that FEEDBACK ARC SET remains NP-hard for directed graphs in which the degree of the vertices
is bounded by some constant (Garey and Johnson, 1979). However,if we include the constraint that
L is a subset of some partial order, the complexity of the problem changes drastically, as we see in
the following statement.

Corollary 6 The problem of finding a cue permutation with a minimal number of incorrect com-
parisons under the lexicographic strategy is solvable in linear time for instances where B contains
at most one0 and L is a subset of some partial order.

67

SCHMITT AND MARTIGNON

Proof As was argued in the proof of Theorem 5, the problem is the same as the problem of finding
a total order that is consistent with the partial order given byL (which is always possible). Such a
total order can be constructed by topological sorting. Algorithms for this sorting problem exist that
run in linear time (see, e.g., Skiena, 1997).

It is not difficult—and we leave it to the reader—to establish dual formulationsof Theorem 5
and Corollary 6 where it is assumed that each element ofB contains at most one 1.

4. Approximability of Optimal Cue Permutations

In the previous section, we have shown that there is no polynomial-time algorithm that computes
optimal cue permutations for the lexicographic strategy, unless P= NP. While it follows that this
problem is as difficult as all other optimization problems that have an NP-complete decision prob-
lem, we cannot draw any conclusions for the case where we are interested in solutions that are not
equal to the optimum but somehow close to it. In fact, there is a large class of optimization problems
that have NP-complete decision problems, but can be solved efficiently if thesolution is required to
be only a constant factor worse than the optimal solution. This class of problems is denoted APX
(Ausiello et al., 1999).

In this section, we show that the problem of approximating the optimal cue permutation is
harder than any problem in the class APX. In particular, we prove that, if P6= NP, there is no
polynomial-time algorithm whose solutions yield a number of incorrect comparisons that is by
at most a constant factor larger than the minimal number possible. First, however, we state the
problem as an optimization problem and introduce some definitions from the complexity theory of
approximation problems (Ausiello et al., 1999).

M INIMUM INCORRECTLEXICOGRAPHICSTRATEGY

Instance: A setB⊆ {0,1}n and a setL ⊆ B×B.
Solution: A permutationπ of the cues ofB.
Measure: The number of incorrect inferences inL for the lexicographic strategy under

cue permutationπ, that is, INCORRECT(π,L).

Given a real numberr > 0, an algorithm is said to approximate MINIMUM INCORRECTLEX-
ICOGRAPHIC STRATEGY to within a factor ofr if for every instance(B,L) the algorithm returns a
permutationπ such that

INCORRECT(π,L) ≤ r ·opt(L),

where opt(L) is the minimal number of incorrect comparisons achievable onL by any permutation.
The factorr is also known as the performance ratio of the algorithm. The following optimization
problem plays a crucial role in the derivation of the lower bound for the approximability of MINI -
MUM INCORRECTLEXICOGRAPHICSTRATEGY.

M INIMUM HITTING SET

Instance: A collectionC of subsets of a finite setU .
Solution: A hitting set forC, that is, a subsetU ′ ⊆ U such thatU ′ contains at least

one element from each subset inC.
Measure: The cardinality of the hitting set, that is,|U ′|.

68

LEARNING LEXICOGRAPHICSTRATEGIES

Similarly as above, we say that an algorithm approximates MINIMUM HITTING SET to within
a factor ofr if for every instanceC the algorithm outputs a hitting setU ′ that satisfies

|U ′| ≤ r ·opt(C),

where opt(C) denotes the minimal cardinality of a hitting set forC. (For simplicity, we use opt(·)
to represent the value of an optimal solution in both problems. It shall be clear from the context to
which problem it refers.)

M INIMUM HITTING SET is equivalent to a problem called MINIMUM SET COVER in the
sense that every polynomial-time algorithm that approximates MINIMUM HITTING SET to within
a certain factor can be turned into a polynomial-time algorithm that approximates MINIMUM SET

COVER to within the same factor, and vice versa (Ausiello et al., 1980). Bellare et al.(1993) have
shown that MINIMUM SET COVER cannot be approximated in polynomial time to within any con-
stant factor, unless P= NP. Thus, if P6= NP, MINIMUM HITTING SET cannot be approximated in
polynomial time to within any constant factor as well. We make use of this fact when we establish
the lower bound for the approximability of the optimal cue permutation.

Theorem 7 For every r, there is no polynomial-time algorithm that approximatesM INIMUM IN-
CORRECTLEXICOGRAPHICSTRATEGY to within a factor of r, unlessP= NP.

Proof We use the main ideas from the proof of Theorem 3 to establish an approximation preserving
reduction, or AP-reduction, from MINIMUM HITTING SET to MINIMUM INCORRECT LEXICO-
GRAPHIC STRATEGY.3 (See Ausiello et al., 1999, for a definition of the AP-reduction.) This
reduction entails that every polynomial-time algorithm that approximates MINIMUM INCORRECT

LEXICOGRAPHIC STRATEGY to within some constant factor can be turned into a polynomial-time
algorithm that approximates MINIMUM HITTING SET to within the same constant factor. Then the
statement follows from the equivalence of MINIMUM HITTING SET to MINIMUM SET COVER and
the lower bound on the approximability of the latter (Bellare et al., 1993).

We first define a functionf that is computable in polynomial time and maps each instance of
M INIMUM HITTING SET to an instance of MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY.
Let 1 denote then-bit vector with a 1 everywhere and 1i1,...,i` the vector with 0 in positionsi1, . . . , i`
and 1 elsewhere. Given the collectionC of subsets of the setU = {u1, . . . ,un}, the functionf maps
C to (B,L), whereB⊆ {0,1}n+1 is defined as follows:

1. Let(1,0) ∈ B.

2. Fori = 1, . . . ,n, let (1i ,1) ∈ B.

3. For every{ui1, . . . ,ui`} ∈C, let (1i1,...,i` ,1) ∈ B.

Further, the setL is constructed as

L = {〈(1,0),(1i ,1)〉 : i = 1, . . . ,n} ∪ {〈(1i1,...,i` ,1),(1,0)〉 : {ui1, . . . ,ui`} ∈C}. (3)

3. A proof of Theorem 3 can be obtained by employing this reduction as a reduction between decision problems,
from the NP-complete HITTING SET to LEXICOGRAPHIC STRATEGY. However, the reduction used in the proof of
Theorem 3 is more powerful since Corollary 4 cannot be inferred when reducing from HITTING SET.

69

SCHMITT AND MARTIGNON

In the following, a pair from the first and second set on the right-hand side of equation (3) is referred
to as an element pair and a subset pair, respectively. Obviously, the function f is computable in
polynomial time. It has the following property.

Claim 1. Let f(C) = (B,L). If C has a hitting set of cardinality k or less then f(C) has a cue
permutationπ whereINCORRECT(π,L) ≤ k.

To prove this, assume without loss of generality thatC has a hitting setU ′ of cardinality exactlyk,
sayU ′ = {u j1, . . . ,u jk}, and letU \U ′ = {u jk+1, . . . ,u jn}. Then the cue permutation

j1, . . . , jk,n+1, jk+1, . . . , jn.

results in no more thank incorrect inferences inL. Indeed, consider an arbitrary subset pair
〈(1i1,...,i` ,1),(1,0)〉. To not be an error, one ofi1, . . . , i` must occur in the hitting setj1, . . . , jk.
Hence, the first cue that distinguishes this pair has value 0 in(1i1,...,i` ,1) and value 1 in(1,0), re-
sulting in a correct comparison. Further, let〈(1,0),(1i ,1)〉 be an element pair withui 6∈ U ′. This
pair is distinguished correctly by cuen+1. Finally, each element pair〈(1,0),(1i ,1)〉 with ui ∈U ′ is
distinguished by cuei with a result that disagrees with the ordering given byL. Thus, only element
pairs withui ∈ U ′ yield incorrect comparisons and subset pairs are inferred correctly.Hence, the
number of incorrect inferences is not larger than|U ′|.

Next, we define a polynomial-time computable functiong that maps each collectionC of subsets
of a finite setU and each cue permutationπ for f (C) to a subset ofU . Given thatf (C) = (B,L), the
setg(C,π) ⊆U is defined as follows:

1. For every element pair〈(1,0),(1i ,1)〉 ∈ L that is compared incorrectly byπ, let ui ∈ g(C,π).

2. For every subset pair〈(1i1,...,i` ,1),(1,0)〉 ∈ L that is compared incorrectly byπ, let one of the
elementsui1, . . . ,ui` ∈ g(C,π).

Clearly, the functiong is computable in polynomial time. It satisfies the following condition.

Claim 2. Let f(C) = (B,L). If INCORRECT(π,L) ≤ k then g(C,π) is a hitting set of cardinality k
or less for C.

Obviously, if INCORRECT(π,L) ≤ k theng(C,π) has cardinality at mostk. To show that it is a
hitting set, assume the subset{ui1, . . . ,ui`} ∈C is not hit byg(C,π). Then neither ofui1, . . . ,ui` is in
g(C,π). Hence, we have correct comparisons for the element pairs corresponding toui1, . . . ,ui` and
for the subset pair corresponding to{ui1, . . . ,ui`}. As the subset pair is distinguished correctly, one
of the cuesi1, . . . , i` must be ranked before cuen+1. But then at least one of the element pairs for
ui1, . . . ,ui` yields an incorrect comparison. This contradicts the assertion that the comparisons for
these element pairs are all correct. Thus,g(C,π) is a hitting set and the claim is established.

Assume now that there exists a polynomial-time algorithmA that approximates MINIMUM IN-
CORRECTLEXICOGRAPHIC STRATEGY to within a factor ofr. Consider the algorithm that, for a
given instanceC of M INIMUM HITTING SET as input, calls algorithmA with input (B,L) = f (C),
and returnsg(C,π) whereπ is the output provided byA. Clearly, this new algorithm runs in poly-
nomial time. We show that it approximates MINIMUM HITTING SET to within a factor ofr. By the
assumed approximation property of algorithmA, we have

INCORRECT(π,L) ≤ r ·opt(L).

70

LEARNING LEXICOGRAPHICSTRATEGIES

Together with Claim 2, this implies thatg(π,C) is a hitting set forC satisfying

|g(C,π)| ≤ r ·opt(L).

From Claim 1 we obtain opt(L) ≤ opt(C) and, thus,

|g(C,π)| ≤ r ·opt(C).

Thus, the proposed algorithm for MINIMUM HITTING SET violates the approximation lower bound
that holds for this problem under the assumption P6= NP. This proves the statement of the theorem.

Similarly as in Corollary 4 we can state a stronger version of Theorem 7 that takes restrictions
into account that may hold for the instances of MINIMUM INCORRECTLEXICOGRAPHIC STRAT-
EGY. The proof is obtained in the same way as the proof of Corollary 4 and not given here.

Corollary 8 If P 6= NP, then for every r there is no polynomial-time algorithm that approximates
M INIMUM INCORRECT LEXICOGRAPHIC STRATEGY to within a factor of r, even when the in-
stances satisfy any (or all) of the following constraints:

1. The cardinality of L is linearly bounded from above by the cardinality of B,that is, |L| is
O(|B|).

2. L is irreflexive.

3. L is a subset of some partial order.

4. L is a subset of some total order.

The reader may have noticed that the constraint of Corollary 4 that imposesa bound on the
number of 0s in the elements ofB is missing here. In fact, there is some evidence, that the construc-
tion of an approximation preserving reduction from MINIMUM HITTING SET to this subproblem
of M INIMUM INCORRECTLEXICOGRAPHIC STRATEGY is difficult or even impossible. The case
where the number of 0s is bounded by some constant corresponds to the subproblem of MINIMUM

HITTING SET where the cardinality of each subset is not larger than a constant. This restricted
version of MINIMUM HITTING SET is known to be approximable to within some constant factor
(Bar-Yehuda and Even, 1981; Hochbaum, 1982). Of course, this apparent relationship does not
prove anything about the complexity of approximating the subproblem of MINIMUM INCORRECT

LEXICOGRAPHIC STRATEGY. However, it gives reason to the conjecture that this subproblem
might have a constant-factor approximation algorithm.

5. Greedy Approximation of Optimal Cue Permutations

The so-called greedy approach to the solution of a computation or approximation problem is helpful
when it is not known which algorithm performs best. This simple heuristic oftenprovides satisfac-
tory solutions in many situations in practice. The algorithm GREEDY CUE PERMUTATION that we
introduce here is based on the greedy method. The idea is to select the firstcue according to which
single cue makes a minimum number of incorrect inferences (choosing one arbitrarily if there are

71

SCHMITT AND MARTIGNON

Algorithm 1 GREEDY CUE PERMUTATION

Input: a setB⊆ {0,1}n and a setL ⊆ B×B
Output: a cue permutationπ for n cues

I := {1, . . . ,n};
for i = 1, . . . ,n do

let j ∈ I be a cue where INCORRECT(j,L) = min j ′∈I INCORRECT(j ′,L);
π(i) := j;
I := I \{ j};
L := L\{〈a,b〉 : a j 6= b j}

end for.

two or more). After that the algorithm removes those pairs that are distinguished by the selected
cue, which is reasonable as the distinctions drawn by this cue cannot be undone by later cues. This
procedure is then repeated on the set of pairs left. The description of GREEDY CUE PERMUTATION

is given as Algorithm 1. It employs an extension of the function INCORRECT, first defined in
Section 2.1, applicable also to single cues, such that for a cuei we say

INCORRECT(i,L) = |{〈a,b〉 ∈ L : ai > bi}|.

It is evident that Algorithm 1 runs in polynomial time, but how good is it? The least one should
demand from a good heuristic is that, whenever a minimum of zero is attainable, itfinds such a
solution. This is indeed the case with GREEDY CUE PERMUTATION as we show in the following
result. Moreover, a general performance ratio for the approximation ofthe optimum is asserted here.

Theorem 9 The algorithmGREEDY CUE PERMUTATION approximatesM INIMUM INCORRECT

LEXICOGRAPHIC STRATEGY to within a factor of n, where n is the number of cues. In particular,
it always finds a cue permutation with no incorrect inferences if one exists.

Proof We show by induction onn that the permutation returned by the algorithm makes a number
of incorrect inferences no larger thann ·opt(L). If n = 1, the optimal cue permutation is definitely
found.

Let n > 1. Clearly, as the incorrect inferences of a cue cannot be reversedby other cues, there
is a cuej with

INCORRECT(j,L) ≤ opt(L).

The algorithm selects such a cue in the first round of the loop. During the rest of the rounds, a
permutation ofn− 1 cues is constructed for the set of remaining pairs. Letj be the cue that is
chosen in the first round,I ′ = {1, . . . , j −1, j +1, . . . ,n}, andL′ = L\{〈a,b〉 : a j 6= b j}. Further, let
optI ′(L

′) denote the minimum number of incorrect inferences taken over the permutations of I ′ on
the setL′. Then, we observe that

opt(L) ≥ opt(L′) = optI ′(L
′).

The inequality is valid because ofL ⊇ L′. (Note that opt(L′) refers to the minimum taken over the
permutations of all cues.) The equality holds as cuej does not distinguish any pair inL′. By the
induction hypothesis, rounds 2 ton of the loop determine a cue permutationπ′ with

INCORRECT(π′,L′) ≤ (n−1) ·optI ′(L
′).

72

LEARNING LEXICOGRAPHICSTRATEGIES

〈 001, 010〉
〈 010, 100〉
〈 010, 101〉
〈 100, 111〉

Figure 1: A set of lexicographically ordered pairs with nondecreasing cue validities (1,1/2, and
2/3). The cue ordering of TTB (1,3,2) causes an incorrect inference on the first pair. By
Theorem 9, GREEDY CUE PERMUTATION finds the lexicographic ordering.

Thus, the number of incorrect inferences made by the permutationπ finally returned by the algo-
rithm satisfies

INCORRECT(π,L) ≤ INCORRECT(j,L)+(n−1) ·optI ′(L
′),

which is, by the inequalities derived above, not larger than opt(L)+(n−1) ·opt(L) as stated.

The special property of GREEDY CUE PERMUTATION that it always finds the minimum if this
has value zero is not owned by TTB as demonstrated by the following result.

Corollary 10 On inputs that have a cue ordering without incorrect comparisons under the lexico-
graphic strategy,GREEDY CUE PERMUTATION can be better than TTB.

Proof Figure 1 shows a set of four lexicographically ordered pairs. According to Theorem 9,
GREEDY CUE PERMUTATION comes up with the given permutation of the cues. The validities are
1,1/2, and 2/3. Thus, TTB ranks the cues as 1,3,2 whereupon the first pair is inferred incorrectly.

Next, we consider lower bounds on the performance ratio of GREEDY CUE PERMUTATION.
We obtain bounds in terms ofn and|L|. It emerges in particular that the upper bound obtained in
Theorem 9 is optimal up to the factor 2.

Theorem 11 The performance ratio ofGREEDY CUE PERMUTATION is at least

max{n/2, |L|/2}.

Proof We show how to construct for everyn an instance on which GREEDY CUE PERMUTATION

has the claimed performance ratio. LetB = {a(0), . . . ,a(n),b} ⊆ {0,1}n be the set wherea(0) =
(0, . . . ,0), b = (1,0, . . . ,0,1), anda(i), for i = 1, . . . ,n, is the vector with a 1 in positioni and 0
elsewhere. The setL ⊆ B×B is defined as

L = {〈a(n),a(0)〉,〈b,a(1)〉}∪{〈a(i),a(n)〉 : i = 2, . . . ,n−1}.

Figure 2 shows the setL for the casen = 6. As can be seen, cue 1 is correct on all pairs, cuen is
incorrect on two pairs, and every cuej ∈ {2, . . . ,n−1} satisfies INCORRECT(j,L) = 1. Hence,

73

SCHMITT AND MARTIGNON

〈 000001, 000000〉
〈 100001, 100000〉
〈 010000, 000001〉
〈 001000, 000001〉
〈 000100, 000001〉
〈 000010, 000001〉

Figure 2: A set of pairs providing a lower bound on the performance ratioof GREEDY CUE PER-
MUTATION (Theorem 11).

GREEDY CUE PERMUTATION selects cue 1 as the first cue. As this cue does not distinguish any pair,
L is left unchanged. Then, one of the cues 2, . . . ,n−1 is selected as the second cue. After removal
of the pair distinguished by this cue, the remaining cues make the same incorrect inferences as
before. Thus, the algorithm keeps on choosing cues from{2, . . . ,n−1} during rounds 2, . . . ,n−1
of the loop until cuen is selected in the last round. The resulting permutationπ has cue 1 in its
first position, cues from{2, . . . ,n−1} in positions 2, . . . ,n−1, and cuen in the last position. This
implies that INCORRECT(π,L) = |L|.

On the other hand, the optimal value is 2, which is attained by any permutation thathas cuen
as the first cue. This yields a performance ratio for GREEDY CUE PERMUTATION of at least|L|/2.
The lower boundn/2 is obtained by observing that|L| = n.

We conclude this section by examining the performance of GREEDY CUE PERMUTATION on
subproblems, that is, when the instances are not arbitrary but meet certain constraints. It plainly
arises from the proof of Theorem 11 that the lower bound holds under restrictions of the instances
similar to those considered in Sections 3 and 4.

Corollary 12 The lower boundmax{n/2, |L|/2} for the performance ratio ofGREEDY CUE PER-
MUTATION holds even when the instances satisfy any (or all) of the following constraints:

1. Each element of B contains at most two1s.

2. The set L is smaller than the set B.

3. L is irreflexive.

4. L is a subset of some partial order.

5. L is a subset of some total order.

6. Lexicographic Strategies With Cue Inversion

While in the previous sections the problem was to optimize lexicographic strategies by permuting
the cues, we now introduce an additional degree of freedom for buildinglexicographic strategies.
Here, the method of construction is allowed not only to permute but also to invert cues. Acue

74

LEARNING LEXICOGRAPHICSTRATEGIES

Algorithm 2 GREEDY CUE INVERSION

Input: a setB⊆ {0,1}n and a setL ⊆ B×B
Output: a cue inversionq for n cues

for i = 1, . . . ,n do
if |{〈a,b〉 ∈ L : ai < bi}| ≥ |{〈a,b〉 ∈ L : ai > bi}| then

q(i) := 0
else

q(i) := 1
end if
L := L\{〈a,b〉 : ai 6= bi}

end for.

inversionis a mappingq : {1, . . . ,n}→ {0,1}, wheren is the number of cues. It uniquely defines a
functionq : {0,1}n →{0,1}n such that for everya∈ {0,1}n,

q(ai) =

{

ai if q(i) = 0,
1−ai otherwise.

In other words, a value ofq(i) = 1 indicates that thei-th position of every Boolean vectora is to be
inverted, whereas the cues withq(i) = 0 are left unchanged byq. As the meaning is clear, we shall
useq also to denoteq. Given a setB⊆ {0,1}n, the lexicographic strategy under cue inversion qis
the functionSq : B×B→{“ < ” , “ = ” , “ > ”} with

Sq(a,b) = S(q(a),q(b)).

Combining permutation and inversion, we obtain thelexicographic strategy under cue permutation
π and cue inversion qdenoted bySq

π and defined as

Sq
π(a,b) = S(π(q(a)),π(q(b))).

In particular, we require that the cue inversion is applied before the permutation.
A simple greedy method for inverting the cues is described as Algorithm 2. Theidea is to pass

through the cues and to select either the cue or its inverse, depending on which makes a larger
number of correct inferences. The pairs that are distinguished by this cue are then removed. It is
evident that GREEDY CUE INVERSION runs in polynomial time. We show that the cue inversion
returned by this algorithm yields a number of correct inferences that is atleast half the maximum
over all cue inversions and permutations.

Theorem 13 The algorithmGREEDY CUE INVERSION always returns a cue inversion q such that
Sq is correct on at least opt(L)/2 pairs, where opt(L) is the maximum number of correct inferences
achievable by the lexicographic strategy under any cue permutation and any cue inversion.

Proof Let Li be the set of pairs that the algorithm removes fromL in round i of the for-loop and
let Ln+1 be the set of pairs that remains after completion of the last round. Clearly,L1, . . . ,Ln+1 is
a partition ofL. Obviously, by the construction ofq, Sq is correct on at least half of eachLi , for
i = 1, . . . ,n. Further, it is correct on all ofLn+1, as this set consists solely of identical pairs. Thus,Sq

75

SCHMITT AND MARTIGNON

correctly distinguishes at least half of all pairs inL. Since opt(L) ≤ |L|, it follows thatSq is correct
on at least opt(L)/2 pairs.

One remarkable aspect of this algorithm is the fact that it retains the order of the cues, while
its performance guarantee is valid even over all cue permutations. It seems, at first glance, that the
method of cue inversion leads much easier to a good performance guarantee than the permutation
of the cues. However, the result of Theorem 13 cannot directly compared with those of the previous
sections, as these apply to the problem of minimizing the number of incorrect inferences, whereas
here we are concerned with the maximization of the number of correct inferences. A constant
performance ratio for the one problem does not necessarily imply a constant performance ratio
for the other, as can easily be seen. Assume, for instance, that the maximumnumber of correct
inferences is|L| − 1. Then the algorithm that is correct on exactlyd|L|/2e pairs has a constant
performance ratio for the maximization problem, while with regard to the minimization problem its
performance ratio grows linearly in|L|.

7. Sample Complexity for Learning Lexicographic Strategies

A central notion for characterizing the sample complexity of a learning problemis the VC dimension
(Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 1999). In the following, we calculate the
VC dimension of lexicographic strategies. The definition of the VC dimension relies on the notion
of shattering. A classF of Boolean functions is saidto shattera setL ⊆ {0,1}n if F induces every
dichotomy ofL, that is, if for every(L0,L1) such thatL0∩L1 = /0 andL0∪L1 = L, there is some
function f ∈ F satisfying f (L0)⊆{0} and f (L1)⊆ {1}. TheVapnik-Chervonenkis (VC) dimension
of a classF of Boolean functions is the cardinality of the largest set that is shattered byF .

We recall from Section 2.2 that we identify the lexicographic strategySwith a Boolean function
f : {0,1}2n →{0,1} such that for every〈a,b〉 ∈ {0,1}2n,

f (a,b) = 1 if and only if S(a,b) ∈ {“ < ” , “ = ”}.

In this sense, we can investigate the VC dimension of the function class

Sn = {Sq
π : π is a permutation andq an inversion ofn cues},

that is, we ask what is the largest cardinality of a setL of pairs that is shattered by the lexicographic
strategy under all possible cue permutations and inversions.

It is evident from the definition that the VC dimension of a finite function classF cannot be
larger than log|F |. Since the number of permutations is equal ton! and the number of inversions is
equal to 2n, it follows that the VC dimension ofSn is not larger thann+nlogn. We show, however,
that this VC dimension is linear. Moreover, we provide the exact value.

Theorem 14 The VC dimension of the classSn of lexicographic strategies is equal to n.

Proof We first establishn as upper bound. Given a cue inversionq, consider the lexicographic
strategySq ∈ Sn (that is, the strategySq

π whereπ is the identity function). We claim that every
a,b∈ {0,1}n satisfies

Sq(a,b) ∈ {“ < ” , “ = ”}

if and only if
n

∑
i=1

(−1)q(i)2n+1−i(bi −ai) ≥ −1. (4)

76

LEARNING LEXICOGRAPHICSTRATEGIES

To show this, we consider the absolute value of first term on the left-hand side of the inequality,
wherei = 1, that is,

|2n(b1−a1)|. (5)

If a1 6= b1, the value of (5) is 2n, whereas the absolute value of the remaining sum is not larger than
2n−2. Then, the inequality in (4) is satisfied if and only ifq(a1) < q(b1). On the other hand, if
a1 = b1, the term (5) is equal to 0, and the validity of the equivalence (4) follows byinduction.

Obviously, by permuting the coefficients, every lexicographic strategySq
π ∈ Sn can be written as

an inequality such as in (4). Such inequalities are evaluated by Boolean linear threshold functions.
A Boolean linear threshold functionf : {0,1}n → {0,1} is a function for which there exist real
numbersw1, . . . ,wn andt (the parameters of this function class) such that for everyz∈ {0,1}n,

f (z) = 1 if and only if w1z1 + · · ·+wnzn ≥ t.

It follows that everySq
π ∈ Sn can be expressed as a Boolean linear threshold function with input

variables(y1−x1), . . . ,(yn−xn) and a fixed parametert = −1.
Therefore, every setL ⊆ {0,1}2n that can be shattered bySn is also shattered by this class of

linear threshold functions. The class of linear threshold functions inn variables withn parameters
(that is, wheret is fixed) is known to have VC dimension equal ton (see, e.g., Anthony and Bartlett,
1999). Thus, the VC dimension ofSn does not exceedn.

For deriving the lower bound, we show that the setL ⊆ {0,1}2n defined as

L = {〈1i ,1〉 : i = 1, . . . ,n},

where 1 is the vector with a 1 in every position and 1i has a 0 in positioni and 1 elsewhere, is
shattered bySn.

Let (L0,L1) be an arbitrary dichotomy ofL. Define the cue inversionq : {1, . . . ,n} → {0,1}
such thatq(i) = 0 if and only if 〈1i ,1〉 ∈ L1. Obviously then, the lexicographic strategySq (without
permuting the cues) yields a correct comparison for every pair inL1, while the pairs fromL0 are
inferred incorrectly. Thus, the dichotomy(L0,L1) is induced bySq.

The lower bound in the previous result was obtained by choosing a suitablecue inversion and
leaving the order of the cues unchanged. We can also obtain an almost optimal lower bound when
the cues are not allowed to be inverted but only permuted. In fact, the(n−1)-element set

L = {〈11,1i〉 : i = 2, . . . ,n}

can be shattered as follows. Given the dichotomy(L0,L1), we define the permutationπ such that for
i = 2, . . . ,n, π(1) < π(i) if and only if 〈11,1i〉 ∈ L1. Obviously, the dichotomy(L0,L1) is induced
by Sπ.

It is easy to see that there are values ofn for which this lower bound ofn−1 cannot be improved.
For n = 1,2, and 3, the number of permutations ofn elements is 1,2, and 6, respectively; to shatter
sets of these cardinalities, however, requires 2,4, and 8 functions.

8. Open Questions

In the following we summarize the major open questions that arise from this workhoping that they
might provide fertile soil for future research. The main result of Section 3is the NP-completeness

77

SCHMITT AND MARTIGNON

of the decision problem LEXICOGRAPHIC STRATEGY. In that section, we have established further
that the problem remains NP-complete under several restrictions. Moreover, one of the subproblems
originating from such restrictions was shown to be efficiently solvable. Probably, the restrictions
considered there may not be those that are “natural”, that is, met in practice. It is therefore reason-
able to study more subproblems and to delineate the intractable ones from thosethat can be solved
efficiently.

• What are natural restrictions for LEXICOGRAPHIC STRATEGY under which the problem is
NP-complete or efficiently solvable?

Of course, similar considerations are appropriate for MINIMUM INCORRECT LEXICOGRAPHIC

STRATEGY. In Section 4 we obtained a lower bound for the performance ratio that is stillvalid for
various subproblems. A promising task is, therefore, to find restrictions relevant in practice under
which the problem has a constant performance ratio.

• What are natural restrictions for MINIMUM INCORRECTLEXICOGRAPHICSTRATEGY under
which the problem belongs to APX?

Work by Raz and Safra (1997) implies that MINIMUM HITTING SET cannot be approximated in
polynomial time to within some factor that grows logarithmically in|C|, the number of subsets. The
reduction defined in the proof of Theorem 7 does not seem to allow to exploit this fact.

• Does MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY have a lower bound on the per-
formance ratio for polynomial-time algorithms that is not bounded by some constant?

The results in Sections 4 and 5 have left a gap. While we have shown that there cannot be a
polynomial-time algorithm for MINIMUM INCORRECTLEXICOGRAPHIC STRATEGY with a per-
formance ratio bounded by some constant (if P6= NP), the algorithm GREEDY CUE PERMUTATION

has a lower bound of max{n/2, |L|/2}.

• Are there polynomial-time algorithms for MINIMUM INCORRECTLEXICOGRAPHICSTRAT-
EGY that have a better performance ratio than GREEDY CUE PERMUTATION?

The algorithm GREEDY CUE PERMUTATION is a simple and obvious heuristic that has not been
studied before in the context of lexicographic strategies. In Section 5 we have derived tight bounds
on the performance ratio of this algorithm. Various other procedures havebeen studied in the
literature and become known as fast and frugal heuristics, but nothing seems to have been proven
about their performance ratio.

• Which are the performance ratios of other (fast and frugal) heuristics for lexicographic strate-
gies?

In Section 6 we have introduced cue inversion as an additional feature to build lexicographic strate-
gies. The algorithm GREEDY CUE INVERSION was shown to approximate the maximum number
of correct inferences to within a constant factor. While the problems of minimizing the number of
incorrect inferences and maximizing the number of correct inferences give rise to equivalent deci-
sion problems, there might well be a difference with regard to the approximation problem. There
seems to be no immediate way to derive a lower bound for the maximization problem from a lower
bound for the minimization problem. Thus, similar questions as considered herecan be raised for
the problem MAXIMUM CORRECTLEXICOGRAPHICSTRATEGY which is defined analogously.

78

LEARNING LEXICOGRAPHICSTRATEGIES

• Which is the performance ratio of polynomial-time algorithms for approximating MAXIMUM

CORRECTLEXICOGRAPHICSTRATEGY?

While this question is meant to consider only cue permutations and not inversions for constructing
lexicographic strategies, the objective of minimization is combined with both these features in a
second approximation problem emerging from Section 6.

• Which is the performance ratio of polynomial-time algorithms for approximating MINIMUM

INCORRECTLEXICOGRAPHIC STRATEGY UNDER CUE PERMUTATIONS AND CUE INVER-
SIONS?

We can ask further what happens if the problems studied here are generalized in a certain way. One
obvious possibility of generalizing is to allow cues that have more than two values. It is evident that
the reductions provided in Sections 3 and 4 remain valid also in this multiple-valuedcase. In other
words, the problem with binary cues is a subproblem of the problem with multiple-valued cues.
Hence, NP-completeness and the lower bound for the approximability hold for learning lexico-
graphic strategies on multiple-valued cues, too. Moreover, we observe that the algorithm GREEDY

CUE PERMUTATION and the proof of the upper bound on its performance ratio (Theorem 9) do not
make use of the two-valuedness of the cues. Thus, this algorithm has the claimed approximation
property for multiple-valued cues as well. One could also generalize lexicographic strategies to the
effect that more than two outcomes, correct or incorrect, of a lexicographic comparison are possible.
The results of this article do not seem to yield a statement for such cases in general.

9. Conclusions

Computational problems that arise in learning lexicographic strategies from examples are the topic
of this article. In particular, we considered the model of agnostic PAC learning. We have intro-
duced the minimizing disagreement problem LEXICOGRAPHIC STRATEGY and shown that it is
NP-complete. Thus, it has become very unlikely that lexicographic strategies can be efficiently
learned. This statement was strengthened by our proving that the optimizationproblem MINIMUM

INCORRECTLEXICOGRAPHIC STRATEGY cannot be approximated in polynomial time to within
any constant factor.

These results answer a question raised by psychological research intomodels of bounded ratio-
nality: How accurate are fast and frugal heuristics? We have shown that no fast, that is, polynomial-
time, algorithm can compute the optimum and, moreover, not even approximate it well, under the
widely accepted assumption that P6= NP.

This answers also a second question concerning a specific fast and frugal heuristic: How ac-
curate is TTB? We have introduced a greedy algorithm that provably performs better than TTB. In
particular, we have shown that the greedy method always finds accuratesolutions when they exist,
whereas this is not the case with TTB. Tight bounds for the factor with whichthe greedy method
approximates the optimum have also been obtained.

The lower bounds derived in this article have mostly been shown to hold evenfor subproblems
obtained from various restrictions. We interpret this as revealing to a high degree that lexicographic
strategies cannot be learned efficiently and that it might be very difficult tofind satisfactory algo-
rithms.

For the learning of lexicographic strategies using cue inversions we haveprovided a simple and
efficient algorithm that approximates the maximum number of correct inferences to within a con-

79

SCHMITT AND MARTIGNON

stant factor. Thus, it seems that cue inversions lead much easier to good performance bounds than
cue permutations. However, one cannot directly compare a bound for themaximization problem
with a bound for the minimization problem. This result should more be consideredas a stimulating
impetus for further research.

We have calculated the exact values of the VC dimension of lexicographic strategies. This
result is one of the few examples where the VC dimension of a function class has been determined
precisely.

While we have already presented in the previous section a couple of formalopen questions for
theoretical investigation, a challenge to experimental research is also given by this article: to study
the relevance of the greedy method as a model for bounded rationality in psychology.

Acknowledgments

We thank the anonymous reviewers for the detailed and helpful comments thathelped to improve
the article.

Parts of this research were carried out while M. S. was with the Ruhr-Universiẗat Bochum,
and while he was visiting the Max Planck Institute for Psychological Research, Munich, the Max
Planck Institute for Human Development, Berlin, and the Pädagogische Hochschule Ludwigsburg,
all in Germany. The authors are grateful to these institutions for their support.

References

E. Amaldi and V. Kann. The complexity and approximability of finding maximum feasible subsys-
tems of linear relations.Theoretical Computer Science, 147:181–210, 1995.

E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables orunsatisfied
relations in linear systems.Theoretical Computer Science, 209:237–260, 1998.

Martin Anthony and Peter L. Bartlett.Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, Cambridge, 1999.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.Com-
plexity and Approximation: Combinatorial Problems and Their ApproximabilityProperties.
Springer-Verlag, Berlin, 1999.

G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex optimization
problems.Journal of Computer and System Sciences, 21:136–153, 1980.

R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the weighted vertex cover
problem.Journal of Algorithms, 2:198–203, 1981.

M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs and
applications to approximation. InProceedings of the 25th Annual ACM Symposium on Theory of
Computing, pages 294–304. ACM Press, New York, NY, 1993.

Arndt Bröder. Assessing the empirical validity of the “take-the-best” heuristic as a model of human
probabilistic inference.Journal of Experimental Psychology: Learning, Memory, and Cognition,
26:1332–1346, 2000.

80

LEARNING LEXICOGRAPHICSTRATEGIES

Arndt Bröder. Take the best, Dawes’ rule, and compensatory decision strategies: A regression-based
classification method.Quality & Quantity, 36:219–238, 2002.

Arndt Bröder and Stefanie Schiffer. Take the best versus simultaneous featurematching: Proba-
bilistic inferences from memory and effects of representation format.Journal of Experimental
Psychology: General, 132:277–293, 2003.

Seth Bullock and Peter M. Todd. Made to measure: Ecological rationality in structured environ-
ments.Minds and Machines, 9:497–541, 1999.

William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270, 1999.

Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

Gerd Gigerenzer and Daniel G. Goldstein. Reasoning the fast and frugal way: Models of bounded
rationality. Psychological Review, 103:650–669, 1996.

Gerd Gigerenzer, Ulrich Hoffrage, and Heinz Kleinbölting. Probabilistic mental models: A
Brunswikian theory of confidence.Psychological Review, 98:506–528, 1991.

Gerd Gigerenzer, Peter M. Todd, and the ABC Research Group.Simple Heuristics That Make Us
Smart. Oxford University Press, New York, NY, 1999.

Russell Greiner. The complexity of revising logic programs.The Journal of Logic Programming,
40:273–298, 1999.

Russell Greiner and Pekka Orponen. Probably approximately optimal satisficing strategies.Artifi-
cial Intelligence, 82:21–44, 1996.

Dorit S. Hochbaum. Approximation algorithms for the set covering and vertexcover problems.
SIAM Journal on Computing, 11:555–556, 1982.

Klaus-U. Ḧoffgen, Hans-U. Simon, and Kevin S. Van Horn. Robust trainability of single neurons.
Journal of Computer and System Sciences, 50:114–125, 1995.

Robin M. Hogarth and Natalia Karelaia. “Take-the-best” and other simple strategies: Why and
when they work “well” in binary choice. DEE Working Paper 709, Universitat Pompeu Fabra,
Barcelona, October 2003.

Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient agnostic learning.
Machine Learning, 17:115–141, 1994.

Michael D. Lee and Tarrant D. R. Cummins. Evidence accumulation in decision making: Unifying
the “take the best” and the “rational” models.Psychonomic Bulletin & Review, 11:343–352,
2004.

Laura Martignon and Ulrich Hoffrage. Why does one-reason decisionmaking work? A case study
in ecological rationality. In Gigerenzer, G., Todd, P. M., and the ABC Research Group,Simple
Heuristics That Make Us Smart, pages 119–140. Oxford University Press, New York, NY, 1999.

81

SCHMITT AND MARTIGNON

Laura Martignon and Ulrich Hoffrage. Fast, frugal, and fit: Simple heuristics for paired comparison.
Theory and Decision, 52:29–71, 2002.

Laura Martignon and Michael Schmitt. Simplicity and robustness of fast and frugal heuristics.
Minds and Machines, 9:565–593, 1999.

Stefani Nellen. The use of the “take the best” heuristic under different conditions, modeled with
ACT-R. In F. Detje, D. D̈orner, and H. Schaub, editors,Proceedings of the Fifth Interna-
tional Conference on Cognitive Modeling, pages 171–176, Universitätsverlag Bamberg, Bam-
berg, 2003.

Ben R. Newell and David R. Shanks. Take the best or look at the rest? Factors influencing “One-
Reason” decision making.Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 29:53–65, 2003.

Ben R. Newell, Nicola J. Weston, and David R. Shanks. Empirical tests of a fast-and-frugal heuris-
tic: Not everyone “takes-the-best”.Organizational Behavior and Human Decision Processes, 91:
82–96, 2003.

Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. InProceedings of the 29th Annual ACM Symposium
on Theory of Computing, pages 475–484. ACM Press, New York, NY, 1997.

Ronald L. Rivest. Learning decision lists.Machine Learning, 2:229–246, 1987.

Stuart Russell and Eric Wefald.Do The Right Thing: Studies in Limited Rationality. MIT Press,
Cambridge, MA, 1991.

Michael Schmitt and Laura Martignon. Complexity of lexicographic strategieson binary cues.
Preprint, 1999.

Michael Schmitt and Laura Martignon. On the accuracy of bounded rationality: How far from op-
timal is fast and frugal? In Yair Weiss, Bernhard Schölkopf, and John C. Platt, editors,Advances
in Neural Information Processing Systems 18. MIT Press, Cambridge, MA, 2006. To appear.

Herbert A. Simon.Models of Bounded Rationality, Volume 2. MIT Press, Cambridge, MA, 1982.

Herbert A. Simon and Joseph B. Kadane. Optimal problem-solving search: All-or-none solutions.
Artificial Intelligence, 6:235–247, 1975.

Herbert A. Simon and Joseph B. Kadane. Problems of computational complexity in artificial intel-
ligence. In J. F. Traub, editor,Algorithms and Complexity: New Directions and Recent Results,
pages 281–299. Academic Press, New York, NY, 1976.

Steven S. Skiena.The Algorithm Design Manual. Springer-Verlag, New York, NY, 1997.

D. W. Slegers, G. L. Brake, and M. E. Doherty. Probabilistic mental modelswith continuous pre-
dictors.Organizational Behavior and Human Decision Processes, 81:98–114, 2000.

82

LEARNING LEXICOGRAPHICSTRATEGIES

Peter M. Todd and Anja Dieckmann. Heuristics for ordering cue search indecision making. In
Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,Advances in Neural Information Pro-
cessing Systems 17, pages 1393–1400. MIT Press, Cambridge, MA, 2005.

Peter M. Todd and Gerd Gigerenzer. Précis of “Simple Heuristics That Make Us Smart”.Behavioral
and Brain Sciences, 23:727–741, 2000.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence ofrelative frequencies of events
to their probabilities.Theory of Probability and its Applications, 16:264–280, 1971.

83

Journal of Machine Learning Research 7 (2006) 85–115 Submitted 5/05; Revised 10/05; Published 1/06

Generalized Bradley-Terry Models and

Multi-Class Probability Estimates

Tzu-Kuo Huang r93002@csie.ntu.edu.tw

Department of Computer Science

National Taiwan University

Taipei 106, Taiwan

Ruby C. Weng chweng@nccu.edu.tw

Department of Statistics

National Chengchi University

Taipei 116, Taiwan

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science

National Taiwan University

Taipei 106, Taiwan

Editor: Greg Ridgeway

Abstract

The Bradley-Terry model for obtaining individual skill from paired comparisons has been
popular in many areas. In machine learning, this model is related to multi-class probability
estimates by coupling all pairwise classification results. Error correcting output codes
(ECOC) are a general framework to decompose a multi-class problem to several binary
problems. To obtain probability estimates under this framework, this paper introduces a
generalized Bradley-Terry model in which paired individual comparisons are extended to
paired team comparisons. We propose a simple algorithm with convergence proofs to solve
the model and obtain individual skill. Experiments on synthetic and real data demonstrate
that the algorithm is useful for obtaining multi-class probability estimates. Moreover, we
discuss four extensions of the proposed model: 1) weighted individual skill, 2) home-field
advantage, 3) ties, and 4) comparisons with more than two teams.

Keywords: Bradley-Terry model, probability estimates, error correcting output codes,
support vector machines

1. Introduction

The Bradley-Terry model (Bradley and Terry, 1952) for paired comparisons has been broadly
applied in many areas such as statistics, sports, and machine learning. It considers a set of
k individuals for which

P (individual i beats individual j) =
pi

pi + pj
, (1)

and pi > 0 is the overall skill of individual i. Suppose that the outcomes of all comparisons
are independent and denote rij as the number of times that i beats j. Then the negative

c©2006 Tzu-Kuo Huang, Ruby C. Weng, and Chih-Jen Lin.

Huang, Weng, and Lin

log-likelihood takes the form

l(p) = −
∑

i<j

(

rij log
pi

pi + pj
+ rji log

pj

pi + pj

)

. (2)

Since l(p) = l(αp) for any α > 0, l(p) is scale invariant. Therefore, it is convenient to
assume that

∑k
i=1 pi = 1 for the sake of identifiability. One can then estimate pi by

min
p

l(p)

subject to 0 ≤ pj , j = 1, . . . , k,
k
∑

j=1

pj = 1.
(3)

This approach dates back to Zermelo (1929) and has been extended to more general settings.
For instance, in sports scenario, extensions to account for the home-field advantage and ties
have been proposed. Some reviews are, for example, (David, 1988; Davidson and Farquhar,
1976; Hunter, 2004; Simons and Yao, 1999). The solution of (3) can be solved by a simple
iterative procedure:

Algorithm 1:

1. Start with any initial p0
j > 0, j = 1, . . . , k.

2. Repeat (t = 0, 1, . . .)

(a) Let s = (t mod k) + 1. Define

pt+1 ≡
[

pt
1, . . . , p

t
s−1,

∑

i:i6=s rsi
∑

i:i6=s
rsi+ris

pt
s+pt

i

, pt
s+1, . . . , p

t
k

]T

. (4)

(b) Normalize pt+1.

until ∂l(pt)/∂pj = 0, j = 1, . . . , k are satisfied.

This algorithm is so simple that there is no need to use sophisticated optimization
techniques. If rij ∀i, j satisfy some mild conditions, Algorithm 1 globally converges to the
unique minimum of (3). A systematic study on the convergence of Algorithm 1 is in Hunter
(2004).

An earlier work (Hastie and Tibshirani, 1998) in statistics and machine learning con-
sidered the problem of obtaining multi-class probability estimates by coupling results from
pairwise comparisons. Assume

r̄ij ≡ P (x in class i | x in class i or j)

86

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

is known. This work estimates pi = P (x in class i) by minimizing the (weighted) Kullback-
Leibler (KL) distance between r̄ij and µij ≡ pi/(pi + pj):

min
p

∑

i<j

nij

(

r̄ij log
r̄ij

µij
+ r̄ji log

r̄ji

µji

)

subject to 0 ≤ pj , j = 1, . . . , k,
k
∑

j=1

pj = 1,

(5)

where nij is the number of training data in class i or j. By defining rij ≡ nij r̄ij and
removing constant terms, (5) reduces to the same form as (2), and hence Algorithm 1 can
be used to find p. Although one might interpret this as a Bradley-Terry model by treating
classes as individuals and rij as the number that the ith class beats the jth class, it is not
indeed. First, rij (now defined as nij r̄ij) may not be an integer any more. Secondly, rij

are dependent as they share the same training set. However, the closeness between the two
motivates us to propose more general models in this paper.

The above approach involving comparisons for each pair of classes is referred to as the
“one-against-one” setting in multi-class classification. It is a special case of the framework
error correcting output codes (ECOC) to decompose a multi-class problem into a number
of binary problems (Dietterich and Bakiri, 1995; Allwein et al., 2001). Some classification
techniques are two-class based, so this framework extends them to multi-class scenarios.
Zadrozny (2002) generalizes the results in (Hastie and Tibshirani, 1998) to obtain prob-
ability estimates under ECOC settings. The author proposed an algorithm analogous
to Algorithm 1 and demonstrated some experimental results. However, the convergence
issue was not discussed. Though the author intended to minimize the KL distance as
Hastie and Tibshirani (1998) did, in Section 4.2 we show that their algorithm may not
converge to a point with the smallest KL distance.

Motivated from multi-class classification with ECOC settings, this paper presents a
generalized Bradley-Terry model where each competition is between two teams (two disjoint
subsets of subjects) and team size/members can vary from competition to competition.
Then from the outcomes of all comparisons, we fit this general model to estimate the
individual skill. Here we propose a simple iterative method to solve the generalized model.
The convergence is proved under mild conditions.

The proposed model has some potential applications. For example, in tennis or bad-
minton, if a player participates in many singles and doubles, this general model can combine
all outcomes to yield the estimated skill of all individuals. More importantly, for multi-class
problems by combining binary classification results, we can also minimize the KL distance
and obtain the same optimization problem. Hence the proposed iterative method can be
directly applied to obtain the probability estimate under ECOC settings.

This paper is organized as follows. Section 2 introduces a generalized Bradley-Terry
model and a simple algorithm to maximize the log-likelihood. The convergence of the
proposed algorithm is in Section 3. Section 4 discusses multi-class probability estimates and
experiments are in Sections 5 and 6. In Section 7 we discuss four extensions of the proposed
model: 1) weighted individual skill, 2) home-field advantage, 3) ties, and 4) comparisons
with more than two teams. Discussion and conclusions are in Section 8. A short and

87

Huang, Weng, and Lin

preliminary version of this paper appeared in an earlier conference NIPS 2004 (Huang et al.,
2005).1

2. Generalized Bradley-Terry Model

In this section we study a generalized Bradley-Terry model for approximating individual
skill. Consider a group of k individuals: {1, . . . , k}. Each time two disjoint subsets I+

i and
I−i form teams for a series of games and ri ≥ 0 (r′i ≥ 0) is the number of times that I+

i

beats I−i (I−i beats I+
i). Thus, we have Ii ⊂ {1, . . . , k}, i = 1, . . . , m so that

Ii = I+
i ∪ I−i , I+

i 6= ∅, I−i 6= ∅, and I+
i ∩ I−i = ∅.

If the game is designed so that each member is equally important, we can assume that a
team’s skill is the sum of all its members’. This leads to the following model:

P (I+
i beats I−i) =

∑

j∈I+

i
pj

∑

j∈Ii
pj

.

If the outcomes of all comparisons are independent, then estimated individual skill can be
obtained by defining

qi ≡
∑

j∈Ii

pj , q+
i ≡

∑

j∈I+

i

pj , q−i ≡
∑

j∈I−
i

pj

and minimizing the negative log-likelihood

min
p

l(p) = −
m
∑

i=1

(

ri log(q+
i /qi) + r′i log(q−i /qi)

)

subject to
k
∑

j=1

pj = 1, 0 ≤ pj , j = 1, . . . , k.

(6)

Note that (6) reduces to (3) in the pairwise approach, where m = k(k − 1)/2 and Ii, i =
1, . . . , m are as the following:

I+
i I−i ri r′i
{1} {2} r12 r21
...

...
...

...
{1} {k} r1k rk1

{2} {3} r23 r32
...

...
...

...
{k − 1} {k} rk−1,k rk,k−1

In the rest of this section we discuss how to solve the optimization problem (6).

1. Programs used are at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/libsvm-errorcode.

88

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/libsvm-errorcode

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

2.1 A Simple Procedure to Maximize the Likelihood

The difficulty of solving (6) over (3) is that now l(p) is expressed in terms of q+
i , q−i , qi but

the real variable is p. We propose the following algorithm to solve (6).

Algorithm 2:

1. Start with initial p0
j > 0, j = 1, . . . , k and obtain corresponding q0,+

i , q0,−
i , q0

i , i =
1, . . . , m.

2. Repeat (t = 0, 1, . . .)

(a) Let s = (t mod k) + 1. Define pt+1 by pt+1
j = pt

j , ∀j 6= s, and

pt+1
s =

∑

i:s∈I+

i

ri

q
t,+

i

+
∑

i:s∈I−
i

r′i
q

t,−

i

∑

i:s∈Ii

ri+r′
i

qt
i

pt
s. (7)

(b) Normalize pt+1.

(c) Update qt,+
i , qt,−

i , qt
i to qt+1,+

i , qt+1,−
i , qt+1

i , i = 1, . . . , m.

until ∂l(pt)/∂pj = 0, j = 1, . . . , k are satisfied.

The gradient of l(p), used in the stopping criterion, is:

∂l(p)

∂ps
= −

m
∑

i=1

(

ri
∂ log q+

i

∂ps
+ r′i

∂ log q−i
∂ps

− (ri + r′i)
∂ log qi

∂ps

)

= −
∑

i:s∈I+

i

ri

q+
i

−
∑

i:s∈I−
i

r′i
q−i

+
∑

i:s∈Ii

ri + r′i
qi

, s = 1, . . . , k. (8)

In Algorithm 2, for the multiplicative factor in (7) to be well defined (i.e., non-zero
denominator), we need Assumption 1, which will be discussed in Section 3. Eq. (7) is a
simple fixed-point type update; in each iteration, only one component (i.e., pt

s) is modified
while the others remain the same. If we apply the updating rule (7) to the pairwise model,

pt+1
s =

∑

i:s<i
rsi

pt
s

+
∑

i:i<s
rsi

pt
s

∑

i:s<i
rsi+ris

pt
s+pt

i

+
∑

i:i<s
ris+rsi

pt
s+pt

i

pt
s =

∑

i:i6=s rsi
∑

i:i6=s
rsi+ris

pt
s+pt

i

reduces to (4).

89

Huang, Weng, and Lin

The updating rule (7) is motivated from using a descent direction to strictly decrease
l(p): If ∂l(pt)/∂ps 6= 0 and pt

s > 0, then under suitable assumptions on ri, r
′
i,

∂l(pt)

∂ps
(pt+1

s − pt
s) =

∂l(pt)

∂ps

(

∑

i:s∈I+

i

ri

q+

i

+
∑

i:s∈I−
i

r′i
q−
i

−∑i:s∈Ii

ri+r′i
qi

∑

i:s∈Ii

ri+r′
i

qt
i

)

pt
s

=

(

−
(

∂l(pt)

∂ps

)2

pt
s

)

/

∑

i:s∈Ii

ri + r′i
qt
i

 < 0. (9)

Thus, pt+1
s − pt

s is a descent direction in optimization terminology since a sufficiently small
step along this direction guarantees the strict decrease of the function value. As now we
take the whole direction without searching for the step size, more efforts are needed to
prove the strict decrease in the following Theorem 1. However, (9) does hint that (7) is a
reasonable update.

Theorem 1 Let s be the index to be updated at pt. If

1. pt
s > 0,

2. ∂l(pt)/∂ps 6= 0, and

3.
∑

i:s∈Ii
(ri + r′i) > 0,

then

l(pt+1) < l(pt).

The proof is in Appendix A. Note that
∑

i:s∈Ii
(ri + r′i) > 0 is a reasonable assumption. It

means that individual s participates in at least one game.

2.2 Other Methods to Maximize the Likelihood

We briefly discuss other methods to solve (6). For the original Bradley-Terry model, Hunter
(2004) discussed how to transform (3) to a logistic regression form: Under certain assump-
tions,2 the optimal pi > 0,∀i. Using this property and the constraints pj ≥ 0,

∑k
j=1 pj = 1

of (3), we can reparameterize the function (2) by

ps =
eβs

∑k
j=1 eβj

, (10)

and obtain

−
∑

i<j

(

rij log
1

1 + eβj−βi
+ rji log

eβj−βi

1 + eβj−βi

)

. (11)

This is the negative log-likelihood of a logistic regression model. Hence, methods such as
iterative weighted least squares (IWLS) (McCullagh and Nelder, 1990) can be used to fit

2. They will be described in the next section.

90

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

the model. In addition, β is now unrestricted, so (3) is transformed to an unconstrained
optimization problem. Then conventional optimization techniques such as Newton or Quasi
Newton can also be applied.

Now for the generalized model, (6) can still be re-parameterized as an unconstrained
problem with the variable β. However, the negative log-likelihood

−
m
∑

i=1

(

ri log

∑

j∈I+

i
eβj

∑

j∈Ii
eβj

+ r′i log

∑

j∈I−
i

eβj

∑

j∈Ii
eβj

)

(12)

is not in a form similar to (11), so methods for logistic regression may not be used. Of course
Newton or Quasi Newton is still applicable but their implementations are not simpler than
Algorithm 2.

3. Convergence of Algorithm 2

Though Theorem 1 has shown the strict decrease of l(p), we must further prove that
Algorithm 2 converges to a stationary point of (6). Thus if l(p) is convex, a global optimum
is obtained. A vector p is a stationary (Karash-Kuhn-Tucker) point of (6) if and only if
there is a scalar δ and two nonnegative vectors λ and ξ such that

∇f(p)j = δ + λj − ξj ,

λjpj = 0, ξj(1 − pj) = 0, j = 1, . . . , k.

In the following we will prove that under certain conditions Algorithm 2 converges to a
point satisfying

0 < pj < 1,∇f(p)j = 0, j = 1, . . . , k. (13)

That is, δ = λj = ξj = 0,∀j. Problem (6) is quite special as through the convergence proof
of Algorithm 2 we show that its optimality condition reduces to (13), the condition without
considering constraints. Furthermore, an interesting side-result is that from

∑k
j=1 pj = 1

and (13), we obtain a point in Rk satisfying (k + 1) equations.
If Algorithm 2 stops in a finite number of iterations, then ∂l(p)/∂pj = 0, j = 1, . . . , k,

which means a stationary point of (6) is already obtained. Thus, we only need to handle
the case where {pt} is an infinite sequence. As {pt}∞t=0 is in a compact set

{p | 0 ≤ ps ≤ 1,
k
∑

j=1

pj = 1},

there is at least one convergent subsequence. Assume that {pt}, t ∈ K is any such sequence
and it converges to p∗. In the following we will show that ∂l(p∗)/∂pj = 0, j = 1, . . . , k.

To prove the convergence of a fixed-point type algorithm (i.e., Lyapunov’s theorem), we
require p∗s > 0,∀s. Then if ∂l(p∗)/∂ps 6= 0 (i.e., p∗ is not optimal), we can use (7) to find
p∗+1 6= p∗, and, as a result of Theorem 1, l(p∗+1) < l(p∗). This property further leads to
a contradiction. To have p∗s > 0,∀s, for the original Bradley-Terry model, Ford (1957) and
Hunter (2004) assume that for any pair of individuals s and j, there is a “path” from s to
j; that is, rs,s1

> 0, rs1,s2
> 0, . . . , rst,j > 0. The idea behind this assumption is simple:

91

Huang, Weng, and Lin

Since
∑k

r=1 p∗r = 1, there is at least one p∗j > 0. If in certain games s beats s1, s1 beats
s2, . . ., and st beats j, then p∗s, the skill of individual s, should not be as bad as zero. For
the generalized model, we make a similar assumption:

Assumption 1 For any two different individuals s and j, there are Is0
, Is1

, . . . , Ist
, such

that either

1. rs0
> 0, rs1

> 0, . . . , rst
> 0,

2. I+
s0

= {s}; I+
sr

⊂ Isr−1
, r = 1, . . . , t; j ∈ I−st

,

or

1. r′s0
> 0, r′s1

> 0, . . . , r′st
> 0,

2. I−s0
= {s}; I−sr

⊂ Isr−1
, r = 1, . . . , t; j ∈ I+

st
.

The idea is that if p∗j > 0, and s beats I−s0
, a subset of Is0

beats I−s1
, a subset of Is1

beats
I−s2

, . . . , and a subset of Ist−1
beats I−st

, which includes j, then p∗s should not be zero. How
this assumption is exactly used is in Appendix B for proving Lemma 2.

Assumption 1 is weaker than that made earlier in (Huang et al., 2005). However, even
with the above explanation, this assumption seems to be very strong. Whether the gener-
alized model satisfies Assumption 1 or not, an easy way to fulfill it is to add an additional
term

−µ
k
∑

s=1

log

(

ps
∑k

j=1 pj

)

(14)

to l(p), where µ is a small positive number. That is, for each s, we make an Ii = {1, . . . , k}
with I+

i = {s}, ri = µ, and r′i = 0. As
∑k

j=1 pj = 1 is one of the constraints, (14) reduces

to −µ
∑k

s=1 log ps, which is usually used as a barrier term in optimization to ensure that ps

does not go to zero.
An issue left in Section 2 is whether the multiplicative factor in (7) is well defined. With

Assumption 1 and initial p0
j > 0, j = 1, . . . , k, one can show by induction that pt

j > 0,∀t
and hence the denominator of (7) is never zero: If pt

j > 0, Assumption 1 implies that there

is some i such that I+
i = {j} or I−i = {j}. Then either

∑

i:j∈I+

i
ri/qt,+

i or
∑

i:j∈I−
i

r′i/qt,−
i is

positive. Thus, both numerator and denominator in the multiplicative factor are positive,
and so is pt+1

j .
The result p∗s > 0 is proved in the following lemma.

Lemma 2 If Assumption 1 holds, p∗s > 0, s = 1, . . . , k.

The proof is in Appendix B.
As the convergence proof will use the strictly decreasing result, we note that Assump-

tion 1 implies the condition
∑

i:s∈Ii
(ri + r′i) > 0,∀s, required by Theorem 1. Finally, the

convergence is established:

Theorem 3 Under Assumption 1, any convergent point of Algorithm 2 is a stationary

point of (6).

92

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

The proof is in Appendix C. Though ri in the Bradley-Terry model is an integer
indicating the number of times that team I+

i beats I−i , in the convergence proof we do not
use such a property. Hence later for multi-class probability estimates, where ri is a real
number, the convergence result still holds.

Note that a stationary point may be only a saddle point. If (6) is a convex programming
problem, then a stationary point is a global minimum. Unfortunately, l(p) may not be
convex, so it is not clear whether Algorithm 2 converges to a global minimum or not. The
following theorem states that in some cases including the original Bradley-Terry model, any
convergent point is a global minimum, and hence a maximum likelihood estimator:

Theorem 4 Under Assumption 1, if

1. |I+
i | = |I−i | = 1, i = 1, . . . , m or

2. |Ii| = k, i = 1, . . . , m,

then (6) has a unique global minimum and Algorithm 2 globally converges to it.

The proof is in Appendix D. The first case corresponds to the original Bradley-Terry model.
Later we will show that under Assumption 1, the second case is related to “one-against-the
rest” for multi-class probability estimates. Thus though the theorem seems to be rather
restricted, it corresponds to useful situations.

4. Multi-class Probability Estimates

A classification problem is to train a model from data with known class labels and then
predict labels of new data. Many classification methods are two-class based approaches and
there are different ways to extend them for multi-class cases. Most existing studies focus
on predicting class labels but not probability estimates. In this section, we discuss how the
generalized Bradley-Terry model can be applied to multi-class probability estimates.

As mentioned in Section 1, there are various ways to decompose a multi-class prob-
lem into a number of binary classification problems. Among them, the most commonly
used are “one-against-one” and “one-against-the rest.” Recently Allwein et al. (2001) pro-
posed a more general framework for the decomposition. Their idea, extended from that
of Dietterich and Bakiri (1995), is to associate each class with a row of a k × m “coding
matrix” with all entries from {−1, 0, +1}. Here m is the number of binary classification
problems to be constructed. Each column of the matrix represents a comparison between
classes with “−1” and “+1,” ignoring classes with “0.” Note that the classes with “−1”
and “+1” correspond to our I−i and I+

i , respectively. Then the binary learning method is
run for each column of the matrix to obtain m binary decision rules. For a given example,
one predicts the class label to be j if the results of the m binary decision rules are “clos-
est” to labels of row j in the coding matrix. Since this coding method can correct errors
made by some individual decision rules, it is referred to as error correcting output codes

(ECOC). Clearly the commonly used “one-against-one” and “one-against-the rest” settings
are special cases of this framework.

93

Huang, Weng, and Lin

Given ni, the number of training data with classes in Ii = I+
i ∪ I−i , we assume here that

for any given data x,

r̄i = P (x in classes of I+
i | x in classes of Ii) (15)

is available, and the task is to estimate P (x in class s), s = 1, . . . , k. We minimize the
(weighted) KL distance between r̄i and q+

i /q−i similar to (Hastie and Tibshirani, 1998):

min
p

m
∑

i=1

ni

(

r̄i log
r̄i

(q+
i /qi)

+ (1 − r̄i) log
1 − r̄i

(q−i /qi)

)

. (16)

By defining

ri ≡ nir̄i and r′i ≡ ni(1 − r̄i), (17)

and removing constant terms, (16) reduces to (6), the negative log-likelihood of the gener-
alized Bradley-Terry model. It is explained in Section 1 that one cannot directly interpret
this setting as a generalized Bradley-Terry model. Instead, we minimize the KL distance
and obtain the same optimization problem.

We show in Section 5 that many practical “error correcting codes” have the same |Ii|,
i.e., each binary problem involves the same number of classes. Thus, if data is balanced (all
classes have about the same number of instances), then n1 ≈ · · · ≈ nm and we can remove
ni in (16) without affecting the minimization of l(p). As a result, ri = r̄i and r′i = 1 − r̄i.

In the rest of this section we discuss the case of “one-against-the rest” in detail and the
earlier result in (Zadrozny, 2002).

4.1 Properties of the “One-against-the rest” Approach

For this approach, m = k and Ii, i = 1, . . . , m are

I+
i I−i ri r′i
{1} {2, . . . , k} r1 1 − r1

{2} {1, 3, . . . , k} r2 1 − r2
...

...
...

...
{k} {1, . . . , k − 1} rk 1 − rk

Clearly, |Ii| = k ∀i, so every game involves all classes. Then, n1 = · · · = nm = the total
number of training data and the solution of (16) is not affected by ni. This and (17) suggest
that we can solve the problem by simply taking ni = 1 and ri + r′i = 1, ∀i. Thus, (8) can
be simplified as

∂l(p)

∂ps
= −rs

ps
−
∑

j:j 6=s

r′j
1 − pj

+ k.

Setting ∂l(p)/∂ps = 0 ∀s, we have

rs

ps
− 1 − rs

1 − ps
= k −

k
∑

j=1

r′j
1 − pj

. (18)

94

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

Since the right-hand side of (18) is the same for all s, we can denote it by δ. If δ = 0, then
pi = ri. This happens only if

∑k
i=1 ri = 1. If δ 6= 0, (18) implies

ps =
(1 + δ) −

√

(1 + δ)2 − 4rsδ

2δ
. (19)

In Appendix E we show that ps defined in (19) satisfies 0 ≤ ps ≤ 1. Note that

((1 + δ) +
√

(1 + δ)2 − 4rsδ)/2δ

also satisfies (18), but when δ < 0, it is negative and when δ > 0, it is greater than 1. Then
the solution procedure is as the following:

If
∑k

i=1 ri = 1,

optimal p = [r1, . . . , rk]
T .

else

find the root of
∑k

s=1
(1+δ)−

√
(1+δ)2−4rsδ

2δ
− 1 = 0.

optimal ps = (19).
If
∑k

i=1 ri = 1, p = [r1, . . . , rk]
T satisfies ∂l(p)/∂ps = 0 ∀s, and thus is the unique optimal

solution in light of Theorem 4. For the else part, Appendix E proves that the above equation
of δ has a unique root. Therefore, instead of using Algorithm 2, one can easily solve a one-
variable nonlinear equation and obtain the optimal p. This “one-against-the rest” setting
is special as we can directly prove the existence of a solution satisfying k + 1 equations:
∑k

s=1 ps = 1 and ∂l(p)/∂ps = 0, s = 1, . . . , k. Earlier for general models we rely on the
convergence proof of Algorithm 2 to show the existence (see the discussion in the beginning
of Section 3).

From (19), if δ > 0, larger ps implies smaller (1 + δ)2 − 4rsδ and hence larger rs. The
situation for δ < 0 is similar. Therefore, the order of p1, . . . , pk is the same as that of
r1, . . . , rk:

Theorem 5 If rs ≥ rt, then ps ≥ pt.

This theorem indicates that results from the generalized Bradley-Terry model are reasonable
estimates.

4.2 An Earlier Approach

Zadrozny (2002) was the first to address the probability estimates using error-correcting
codes. By considering the same optimization problem (16), she proposes a heuristic updat-
ing rule

pt+1
s ≡

∑

i:s∈I+

i
ri +

∑

i:s∈I−
i

r′i
∑

i:s∈I+

i

niq
t,+

i

qt
i

+
∑

i:s∈I−
i

niq
t,−

i

qt
i

pt
s, (20)

but does not provide a convergence proof. For the “one-against-one” setting, (20) reduces to
(4) in Algorithm 1. However, we will show that under other ECOC settings, the algorithm
using (20) may not converge to a point with the smallest KL distance. Taking the “one-
against-the rest” approach, if k = 3 and r1 = r2 = 3/4, r3 = 1/2, for our approach Theorem

95

Huang, Weng, and Lin

5 implies p1 = p2. Then (18) and p1 + p2 + p3 = 1 give

3

4p1
− 1

4(1 − p1)
=

1

2p3
− 1

2(1 − p3)
=

1

2(1 − 2p1)
− 1

4p1
.

This leads to a solution

p = [15 −
√

33, 15 −
√

33, 2
√

33 − 6]T /24, (21)

which is also unique according to Theorem 4. If this is a convergent point by using (20),
then a further update from it should lead to the same point (after normalization). Thus, the
three multiplicative factors must be the same. Since we keep

∑k
i=1 pt

i = 1 in the algorithm,
with the property ri + r′i = 1, for this example the factor in the updating rule (20) is

rs +
∑

i:i6=s r′i
pt

s +
∑

i:i6=s(1 − pt
i)

=
k − 1 + 2rs −

∑k
i=1 ri

k − 2 + 2pt
s

=
2rs

1 + 2pt
s

. (22)

Clearly the p obtained earlier in (21) by our approach of minimizing the KL distance does
not result in the same value for (22). Thus, in this case Zadrozny (2002)’s approach fails to
converge to the unique solution of (16) and hence lacks a clear interpretation.

5. Experiments: Simulated Examples

In the following two sections, we present experiments on multi-class probability estimates
using synthetic and real-world data. In implementing Algorithm 2, we use the following
stopping condition:

max
s:s∈{1,...,k}

∣

∣

∣

∣

∑

i:s∈I+

i

ri

q
t,+

i

+
∑

i:s∈I−
i

r′i
q

t,−

i

∑

i:s∈Ii

ri+r′
i

qt
i

− 1

∣

∣

∣

∣

< 0.001,

which implies that ∂l(pt)/∂ps, s = 1, . . . , k are all close to zero.

5.1 Data Generation

We consider the same setting in (Hastie and Tibshirani, 1998; Wu et al., 2004) by defining
three possible class probabilities:

(a) p1 = 1.5/k, pj = (1 − p1)/(k − 1), j = 2, . . . , k.

(b) k1 = k/2 if k is even, and (k + 1)/2 if k is odd; then p1 = 0.95 × 1.5/k1, pi =
(0.95 − p1)/(k1 − 1) for i = 2, . . . , k1, and pi = 0.05/(k − k1) for i = k1 + 1, . . . , k.

(c) p1 = 0.95 × 1.5/2, p2 = 0.95 − p1, and pi = 0.05/(k − 2), i = 3, . . . , k.

All classes are competitive in case (a), but only two dominate in (c). For given Ii, i =
1, . . . , m, we generate ri by adding some noise to q+

i /qi and then check if the proposed
method obtains good probability estimates. Since q+

i /qi of these three cases are different,
it is difficult to have a fair way of adding noise. Furthermore, various ECOC settings
(described later) will also result in different q+

i /qi. Though far from perfect, here we try
two ways:

96

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

1. An “absolute” amount of noise:

ri = min(max(ε,
q+
i

qi
+ 0.1N(0, 1)), 1 − ε). (23)

Then r′i = 1 − ri. Here ε = 10−7 is used so that all ri, r
′
i are positive.

This is the setting considered in (Hastie and Tibshirani, 1998).

2. A “relative” amount of noise:

ri = min(max(ε,
q+
i

qi
(1 + 0.1N(0, 1))), 1 − ε). (24)

r′i and ε are set in the same way.

5.2 Results of Various ECOC Settings

We consider the four encodings used in (Allwein et al., 2001) to generate Ii:

1. “1vs1”: the pairwise approach (Eq. (5)).

2. “1vsrest”: the “One-against-the rest” approach in Section 4.1.

3. “dense”: Ii = {1, . . . , k} for all i. Ii is randomly split to two equally-sized sets I+
i and

I−i . [10 log2 k] 3 such splits are generated. That is, m = [10 log2 k].

Intuitively, more combinations of subjects as teams give more information and may lead
to a better approximation of individual skill. Thus, we would like to select a diversified
I+
i , I−i , i = 1, . . . , m. Following Allwein et al. (2001), we repeat the selection 100 times.

For each collection of I+
i , I−i , i = 1, . . . , m, we calculate the smallest distance between

any pair of (I+
i , I−i) and (I+

j , I−j). A larger value indicates better quality of the coding,

so we pick the one with the largest value. For the distance between any pair of (I+
i , I−i)

and (I+
j , I−j), Allwein et al. (2001) consider a generalized Hamming distance defined as

follows:

k
∑

s=1

0 if s ∈ I+
i ∩ I+

j or s ∈ I−i ∩ I−j ,

1 if s ∈ I+
i ∩ I−j or s ∈ I−i ∩ I+

j ,

1/2 if s /∈ Ii or s /∈ Ij .

4. “sparse”: I+
i , I−i are randomly drawn from {1, . . . , k} with E(|I+

i |) = E(|I−i |) = k/4.
Then [15 log2 k] such splits are generated. Similar to “dense,” we repeat the procedure
100 times to find a good coding.

The way of adding noise may favor some ECOC settings. Since in general

q+
i

qi
for “1vs1” � q+

i

qi
for “1vsrest,”

adding 0.1N(0, 1) to q+
i /qi result in very inaccurate ri for “1vsrest.” On the other hand,

if using a relative way, noise added to ri and r′i for “1vsrest” is smaller than that for

3. We use [x] to denote the nearest integer value of x.

97

Huang, Weng, and Lin

“1vs1.” This analysis indicates that using the two different noise makes the experiment
more complete.

Figures 1 and 2 show results of adding an “absolute” amount of noise. Two criteria are
used to evaluate the obtained probability estimates: Figures 1 presents averaged accuracy
rates over 500 replicates for each of the four encodings when k = 22, 23, . . . , 26. Figure 2
gives the (relative) mean squared error (MSE):

MSE =
1

500

500
∑

j=1

(

k
∑

i=1

(p̂j
i − pi)

2/
k
∑

i=1

p2
i

)

, (25)

where p̂j is the probability estimate obtained in the jth of the 500 replicates. Using the
same two criteria, Figures 3 and 4 present results of adding a “relative” amount of noise.
Clearly, following our earlier analysis on adding noise, results of “1vsrest” in Figures 3 and
4 are much better than those in Figures 1 and 2. In all figures, “dense and “sparse” are less
competitive in cases (a) and (b) when k is large. Due to the large |I+

i | and |I−i |, the model
is unable to single out a clear winner when probabilities are more balanced. For “1vs1,” it is
good for (a) and (b), but suffers some losses in (c), where the class probabilities are highly
unbalanced. Wu et al. (2004) have observed this shortcoming and proposed a quadratic
model for the “1vs1” setting.

Results here indicate that the four encodings perform very differently under various
conditions. Later in experiments for real data, we will see that in general the situation is
closer to case (c), and all four encodings are practically viable.4

6. Experiments: Real Data

In this section we present experimental results on some real-world multi-class problems.
There are two goals of experiments here:

1. Check the viability of the proposed multi-class probability estimates. We hope that
under reasonable ECOC settings, equally good probabilities are obtained.

2. Compare with the standard ECOC approach without extracting probabilities. This
is less important than the first goal as the paper focuses on probability estimates.
However, as the classification accuracy is one of the evaluation criteria used here, we
can easily conduct a comparison.

6.1 Data and Experimental Settings

We consider data sets used in (Wu et al., 2004): dna, satimage, segment, and letter from the
Statlog collection (Michie et al., 1994), waveform from UCI Machine Learning Repository
(Blake and Merz, 1998), USPS (Hull, 1994), and MNIST (LeCun et al., 1998). Except dna,
which takes two possible values 0 and 1, each attribute of all other data is linearly scaled
to [−1, 1]. The data set statistics are in Table 6.1.

4. Experiments here are done using MATLAB (http://www.mathworks.com), and the programs are avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/libsvm-errorcode/generalBT.zip.

98

http://www.mathworks.com
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/libsvm-errorcode/generalBT.zip

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

log
2
 k

T
e

s
t

A
c
c
u

ra
c
y

(a)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

log
2
 k

T
e

s
t

A
c
c
u

ra
c
y

(b)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

log
2
 k

T
e

s
t

A
c
c
u

ra
c
y

(c)

Figure 1: Accuracy of predicting the true class by four encodings and (23) for generating
noise: “1vs1” (dashed line, square marked), “1vsrest” (solid line, cross marked),
“dense” (dotted line, circle marked), “sparse” (dashdot line, diamond marked).
Sub-figures 1(a), 1(b) and 1(c) correspond to the three settings of class probabil-
ities in Section 5.1.

2 3 4 5 6
0

0.5

1

1.5

2

log
2
 k

M
S

E

(a)

2 3 4 5 6
0

0.5

1

1.5

2

log
2
 k

M
S

E

(b)

2 3 4 5 6
0

0.5

1

1.5

2

log
2
 k

M
S

E

(c)

Figure 2: MSE by four encodings and (23) for generating noise. The legend is the same as
that of Figure 1.

99

Huang, Weng, and Lin

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

log
2
 k

T
e

s
t

A
c
c
u

ra
c
y

(a)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

log
2
 k

T
e

s
t

A
c
c
u

ra
c
y

(b)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

log
2
 k

T
e

s
t

A
c
c
u

ra
c
y

(c)

Figure 3: Accuracy of predicting the true class by four encodings and (24) for generating
noise. The legend is the same as that of Figure 1.

2 3 4 5 6
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

log
2
 k

M
S

E

(a)

2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

log
2
 k

M
S

E

(b)

2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

log
2
 k

M
S

E

(c)

Figure 4: MSE by four encodings and (24) for generating noise. The legend is the same as
that of Figure 1.

100

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

 dna waveform satimage segment usps mnist letter
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data sets

T
e
st

 e
rr

o
r

(a) via proposed probability estimates

 dna waveform satimage segment usps mnist letter
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data sets

T
e
st

 e
rr

o
r

(b) via exponential-loss decoding

Figure 5: Testing error on smaller (300 training, 500 testing) data sets by four encodings:
“1vs1” (dashed line, square marked), “1vsrest” (solid line, cross marked), “dense”
(dotted line, circle marked), “sparse” (dashdot line, asterisk marked).

 dna waveform satimage segment usps mnist letter
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data sets

T
e
st

 e
rr

o
r

(a) via proposed probability estimates

 dna waveform satimage segment usps mnist letter
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data sets

T
e
st

 e
rr

o
r

(b) via exponential-loss decoding

Figure 6: Testing error on larger (800 training, 1000 testing) data sets by four encodings.
The legend is the same as that of Figure 5.

101

Huang, Weng, and Lin

dataset dna waveform satimage segment USPS MNIST letter

#classes 3 3 6 7 10 10 26
#attributes 180 21 36 19 256 784 16

Table 1: Data Set Statistics

After data scaling, we randomly select smaller (300/500) and larger (800/1,000) train-
ing/testing sets from thousands of points for experiments. 20 such selections are generated
and results are averaged.5

We use the same four ways in Section 5 to generate Ii. All of them have |I1| ≈ · · · ≈ |Im|.
With the property that these multi-class problems are reasonably balanced, we set ni = 1
in (16).

We consider support vector machines (SVM) (Boser et al., 1992; Cortes and Vapnik,
1995) with the RBF (Radial Basis Function) kernel e−γ‖xi−xj‖

2

as the binary classifier. An
improved version (Lin et al., 2003) of (Platt, 2000) obtains ri using SVM decision values.
It is known that SVM may not give good probability estimates (e.g., Zhang (2004)), but
Platt (2000) and Wu et al. (2004) empirically show that using decision values from cross
validation yields acceptable results in practice. In addition, SVM is sometimes sensitive to
parameters, so we conduct a selection procedure before testing. Details can be found in
Figure 4 of (Wu et al., 2004). The code is modified from LIBSVM (Chang and Lin, 2001),
a library for support vector machines.

6.2 Evaluation Criteria and Results

For these real data sets, there are no true probability values available. We consider the
same three evaluation criteria used in (Wu et al., 2004):

1. Test errors. Averages of 20 errors for smaller and larger sets are in Figures 5(a) and
6(a), respectively.

2. MSE (Brier Score).

1

l

l
∑

j=1

(

k
∑

i=1

(Iyj=i − p̂j
i)

2

)

,

where l is the number of test data, p̂j is the probability estimate of the jth data,
yj is the true class label, and Iyj=i is an indicator function (1 if yj = i and 0 other-
wise). This measurement (Brier, 1950), popular in meteorology, satisfies the following
property:

arg min
p̂

EY [
k
∑

i=1

(IY =i − p̂i)
2] ≡ arg min

p̂

k
∑

i=1

(p̂i − pi)
2,

where Y , a random variable for the class label, has the probability distribution p.
Brier score is thus useful when the true probabilities are unknown. We present the
average of 20 Brier scores in Figure 7.

5. All training/testing sets used are at http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/data.

102

http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/data

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

3. Log loss:

−1

l

l
∑

j=1

log p̂j
yj

,

where p̂j is the probability estimate of the jth data and yj is its actual class label. It
is another useful criterion when true probabilities are unknown:

min
p̂

EY [−
k
∑

i=1

log p̂i · IY =i] ≡ min
p̂

−
k
∑

i=1

pi log p̂i

has the minimum at p̂i = pi, i = 1, . . . , k. Average of 20 splits are presented in Figure
8.

Results of using the three criteria all indicate that the four encodings are quite com-
petitive. Such an observation suggests that in practical problems class probabilities may
resemble those specified in case (c) in Section 5; that is, only few classes dominate. Wu et al.
(2004) is the first one pointing out this resemblance. In addition, all figures show that “1vs1”
is slightly worse than others in the case of larger k (e.g., letter). Earlier Wu et al. (2004) pro-
posed a quadratic model, which gives better probability estimates than the Bradley-Terry
model for “1vs1.”

In terms of the computational time, because the number of binary problems for “dense”
and “sparse” ([10 log2 k] and [15 log2 k], respectively) are larger than k, and each binary
problem involves many classes of data (all and one half), their training time is longer than
that of “1vs1” and “1vsrest.” “Dense” is particularly time consuming. Note that though
“1vs1” solves k(k − 1)/2 SVMs, each is small via using only two classes of data.

To check the effectiveness of the proposed model in multi-class classification, we compare
it with a standard ECOC-based strategy which does not produce probabilities: exponential
loss-based decoding by Allwein et al. (2001). Let f̂i be the decision function of the ith
binary classifier, and f̂i(x) > 0 (< 0) specifies that data x to be in classes in I+

i (I−i). This
approach determines the predicted label by the following rule:

predicted label = arg min
s

(

∑

i:s∈I+

i

e−f̂i +
∑

i:s∈I−
i

ef̂i

)

.

Testing errors for smaller and larger sets are in Figures 5(b) and 6(b), respectively. Com-
paring them with results by the proposed model in Figures 5(a) and 6(a), we observe that
both approaches have very similar errors. Therefore, in terms of predicting class labels only,
our new method is competitive.

7. Extensions of the Generalized Bradley-Terry Model

In addition to multi-class probability estimates, the proposed generalized Bradley-Terry
model, as mentioned in Section 1, has some potential applications in sports. We consider
in this section several extensions based on common sport scenarios and show that, with a
slight modification of Algorithm 2, they can be easily solved as well.

103

Huang, Weng, and Lin

 dna waveform satimage segment usps mnist letter
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Data sets

M
S

E

(a) 300 training, 500 testing

 dna waveform satimage segment usps mnist letter
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Data sets

M
S

E

(b) 800 training, 1000 testing

Figure 7: MSE by four encodings. The legend is the same as that of Figure 5.

 dna waveform satimage segment usps mnist letter
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Data sets

lo
g
 lo

ss

(a) 300 training, 500 testing

 dna waveform satimage segment usps mnist letter
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Data sets

lo
g
 lo

ss

(b) 800 training, 1000 testing

Figure 8: Log loss by four encodings. The legend is the same as that of Figure 5.

7.1 Weighted Individual Skill

In some sports, team performance is highly affected by certain positions. For example, many
people think guards are relatively more important than centers and forwards in basketball
games. We can extend the generalized Bradley-Terry model to this case: Define

q̄i ≡
∑

j:j∈Ii

wijpj , q̄+
i ≡

∑

j:j∈I+

i

wijpj , q̄−i ≡
∑

j:j∈I−
i

wijpj ,

where wij > 0 is a given weight parameter reflecting individual j’s position in the game
between I+

i and I−i . By minimizing the same negative log-likelihood function (6), estimated

104

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

individual skill can be obtained. Here Algorithm 2 can still be applied but with the updating
rule replaced by

pt+1
s =

∑

i:s∈I+

i

riwis

q̄
t,+

i

+
∑

i:s∈I−
i

r′iwis

q̄
t,−

i

∑

i:s∈Ii

(ri+r′
i
)wis

q̄t
i

pt
s, (26)

which is derived similarly to (7) so that the multiplicative factor is equal to one when
∂l(p)/∂ps = 0. The convergence can be proved similarly. However, it may be harder to
obtain the global optimality: Case 1 in Theorem 4 still holds, but Case 2 may not since
q̄i needs not be equal to one (the proof of Case 2 requires qi = 1, which is guaranteed by
|Ii| = k).

7.2 Home-field Advantage

The original home-field advantage model (Agresti, 1990) is based on paired individual com-
parisons. We can incorporate its idea into our proposed model by taking

P (I+
i beats I−i) =

θq+

i

θq+

i
+q−

i

if I+
i is home,

q+

i

q+

i
+θq−

i

if I−i is home,

where θ > 0 measures the strength of the home-field advantage or disadvantage. Note that
θ is an unknown parameter to be estimated, while the weights wij in Section 7.1 are given.

Let r̄i ≥ 0 and r̄′i ≥ 0 be the number of times that I+
i wins and loses at home, respec-

tively. For I+
i ’s away games, we let r̃i ≥ 0 and r̃′i ≥ 0 be the number of times that I+

i wins
and loses. The minimization of the negative log-likelihood function thus becomes:

min
p,θ

l(p, θ) =

−
m
∑

i=1

(

r̄i log
θq+

i

θq+
i + q−i

+ r̃i log
q+
i

q+
i + θq−i

+ r̄′i log
q−i

θq+
i + q−i

+ r̃′i log
θq−i

q+
i + θq−i

)

under the constraints in (6) and the condition θ ≥ 0.

To apply Algorithm 2 on the new optimization problem, we must modify the updating
rule. For each s, ∂l(p, θ)/∂ps = 0 leads to the following rule:6

pt+1
s =

∑

i:s∈I+

i

r̄i+r̃i

q+

i

+
∑

i:s∈I−
i

r̄′i+r̃′i
q−
i

∑

i:s∈I+

i

(

θ(r̄i+r̄′
i
)

θq+

i
+q−

i

+
r̃i+r̃′

i

q+

i
+θq−

i

)

+
∑

i:s∈I−
i

(

r̄i+r̄′
i

θq+

i
+q−

i

+
θ(r̃i+r̃′

i
)

q+

i
+θq−

i

)pt
s. (27)

For θ, from ∂l(p, θ)/∂θ = 0, we have

θt+1 =

∑m
i=1(r̄i + r̃′i)

∑m
i=1

(

q+

i
(r̄i+r̄′

i
)

θtq+

i
+q−

i

+
q−
i

(r̃i+r̃′
i
)

q+

i
+θtq−

i

) . (28)

6. For convenience, q
t,+

i (qt,−

i) is abbreviated as q
+

i (q−i). The same abbreviation is used in the updating
rule in Sections 7.3 and 7.4.

105

Huang, Weng, and Lin

Unlike the case of updating pt
s, there is no need to normalize θt+1. The algorithm then

cyclically updates p1, . . . , pk, and θ. If ps is updated, we can slightly modify the proof of
Theorem 1 and obtain the strict decrease of l(p, θ). Moreover, Appendix F gives a simple
derivation of l(pt, θt+1) < l(pt, θt). Thus, if we can ensure that θt is bounded above, then
under a modified version of Assumption 1 where max(r̄si

, r̃si
) > 0 replaces rsi

> 0, the
convergence of Algorithm 2 (i.e., Theorem 3) still holds by a similar proof.

7.3 Ties

Suppose ties are possible between teams. Extending the model proposed in (Rao and Kupper,
1967), we consider:

P (I+
i beats I−i) =

q+
i

q+
i + θq−i

,

P (I−i beats I+
i) =

q−i
θq+

i + q−i
, and

P (I+
i ties I−i) =

(θ2 − 1)q+
i q−i

(q+
i + θq−i)(θq+

i + q−i)
,

where θ > 1 is a threshold parameter to be estimated.
Let ti be the number of times that I+

i ties I−i and ri, r′i defined as before. We then
minimize the following negative log-likelihood function:

min
p,θ

l(p, θ)

= −
m
∑

i=1

(

ri log
q+
i

q+
i + θq−i

+ r′i log
q−i

θq+
i + q−i

+ ti log
(θ2 − 1)q+

i q−i
(q+

i + θq−i)(θq+
i + q−i)

)

= −
m
∑

i=1

(

ri log
q+
i

q+
i + θq−i

+ r′i log
q−i

θq+
i + q−i

+ ti log
θq+

i

θq+
i + q−i

+ ti log
θq−i

q+
i + θq−i

)

(29)

−
m
∑

i=1

ti log
θ2 − 1

θ2
(30)

under the constraints in (6) and the condition θ > 1.
For updating pt

s, θ is considered as a constant and (29) is in a form of the Home-field
model, so the rule is similar to (27). The strict decrease of l(p, θ) can be established as
well. For updating θ, we have

θt+1 =
1

2Ct
+

√

1 +
1

4C2
t

, (31)

where

Ct =
1

2
∑m

i=1 ti

(

m
∑

i=1

(ri + ti)q
−
i

q+
i + θtq−i

+
m
∑

i=1

(r′i + ti)q
+
i

θtq+
i + q−i

)

.

The derivation and the strict decrease of l(p, θ) are in Appendix F. If we can ensure that
1 < θt < ∞ and modify Assumption 1 as in Section 7.2, the convergence of Algorithm 2
also holds.

106

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

7.4 Multiple Team Comparisons

In this type of comparison, a game may include more than two participants, and the result
is a ranking of the participants. For a game of three participants. Pendergrass and Bradley
(1960) proposed using

P (i best, j in the middle, and k worst)

= P (i beats j and k) · P (j beats k)

=
pi

pi + (pj + pk)
· pj

pj + pk
.

A general model introduced in (Placket, 1975) is:

P (a(1) → a(2) → · · · → a(k)) =
k
∏

i=1

pa(i)

pa(i) + pa(i+1) + · · · + pa(k)
, (32)

where a(i), 1 ≤ i ≤ k is the ith ranked individual and → denotes the relation “is ranked
higher than.” A detailed discussion of this model is in (Hunter, 2004, Section 5).

With similar ideas, we consider a more general setting: Each game may include more
than two participating teams. Assume that there are k individuals and N games resulting
in N rankings; the mth game involves gm disjoint teams. Let Ii

m ⊂ {1, . . . , k} be the ith
ranked team in the mth game, 1 ≤ i ≤ gm, 1 ≤ m ≤ N . We consider the model:

P (I1
m → I2

m → · · · → Igm
m) =

gm
∏

i=1

∑

s:s∈Ii
m

ps
∑gm

j=i

∑

s:s∈I
j
m

ps
. (33)

Defining

qi
m =

∑

s:s∈Ii
m

ps,

we minimize the negative log-likelihood function:

min
p

l(p) = −
N
∑

m=1

gm
∑

i=1

log
qi
m

∑gm

j=i q
j
m

(34)

under the constraints in (6).
In fact, (34) is a special case of (6). Each ranking can be viewed as the result of a series

of paired team comparisons: the first ranked team beats the others, the second ranked team
beats the others except the first, and so on; for each paired comparison, ri = 1 and r′i = 0.
Therefore, Algorithm 2 can be applied and the updating rule is:

pt+1
s =

∑

j:s∈Ij
(q

φj(s)
j)−1

∑

j:s∈Ij

∑φj(s)
i=1 (

∑gj

v=i q
v
j)−1

pt
s, (35)

where φj(s) is the rank of the team that individual s belongs to in the jth game and
Ij = ∪gj

i=1I
i
j .

We explain in detail how (35) is derived. Since teams are disjoint in one game and (33)
implies that ties are not allowed, φj(i) is unique under a given i. In the jth game, individual
s appears in φj(s) paired comparisons:

107

Huang, Weng, and Lin

I1
j vs. I2

j ∪ · · · ∪ I
gj

j ,

I2
j vs. I3

j ∪ · · · ∪ I
gj

j ,
...

I
φj(s)
j vs. I

φj(s)+1
j ∪ · · · ∪ I

gj

j .

From (7), the numerator of the multiplicative factor involves winning teams that individual
s is in, so there is only one (i.e., φj(s)) in each game that s joins; the denominator involves

teams of both sides, so it is in the form of
∑φj(s)

i=1 (
∑gj

v=i q
v
j)−1.

8. Discussion and Conclusions

We propose a generalized Bradley-Terry model which gives individual skill from group
competition results. We develop a simple iterative method to maximize the log-likelihood
and prove the convergence. The new model has many potential applications. In particular,
minimizing the negative log likelihood of the proposed model coincides with minimizing
the KL distance for multi-class probability estimates under error correcting output codes.
Hence the iterative scheme is useful for finding class probabilities. Similar to the original
Bradley-Terry model, we can extend the proposed generalized model to other settings such
as home-field advantages, ties, and multiple team comparisons.

Investigating more practical applications using the proposed model is certainly an im-
portant future direction. The lack of convexity of l(p) also requires more studies. In Section
5, the “sparse” coding has E(|I+

i |) = E(|I−i |) = k/4, and hence is not covered by Theorem
4 which proves the global optimality. However, this coding is competitive with others in
Section 6. If possible, we hope to show in the future that in general the global optimality
holds.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via the grants
NSC 92-2213-E-002-062 and NSC 92-2118-M-004-003.

Appendix A. Proof of Theorem 1

Define

qt,+
i\s ≡

∑

j∈I+

i
,j 6=s

pt
j , and qt

i\s ≡
∑

j∈I−
i

,j 6=s

pt
j .

Using

− log x ≥ 1 − log y − x/y with equality if and only if x = y,

we have

Q1(ps) ≥ l([pt
1, . . . , p

t
s−1, ps, p

t
s+1, . . . , p

t
k]

T) with equality if ps = pt,

108

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

where

Q1(ps) ≡ −
∑

i:s∈I+

i

ri

(

log(qt,+
i\s + ps) −

qt
i\s + ps

qt
i

− log qt
i + 1

)

−

∑

i:s∈I−
i

r′i

(

log(qt,−
i\s + ps) −

qt
i\s + ps

qt
i

− log qt
i + 1

)

= −
∑

i:s∈I+

i

ri log(qt,+
i\s + ps) −

∑

i:s∈I−
i

r′i log(qt,−
i\s + ps) +

∑

i:s∈Ii

(ri + r′i)

(

qt
i\s + ps

qt
i

+ log qt
i − 1

)

.

For 0 < λ < 1, we have

log(λx + (1 − λ)y) ≥ λ log x + (1 − λ) log y with equality if and only if x = y.

With pt
s > 0,

log(qt,+
i\s + ps)

= log

(

qt,+
i\s

qt,+
i

· 1 +
pt

s

qt,+
i

· ps

pt
s

)

+ log(qt,+
i)

≥ pt
s

qt,+
i

(log ps − log pt
s) + log qt,+

i with equality if ps = pt
s.

Then
Q2(ps) ≥ l([pt

1, . . . , p
t
s−1, ps, p

t
s+1, . . . , p

t
k]

T) with equality if ps = pt
s,

where

Q2(ps)

≡ −
∑

i:s∈I+

i

ri

(

pt
s

qt,+
i

(log ps − log pt
s) + log qt,+

i

)

−

∑

i:s∈I−
i

r′i

(

pt
s

qt,−
i

(log ps − log pt
s) + log qt,−

i

)

+
∑

i:s∈Ii

(ri + r′i)

(

qt
i\s + ps

qt
i

+ log qt
i − 1

)

.

As we assume pt
s > 0 and

∑

i:s∈Ii
(ri + r′i) > 0, Q2(ps) is a strictly convex function of ps. By

dQ2(ps)/dps = 0,

∑

i:s∈I+

i

ri

qt,+
i

∑

i:s∈I−
i

r′i
qt,−
i

pt
s

ps
=
∑

i:s∈Ii

ri + r′i
qt
i

leads to the updating rule. Thus, if pt+1
s 6= pt

s, then

l(pt+1) ≤ Q2(pt+1
s) < Q2(pt

s) = l(pt).

109

Huang, Weng, and Lin

Appendix B. Proof of Lemma 2

If the result does not hold, there is an index s̄ and an infinite index set T such that

lim
t∈T,t→∞

pt
s̄ = p∗s̄ = 0.

Since
∑k

s=1 pt
s = 1,∀t and k is finite,

lim
t∈T,t→∞

k
∑

s=1

pt
s =

k
∑

s=1

p∗s = 1.

Thus, there is an index j such that

lim
t∈T,t→∞

pt
j = p∗j > 0. (36)

Under Assumption 1, one of the two conditions linking individual s̄ and j must hold. As
both cases are similar, we consider only the first here. With p∗s̄ = 0 and I+

s0
= {s̄}, we claim

that p∗u = 0,∀u ∈ I−s0
. If this claim is wrong, then

l(pt) = −
m
∑

i=1

(

ri log
qt,+
i

qt
i

+ r′i log
qt,−
i

qt
i

)

≥ −rs0
log

qt,+
s0

qt
s0

= −rs0
log

pt
s̄

pt
s̄ +

∑

u∈I−s0
pt

u

→ ∞ when t ∈ T, t → ∞.

This result contradicts Theorem 1, which implies l(pt) is bounded above by l(p0). Thus,
p∗u = 0,∀u ∈ Is0

. With I+
s1

⊂ Is0
, we can use the same way to prove p∗u = 0,∀u ∈ Is1

.
Continuing the same derivation, in the end p∗u = 0,∀u ∈ Ist

. Since j ∈ I−st
, p∗j = 0

contradicts (36) and the proof is complete.

Appendix C. Proof of Theorem 3

Recall that we assume limt∈K,t→∞ pt = p∗. For each pt, t ∈ K, there is a corresponding
index s for the updating rule (7). Thus, one of {1, . . . , k} must be considered infinitely many
times. Without loss of generality, we assume that all pt, t ∈ K have the same corresponding
s. If p∗ does not satisfy

∂l(p∗)

∂pj
= 0, j = 1, . . . , k,

starting from s, s+1, . . . , k, 1, . . . , s−1, there is a first component s̄ such that ∂l(p∗)/∂ps̄ 6= 0.
As p∗s̄ > 0, by applying one iteration of Algorithm 2 on p∗s̄, and using Theorem 1, we obtain
p∗+1 6= p∗ and

l(p∗+1) < l(p∗). (37)

110

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

Since s̄ is the first index so that the partial derivative is not zero,

∂l(p∗)

∂ps
= 0 = · · · =

∂l(p∗)

∂ps̄−1
.

Thus, at the tth iteration,

lim
t∈K,t→∞

pt+1
s = lim

t∈K,t→∞

∑

i:s∈I+

i

ri

q
t,+

i

+
∑

i:s∈I−
i

r′i
q

t,−

i

∑

i:s∈Ii

ri+r′
i

qt
i

pt
s =

∑

i:s∈I+

i

ri

q
∗,+

i

+
∑

i:s∈I−
i

r′i
q
∗,−

i

∑

i:s∈Ii

ri+r′
i

q∗
i

p∗s = p∗s

and hence

lim
t∈K,t→∞

pt+1 = lim
t∈K,t→∞

pt = p∗.

Assume s̄ corresponds to the t̄th iteration, by a similar derivation,

lim
t∈K,t→∞

pt+1 = · · · = lim
t∈K,t→∞

pt̄ = p∗

and

lim
t∈K,t→∞

pt̄+1 = p∗+1.

Thus, with (37),

lim
t∈K,t→∞

l(pt̄+1) = l(p∗+1) < l(p∗)

contradicts the fact that

l(p∗) ≤ · · · ≤ l(pt),∀t.

Appendix D. Proof of Theorem 4

The first case reduces to the original Bradley-Terry model, so we can directly use existing
results. As explained in Section 3, Assumption 1 goes back to (Hunter, 2004, Assumption
1). Then the results in Section 4 of (Hunter, 2004) imply that (6) has a unique global
minimum and Algorithm 2 globally converges to it.

For the second case, as qi =
∑k

j=1 pj = 1, l(p) can be reformulated as

l̄(p) = −
m
∑

i=1

(ri log q+
i + r′i log q−i), (38)

which is a convex function of p. Then solving (6) is equivalent to minimizing (38). One
can also easily show that they have the same set of stationary points.

From Assumption 1, for each pj , there is i such that either I+
i = {s} with ri > 0, or

I−i = {s} with r′i > 0. Therefore, either −ri log ps or −r′i log ps appears in (38). Since they
are strictly convex functions of ps, the summation on all s = 1, . . . , k makes (38) a strictly
convex function of p. Hence (6) has a unique global minimum, which is also (6)’s unique
stationary point. From Theorem 3, Algorithm 2 globally converges to this unique minimum.

111

Huang, Weng, and Lin

Appendix E. Solving Nonlinear Equations for the “One-against-the-rest”

Approach

We show that if δ 6= 0, ps defined in (19) satisfies 0 ≤ ps ≤ 1. If δ > 0, then

(1 + δ) ≥
√

(1 + δ)2 − 4rsδ,

so ps ≥ 0. The situation for δ < 0 is similar. To prove ps ≤ 1, we consider three cases:

1. δ ≥ 1.
Clearly,

ps =
(1 + δ) −

√

(1 + δ)2 − 4rsδ

2δ
. ≤ 1 + δ

2δ
≤ 1.

2. 0 < δ < 1.
With 0 ≤ rs ≤ 1, we have 4δ − 4rsδ ≥ 0 and

(1 + δ)2 − 4rsδ ≥ 1 − 2δ + δ2.

Using 0 < δ < 1,

ps =
(1 + δ) −

√

(1 + δ)2 − 4rsδ

2δ
. ≤ 1 + δ − (1 − δ)

2δ
= 1.

3. δ < 0.
Now 4δ − 4rsδ ≤ 0, so

0 ≤ (1 + δ)2 − 4rsδ ≤ 1 − 2δ + δ2.

Then

−
√

(1 + δ)2 − 4rsδ ≥ δ − 1.

Adding 1 + δ on both sides and dividing them by 2δ leads to ps ≤ 1.

To find δ by solving
∑k

s=1 ps − 1 = 0, the discontinuity at δ = 0 is a concern. A simple
calculation shows

lim
δ→0

k
∑

s=1

(1 + δ) −
√

(1 + δ)2 − 4rsδ

2δ
− 1 =

k
∑

s=1

rs − 1.

One can thus define the following continuous function:

f(δ) =

{
∑k

s=1 rs − 1 if δ = 0,
∑k

s=1
(1+δ)−

√
(1+δ)2−4rsδ

2δ
− 1 otherwise.

Since

lim
δ→−∞

f(δ) = k − 1 > 0 and lim
δ→∞

f(δ) = −1 < 0,

112

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

f(δ) = 0 has at least one root. Next we show that f(δ) is strictly decreasing: Consider
δ 6= 0, then

f ′(δ) =
k
∑

s=1

−1 + 1+δ−2rsδ√
(1+δ)2−4rsδ

2δ2
.

If 1+δ−2rsδ ≤ 0, then of course f ′(δ) < 0. For the other case, first we use −4rsδ
2+4r2

sδ
2 < 0

to obtain
(1 + δ)2 − 4rsδ(1 + δ) + 4r2

sδ
2 < (1 + δ)2 − 4rsδ.

Since 1 + δ − 2rsδ > 0, taking the square root on both sides leads to f ′(δ) < 0.
Therefore,

f(δ) = 0 has a unique solution at δ > 0 (< 0) if
k
∑

s=1

rs − 1 > 0 (< 0).

Appendix F. Update θ for Models with Home-field Advantages or Ties

For the Home-field model, we use the “minorizing”-function approach in (Hunter, 2004):

Terms of l(pt, θ) related to θ

= −
m
∑

i=1

(

(r̄i + r̃′i) log θ − (r̄i + r̄′i) log(θq+
i + q−i) − (r̃i + r̃′i) log(q+

i + θq−i)
)

≤ −
m
∑

i=1

(

(r̄i + r̃′i) log θ − (r̄i + r̄′i)
(

−1 + log(θtq+
i + q−i) +

θq+
i + q−i

θtq+
i + q−i

)

−(r̃i + r̃′i)
(

−1 + log(q+
i + θtq−i) +

q+
i + θq−i

q+
i + θtq−i

)

)

≡ Q(θ).

The inequality becomes equality if θ = θt. Thus, Q′(θ) = 0 leads to (28) and l(pt, θt+1) <
l(pt, θt).

For the model which allows ties, we again define a minorizing function of θ.

Terms of l(pt, θ) related to θ

= −
m
∑

i=1

(

ti log(θ2 − 1) − (ri + ti) log(q+
i + θq−i) − (r′i + ti) log(θq+

i + q−i)
)

≤ −
m
∑

i=1

(

ti log(θ2 − 1) − (ri + ti)

(

1 + log(q+
i + θtq−i) +

q+
i + θq−i

q+
i + θtq−i

)

−(r′i + ti)

(

1 + log(θtq+
i + q−i) +

θq+
i + q−i

θtq+
i + q−i

))

≡ Q(θ).

Then Q′(θ) = 0 implies

m
∑

i=1

(

2θti
θ2 − 1

− (ri + ti)q
−
i

q+
i + θtq−i

− (r′i + ti)q
+
i

θtq+
i + q−i

)

= 0

113

Huang, Weng, and Lin

and hence θt+1 is defined as in (31).

References

A. Agresti. Categorical Data Analysis. Wiley, New York, 1990.

E. L. Allwein, R. E. Schapire, and Yoram Singer. Reducing multiclass to binary: a unifying
approach for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2001.
ISSN 1533-7928.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases. Technical report,
University of California, Department of Information and Computer Science, Irvine, CA,
1998. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages
144–152. ACM Press, 1992.

R. A. Bradley and M. Terry. The rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39:324–345, 1952.

G. W. Brier. Verification of forecasts expressed in probabilities. Monthly Weather Review,
78:1–3, 1950.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273–297, 1995.

H. A. David. The method of paired comparisons. Oxford University Press, New York, second
edition, 1988.

R. R. Davidson and P. H. Farquhar. A bibliography on the method of paired comparisons.
Biometrics, 32:241–252, 1976.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995. URL
citeseer.ist.psu.edu/dietterich95solving.html.

L. R. Jr. Ford. Solution of a ranking problem from binary comparisons. American Mathe-

matical Monthly, 64(8):28–33, 1957.

T. Hastie and R. Tibshirani. Classification by pairwise coupling. The Annals of Statistics,
26(1):451–471, 1998.

T.-K. Huang, R. C. Weng, and C.-J. Lin. A generalized Bradley-Terry model: From group
competition to individual skill. In Advances in Neural Information Processing Systems

17. MIT Press, Cambridge, MA, 2005.

J. J. Hull. A database for handwritten text recognition research. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 16(5):550–554, May 1994.

114

http://www.csie.ntu.edu.tw/~cjlin/libsvm
citeseer.ist.psu.edu/dietterich95solving.html

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

D. R. Hunter. MM algorithms for generalized Bradley-Terry models. The Annals of Statis-

tics, 32:386–408, 2004.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. MNIST
database available at http://yann.lecun.com/exdb/mnist/.

H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on Platt’s probabilistic outputs for support
vector machines. Technical report, Department of Computer Science, National Taiwan
University, 2003. URL http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps.

P. McCullagh and J. A. Nelder. Generalized Linear Models. CRC Press, 2nd edition, 1990.

D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Sta-

tistical Classification. Prentice Hall, Englewood Cliffs, N.J., 1994. Data available at
http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.

R. N. Pendergrass and R. A. Bradley. Ranking in triple comparisons. In Ingram Olkin,
editor, Contributions to Probability and Statistics. Stanford University Press, Stanford,
CA, 1960.

R. L. Placket. The analysis of permutations. Applied Statistics, 24:193–202, 1975.

J. Platt. Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, Cambridge, MA, 2000. MIT Press. URL
citeseer.nj.nec.com/platt99probabilistic.html.

P. V. Rao and L. L. Kupper. Ties in paired-comparison experiments: A generalization of
the Bradley-Terry model. Journal of the American Statistical Association, 62:194–204,
1967. [Corrigendum J. Amer. Statist. Assoc. 63 1550-1551].

G. Simons and Y.-C. Yao. Asymptotics when the number of parameters tends to infinity
in the Bradley-Terry model for paired comparisons. The Annals of Statistics, 27(3):
1041–1060, 1999.

T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classification
by pairwise coupling. Journal of Machine Learning Research, 5:975–1005, 2004. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf.

B. Zadrozny. Reducing multiclass to binary by coupling probability estimates. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Pro-

cessing Systems 14, pages 1041–1048. MIT Press, Cambridge, MA, 2002.

E. Zermelo. Die berechnung der turnier-ergebnisse als ein maximumproblem der wahrschein-
lichkeitsrechnung. Mathematische Zeitschrift, 29:436–460, 1929.

T. Zhang. Statistical behavior and consistency of classification methods based on convex
risk minimization. The Annals of Statistics, 32(1):56–134, 2004.

115

http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps
http://www.ncc.up.pt/liacc/ML/statlog/datasets.html
citeseer.nj.nec.com/platt99probabilistic.html
http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf

Journal of Machine Learning Research 7 (2006) 117–139 Submitted 9/05; Revised 12/05; Published 1/06

Bounds for Linear Multi-Task Learning

Andreas Maurer ANDREASMAURER@COMPUSERVE.COM

Adalbertstrasse 55
D-80799 M̈unchen, Germany

Editor: Nello Cristianini

Abstract
We give dimension-free and data-dependent bounds for linear multi-task learning where a common
linear operator is chosen to preprocess data for a vector of task specific linear-thresholding classi-
fiers. The complexity penalty of multi-task learning is bounded by a simple expression involving
the margins of the task-specific classifiers, the Hilbert-Schmidt norm of the selected preprocessor
and the Hilbert-Schmidt norm of the covariance operator forthe total mixture of all task distri-
butions, or, alternatively, the Frobenius norm of the totalGramian matrix for the data-dependent
version. The results can be compared to state-of-the-art results on linear single-task learning.
Keywords: learning to learn, transfer learning, multi-task learning

1. Introduction

Simultaneous learning of different tasks under some common constraint, often calledmulti-task
learning, has been tested in practice with good results under a variety of differentcircumstances
(see Baxter 1998, Caruana 1998, Thrun 1998, Ando and Zhang 2005). The technique has been
analyzed theoretically and in some generality by Baxter (2000) and Ando and Zhang (2005). The
latter reference appears to be the first to use Rademacher averages in this context. The purpose of
this paper is to improve some of these theoretical results in a special case of practical importance,
when input data are represented in a linear, potentially infinite dimensional space, and the common
constraint is a linear preprocessor.

Finite systems provide simple examples illustrating the potential advantages of multi-task learn-
ing. Consider agnostic learning with an input spaceX and a finite setF of hypothesesf : X →{0,1}.
For a hypothesisf ∈ F let er(f) be the expected error and er̂(f) the empirical error on a training
sampleS of sizen (drawn iid from the underlying task distribution) respectively. Combining Ho-
effding’s inequality with a union bound one shows (see e.g. Anthony and Bartlett 1999), that with
probability greater than 1−δ we have for everyf ∈ F the error bound

er(f)≤ êr(f)+
1√
2n

√

ln |F |+ ln(1/δ). (1)

Suppose now that there are a setY , a finite but large setG of preprocessorsg : X → Y , and another
setH of classifiersh : Y →{0,1}with

∣

∣H
∣

∣�|F |. For a cleverly chosen preprocessorg∈G it will
likely be the case that we find someh∈H such thath◦g has the same or even a smaller empirical
error than the bestf ∈ F . But this will lead to an improvement of the bound above (replacing|F |
by
∣

∣H
∣

∣) only if we chooseg before seeing the data, otherwise we incur a large estimation penalty
for the selection ofg (replacing|F | by

∣

∣H ◦G
∣

∣).

c©2006 Andreas Maurer.

MAURER

The situation is improved if we have a set ofm different learning tasks with corresponding task
distributions and samplesS1, ...,Sm, each of sizen and drawn iid from the corresponding distribu-
tions. We now consider solutionsh1 ◦g, ... hm◦g for each of them tasks where the preprocessing
mapg∈ G is constrained to be the same for all tasksand only thehl ∈ H specialize to each taskl
at hand. Again Hoeffding’s inequality and a union bound imply that with probability greater 1− δ
we have for all(h1, ...,hm) ∈H m and everyg∈ G

1
m

m

∑
l=1

erl (hl ◦g)≤ 1
m

m

∑
l=1

êrl (hl ◦g)+
1√
2n

√

ln
∣

∣H
∣

∣+
ln |G |+ ln(1/δ)

m
. (2)

Here erl (f) and êrl (f) denote the expected error in taskl and the empirical error on training sample
Sl respectively. The left hand side above is an average of the expected errors, so that the guarantee
implied by the bound is a little weaker than the usual PAC guarantees (but see Ben-David, 2003, for
bounds on the individual errors). The first term on the right is the average empirical error, which
a multi-task learning algorithm seeks to minimize. We can take it as an operational definition of
task-relatedness relative to(H ,G) that we are able to obtain a very small value for this term. The
remaining term, which bounds the estimation error, now exhibits the advantage of multi-task learn-
ing: Sharing the preprocessor implies sharing its cost of estimation, and the entropy contribution
arising from the selection ofg∈ G decreases with the number of learning tasks. Since by assump-
tion

∣

∣H
∣

∣� |F |, the estimation error in the multi-task bound (2) can become much smaller than in
the single task case (1) if the numbermof tasks becomes large.

The choice of the preprocessorg∈G can also be viewed as the selection of the hypothesis space
H ◦g. This leads to an alternative formulation of multi-task learning, where the commonobject is
a hypothesis space chosen from a class of hypothesis spaces (in this case

{

H ◦g : g∈ G
}

), and the
classifiers for the individual tasks are all chosen from the selected hypothesis space. Here we prefer
the functional formulation of selecting a preprocessor instead of a hypothesis space, because it is
more intuitive and sufficient in the situations which we consider.

The arguments leading to (2) can be refined and extended to certain infinite classes to give
general bounds for multi-task learning (Baxter 2000, Ando and Zhang 2005). In this paper we
concentrate on the case where the input spaceX is a subset of the unit ball in a Hilbert spaceH, the
classG of preprocessors is a setA of bounded symmetric linear operators onH, and the classH is
the set of classifiershv obtained by 0-thresholding linear functionalsv in H with ‖v‖ ≤ B, that is

hv(x) = sign(〈x,v〉) andhν ◦T (x) = sign(〈Tx,v〉) ,x∈ H,T ∈ A , ‖v‖ ≤ B.

The learner now searches for a multi-classifierhv◦T = (hν1 ◦T, ...,hνm ◦T) where the preprocessing
operatorT ∈A is the same for all tasks and only the vectorsvl specialize to each taskl at hand. The
desired multi-classifierhv ◦T should have a small value of the average error

er(hv ◦T) =
1
m

m

∑
l=1

erl (hvl ◦T) =
1
m

m

∑
l=1

Pr
{

sign
(〈

TXl ,vl
〉)

6= Yl
}

,

whereXl andYl are the random variables modeling input-values and labels for thel -th task. To
guide this search we look for bounds on er(hv ◦T) in terms of the total observed data for all tasks,
valid uniformly for allv =

(

v1, ...,vm
)

with
∥

∥vl
∥

∥≤ B and allT ∈ A . We will prove the following :

118

L INEAR MULTI -TASK LEARNING

Theorem 1 Let δ ∈ (0,1). With probability greater than1− δ it holds for all v =
(

v1, ...,vm
)

∈ H
with

∥

∥vl
∥

∥≤ 1 and all bounded symmetric operators T on H with‖T‖HS≥ 1, and for all γ ∈ (0,1)
that

er(hv ◦T)≤ êrγ (v◦T)+
8‖T‖HS

γ
√

n

√

‖C‖HS+
1
m

+

√

ln 4‖T‖HS
δγ

2nm
.

Here êrγ (v◦T) is a margin-based empirical error estimate, bounded by the relative number of
examples

(

Xl
i ,Y

l
i

)

in the total training sample for all tasksl , whereYl
i

〈

TXl
i ,v

l
〉

< γ (see section 4).
The quantity‖T‖HS is theHilbert-Schmidt normof T, defined for symmetricT by

‖T‖HS =
(

∑λ2
i

)1/2
,

whereλi is the sequence of eigenvalues ofT (counting multiplicities, see section 2).
C is the total covariance operatorcorresponding to the mixture of all the task-input-distributions

in H. Since data are constrained to the unit ball inH we always have‖C‖HS≤ 1 (see section 3).

The above theorem is the simplest, but not the tightest or most general formof our results. For
example the factor 8 on the right hand side can be decreased to be arbitrarily close to 2, thereby
incurring only a logarithmic penalty in the last term.

A special case results from restricting the set of candidate preprocessors toPd, the set of orthog-
onal projections inH with d-dimensional range. In this case learning amounts to the selection of a
d-dimensional subspaceM of H and of anm-tuple of vectorsvl in M (components ofvl orthogonal
to M are irrelevant to the projected data). All operatorsT ∈ Pd satisfy‖T‖HS=

√
d, which can then

be substituted in the above bound. Identifying such a projection with the structural parameterΘ, this
corresponds to the case considered by Ando and Zhang (2005), where a practical algorithm for this
type of multi-task learning is presented. The identity‖Θ‖HS=

√
d then expresses the regularization

condition mentioned in (Ando, Zhang 2005).
The bound in the above theorem is dimension free, it does not require the data distribution inH

to be confined to a finite dimensional subspace. Almost to the contrary: Suppose that the input data
are distributed uniformly onM∩S1 whereM is ak-dimensional subspace inH andS1 is the sphere
consisting of vectors with unit norm inH. ThenC has thek-fold eigenvalue 1/k, the remaining
eigenvalues being zero. Therefore‖C‖HS = 1/

√
k, so part of the bound above decreases to zero

as the dimensionality of the data-distribution increases, in contrast to the bound in (Ando, Zhang,
2005), which increases linearly ink. The fact that our bounds are dimension free allows their
general use for multi-task learning in kernel-induced Hilbert spaces (see Cristianini and Shawe-
Taylor 2000).

If we compare the second term on the right hand side to the estimation error bound in (2), we
can recognize a certain similarity: Loosely speaking we can identify‖T‖2HS/m with the cost of
estimating the operatorT, and‖T‖2HS‖C‖HS with the cost of finding the linear classifiersv1, ...,vm.
The order of dependence on the number of tasksm is the same in Theorem 1 as in (2).

In the limit m→ ∞ it is preferable to use a different bound (see Theorems 13 and 15), atthe
expense of slower convergence inm. The main inequality of the theorem then becomes

er(hv ◦T)≤ êrγ (v◦T)+
2
∥

∥T2
∥

∥

1/2
HS

(1− ε)2 γ
√

n

(

‖C‖2HS+
3
m

)1/4

+

√

√

√

√
ln ‖T

2‖1/2
HS

δγε2

2nm
. (3)

119

MAURER

for some very smallε > 0 to be fixed in advance. IfT is an orthogonal projection withd-dimensional

range then
∥

∥T2
∥

∥

1/2
HS = d1/4, so for a large number of tasksm the bound on the estimation error

becomes approximately
2d1/4‖C‖1/2

HS

γ
√

n
.

One of the best dimension-free bounds for linear single-task learning (see e.g. Bartlett and Mendel-
son 2002, or Lemma 11 below) would give 2/(γ

√
n) for this term, if all data are constrained to

unit vectors. We therefore expect superior estimation for multi-task learning of d-dimensional pro-
jections with largem, wheneverd1/4‖C‖1/2

HS � 1. If we again assume the data-distribution to be
uniform onM∩S1 with M ak-dimensional subspace, this is the case wheneverd� k, that is, qual-
itatively speaking, whenever the dimension of the utilizable part of the data is considerably smaller
than the dimension of the total data distribution.

The results stated above give some insights, but they have the practical disadvantage of being
unobservable, because they depend on the properties of the covariance operatorC, which in turn
depends on an unknown data distribution. One way to solve this problem is using the fact that the
finite-sample approximations to the covariance operator have good concentration properties (see
Theorem 8 below). The corresponding result is:

Theorem 2 With probability greater than1− δ in the sampleX it holds for all v1, ...,vm∈ H with
‖vl‖ ≤ 1 and all bounded symmetric operators T on H with‖T‖HS≥ 1, and for allγ ∈ (0,1) that

er(hv ◦T)≤ êrγ (v◦T)+
8‖T‖HS

γ
√

n

√

1
mn

∥

∥Ĉ(X)
∥

∥

Fr +
1
m

+

√

9ln 8‖T‖HS
δγ

2nm
.

where the
∥

∥Ĉ(X)
∥

∥

Fr is the Frobenius norm of the gramian.

By definition

∥

∥Ĉ(X)
∥

∥

Fr =

(

∑
l ,r,i, j

〈

Xl
i ,X

r
j

〉2
)1/2

.

HereXl
i is the random variable describing thei-th data point in the sample corresponding to the

l -th task. The corresponding labelYl
i enters only in the empirical margin error. The quantity

(mn)−1∥
∥Ĉ(X)

∥

∥

Fr can be regarded as an approximation to‖C‖HS, valid with high probability, so
that Theorem 2 is a sample based version of Theorem 1.

In section 2 we introduce the necessary terminology and results on Hilbert-Schmidt operators
and in section 3 the covariance operator of random elements in a Hilbert space. Section 4 gives a
formal definition of multi-task systems and a general PAC bound in terms of Rademacher complex-
ities. For the readers benefit a proof of this bound is given in an appendix, where we follow the path
prepared by Kolchinskii and Panchenko (2002) and Bartlett and Mendelson (2002). In section 5
we study the Rademacher complexities of linear multi-task systems. In section 6 wegive bounds for
non-interacting systems, which are essentially equivalent to single-task learning, and derive bounds
for proper, interacting multi-task learning, including the above mentioned results. We conclude with

120

L INEAR MULTI -TASK LEARNING

the construction of an example to demonstrate the advantages of multi-task learning. The appendix
contains missing proofs and a convenient reference-table to the notation and definitions introduced
in the paper.

2. Hilbert-Schmidt Operators

For a fixed real, separable Hilbert spaceH, with inner product〈., .〉 and norm‖.‖, we define a second
real, separable Hilbert space consisting ofHilbert-Schmidt operators. With HSwe denote the real
vector space of operatorsT on H satisfying∑∞

i=1‖Tei‖2≤ ∞ for every orthonormal basis(ei)
∞
i=1 of

H. EveryT ∈ HS is bounded. ForS,T ∈ HSand an orthonormal basis(ei) the series∑i 〈Sei ,Tei〉
is absolutely summable and independent of the chosen basis. The number〈S,T〉HS = ∑〈Sei ,Tei〉
defines an inner product onHS, making it into a Hilbert space. We denote the corresponding norm
with ‖.‖HS in contrast to the usual operator norm‖.‖∞. See Reed and Simon (1980) for background
on functional analysis). We useHS∗ to denote the set of symmetric Hilbert-Schmidt operators. For
every member ofHS∗ there is a complete orthonormal basis of eigenvectors, and forT ∈ HS∗ the
norm‖T‖HS is just the`2-norm of its sequence of eigenvalues. WithHS+ we denote the members
of HS∗ with only nonnegative eigenvalues.

We use two simple maps fromH or H2 to HS to relate the geometries of objects inH to the
geometry inHS.

Definition 3 Let x,y∈ H. We define two operators Qx and Gx,y on H by

Qxz = 〈z,x〉x,∀z∈ H

Gx,yz = 〈x,z〉y, ∀z∈ H.

We will frequently use parts of the following lemma, the proof of which is very easy.

Lemma 4 Let x,y,x′,y′ ∈ H and T∈ HS. Then
(i) Qx ∈ HS+ and‖Qx‖HS = ‖x‖2 .

(ii) 〈Qx,Qy〉HS = 〈x,y〉2 .

(iii) 〈T,Qx〉HS = 〈Tx,x〉.
(iv) 〈T∗T,Qv〉HS = ‖Tv‖2 .

(v) QyQx = 〈x,y〉Gx,y.

(vi) Gx,y ∈ HS and‖Gx,y‖HS = ‖x‖‖y‖.
(vii)

〈

Gx,y,Gx′,y′
〉

HS = 〈x,x′〉〈y,y′〉
(viii) 〈T,Gx,y〉HS = 〈Tx,y〉.
(ix) For α ∈ R, Qαx = α2Qx.

Proof For x = 0 (iii) is obvious. Forx 6= 0 choose an orthonormal basis(ei)
∞
1 , so thate1 = x/‖x‖.

Thene1 is the only nonzero eigenvector ofQx with eigenvalue‖x‖2 > 0. Also

〈T,Qx〉HS = ∑
i

〈Tei ,Qxei〉= 〈Tx,Qxx〉/‖x‖2 = 〈Tx,x〉 ,

which gives (iii). (ii), (i) and (iv) follow from substitution ofQy, Qx andT∗T respectively forT.
(v) follows directly from the definition when applied to anyz∈ H. Let (ek)

∞
k=1 be any orthonormal

121

MAURER

basis. Thenx = ∑k 〈x,ek〉ek, so by boundedness ofT

〈Tx,y〉 =

〈

T ∑
k

〈x,ek〉ek,y

〉

= ∑
k

〈Tek,〈x,ek〉y〉= ∑
k

〈Tek,Gx,yek〉

= 〈T,Gx,y〉HS,

which is (viii). Similarly

〈

Gx,y,Gx′,y′
〉

HS = ∑
k

〈

〈x,ek〉y,
〈

x′,ek
〉

y′
〉

=
〈

y,y′
〉

∑
k

〈x,ek〉
〈

x′,ek
〉

=
〈

x,x′
〉〈

y,y′
〉

,

which gives (vii) and (vi). (ix) is obvious.

The following application of Lemma 4 is the key to our main results.

Lemma 5 Let T∈ HS and w1, ...,wm and v1, ...,vm vectors in H with‖vi‖ ≤ B. Then

m

∑
l=1

〈Twl ,vl 〉 ≤ B‖T‖HS

(

∑
l ,r

|〈wl ,wr〉|
)1/2

and
m

∑
l=1

〈Twl ,vl 〉 ≤ Bm1/2‖T∗T‖1/2
HS

(

∑
l ,r

〈wl ,wr〉2
)1/4

Proof Without loss of generality assumeB = 1. Using Lemma 4 (viii), Schwarz’ inequality inHS
and Lemma 4 (vii) we have

m

∑
l=1

〈Twl ,vl 〉 =

〈

T,
m

∑
l=1

Gwl ,vl

〉

HS

≤ ‖T‖HS

∥

∥

∥

∥

∥

m

∑
l=1

Gwl ,vl

∥

∥

∥

∥

∥

HS

= ‖T‖HS

(

m

∑
l ,r

〈wl ,wr〉〈vl ,vr〉
)1/2

≤ ‖T‖HS

(

m

∑
l ,r

|〈wl ,wr〉|
)1/2

.

This proves the first inequality. Also, using Schwarz’ inequality inH andR
m, Lemma 4 (iv) and

Schwarz’ inequality inHS

m

∑
l=1

〈Twl ,vl 〉 ≤
(

m

∑
l=1

‖vl‖2
)1/2(m

∑
l=1

‖Twl‖2
)1/2

≤
√

m

〈

T∗T,
m

∑
l=1

Qwl

〉1/2

HS

≤
√

m‖T∗T‖1/2
HS

∥

∥

∥

∥

∥

m

∑
l=1

Qwl

∥

∥

∥

∥

∥

1/2

HS

=
√

m‖T∗T‖1/2
HS

(

∑
l ,r

〈wl ,wr〉2
)1/4

122

L INEAR MULTI -TASK LEARNING

The set ofd-dimensional, orthogonal projections inH is denoted withPd. We havePd ⊂ HS∗

and ifP∈ Pd then‖P‖HS =
√

d andP2 = P.
An operatorT is calledtrace-classif ∑∞

i=1〈Tei ,ei〉 is an absolutely convergent series for every
orthonormal basis(ei)

∞
i=1 of H. In this case the numbertr (T) = ∑∞

i=1〈Tei ,ei〉 is called thetraceof
T and it is independent of the chosen basis.

If A ⊂ HS∗ is a set of symmetric and bounded operators inH we use the notation

‖A‖HS = sup{‖T‖HS : T ∈ A} andA2 =
{

T2 : T ∈ A
}

.

3. Vector- and Operator-Valued Random Variables

Let (Ω,Σ,µ) be a probability space with expectationE [F] =
R

Ω Fdµ for a random variableF : Ω→
Ṙ. Let X be a random variable with values inH, such thatE [‖X‖] < ∞. The linear functional
v∈ H 7→ E [〈X,v〉] is bounded byE [‖X‖] and thus defines (by the Riesz Lemma) a unique vector
E [X] ∈ H such thatE [〈X,v〉] = 〈E [X] ,v〉 ,∀v∈ H, with ‖E [X]‖ ≤ E [‖X‖].

We now look at the random variableQX, with values inHS. Suppose thatE
[

‖X‖2
]

< ∞.

Passing to the spaceHS of Hilbert-Schmidt operators the above construction can be carried out

again: By Lemma 4 (i)E [‖QX‖HS] = E
[

‖X‖2
]

< ∞, so there is a unique operatorE [QX] ∈ HS

such thatE [〈QX,T〉HS] = 〈E [QX] ,T〉HS,∀T ∈ HS.

Definition 6 The operator E[QX] is called the covariance operator of X.

Lemma 7 The covariance operator E[QX] ∈ HS+ has the following properties.
(i) ‖E [QX]‖HS≤ E [‖QX‖HS].
(ii) 〈E [QX]y,z〉= E [〈y,X〉〈z,X〉] ,∀y,z∈ H.

(iii) tr (E [QX]) = E
[

‖X‖2
]

.

(iv) For H-valued independent X1 and X2 with E
[

‖Xi‖2
]

≤ ∞ we have

〈E [QX1] ,E [QX2]〉HS = E
[

〈X1,X2〉2
]

.

(v) Under the same hypotheses, if E[X2] = 0 then

E [QX1+X2] = E [QX1]+E [QX2]

Proof (i) follows directly from the construction, (iv) from the identity
〈E [QX1] ,E [QX2]〉HS = E

[

〈QX1,QX2〉HS

]

. Let y,z∈ H. Then using 4 (viii) we get

〈E [QX]y,z〉 = 〈E [QX] ,Gy,z〉HS = E
[

〈QX,Gy,z〉HS

]

= E [〈QXy,z〉]
= E [〈y,X〉〈z,X〉]

and hence (ii). We have with orthonormal basis(ek)
∞
k=1 and using (ii)

tr (E [QX]) = ∑
k

〈E [QX]ek,ek〉= ∑
k

E [〈ek,X〉〈ek,X〉] = E
[

‖X‖2
]

,

123

MAURER

which gives (iii). Substitution of an eigenvectorv for bothyandz in (ii) shows that the corresponding
eigenvalue must be nonnegative, soE [QX] ∈ HS+.

Finally (v) holds because for anyy,z∈ H we have, using independence and the mean-zero
condition forX2, that

〈E [QX1+X2]y,z〉
= E [〈y,X1 +X2〉〈X1 +X2,z〉]
= E [〈y,X1〉〈X1,z〉]+E [〈y,X2〉〈X2,z〉]+E [〈y,X1〉〈X2,z〉]+E [〈y,X2〉〈X1,z〉]
= 〈(E [QX1]+E [QX2])y,z〉+ 〈y,E [X1]〉〈E [X2] ,z〉+ 〈y,E [X2]〉〈E [X1] ,z〉
= 〈(E [QX1]+E [QX2])y,z〉

Property (ii) above is sometimes taken as the defining property of the covariance operator (see
Baxendale 1976).

If X is distributed uniformly onM∩S1, whereM is ak-dimensional subspace andS1 the unit

sphere inH, thenE
[

〈X,y〉2
]

= 〈E [QX]y,y〉 is zero if and only ify∈M⊥, so the range ofE [QX] is M,

so there are exactlyk-eigenvectors corresponding to non-zero eigenvalues ofE [QX]. By symmetry
these eigenvalues must all be equal, and by (iii) above they sum up to 1, soE [QX] has thek-fold
eigenvalue 1/k, with zero as the only other eigenvalue. It follows that‖E [QX]‖HS = 1/

√
k. We

have given this derivation to illustrate the tendency of the Hilbert-Schmidt norm of the covariance
operator of a distribution concentrated on unit vectors to decrease with theeffective dimensionality
of the distribution. This idea is relevant to the interpretation of our results.

The fact thatHS is a separable Hilbertspace just asH allows to define an operatorE [T] when-
everT is a random variable with values inHSandE [‖T‖HS] < ∞. Also any result valid inH has
a corresponding analogue valid inHS. We quote a corresponding operator-version of a Theorem
of Cristianini and Shawe-Taylor (2004) on the concentration of independent vector-valued random
variables.

Theorem 8 Suppose that T1, ...,Tm are independent random variables in H with‖Ti‖ ≤ 1. Then for
all δ > 0 with probability greater thanδ we have

∥

∥

∥

∥

∥

1
m

m

∑
i=1

E [Ti]−
1
m

m

∑
i=1

Ti

∥

∥

∥

∥

∥

HS

≤ 2√
m

(

1+

√

ln(1/δ)

2

)

.

Apply this withTi = QXi where theXi are iidH-valued with‖Xi‖ ≤ 1. The theorem then shows
that the covariance operatorE [QX] can be approximated inHS-norm with high probability by the
empirical estimates(1/m)∑i QXi . The quantity

∥

∥

∥

∥

∥

∑
i

QXi

∥

∥

∥

∥

∥

HS

=

(

∑
i, j

〈

Xi ,Xj
〉2

)1/2

is the Frobenius norm of the Gramian (or kernel-) matrixĈ(X)i j =
〈

Xi ,Xj
〉

, denoted
∥

∥Ĉ(X)
∥

∥

Fr . An
immediate corollary to the above is, that(1/m)

∥

∥Ĉ(X)
∥

∥

Fr is with high probability a good approxi-
mation of‖E [QX]‖HS. In the proof of Theorem 2 we will not need this fact however.

124

L INEAR MULTI -TASK LEARNING

4. Multi-Task Problems and General Bounds

For our discussion of multi-task learning we concentrate on binary labeled data. Let(Ω,Σ,µ) be a
probability space. We assume that there is amulti-task problemmodeled bym independent random
variablesZl =

(

Xl ,Yl
)

: Ω→ X×{−1,1}, where

• l ∈ {1, ...,m} identifies one of them learning tasks,

• Xl models the input data of thel -th task, distributed in a setX , called theinput space.

• Yl ∈ {−1,1}models the output-, or label-data of thel -th task.

• For eachl ∈{1, ...,m} there is ann-tuple of independent random variables
(

Zl
i

)n
i=1 =

(

Xl
i ,Y

l
i

)n
i=1,

where eachZl
i is identically distributed toZl .

The random variableZ =
(

Zl
i

)(n,m)

(i,l)=(1,1)
is called thetraining sampleor training data. We also

write X =
(

Xl
i

)(n,m)

(i,l)=(1,1)
. We use the superscriptl to identify learning tasks running from 1 tom,

the subscripti to identify data points in the sample, running from 1 ton. We will use the notations

x =
(

xl
i

)(n,m)

(i,l)=(1,1)
for generic members of(X n)m andz =

(

zl
i

)(n,m)

(i,l)=(1,1)
= (x,y) =

(

xl
i ,y

l
i

)(n,m)

(i,l)=(1,1)
for

generic members of((X×{−1,1})n)
m.

A multiclassifieris a maph : X →{−1,1}m. We writeh =
(

h1, ...,hm
)

and interprethl (x) as the
label assigned to the vectorx when the task is known to bel . The average error of a multiclassifier
h is the quantity

er(h) =
1
m

m

∑
l=1

Pr
{

hl
(

Xl
)

6= Yl
}

,

which is just the misclassification probability averaged over all tasks. Typically a classifier is chosen
from some candidate set minimizing some error estimate based on the training dataZ. Here we
consider zero-threshold classifiershf which arise as follows:

Suppose thatF is a class of vector valued functionsf : X →R
m with f =

(

f 1, ..., f m
)

. A function
f ∈ F defines a multi-classifierhf =

(

h1
f , ...,h

m
f

)

throughhl
f (x) =sign

(

f l (x)
)

. To give uniform error
bounds for such classifiers in terms of empirical estimates, we define forγ > 0 the margin functions

φγ (t) =

1 if t ≤ 0
1− t/γ if 0 < t < γ

0 if γ≤ t
,

and forf ∈ F the random variable

êrγ (f) =
1

mn

m

∑
l=1

n

∑
i=1

φγ

(

Yl
i f l
(

Xl
i

))

,

called theempiricalγ-margin errorof f. The following Theorem gives a bound on er(hf) in terms
of êrγ (f), valid with high probability uniformly inf ∈ F andγ.

125

MAURER

Theorem 9 Let ε,δ ∈ (0,1)
(i) With probability greater than1−δ it holds for all f ∈ F and all γ ∈ (0,1) that

er(hf)≤ êrγ (f)+
1

γ(1− ε)
E
[

R̂ m
n (F)(X)

]

+

√

ln(1/(δγε))
2nm

.

(ii) With probability greater than1−δ it holds for all f ∈ F and all γ ∈ (0,1) that

er(hf)≤ êrγ (f)+
1

γ(1− ε)
R̂ m

n (F)(X)+

√

9ln(2/(δγε))
2nm

.

HereR̂ m
n (F) is theempirical Rademacher complexityin the sense of the following

Definition 10 Let
{

σl
i : l ∈ {1, ...,m} , i ∈ {1, ...,n}

}

be a collection of independent random vari-
ables, distributed uniformly in{−1,1}. The empirical Rademacher complexity of a classF of
functionsf : X → R

m is the functionR̂ m
n (F) defined on(X n)m by

R̂ m
n (F)(x) = Eσ

[

sup
f∈F

2
mn

m

∑
l=1

n

∑
i=1

σl
i f l
(

xl
i

)

]

.

For the readers convenience we give a proof of Theorem 9 in the appendix.
The bounds in the Theorem each involve three terms. The last one expresses the dependence

of the estimation error on the confidence parameterδ and a model-selection penalty ln(1/(γε))
for the choice of the marginγ. Note that it generally decreases as 1/

√
nm. This is not an a priori

advantage of multi-task learning, but a trivial consequence of the fact that we estimate an average
of m probabilities (in contrast to Ben David, 2003, where bounds are valid foreach individual task
- of course under more restrictive assumptions). The 1/

√
nmdecay however implies that even for

moderate values ofm andn the parameterε in Theorem 9 can be chosen very small, so that the
factor 1/(1− ε) in the second term on the right of the two bounds is very close to unity.

The second term involves the complexity of the function classF , either as measured in terms of
the distribution of the random variableX or in terms of the observed sample. Since the distribution
of X is unobservable in practice, the bound (i) is primarily of theoretical importance, while (ii) can
be used to drive an algorithm which selects the multi-classifierhf∗ , where(f∗,γ) ∈ F × (0,1) are
chosen to minimize the right side of the bound with givenδ, ε. It is questionable if minimizing
upper bounds is a good strategy, but it can serve as a motivating guideline.

Of key importance in the analysis of these algorithms is the empirical Rademachercomplexity
R̂ m

n (F)(X), as observed on the sampleX, and its expectation, measuring respectively the sample-
and distribution-dependent complexities of the function classF . Bounds on these quantities can be
substituted in Theorem 9 to give corresponding error bounds.

5. The Rademacher Complexity of Linear Multi-Task Learning

We will now concentrate on multi-task learning in the linear case, when the data live in a real,
separable Hilbert spaceH, by means of some kernel-induced embedding (see Cristianini and Shawe-
Taylor 2000), the details of which will not concern us at this point. We therefore takeH as input
spaceX , so that the random variablesXl take values inH for all l ∈ {1, ...,m}, and we generally

126

L INEAR MULTI -TASK LEARNING

require
∥

∥Xl
∥

∥ ≤ 1. The case
∥

∥Xl
∥

∥ = 1 where the data are constrained to the unit sphere inH is of
particular interest, corresponding to a class of radial basis function kernels.

We writeCl for the covariance operatorE [QXl] andC for the total covariance operatorC =
(1/m)∑l C

l , corresponding to a uniform mixture of distributions. By Lemma 7 we have
∥

∥Cl
∥

∥

HS≤
tr
(

Cl
)

= E
[

∥

∥Xl
∥

∥

2
]

≤ 1.

Let B > 0, letT be a fixed symmetric, bounded linear operator onH with ‖T‖∞ ≤ 1, and letA
be a set of symmetric, bounded linear operatorsT on H, all satisfying‖T‖∞ ≤ 1. We will consider
the vector-valued function classes

FB = {x∈ H 7→ (v1, ...,vm)(x) := (〈x,v1〉 , ...,〈x,vm〉) : ‖vi‖ ≤ B}
FB◦T = {x∈ H 7→ (v1, ...,vm)◦T (x) := (〈Tx,v1〉 , ...,〈Tx,vm〉) : ‖vi‖ ≤ B}
FB◦A = {x∈ H 7→ (v1, ...,vm)◦T (x) : ‖vi‖ ≤ B,T ∈ A} .

The algorithms which choose fromFB and FB ◦T are essentially trivial extensions of linear
single-task learning, where the tasks do not interact in the selection of the individual classifiersvi ,
which are chosen independently. In the case ofFB◦T the preprocessing operatorT is chosen before
seeing the training data. Since‖T‖∞ ≤ 1 we haveFB ◦T ⊆ FB, so that we can expect a reduced
complexity forFB◦T and the key question becomes if the choice ofT (possibly based on experience
with other data) was lucky enough to allow for a sufficiently low empirical error.

The non-interacting classesFB andFB◦T are important for comparison toFB◦A which repre-
sents proper multi-task learning. Here the preprocessing operatorT is selected fromA in response
to the data. The constraint thatT be the same for all tasks forces an interaction of tasks in the choice
of T and(v1, ...,vm), deliberately aiming for a low empirical error. At the same time we also have
FB◦A ⊆ FB, so that again a reduced complexity is to be expected, giving a smaller contribution to
the estimation error. The promise of multi-task learning is based on the combinationof these two
ideas: Aiming for a low empirical error, using a function class of reduced complexity.

We first look at the complexity of the function classFB. The proof of the following lemma is
essentially the same as the proof of Lemma 22 in Bartlett and Mendelson (2002).

Lemma 11 We have

R̂ m
n (FB)(x) ≤ 2B

nm

m

∑
l=1

(

n

∑
i=1

∥

∥xl
i

∥

∥

2

)1/2

E
[

R̂ m
n (FB)(X)

]

≤ 2B√
n

1
m

m

∑
l=1

(

E
[

∥

∥Xl
∥

∥

2
])1/2

=
2B√

n
1
m

m

∑
l=1

tr
(

Cl
)1/2

127

MAURER

Proof Using Schwarz’ and Jensen’s inequality and the independence of theσl
i we get

R̂ m
n (FB)(x) = Eσ

[

sup
v1,...,vm,‖vl‖≤B

2
nm

m

∑
l=1

〈

n

∑
i=1

σl
i x

l
i ,vl

〉]

≤ BEσ

[

2
nm

m

∑
l=1

∥

∥

∥

∥

∥

n

∑
i=1

σl
i x

l
i

∥

∥

∥

∥

∥

]

≤ 2B
nm

m

∑
l=1

Eσ

∥

∥

∥

∥

∥

n

∑
i=1

σl
i x

l
i

∥

∥

∥

∥

∥

2

1/2

=
2B
nm

m

∑
l=1

(

n

∑
i=1

∥

∥xl
i

∥

∥

2

)1/2

.

Jensen’s inequality then gives the second conclusion

The first bound in the lemma is just the average of the bounds given by Bartlett and Mendelson in
on the empirical complexities for the various task-components of the sample. For inputs constrained
to the unit sphere inH, when

∥

∥Xl
∥

∥ = 1, both bounds become 2B/
√

n, which sets the mark for
comparison with the interacting caseFB ◦A . For motivation we next look at the caseFB ◦ T,
working with a fixed linear preprocessorT of operator norm bounded by 1. Using the above bound
we obtain

R̂ m
n (FB◦T)(x) = R̂ m

n (FB)(Tx)≤ 2B
nm

m

∑
l=1

(

n

∑
i=1

∥

∥Txl
i

∥

∥

2

)1/2

, (4)

which is always bounded byB/
√

n, because‖Tx‖ ≤ ‖x‖ ,∀x. Using Lemma 4 (iv) we can rewrite
the right side above as

2B√
n

1
m

m

∑
l=1

〈

T2,
1
n

n

∑
i=1

Qxl
i

〉1/2

HS

.

Taking the expectation and using the concavity of the root function gives,with two applications of
Jensen’s inequality and an application of Schwarz’ inequality (inHS),

E
[

R̂ m
n (FB◦T)(X)

]

≤ 2B√
n

∥

∥T2
∥

∥

1/2
HS ‖C‖

1/2
HS ,

which can be significantly smaller thanB/
√

n, for example ifT is a d-dimensional projection,
and the data-distribution is spread well over a much more thand-dimensional submanifold of the
unit ball in H, as explained in the introduction and section 3. If we substitute the bound above in
Theorem 9 we obtain an inequality which looks like (3) in the limitm→ ∞.

We now consider the case whereT is chosen from some setA of (symmetric, bounded) candi-
date operators on the basis of the same sampleX, simultaneous to the determination of the classifica-
tion vectorsv1, ...,vl . We give two bounds each for the Rademacher complexity and its expectation.
One is somewhat similar to other bounds for multi-task learning (e.g. (2)) and another one is tighter
in the limit when the number of tasksmgoes to infinity.

128

L INEAR MULTI -TASK LEARNING

Theorem 12 The following inequalities hold

R̂ m
n (FB◦A)(x) ≤ 2B‖A‖HS√

n

√

1
mn

∥

∥Ĉ(x)
∥

∥

Fr +
1
m

(5)

R̂ m
n (FB◦A)(x) ≤

2B
∥

∥A2
∥

∥

1/2
HS√

n

(

(

1
mn

∥

∥Ĉ(x)
∥

∥

Fr

)2

+
2
m

)1/4

(6)

E
[

R̂ m
n (FB◦A)(X)

]

≤ 2B‖A‖HS√
n

√

‖C‖HS+
1
m

(7)

E
[

R̂ m
n (FB◦A)(X)

]

≤
2B
∥

∥A2
∥

∥

1/2
HS√

n

(

‖C‖2HS+
3
m

)1/4

. (8)

Proof Fix x and define vectorswl = wl (σ) = ∑n
i=1 σl

i x
l
i depending on the Rademacher variablesσl

i .
Then by Lemma 5 and Jensen’s inequality

R̂ (FB◦A)(x) = Eσ

[

sup
T∈A

sup
v1,...,vm,‖vi‖≤B

2
nm

m

∑
l=1

〈Twl ,vl 〉
]

(9)

≤ 2B
nm
‖A‖HSEσ

(

∑
l ,r

|〈wl ,wr〉|
)1/2

≤ 2B
nm
‖A‖HS

(

∑
l ,r

Eσ [|〈wl ,wr〉|]
)1/2

.

Now we have

Eσ

[

‖wl‖2
]

=
n

∑
i=1

n

∑
j=1

Eσ

[

σl
i σ

l
j

]〈

xl
i ,x

l
j

〉

=
n

∑
i=1

∥

∥xl
i

∥

∥

2
. (10)

Also, for l 6= r, we get, using Jensen’s inequality and independence of the Rademachervariables,

(Eσ [|〈wl ,wr〉|])2 ≤ Eσ

[

〈wl ,wr〉2
]

(11)

=
n

∑
i=1

n

∑
j=1

n

∑
i′=1

n

∑
j ′=1

Eσ

[

σl
i σ

r
jσ

l
i′σ

r
j ′

]〈

xl
i ,x

r
j

〉〈

xl
i′ ,x

r
j ′

〉

=
n

∑
i. j=1

〈

xl
i ,x

r
j

〉2
.

Taking the square-root and inserting it together with (10) in (9) we obtain the following intermediate
bound

R̂ m
n (FB◦A)(x)≤ 2B‖A‖HS

nm

m

∑
l=1

n

∑
i=1

∥

∥xl
i

∥

∥

2
+ ∑

l 6=r

(

n

∑
i, j=1

〈

xl
i ,x

r
j

〉2
)1/2

1/2

(12)

By Jensen’s inequality we have

1
m2 ∑

l 6=r

(

n

∑
i, j=1

〈

xl
i ,x

r
j

〉2
)1/2

≤
(

1
m2

m

∑
l ,r=1

n

∑
i, j=1

〈

xl
i ,x

r
j

〉2
)1/2

=
1
m

∥

∥Ĉ(x)
∥

∥

Fr ,

129

MAURER

which together with (12) and
∥

∥xl
i

∥

∥≤ 1 implies (5).

To prove (6) first use the second part of Lemma 5 and Jensen’s inequality to get

R̂ (FB◦A)(x)≤
2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

(

∑
l ,r

Eσ

[

〈wl ,wr〉2
]

)1/4

. (13)

Now we haveEσ

[

σl
i σl

jσl
i′σ

l
j ′

]

≤ δi j δi′ j ′ +δii ′δ j j ′ +δi j ′δ ji ′ so

Eσ

[

〈wl ,wl 〉2
]

≤
n

∑
i, j=1

(

∥

∥xl
i

∥

∥

2∥
∥xl

j

∥

∥

2
+2
〈

xl
i ,x

l
j

〉2
)

≤ 2

(

n

∑
i=1

∥

∥xl
i

∥

∥

2

)2

+
n

∑
i, j=1

〈

xl
i ,x

l
j

〉2
≤ 2n2 +

n

∑
i, j=1

〈

xl
i ,x

l
j

〉2
,

where we used
∥

∥xl
i

∥

∥≤ 1. Inserting this together with (11) in (13) gives

R̂ m
n (FB◦A)(x) ≤

2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

(

∑
l ,r:l 6=r

Eσ

[

〈wl ,wr〉2
]

+
m

∑
l=1

Eσ

[

〈wl ,wl 〉2
]

)1/4

≤
2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

(

m

∑
l ,r=1

n

∑
i, j=1

〈

xl
i ,x

r
j

〉2
+2mn2

)1/4

, (14)

which is (6).

Taking the expectation of (12), using Jensen’s inequality,
∥

∥Xl
∥

∥≤ 1 and independence ofXl and
Xr for l 6= r, and Jensen’s inequality again, we get

E
[

R̂ m
n (FB◦A)(X)

]

≤ 2B‖A‖HS

nm

nm+ ∑
l 6=r

(

E

[

n

∑
i, j=1

〈

Xl
i ,X

r
j

〉2
])1/2

1/2

=
2B‖A‖HS

nm

∑
l 6=r

(

E

[〈

n

∑
i=1

QXl
i
,

n

∑
j=1

QXr
j

〉

HS

])1/2

+nm

1/2

=
2B‖A‖HS√

n

(

1
m2 ∑

l 6=r

〈E [QXl] ,E [QXr]〉1/2
HS +

1
m

)1/2

≤ 2B‖A‖HS√
n

〈

1
m

m

∑
l=1

E [QXl] ,
1
m

m

∑
r=1

E [QXr]

〉1/2

HS

+
1
m

1/2

,

130

L INEAR MULTI -TASK LEARNING

which gives (7). In a similar way we obtain from (14)

E
[

R̂ m
n (FB◦A)(X)

]

≤
2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

(

mn2 +
m

∑
l 6=r

n

∑
i, j=1

〈

E
[

QXl
i

]

,E
[

QXr
j

]〉

HS
+2mn2

)1/4

≤
2B
∥

∥A2
∥

∥

1/2
HS

n
√

m

m2n2

∥

∥

∥

∥

∥

E

[

1
mn

m

∑
l=1

n

∑
i=1

QXl
i

]∥

∥

∥

∥

∥

2

HS

+3mn2

1/4

,

which gives (8)

6. Bounds for Linear Multi-Task Learning

Inserting the bounds of Theorem 12 in Theorem 9 immediately gives

Theorem 13 Let A be a be set of bounded, symmetric operators in H andε,δ ∈ (0,1)
(i) With probability greater than1−δ it holds for allf = (v1, ...,vm)◦T ∈FB◦A and allγ∈ (0,1)

that

er(hf)≤ êrγ (f)+
1

γ(1− ε)
A+

√

ln(1/(δγε))
2nm

,

where A is either

A =
2B‖A‖HS√

n

√

‖C‖HS+
1
m

(15)

or

A =
2B
∥

∥A2
∥

∥

1/2
HS√

n

(

‖C‖2HS+
3
m

)1/4

. (16)

(ii) With probability greater than1− δ it holds for all f = (v1, ...,vm) ◦T ∈ FB ◦A and for all
γ ∈ (0,1) that

er(hf)≤ êrγ (f)+
1

γ(1− ε)
A(X)+

√

9ln(2/(δγε))
2nm

,

where the random variable A(X) is either

A(X) =
2B‖A‖HS√

n

√

1
mn

∥

∥Ĉ(x)
∥

∥

Fr +
1
m

or

A(X) =
2B
∥

∥A2
∥

∥

1/2
HS√

n

(

(

1
mn

∥

∥Ĉ(x)
∥

∥

Fr

)2

+
2
m

)1/4

.

We finally extend this result from uniformly bounded setsA of operators to the setHS∗ of all
symmetric Hilbert-Schmidt operators. This is done following the techniques described in (Anthony,
Bartlett, 1999), using the following lemma (a copy of Lemma 15.5 from this reference):

131

MAURER

Lemma 14 Suppose
{F (α1,α2,δ) : 0 < α1,α2,δ≤ 1}

is a set of events such that:
(i) For all 0 < α≤ 1 and0 < δ≤ 1,

Pr{F (α,α,δ)} ≤ δ.

(ii) For all 0 < α1≤ α≤ α2≤ 1and0 < δ1≤ δ≤ 1,

F (α1,α2,δ1)⊆ F (α,α,δ) .

Then for0 < a,δ < 1,

Pr

[

α∈(0,1]

F (αa,α,δα(1−a))

≤ δ.

Applications of this lemma follow a standard pattern, as explained in detail in (Anthony, Bartlett,
1999). Letε,δ,B be as in the previous theorem. Forα ∈ (0,1] set

A (α) = {T ∈ HS∗ : ‖T‖HS≤ 1/α}
and consider the events

F (α1,α2,δ) = {∃f ∈ FB◦A (α2) such that

er(hf) > êrγ (f)+
2B

α1γ(1− ε)
√

n

√

‖C‖HS+
1
m

+

√

ln(1/(δγε))
2nm

}

.

By the first conclusion of Theorem 13 the eventsF (α1,α2,δ) satisfy hypothesis (i) of Lemma 14,
and it is easy to see that (ii) also holds. If we seta = 1− ε and replaceα by 1/‖T‖HS, then the
conclusion of Lemma 14 reads as follows:

With probability greater 1− δ it holds for everyf = (v1, ...,vm) ◦T with (v1, ...,vm) ∈ FB and
T ∈ HS∗ with ‖T‖HS≥ 1 and allγ ∈ (0,1) that

er(hf)≤ êrγ (f)+
2B‖T‖HS

γ(1− ε)2√n

√

‖C‖HS+
1
m

+

√

√

√

√

ln
(

‖T‖HS
δγε2

)

2nm
.

Applying the same technique to the other conclusions of Theorem 13 gives the following result,
which we state in abbreviated fashion:

Theorem 15 Theorem 13 holds with the following modifications:

• The classFB ◦A is replaced by allf = (v1, ...,vm) ◦ T ∈ FB ◦HS∗ with ‖T‖HS ≥ 1 (or
∥

∥T2
∥

∥

HS≥ 1).

• ‖A‖HS (or
∥

∥A2
∥

∥

HS) is replaced by‖T‖HS (or
∥

∥T2
∥

∥

HS).

• (1− ε) and1/(δγε) are replaced by(1− ε)2 and‖T‖HS/
(

δγε2
)

(or
∥

∥T2
∥

∥

1/2
HS /

(

δγε2
)

) respectively.

The requirement‖T‖HS≥ 1 (or
∥

∥T2
∥

∥

HS≥ 1) is an artifact introduced by the stratification lemma
14. Settingε = 1/2 andB = 1 gives Theorem 1 and Theorem 2.

132

L INEAR MULTI -TASK LEARNING

7. An Example

We conclude with an example illustrating the behavior of our bounds when learning from noisy data.
We start with a fairly generic situation and subsequently introduce severalidealized assumptions.

Suppose that
(

Xl ,Yl
)m

l=1 are random variables modelling a multi-task problem as above. In the
following let M be the smallest closed subspaceM ⊂ H such thatXl ∈M a.s..

We now mix the data variablesXl with noise, modeled by a random variableXN with values
in H, such that

∥

∥XN
∥

∥≤ 1 andE
[

XN
]

= 0. The mixture is controlled by a parameters∈ (0,1] and
replaces the original data-variablesXl with the contaminated random variableX̂l = sXl +(1−s)XN.
We now make the assumption that

• XN is independent ofXl andYl for all l .

Let us calls the signal amplitude and 1−s the noise amplitude. The cases= 1 corresponds to
the original multi-task problem. Decreasings, and adding more noise, clearly makes learning more
difficult up to the cases= 0 (which we exclude), where the data variables become independent of the
labels and learning becomes impossible. We will look at the behavior of both ofour bounds for non-
interacting (single-task) and interacting (multi-task) learners as we decrease the signal amplitudes.
The bounds which we use are implied by Lemma 11 and Theorem 9 for the non-interacting case
and Theorem 13 for the interacting case, and state that each of the following two statements holds
with probability at least 1−δ:

1. Non-interacting bound. ∀v ∈ F1, ∀γ,

er(hv)≤êrγ (v)+ 2
γ(1−ε)

√
n +
√

ln(1/(δγε))
2nm

2. Interacting bound. ∀v◦T ∈ F1◦A , ∀γ,

er(hv ◦T)≤êrγ (v◦T)+
2‖A‖HS

γ(1−ε)
√

n

√

‖C‖HS+ 1
m +

√

ln(1/(δγε))
2nm

The first damage done by decreasings is that the marginγ must be also decreased tosγ to obtain
a comparable empirical margin error for the mixed problem as for the originalproblem. Replacing
γ by γs is very crude and normally insufficient, because of interfering noise, but the replacement can
be justified if one is willing to accept the orthogonality assumption:

• XN ⊥M a.s.

The assumption that the noise to be mixed in is orthogonal to the signal is somewhat artificial.
We will later assume that the dimensiond of the signal spaceM is small and thatXN is distributed
homogeneously on a high-dimensional sphere. This implies weak orthogonality in the sense that
〈

Xl ,XN
〉2

is small with high probability, a statement which could also be used, but at the expense
of considerable complications. To immediately free us from consideration of the empirical term
(and only for this purpose), we make the orthogonality assumption. By projecting to M we can
then find for any sample

(

Xl
i ,Y

l
i

)

and any preprocessorT and any multi-classifying vectorv some
T ′ andv′ such that êrγs(v′) and êrγs(v′ ◦T ′) for the mixed sample

(

X̂l
i ,Y

l
i

)

are the same as er̂γ (v)
and êrγ (v◦T) for the original sample. We can therefore regard the empirical terms as equal in both
bounds and for all values ofs as long asA is stable under projection toM andγ is replaced byγs.

133

MAURER

This will cause a logarithmic penalty in the last term depending on the confidence parameterδ, but
we will neglect this entire term on the grounds of rapid decay with the product nm. The remaining
term, which depends onsand is different for both bounds, is then

2
γs(1− ε)

√
n

(17)

for the non-interacting and
2‖A‖HS

γs(1− ε)
√

n

√

‖Cs‖HS+
1
m

(18)

for the interacting case. HereCs = (1/m)∑l E
[

QsXl +(1−s)XN

]

is the total covariance operator for

the noisy mixture problem. By independence ofXN andXl and the mean-zero assumption forXN

we obtain from Lemma 4 and 7 that

Cs = (1/m)∑
l

(

s2E [QXl]+ (1−s)2E [QXN]
)

= s2C+(1−s)2E [QXN] ,

whereC would be the total covariance operator for the original problem. To boundtheHS-norm of
this operator we now introduce a simplifying assumption of homogeneity for the noise distribution:

• XN is distributed uniformly on ak-dimensional unit-sphere centered at the origin.

This implies that‖E [QXN]‖HS = 1/
√

k so that

‖Cs‖2HS≤ s2‖C‖HS+‖E [QXN]‖HS≤ s2‖C‖HS+1/
√

k,

and substitution in (18) gives the new term

2‖A‖HS

γ(1− ε)
√

n

√

‖C‖HS+
1
s2

(

1√
k

+
1
m

)

(19)

for the interacting bound. The dependence on the inverse signal amplitudein the first factor has
disappeared, and ask andm increase, the bound for the noisy problem tends to the same limiting
value

2‖A‖HS‖C‖
1/2
HS

γ(1− ε)
√

n

as the bound for the original ’noise free’ problem, for any fixed positive value ofs. This contrasts
the behavior of all bounds which depend linearly on the dimension of the input space (such as in)
and diverge ask→ ∞.

The quotient of (19) to the non-interacting (17) is

‖A‖HS

√

s2‖C‖HS+
1√
k

+
1
m

,

and the interacting bound will be better than the non-interacting bound whenever this expression
is less than unity. This is more likely to happen when the signal amplitudes is small, and the
dimensionk of the noise distribution and the number of tasksmare large.

134

L INEAR MULTI -TASK LEARNING

An intuitive explanation of the fact, that for multi-task learning a large dimensionk of the
noise-distribution has a positive effect on the bound, is that for largek a sample of homogeneously
distributed random unit vectors is less likely to lie in a common low-dimensional subspace, a cir-
cumstance which could mislead the multi-task learner.

Of course there are many situations, when multi-task learning doesn’t giveany advantage over
single-task learning. To make a quantitative comparison we make more three more simplifying
assumptions on the data distribution of theXl :

• dim(M) = d < ∞

The signal spaceM is of course unknown to the learner, but we assume that

• we know its dimensiond.

Multi-task learning can then select from an economically chosen setA ⊂ HS∗ of preprocessors
such thatA contains the set ofd-dimensional projectionsPd and‖A‖HS =

√
d. We assume knowl-

edge ofd mainly for simplicity, without it we could invoke Theorem 15 instead of Theorem13
above, causing some complications, which we seek to avoid.

• The mixture of the distributions of theXl is homogeneous onS1∩M.

This implies‖C‖HS = 1/
√

d, and, with‖A‖HS =
√

d, the multi-task bound will improve over
the non-interacting bound if

√
ds2 +

d√
k

+
d
m

< 1.

From this condition we conclude with four cook-book-rules to decide whenit is worthwhile to go
through the computational trouble of multi-task learning instead of the simpler single-task learning.

1. The problem is very noisy (s is expected to be small)

2. The noise is high-dimensional (k is expected to be large)

3. There are many learning tasks (m is large)

4. We suspect that the relevant information for allm tasks lies in a low-dimensional (d is small)

If one believes these criteria to be met, then one can use an algorithm as the one developed in
(Ando, Zhang, 2005) to minimize the interacting bound above, withA = Pd.

Appendix

We give a proof of Theorem 9 for the readers convenience. Most ofthis material is combined from
Anthony and Bartlett (1999), Bartlett and Mendelson (2002), Bartlett etal (2005) and Ando and
Zhang (2005), and we make no claim to originality for any of it. A preliminary result is

135

MAURER

Theorem 16 LetF be a[0,1]m-valued function class on a spaceX , andX =
(

Xl
i

)(m,n)

(l ,i)=(1,1)
a vector

of X -valued independent random variables where for fixed l and varying iall the Xl
i are identically

distributed. Fixδ > 0. Then with probability greater than1−δ we have for allf =
(

f 1, ..., f m
)

∈ F

1
m

m

∑
l=1

E
[

f l
(

Xl
1

)]

≤ 1
mn

m

∑
l=1

n

∑
i=1

f l
(

Xl
i

)

+R m
n (F)+

√

ln(1/δ)

2mn
.

We also have with probability greater than1−δ for all f =
(

f 1, ..., f m
)

∈ F , that

1
m

m

∑
l=1

E
[

f l
(

Xl
1

)]

≤ 1
mn

m

∑
l=1

n

∑
i=1

f l
(

Xl
i

)

+ R̂ m
n (F)(X)+

√

9ln(2/δ)

2mn
.

Proof Let Ψ be the function onX mn given by

Ψ(x) = sup
f∈F

1
m

m

∑
l=1

(

E
[

f l
(

Xl
1

)]

− 1
n

n

∑
i=1

f l
(

Xl
i

)

)

and letX′ be an iid copy of theX mn-valued random variableX. Then

E [Ψ(X)] = EX

[

sup
f∈F

1
mn

EX′

[

m

∑
l=1

n

∑
i=1

(

f l
(

(

Xl
i

)′)

− f l
(

Xl
i

)

)

]]

≤ EXX ′

[

sup
f∈F

1
mn

m

∑
l=1

n

∑
i=1

(

f l
(

(

Xl
i

)′)

− f l
(

Xl
i

)

)

]

= EXX ′

[

sup
f∈F

1
mn

m

∑
l=1

n

∑
i=1

σl
i

(

f l
(

(

Xl
i

)′)

− f l
(

Xl
i

)

)

]

,

for any realizationσ =
(

σl
i

)

of the Rademacher variables, because the expectationEXX ′ is symmetric

under the exchange
(

Xl
i

)′←→ Xl
i . Hence

E [Ψ(X)]≤ EXEσ

[

sup
f∈F

2
mn

m

∑
l=1

n

∑
i=1

σl
i f l
(

Xl
i

)

]

= R m
n (F) .

Now fix x ∈ X mn and letx′ ∈ X mn be asx, except for one modified coordinate
(

xl
i

)′
. Since eachf l

has values in[0,1] we have|Ψ(x)−Ψ(x′)| ≤ 1/(mn). So by the one-sided version of the bounded
difference inequality (see McDiarmid, 1998)

Pr

{

Ψ(X) > EX′
[

Ψ
(

X′
)]

+

√

ln(1/δ)

2mn

}

≤ δ.

Together with the above bound onE [Ψ(X)] and the definition ofΨ this gives the first conclusion.

With x andx′ as above we have
∣

∣

∣
R̂ m

n (F)(x)− R̂ m
n (F)(x′)

∣

∣

∣
≤ 2/(mn) , so by the other tail of

the bounded difference inequality

Pr

{

R m
n (F) < R̂ m

n (F)(X)+

√

4ln(1/δ)

2mn

}

≤ δ,

136

L INEAR MULTI -TASK LEARNING

which, combined with the first conclusion in a union bound, gives the second conclusion.

We quote the following folklore theorem (see for example Bartlett et al, 2005) bounding the
Rademacher complexity of a function class composed with a fixed Lipschitz function.

Theorem 17 Let F be anR
m-valued function class on a spaceX and suppose thatφ : R→ R has

Lipschitz constant L. Let

φ◦F =
{(

φ◦ f 1, ...,φ◦ f m) :
(

f 1, ..., f m) ∈ F
}

.

Then
R̂ m

n (φ◦F)≤ L R̂ m
n (F) .

Suppose now thatF is anR
m-valued function class onX . For f =

(

f 1, ..., f m
)

define functions
f′ =

(

f ′1, ..., f ′m
)

andf′′ =
(

f ′′1, ..., f ′′m
)

, from X×{−1,1} to R
m or [0,1]m respectively, by

f ′l (x,y) = y f l (x) and f ′′l (x,y) = φγ ◦ f ′l (x,y) = φγ (y f (x))

and function classesF ′ = {f′ : f ∈ F } and F ′′ = {f′′ : f ∈ F }. It follows from the definition of
R̂ that R̂ m

n (F ′)(x,y) = R̂ m
n (F)(x) for all (x,y) ∈ (X×{−1,1})nm. Sinceφγ is Lipschitz with

constantγ−1, the previous theorem implies that

R̂ m
n

(

F ′′
)

(X,Y)≤ γ−1R̂ m
n (F)(X) andR m

n

(

F ′′
)

≤ γ−1R m
n (F) . (20)

On the other hand, for everyf =
(

f 1, ..., f m
)

∈ F we have

er(hf) =
1
m∑E

[

1(−∞,0]

(

Yl
1 f l
(

Xl
1

))]

≤ 1
m∑E

[

φγ ◦
(

f ′
)l
(

Xl
1,Y

l
1

)]

=
1
m∑E

[

(

f ′′
)l
(

Xl
1,Y

l
1

)]

(21)

and
1

mn

m

∑
l=1

n

∑
i=1

f ′′l
(

Xl
i ,Y

l
i

)

=
1

mn

m

∑
l=1

n

∑
i=1

φγ

(

Yl
i f l
(

Xl
i

))

= êrγ (f) . (22)

Applying Theorem 16 to the classF ′′ and substitution of (21), (22) and (20) yield

Theorem 18 Let F be aR
m-valued function class on a spaceX , γ ∈ (0,1) and

(X,Y) =
(

Xl
i ,Y

l
i

)(m,n)

(l ,i)=(1,1)

a vector ofX×{−1,1}-valued independent random variables where for fixed l and varying iall the
(

Xl
i ,Y

l
i

)

are identically distributed. Fixδ > 0. Then with probability greater than1−δ we have for
all f ∈ F

er(hf)≤ êrγ (f)+ γ−1R m
n (F)+

√

ln(1/δ)

2mn
.

We also have with probability greater than1−δ for all f ∈ F , that

er(hf)≤ êrγ (f)+ γ−1R̂ m
n (F)(X)+

√

9ln(2/δ)

2mn
.

137

MAURER

To arrive at Theorem 9 we still need to convert this into a statement valid with high probability
for all marginsγ ∈ (0,1). This is done with Lemma 14, which we now apply to the event

F (α1,α2,δ) =

{

∃f ∈ F s.t. er(hf) > êrα2 (f)+α−1
1 R m

n (F)+

√

ln(1/δ)

2mn

}

.

Hypothesis (i) of Lemma 14 follows from the previous theorem, hypothesis (ii)from the fact that
the right side in the inequality increases if we decreaseδ andα1 and increaseα2. If we replacea by
1− ε andα by γ, then the conclusion of the lemma becomes the first conclusion of Theorem 9.The
second conclusion of Theorem 9 is handled similarly.

The following table is intended as an index and a quick reference to the notation and definitions
introduced in the paper.

Notation Short Description Section
H real, separable Hilbert space 2
〈., .〉 and‖.‖ inner product and norm onH 2
S1 unit-sphere inH 3
HS Hilbert-Schmidt operators onH 2
〈., .〉HS and‖.‖HS inner product and norm onHS 2
HS∗ symmetric operators inHS 2
Pd d-dimensional orthogonal projections inH 2
A a subset ofHS∗ 2
‖A‖HS supT∈A ‖T‖HS 2
∥

∥A2
∥

∥

HS supT∈A

∥

∥T2
∥

∥

HS 2
Qx, for x∈ H operatorQxz= 〈z,x〉x, ∀z∈ H 2
Gx,y, for x,y∈ H operatorGx,yz= 〈x,z〉y, ∀z∈ H 2
tr (T) trace of the operatorT 2
E [QX] covariance operator ofH-valued r.v.X 3
X generic input space 4
(

Xl ,Yl
)

random variables for multi-task problem 4
(

Xl
i ,Y

l
i

)

random variables for multi-task sample 4
er(h) average error of multiclassifierh 4
hf multiclassifier obtained by thresholdingf 4
φγ margin function 4
êrγ (f) empirical margin error of vector functionf 4
R̂ m

n (F) empirical Rademacher complexity 4
Cl covariance operator forl -th task 5
C total covariance operator 5
Ĉ(X) Gramian of data-sampleX 3
FB, FB◦A fctn. classes for linear multi-task learning 5

References

[1] R. K. Ando, T. Zhang. A framework for learning predictive structures from multiple tasks and
unlabeled data.Journal of Machine Learning Research, 6: 1817-1853, 2005.

138

L INEAR MULTI -TASK LEARNING

[2] M. Anthony and P. Bartlett.Neural Network Learning: Theoretical Foundations. Cambridge
University Press, Cambridge, UK, 1999.

[3] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian Complexities: Risk Bounds and
Structural Results.Journal of Machine Learning Research, 3: 463-482, 2002.

[4] P. Bartlett, O. Bousquet and S. Mendelson. Local Rademacher complexities. Available online:
http://www.stat.berkeley.edu/˜bartlett/papers/bbm-lrc-02b.pdf.

[5] P. Baxendale. Gaussian measures on function spaces.Amer. J. Math., 98:891-952, 1976.

[6] J. Baxter. Theoretical Models of Learning to Learn, inLearning to Learn, S.Thrun, L.Pratt
Eds. Springer 1998.

[7] J. Baxter. A Model of Inductive Bias Learning.Journal of Artificial Intelligence Research12:
149-198, 2000.

[8] S. Ben-David and R. Schuller. Exploiting task relatedness for multiple tasklearning. InCOLT
03, 2003.

[9] R. Caruana. Multitask Learning, inLearning to Learn, S.Thrun, L.Pratt Eds. Springer 1998.

[10] Nello Cristianini and John Shawe-Taylor. Support Vector Machines. Cambridge University
Press, 2000.

[11] T. Evgeniou and M. Pontil. Regularized multi-task learning.Proc. Conference on Knowledge
Discovery and Data Mining, 2004.

[12] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the general-
ization error of combined classifiers.The Annals of Statistics, Vol. 30, No 1, 1-50.

[13] Colin McDiarmid. Concentration, inProbabilistic Methods of Algorithmic Discrete Mathe-
matics, p. 195-248. Springer, Berlin, 1998.

[14] C. A. Miccheli and M. Pontil. Kernels for multi-task learning. Available online, 2005.

[15] S.Mika, B.Scḧolkopf, A.Smola, K.-R.M̈uller, M.Scholz and G.R̈atsch. Kernel PCA and De-
noising in Feature Spaces.Advances in Neural Information Processing Systems11, 1998.

[16] J. Shawe-Taylor, N. Cristianini. Estimating the moments of a random vector. Proceedings of
GRETSI 2003 Conference, I: 47–52, 2003.

[17] Michael Reed and Barry Simon.Functional Analysis, part I of Methods of Mathematical
Physics, Academic Press, 1980.

[18] S. Thrun. Lifelong Learning Algorithms, inLearning to Learn, S.Thrun, L.Pratt Eds. Springer
1998

139

Journal of Machine Learning Research 7 (2006) 141–166 Submitted 6/05; Revised 9/05 and 12/05; Published 1/06

Active Learning in Approximately Linear Regression
Based on Conditional Expectation of Generalization Error

Masashi Sugiyama SUGI@CS.TITECH.AC.JP

Department of Computer Science
Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

Editor: Greg Ridgeway

Abstract
The goal of active learning is to determine the locations of training input points so that the general-
ization error is minimized. We discuss the problem of activelearning in linear regression scenarios.
Traditional active learning methods using least-squares learning often assume that the model used
for learning is correctly specified. In many practical situations, however, this assumption may not
be fulfilled. Recently, active learning methods using “importance”-weighted least-squares learning
have been proposed, which are shown to be robust against misspecification of models. In this paper,
we propose a new active learning method also using the weighted least-squares learning, which we
call ALICE (Active Learning using the Importance-weighted least-squares learning based on Con-
ditional Expectation of the generalization error). An important difference from existing methods is
that we predict theconditionalexpectation of the generalization error given training input points,
while existing methods predict thefull expectation of the generalization error. Due to this dif-
ference, the training input design can be fine-tuned depending on the realization of training input
points. Theoretically, we prove that the proposed active learning criterion is a more accurate pre-
dictor of thesingle-trialgeneralization error than the existing criterion. Numerical studies with toy
and benchmark data sets show that the proposed method compares favorably to existing methods.

Keywords: Active Learning, Conditional Expectation of Generalization Error, Misspecification
of Models, Importance-Weighted Least-Squares Learning, Covariate Shift.

1. Introduction

In a standard setting of supervised learning, the training input points are provided from the envi-
ronment (Vapnik, 1998). On the other hand, there are cases where thelocation of the training input
points can be designed by users (Fedorov, 1972; Pukelsheim, 1993).In such situations, it is expected
that the accuracy of learned results can be improved by appropriately choosing the location of the
training input points, e.g., by densely allocating the training input points in the regions with high un-
certainty.Active learning(MacKay, 1992; Cohn et al., 1996; Fukumizu, 2000)—also referred toas
experimental designin statistics (Kiefer, 1959; Fedorov, 1972; Pukelsheim, 1993)—is the problem
of optimizing location of training input points so that the generalization error is minimized.

The generalization error can be decomposed into thebiasandvarianceterms. In active learning
research, it is often assumed that the model used for learning is correctlyspecified (Fedorov, 1972;
Cohn et al., 1996; Fukumizu, 2000), i.e., the learning target function can be expressed by the model.
Then, under a mild condition, the ordinary least-squares (OLS) learning yields that the bias term
vanishes and only the variance term remains. Based on this fact, a traditional active learning method

c©2006 Masashi Sugiyama.

SUGIYAMA

with OLS tries to determine the location of the training input points so that the variance term is
minimized (Fedorov, 1972). In practice, however, the correctness of the model may not be fulfilled.

Active learning is a situation under thecovariate shift(Shimodaira, 2000), where the training
input distribution is different from the test input distribution. When the modelused for learning is
correctly specified, the covariate shift does not matter because OLS is stillunbiased under a mild
condition. However, OLS is no longer unbiased even asymptotically for misspecified models, and
therefore we have to explicitly deal with the bias term if OLS is used.

Under the covariate shift, it is known that a form of weighted least-squares learning (WLS)
is shown to be asymptotically unbiased even for misspecified models (Shimodaira, 2000; Wiens,
2000). The key idea of this WLS is the use of the ratio of density functions oftest and training input
points: the goodness-of-fit of the training input points is adjusted to that ofthe test input points by
the density ratio, which is similar toimportance sampling.

In this paper, we propose a variance-only active learning method using WLS, which can be
regarded as an extension of the traditional variance-only active learning method using OLS. The
proposed method can be theoretically justified for the approximately correct models, and thus is
robustagainst the misspecification of models.

Conditional Expectation of Generalization Error: A variance-only active learning method us-
ing WLS has also been proposed by Wiens (2000), which can also be theoretically justified for ap-
proximately correct models. The important difference is how the generalization error is predicted:
we predict theconditionalexpectation of the generalization error given training input points, while
in Wiens (2000), thefull expectation of the generalization error is predicted. In order to explain this
difference in more detail, we first note that the generalization error of the WLS estimator depends
on the training input density since WLS explicitly uses it. Therefore, when WLS is used in active
learning, the generalization error is predicted as a function of the training input density, and the
training input density is optimized so that the predicted generalization error is minimized.

The parameters in the model are learned using the training examples, which consist of training
input points drawn from the user-designed distribution and corresponding noisy output values. This
means that the generalization error is a random variable which depends onthe location of the train-
ing input points and noise contained in the training output values. We ideally want to predict the
single-trial generalization error, i.e., the generalization error for a single realization of the training
examples at hand. From this viewpoint, we do not want to average out the random variables, but we
want to plug the realization of the random variables into the generalization error and evaluate the
realized value of the generalization error. However, we may not be able toavoid taking the expec-
tation over the training output noise since the training output noise is inaccessible. In contrast, the
location of the training input points are accessible by nature. Motivated by this fact, in this paper, we
predict the generalization errorwithout taking the expectation over the training input points. That
is, we predict theconditionalexpectation of the generalization error given training input points. On
the other hand, in Wiens (2000), the generalization error is predicted in terms of the expectation
overboththe training input points and the training output noise.

A possible advantage of the conditional-expectation approach is schematically illustrated in
Figure 1. For illustration purposes, we consider the case of sampling only one training example. The
solid curves in the left graph (Figure 1-(a)) depictGpa(ε|x), the generalization error for a training
input densitypa as a function of the training output noiseε given a training input pointx. The three
solid curves correspond to the cases where the realizations of the traininginput pointx area1, a2,

142

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

(a) (b)

Figure 1: Schematic illustration of conditional expectation and full expectationof the generaliza-
tion error. (a) and (b) correspond to the generalization error forpa andpb, respectively.

anda3, respectively. The value of the generalization error for the densitypa in the full-expectation
approach is depicted by the dash-dotted line, where the generalization error is expected over both
the training output noiseε and the training input pointsx (i.e., the mean of the three solid curves).
The values of the generalization error in the conditional-expectation approach are depicted by the
dotted lines, where the generalization errors are expected only over the training output noiseε, given
x= a1,a2,a3, respectively (i.e., the mean of each solid curve). The right graph (Figure 1-(b)) depicts
the generalization errors for the training input densitypb in the same manner.

In the full-expectation framework, the densitypa is judged to be better thanpb regardless of the
realization of the training input point since the dash-dotted line in the left graph is lower than that
in the right graph (see Figure 1 again). However, as the solid curves show, pa is often worse thanpb

in single trials. On the other hand, in the conditional-expectation framework, the goodness of the
density is adaptively judged depending on the realizations of the training input pointx. For example,
pb is judged to be better thanpa if a2 andb3 are realized, orpa is judged to be better thanpb if a3

andb1 are realized. That is, the conditional-expectation framework may yield a better choice of the
training input density (and the training input points) than the full-expectation framework.

The above discussion illustrates a conceptual advantage of the conditional-expectation ap-
proach. Theoretically, we prove that the proposed active learning criterion derived in the
conditional-expectation framework is a better predictor of the single-trial generalization error than
the full-expectation active learning criterion proposed by Wiens (2000).This substantiates the ad-
vantage of the conditional-expectation approach. Experimental results also support this claim: the

143

SUGIYAMA

proposed method compares favorably to Wiens’s method in the simulations with toyand benchmark
data sets.

Bias-and-Variance Approach for Misspecified Models: Kanamori and Shimodaira (2003) also
proposed an active learning algorithm using WLS. This method is not variance-only, but it takes both
the bias and the variance into account by gathering training input points in twostages. In the first
stage, a certain number of training examples are randomly gathered from theenvironment, and the
generalization error (i.e., the sum of the bias and variance) is predicted byusing the gathered training
examples. Then in the second stage, the training input density for the remaining training examples
is optimized based on the generalization error prediction. Theoretically, the two-stage method is
shown to asymptotically give the optimal training input density not only for approximately correct
models, but also for totally misspecified models. Although this property is solid, itmay not be
practically valuable since learning with totally misspecified models may not work well because of
the model error. A drawback of this method is that it requires some randomly collected training
examples in the first stage, so we are not allowed to optimally design all the training input locations
by ourselves. Our experiments show that the proposed method works better than the two-stage
method of Kanamori and Shimodaira (2003).

Batch Selection of Training Input Points: Active learning in the machine learning community is
often thought of as being asequentialprocess: selecting one or a few training input points, observing
corresponding training output values, training the model using the gathered training examples, and
iterating this process. An alternative approach is thebatchapproach, where all training input points
are gathered in the beginning.

If the environment is non-stationary, i.e., the learning target function drifts, taking the sequential
approach would be necessary. On the other hand, under the stationaryenvironment, i.e., the learning
target function is fixed, the batch approach gives the globally optimal solution and the sequential
approach can be regarded as a greedy approximation to it. In this paper,we consider the stationary
case, so the batch approach is desirable.

In correctly specified linear regression, the expected generalization error does not depend on
the learning target function under a mild condition. Therefore, the globally optimal solution can be
obtained in principle. However, in misspecified linear regression which we discuss in this paper,
the expected generalization error depends on the unknown learning target function. In this scenario,
the sequential approach would be natural: estimating the unknown learning target function and
optimizing location of the training input points are carried out alternately. On theother hand, in this
paper, we do not estimate the learning target function, but we approximate the generalization error
by the quantity which doesnot depend on the learning target function. This makes it possible to
take the batch approach of determining all the training input points at once in advance.

A general criticism of the batch approach is that except for some specialcases where the global
optimal solution can be obtained analytically (Fedorov, 1972; Sugiyama and Ogawa, 2001), the
batch approach usually requires the simultaneous optimization of all training input points, which
is computationally very demanding. On the other hand, the sequential approach is computationally
efficient since only one or a few training input points are optimized in each iteration (Cohn et al.,
1996; Fukumizu, 2000; Sugiyama and Ogawa, 2000). In this paper, we avoid the computational
difficulty of the batch approach not by resorting to the sequential approach, but by optimizing the
training input distribution, rather than directly optimizing the training input points themselves. This

144

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

Figure 2: Regression problem.

seems to be a popular approach in batch active learning research (Wiens, 2000; Kanamori and
Shimodaira, 2003).

Organization: The rest of this paper is organized as follows. We derive a new active learning
method in Section 2, and we discuss relations between the proposed method and the existing meth-
ods in Section 3. We report numerical results using toy and benchmark datasets in Section 4.
Finally, we state conclusions and future prospects in Section 5.

2. Derivation of New Active Learning Method

In this section, we formulate the active learning problem in regression scenarios, and derive a new
active learning method.

2.1 Problem Formulation

Let us discuss the regression problem of learning a real-valued function f (x) defined onRd from
training examples (see Figure 2). Training examples are given as

{(xi ,yi) | yi = f (xi)+ εi}n
i=1,

where{εi}n
i=1 are i.i.d. noise with mean zero and unknown varianceσ2. We suppose that the training

input points{xi}n
i=1 are independently drawn from a user-defined distribution with densityp(x).

Let f̂ (x) be a learned function obtained from the training examples{(xi ,yi)}n
i=1. We evaluate

the goodness of the learned functionf̂ (x) by the expected squared test error over test input points,
to which refer as thegeneralization error. When the test input points are drawn independently from
a distribution with densityq(x), the generalization errorG′ is expressed as

G′ =
Z (

f̂ (x)− f (x)
)2

q(x)dx. (1)

We suppose thatq(x) is known (or its reasonable estimate is available). This seems to be a com-
mon assumption in active learning literature (e.g., Fukumizu, 2000; Wiens, 2000; Kanamori and
Shimodaira, 2003). If a large number ofunlabeled samples1 are easily gathered, a reasonably good

1. Unlabeled samples are input points without output values. We assume that unlabeled samples are independently
drawn from the distribution with densityq(x).

145

SUGIYAMA

estimate ofq(x) may be obtained by some standard density estimation method. Therefore, the
assumption thatq(x) is known or its reasonable estimate is available may not be so restrictive.

In the following, we discuss the problem of optimizing the training input densityp(x) so that
the generalization error is minimized.

2.2 Approximately Correct Linear Regression

We learn the target functionf (x) by the following linear regression model:

f̂ (x) =
b

∑
i=1

α̂iϕi(x), (2)

where{ϕi(x)}b
i=1 are fixed linearly independent functions2 andα̂ = (α̂1, α̂2, . . . , α̂b)

> are parameters
to be learned (by a variant of least-squares, see Section 2.4 for detail).

Suppose the regression model (2) does not exactly include the learning target functionf (x), but
it approximatelyincludes it, i.e., for a scalarδ such that|δ| is small, f (x) is expressed as

f (x) = g(x)+δr(x), (3)

whereg(x) is the optimal approximation tof (x) by the model (2):

g(x) =
b

∑
i=1

α∗
i ϕi(x).

α∗ = (α∗
1,α∗

2, . . . ,α∗
b)

> is the unknown optimal parameter defined by

α∗ = argmin
α

Z

(
b

∑
i=1

αiϕi(x)− f (x)

)2

q(x)dx.

δr(x) in Eq.(3) is the residual, which is orthogonal to{ϕi(x)}b
i=1 underq(x) (see Figure 3):

Z

r(x)ϕi(x)q(x)dx= 0 for i = 1,2, . . . ,b. (4)

The functionr(x) governs the nature of the model error, andδ is the possible magnitude of this error.
In order to separate these two factors, we further impose the following normalization condition on
r(x):

Z

r2(x)q(x)dx= 1. (5)

Note that we are essentially estimating the projectiong(x), rather than the true target functionf (x).

2. Note that we do not impose any restrictions on the choice of basis functions. Therefore, Eq.(2) includes a variety
of models such as polynomial models, trigonometric polynomial models, and Gaussian kernel models with fixed
centers.

146

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

Figure 3: Orthogonal decomposition off (x).

2.3 Bias/Variance Decomposition of Generalization Error

As described in Section 1, we evaluate the generalization error in terms of theexpectation over only
the training output noise{εi}n

i=1, not over the training input points{xi}n
i=1.

Let E{εi} denote the expectation over the noise{εi}n
i=1. Then, the generalization error expected

over the training output noise can be decomposed into the (squared)bias termB, thevarianceterm
V, and the model errorC:

E
{εi}

G′ = B+V +C,

where

B =
Z

(

E
{εi}

f̂ (x)−g(x)

)2

q(x)dx,

V = E
{εi}

Z

(
f̂ (x)− E

{εi}
f̂ (x)

)2

q(x)dx,

C =
Z

(g(x)− f (x))2q(x)dx. (6)

SinceC is constant which depends neither onp(x) nor{xi}n
i=1, we subtractC from G′ and define it

by G.
G = G′−C.

2.4 Importance-Weighted Least-Squares Learning

Let X be thedesign matrix, i.e.,X is then×b matrix with the(i, j)-th element

Xi, j = ϕ j(xi).

A standard way to learn the parameters in the regression model (2) is theordinary least-squares
(OLS) learning, i.e., parameter vectorα is determined as follows.

α̂O = argmin
α

[
n

∑
i=1

(
f̂ (xi)−yi

)2
]

, (7)

where the subscript ‘O’ indicates the ordinary LS.̂αO is analytically given by

α̂O = LOy,

147

SUGIYAMA

where

LO = (X>X)−1X>,

y = (y1,y2, . . . ,yn)
>.

When the training input points{xi}n
i=1 are drawn fromq(x), OLS is asymptotically unbiased even for

misspecified models. However, the current situation is under thecovariate shift(Shimodaira, 2000),
where the training input densityp(x) is generally different from the test input densityq(x). Under
the covariate shift, OLS is no longer unbiased even asymptotically for misspecified models. On the
other hand, it is known that the followingweighted least-squares (WLS) learningis asymptotically
unbiased (Shimodaira, 2000).

α̂W = argmin
α

[
n

∑
i=1

q(xi)

p(xi)

(
f̂ (xi)−yi

)2
]

, (8)

where the subscript ‘W’ indicates the weighted LS. Asymptotic unbiasedness ofα̂W would be intu-
itively understood by the following identity, which resembles theimportance sampling:

Z (
f̂ (x)− f (x)

)2
q(x)dx=

Z (
f̂ (x)− f (x)

)2 q(x)
p(x)

p(x)dx.

In the following, we assume thatp(x) andq(x) are strictly positive for allx.
Let D be the diagonal matrix with thei-th diagonal element

Di,i =
q(xi)

p(xi)
.

Thenα̂W is analytically given by
α̂W = LWy, (9)

where
LW = (X>DX)−1X>D.

2.5 Active Learning Based on Importance-Weighted Least-Squares Learning

Let GW, BW andVW beG, B andV for the learned function obtained by WLS, respectively. LetU
be theb-dimensional square matrix with the(i, j)-th element

Ui, j =
Z

ϕi(x)ϕ j(x)q(x)dx.

Then we have the following lemma (Proofs of all lemmas are provided in appendices).

Lemma 1 For the approximately correct model (3), we have

BW = Op(δ2n−1), (10)

VW = σ2tr(ULWL>
W) = Op(n

−1).

148

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

Input: A finite setP̂ of strictly positive probability densities

CalculateU .
For eachp∈ P̂

Create training input points{x(p)
i }n

i=1 following p(x).
CalculateLW.
CalculateJ(p).

End
Choosêp that minimizesJ.

Putxi = x(p̂)
i for i = 1,2, . . . ,n.

Observe the training output values{yi}n
i=1 at{xi}n

i=1.
CalculatêαW by Eq.(9).

Output: α̂W

Figure 4: Proposed ALICE algorithm.

Note that the asymptotic order in the above lemma is in probability since random variables
{xi}n

i=1 are included. This lemma implies that ifδ = op(1),

E
{εi}

GW = σ2tr(ULWL>
W)+op(n

−1). (11)

Motivated by Eq.(11), we propose determining the training input densityp(x) as follows: For a
setP of strictly positive probability densities,

p∗ = argmin
p∈P

J(p),

where
J = tr(ULWL>

W). (12)

Practically, we may prepare a finite setP̂ of strictly positive probability densities and choose the
one that minimizesJ from the set̂P . A pseudo code of the proposed active learning algorithm is
described in Figure 4, which we callALICE (Active Learning using the Importance-weighted least-
squares learning based on Conditional Expectation of the generalization error). Note that the value
of J depends not only onp(x), but also on the realization of the training input points{x(p)

i }n
i=1.

3. Relation to Existing Methods

In this section, we qualitatively compare the proposed active learning methodwith existing methods.

3.1 Active Learning with OLS

Let GO, BO andVO beG, B andV for the learned function obtained by OLS, respectively. Ifδ = 0
in Eq.(3), i.e., the model is correctly specified,BO vanishes under a mild condition (Fedorov, 1972)
and we have

E
{εi}

GO = VO = σ2tr(ULOL>
O).

149

SUGIYAMA

Based on the above expression, the training input densityp(x) is determined3 as follows (Fe-
dorov, 1972; Cohn et al., 1996; Fukumizu, 2000).

p∗O = argmin
p∈P

JO(p),

where
JO = tr(ULOL>

O). (13)

Comparison with J: We investigate the validity ofJO for approximately correct models based on
the following lemma.

Lemma 2 For the approximately correct model (3), we have

BO = O(δ2),

VO = Op(n
−1).

The above lemma implies that ifδ = op(n−
1
2),

E
{εi}

GO = σ2JO +op(n
−1).

Therefore, ifδ = op(n−
1
2), the use ofJO can be still justified. On the other hand, the proposed

J is valid whenδ = op(1). This implies thatJ has a wider range of applications thanJO. As
experimentally shown in Section 4, this difference is highly significant in practice.

3.2 Active Learning with WLS: Variance-Only Approach

For the importance-weighted least-squares learning (8), Kanamori and Shimodaira (2003) proved
that the generalization error expected over training input points{xi}n

i=1 and training output noise
{εi}n

i=1 is asymptotically expressed as

E
{xi}

E
{εi}

GW =
1
n

tr(U−1H)+O(n−
3
2), (14)

whereE{xi} is the expectation over training input points{xi}n
i=1 andH is theb-dimensional square

matrix defined by
H = S+σ2T.

SandT are theb-dimensional square matrices with the(i, j)-th elements

Si, j =
Z

ϕi(x)ϕ j(x)(δr(x))2q(x)2

p(x)
dx, (15)

Ti, j =
Z

ϕi(x)ϕ j(x)
q(x)2

p(x)
dx.

(16)

3. p(x) is not explicitly used in OLS. Therefore, we do not have to optimize the training input densityp(x), but we can
directly optimize training input points{xi}n

i=1. However, to be consistent with the WLS-based methods, we optimize
p(x) in this paper. This also helps to avoid the simultaneous optimization ofn input points which is computationally
very demanding in general.

150

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

Note that1ntr(U−1S) corresponds to the squared bias whileσ2

n tr(U−1T) corresponds to the variance.
Eq.(14) suggests that tr(U−1H) may be used as an active learning criterion. However,H includes
the inaccessible quantitiesδr(x) andσ2, so tr(U−1H) can not be directly calculated.

To cope with this problem, Wiens (2000) proposed4 ignoringS(the bias term), which yields

E
{xi}

E
{εi}

GW ≈ σ2

n
tr(U−1T).

Note thatT is accessible under the current setting. Based on this approximation, the training input
densityp(x) is determined as follows.

p∗W = argmin
p∈P

JW(p),

where

JW =
1
n

tr(U−1T). (17)

Comparison with J: A notable feature ofJW is that the optimal training input densityp∗W(x) can
be obtained analytically (Wiens, 2000):

p∗W(x) =
ĥ(x)

R

ĥ(x)dx
, (18)

where

ĥ(x) = q(x)

(
b

∑
i, j=1

U−1
i, j ϕi(x)ϕ j(x)

) 1
2

.

This may be confirmed by the fact thatJW can be expressed as

JW(p) =
1
n

(
Z

ĥ(x)dx

)2(
1+

Z

(p∗W(x)− p(x))2

p(x)
dx

)
.

On the other hand, we do not yet have an analytic form of a minimizer for the criterionJ.
It seems that in Wiens (2000), ignoringShas not been well justified. Here, we investigate the

validity based on the following corollary immediately obtained from Eqs.(14) and(15).

Corollary 1 For the approximately correct model (3), we have

E
{xi}

E
{εi}

GW = σ2JW +O(δ2n−1 +n−
3
2),

whereσ2JW = O(n−1).

4. In the original paper, discussion is restricted to the cases where the input domain is bounded andq(x) is uniform over
the domain. However, it may be easily extended to an arbitrary strictly-positive q(x). For this reason, we deal with
the extended version here.

151

SUGIYAMA

This corollary implies that ifδ = o(1),

E
{xi}

E
{εi}

GW = σ2JW +o(n−1),

by which the use ofJW can be justified asymptotically. Since the order is the same as that of the
proposed criterion,J andJW may be comparable in the robustness against the misspecification of
models.

Now the following lemma reveals a more direct relation betweenJ andJW.

Lemma 3 J and JW satisfy
J = JW +Op(n

− 3
2). (19)

This lemma implies thatJ is asymptotically equivalent toJW. However, they are still different
in the order ofn−1. In the following, we show that this difference is important.

In the active learning context, we are interested in accurately predicting thesingle-trial gener-
alization errorGW, which depends on the realization of the training examples. Let us measure the
goodness of a generalization error predictorĜ by

E
{εi}

(Ĝ−GW)2. (20)

Then we have the following lemma.

Lemma 4 Supposeδ = op(n−
1
4). If terms of op(n−3) are ignored, we have

E
{εi}

(σ2JW −GW)2 ≥ E
{εi}

(σ2J−GW)2.

This lemma states that underδ = op(n−
1
4), σ2J is asymptotically a more accurate estimator of

the single-trial generalization errorGW thanσ2JW in the sense of Eq.(20).
In Section 4, we experimentally evaluate the difference betweenJ andJW.

3.3 Active Learning with WLS: Bias-and-Variance Approach

Another idea of approximatingH in Eq.(14) is a two-stage sampling scheme proposed5 by Kanamori
and Shimodaira (2003): the training examples sampled in the first stage are used for estimatingH
and in the second stage, the distribution of the remaining training input points is optimized based
on the estimatedH. We explain the details of the algorithm below.

First, ` (≤ n) training input points{x̃i}`
i=1 are created independently following the test input

distribution with densityq(x), and corresponding training output values{ỹi}`
i=1 are observed. Let

D̃ andQ̃ be thè -dimensional diagonal matrices with thei-th diagonal elements

D̃i,i =
q(x̃i)

p(x̃i)
,

Q̃i,i = [̃y− X̃(X̃
>

X̃)−1X̃
>

ỹ]i ,

5. In the original paper, the method is derived within a slightly different setting of estimating the conditional probability
of the output valuey given an input pointx for regular statistical models. Here, we focus on the cases where the
conditional distirbution is Gaussian and the statistical model is linear, by whichthe setting becomes comparable to
that of the current paper.

152

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

where[·]i denotes thei-th element of a vector.̃X is the design matrix for{x̃i}`
i=1, i.e., the`× b

matrix with the(i, j)-th element
X̃i, j = ϕ j(x̃i),

and
ỹ = (ỹ1, ỹ2, . . . , ỹ`)

>.

Then an approximatioñH of the unknown matrixH in Eq.(14) is given by

H̃ =
1
`

X̃
>

D̃Q̃
2
X̃.

AlthoughU−1 is accessible in the current setting, Kanamori and Shimodaira (2003) also replaced it

by a consistent estimatẽU
−1

, where

Ũ =
1
`

X̃
>

X̃.

Based on the above approximations, the training input densityp(x) is determined as follows:

p∗OW = argmin
p∈P

JOW(p),

where

JOW =
1
n

tr(Ũ
−1

H̃). (21)

Note that the subscript ‘OW’ indicates the combination of the ordinary LS and weighted LS (see
below for details).

After determining the optimal densityp∗OW, the remainingn− ` training input points{xi}n−`
i=1

are created independently followingp∗OW(x), and corresponding training output values{yi}n−`
i=1 are

observed. Then the learned parameterα̂OW is obtained using{(x̃i , ỹi)}`
i=1 and{(xi ,yi)}n−`

i=1 as

α̂OW = argmin
α

[
`

∑
i=1

(
f̂ (x̃i)− ỹi

)2
+

n−`

∑
i=1

q(xi)

p(xi)

(
f̂ (xi)−yi

)2
]

. (22)

Note thatJOW depends on the realization of{x̃i}`
i=1, but is independent of the realization of{xi}n−`

i=1 .

Comparison with J: Kanamori and Shimodaira (2003) proved that for` = o(n), limn→∞ ` = ∞,
andδ = O(1),

E
{xi}

E
{εi}

GW =
1
n

JOW +o(n−1),

by which the use ofJOW can be justified. The order ofδ required above is weaker than that required
in J. Therefore,JOW may have a wider range of applications thanJ. However, this property may
not be practically valuable since learning with totally misspecified models (i.e.,δ = O(1)) may not
work well because of the model error.

Due to the two-stage sampling scheme, the above method has several weaknesses. First,̀
training input points should be gathered followingq(x) in the first stage, which implies that users
are only allowed to optimize the location ofn− ` remaining training input points. This may be
critical when the total numbern is not so large. Second, the performance depends on the choice of
`, so it has to be appropriately determined. Using` = O(n1/2) is recommended in Kanamori and

153

SUGIYAMA

Shimodaira (2003), but the exact choice of` seems still open. Third,JOW is an estimator ofGW, but
the finally obtained parameter by this algorithm is notα̂W but α̂OW. Therefore, this difference can
degrade the performance.6

In Section 4, we experimentally compareJ andJOW.

4. Numerical Examples

In this section, we quantitatively compare the proposed and existing active learning methods through
numerical experiments.

4.1 Toy Data Set

We first illustrate how the proposed and existing methods behave under a controlled setting.

Setting: Let the input dimension bed = 1 and the learning target function be

f (x) = 1−x+x2 +δr(x),

where

r(x) =
z3−3z√

6
with z=

x−0.2
0.4

. (23)

Let the number of training examples to gather ben = 100 and{εi}n
i=1 be i.i.d. Gaussian noise with

mean zero and standard deviation 0.3. Let the test input densityq(x) be the Gaussian density with
mean 0.2 and standard deviation 0.4, which is assumed to be known in this illustrative simulation.
See the bottom graph of Figure 5 for the profile ofq(x). Let the number of basis functions beb = 3
and the basis functions be

ϕi(x) = xi−1 for i = 1,2, . . . ,b.

Note that for these basis functions, the residual functionr(x) in Eq.(23) fulfills Eqs.(4) and (5). Let
us consider the following three cases.

δ = 0,0.005,0.05, (24)

which correspond to “correctly specified”, “ approximately correct”, and “misspecified” cases, re-
spectively. See the top graph of Figure 5 for the profiles off (x) with differentδ.

As a set of training input densities,P̂ , we use the Gaussian densities with mean 0.2 and standard
deviation 0.4c, where

c = 0.8,0.9,1.0, . . . ,2.5.

See the bottom graph of Figure 5 again for the profiles ofp(x) with differentc.
In this experiment, we compare the performance of the following methods:

(ALICE): c is determined so thatJ given by Eq.(12) is minimized. WLS given by Eq.(8) is used
for estimating the parameters.

6. It is possible to resolve this problem by not using{(x̃i , ỹi)}`
i=1 gathered in the first stage for estimating the parameter

(cf. Eq.(22)). However, this may yield further degradation of the performance because onlyn− ` training examples
are used for learning.

154

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5
Learning target function f(x)

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5
c=0.8

c=1.3

c=2.5

c=0.8

c=1.3

c=2.5

c=0.8

c=1.3

c=2.5

Input density functions

δ=0
δ=0.005
δ=0.05

q(x)
p(x)
p

W
* (x)

Figure 5: Learning target function and input density functions.

(W): c is determined so thatJW given by Eq.(17) is minimized. WLS is used for estimating the
parameters.

(W*): p∗W(x) given by Eq.(18) is used as the training input density. The profile ofp∗W(x) under the
current setting is illustrated in the bottom graph of Figure 5, showing thatp∗W(x) is similar to
the Gaussian density withc = 1.3. WLS is used for estimating the parameters.

(OW): First, ` training input points are created following the test input densityq(x), and corre-
sponding training output values are observed. Based on the` training examples,c is deter-
mined so thatJOW given by Eq.(21) is minimized. Thenn− ` remaining training input points
are created following the determined input density. The combination of OLS and WLS given
by Eq.(22) is used for estimating the parameters. We set` = 25, which we experimentally
confirmed to be a reasonable choice in this illustrative simulation.

(O): c is determined so thatJO given by Eq.(13) is minimized. OLS given by Eq.(7) is used for
estimating the parameters.

(Passive): Following the test input densityq(x), training input points{xi}n
i=1 are created. OLS is

used for estimating the parameters.

For (W*), we generate the random number followingp∗W(x) by the rejection method (see e.g.,
Knuth, 1998). We run this simulation 1000 times for eachδ in Eq.(24).

Accuracy of Generalization Error Prediction: First, we evaluate the accuracy ofJ, JW, JOW,
andJO as predictors of the generalization error. Note thatJ andJW are predictors ofGW. JOW is also
derived as a predictor ofGW, but the finally obtained generalization error by (OW) isGOW, which

155

SUGIYAMA

δ = 0 δ = 0.005 δ = 0.05
“correctly specified” “ approximately correct” “ misspecified”

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

W

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

W

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

OW

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

OW

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

O

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01

c

J
O

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

W

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

W

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

OW

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

OW

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

O

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01

c

J
O

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

W

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

W

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

OW

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
J

OW

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01
G

O

0.8 1.2 1.6 2 2.4
0

0.002

0.004

0.006

0.008

0.01

c

J
O

Figure 6: The means and (asymmetric) standard deviations ofGW, J, JW, GOW, JOW, GO, andJO

over 1000 runs as functions ofc. The dashed curves show the means of the generalization
error that corresponding active learning criteria are trying to predict.

156

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

is the generalization errorG for the learned function obtained by the combination of OLS and WLS
(see Eq.(22)). Therefore,JOW should be evaluated as a predictor ofGOW. JO is a predictor ofGO.

In Figure 6, the means and standard deviations ofGW, J, JW, GOW, JOW, GO, andJO over 1000
runs are depicted as functions ofc by the solid curves. Here the upper and lower error bars are
calculated separately since the distribution is not symmetric. The dashed curves show the means of
the generalization error that corresponding active learning criteria aretrying to predict. Note that
J, JW, andJO are multiplied byσ2 = (0.3)2 so that comparison withGW andGO are clear. By
definition,GW, GOW, andGO do not include the constantC defined by Eq.(6). The values ofC for
δ = 0, 0.005, and 0.05 are 0, 2.32×10−5, and 2.32×10−3, respectively.

These graphs show that whenδ = 0 (“correctly specified”), J andJW give accurate predictions
of GW. Note thatJW does not depend on the training input points{xi}n

i=1 so it does not fluctuate
over 1000 runs.JOW is slightly biased toward the negative direction for smallc. We conjecture that
this is caused by the small sample effect. However, the profile ofJOW still roughly approximates
that ofGOW. JO gives accurate predictions ofGO. Whenδ = 0.005 (“approximately correct”), J,
JW, andJOW work similarly to the case withδ = 0, i.e.,J andJW are accurate andJOW is negatively
biased. On the other hand,JO behaves slightly differently: it tends to be biased toward the negative
direction for largec. Finally, whenδ = 0.05 (“misspecified”), J andJW still give accurate predic-
tions, although they slightly have a negative bias for smallc. JOW still roughly approximatesGOW,
while JO gives totally different profile fromGO.

These results show that as approximations of the generalization error,J andJW are accurate and
robust against the misspecification of models.JOW is also reasonably accurate, although it tends to
be rather inaccurate for smallc. JO is accurate in the correctly specified case, but it becomes totally
inaccurate once the correctness of the model is violated.

Note that, by definition,J, JW andJO do not depend on the learning target function. Therefore,
in the simulation, they give the same values for allδ (J andJO depend on the realization of{xi}n

i=1 so
they may have a small fluctuation). On the other hand, the generalization error, of course, depends
on the learning target function even if the constantC is not included, since the training output values
depend on it. Note that the bias depends onδ, but the variance does not. The simulation results show
that the profile ofGO changes heavily as the degree of model misspecification increases. This would
be caused by the increase of the bias since OLS is not unbiased even asymptotically. On the other
hand,JO stays the same asδ increases. As a result,JO becomes a very poor predictor for a large
δ. In contrast, the profile ofGW appears to be very stable against the change inδ, which is in good
agreement with the theoretical fact that WLS is asymptotically unbiased. Thanks to this property,J
andJW are more accurate thanJO for misspecified models.

Obtained Generalization Error: In Table 1, the mean and standard deviation of the generaliza-
tion error obtained by each method are described. The best method and comparable ones by the
t-test(e.g., Henkel, 1979) at the significance level 5% are indicated with boldface. In Figure 7, the
box-plot expression of the obtained generalization error is depicted. Note that the values described
in Figure 6 correspond toG (the constantC is not included), while the values in Table 1 and Figure 7
correspond toG′ which includesC (see Eq.(1)).

Whenδ = 0, (O) works significantly better than other methods. Actually, in this case, training
input densities that approximately minimizeGW, GO, andGOW were successfully found by (AL-
ICE), (W), (OW), and (O). This implies that the difference in the error is caused not by the quality
of the active learning criteria, but by the difference between WLS and OLS: WLS generally has

157

SUGIYAMA

δ = 0 δ = 0.005 δ = 0.05
(ALICE) 2.08±1.95 2.10±1.96 4.61±2.12

(W) 2.40±2.15 2.43±2.15 4.89±2.26
(W*) 2.32±2.02 2.35±2.02 4.84±2.14
(OW) 3.09±3.03 3.13±3.00 5.95±3.58
(O) 1.31±1.70 2.53±2.23 124±67.4

(Passive) 3.11±2.78 3.14±2.78 6.01±3.43

All values in the table are multiplied by 103.

Table 1: The mean and standard deviation of the generalization error obtained by each method for
the toy data set. Here we describe the valueG′ that includes the constantC (see Eq.(6)).
The best method and comparable ones by the t-test at the significance level5% are in-
dicated with boldface. The value of (O) forδ = 0.05 is extremely large but it is not a
typo.

δ = 0 δ = 0.005 δ = 0.05

(ALICE) (W) (W*) (OW) (O) (Passive)
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

5%

25%

50%

75%

95%

(ALICE) (W) (W*) (OW) (O) (Passive)
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

5%

25%

50%

75%

95%

(ALICE) (W) (W*) (OW) (O) (Passive)
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

5%

25%

50%

75%

95%

Figure 7: Box-plots of the generalization error obtained by each method for the toy data set. Here
we plot the valueG′ that includes the constantC (see Eq.(6)). The value of (O) for
δ = 0.05 is not plotted because it is extremely large.

158

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

larger variance than OLS (Shimodaira, 2000). Therefore, whenδ = 0, OLS would be more accurate
than WLS since both WLS and OLS are unbiased. Although (ALICE), (W),(W*), and (OW) are
outperformed by (O), they still work better than (Passive). Note that (ALICE) is significantly better
than (W), (W*), (OW), and (Passive) by the t-test. The box-plot shows that (ALICE) outperforms
(W), (W*), and (OW) particularly in upper quantiles.

Whenδ = 0.005, (ALICE) gives significantly smaller errors than other methods. All themeth-
ods except (O) work similarly to the case withδ = 0, while (O) tends to perform poorly. This result
is surprising since the learning target functions withδ = 0 andδ = 0.005 are visually almost the
same, as illustrated in the top graph of Figure 5. Therefore, it intuitively seems that the result when
δ = 0.005 is not much different from the result whenδ = 0. However, this slight difference appears
to make (O) unreliable.

Whenδ = 0.05, (ALICE) again works significantly better than others. (W) and (W*) still work
reasonably well. The box-plot shows that (ALICE) is better than (W) and(W*) particularly in upper
quantiles. The performance of (OW) is slightly degraded, although it is still better than (Passive).
(O) gives extremely large errors.

The above results are summarized as follows. For all three cases (δ = 0,0.005,0.05), (ALICE),
(W), (W*), and (OW) work reasonably well and consistently outperform (Passive). Among them,
(ALICE) appears to be better than (W), (W*), and (OW) for all three cases. (O) works excellently in
the correctly specified case, although it tends to perform poorly once thecorrectness of the model is
violated. Therefore, (ALICE) is found to work well overall and is robust against the misspecification
of models for this toy data set.

4.2 Benchmark Data Sets

Here we use eight regression benchmark data sets provided by DELVE (Rasmussen et al., 1996):
Bank-8fm, Bank-8fh, Bank-8nm, Bank-8nh, Kin-8fm, Kin-8fh, Kin-8nm, andKin-8nh. Each data set
includes 8192 samples, consisting of 8-dimensional input points and 1-dimensional output values.
For convenience, every attribute is normalized into[0,1].

Suppose we are given all 8192inputpoints (i.e., unlabeled samples). Note that output values are
kept unknown at this point. From this pool of unlabeled samples, we choose n = 300 input points
{xi}n

i=1 for training and observe the corresponding output values{yi}n
i=1. The task is to predict the

output values of all 8192 unlabeled samples.
In this experiment, the test input densityq(x) is unknown. So we estimate it using the uncorre-

lated multi-dimensional Gaussian density:

q(x) =
1

(2πγ̂2
MLE)

d
2

exp

(
−‖x− µ̂MLE‖2

2̂γ2
MLE

)
,

whereµ̂MLE and γ̂MLE are the maximum likelihood estimates of the mean and standard deviation
obtained from all 8192 unlabeled samples. Letb = 50 and the basis functions be Gaussian basis
functions with variance 1:

ϕi(x) = exp

(
−‖x− t i‖2

2

)
for i = 1,2, . . . ,b,

where{t i}b
i=1 are template points randomly chosen from the pool of unlabeled samples.

159

SUGIYAMA

Bank-8fm Bank-8fh Bank-8nm Bank-8nh
(ALICE) 2.10±0.17 6.83±0.44 1.11±0.09 4.19±0.29

(W) 2.26±0.21 7.21±0.52 1.22±0.12 4.40±0.38
(OW) 2.31±0.25 7.39±0.63 1.25±0.15 4.52±0.39
(O) 1.91±0.16 6.20±0.24 1.32±0.14 4.02±0.21

(Passive) 2.31±0.26 7.45±0.61 1.26±0.14 4.51±0.38

Kin-8fm Kin-8fh Kin-8nm Kin-8nh
(ALICE) 1.62±0.58 3.50±0.63 34.97±1.90 47.21±1.97

(W) 1.70±0.62 3.64±0.73 36.60±2.05 49.15±2.88
(OW) 1.73±0.63 3.73±0.78 37.29±2.94 49.64±3.11
(O) 3.03±1.60 4.85±1.96 38.65±3.09 48.86±2.66

(Passive) 1.77±0.68 3.73±0.79 37.38±3.05 49.69±3.06

All values in the table are multiplied by 103.

Table 2: The means and standard deviations of the test error for DELVE data sets. The best method
and comparable ones by the t-test at the significance level 5% are indicatedwith boldface.

Bank−8fm Bank−8fh Bank−8nm Bank−8nh Kin−8fm Kin−8fh Kin−8nm Kin−8nh

0.85

0.9

0.95

1

1.05

1.1

(ALICE)
(W)
(OW)
(O)
(Passive)

Figure 8: The means of the test error of (ALICE), (W), (OW), and (O)normalized by the test error
of (Passive).

160

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

We select the training input densityp(x) from the set of uncorrelated multi-dimensional Gaus-
sian densities with mean̂µMLE and standard deviationĉγMLE, where

c = 0.7,0.75,0.8, . . . ,2.4.

We again compare the active learning methods tested in Section 4.1. However,we do not test (W*)
here because we could not efficiently generate random numbers following p∗W(x) by the rejection
method. For (OW), we set̀= 100 which we experimentally confirmed to be reasonable.

In this simulation, we can not create the training input points in an arbitrary location because
we only have 8192 samples in the pool. Here, we first create provisional input points following
the determined training input density, and then choose the input points from the pool of unlabeled
samples that are closest to the provisional input points. In this simulation, the expectation over the
test input densityq(x) in the matrixU is calculated by the empirical average over all 8192 unlabeled
samples since the true test error is also calculated as such. For each data set, we run this simulation
100 times, by changing the template points{t i}b

i=1 in each run.
The means and standard deviations of the test error over 100 runs are described in Table 2. This

shows that (ALICE) works very well for five out of eight data sets. For the other three data sets,
(O) works significantly better than other methods. (W) works well and is comparable to (ALICE)
for two data sets, but is outperformed by (ALICE) for the other six data sets. (OW) is overall
comparable to (Passive).

Figure 8 depicts the means of the test error of (ALICE), (W), (OW), and(O) normalized by the
test error of (Passive): For each run, the test errors of (ALICE), (W), (OW), and (O) are divided by
the test error of (Passive), and then the values are averaged over 100 runs. This graph shows that
(ALICE) is better than (W), (OW), and (Passive) for all eight data sets. (O) works very well for
three data sets, but it is comparable or largely outperformed by (Passive) for the other five data sets.
(W) also works reasonably well, although it is outperformed by (ALICE) overall. (OW) is on par
with (Passive). Overall, (ALICE) is shown to be stable and works well for the benchmark data sets.

We also carried out similar simulations for Gaussian basis functions with variance 0.5 and 2.
The results had similar tendencies, i.e., (ALICE) is overall shown to be stableand works well, so
we omit the detail.

5. Conclusions

In this paper, we proposed a new active learning method based on the importance-weighted least-
squares learning. The numerical study showed that the proposed methodworks well overall and
compares favorably to existing WLS-based methods and the passive learning scheme. Although the
proposed method is outperformed by the existing OLS-based method when themodel is correctly
specified, the existing OLS-based method tends to perform very poorly once the correctness of
the model is violated. Therefore, the existing OLS-based method may not be reliable in practical
situations where the correctness of the model may not be fulfilled. On the other hand, the proposed
method is shown to be robust against the misspecification of models and therefore reliable.

Our criterion is shown to be a variant of the criterion proposed by Wiens (2000). Indeed, we
showed that they are asymptotically equivalent. However, an important difference is that we predict
the conditional expectation of the generalization error given training inputpoints, while in Wiens
(2000), the full expectation of the generalization error is predicted. As described in Section 1,
the conditional-expectation approach conceptually gives a finer choice of the training input density

161

SUGIYAMA

than the full-expectation approach. Theoretically, we proved that the proposed criterion is a better
estimate of the single-trial generalization error than Wiens’s criterion (see Section 3.2).

An advantage of Wiens’s criterion is that the optimal training input density canbe obtained
analytically, while we do not yet have such an analytic solution for the proposed criterion. In the
current paper, we resorted to a naive optimization scheme: prepare a finite set of input densities
and choose the best one from the set. The performance of this naive optimization scheme depends
heavily on the choice of the set of densities. In practice, using a set of input densities which consist
of the optimal density analytically found by Wiens’s criterion and its variants would be a reasonable
choice. It is also important to devise a better optimization strategy for the proposed active learning
criterion, which currently remains open.

In theory, we assumed that the test input density is known. However, this may not be satisfied
in practice. In experiments with benchmark data sets, the test input density is indeed unknown and
is approximated by a Gaussian density. Although the simulation results showed that the proposed
method consistently outperforms the passive learning scheme (given unlabeled samples), a more
detailed analysis should be carried out to see how approximating the test input density affects the
performance.

We discussed the active learning problem forweaklymisspecified models. A natural extension
of the proposed method is to be applicable tostronglymisspecified models, as achieved in Kanamori
and Shimodaira (2003). However, when the model is totally misspecified, even learning with the
optimal training input points may not work well because of the model error. In such cases, it is
important to carry outmodel selection(Akaike, 1974; Schwarz, 1978; Rissanen, 1978; Vapnik,
1998). In most of the active learning research—including the current paper, the location of the
training input points are designed for asinglemodel at hand. That is, the model should have been
chosenbeforeactive learning is carried out. However, in practice, we may want to selectthe model
as well as the location of the training input points. Devising a method for simultaneously optimizing
the model and the location of the training input points would therefore be a moreimportant and
promising future direction. In Sugiyama and Ogawa (2003), a method ofactive learning with
model selectionhas been proposed for the trigonometric polynomial models. However, its range of
application is rather limited. We expect that the results given in this paper forma solid basis for
further pursuing this challenging issue.

Acknowledgments

The author would like to thank anonymous reviewers for their helpful comments, which highly
helped him to improve the manuscript. Particularly, the normalization of the residual function is
pointed out by one of the reviewers. He also acknowledges Dr. MotoakiKawanabe for fruitful
discussions on the accuracy of generalization error estimators. Specialthanks also go to the mem-
bers of Fraunhofer FIRST.IDA for their comments on various aspects ofthe proposed method when
the author gave a talk at the seminar. This work is supported by MEXT (Grant-in-Aid for Young
Scientists 17700142).

162

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

Appendix A. Proof of Lemma 1

A simple calculation yields thatB andV are expressed as

B = 〈U(E
{εi}

α̂−α∗), E
{εi}

α̂−α∗〉,

V = E
{εi}

〈U(α̂− E
{εi}

α̂), α̂− E
{εi}

α̂〉.

Let

zg = (g(x1),g(x2), . . .g(xn))
>,

zr = (r(x1), r(x2), . . . r(xn))
>.

By definition, it holds that
zg = Xα∗.

Then we have

E
{εi}

α̂W −α∗ = LW(zg +δzr)−α∗

= (1
nX>DX)−1 1

nX>D(Xα∗ +δzr)−α∗

= δ(1
nX>DX)−1 1

nX>Dzr .

By the law of large numbers (Rao, 1965), we have

lim
n→∞

[1
nX>DX]i, j = lim

n→∞

(
1
n

n

∑
k=1

q(xk)

p(xk)
ϕi(xk)ϕ j(xk)

)

=
Z

D

q(x)
p(x)

ϕi(x)ϕ j(x)p(x)dx

= Op(1).

Furthermore, by the central limit theorem (Rao, 1965), it holds for sufficiently largen,

[1
nX>Dzr]i =

1
n

n

∑
k=1

r(xk)ϕi(xk)
q(xk)

p(xk)

=
Z

D

r(x)ϕi(x)
q(x)
p(x)

p(x)dx+Op(n
− 1

2)

= Op(n
− 1

2),

where the last equality follows from Eq.(4). Therefore, we have

BW = 〈U(E
{εi}

α̂W −α∗), E
{εi}

α̂W −α∗〉

= Op(δ2n−1).

It holds thatU = Op(1) and

LWL>
W = (1

nX>DX)−1 1
n2 X>D2X(1

nX>DX)−1

= Op(n
−1).

163

SUGIYAMA

Then we have

VW = E
{εi}

〈U(α̂W − E
{εi}

α̂W), α̂W − E
{εi}

α̂W〉

= σ2tr(ULWL>
W)

= Op(n
−1),

which concludes the proof.

Appendix B. Proof of Lemma 2

It holds that

E
{εi}

α̂O−α∗ = LO(zg +δzr)−α∗

= (1
nX>X)−1 1

nX>(Xα∗ +δzr)−α∗

= δ(1
nX>X)−1 1

nX>zr .

By the law of large numbers, we have

lim
n→∞

[1
nX>X]i, j = lim

n→∞

(
1
n

n

∑
k=1

ϕi(xk)ϕ j(xk)

)

=
Z

D

ϕi(x)ϕ j(x)p(x)dx

= Op(1).

Furthermore, by the central limit theorem, it holds for sufficiently largen,

[1
nX>zr]i =

1
n

n

∑
k=1

r(xk)ϕi(xk)

=
Z

D

r(x)ϕi(x)p(x)dx+Op(n
− 1

2)

= Op(1).

Therefore, we have

BO = 〈U(E
{εi}

α̂O−α∗), E
{εi}

α̂O−α∗〉

= Op(δ2).

It holds thatU = Op(1) and

LOL>
O = (1

nX>X)−1 1
n2 X>X(1

nX>X)−1

= Op(n
−1).

Then we have

VO = E
{εi}

〈U(α̂O− E
{εi}

α̂O), α̂O− E
{εi}

α̂O〉

= σ2tr(ULOL>
O)

= Op(n
−1),

164

ACTIVE LEARNING IN APPROXIMATELY L INEAR REGRESSION

which concludes the proof.

Appendix C. Proof of Lemma 3

The central limit theorem (see e.g., Rao, 1965) asserts that

LWL>
W = 1

nU−1TU−1 +Op(n
− 3

2),

from which we have Eq.(19)

Appendix D. Proof of Lemma 4

It holds that

E
{εi}

(σ2JW −GW)2 = E
{εi}

(σ2JW −σ2J+σ2J−GW)2

= (σ2JW −σ2J)2 + E
{εi}

(σ2J−GW)2

+2 E
{εi}

(σ2JW −σ2J)(σ2J−GW). (25)

Eq.(19) implies
(σ2JW −σ2J)2 = Op(n

−3).

Eqs.(19) and (10) imply

2 E
{εi}

(σ2JW −σ2J)(σ2J−GW) = 2(σ2JW −σ2J)(σ2J− E
{εi}

GW)

= −2(σ2JW −σ2J)BW

= Op(δ2n−
5
2). (26)

If δ = op(n−
1
4) and the term of orderop(n−3) (i.e., Eq.(26)) is ignored in Eq.(25), we have

E
{εi}

(σ2JW −GW)2 = (σ2JW −σ2J)2 + E
{εi}

(σ2J−GW)2

≥ E
{εi}

(σ2J−GW)2,

which concludes the proof.

References

H. Akaike. A new look at the statistical model identification.IEEE Transactions on Automatic
Control, AC-19(6):716–723, 1974.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models.Journal of
Artificial Intelligence Research, 4:129–145, 1996.

V. V. Fedorov.Theory of Optimal Experiments. Academic Press, New York, 1972.

165

SUGIYAMA

K. Fukumizu. Statistical active learning in multilayer perceptrons.IEEE Transactions on Neural
Networks, 11(1):17–26, 2000.

R. E. Henkel.Tests of Significance. SAGE Publication, Beverly Hills, 1979.

T. Kanamori and H. Shimodaira. Active learning algorithm using the maximum weighted log-
likelihood estimator.Journal of Statistical Planning and Inference, 116(1):149–162, 2003.

J. Kiefer. Optimum experimental designs.Journal of the Royal Statistical Society, Series B, 21:
272–304, 1959.

D. E. Knuth.Seminumerical Algorithms, volume 2 ofThe Art of Computer Programming. Addison-
Wesley, Massachusetts, 1998.

D. J. C. MacKay. Information-based objective functions for active data selection.Neural Compu-
tation, 4(4):590–604, 1992.

F. Pukelsheim.Optimal Design of Experiments. John Wiley & Sons, 1993.

C. R. Rao.Linear Statistical Inference and Its Applications. Wiley, New York, 1965.

C. E. Rasmussen, R. M. Neal, G. E. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra,
and R. Tibshirani. The DELVE manual, 1996. URLhttp://www.cs.toronto.edu/˜delve/ .

J. Rissanen. Modeling by shortest data description.Automatica, 14:465–471, 1978.

G. Schwarz. Estimating the dimension of a model.The Annals of Statistics, 6:461–464, 1978.

H. Shimodaira. Improving predictive inference under covariate shift byweighting the log-likelihood
function. Journal of Statistical Planning and Inference, 90(2):227–244, 2000.

M. Sugiyama and H. Ogawa. Incremental active learning for optimal generalization. Neural Com-
putation, 12(12):2909–2940, 2000.

M. Sugiyama and H. Ogawa. Active learning for optimal generalization in trigonometric polynomial
models. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, E84-A(9):2319–2329, 2001.

M. Sugiyama and H. Ogawa. Active learning with model selection — Simultaneousoptimization
of sample points and models for trigonometric polynomial models.IEICE Transactions on Infor-
mation and Systems, E86-D(12):2753–2763, 2003.

V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New York, 1998.

D. P. Wiens. Robust weights and designs for biased regression models:Least squares and general-
ized M-estimation.Journal of Statistical Planning and Inference, 83(2):395–412, 2000.

166

Journal of Machine Learning Research 7 (2006) 167–189 Submitted 3/04; Revised 9/05; Published 2/06

MinReg: A Scalable Algorithm for Learning
Parsimonious Regulatory Networks in Yeast and Mammals

Dana Pe’er DPEER@GENETICS.MED.HARVARD .EDU

Genetics Department
Harvard Medical School
Boston, MA 02115, USA

Amos Tanay AMOS@POST.TAU .AC.IL
Computer Science Department
Tel Aviv University
Tel Aviv, Israel

Aviv Regev AREGEV@CGR.HARVARD .EDU

Bauer Center for Genomics Research
Harvard University
Cambridge, MA 02138, USA

Editor: Tommi Jaakkola

Abstract
In recent years, there has been a growing interest in applying Bayesian networks and their ex-

tensions to reconstructregulatory networksfrom gene expression data. Since the gene expression
domain involves a large number of variables and a limited number of samples, it poses both com-
putational and statistical challenges to Bayesian networklearning algorithms. Here we define a
constrained family of Bayesian network structures suitable for this domain and devise an efficient
search algorithm that utilizes these structural constraints to find high scoring networks from data.
Interestingly, under reasonable assumptions on the underlying probability distribution, we can pro-
vide performance guarantees on our algorithm. Evaluation on real data from yeast and mouse,
demonstrates that our method cannot only reconstruct a highquality model of the yeast regula-
tory network, but is also the first method to scale to the complexity of mammalian networks and
successfully reconstructs a reasonable model over thousands of variables.

Keywords: Bayesian networks, structure learning, gene networks, gene expression, approxima-
tion algorithms

1. Introduction

Learning Bayesian network structure from data (Cooper and Herskovits, 1992; Heckerman et al.,
1994) and its application to reconstructgene regulatory networksfrom biological data (Friedman
et al., 2000; Pe’er et al., 2001; Hartemink et al., 2002; Ong et al., 2002; Imoto et al., 2002; Yoo
et al., 2002) is a subject of current research.

Regulatory networks control the expression of thousands of genes in aliving cell, modulating
the expression levels of individual genes based on external and internal conditions. To regulate

c©2006 Dana Pe’er, Amos Tanay, and Aviv Regev.

PE’ ER, TANAY, AND REGEV

TFTF

SP SP

Gene
Regulatory DNA

Transcribed mRNA

Signal Signal

Figure 1: Biological regulation: Signals activate signaling molecules (SM), which in turn acti-
vate transcription factors (TF). When activated, these bind to DNA regulatory sequences.
Combinations of such binding events control the levels of mRNA transcription ina com-
binatorial manner.

the expression of a gene, specialized proteins calledtranscription factors (TFs)bind to regulatory
sequences on the DNA oftarget genesand work in a combinatorial fashion to ensure the correct
amount is being transcribed (Figure 1). The behavior of those transcription factors is in turn con-
trolled by the cell’s environment through the action ofsignaling proteins (SPs). The combined
network of transcription factors and signaling proteins forms a regulatoryprogram controlling the
expression of individual genes directly (by regulator TFs) and indirectly (by regulator SPs). Since
these networks serve as the information processing devices of cells, it is of great interest to uncover
their structure and the regulation functions that they encode.

How can we learn such regulatory programs? An experimental technique,calledDNA microar-
raysallows us to simultaneously measure the expression of thousands of genes under various con-
ditions and perturbations, providing biologists with global observations of the workings of the cell.
Importantly, microarrays measure not only the expression levels of targetgenes, but also of genes
encoding regulators - TFs and SPs. As has been previously demonstrated (Pe’er et al., 2001, 2002;
Segal et al., 2003), in many cases a TF’s expression level is a good proxy to its activity, allowing
us to construct a network that relates the gene expression of a target gene to the gene expression of
its regulators. However, there are also numerous cases where a TF’s activity is not determined by
its expression level, but rather by other types of biochemical events, thatthat are unobserved in mi-
croarray data. Fortunately, in some of these cases, a change in the expression of indirect regulators
(such as SPs that control the TF’s activity) may be observed in microarray measurements, allowing
us to detect an indirect regulatory relation in lieu of the direct event.

Following these biological considerations, it is expected that regulatory interactions between the
genes would often result in corresponding statistical dependencies between random variables repre-
senting their expression. Thus, a Bayesian network approach to regulatory network reconstruction
treats the expression level of each gene as a random variable and attemptsto estimate the structural
features of the dependencies in their joint probability distribution from data.Bayesian networks
are particularly well suited for this domain, as has been demonstrated by early studies (Friedman
et al., 2000; Pe’er et al., 2001; Hartemink et al., 2002). First, experimental evidence indicates that

168

M INREG

the regulatory network is sparse, such that only a few genes directly control the transcription of a
given target (Martinez-Antonio and Collado-Vides, 2003; Shen-Orr et al., 2002; Lee et al., 2002).
Second, microarray measurements are typically noisy, necessitating a probabilistic model. Finally,
biological networks contains many important hidden variables (e.g. the actual activity level of the
regulators) which can be handled well in a Bayesian networks framework.

Nevertheless, the biological domain raises several important challenges for learning Bayesian
networks. The central difficulty is that contrary to previous applications,microarrays measure thou-
sands of variables (genes) across at most a few hundred samples. Thus, even if a search for the
optimal solution (over a prohibitively large space) was possible, statistical noise is likely to lead to
spurious dependencies, resulting in models that significantly overfit the data.

This problem becomes even more pronounced when considering the complex regulatory net-
works of mammals. While Bayesian network approaches have been relatively successful in tackling
networks of a unicellular model organism, the Baker’s yeastSaccharomyces cerevisiae, they have
yet to achieve similar success in mammalian systems, such as human or mouse cells.These or-
ganisms have considerably more complex regulatory systems, with a larger number of regulators
and target genes, and much more complex combinatorial regulatory functions. Deciphering these
networks can have significant implications to the understanding of animal development and com-
mon diseases. A central question toward these important applications is finding a parsimonious
set ofmajor regulators at the center of a given response, and distinguishing them from additional
redundant regulators or by product effects.

In this paper, we propose a novel approach to address these issues.We enforce biologically-
motivated restrictions to limit the search to simple network structures that significantly reduce the
space of possible networks, while highlighting the most relevant biological information. We devise
a search algorithm that utilizes these structural constraints to efficiently find high scoring networks.
Furthermore, under reasonable assumptions on the underlying probabilitydistribution, we provide
guarantees on our algorithm’s performance, thus providing an approximation algorithm for a certain
class of Bayesian networks. This is of particular interest, because approximation algorithms for
learning Bayesian networks have only been developed for polytrees(Dasgupta, 1999).

We evaluate the performance of our algorithm on synthetic and real gene expression data sets
for both yeast and mammals. Our results show good structure reconstruction on synthetic data and
that the model learned from gene expression data generalizes well to unseen test data. Importantly,
our results also illustrate the ability of the learned models to successfully reconstruct biologically
correct regulatory relations in complex mammalian systems.

2. Regulation Model

Our gene regulation model is a Bayesian network that describes regulatory relations between genes.
In this network, each random variable corresponds to the gene expression level of a specific gene.
If geneY is a parent of geneX in the Bayesian network, we interpret this as “Y regulates X”. We
denote byPaX the set of all regulators (parents) of the gene (variable)X. Any gene that “regulates”
in our model is termed aregulator. The key point behind to our approach is that we enforce a
number of biologically motivated constraints to limit these regulators and the graph structure.

Unlike a standard Bayesian network, we limit the possible regulators (parents) in the network to
a set of candidate regulatorsC . Our candidate setC is chosen based on prior biological knowledge,
and contains known and putative regulators in the organism being studied.Note, that while finding

169

PE’ ER, TANAY, AND REGEV

Figure 2: A literature reconstruction of the BacterialE. Coli regulation network from (Martinez-
Antonio and Collado-Vides, 2003). Notice this includes small top layer of regulators and
many targets for each.

which genes in a genome may function as regulators in general is often tractable, finding which
regulators areactivein a data set is difficult. Our inference will focus on this latter question.

In fact, previous biological studies indicate that only a small fraction of all potential regulators
may be active in a given data set. Accordingly, we also constrain the structural properties of the
graph, seeking a Bayesian network in which only a limited number of genes are regulators,i.e.,
have an outdegree greater than zero. Moreover, extensive studies inboth bacteria and yeast (Shen-
Orr et al., 2002; Martinez-Antonio and Collado-Vides, 2003; Lee et al., 2002) (Figure 2) indicate
that each such “master regulatory gene” may affect the transcription of many genes (indeed, only 3-
6% of the yeast and human genes respectively encode TFs). Thus, weexpect each regulator to have
a high out-degree. These constraints result in a graph of small depth, in which layers containing
a small number of regulators control a large bottom layer of target genes,consistent with current
biological understanding.

In addition to its biological relevance, this network structure has an obviousstatistical moti-
vation: Only when a gene consistently scores high as a parent for many genes, do we believe it
indicates a true signal. An occasional high score as a parent of a single gene is attributed to spurious
chance. Since learning an accurate genetic network is not possible in the current data paucity in
the gene expression domain, our restrictions represent a reasonable first order approximation of the
network which preserves its biological relevance. In fact, for most biological applications, false
positives are significantly more “costly” than false negatives, and findinga robust set of key regu-
lators whom are most strongly supported by the data (as offered by our model) is a more important
goal then discovering their complete set of targets.

We now provide a formal definition of our model: Aregulation graphis a Bayesian network
with the following restrictions on its structure.

Definition 1 Given a set of random variablesX = {X1, . . . ,Xn}, a set ofcandidate regulators- C

and the constants d and k, we define aregulation graph, G to be a Bayesian network overX so that:

170

M INREG

Gat1 Uga3 Dal80

Tat12

Gap1

Opt2

Tat1

Asp3

Gap1

Opt2

Tat1

Asp3

Bap1

Dal3

Dal2

Dal7

Bap1

Dal3

Dal2

Dal7

Agp5

His5

Arg80

Agp5

His5

Arg80

Met13

Nit1

Regulators

Targets

Figure 3: Regulation graph. The top layer is associated with the regulators and the bottom layer is
associated with all other variables. The key concept behind the regulationgraph is a small
number of regulators, each with many targets. Note, the illustrated nitrogen catabolism
response was automatically inferred by our algorithm from a gene expression data set.

• All parents belong to the candidate set:∀X,PaX ⊂ C .

• The number of parents for each variable (indegree) is bounded by d:∀X, |PaX| ≤ d.

• The total number of parents in the model is bounded by k: We term the the union of all parent
sets in the network to be the graph’sregulators, denoted byR , thus we constrain|R | ≤ k.

The graph structure is best visualized as a graph with a shallow depth: in thetop layers, a small
set of regulators (chosen from a large setC), possibly regulating each other and in the bottom layer,
all other variables (see Figure 3).

2.1 Optimization Problem

Since a regulation graph is a Bayesian network, the straightforward approach to learning its structure
would be to use the typical heuristic greedy hill-climbing search (Heckerman,1998) used for this
task. This involves traversing the space of legal models in a greedy fashionusing local operators
such as adding, removing or reversing a single edge. At each step, the operation that best improves
the score is chosen.

Unfortunately, the standard approach is likely to fail as the limited number of regulators spec-
ified by the regulation graph could be quickly used up. For example, we may wish to search for
a regulation graph over 2000 variables, limited to 30 regulators. We begin withthe empty graph
and in a greedy fashion add the optimal edge at each iteration. In many of these iterations, a new
regulator is added to the regulator setR . Therefore, after little over 30 iterations, no new regulators
could be added toR and all subsequent legal steps would only involve adding edges from regulators
already inR . While these regulators might be the best parents for a small set of variables, thousands
of other variables remain unexplained in the model.

In fact, contrary to learning regular Bayesian networks, the choice of parents for a variableX in
our model is no longer independent of the parents chosen for other variables. Since the total number

171

PE’ ER, TANAY, AND REGEV

of parents in the model is limited tok, choosing a parent for one variable can limit the choice of
parents for other variables. Thus, a regulator should be added toR only when it is a good parent for
many variables concurrently. Any search algorithm we design must take thisinto account and add a
regulator to asetof target genes in each greedy step.

Fortunately, once a regulator setR is given, finding the optimal regulation graph constrained
to R is polynomial, and for most practical cases efficient. For any given variable, there is a small
number,

(k
d

)

, of possible parent sets (compared to
(n

d

)

possible parent sets for Bayesian networks
bounded by an indegree ofd).1 Thus, it is quick to calculate the local score, denotedScore(X;P),
for all possible parents sets and choose the highest scoring parents.

PaX = argmaxP⊂R ,|P|≤dScore(X;P) (1)

WhenR is not given, we can use use this property to efficiently evaluate the quality of any
potential set of regulators.

Definition 2 We define theutility , F(R) of a regulator setR as:

F(R) =
n

∑
i=1

max
P⊂R,|P|≤d

Score(Xi ;P) (2)

The utility of a regulator setR can be computed quickly and closely approximates the score of the
optimal network constrained toR, denoted SCORE(R). F(R) scores a graph structure resulting
from independently choosing the optimal parents for each variable, and istherefore an upper bound
on SCORE(R). Note, that an independent choice of parents for each variable may leadto a structure
containing cycles. Thus, a legal Bayesian network might have a some parent sets that score sub-
optimally. However, since cycles can form only between the variables inR, which is a relatively
small part of the entire network (k << n), we expect that SCORE(R) is usually only slightly less
thanF(R). Furthermore, acyclicity can be resolved within a subgraph involving onlyk nodes (the
complexity of solving this problem is constant inn, though exponential ink). In most practical
cases, only a few short cycles form and the optimal solution can be easily found. In comparison,
resolving cyclicity in a Bayesian network can be exponential inn (k << n), since cycles can form
among anyn variables.2

We treatF(R) as a scoring function that measures the quality of regulator sets. This implies a
new optimization problem to find a small set of regulators,R , which maximize this score:

Definition 3 TheBest Regulator Setproblem: Given a set of variablesX , a data set of samples D,
a set of candidate parentsC , and the constants d and k, we wish to find

R = argmaxR⊂C ,|R|≤kF(R) (3)

1. We typically used ranging between 3 to 5 andk ranging between 30 to 70, whereasn is in the thousands and|C | is
in the hundreds.

2. In our typical setting wherek ranges between 30 to 70 andn≥ 2000, the difference in score after breaking the cycles
is negligible. With high probability this difference would not change our choice of regulating setR . Therefore, for
the remainder of this paper, we ignore the issue of cyclicity.

172

M INREG

This problem is conceptually similar to theSet Coverproblem, a classical hard problem. The
challenge is that the regulator setR must be chosen from a much larger candidate setC and there
are

(|C |
k

)

possible regulator sets. While there does not seem to be any efficient algorithm to find an
optimal solution, we next present an efficient algorithm that attempts to approximate it.

3. MinReg Learning Algorithm

We now turn to the task of learning a regulation model (specified by a set of regulatorsR , and a
parent structure on the variables inX) from a training set (D = {x[1], . . . ,x[M]}, consisting ofM
instances drawn independently from an unknown distributionP(X)). Our goal is to choose the set
of regulatorsR and learn the regulatory graph structure that best explains this distribution. We take
a score-based approachto this learning task and we define a scoring function that measures how
well each candidate model fits the observed data.

Given a scoring function, our task is to devise a search algorithm capableof efficiently finding a
high scoring model. As discussed in Section 2.1, the hard part of the search is to find the optimal set
of regulators,R . Our novel greedy algorithm for this task, MinReg (sketched in Figure 4), begins
with an empty set of regulators and an empty graph structure. At each iteration, for each possible
candidate, we construct an increment regulator set by adding that candidate to the current regulator
set. We calculate the score for each of the increment regulator sets and choose the one that gives
the largest gain. Each timeR is updated, we calculate the optimal regulation graph restricted to the
current regulator setR . We continue to iterate until some stopping criterion is reached.

A crucial point is to correctly define the gain of a given regulator at eachiteration. We calculate
a local score between a variable and its regulatingset. When considering a new candidate regulator
c∈ C as a parent for a variableX, we measure not how wellc scores forX, but how much additional
gainc gives toX’s local score. Thus, each of the regulating parents provide a distinct contribution
to the score.

Definition 4 We define themarginal utilityof adding a regulator setC to an already chosen regu-
lator setR as

F(C | R) = F(C∪R)−F(R) (4)

Thus, at each iteration, we add the candidate regulator with the largest marginal utility.

3.1 α-modularity and Performance Guarantees

MinReg is a greedy algorithm, which at each iteration, adds to the model the best single regulator
according to some local criterion This greedy approach does not necessarily lead to a global opti-
mum. Can we characterize the situations in which the MinReg algorithm is lead astray? Consider
the case whereScore(X;A)+ Score(X;B) is significantly less thanScore(X;A∪B). In this situa-
tion, neitherA nor B would be attractive enough to get selected by themselves in any of the greedy
steps, whereas their joint contribution may be significantly higher than any other combination of
regulators. Thus, the greedy algorithm is misled to choose an inferior regulator set. Importantly,
this is a biologically-plausible scenario, since synergy between regulators isa well-documented
phenomenon.

173

PE’ ER, TANAY, AND REGEV

MinReg Algorithm
Beginwith an empty regulator setR and an empty graph
In each iteration find the candidate regulator with the highest marginal utility:
c∗ = argmaxc∈C F(c | R)

Iterate over each candidate regulatorc∈ C

calculateF(c | R)
Iterate over each variableX = X1, . . . ,Xn

approximate its best parents restricted toR ∪c
maxP⊂R ∪c,|P|≤d Score(Xi ;P)
Add local score ofXi to utility of c

Add best candidate regulator toR and update the regulation graph
until stopping criterion(3.3.1)

Figure 4: Overview of the MinReg algorithm. The algorithm consists of two nested greedy loops.
The external loop finds the optimal setR of k regulators. For eachX ∈ X an internal loop
finds an optimal set of parentsPaX.

We argue that this characterizes the only situation in which our algorithm fails.We show that if
we can bound the severity of such effects, we can derive a worst case error bound on the algorithm’s
performance: in this case, MinReg is anapproximation algorithm, guaranteed to find a solution
which is not too far from optimal. To formally prove this guarantee, we introduce the notation of
α-modularfunctions.

Definition 5 Let f be a function defined over subsets ofC . f is monotone increasing if forall subsets
A,B s.t. A ⊆ B, the following holds

f (A) ≤ f (B)

Definition 6 (Lehmann et al., 2001) Let f be a function defined over subsets ofC . f is α-modular
(α ≥ 1) if and only if for all subsetsA,R and for all singletons Z, the following holds:

f (A∪Z|R) ≤ f (A|R)+α f (Z|R)

Note that this is a generalization of sub-modular functions,f is sub-modular forα = 1. One
might considerα as some measure on the convexity off over the space of subsets fromC . For
larger α, more “synergy” can be gained by joining sets together. We will show that ifwe can
bound the amount of “synergy” between regulators, we can bound the error of our greedy algorithm
accordingly.

174

M INREG

Lemma 7 The following are equivalent definitions ofα-modular functions: ((Lehmann et al.,
2001))

1. For any subsetsS⊆ T and singleton Z/∈ T we have f(Z|S) ≥ α f (Z|T).

2. For any subsetsS⊆ T and subsetV we have f(V|S) ≥ α f (V|T).

3. For any subsetsA,B, we have f(A)+α f (B) ≥ f (A∪B)+α f (A∩B)

These equivalent formulations offer us another perspective: the marginal utilities of α-modular
functions are “almost” (up to a factor ofα) monotone decreasing. This fits our intuition that asR

grows larger, the utility of adding new regulators diminishes.

Theorem 3.1: If F is anα-modular and monotone increasing function,3 then the MinReg algorithm
(presented in Figure 4) is a polynomial time approximation algorithm for the BestRegulator Set:
Denote by OPTk the optimalk regulator set (i.e. that maximizesF) and by MINREGk the regulator
set found by the MinReg algorithm, then

(α+1)F(MINREGk) ≥ F(OPTk) (5)

This theorem provides assurance that while MinReg is a very quick algorithm that greedily
takes locally optimal steps, the score of the regulator set found by MinReg isnot too far away (at
most a factor of 1+α) from the optimal solution reached by exhaustively enumerating all possible
regulator sets.
Proof: Our proof is by induction. Fork= 1, the optimal solution is the best single regulator and this
is exactly the regulator found by the MinReg algorithm therefore MINREG1 = OPT1. We assume
that(α+1)F(MINREGk−1) ≥ F(OPTk−1) and prove it fork.

SetJ = argmaxI∈C F(I), the best single regulator inC andĴ = argmaxI∈OPTk
F(I), the best single

regulator in OPTk. Note,J is the first regulator chosen by the MinReg algorithm.
We define the following sub-problem imitating the behavior of the greedy algorithm. Let

F̂(Y) = F(Y∪{J})−F(J), our goal is to find a set ofk−1 regulators that optimizêF on C \{J}.
This is exactly what MinReg does after it choosesJ in the first iteration. We denote byˆOPTk−1

and ˆMINREGk−1 the optimal and greedy solutions respectively to this new sub problem. It is
easy to see that̂F is a α-modular function and that our induction holds forF̂ as well, that is,
(α+1)F̂(ˆMINREGk−1) ≥ F̂(ˆOPTk−1).

By the inductive hypothesis, it suffices to show that the increment isα-modular, i.e.:

F(OPTk)− F̂(ˆOPTk−1) ≤ (α+1)F(MINREGk)− F̂(ˆOPTk−1) ⇒

F(OPTk) ≤ (α+1)F(MINREGk)

simply by subtraction of the same value on both sides. By the induction hypothesis on F̂ we have
that

F(OPTk)− F̂(ˆOPTk−1) ≤ (α+1)(F(MINREGk)− F̂(ˆMINREGk−1))

≤ (α+1)F(MINREGk)− F̂(ˆOPTk−1)

3. While the marginal utilities should be almost monotone decreasing, we want the function itself to be monotone
increasing.

175

PE’ ER, TANAY, AND REGEV

because(α+1)F̂(ˆMINREGk−1) ≥ F̂(ˆOPTk−1). Note that

F(MINREGk)− F̂(ˆMINREGk−1) =

F(MINREGk)−F(ˆMINREGk−1∪{J})+F(J) = F(J)

since ˆMINREGk−1∪{J}= MINREGk by the very way in which the MinReg algorithm works. Thus
to prove the induction fork it is enough to show that:

F(OPTk)− F̂(ˆOPTk−1) ≤ (α+1)F(J) (6)

Since ˆOPTk−1 is at least as good as any solution of sizek−1, by definition:

F̂(ˆOPTk−1) ≥ F̂(OPTk \{Ĵ}) = F(OPTk \{J′}∪{J})−F(J) (7)

By α-modularity ofF :
F(OPTk) ≤ F(OPTk \{Ĵ})+αF(Ĵ) (8)

Subtracting (7) from (8) gives:

F(OPTk)− F̂(ˆOPTk−1) ≤ [F(OPTk \{Ĵ})−F(OPTk \{Ĵ}∪{J})]+ [αF(Ĵ)+F(J)] (9)

Monotonicity ofF implies thatF(OPTk \{Ĵ}) ≤ F(OPTk \{Ĵ}∪{J}), therefore, the first bracket
gives a negative contribution. Maximality ofJ implies thatF(J) ≥ F(Ĵ), therefore the second
bracket is≤ (α+1)F(J).

It remains to show thatF is both monotone andα-modular. Recall,F is a sum of maximizations
of local scoring functions:F = ∑n

i=1maxP⊂R,|P|≤d Score(Xi ;P). The local maximizations are clearly
monotone, ifS⊂ T, then∀X,maxP⊂T Score(X;P) ≥ maxP⊂SScore(X;P). ThusF , being the sum
of monotone functions, is monotone as well.

Empirically we observe thatF is α-modular, usually for relatively smallα (see 4.1.1). At first
this might sound surprising, since as mentioned above, synergy is known toplay an important role
in biological regulation, and we do not expectScore(X;P) to beα-modular in the gene expression
domain. Fortunately, while regulators are synergistic for specific targets,F is a sum over thousands
of variables. Even if the synergy between two regulators is very high, thissynergy would need to
hold for many targets, otherwise it would average out when summing over allof X . We empirically
tested the synergy between regulators and groups of regulators in both yeast and mammalian data
sets, the worst factor we encountered was 1.2. Therefore, we make the assumption ofα-modularity
of F with α = 2 in the gene expression domain.

3.2 Scoring Function

To define the local scoreScore(X;P), we adopt the Bayesian paradigm and use the Bayesian BDe
scoring function (Heckerman et al., 1994; Heckerman, 1998) commonly used for learning Bayesian
networks. The Bayesian score evaluates the posterior probability of the graph given the data:

scoreB(G : D) = logP(D | G)+ logP(G)

whereP(D | G) takes into consideration our uncertainty over the parameters and averages the prob-
ability of the data over all possible parameter assignments toG .

P(D | G) =
Z

P(D | G ,θ)P(θ | G)dθ

176

M INREG

The particular choice of the priorsP(G) andP(θ | G) determines the exact Bayesian score.
The BDe score refers to a certain class of priors with several desirableproperties (as detailed in

(Heckerman, 1998))In particular, the BDe score of an entire regulationgraphG , decomposes into
sum over the local scores for each variable.

score(G : D) = ∑
i

Score(Xi ;PaXi) (10)

We use these local decomposed scores as the local score for our algorithm.

3.3 MinReg Implementation

A general overview of the MinReg algorithm was presented in Section 3. Several details in Min-
Reg’s implementation lead to substantial speed-up of the naı̈ve algorithm, such that our implemen-
tation can generate a model over thousands of genes within few minutes.

First, we define a functionfX for each variableX, fX(R) = maxP⊂R ,|P|≤d Score(X;P). This is
the optimal contribution ofX to F , restricted to a regulator setR . Thus, we have 3 levels of scoring
functions:Score- for a particular variable and its parents,fX - the optimal score of a single variable
X, andF(R) = ∑X∈X fX(R).

The näıve greedy algorithm hask iterations. In each iteration,F(c|R) is calculated for all
c∈ C . Since each calculation ofF(c|R) requires calculatingfX(c|R) for all X ∈ X , fX is calculated
k|C ||X | times. Calculation offX requires calculatingScorefor each of the

(k
d

)

possible sets of
parents. While this is constant inn, in practicekd could be very large. We devise a number of
heuristics based onα-modularity to reduce the number of times we need to calculate each of the 3
functionsF , fX, andScore.

We employ a branch and bound approach toF(c|R), using theα-modularity ofF to filter out
candidates with little potential. In the first iteration, for allc∈ C we calculate Util(c) = F(c). We
store the candidate regulators in a heap sorted by Util(c). At any given time, Util(c) = F(c|A), for
someA ⊆ R . The α-modularity ofF ensures thatαUtil(c) ≥ F(c|R) (see Lemma 7). In most
cases, we expect the regulator with the highest marginal utility to be toward thetop of the heap.

Once a new regulator is added toR , the marginal utilities change and need to be recalculated.
In each subsequent iteration, we traverse down the heap and only re-evaluate candidates for whom
α∗Util(c) is greater than the best marginal valuation found thus far, denotedc∗. Each timeF(c|R)
is calculated, we use this value to update Util(c) in the heap. Once we reach a candidate such
that α ∗Util(c) < F(c∗|R) we stop traversing the heap, asα-modularity ensures that none of the
candidates beyond this point can be better thanc∗. While this branch and bound does not change
the worst case complexity, for most practical cases, only the few topmost candidates are examined
in each iteration.

While the previous speed-up came at no loss in the quality of the final solution,the next two
heuristics reduce accuracy. These heuristics are based on the assumption thatScoreis α-modular in
most cases (though probably by a larger factor). This assumption is reasonable (albeit not always
accurate). While regulation is sometimes synergistic, functions such as XOR are rare in biology and
even when synergy exists, it is bounded by a reasonable constant. More importantly, we expect the
synergistic pairs are themselves uncommon.

Similarly to how Util(c) approximatesF(c|R), we cache UtilX(c) as an approximation of
fX(c|R). WheneverF(c|R) is calculated, we do so only approximately:F(c|R) = ∑X∈X UtilX(c).

177

PE’ ER, TANAY, AND REGEV

In the first iteration we initialize UtilX(c) = fX(c), for eachc ∈ C andX ∈ X . In subsequent it-
erations, we only recalculatefX(c|R) (and update UtilX(c)) for thoseX’s whose parent setPaX

changed in the previous iteration. This is especially effective in later iterations wherePaX rarely
changes.

Finally, instead of calculatingfX exactly, we approximate it using a greedy algorithm similar to
Figure 4. We start with no parents and at each iteration add best parent, argmaxc∈R fX(c|PaX) to

PaX. This only requiresd|R | calculations ofScoreinstead of
(|R |

d

)

.

3.3.1 STOPPINGCRITERION

Formally, the best regulator set problem requires a predefined constant k, specifying the number of
regulators in the model. However, there are no obvious biological grounds for choosing a particular
“good” k, as there is a trade-off between fine resolution (offered by a larger number of regulators)
and statistical robustness (from a small number of regulators).

We address this fine balance by taking an adaptive approach. We devisea stopping criterion
for the addition of new regulators to our model. We continue to add regulatorsas long as their
contribution to the score is significantly better than random regulators. We generate a set ofm
random regulators with similar properties to the real candidate regulators in our data. We construct
these by sampling regulators with replacement from the original candidate regulator set. For each
sampled regulator, we randomly permute the order of its samples. Thus, the random regulators
have the same distribution over their values, but these are independent ofthe target variables. We
calculate the score for these random regulators in a manner similar to the realcandidate set and store
these in a heap. This provides us with an empirical distribution for the score ofa random regulator.

We continue to add regulators to our model as long as they score greater than the random candi-
dates. We update the scores in the candidate heap in a similar manner to the realcandidates, pruning
the heap usingα-modularity. We stop once a random regulator scores better than any realregulator.

4. Experimental Results

We evaluated our algorithm on two data sets, a compendium of yeast expression profiles and a data
set of mouse B-lymphocyte expression profiles. The distinct two data sets provide us each with
a different realistic evaluation context. The yeastS. cerevisiaeis the most extensively studied or-
ganism on a genomic scale, and has the most extensively characterized regulatory system among
eukaryotes. In addition to an extensive amount of microarray data, identifying cis-regulatory ele-
ments (Bussemaker et al., 2001) and TF binding events (ChIP-chip experiments) (Lee et al., 2002;
Harbison et al., 2004) is tractable on a genomics scale. Finally, decades ofcareful studies on individ-
ual gene functions are documented in a genome database (Cherry et al., 2001). Together, these data
sources will allow us to carefully evaluate the success of our method in light of current biological
knowledge.

Mammalian regulatory systems, such as those of the laboratory mouse, are notoriously diffi-
cult to elucidate, both experimentally and computationally. First, these networksare significantly
more complex, involving a larger number of regulators, binding to long promoter and enhancer se-
quences. In particular, different cell types and cell states employ different regulatory networks to
process signals. Furthermore, this complexity renders both genomics studies of regulatory events
(such as ChIP-chip experiments) and computational ones (such as discovery of cis-elements) dif-

178

M INREG

ficult or intractable. In fact, the sole available source of relevant data in mammalian systems is
typically microarray measurements of expression profiles. Importantly, no successful method was
demonstrated to date for reconstructing regulatory networks from mammalian expression profiles.
Even partial success of MinReg in reconstructing mammalian regulation would constitute a signifi-
cant scientific advance.

The yeast data set contained 358 samples combined from the Compendium (Hughes et al.,
2000) and stress (Gasch et al., 2000) data sets.4 We compiled a setC of 466 candidate regulators
for yeast, which includes any gene with a potential regulatory role based on annotation or sequence
homology. The expression profiles were discretized into 3 values:down-regulated, no changeand
up-regulated.5 We included only 3755 genes with significant change in gene expression inat least
15 samples. We set the maximal indegree,d = 3, a reasonable estimate for the regulation of most
yeast genes (in particular under a limited number of condition).6 We conservatively setα = 2 based
on empirical evaluation of the data (see Section 4.1.1 below). We applied our MinReg algorithm to
this data set resulting in a yeast regulation model with 44 key regulators.

The mouse data set consisted of 204 samples from purified spleenic B-lymphocytes (Sambrano
et al., 2002), subjected to a number of stimuli (ligands) and combinations of these stimuli. We
compiled a list of 684 candidate regulators using criterion similar to the yeast candidate regulator
set.7 We discretized the data as in yeast, except that the data was discretized into 5levels: strongly
down regulated, weakly down regulated, no change, weakly upregulated and strongly upregulated.
We included only the 4373 genes that significantly changed in at least 18 samples. We ran the
MinReg algorithm on this data and inferred a regulation model with 75 key regulators.

We employed both statistical and biological criteria to evaluate the performanceof the algo-
rithm. We examine our assumptions ofα-modularity, the ability of our algorithm to generalize to
unseen data, and the accuracy of the reconstruction on synthetic data. To demonstrate the accuracy
of our algorithm in reconstructing the real yeast and mammalian regulatory network, we devise
an approach to infer regulator function from our model, and compare thatto the known central
regulators in the relevant biological processes.

4.1 Statistical Evaluation

In this section we well evaluate the statististical robustness of the MinReg algorithm. We focus on
two issues, is the assumption of alpha-modularity a reasonable one for our gene expression domain,
and how well does our learned model generalize to unseen test data.

4. The Compendium (Hughes et al., 2000) contains 276 deletion mutants from various functional classes and the Stress
data set (Gasch et al., 2000) contains 82 samples of responses to 12 different stress conditions.

5. The Bayesian score is based on a multinomial distribution. Exact continuous measurement is a very noisy estimate
of the actual gene expression and in our experience, discrete states better represent gene activity. We used a soft
discretization based on a linear piecewise step function for each level of activity.

6. While some genes might have more regulators, there is not enough data to learn such complex regulatory function
from so few samples. Importantly, our goal is to robustly learn the key regulatory relations, not the full detailed
network.

7. Mouse has many more known regulators, but only 1/3 the mouse genome was printed on the microarray and only
these genes were included in the analysis.

179

PE’ ER, TANAY, AND REGEV

4.1.1 ALPHA MODULARITY

MinReg employs a greedy approach, evaluating only the addition of single regulators to the model at
each iteration, potentially missing a better combination of regulators.8 Based on the assumption of
α-modularity ofF , Theorem 3.1 ensures that the score of the greedy solution is not much worse than
the score of the optimal solution. Furthermore, to improve the speed performance, theα-modularity
of F is used strongly by the implementation to bound the number of the regulators that are evaluated
from the heap at each iteration.9

To empirically evaluate theα-modularity ofF in the two data sets used, we calculated the pair-
wise gain in score for all pairs of regulators in the candidate setC . Thus, for each pair of candidates
c1 andc2, we calculated the worstα usingF(c1∪c2), F(c1) andF(c2). In addition, we calculated
the worstα for 10,000 pairs of random subsets,C1,C2 ⊂ C , ranging between 2 to 8 regulators each,
usingF(C1∪C2),F(C1) andF(C2). For the yeast and B-lymphocyte data, the worstα empirically
encountered were 1.184 and 1.229, respectively. We usedα = 2 as a conservative overestimation to
determine when to stop evaluating candidates in the heap at each iteration.

To further boost speed, we make a weak (but inaccurate) assumption that Scoreis close toα-
modular, allowing MinReg to reconstruct a large network over thousands of genes in a few minutes,
rather than overnight. We evaluated the effect of this additional modificationon MinReg’s per-
formance by comparing its affect on the likelihood of test data in cross validation, as well on the
enrichment of GO annotations in target sets (see sections 4.1.2 and 4.2.1) Indeed, based on these
two criteria, assumingα-modularity ofScoredoes not hurt the algorithm’s performance.

4.1.2 CROSSVALIDATION

To evaluate the statistical robustness of our learned model and its ability to generalize to unseen
data, we tested MinReg’s performance in 5-fold cross validation. We randomly split the data into 5
equal parts, and ran MinReg 5 times. Each time using 4/5 of the samples as training samples to to
learn both the structure and parameters of the regulation model, and withholding 1/5th of the data
samples as a testing set. We then used the inferred model and gene expression of inferred regulators
in the test data to predict the expression levels of all 3755 variables in eachtest sample. That is,
given the expression of regulators in themth sample, we useP(X | PaX[m]) to predict the value of
X in that sample.

We compared the likelihood of test data in several different models. As a baseline, we used the
marginal probability of each variable to predict its value. Since most of the variables had a high
frequency of the value 0 (their corresponding gene’s expression remained unchanged most of the
time), even this simple predictor scored well (Figure 5, crosses). As competition to our MinReg
algorithm, we generated 44 clusters using standard k-means clustering (Duda and Hart, 1973; Tava-
zoie et al., 1999) and randomly chose from within each cluster a gener ∈ C as its “regulator”. For
each cluster we usedP(X | r) as our predictor. While cluster representatives somewhat improved
the prediction over the baseline (0.06 log-loss/instance, Figure 5, circles), our MinReg algorithm
clearly provided the best predictions (0.11 log-loss/instance, Figure 5, triangles). In conclusion, our
cross-validation demonstrates that the model generated by the MinReg algorithm performs well on

8. This assumption is made implicitly by the classic and widely used greedy Bayesian network learning algo-
rithm (Heckerman, 1998), that considers greedy moves of adding, removing and reversing a single edge at each
step.

9. Typically, after the first few iterations, only a few regulators are evaluated at each iteration.

180

M INREG

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

500

1000

1500

2000

2500

3000

Probability of correct prediction

nu
m

be
r

of
 g

en
es

 w
ith

 a
cc

ur
ac

y
>

 X

Entropy
Clustering
MinReg

Figure 5: Cross validation of the predictive capabilities of our model on test
data. The graph measures the number of variables correctly predicted
at each probability. We compare our model (triangles) to the null model
(crosses) that uses the marginal distribution of each variable and to a
model based on cluster representatives (circles)

test data and that most of the information in an entire microarray can be captured by a small set of
key regulators.

4.1.3 SYNTHETIC DATA

To evaluate the accuracy of the MinReg algorithm in a controlled setting, we generated synthetic
data from a known regulation network. This gives a known ground truth towhich we can compare
the learned models. To make the data realistic, we generated synthetic data from the regulation
model inferred from the yeast gene expression data above. While the inferred network is less com-
plex than a true biological network, both share the same underlying probabilitydistribution of the
discretized data. We randomly sampled 10 data sets from this regulation model, each set consisting
of 358 samples (same number of samples as the original data set). We tested MinReg’s ability to
reconstruct the correct network independently on each of these 10 synthetic data sets.

Our first test evaluated MinReg’s choice of regulators. On average (over 10 repeats), MinReg
correctly reconstructed 84% (39) of the generating 44 regulators. Theworst case was 80% (35) and
best case 91% (40). As for false positives, on average 74% of the reconstructed regulators were
correct (worst case 71% and best case 77%).

Next we evaluated the detailed model itself. The generating model contained 6616 edges and
we checked how many of those were correctly recovered. On average70% of these were recovered
(worst case 69% and best case 72%). In each model the percent of correct edges was a bit higher,
with an average of 74% (worst case 72% and best case 77%). Even when we did not limit to

181

PE’ ER, TANAY, AND REGEV

candidate regulators (settingC = X) our reconstruction of regulators was surprisingly good, 42/47
of the regulators were correct and 76% of the individual edges were correctly reconstructed.

In summary, using only a small number of samples, MinReg is capable of learning a model over
thousands of variables, reconstructing most of the relationships correctly.

4.2 Biological Evaluation

The crucial test for the success of our approach is in reconstructing the main aspects of a real
regulatory program. The true underlying biology is vastly more complex than the simple regulation
model that generated the synthetic data. In a real biological system, there are more regulators
working together in more complex functions, feedback loops, and unobserved events. Furthermore,
the expression data probing these is noisy. Unfortunately, since our knowledge on the principles
and specifics of real regulatory networks is limited, so is our ability to test ourmodel based on
“realistic” simulated data. Due to this lack of biological knowledge we also do not have a gold
standard network in any organism.

Fortunately, while evaluating each specific connection is impossible at the moment, we can
estimate whether our model has correctly captured the overall biological regulatory events in the
system. To do this, we rely on the functional annotations available for many genes, which describe
(using the controlled vocabulary of the Gene Ontology (Consortium, 2000)) the molecular function,
biological process and cellular location of individual genes. Thus, as described below, we will
evaluate our reconstructed model by the ability to use it to correctly deduce the functional annotation
of regulators, and by the fit of these annotations to the relevant biologicalsystem. Importantly, such
functional characterization of key regulators is a critical biological task inits own right.

4.2.1 ANNOTATING REGULATORS

Our approach is based on the understanding that the biological function of a regulator is mediated
by its set of targets. Therefore, the common shared function of its set of targets (e.g. enzymes
involved in amino acid (AA) metabolism) characterizes the overall biological process it regulates
(e.g. amino acid metabolism). Continuing with the AA metabolism example, if our reconstructed
model is good, we expect a regulator of AA metabolism to have many inferredtargets involved in
AA metabolism. More generally, we expect that the function associated with a regulator based on
its set of targets in the model (as reflected by significant enrichment for a particular annotation) will
fit with the known function of this regulator (as reflected by its own annotation).

More formally, we denote byXr the set of targets of a regulatorr in our network structure.
For each annotation termA, we calculate the fraction of genes inXr associated withA and use the
hyper-geometric distribution to calculate a p-value for this fraction. We report for each regulator,
all the significant annotation terms with which it was associated and compare them to the known
annotations for that regulator, and to the main functions expected in the biological systems we
examine.

4.2.2 EVALUATING THE YEAST REGULATORY NETWORK

Based on this test, our reconstructed yeast network corresponds wellto previous findings. Specifi-
cally, the model derived functions for 8 of the top 10 regulators (sorted by p-value) coincided with
their known biological roles. Of the remaining two regulators, we were able toassign a putative role

182

M INREG

to one previously uncharacterized gene, but failed to identify the correct role of the other.10 Further-
more, we examined numerous individual edges underlying these derivedassociations demonstrating
that they are indeed supported by previously described regulator-target relations, lending support to
our global analysis.

Additionally, the sequence motif representing binding site preference, is known for many yeast
transcription factors. As an additional source of validation for MinReg’starget sets, we use a puta-
tive map that uses these motif models to predict the gene targets of these transcription factors (Har-
bison et al., 2004). Similarlly to testing enrichment for GO annotations, we testedfor enrichment
of motifs in the promoter regions in each target set. In the case of signaling proteins, we tested for
enrichment of the known transcription factor target activated by the signaling protein (see figure 1).
A correct match between regulator and motif was found for 6 of the top 8 regulators,11 Sst2 (Ste12),
Met28, Uga3, Slt2 (Rlm1), Tpk2 (Msn2/4), and Tec1. Together the correct functional annotation
and the occurance of the known motif in the regulatory regions, strongly support the quality of our
reconstructed network. A more detailed and biologically oriented analysis ofa simplified version
of the proposed algorithm has been published in (Pe’er et al., 2002).

4.2.3 THE IMPORTANCE OFCANDIDATE REGULATORS

The pre-defined set of candidate regulators,C, is the only source of prior biological knowledge
to our algorithm. In addition to focusing the model on regulatory relations, it narrows the search
space and significantly reduces the running time of the algorithm (which is quadratic in the size of
candidate set).

To assess the impact of this prior knowledge on MinReg’s success, we examined MinReg’s bio-
logical accuracy when run on the yeast data set, in the absence of a pre-defined candidate regulator
set (i.e. C = X , such that any gene can be chosen as a regulator).12 MinReg chose 35 regulators,
only 6 of which were in the original candidate regulator set. This lack of “true” regulators suggests
the expression of co-regulated genes is often at least as predictive (and sometimes even more) than
that of the true regulating gene. While this model might be highly predictive andeven generalizes
well to new data, it does not reconstruct biological regulation, and is difficult to interpret.

Nevertheless, while6
35 is only a small fraction of the chosen regulators, this is a significant en-

richment compared to their fraction in the candidate set (pvalue 0.003). The fact that our procedure
results in a statistically significant enhancement of regulators is encouraging. We speculate that in
complex organisms, where combinatorial regulation is expected to play a bigger role, this approach
will be even more successful in detecting genes with a regulatory function.

4.3 Analysis of Mouse Data

In contrast to the significant success of several methods in reconstructing yeast regulatory networks,
no algorithm has so far successfully reconstructed a mammalian regulatory network. To examine

10. The results for the top 20 regulators are of similar quality: the associations for 13 regulators correspond their known
function,four regulators were previously uncharacterized and the associations for three regulators are unsupported.

11. These are 8/10 regulators we evaluated for gene function above, excluding 2 regulators for which no motif is currently
known.

12. Since the algorithm is quadratic inC , we reducedX by including only genes whose expression significantly changed
in ≥ 18 samples (versus 15 samples). This resulted in a set of 2828 genes for bothX andC . It is important to note
that in our data set, the expression of many candidate regulators remainsalmost constant. Only 148 genes from our
original candidate set of known and putative regulators were included inthe 2828 genes.

183

PE’ ER, TANAY, AND REGEV

whether MinReg can scale up to the challenge of a mammalian system, we evaluatedthe biological
accuracy of its reconstruction of a B-lymphocyte regulatory network.

We first examine whether the key regulators identified by the algorithm are known to participate
in the main biological process taking place in B lymphocytes under the tested stimuli-the decision
between cell proliferation and cell death. Indeed, the inferred regulatorset R includes the top
five genes - Trp53, Nfkb1, Jun, Fos and Bak1 - known to play a pivotal role in this decision. 16
additional inferred regulators are known to be directly involved in the regulation of proliferation
and cell death13 and seven others are involved in the regulation of the cell division cycle.14 Overall,
28/75 regulators are known to participate in regulation of the central process occurring in these
cells. Importantly, in multi-cellular organisms such as mouse, each cell type is characterized by a
distinct regulatory network (although some of the sub-systems may be used indifferent types of
cells). Indeed, 28 of the 75 inferred regulators are known to be involved in lymphocyte regulation:
7 genes (Nfkb1, Jun, Fos, Daxx, Syk, Gnai2, Csf1r) are known central regulators in B-lymphocytes,
15 genes are known to be active in the regulation of lymphocytes in general,and 6 others encode
cytokines and their receptors (important in the regulation of immune cells, including lymphocytes).
Taken together, this analysis indicates that 44 of the 75 inferred regulators are known regulators of
lymphocytes, cell proliferation and death or both.15 This suggests, that when applied to a complex
mammalian data set, MinReg is able to identify the key regulatory genes active in thissystem.
Finding such central regulatory genes is still a major biological task in most systems.

We next examined the quality of our model structure, based on its ability to predict the detailed
function of individual regulators (as described above for yeast). For each regulator, we compared
the 3 top significant annotation terms (P < 0.05) based on its predicted targets with its known
annotation terms (typically 5-6 per regulator). We defined 5 different categories16 and evaluated the
significance of our results by comparing to the null model of randomly assigning each regulator with
3 GO annotations (out of 2694 annotations tested). Based on these criteriathe predicted function for
over half (45/75) the regulators had at least some support in prior biological knowledge. Specifically,
the predicted functional annotation of 6/75 regulators was “very good” (P < 10−18), “good” for
28/75 additional regulators (P < 10−35), and “weak” for 11/75 genes. 12/75 genes had “no match”
to any annotations, but many of them were genes encoding relatively uncharacterized regulators with
little or no known annotations. Importantly, only 16 of 75 regulators were assigned no significant
annotation, indicating the biological coherence of our reconstructed model,where regulators are
associated with functionally related targets.

To illustrate the quality of our findings, we highlight several specific examples. First, we note
that some of the “very good” annotations demonstrate that MinReg can provide an extensive biolog-
ical characterization of the regulatory function of genes. For example, our model indicates that the
protein Map3k1 functions in the MAP Kinase Signaling Pathway has a signal transducer activity
and works in the Growth factor signaling pathway. Importantly, the model alsoidentified several
of Map3k1’s targets, including Fos and Nfkb1. This is a highly accurate characterization of the

13. They are Aaft, Daxx, Foxo1, Gadd45g, Gnai2, Hipl2, Igbp1, Il2rh, Jund1, Itgb4, Map3k1, Rgs15, Rras2, Rsu1,
Socs1, and Zmynd11.

14. They are Ax1, Camk2b, Csfir, Elk3, Maf, Tbl1, Rgs2, and Tbl1.
15. We expect that many of the other inferred regulators may be just ascorrect, and are simply not characterized by

current biological knowledge. They suggest therefore novel biological hypotheses for experimental validation.
16. Our categories are: “Very good” (more than one exact match); “good” (1 exact match), “weak” (1 approximate match

to a related term), “no match” (significant annotation were associated with the regulator but none match any known
annotations) and “no p-value” (no significant annotations were associated with the regulator).

184

M INREG

molecular function of this protein, and of its biological regulatory role. SinceMap3k1 is a signaling
protein (rather than a transcription factor) this is a particularly important achievement, since direct
assays of regulatory function (based on cis-elements and protein-DNA binding) cannot help in this
task. Indeed, our method detects and correctly associates a whole rangeof regulators - including
transcription factors, kinases and phosphotases. For example, Aatf, the apoptosis antagonizing tran-
scription factor, is correctly associated with the apoptotic pathway and the mitoticcell cycle. Dusp4,
the dual specificity phosphatase 4, is correctly associated with protein-tyrosine-phosphatase activity
and MAPK signaling pathway. Finally, we emphasize that the main benefit of our approach is in
suggesting novel hypotheses for further research. Thus, “weak”and “no match” associations may
present the most important biological leads emanating from MinReg’s results. For example, the Jun
oncogene (assigned to the “Weak” category), was predicted by our method to be involved in the
Oncogene associated pathway and Cell proliferation and differentiation.While multiple abstracts
in the published literature clearly and strongly support these two associations, Jun’s current GO
annotation includes neither.

4.3.1 COMPARISON TOMODULE NETWORKS

Does MinReg have significant benefits in reconstructing mammalian regulatorynetworks over other
(related) reconstruction approaches? To address this question, we compared MinReg’s performance
on the B-lymphocyte data set to that of the Module Networks algorithm (Segalet al., 2003, 2005).
Similar to MinReg, Module Networks associates a regulator to its targets based solely on depen-
dencies in gene expression. However, while MinReg considers each target gene separately, Module
Networks groups targets into sets (“modules”), such that all module genesshare exactly the same
regulatory program. In previous work (Segal et al., 2003), Module Networks was shown to be highly
successful in reconstructing the yeast stress regulatory network. Here, we applied Module networks
to the B-lymphocyte data and learn 75 modules and their associated regulation programs, involving
216 regulators overall. While many of the regulators overlapped those chosen by the MinReg al-
gorithm,17 these did not include 3 of the 5 known central regulators of cell proliferation and death
(Nfkb1, Fos, nor Bak1) identified by MinReg.

For comparison, we can evaluate the Module Networks model by annotating each of its 206
regulators based on its associated targets (compiled across all 75 modules), resulting in 196 signifi-
cantly annotated regulators. When evaluating the annotation quality of the top 75 regulators (sorted
by p-value) by the same scale described above, we did not receive similarly significant results. In
fact, only 13/75 genes had any support in prior biological knowledge (1/75 scored “very good”, 7/75
scored “good”, and 5/75 scored “weak”). Furthermore, when examining only regulators identified
by both algorithms, MinReg’s associations outperform Module networks on23 regulators, while
Module networks only found a better association for one regulator (Gnai13). Thus, in the spe-
cific task of characterizing the molecular function and biological process controlled by a regulator,
MinReg overwhelmingly outperforms Module Networks in this mammalian data set. This suggests
that the detailed network and regulatory targets identified by MinReg are moreaccurate than those
discovered by Module Networks.

What may be the underlying reason for MinReg’s success over Module Networks? The central
goal of Module networks is to decompose the space of all genes into functionally coherent co-

17. Module networks learned on the real valued data, rather than the discretized expression values, further supporting the
robustness of the overlapping set of regulators.

185

PE’ ER, TANAY, AND REGEV

regulated modules, at the “cost” of constraining them to share exactly the same set of regulators.
While this constraint increases the statistical robustness and biological coherence (leading to a major
success on yeast data), it may be less suited to complex mammalian regulatory systems. In contrast,
MinReg focuses on finding the most dominant regulators and their targets in the data. A regulator
is only assigned to a target if that specific edge is sufficiently supported bythe data18 and each
gene chooses its unique set of regulators. We believe these two reasonscombined led to MinReg’s
superior performance in regulatory reconstruction.

5. Discussion and Conclusions

We have introduced the MinReg framework, a constrained Bayesian network for the reconstruction
of regulatory networks. The framework limits the total number of parents in themodel, thus focus-
ing on only a small parsimonious set of key regulators. We exploit these constraints to devise a novel
efficient approximation algorithm to search for a high scoring network from expression data. Under
reasonable assumptions on the underlying probability distribution, we can prove guarantees on our
algorithm’s performance. To derive these guarantees, we introduce thenotion of α-modularity, a
convexity measure of the scoring function over the space of possible parent sets. Approximation
algorithms with a performance guarantee rarely exist for Bayesian networks (Dasgupta, 1999) and
we hope this measure can be used to derive addition performance bounds for other sub-classes of
Bayesian networks.

Machine learning in the gene expression domain is especially challenging as itrequires learning
structures over thousands of variables using at most hundreds of samples. Our extensive experi-
mental results on real expression data demonstrate that our framework is up to this challenge: we
successfully infer regulatory relations over thousands of genes within minutes. Our results are
validated by statistical criteria (synthetic data, cross-validation) and biological ones (our ability to
correctly infer a correct set of key regulators and their detailed regulatory functions). Importantly,
unlike previous approaches, our method scales well to complex mammalian systems, discovering
key mammalian regulators (both signaling proteins and transcription factors) solely from expression
data.

While constraining the number of regulators carries obvious statistical and computational ad-
vantages, what does it cost us in biological accuracy? We claim that the focus on a small and
parsimonious regulatory set is as motivated biologically as it is statistically. Mostimportantly, any
complex biological network involves a multitude of genes and proteins, but biologists’ primary goal
is most typically to find the central genes, that play the most important functional role in the system.
In fact, a full and accurate model of the exact network at a given point,may fail to highlight those
central genes. Rather, by focusing on a small set of key regulators, MinReg can provide clear critical
leads for further research. Indeed, our analysis of the B lymphocyte data set indicates that MinReg
is able to focus on the very key regulators of a complex process (cell proliferation and death) as well
as on a significant number of cell specific regulators. Using an established “guilt-by-association”
approach (Wu et al., 2002; Ihmels et al., 2002), we further capitalize on the learned structure, and
identify the accurate functional roles of these proteins in regulating cellularprocesses. This is a
major feat, never before accomplished by a computational algorithm for a mammalian system. Im-
portantly, MinReg is not only superior to standard clustering, but it overwhelmingly outperforms in
this task the recently published Module Network algorithm (Segal et al., 2005).

18. Many genes in the final model do not have any regulator, as none scored well enough.

186

M INREG

Our method relies on the assumption that regulatory interactions between genes often result
in corresponding statistical dependencies between random variables representing their expression.
Recently, there have been a number of successful attempts to use other data sources - such ascis-
elements (Bussemaker et al., 2001; Segal et al., 2002) and transcription factor binding events (Bar-
Joseph et al., 2003) to infer regulatory relations in yeast. However, these successes cannot scale well
to mammalian systems, in which computational detection ofcis-elements is far less tractable (due
to long and ill-defined promoters), and experimental detection of binding events is currently very
limited (due to the genome size and the difficulty in carrying such experimentsin vivo). In contrast,
the collection of mammalian expression data is growing at an exponential rate, and methods such
as MinReg that rely solely on gene expression for network reconstruction are direly needed.

MinReg lies between two graphical model based approaches for learningregulatory networks:
unconstrained Bayesian networks and Module Networks Segal et al. (2005). While unconstrained
Bayesian networks allow for a reconstruction of finer structure, they have only been successful
at reconstructing small networks or subnetworks consisting of only a fewvariables Pe’er et al.
(2001); Hartemink et al. (2002); Imoto et al. (2002). In contrast, MinReg and Module Networks
can reconstruct a network over thousands of variables, based on theassumption that a small number
of regulators can be chosen from a pre-defined candidate set. All three approaches, assume that
regulator expression can be a proxy for its activity. Bioinformatics validation (of all approaches),
and experimental validation (of Module Networks (Segal et al., 2003)) indicates that they can be at
least partly successful in this task. This success is somewhat surprising, since actual protein activity
depends on many biochemical events in addition to mRNA transcription.

What accounts for the significant success of MinReg compared to Modulenetworks in mam-
malian network reconstruction? In the Module Network approach, genes are grouped into modules,
thus losing their individual identity and distinction. MinReg provides a finer structure, allowing
each gene an individual set of parents and regulatory function. Manyrecent biological papers stress
the importance of modularity in biological networks (Hartwell et al., 1999; Ihmels et al., 2002; Se-
gal et al., 2003; Bar-Joseph et al., 2003). Such organization facilitatesorchestrating coordinated
responses to external and internal signals by co-regulating genes thatparticipate in a common func-
tion or task. While modularity may be a general organizing principle of regulatory networks, it
may be too coarse grained on it own to represent the complex coordination between multiple genes
and biological process. Rather, complex mammalian regulation is probably orchestrated by few key
regulators, which combine together to regulate the genome, one target at a timethrough its unique
regulatory program.

References

Z. Bar-Joseph, G. K. Gerber, T. I. Lee, N. J. Rinaldi, J. Y. Yoo, F.Robert, D. B. Gordon, E. Fraenkel,
T. S. Jaakkola, R. A. Young, and D. K. Gifford. Computational discovery of gene modules and
regulatory networks.Nature Biotechnology, 21:1337–42, Nov 2003.

H. Bussemaker, H. Li, and E. Siggia. Regulatory element detection using correlation with expres-
sion. Nature Genetics, 27(2):167–171, 2001.

J. M. Cherry, C. Ball, K. Dolinski, S. Dwight, M. Harris, J. C. Matese, G.Sherlock, G. Bink-
ley, H. Jin, S. Weng, and D. Botstein.Saccharomycesgenome database. http://genome-
www.stanford.edu/Saccharomyces/, 2001.

187

PE’ ER, TANAY, AND REGEV

The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genet-
ics, 25(1):25–29, 2000.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data.Machine Learning, 9:309–347, 1992.

S. Dasgupta. Learning polytrees. InProceedings of the Fifteenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI). 1999.

R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. John Wiley & Sons, New
York, 1973.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data.Journal of Computational Biology, 7:601–620, 2000.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G.Storz, D. Botstein,
and P. O. Brown. Genomic expression program in the response of yeast cells to environmental
changes.Mol. Bio. Cell, 11:4241–4257, 2000.

C. T. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, Macisaac K. D.,T. W. Danford, N. M.
Hannett, J. B. Tagne, D. B. Reynolds, J. Yoo, E. G. Jennings, J. Zeitlinger, D. K. Pokholok,
M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S. Lander, D. K. Gifford, E. Fraenkel, and R. A.
Young. Transcriptional regulatory code of a eukaryotic genome.Nature, 431:99–104, 2004.

A. J. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young. Combining location and ex-
pression data for principled discovery of genetic regulatory networks.In Pacific Symposium on
Biocomputing, pages 437–449, 2002.

L. H. Hartwell, J. J. Hopfield, S. Leibler, and Murray A. W. From molecular to modular cell biology.
Nature, 2, Dec 1999.

D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan, editor,Learning in
Graphical Models. Kluwer, Dordrecht, Netherlands, 1998.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. InProceedings of the Tenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI), pages 293–301. 1994.

T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett,
E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B.
Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend.
Functional discovery via a compendium of expression profiles.Cell, 102(1):109–26, 2000.

J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. Revealing modular organi-
zation in the yeast transcriptional network.Nature Genetics, 31:370–7, Aug 2002.

S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and functional structures be-
tween genes by using bayesian networks and nonparametric regression. In Pacific Symposium on
Biocomputing, pages 185–186, 2002.

188

M INREG

T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T.
Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L.Murray, D. B. Gordon,
B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young.
Transcriptional regulatory networks insaccharomyces cerevisiae. Science, 298:799–804, 2002.

B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal utilities.
In ACM Conference on Electronic Commerce, pages 18–28, 2001.

A. Martinez-Antonio and J. Collado-Vides. Identifying global regulatorsin transcriptional regula-
tory networks in bacteria.Current Opinion Microbioly, 6(5):482–9, 2003.

I. M. Ong, J. D. Glasner, and D. Page. Modelling regulatory pathways ine. coli from time series
expression profiles.Bioinformatics, 18 Suppl 1:S241–S248, 2002.

D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed expression
profiles.Bioinformatics, 17 Suppl 1:S215–S224, 2001.

D. Pe’er, A. Regev, and A. Tanay. Minreg: Inferring an active regulator set. Bioinformatics, 18
Suppl 1:S258–S267, 2002.

G. R. Sambrano, G. Chandy, S. Choi, D. Decamp, R. Hsueh, K. M. Lin, D. Mock, N. O’Rourke,
T. Roach, H. Shu, B. Sinkovits, M. Verghese, and H. Bourne. Unravelling the signal-transduction
network in b lymphocytes.Nature, 420:708–710, Dec 2002.

E. Segal, Y. Barash, I. Simon, N. Friedman, and D. Koller. From promotersequence to expression:
A probabilistic framekwork. InRECOMB, pages 263–272. 2002.

E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Friedman. Learning module networks.Journal of
Machine Learning Research, 6:557–588, April 2005.

E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Module net-
works: identifying regulatory modules and their condition specific regulators from gene expres-
sion data.Nature Genetics, 34:166 – 176, 2003.

S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation
network of escherichia coli.Nature Genetics, 31(1):64–8, 2002.

S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic determination
of genetic network architecture.Nat Genet, 22(3):281–5, 1999.

L. F. Wu, T. R. Hughes, A. P. Davierwala, M. D. Robinson, R. Stoughton, and S. J. Altschuler.
Large-scale prediction ofsaccharomyces cerevisiaegene function using overlapping transcrip-
tional clusters.Nature Genetics, 31:255–265, 2002.

C. Yoo, V. Thorsson, and G. F. Cooper. Discovery of causal relationships in a gene-regulation path-
way from a mixture of experimental and observational dna microarray data. In Pacific Symposium
on Biocomputing, pages 498–509, 2002.

189

Journal of Machine Learning Research 7 (2006) 191–246 Submitted 3/05; Revised 9/05; Published 2/06

Learning the Structure of
Linear Latent Variable Models

Ricardo Silva∗ RBAS@GATSBY.UCL.AC.UK

Gatsby Computational Neuroscience Unit
University College London
London, WC1N 3AR, UK

Richard Scheines SCHEINES@ANDREW.CMU.EDU

Clark Glymour CG09@ANDREW.CMU.EDU

Peter Spirtes PS7Z@ANDREW.CMU.EDU

Center for Automated Learning and Discovery (CALD) and Department of Philosophy
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Editor: David Maxwell Chickering

Abstract
We describe anytime search procedures that (1) find disjointsubsets of recorded variables for which
the members of each subset are d-separated by a single commonunrecorded cause, if such exists;
(2) return information about the causal relations among thelatent factors so identified. We prove
the procedure is point-wise consistent assuming (a) the causal relations can be represented by a
directed acyclic graph (DAG) satisfying the Markov Assumption and the Faithfulness Assumption;
(b) unrecorded variables are not caused by recorded variables; and (c) dependencies are linear. We
compare the procedure with standard approaches over a variety of simulated structures and sample
sizes, and illustrate its practical value with brief studies of social science data sets. Finally, we
consider generalizations for non-linear systems.
Keywords: latent variable models, causality, graphical models

1. What We Will Show

In many empirical studies that estimate causal relationships, influential variables are unrecorded, or
“latent.” When unrecorded variables are believed to influence only one recorded variable directly,
they are commonly modeled as noise. When, however, they influence two or more measured vari-
ables directly, the intent of such studies is to identify them and their influences. In many cases, for
example in sociology, social psychology, neuropsychology, epidemiology, climate research, signal
source studies, and elsewhere, the chief aim of inquiry is in fact to identifythe causal relations of
(often unknown) unrecorded variables that influence multiple recordedvariables. It is often assumed
on good grounds that recorded variables do not influence unrecorded variables, although in some
cases recorded variables may influence one another.

When there is uncertainty about the number of latent variables, which measured variables they
influence, or which measured variables influence other measured variables, the investigator who
aims at a causal explanation is faced with a difficult discovery problem forwhich currently avail-

∗. This work was completed while Ricardo Silva was at the School of Computer Science, Carnegie Mellon University.

c©2006 Ricardo Silva, Richard Scheines, Clark Glymour and Peter Spirtes.

SILVA , SCHEINES, GLYMOUR AND SPIRTES

able methods are at best heuristic. Loehlin (2004) argues that while thereare several approaches
to automatically learn causal structure, none can be seem as competitors of exploratory factor anal-
ysis: the usual focus of automated search procedures for causal Bayes nets is on relations among
observed variables. Loehlin’s comment overlooks Bayes net search procedures robust to latent vari-
ables (Spirtes et al., 2000) and heuristic approaches for learning networks with hidden nodes (Elidan
et al., 2000), but the general sense of his comment is correct. For a kindof model widely used in
applied sciences− “multiple indicator models” in which multiple observed measures are assumed
to be effects of unrecorded variables and possibly of each other− machine learning has provided
no principled alternative to factor analysis, principal components, and regression analysis of proxy
scores formed from averages or weighted averages of measured variables, the techniques most com-
monly used to estimate the existence and influences of variables that are unrecorded. The statistical
properties of models produced by these methods are well understood, but there are no proofs, under
any general assumptions, of convergence to features of the true causal structure. The few simulation
studies of the accuracy of these methods on finite samples with diverse causal structures are not re-
assuring (Glymour, 1997). The use of proxy scores with regression isdemonstrably not consistent,
and systematically overestimates dependencies. Better methods are needed.

Yet the common view is that solving this problem is actually impossible, as illustrated by the
closing words of a popular textbook on latent variable modeling (Bartholomewand Knott, 1999):

When we come to models for relationships between latent variables we have reached
a point where so much has to be assumed that one might justly conclude that thelimits
of scientific usefulness have been reached if not exceeded.

This view results from a commitment to factor analysis asthemethod to identify and measure
unrecorded common causes of recorded variables. One aim of the following work is to demonstrate
that such a commitment is unjustified, and to show that the pessimistic claim that follows from it is
false.

We describe a two part method for this problem. The method (1) finds clustersof measured
variables that are d-separated by a single unrecorded common cause, ifsuch exists; and (2) finds
features of the Markov Equivalence class of causal models for the latent variables. Assuming only
multiple indicator structure and principles standard in Bayes net search algorithms, principles as-
sumed satisfied in many domains, especially in the social sciences, the two procedures converge,
probability 1 in the large sample limit, to correct information. The completeness of the information
obtained about latent structure depends on how thoroughly confounded the measured variables are,
but when, for each unknown latent variable, there in fact exists at least a small number of measured
variables that are influenced only by that latent variable, the method returns the complete Markov
Equivalence class of the latent structure. To complement the theoretical results, we show by simu-
lation studies for several latent structures and for a range of sample sizes that the method identifies
the unknown structure more accurately than does factor analysis and a published greedy search al-
gorithm. We also illustrate and compare the procedures with applications to social science cases,
where expert opinions about measurement are reasonably firm, but are less so about causal relations
among the latent variables.

The focus is on linear models of continuous variables. Although most of ourresults do not
make special assumptions about the choice of a probability family, for practical purposes we further
assume in the experiments that variables are multivariate Gaussian. In the very end of the paper, we
consider possible generalizations of this approach for non-linear, non-Gaussian and discrete models.

192

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

The outline of this paper is as follows:

• Section 2: Illustrative principles describes a few examples of the techniques we use to learn
causal structure in the presence of latent variables;

• Section 3: Related workis a brief exposition of other methods used in latent variable learn-
ing. We note how the causal discovery problem cannot be reliably solvedby methods created
for probabilistic modeling only;

• Section 4: Notation, assumptions and definitionscontains all relevant definitions and as-
sumptions used throughout this paper for the convenience of the reader;

• Section 5: Procedures for finding pure measurement modelsdescribes the method we
use to solve the first half of the problem, discovering which latents exist andwhich observed
variables measure them;

• Section 6: Learning the structure of the unobserveddescribes the method we use to solve
the second half of the problem, discovering the Markov equivalence class that contains the
causal graph connecting the latent variables;

• Section 7: Simulation studiesand Section 8: Real data applicationscontain empirical
results with simulated and real data;

• Section 9: Generalizationsis a brief exposition of related work describing how the methods
here introduced could be used to discover partial information in certain other classes models;

• Section 10: Conclusionsummarizes the contribution of this paper and suggests several av-
enues of research;

Proofs of theorems and implementation details are given in the Appendix.

2. Illustrative Principles

One widely cited and applied approach to learning causal graphs rely on comparing models that
entail different conditional independence constraints in the observed marginal (Spirtes et al., 2000).
When latent variables are common causes of all observed variables, as inthe domains described
in the introduction, no such constraints are expected to exist. Still, when suchcommon causes are
direct causes of just a few variables, there is much structure that can be discovered, although not
by observable independencies. One needs instead a framework that distinguishes among different
causal graphs from other forms of constraints in the marginal distribution of the observed variables.
This section introduces the type of constraints we use through a few illustrative examples.

Consider Figure 1, whereX variables are recorded andL variables (in ovals) are unrecorded
and unknown to the investigator. The latent structure, the dependencies of measured variables on
individual latent variables, and the linear dependency of the measured variables on their parents
and (unrepresented) independent noises in Figure 1 imply a pattern of constraints on the covariance
matrix among theX variables. For example,X1,X2,X3 have zero covariances withX7,X8,X9. Less

193

SILVA , SCHEINES, GLYMOUR AND SPIRTES

42 X 3 X 9X 7 X 8

L 3

X 6X 5

L 2

X 1

L 1

XX

Figure 1: A latent variable model which entails several constraints on the observed covariance ma-
trix. Latent variables are inside ovals.

obviously, forX1,X2,X3 and any one ofX4,X5,X6, three quadratic constraints (tetradconstraints) on
the covariance matrix are implied: e.g., forX4

ρ12ρ34 = ρ14ρ23 = ρ13ρ24 (1)

whereρ12 is the Pearson product moment correlation betweenX1,X2, etc. (Note that any two of the
three vanishing tetrad differences above entails the third.) The same is true for X7,X8,X9 and any
one ofX4,X5,X6; for X4,X5,X6, and any one ofX1,X2,X3 or any one ofX7,X8,X9. Further, for any
two of X1,X2,X3 or of X7,X8,X9 and any two ofX4,X5,X6, exactly one such quadratic constraint is
implied, e.g., forX1,X2 andX4,X5, the single constraint

ρ14ρ25 = ρ15ρ24 (2)

The constraints hold as well if covariances are substituted for correlations.
Statistical tests for vanishing tetrad differences are available for a wide family of distributions

(Wishart, 1928; Bollen, 1990). Linear and non-linear models can imply other constraints on the
correlation matrix, but general, feasible computational procedures to determine arbitrary constraints
are not available (Geiger and Meek, 1999) nor are there any available statistical tests of good power
for higher order constraints. Tetrad constraints therefore provide a practical way of distinguishing
among possible candidate models, with a history of use in heuristic search dating from the early
20th century (see, e.g., references within Glymour et al., 1987). This paper describes a principled
way of using tetrad constraints in search.

In particular, we will focus on a class of “pure” latent variable models where latents can be
arbitrarily connected in a acyclic causal graph, but where observed variables have at most one latent
parent.

Given a “pure” set of measured indicators of latent variables, as in Figure 1− informally, a
measurement model specifying, for each latent variable, a set of measured variables influenced only
by that latent variable and individual, independent noises− the causal structure among the latent
variables can be estimated by any of a variety of methods. Standard score functions of latent variable
models (such as the chi-square test) can be used to compare models with and without a specified
edge, providing indirect tests of conditional independence among latent variables. The conditional
independence facts can then be input to a constraint based Bayes net search algorithm, such as PC
or FCI (Spirtes et al., 2000), or used to guide a greedy search algorithmsuch as GES (Chickering,
2002).

This is not to say that we need to assume that the true underlying graph contains only pure
measures of the latent variables. In Figure 1, the measured variables neatly cluster into disjoint sets
of variables and the variables in any one set are influenced only by a single common cause and there

194

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

3

2 X 3

X 9X 7 X 8

X 6X 5X 4

L 4

X X X X10 11 12 13

L 2

X 1

L 1
L

X

Figure 2: A latent variable model which entails several constraints on the observed covariance ma-
trix. These constraints can be used to discover a submodel of the model given above.

are no influences of the measured variables on one another. In many real cases the influences on the
measured variables do not separate so simply. Some of the measured variables may influence others
(as in signal leakage between channels in spectral measurements), and some or many measured
variables may be influenced by two or more latent variables. For example, thelatent structure of a
linear, Gaussian system shown in Figure 2 can be recovered by the procedures we propose by finding
asubsetof the given measures that are pure measures in the true graph. Our aim inwhat follows is to
prove and use new results about implied constraints on the covariance matrixof measured variables
to form measurement models that enable estimation of features of the Markov Equivalence class
of the latent structure in a wide range of cases. We will develop the theory first for linear models
(mostly for problems with a joint Gaussian distribution on all variables, includinglatent variables),
and then consider possibilities for generalization.

3. Related Work

The traditional framework for discovering latent variables is factor analysis and its variants (see,
e.g., Bartholomew et al., 2002). A number of factors is chosen based on some criterion such as
the minimum number of factors that fit the data at a given significance level orthe number that
maximizes a score such as BIC. After fitting the data, usually assuming a Gaussian distribution,
different transformations (rotations) to the latent covariance matrix are applied in order to satisfy
some criteria of simplicity. The meaning of a latent variable is determined informally based on the
magnitude of the coefficients relating each observed variable to each latent.This is, by far, the most
common method used in several applied sciences (Glymour, 2002). Social science methodology
also contains various beam searches that begin with an initial latent variablemodel and iteratively
add or delete dependencies in a greedy search guided by significance tests of nested models. In
simulation experiments (Glymour et al., 1987; Spirtes et al., 2000) these procedures have performed
little better than chance from data generated by true models in which some measured variables are
influenced by multiple latent varibles and by other measured variables.

In non-Gaussian cases, the usual methods are variations of independent component analysis,
such as independent factor analysis (Attias, 1999) and tree-based component analysis (Bach and
Jordan, 2003). These methods severely constrain the dependency structure among the latent vari-

195

SILVA , SCHEINES, GLYMOUR AND SPIRTES

ables. That facilitates joint density estimation or blind source separation, butit is of little use in
learning causal structure.

In a similar vein, Zhang (2004) represents latent variable models for discrete variables (both
observed and latent) with a multinomial probabilistic model. The model is constrainedto be a
tree and every observed variable has one and only one (latent) parentand no child. Zhang does
not provide a search method to find variables satisfying the assumption, butassumes a priori the
variables measured satisfy it.

Elidan et al. (2000) introduces latent variables as common causes of densely connected regions
of a DAG learned through Bayesian algorithms for learning Bayesian network structures. Once one
latent is introduced as the parent of a set of nodes originally strongly connected, the same search
algorithm is applied using this modified graph as the initial graph. The process can be iterated
to introduce multiple latents. Examples are given for which this procedure, called FINDHIDDEN,
increases the fit over a latent-free graphical model, but for causal modeling the algorithm is not
known to be correct in the large sample limit. In a relevant sense, the algorithmcannot be correct,
because its output yields particular models from among an indistinguishable class of models that is
not characterized.

For instance, consider Figure 3(a), a model of two latents and four observed variables. Two
typical outputs produced by FINDHIDDEN given data generated by this model are shown in Figures
3(b) and 3(c). The choice of model is affected by the strength of the connections in the true model
and the sample size. These outputs suggest correctly that there is a single latent condition on which
all but one pair of observed variables are independent, although the suggestion of some direct causal
connection among a pair of indicators is false. The main problem of FINDHIDDEN here is that each
of these two models represents a different actual latent variable1 which is not clear from the output.
Graphs given Figures 3(b) and 3(c) are also generated by FINDHIDDEN when the true model has
the graphical structure seen in Figure 3(d). In this case, one might be ledto infer that there is a
latent condition on which three of the indicators are independent, which is not true.

To report all possible structures indistinguishable by the data instead of anarbitrary one is
the fundamental difference between purely probabilistically oriented applications (as the ones that
motivate the FINDHIDDEN algorithm) and causally oriented applications, as those that motivate
this paper. Algorithms such as the ones by Elidan et al. (2000) and Zhang (2004) are designed
to effectively perform density estimation, which is a very different problem, even if good density
estimators provide one possible causal model compatible with the data.

To tackle issues of sound identifiability of causal structures, we previously developed an ap-
proach to learning measurement models (Silva et al., 2003). That procedure requires that the true
underlying graph has a “pure” submodel with three measures for each latent variable, which is a
strong and generally untestable assumption. That assumption is not neededin the procedures de-
scribed here, but the output is still a pure model.

One of the reasons why we focus on pure models instead of general latent variable models
should be clear from the example in Figure 3: the equivalence class of all latent variable models
that cannot be distinguished given the likelihood function might be very large. While, for instance,
a Markov equivalence class for models with no latent variables can be neatly represented by a single
graphical object known as “pattern” (Pearl, 2000; Spirtes et al., 2000), the same is not true for latent

1. AssumingT1 in this Figure is the true latent that entails the same conditional independencies. In Figure 3(b),T1
should correspond toL2. In Figure 3(c), toL1. In the first case, however, the causal direction ofT1 into bothX1 and
X2 is wrong and cannot be correctly represented without the introduction ofanother latent.

196

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

L

X X 4X1 2 3X

21L

X

1T

X X 4X1 2 3 X

1T

X X 4X1 2 3

3

1L

X X 4X1 2 3X

2L

L

L

L
4 5

(a) (b) (c) (d)

Figure 3: All four models above are undistinguishable in multivariate Gaussian families according
to standard algorithms, but such algorithms do not report this fact.

variable models. The models in Figure 3 differ not only in the direction of the edges, but also in
the adjacencies themselves ({X1,X2} adjacent in one case, but not{X3,X4}; {X3,X4} adjacent in
another case, but not{X1,X2}) and the role of the latent variables (ambiguity about which latent
d-separates which observed variables, how they are connected, etc.). A representation of such an
equivalence class, as illustrated by this very small example, can be cumbersome and uninformative.

4. Notation, Assumptions and Definitions

Our work is in the framework of causal graphical models. Concepts usedhere without explicit defi-
nition, such as d-separation and I-map, can be found in standard sources (Pearl, 1988; Spirtes et al.,
2000; Pearl, 2000). We use “variable” and “vertex/node” interchangeably, and standard kinship
terminology (“parent,” “child,” “descendant,” “ancestor”) for directed graph relationships. Sets of
variables are represented in bold, individual variables and symbols forgraphs in italics. The Pearson
partial correlation ofX, Y controlling forZ is denoted byρXY.Z. We assume i.i.d. data sampled from
a subsetO of the variables of a joint distributionD on variablesV = O∪L , subject to the following
assumptions:

A1 D factors according to the local Markov assumption for a DAGG with vertex setV. That
is, any variable is independent of its non-descendants inG conditional on any values of its
parents inG.

A2 No vertex inO is an ancestor of any vertex inL . We call this property themeasurement
assumption;

A3 Each variable inV is a linear function of its parents plus an additive error term of positive
finite variance;

A4 The Faithfulness Assumption: for all{X,Y,Z} ⊆ V, X is independent ofY conditional on
each assignment of values to variables inZ if and only if the Markov Assumption forG
entails such conditional independencies. For models satisfying A1-A3 with Gaussian dis-
tributions, Faithfulness is equivalent to assuming that no correlations or partial correlations
vanish because of multiple pathways whose influences perfectly cancel one another.

Definition 1 (Linear latent variable model) A model satisfying A1−A4 is a linear latent variable
model, or for brevity, where the context makes the linearity assumption clear, a latent variable
model.

197

SILVA , SCHEINES, GLYMOUR AND SPIRTES

A single symbol, such asG, will be used to denote both a linear latent variable model and the
corresponding latent variable graph. Linear latent variable models are ubiquitous in econometric,
psychometric, and social scientific studies (Bollen, 1989), where they are usually known as struc-
tural equation models.

Definition 2 (Measurement model) Given a linear latent variable model G, with vertex setV, the
subgraph containing all vertices inV, and all and only those edges directed into vertices inO, is
called the measurement model of G.

Definition 3 (Structural model) Given a linear latent variable model G, the subgraph containing
all and only its latent nodes and respective edges is the structural model of G.

Definition 4 (Linear entailment) We say that a DAG G linearly entails a constraint if and only
if the constraint holds in every distribution satisfying A1 - A4 for G with covariance matrix pa-
rameterized byΘ, the set of linear coefficients and error variances that defines the conditional
expectation and variance of a vertex given its parents. We will assume without loss of generality
that all variables have zero mean.

Definition 5 (Tetrad equivalence class)Given a setC of vanishing partial correlations and van-
ishing tetrad differences, a tetrad equivalence classT (C) is the set of all latent variable graphs
each member of which entails all and only the tetrad constraints and vanishing partial correlations
among the measured variables entailed byC.

Definition 6 (Measurement equivalence class)An equivalence class of measurement modelsM (C)
for C is the union of the measurement models graphs inT (C). We introduce a graphical represen-
tation of common features of all elements ofM (C), analogous to the familiar notion of a pattern
representing the Markov Equivalence class of a Bayes net.

Definition 7 (Measurement pattern) A measurement pattern, denotedM P (C), is a graph repre-
senting features of the equivalence classM (C) satisfying the following:

• there are latent and observed vertices;

• the only edges allowed in an MP are directed edges from latent variables to observed vari-
ables, and undirected edges between observed vertices;

• every observed variable in a MP has at least one latent parent;

• if two observed variables X and Y in aM P (C) do not share a common latent parent, then X
and Y do not share a common latent parent in any member ofM (C);

• if observed variables X and Y are not linked by an undirected edge inM P (C), then X is not
an ancestor of Y in any member ofM (C).

Definition 8 (Pure measurement model)A pure measurement model is a measurement model in
which each observed variable has only one latent parent, and no observed parent. That is, it is a
tree beneath the latents.

198

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

L

X
2

X
3

X
4

X1

L

X
2

X
3

X
4

X

T

1

L

X
2

X
3

X
4

X

T

1

(a) (b) (c)

Figure 4: A linear latent variable model with any of the graphical structuresabove entails all possi-
ble tetrad constraints in the marginal covariance matrix ofX1−X4.

5. Procedures for Finding Pure Measurement Models

Our goal is to find pure measurement models whenever possible, and use them to estimate the struc-
tural model. To do so, we first use properties relating graphical structure and covariance constraints
to identify a measurement pattern, and then turn the measurement pattern into a pure measurement
model.

The key to solving this problem is a graphical characterization of tetrad constraints. Consider
Figure 4(a). A single latent d-separates four observed variables. When this graphical model is
linearly parameterized as

X1 = λ1L+ ε1

X2 = λ2L+ ε2

X3 = λ3L+ ε3

X4 = λ4L+ ε4

it entails all three tetrad constraints among the observed variables. That is,any choice of values for
coefficients{λ1,λ2,λ3,λ4} and error variances implies

σX1X2σX3X4 = (λ1λ2σ2
L)(λ3λ4σ2

L) = (λ1λ3σ2
L)(λ2λ4σ2

L) = σX1X3σX2X4

= (λ1λ2σ2
L)(λ3λ4σ2

L) = (λ1λ4σ2
L)(λ2λ3σ2

L) = σX1X4σX2X3

whereσ2
L is the variance of latent variableL.

While this result is straightforward, the relevant result for a structure learning algorithm is the
converse, i.e., establishing equivalence classes from observable tetrad constraints. For instance,
Figure 4(b) and (c) are different structures with the same entailed tetrad constraints that should
be accounted for. The main contribution of this paper is to provide severalof such identification
results, and sound algorithms for learning causal structure based on them. Such results require
elaborate proofs that are left to the Appendix. What follows are descriptions of the most significant
lemmas and theorems, and illustrative examples. This is the core section of the paper. Section 6
complements the approach by describing an algorithm for learning structural models.

199

SILVA , SCHEINES, GLYMOUR AND SPIRTES

5.1 Identification Rules for Finding Substructures of Latent Variable Graphs

We start with one of the most basic lemmas, used as a building block for later results. It is basi-
cally the converse of the observation above. LetG be a linear latent variable model with observed
variablesO:

Lemma 9 Let{X1,X2,X3,X4} ⊂O be such thatσX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3. If ρAB 6= 0
for all {A,B}⊂ {X1,X2,X3,X4}, then there is a node P that d-separates all elements{X1,X2,X3,X4}
in G.

It follows that, if no observed node d-separates{X1,X2,X3,X4}, then nodeP must be a latent
node.

In order to learn a pure measurement model, we basically need two pieces ofinformation: i.
which sets of nodes are d-separated by a latent; ii. which sets of nodes donot share any common
hidden parent. The first piece of information can provide possible indicators (children/descendants)
of a specific latent. However, this is not enough information, since a setSof observed variables can
be d-separated by a latentL, and yetS might contain non-descendants ofL (one of the nodes might
have a common ancestor withL and not be a descendant ofL, for instance). This is the reason why
we need toclusterobserved variables into different sets when it is possible to show they cannot
share a common hidden parent. We will show this clustering allows us to eliminate most possible
non-descendants.

There are several possible combinations of observable tetrad constraintsthat allow one to iden-
tify such a clustering. Consider, for instance, the following case, in whichit is determined that
certain variables do not share a common latent. Suppose we have a set of six observable variables,
X1,X2,X3,Y1,Y2 andY3 such that:

1. there is some latent node that d-separates all pairs in{X1,X2,X3,Y1} (Figure 5(a));

2. there is some latent node that d-separates all pairs in{X1,Y1,Y2,Y3} (Figure 5(b));

3. there is no tetrad constraintσX1X2σY1Y2−σX1Y2σX2Y1 = 0;

4. no pairs in{X1, . . . ,Y3}×{X1, . . . ,Y3} have zero correlation;

Notice that is possible to empirically verify the first two conditions by using Lemma 9. Now
suppose, for the sake of contradiction, thatX1 andY1 have a common hidden parentL. One can show
thatL should d-separate all elements in{X1,X2,X3,Y1}, and also in{X1,Y1,Y2,Y3}. With some extra
work (one has to consider the possibility of nodes in{X1,X2,Y1,Y2} having common parents withL,
for instance), one can show that this implies thatL d-separates{X1,Y1} from {X2,Y2}. For instance,
Figure 5(c) illustrates a case whereL d-separates all of the given observed variables.

However, this contradicts the third item in the hypothesis (such a d-separation will imply the
forbidden tetrad constraint, as we show in the formal proof) and, as a consequence, no suchL
should exist. Therefore, the items above correspond to anidentification rulefor discovering some d-
separations concerning observed and hidden variables (in this case, we show thatX1 is independent
of all latent parents ofY1 given some latent ancestor ofX1). This rule only uses constraints that can
be tested from the data.

Given such identification rules, what is needed is a principled way of combining the partial
information they provide to build classes of latent variable models of interest. The following section
explains the main rules and an algorithm for building an equivalence class ofmeasurement models.

200

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

YX
2

X
3

X
11 3

Y1
X Y

1
Y

2

L

3
Y

2
X

2
X

3
Y

1
X

1 Y

(a) (b) (c)

Figure 5: If sets{X1,X2,X3,Y1} and{X1,Y1,Y2,Y3} are each d-separated by some node (e.g., as in
Figures (a) and (b) above), the existence of a common parentL for X1 andY1 implies a
common node d-separating{X1,Y1} from {X2,Y2}, for instance (as exemplified in Figure
(c)).

5.2 Algorithms for Finding Equivalence Classes of Latent Variable Graphs

We start with one of the most basic lemmas, used as a building block for later results. We dis-
cover a measurement pattern as an intermediate step before learning a puremeasurement model.
FINDPATTERN, given in Table 1, is an algorithm to learn a measurement pattern from an oracle for
vanishing partial correlations and vanishing tetrad differences. The algorithm uses three rules, CS1,
CS2, CS3, based on Lemmas that follow, for determining graphical structurefrom constraints on
the correlation matrix of observed variables.

Let C be a set of linearly entailed constraints satisfied in the observed covariance matrix. The
first stage of FINDPATTERN searches for subsets ofC that will guarantee that two observed variables
do not have any latent parent in common. LetG be the latent variable graph for a linear latent
variable model with a set of observed variablesO. Let O′ = {X1,X2,X3,Y1,Y2,Y3} ⊂O such that for
all triplets{A,B,C}, {A,B} ⊂ O′ andC ∈ O, we haveρAB 6= 0,ρAB.C 6= 0. Let τIJKL represent the
tetrad constraintσIJσKL−σIK σJL = 0 and¬τIJKL represent the complementary constraintσIJσKL−
σIK σJL 6= 0. The following Lemma is a formal description of the example given earlier:

Lemma 10 (CS1 Test)If constraints{τX1Y1X2X3,τX1Y1X3X2, τY1X1Y2Y3, τY1X1Y3Y2, ¬τX1X2Y2Y1} all hold,
then X1 and Y1 do not have a common parent in G.

“CS” here stands for “constraint set,” the premises of a rule that can beused to test if two nodes
do not share a common parent. Figure 6(a) illustrates one situation whereX1 andY1 can be iden-
tified to not measure a same latent. In that Figure, some variables are specified with unexplained
correlations represented as bidirected edges between the variables (such edges could be due to in-
dependent hidden common causes, for instance). This illustrates that connections between elements
of {X2,X3,Y2,Y3} can occur.

Other sets of observable constraints can be used to reach the same conclusion. We call them
CS2 and CS3. To see one of the limitations of CS1, consider Figure 6(b). There is no single latent
that d-separatesX1,Y1 and two other variables, as in CS1 cases. In Figure 6(c), there are no tetrad

201

SILVA , SCHEINES, GLYMOUR AND SPIRTES

Algorithm FINDPATTERN

Input: a covariance matrixΣ

1. Start with a complete undirected graphG over the observed variables.

2. Remove edges for pairs that are marginally uncorrelated or uncorrelated conditioned on a
third observed variable.

3. For every pair of nodes linked by an edge inG, test if some rule CS1, CS2 or CS3 applies.
Remove an edge between every pair corresponding to a rule that applies.

4. LetH be a graph with no edges and with nodes corresponding to the observed variables.

5. For each maximal clique inG, add a new latent toH and make it a parent to all corresponding
nodes in the clique.

6. For each pair(A,B), if there is no other pair(C,D) such thatσACσBD = σADσBC = σABσCD,
add an undirected edgeA−B to H.

7. ReturnH.

Table 1: Returns a measurement pattern corresponding to the tetrad and first order vanishing partial
correlations ofΣ.

constraints simultaneously involvingX1,Y1 and other observed variables that are children of the
same latent parent ofX1. These extra rules are not as intuitive as CS1. To fully understand how
these cases still generate useful constraints, some knowledge of the graphical implications of tetrad
constraints is necessary. To avoid interrupting the flow of the paper, we describe these properties
only in the Appendix along with formal proofs of correctness. In the nextparagraphs, we just
describe rules CS2 and CS3.

Let the predicateFactor(X,Y,G) be true if and only if there exist two nodesW andZ in la-
tent variable graphG such thatτWXYZ and τWXZY are both linearly entailed byG, all variables
in {W,X,Y,Z} are correlated, and there is no observedC in G such thatρAB.C = 0 for {A,B} ⊂
{W,X,Y,Z}:

Lemma 11 (CS2 Test)If constraints{τX1Y1Y2X2,τX2Y1Y3Y2, τX1X2Y2X3,¬τX1X2Y2Y1} all hold such that
Factor(X1,X2,G) = true, Factor(Y1,Y2,G) = true, X1 is not an ancestor of X3 and Y1 is not an
ancestor of Y3, then X1 and Y1 do not have a common parent in G.

Lemma 12 (CS3 Test)If constraints{τX1Y1Y2Y3,τX1Y1Y3Y2, τX1Y2X2X3, τX1Y2X3X2,τX1Y3X2X3,
τX1Y3X3X2, ¬τX1X2Y2Y3} all hold, then X1 and Y1 do not have a common parent in G.

The rules are not redundant: only one can be applied on each situation. For instance, in Figure
6(a) the latent on the left d-separates{X1,X2,X3,Y1}, which implies{τX1Y1Y2Y3,τX1Y1Y3Y2}. The latent
on the right d-separates{X1,Y1,Y2,Y3}, which implies{τY1X1Y2Y3,τY1X1Y3Y2}. The constraintτX1X2Y2Y1

can be shown not to hold given the assumptions. Therefore, this rule tells us information about the
unobserved structure:X1 andY1 do not have any common hidden parent.

202

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

X1 X2 Y
1 Y

3
Y

23X X1 Y
1 Y

3
Y

23XX2

X
Y

X1 X2 Y
1 Y

3
Y

23X

(a) (b) (c)

Figure 6: Three examples with two main latents and several independent latent common causes of
two indicators (represented by bidirected edges). In (a), CS1 applies,but not CS2 nor
CS3 (even when exchanging labels of the variables); In (b), CS2 applies (assuming the
conditions forX1,X2 andY1,Y2), but not CS1 nor CS3. In (c), CS3 applies, but not CS1
nor CS2.

For CS2 (Figure 6(b)), nodesX andY are depicted as auxiliary nodes that can be used to verify
predicatesFactor. For instance,Factor(X1,X2,G) is true because all three tetrads in the covariance
matrix of{X1,X2,X3,X} hold.

Sometime it is possible to guarantee that a node is not an ancestor of another,as required, e.g.,
to apply CS2:

Lemma 13 If for some setO′ = {X1,X2,X3,X4} ⊆ O, σX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3 and
for all triplets {A,B,C}, {A,B} ⊂O′,C∈O, we haveρAB.C 6= 0 andρAB 6= 0, then A∈O′ is not a
descendant in G of any element ofO′\{A}.

This follows immediately from Lemma 9 and the assumption that observed variablesare not
ancestors of latent variables. For instance, in Figure 6(b) the existenceof the observed nodeX
(linked by a dashed edge to the parent ofX1) allows the inference thatX1 is not an ancestor ofX3,
since all three tetrad constraints hold in the covariance matrix of{X,X1,X2,X3}.

We know have theoretical results that provide information concerning lackof common parents
and lack of direct connections of nodes, given a set of tetrad and vanishing partial correlationC.
The algorithm FINDPATTERN from Table 1 essentially uses the given lemmas to construct a mea-
surement pattern, as defined in Section 4.

Theorem 14 The output ofFINDPATTERN is a measurement patternM P(C) with respect to the
tetrad and zero/first order vanishing partial correlation constraintsC of Σ.

The presence of an undirected edge does not mean that adjacent vertices in the pattern are
actually adjacent in the true graph. Figure 7 illustrates this:X3 andX8 share a common parent in the
true graph, but are not adjacent. Observed variables adjacent in the output pattern always share at
least one parent in the pattern, but do not always share a common parent in the true DAG. Vertices
sharing a common parent in the pattern might not share a parent in the true graph (e.g.,X1 andX8 in
Figure 7).

203

SILVA , SCHEINES, GLYMOUR AND SPIRTES

8
X

6
X

5
X

4
X2

X
3

X
7

X X1 8
X

6
X

5
X

4
X2

X
7

X3
X X1

(a) (b)

Figure 7: In (a), a model that generates a covariance matrixΣ. In (b), the output of FINDPATTERN

givenΣ. Pairs in{X1,X2}×{X4, . . . ,X7} are separated by CS2.

What is not obvious in the output of FINDPATTERN is how much more information it leaves
implicit and how to extract a (pure) model out of an equivalence class. These issues are treated in
the next section.

5.3 Completeness and Purification

The FINDPATTERN algorithm is sound, but not necessarily complete. That is, there might be graph-
ical features shared by all members of the measurement model equivalenceclass that are not dis-
covered by FINDPATTERN. For instance, there might be a CS4 rule that is not known to us. FIND-
PATTERN might be complete, but we conjecture it is not: we did not try to construct rulesusing
more than 6 variables (unlike CS1, CS2, CS3), since the more variables a rule has, the more com-
putational expensive and the less statistically reliable it is.2 Learning a pure measurement model is
a different matter. We can find a pure measurement model with the largest number of latents in the
true graph, for instance.

A pure measurement model implies aclusteringof observed variables: each cluster is a set of
observed variables that share a common (latent) parent, and the set of latents defines a partition over
the observed variables. The output of FINDPATTERN cannot, however, reliably be turned into a pure
measurement pattern in the obvious way, by removing fromH all nodes that have more than one
latent parent and one of every pair of adjacent nodes, as attemped by the following algorithm:

• Algorithm TRIVIAL PURIFICATION: remove all nodes that have more than one latent parent,
and for every pair of adjacent observed nodes, remove an arbitrarynode of the pair.

TRIVIAL PURIFICATION is not correct. To see this, consider Figure 8(a), where with the excep-
tion of pairs in{X3, . . . ,X7}, every pair of nodes has more than one hidden common cause. Giving
the covariance matrix of such model to FINDPATTERN will result in a pattern with one latent only
(because no pair of nodes can be separated by CS1, CS2 or CS3), and all pairs that are connected by
a double directed edge in Figure 8(a) will be connected by an undirected edge in the output pattern.
One can verify that if we remove one node from each pair connected by an undirected edge in this
pattern, the output with the maximum number of nodes will be given by the graphin Figure 8(b).

2. Under very general conditions, there are also no rules using fewerthan 6 variables, as shown by Silva (2005).

204

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

X
9

XX
87

X6
X

5
X

4
X2

X
3

X
1

6
X

5
X

4
X3

X 7
X

(a) (b)

Figure 8: In (a), a model that generates a covariance matrixΣ. The output of FINDPATTERN given
Σ contains a single latent variable that is a parent of all observed nodes, and several ob-
served nodes that are linked by an undirected edge. In (b), the patternwith the maximum
number of nodes that can be obtained by TRIVIAL PURIFICATION. It is still not a correct
pure measurement model for any latent in the true graph, since there is no latent that
d-separates{X3, . . . ,X7} in the true model.

The procedure BUILD PURECLUSTERSbuilds a pure measurement model using as input FIND-
PATTERN and an oracle for constraints. Unlike TRIVIAL PURIFICATION, variables are removed
whenever appropriate tetrad constraints are not satisfied. Table 2 presents a simplified version of
the full algorithm. The complete algorithm is given only in Appendix A to avoid interrupting the
flow of the text, since it requires the explanation of extra steps that are notof much relevance in
practice. We also describe the choices made in the algorithm (Steps 2, 4 and 5) only in the imple-
mentation given in Appendix A. The particular strategy for making such choices is not relevant to
the correctness of the algorithm.

The fundamental properties of BUILD PURECLUSTERSare clear from Table 2: it returns a model
where each latent has at least three indicators, and such indicators areknown to be d-separated
by some latent. Nodes that are children of different latents in the output graph are known not to
be children of a common latent in the true graph, as defined by the initial measurement pattern.
However, it is not immediately obvious how latents in the output graph are related to latents in the
true graph.

The informal description is: there is a labeling of latents in the output graph according to the
latents in the true graphG, and in this relabeled output graph any d-separation between a measured
node and some other node will hold inG. This is illustrated by Figure 9. Given the covariance
matrix generated by the true model in Figure 9(a), BUILD PURECLUSTERS generates the model
shown in Figure 9(b).

Since the labeling of the latents is arbitrary, we need a formal description of the fact that latents
in the output should correspond to latents in the true model up to a relabeling. The formal graphical
properties of the output of BUILD PURECLUSTERS (as given in Appendix A) are summarized by
the following theorem:

205

SILVA , SCHEINES, GLYMOUR AND SPIRTES

Algorithm BUILD PURECLUSTERS-SIMPLIFIED

Input: a covariance matrixΣ

1. G←FINDPATTERN(Σ).

2. Choose a set of latents inG. Remove all other latents and all observed nodes that are not
children of the remaining latents and all clusters of size 1.

3. Remove all nodes that have more than one latent parent inG.

4. For all pairs of nodes linked by an undirected edge, choose one element of each pair to be
removed.

5. If for some set of nodes{A,B,C}, all children of the same latent, there is a fourth nodeD in
G such thatσABσCD = σACσBD = σADσBC is not true, remove one of these four nodes.

6. Remove all latents with less than three children, and their respective measures;

7. if G has at least four observed variables, returnG. Otherwise, return an empty model.

Table 2: A general strategy to find a pure measurement measurement modelof a subset of the latents
in the true graph. As explained in the body of the text, implementation details (suchas the
choices made in Steps 2 and 4) are left to Appendix A.

Theorem 15 Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G with observed variablesO and latent variablesL , let Gout be the output ofBUILD PURE-
CLUSTERS(Σ) with observed variablesOout⊆O and latent variablesLout. Then Gout is a measure-
ment pattern, and there is an unique injective mapping M: Lout→ L with the following properties:

1. Let Lout ∈ Lout. Let X be a child of Lout in Gout. Then M(Lout) d-separates X fromOout\X in
G;

2. M(Lout) d-separates X from every latent L in G for which M−1(L) is defined;

3. LetO′ ⊆ Oout be such that each pair inO′ is correlated. At most one element inO′ has the
following property: (i) it is not a descendant of its respective mapped latent parent in G or
(ii) it has a hidden common cause with its respective mapped latent parent inG;

For each group of correlated observed variables, we can guaranteee that at most one edge from
a latent into an observed variable is incorrectly directed. By “incorrectly directed,” we mean the
condition defined in the third item of Theorem 15: although all observed variables are children of
latents in the output graph, one of these edges might be misleading, since in thetrue graph one of the
observed variables might not be a descendant of the respective latent.This is illustrated by Figure
10.

Notice also that we cannot guarantee that an observed nodeX with latent parentLout in Gout

will be d-separated from the latents inG not in Gout, givenM(Lout): if X has a common cause with
M(Lout), thenX will be d-connected to any ancestor ofM(Lout) in G given M(Lout). This is also
illustrated by Figure 10.

206

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

12

X
6

X
5

X
4

X2
X

3
X

X
7

L
1

L
2

X X

X X X
8 9 10

11

1

X
5

X
4

X X
91

X
2

X
3

X X
7

X
11

T
1

T
2

6

(a) (b)

Figure 9: Given as input the covariance matrix of the observable variables X1−X12 connected ac-
cording to the true model shown in Figure (a), the BUILD PURECLUSTERSalgorithm will
generate the graph shown in Figure (b). It is clear there is an injective mapping M(.)
from latents{T1,T2} to latents{L1,L2} such thatM(T1) = L1 andM(T2) = L2 and the
properties described by Theorem 15 hold.

6
X

5
X

4
X

7
X

1
X

2
X 3

X

1
L

2
L

3
L

4
L 2

6
X

5
X

4
X

2
X 3

X
1

X

T
1

T

(a) (b)

Figure 10: Given as input the covariance matrix of the observable variables X1−X7 connected
according to the true model shown in Figure (a), one of the possible outputsof BUILD -
PURECLUSTERSalgorithm is the graph shown in Figure (b). It is clear there is an injec-
tive mappingM(.) from latents{T1,T2} to latents{L1,L2,L3,L4} such thatM(T1) = L2

andM(T2) = L3. However, in (b) the edgeT1→ X1 does not express the correct causal
direction of the true model. Notice also thatX1 is not d-separated fromL4 given
M(T1) = L2 in the true graph.

5.4 An Example

To illustrate BUILD PURECLUSTERS, suppose the true graph is the one given in Figure 11(a), with
two unlabeled latents and 12 observed variables. This graph is unknown toBUILD PURECLUSTERS,
which is given only the covariance matrix of variables{X1,X2, ...,X12}. The task is to learn a
measurement pattern, and then a purified measurement model.

In the first stage of BUILD PURECLUSTERS, the FINDPATTERN algorithm, we start with a fully
connected graph among the observed variables (Figure 11(b)), and then proceed to remove edges ac-
cording to rules CS1, CS2 and CS3, giving the graph shown in Figure 11(c). There are two maximal
cliques in this graph:{X1,X2,X3,X7,X8,X11,X12} and{X4,X5,X6,X8,X9,X10,X12}. They are distin-
guished in the figure by different edge representations (dashed and solid - with the edgeX8−X12

present in both cliques). The next stage takes these maximal cliques and creates an intermediate

207

SILVA , SCHEINES, GLYMOUR AND SPIRTES

12

X
6

X
5

X
4

X2
X

3
X

X X

X X X X
7 8 9 10

11

1

X
4

X
5

X 6
X

X
7

X
9

2
X

1
X

X
12

X
8

X
11

X
10

3

(a) (b)

X
4

X
5

X 6
X

X
7

X
9

2
X

1
X

X
12

X
8

X
11

X
10

3

X
2

X
3

X
6

X
5

X
4

X

X
7

X
9

X
8

X
10

X
12

X
11

1

(c) (d)

X
2

X
3

X
6

X
5

X
4

X

X
7

X
9

X
8

X
10

X
12

X
11

1

X
2

X
3

X X
7

X
11

6
X

5
X

4
X X

9

1

(e) (f)

Figure 11: A step-by-step demonstration of how a covariance matrix generated by graph in Figure
(a) will induce the pure measurement model in Figure (f).

graphical representation, as depicted in Figure 11(d). In Figure 11(e), we add the undirected edges
X7−X8, X8−X12, X9−X10 andX11−X12, finalizing the measurement pattern returned by FINDPAT-
TERN. Finally, Figure 11(f) represents a possible purified output of BUILD PURECLUSTERSgiven
this pattern. Another purification with as many nodes as in the graph in Figure 11(f) substitutes
nodeX9 for nodeX10.

208

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

There is some superficial similarity between BUIDPURECLUSTERSand the FINDHIDDEN al-
gorithm (Elidan et al., 2000) cited in Section 3. Both algorithms select cliques (or substructures
close to a clique) and introduce a latent as a common cause of the variables in that clique. The algo-
rithms are, however, very different: BUILD PURECLUSTERSknows that each selected clique should
correspond to a latent,3 and creates all of its latents at the same time. FINDHIDDEN creates one
latent a time, and might backtrack if this latent is not supported by the data. More fundamentally,
there is no clear description of what FINDHIDDEN actually learns (as illustrated in Section 3), and
even if asymptotically it can always find a pure measurement submodel.4

5.5 Parameterizing the Output ofBUILD PURECLUSTERS

Recall that so far we described only an algorithm for learning measurement models. Learning the
structure among latents, as described in Section 6, requires exploring constraints in the covariance
matrix of the observed variables. Since BUILD PURECLUSTERSreturns only a marginal of the true
model, it is important to show that this marginalized graph, when parameterized as a linear model,
also represents the marginal probability distribution of the observed variables.

The following result is essential to provide an algorithm that is guaranteed tofind a Markov
equivalence class for the latents inM(Lout) using the output of BUILD PURECLUSTERS, as in Sec-
tion 6. It guarantees that one can fit a linear model using the structure given by BUILD PURECLUS-
TERSand have a consistent estimator of the observed covariance matrix (for theselected variables)
in families such as Gaussian distributions. This is important, since the covariance matrix of the ob-
served variables in the model is used to guide the search for a structure among latents, as discussed
in Section 6.

Theorem 16 Let M(Lout) ⊆ L be the set of latents in G obtained by the mapping function M().
Let ΣOout be the population covariance matrix ofOout. Let the DAG Gaug

out be Gout augmented by
connecting the elements ofLout such that the structural model of Gaug

out is an I-map of the distribution
of M(Lout). Then there exists a linear latent variable model using Gaug

out as the graphical structure
such that the implied covariance matrix ofOout equalsΣOout .

5.6 Computational Issues and Anytime Properties

A further reason why we do not provide details of some steps of BUILD PURECLUSTERS at this
point is because there is no unique way of implementing it, and different purifications might be of
interest. For instance, one might be interested in the pure model that has the largest possible num-
ber of latents. Another one might be interested in the model with the largest number of observed
variables. However, some of these criteria might be computationally intractableto achieve. Con-
sider for instance the following criterion, which we denote asM P

3: given a measurement pattern,
decide if there is some choice of observed nodes to be removed such that the resulting graph is a
pure measurement model of all latents in the pattern and each latent has at least three children. This
problem is intractable:

Theorem 17 ProblemM P
3 is NP-complete.

3. Some latents might be eliminated for not having enough indicators, though.
4. This, of course, bears no fundamental implication on the ability of FINDHIDDEN to generate a model that provides a

good fit to the data, but it is a crucial limitation in causal analysis.

209

SILVA , SCHEINES, GLYMOUR AND SPIRTES

There is no need to solve a NP-hard problem in order to have the theoretical guarantees of
interpretability of the output given by Theorem 15. For example, there is a stage in FINDPATTERN

where it appears necessary to find all maximal cliques, but, in fact, it is not.Identifying more cliques
increases the chance of having a larger output (which is good) by the end of the algorithm, but it is
not required for the algorithms correctness. Stopping at Step 5 of FINDPATTERN before completion
will not affect Theorems 15 or 16.

Another computational concern is theO(N5) loops in Step 3 of FINDPATTERN, whereN is
the number of observed variables.5 Again, it is not necessary to compute this loop entirely. One
can stop Step 3 at any time at the price of losing information, but not the theoretical guarantees of
BUILD PURECLUSTERS. This anytime property is summarized by the following corollary:

Corollary 18 The output ofBUILD PURECLUSTERS retains its guarantees even when rules CS1,
CS2 and CS3 are applied an arbitrary number of times inFINDPATTERN for any arbitrary subset
of nodes and an arbitrary number of maximal cliques is found.

It is difficult to assess how an early stopping procedure might affect thecompleteness of the
output. In all of our experiments, we were able to enumerate all maximal cliquesin a few seconds
of computation. This is not to say that one should not design better ways of ordering the clique enu-
meration (using prior knowledge of which variables should not be clustered together, for instance),
or using other alternatives to an anytime stop.

In case there are possibly too many maximal cliques to be enumerated in FINDPATTERN, an
alternative to early stopping is to triangulate the graph, i.e., adding edges connecting some non-
adjacent pair of nodes in a chordless cycle. This is repeated until no chordless cycles remain in the
graphG constructed at the end of Step 3 of FINDPATTERN (Table 1). Different heuristics could be
use to choose the next edge to be added, e.g., by linking the pair of nodes that is most strongly corre-
lated. The advantage is that cliques in a triangulated graph can be found in linear time. For the same
reasons that validate Corollary 18, such a triangulation will not affect thecorrectness of the output,
since the purification procedure will remove all nodes that need to be removed. In general, adding
undirected edges to graphG in FINDPATTERN does not compromise correctness. As a side effect,
it might increase the robustness of the algorithm, since some edges ofG are likely to be erroneously
removed in small sample studies, although more elaborated ways of adding edges back would need
to be discussed in detail and are out of the scope of this paper. Such a triangulation procedure,
however, might still cause problems, since in the worst case we will obtain a fully connected (and
uninformative) graph.6

6. Learning the Structure of the Unobserved

The real motivation for finding a pure measurement model is to obtain reliable statistical access to
the relations among the latent variables. Given a pure and correct measurement model, even one
involving a fairly small subset of the original measured variables, a varietyof algorithms exist for
finding a Markov equivalence class of graphs over the set of latents in the given measurement model.

5. This immediately follows from, e.g., the definition of CS1: we have to first find a foursome{X1,X2,Y1,Y2} where
σX1X2σY1Y2−σX1Y1σX2Y2 6= 0, which is aO(N4) loop. Conditioned on this foursome, we have to find two independent
(but distinct)X3 andY3. This requires two (almost) independent loops ofO(N) within theO(N4) loop.

6. We would like to thank an anonymous reviewer for the suggestions in this paragraph.

210

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

6.1 Constraint-Based Search

Constraint-based search algorithms rely on decisions about independence and conditional indepen-
dence among a set of variables to find the Markov equivalence class over these variables. Given a
pure and correct measurement model involving at least 2 measures per latent, we can test for inde-
pendence and conditional independence among the latents, and thus search for equivalence classes
of structural models among the latents, by taking advantage of the following theorem (Spirtes et al.,
2000):

Theorem 19 Let G be a pure linear latent variable model. Let L1,L2 be two latents in G, andQ a
set of latents in G. Let X1 be a measure of L1, X2 be a measure of L2, and XQ be a set of measures
of Q containing at least two measures per latent. Then L1 is d-separated from L2 givenQ in G
if and only if the rank of the correlation matrix of{X1,X2}∪XQ is less than or equal to|Q| with
probability 1 with respect to the Lebesgue measure over the linear coefficients and error variances
of G.

We can then use this constraint to test7 for conditional independencies among the latents. Such
conditional independence tests can then be used as an oracle for constraint-satisfaction techniques
for causality discovery in graphical models, such as the PC algorithm (Spirtes et al., 2000) or the
FCI algorithm (Spirtes et al., 2000).

We define the algorithm PC-MIMBUILD 8 as the algorithm that takes as input a measurement
model satisfying the assumption of purity mentioned above and a covariance matrix, and returns
the Markov equivalence class of the structural model among the latents in themeasurement model
according to the PC algorithm. A FCI-MIMBUILD algorithm is defined analogously. In the limit
of infinite data, it follows from the preceding and from the consistency of PC and FCI algorithms
(Spirtes et al., 2000) that

Theorem 20 Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G, and Gout the output ofBUILD PURECLUSTERSgivenΣ, the output ofPC-MIMBUILD or
FCI-MIMB UILD given(Σ,Gout) returns the correct Markov equivalence class of the latents in G
corresponding to latents in Gout according to the mapping implicit inBUILD PURECLUSTERS.

For most common families of probabilities distributions (e.g., multivariate Gaussians) the sam-
ple covariance matrix is a consistent estimator of the population covariance matrix. This fact, com-
bined with Theorem 20, shows we have a point-wise consistent algorithm for learning a latent
variable model with a pure measurement model, up to the measurement equivalence class described
in Theorem 15 and the Markov equivalence class of the structural model.

6.2 Score-Based Search

Score-based approaches for learning the structure of Bayesian networks, such as GES (Meek, 1997;
Chickering, 2002) are usually more accurate than PC or FCI when there are no omitted common
causes, or in other terms, when the set of recorded variables is causallysufficient. We know of

7. One way to test if the rank of a covariance matrix in Gaussian models is atmostq is to fit a factor analysis model
with q latents and assess its significance.

8. MIM stands for “multiple indicator model”, a term in structural equation model literature describing latent variable
models with multiple measures per latent.

211

SILVA , SCHEINES, GLYMOUR AND SPIRTES

no consistent scoring function for linear latent variable models that can beeasily computed. This
might not be a practical issue, since any structural model with a fixed measurement model generated
by BUILD PURECLUSTERShas an unique maximum likelihood estimator, up to the scale and sign
of the latents. That is, the set of maximum likelihood estimators is a single point, instead of a
complicated surface. This sidesteps most of the problems concerning finding the proper complexity
penalization for a candidate model (Spirtes et al., 2000).

We suggest using the Bayesian Information Criterion (BIC) function as a score function. Using
BIC with STRUCTURAL EM (Friedman, 1998) and GES results in a computationally efficient way
of learning structural models, where the measurement model is fixed and GES is restricted to modify
edges among latents only. Assuming a Gaussian distribution, the first step of our STRUCTURAL EM
implementation uses a fully connected structural model in order to estimate the first expected latent
covariance matrix. That is followed by a GES search. We call this algorithm GES-MIMBUILD

and use it as the structural model search component in all of the studies ofsimulated and empirical
data that follow.

7. Simulation Studies

In the following simulation studies, we draw samples of three different sizes from 9 different latent
variable models. We compare our algorithm against exploratory factor analysis and the DAG hill-
climbing algorithm FINDHIDDEN (Elidan et al., 2000), and measure the success of each on the
following discovery tasks:

DP1. Discover the number of latents inG.

DP2. Discover which observed variables measure each latentG.

DP3. Discover as many features as possible about the causal relationships among the latents inG.

Since factor analysis addresses only tasks DP1 and DP2, we compare it directly to BUILD -
PURECLUSTERSon DP1 and DP2. For DP3, we use our procedure and factor analysis tocompute
measurement models, then discover as much about the features of the structural model among the
latents as possible by applying GES-MIMBUILD to the measurement models output by BPC and
factor analysis.

We hypothesized that three features of the problem would affect the performance of the algo-
rithms compared: sample size; the complexity of the structural model; and, the complexity and
level of impurity in the generating measurement model. We use three differentsample sizes for
each study: 200, 1,000, and 10,000. We constructed nine generating latent variable graphs by using
all combinations of the three structural models and three measurement models inFigure 12. For
structural model SM3, the respective measurement models are augmented accordingly.

MM1 is a pure measurement model with three indicators per latent. MM2 has fiveindicators
per latent, one of which is impure because its error is correlated with anotherindicator, and another
because it measures two latents directly. MM3 involves six indicators per latent, half of which are
impure.

SM1 entails one unconditional independence among the latents:L1 is independentL3. SM2 en-
tails one first order conditional independence:L1⊥L3|L2, and SM3 entails one first order conditional
independence:L2⊥L3|L1, and one second order conditional independence relation:L1⊥L4|{L2,L3}.

212

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

SM1 SM2 SM3

1
X

9
XX

87
X6

X
5

X
4

X2
X

3
X

1
X

9
XX

87
X6

X
5

X
4

X2
X

3
X

X X X X
10 11 12

X
13

X
14 15

X X X
16 17 18

1
X

9
XX

87
X6

X
5

X
4

X2
X

3
X

X X X X
10 11 12

X
13

X
14 15

MM1 MM2 MM3

Figure 12: The Structural and Measurement models used in our simulation studies.

Thus the statistical complexity of the structural models increases from SM1 to SM3 and the impurity
of measurement models increases from MM1 to MM3.

For each generating latent variable graph, we used the Tetrad IV program9 with the following
procedure to draw 10 multivariate normal samples of size 200, 10 at size 1,000, and 10 at size
10,000.

1. Pick coefficients for each edge in the model randomly from the interval[−1.5,−0.5]∪[0.5,1.5].

2. Pick variances for the exogenous nodes (i.e., latents without parents and error nodes) from
the interval[1,3].

3. Draw one pseudo-random sample of size N.

This choice of parameter values for simulations implies that, on average, half of the variance
of the indicators of an exogenous latent is due to the error term, making the problem of structure
learning more particularly difficult for at least some clusters.

We used three algorithms in our studies:

1. BPC: BUILD PURECLUSTERS+ GES-MIMBUILD

2. FA: Factor Analysis + GES-MIMBUILD

3. FH: FINDHIDDEN, using the same sort of hill-climbing procedure used by Elidan et al. (2000)

BPC is the implementation of BUILD PURECLUSTERSand GES-MIMBUILD described in Ap-
pendix A. FA involves combining standard factor analysis to find the measurement model with
GES-MIMBUILD to find the structural model. For standard factor analysis, we usedfactanal

9. Available athttp://www.phil.cmu.edu/projects/tetrad.

213

SILVA , SCHEINES, GLYMOUR AND SPIRTES

from R 1.9 with the oblique rotation promax. FA and variations are still widely used and are per-
haps the most popular approach to latent variable modeling (Bartholomew et al., 2002). We choose
the number of latents by iteratively increasing its number until we get a significant fit above 0.05,
or until we have to stop due to numerical instabilities.

Our implementation of FINDHIDDEN follows closely the implementation suggested by Elidan
et al. (2000): in that implementation, a candidate latent is introduced as a commonparent of the
nodes in a dense subgraph of the current graph (such a subgraph iscalledsemicliqueby Elidan
et al.). We implemented the most computational expensive version of FINDHIDDEN, where all
semicliques are used to create new candidate graphs, and a full hill-climbing procedure with tabu
search is performed to optimize each of them. The score function is BIC. Theinitial graph is a fully
connected DAG among observed variables.10

We also added to FINDHIDDEN the prior knowledge that all edges should be directed from
latents into observed variables, and we split the search into two main stages: first, only edges into
observed variables are modified, while keeping a fully connected structural model. After finding the
measurement model, we proceed to learn the structural model using the same type of hill-climbing
procedure suggested by Elidan et al. Without these two modifications, FINDHIDDEN results are
significantly worse.11

In order to compare the output of BPC, FA, and FH on discovery tasks DP1 (finding the correct
number of underlying latents) and DP2 (measuring these latents appropriately), we must map the
latents discovered by each algorithm to the latents in the generating model. Thatis, we must define
a mapping of the latents in theGout to those in the true graphG.

We do the mapping by first fitting each model by maximum likelihood to obtain estimates for the
parameters. For each latent in the output model, we sum the absolute values of the edge coefficients
of their observed children, grouping the sum according to their true latentparents. The group with
the highest sum will define the label of the output latent. That is, for each latentLout in the output
model, the following procedure is performed:

• for all latentsL1, . . . ,Lk in the true model, letSi = 0, 1≤ i ≤ k

• for every childO that measuresLout in the output model with edge coefficientλLO, such that
O has a single parentLi in the true model, increaseSi by |λLO|

• let M be such thatSM is maximum amongS1, . . . ,Sk. LabelLout asLM.

For example, letLout be a latent node in the output graphGout. SupposeS1 is the sum of the
absolute values of the edge coefficients of the children ofLout that measure the true latentL1, and
S2 is the respective sum for the measures of true latentL2. If S2 > S1, we renameLout asL2. If two
output latents are mapped to the same true latent, we label only one of them as thetrue latent by

10. Which is the true graph among observed variables in most simulations.We chose the initialization point to save
computational costs of growing an almost fully connected DAG without hidden variables first.

11. Another important modification in our implementation was in the STRUCTURAL EM implementation: to escape
out of bad local minima within STRUCTURAL EM, we do the following whenever the algorithm arrives in a local
minimum: we apply the same search operators, but using thetrue BIC scoreevaluation instead of the STRUCTURAL

EM-BIC score, which is a lower bound on the regular BIC score. This was also crucial to get better results with FIND-
HIDDEN, but considerably slowed down the algorithm, since computing the true score is computationally expensive
and requires an evaluation of the whole model.

214

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

choosing the one that corresponds to the highest sum of absolute loadings. The other one remains
unmapped and receives an arbitrary label.

We compute the following scores for the output modelGout from each algorithm,12 where the
true graph is labelledG:

• latent omission, the number of latents inG that do not appear inGout divided by the total
number of true latents inG;

• latent commission, the number of latents inGout that could not be mapped to a latent inG
divided by the total number of true latents inG;

• mismeasurement, the number of observed variables inGout that are measuring at least one
wrong latent divided by the number of observed variables inG;

To be generous to factor analysis, we considered only latents with at leastthree indicators. Even
with this help, we still found several cases in which latent commission errors were more than 100%.
We eliminated from FINDHIDDEN any latent that ended up with no observed children.

Table 3 evaluates all three procedures on the first two discovery tasks:DP1 and DP2. Each
number is the average error across 10 trials with standard deviations in parentheses for sample sizes
of 200, 1000, 10,000. Over all conditions, FA has very low rates of latent omission, but very
high rates of latent commission. In particular, FA is very sensitive to the purityof the generating
measurement model. With MM2, the rate of latent commission for FA was moderate;with MM3
it was abysmal. Because indicators are given too many latent parents in FA,many indicators are
removed during purification, resulting in high indicator omission errors.

BPC does reasonably well on all measures in Tables 3 at all sample sizes and for all generating
models. Our implementation of FINDHIDDEN also does well in most cases, but has issues with
SM1.13

In the final piece of the simulation study, we applied the best causal model search algorithm we
know of, GES, modified for this purpose as GES-MIMBUILD , to the measurement models output
by BPC and FA. We evaluate FH both by 1. using its default structural model,which is obtained
by a standard hill-climbing with tabu search, and by 2. fixing its measurement model and applying
GES to re-learn the corresponding structural model.

If the output measurement model has no errors of latent omission or commission, then scoring
the result of the structural model search is fairly easy. The GES-MIMBUILD search outputs an
equivalence class, with certain adjacencies unoriented and certain adjacencies oriented. If there is
an adjacency of any sort between two latents in the output, but no such adjacency in the true graph,
then we have an error of edge commission. If there is no adjacency of anysort between two latents
in the output, but there is an edge in the true graph, then we have an error of edge omission. For
orientation, if there is an oriented edge in the output that is not oriented in the equivalence class for

12. Other types of errors, such as missing indicators that could have been preserved (in BPC) or adding edges among
indicators when they should not exist (as in FINDHIDDEN) are not directly comparable and not as important with
respect to the task of finding latents and causal relations among latents, and therefore not considered in this simulation
study.

13. One possible explanation for the difficulties with SM1 is the fact that, in the intermediate stages of the algorithm,
there will be paths connecting{X1,X2,X3} and{X7,X8,X9} due to latent variables, but such paths that have to amount
to zero correlation in order to reproduce the marginal covariance matrix. This might be difficult to obtain with single
edge modifications, considering that introducing an edge might cancel some correlations but increase others.

215

SILVA , SCHEINES, GLYMOUR AND SPIRTES

Evaluation of output measurement models
Latent omission Latent commission Mismeasurements

Sample BPC FA FH BPC FA FH BPC FA FH
SM1 +MM1

200 0.10(.2) 0.00(.0) 0.50(.3) 0.00(.0) 0.00(.0) 0.00(.0) 0.01(.0) 0.41(.3) 0.52(.3)
1000 0.17(.2) 0.00(.0) 0.17(.3) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.19(.2) 0.18(.3)

10000 0.07(.1) 0.00(.0) 0.23(.2) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.14(.2) 0.23(.2)
SM1 +MM2

200 0.00(.0) 0.03(.1) 0.27(.3) 0.03(.1) 0.77(.2) 0.00(.0) 0.01(.0) 0.92(.1) 0.47(.3)
1000 0.00(.0) 0.00(.0) 0.17(.2) 0.00(.0) 0.47(.2) 0.07(.1) 0.00(.0) 0.59(.1) 0.27(.3)

10000 0.00(.0) 0.00(.0) 0.27(.3) 0.03(.1) 0.33(.3) 0.07(.1) 0.02(.1) 0.55(.2) 0.33(.3)
SM1 +MM3

200 0.00(.0) 0.00(.0) 0.10(.2) 0.07(.1) 1.13(.3) 0.07(.1) 0.03(.1) 0.90(.1) 0.36(.3)
1000 0.00(.0) 0.00(.0) 0.07(.1) 0.07(.1) 0.87(.3) 0.00(.0) 0.03(.1) 0.72(.1) 0.15(.2)

10000 0.03(.1) 0.00(.0) 0.23(.3) 0.00(.0) 0.70(.3) 0.03(.1) 0.00(.0) 0.60(.2) 0.30(.3)
SM2 +MM1

200 0.10(.2) 0.00(.0) 0.27(.3) 0.00(.0) 0.00(.0) 0.00(.0) 0.06(.1) 0.43(.2) 0.28(.3)
1000 0.03(.1) 0.00(.0) 0.17(.3) 0.00(.0) 0.00(.0) 0.00(.0) 0.02(.1) 0.23(.2) 0.19(.3)

10000 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.11(.1) 0.00(.0)
SM2 +MM2

200 0.03(.1) 0.00(.0) 0.17(.2) 0.07(.1) 0.80(.3) 0.00(.0) 0.06(.1) 0.85(.1) 0.32(.2)
1000 0.00(.0) 0.00(.0) 0.03(.1) 0.00(.0) 0.53(.3) 0.07(.1) 0.00(.0) 0.68(.1) 0.24(.2)

10000 0.00(.0) 0.00(.0) 0.03(.1) 0.00(.0) 0.27(.3) 0.03(.1) 0.00(.0) 0.53(.2) 0.08(.1)
SM2 +MM3

200 0.00(.0) 0.03(.1) 0.03(.1) 0.00(.0) 1.13(.3) 0.07(.1) 0.01(.0) 0.91(.1) 0.29(.2)
1000 0.00(.0) 0.00(.0) 0.07(.1) 0.00(.0) 0.73(.3) 0.07(.1) 0.00(.0) 0.71(.2) 0.15(.1)

10000 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.97(.3) 0.03(.1) 0.00(.0) 0.78(.2) 0.03(.1)
SM3 +MM1

200 0.12(.2) 0.02(.1) 0.40(.2) 0.00(.0) 0.05(.1) 0.00(.0) 0.05(.1) 0.66(.2) 0.43(.2)
1000 0.10(.2) 0.02(.1) 0.02(.1) 0.00(.0) 0.02(.1) 0.00(.0) 0.01(.0) 0.30(.2) 0.03(.1)

10000 0.05(.1) 0.00(.0) 0.05(.1) 0.00(.0) 0.00(.0) 0.00(.0) 0.00(.0) 0.21(.1) 0.07(.1)
SM3 +MM2

200 0.02(.1) 0.05(.2) 0.10(.1) 0.10(.2) 0.62(.1) 0.02(.1) 0.03(.1) 0.89(.1) 0.31(.2)
1000 0.02(.1) 0.02(.1) 0.02(.1) 0.02(.1) 0.38(.2) 0.05(.1) 0.01(.0) 0.68(.2) 0.15(.1)

10000 0.00(.0) 0.05(.1) 0.05(.2) 0.00(.0) 0.35(.2) 0.02(.1) 0.00(.0) 0.72(.2) 0.15(.2)
SM3 +MM3

200 0.02(.1) 0.02(.1) 0.02(.1) 0.05(.1) 0.98(.3) 0.02(.1) 0.04(.1) 0.91(.1) 0.24(.2)
1000 0.02(.1) 0.08(.2) 0.00(.0) 0.00(.0) 0.72(.3) 0.08(.1) 0.00(.0) 0.77(.1) 0.08(.1)

10000 0.00(.0) 0.08(.1) 0.00(.0) 0.00(.0) 0.60(.3) 0.05(.2) 0.00(.0) 0.70(.2) 0.04(.0)

Table 3: Results obtained with BUILD PURECLUSTERS(BPC), factor analysis (FA) and FindHid-
den (FH) for the problem of learning measurement models. Each number is an average
over 10 trials, with standard deviation in parenthesis.

the true structural model, then we have an error of orientation commission. If there is an unoriented
edge in the output which is oriented in the equivalence class for the true model, we have an error of
orientation omission.

216

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

Evaluation of output structural models
Edge omission Edge commission

Sample BPC FA FH FHG BPC FA FH FHG
SM1 +MM1

200 0.05−09 0.05−09 0.00−10 0.00−10 0.10−09 0.30−07 0.00−10 0.10−09
1000 0.05−09 0.10−08 0.00−10 0.00−10 0.20−08 0.30−07 0.60−04 0.10−09

10000 0.00−10 0.05−09 0.00−10 0.00−10 0.00−10 0.00−10 0.30−07 0.00−10
SM1 +MM2

200 0.00−10 0.15−07 0.00−10 0.00−10 0.00−10 0.40−06 0.40−06 0.10−09
1000 0.00−10 0.00−10 0.00−10 0.00−10 0.10−09 0.40−06 0.40−06 0.00−10

10000 0.00−10 0.05−09 0.00−10 0.00−10 0.20−08 0.50−05 0.50−05 0.10−09
SM1 +MM3

200 0.00−10 0.25−05 0.00−10 0.05−09 0.20−08 0.70−03 0.50−05 0.30−07
1000 0.00−10 0.15−07 0.00−10 0.00−10 0.10−09 0.70−03 0.60−04 0.10−09

10000 0.00−10 0.05−09 0.05−09 0.00−10 0.00−10 0.40−06 0.50−05 0.10−09
SM2 +MM1

200 0.00−10 0.00−10 0.00−10 0.00−10 0.20−08 0.30−07 0.00−10 0.10−09
1000 0.00−10 0.05−09 0.00−10 0.00−10 0.00−10 0.30−07 0.00−10 0.00−10

10000 0.00−10 0.00−10 0.00−10 0.00−10 0.20−08 0.30−07 0.00−10 0.20−08
SM2 +MM2

200 0.00−10 0.15−07 0.00−10 0.00−10 0.40−06 0.30−07 0.00−10 0.00−10
1000 0.00−10 0.10−09 0.05−09 0.05−09 0.10−09 0.60−04 0.10−09 0.20−08

10000 0.00−10 0.05−09 0.05−09 0.00−10 0.10−09 0.70−03 0.10−09 0.20−08
SM2 +MM3

200 0.00−10 0.15−07 0.00−10 0.05−09 0.20−08 0.70−03 0.10−09 0.20−08
1000 0.00−10 0.15−07 0.00−10 0.00−10 0.20−08 0.40−06 0.00−10 0.30−07

10000 0.00−10 0.10−08 0.00−10 0.00−10 0.00−10 0.50−05 0.00−10 0.00−10
SM3 +MM1

200 0.12−05 0.12−06 0.05−08 0.00−10 0.20−06 0.20−06 0.00−10 0.00−10
1000 0.05−08 0.08−08 0.10−06 0.00−10 0.15−08 0.10−08 0.55−03 0.20−07

10000 0.05−08 0.15−04 0.05−08 0.02−09 0.15−08 0.15−08 0.50−03 0.15−08
SM3 +MM2

200 0.02−09 0.28−03 0.15−06 0.02−09 0.55−03 0.55−02 0.20−06 0.10−08
1000 0.00−10 0.12−07 0.08−07 0.00−10 0.25−07 0.75−02 0.60−02 0.15−08

10000 0.00−10 0.00−10 0.02−09 0.02−09 0.10−08 0.80−02 0.65−01 0.20−07
SM3 +MM3

200 0.02−09 0.32−02 0.20−03 0.10−06 0.40−05 0.50−02 0.45−03 0.20−07
1000 0.08−07 0.02−09 0.10−07 0.05−08 0.30−06 0.65−02 0.45−04 0.25−06

10000 0.00−10 0.05−08 0.02−09 0.00−10 0.15−07 0.65−03 0.70−01 0.10−08

Table 4: Results obtained with the application of GES-MIMBUILD to the output of BUILD -
PURECLUSTERS and factor analysis, plus FINDHIDDEN and FINDHIDDEN + GES-
MIMB UILD results, with an indication of the number of perfect solutions over these trials.

If the output measurement model has any errors of latent commission, then we simply leave out
the excess latents in the measurement model given to GES-MIMBUILD . This helps FA primarily,
as it was the only procedure of the three that had high errors of latent commission.

217

SILVA , SCHEINES, GLYMOUR AND SPIRTES

Evaluation of output structural models
Orientation omission Orientation commission

Sample BPC FA FH FHG BPC FA FH FHG
SM1 +MM1

200 0.10−09 0.15−08 0.10−09 0.10−09 0.00−10 0.00−10 0.00−10 0.00−10
1000 0.20−08 0.00−10 0.60−04 0.10−09 0.00−10 0.05−09 0.00−10 0.00−10

10000 0.00−10 0.00−10 0.30−07 0.00−10 0.00−10 0.00−10 0.00−10 0.00−10
SM1 +MM2

200 0.00−10 0.20−07 0.40−06 0.10−09 0.00−10 0.05−09 0.00−10 0.00−10
1000 0.10−09 0.20−07 0.40−06 0.00−10 0.00−10 0.00−10 0.00−10 0.00−10

10000 0.20−08 0.25−05 0.50−05 0.10−09 0.00−10 0.00−10 0.00−10 0.00−10
SM1 +MM3

200 0.20−08 0.40−04 0.60−04 0.20−08 0.00−10 0.05−09 0.00−10 0.05−09
1000 0.10−09 0.10−09 0.70−03 0.10−09 0.00−10 0.10−08 0.00−10 0.00−10

10000 0.00−10 0.30−06 0.50−05 0.10−09 0.00−10 0.00−10 0.00−10 0.00−10
SM2 +MM1

200 −−− −−− −−− −−− 0.00−10 0.00−10 0.00−10 0.00−10
1000 −−− −−− −−− −−− 0.00−10 0.00−10 0.00−10 0.00−10

10000 −−− −−− −−− −−− 0.00−10 0.00−10 0.00−10 0.00−10
SM2 +MM2

200 −−− −−− −−− −−− 0.00−10 0.00−10 0.00−10 0.00−10
1000 −−− −−− −−− −−− 0.00−10 0.10−09 0.00−10 0.00−10

10000 −−− −−− −−− −−− 0.00−10 0.10−09 0.05−09 0.00−10
SM2 +MM3

200 −−− −−− −−− −−− 0.00−10 0.10−08 0.00−10 0.00−10
1000 −−− −−− −−− −−− 0.00−10 0.05−09 0.00−10 0.00−10

10000 −−− −−− −−− −−− 0.00−10 0.05−09 0.00−10 0.00−10
SM3 +MM1

200 0.15−08 0.00−10 0.00−10 0.00−10 0.22−07 0.35−06 0.10−09 0.00−10
1000 0.10−09 0.00−10 0.65−03 0.10−09 0.10−09 0.00−10 0.04−09 0.00−10

10000 0.05−09 0.00−10 0.65−03 0.05−09 0.04−09 0.00−10 0.04−09 0.04−09
SM3 +MM2

200 0.50−05 0.30−06 0.20−07 0.10−09 0.08−09 0.16−07 0.08−09 0.08−09
1000 0.30−07 0.45−04 0.65−03 0.30−07 0.00−10 0.05−09 0.11−08 0.05−09

10000 0.20−08 0.40−06 0.85−01 0.25−07 0.00−10 0.00−10 0.00−10 0.00−10
SM3 +MM3

200 0.50−04 0.15−08 0.85−01 0.35−05 0.19−06 0.14−08 0.20−07 0.48−02
1000 0.20−07 0.35−05 0.50−04 0.05−09 0.15−07 0.02−09 0.04−09 0.11−08

10000 0.00−10 0.35−05 0.85−01 0.10−09 0.00−10 0.00−10 0.04−09 0.00−10

Table 5: Results obtained with the application of GES-MIMBUILD to the output of BUILD -
PURECLUSTERS and factor analysis, plus FINDHIDDEN and FINDHIDDEN + GES-
MIMB UILD results, with an indication of the number of perfect solutions over these trials.

If the output measurement model has errors of latent omission, then we compare the marginal
involving the latents in the output model for the true structural model graph to the output structural
model equivalence class. For each of the structural models we selected,SM1, SM2, and SM3,
all marginals can be represented faithfully as DAGs. Our measure of successful causal discovery,

218

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

therefore, for a measurement model involving a small subset of the latents inthe true graph is very
lenient. For example, if the generating model was SM3, which involves four latents, but the output
measurement model involved only two of these latents, then a perfect search result in this case
would amount to finding that the two latents are associated.

In summary then, our measures for assessing the ability of these algorithms to correctly discover
at least features of the causal relationships among the latents are as follows:

• edge omission (EO), the number of edges in the structural model ofG that do not appear in
Gout divided by the possible number of edge omissions (2 inSM1 andSM2, and 4 inSM3, i.e.,
the number of edges in the respective structural models);

• edge commission (EC), the number of edges in the structural model ofGout that do not exist
in G divided by the possible number of edge commissions (only 1 inSM1 andSM2, and 2 in
SM3);

• orientation omission (OO), the number of arrows in the structural model ofG that do not
appear inGout divided by the possible number of orientation omissions inG (2 in SM1 and
SM3, 0 in SM2);

• orientation commission (OC), the number of arrows in the structural model ofGout that do
not exist inG divided by the number of edges in the structural model ofGout;

Tables 4 and 5 summarize the results. Along with each average we provide thenumber of trials
where no errors of a specific type were made.

Factor analysis is particularly flawed. This is because FA infers so many latents, which leads
to spurious dependence paths among the latents we scored. The default FINDHIDDEN is also sub-
optimal in these small models, due to limitations in the hill-climbing procedure compared toGES:
SM3 has a high proportion of “compelled” edges (Chickering, 2002), i.e.,edges that are oriented in
the pattern corresponding to the Markov equivalence class, which makesit harder for an algorithm
that searches among DAGs instead of equivalence classes. Therefore, we included in Tables 4
and 5 a variation of FINDHIDDEN, labeled FHG, where we fix the measurement model given by
FINDHIDDEN and learn the structural model using GES. Results are not significantly different from
BPC + GES, except at sample size of 200, where FINDHIDDEN has a tendency to miss latents,
inflating its performance in the structural model evaluation (since with fewer latents there is less
chance of committing mistakes).

Figure 13 provides a summary evaluation of all algorithms, BPC, FA and FHG with respect to
the number of perfect structural models obtained for each graphical structure (from 0 to 10). This
includes not only getting the exact number of latents, but also the correct Markov equivalence class
defined in the true model. Factor analysis is competitive when the true model is pure, but is com-
pletely ineffective otherwise. For models based on structural model SM3,FA does not get any fully
correct structure when the measurement model is impure. Moreover, it is clear that while learning
the measurement model can be reasonably performed by BUILD PURECLUSTERS and FINDHID-
DEN with sample sizes of 200, learning the structural model is not an easy task unless more data is
available.

In summary, factor analysis provides little useful information out of the given datasets that were
not generated by pure models. In contrast, the combination of BUILD PURECLUSTERSand GES-

219

SILVA , SCHEINES, GLYMOUR AND SPIRTES

SM1 + MM1

0 2 4 6 8 10

200

1000

10000

SM1 + MM2

0 2 4 6 8 10 12

200

1000

10000

SM1 + MM3

0 2 4 6 8 10

200

1000

10000

SM2 + MM1

0 2 4 6 8 10

200

1000

10000

SM2 + MM2

0 2 4 6 8 10

200

1000

10000

SM2 + MM3

0 2 4 6 8 10 12

200

1000

10000

SM3 + MM1

0 1 2 3 4 5 6 7 8

200

1000

10000

SM3 + MM2

0 2 4 6 8 10

200

1000

10000

SM3 + MM3

0 2 4 6 8 10

200

1000

10000

Figure 13: A comparison of the number of perfect solutions in all synthetic data sets.

MIMB UILD largely succeeds. FINDHIDDEN (with GES, i.e., FHG) has generally good results,
although it behaves erractly with SM1.14

8. Real Data Applications

We now briefly present the results for two real data sets. Data collected from such domains may
pose significant problems for exploratory data analysis since sample sizesare usually small and
noisy, nevertheless they have a very useful property for our empirical evaluation. In particular,
data obtained by questionnaires are designed to target specific latent factors (such as “stress”, “job
satisfaction”, and so on) and a theoretical measurement model is developed by experts in the area to
measure the desired latent variables. Very generally, experts are more confident about their choice
of measures than about the structural model. Such data thus provide a basis for comparison with the
output of our algorithm. The chance that various observed variables are not pure measures of their

14. This can probably be improved by adopting other schema of searchinitialization and extra heuristics for escaping
local minima. However, it can also be a much slower algorithm than BPC, asdiscussed before.

220

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

1 ...C C2 20

Dep
1

...

Dep

Dep
2

20

St1

...

St

St

2

21

Stress
Depression

Coping

+

C

Figure 14: A theoretical model for the interaction of religious coping, stress and depression. The
signs on the edges depicts the theoretical signs of the corresponding effects.

theoretical latents is high. Measures are usually discrete, but often ordinal with a Likert-scale that
can be treated as normally distributed measures with little loss (Bollen, 1989). Inthe examples, we
compare our procedures with models produced by domain researchers.

8.1 Stress Religious Coping and Depression

Bongjae Lee from the University of Pittsburgh conducted a study of religious/spiritual coping and
stress in graduate students. In December of 2003, 127 students answered a questionnaire intended to
measure three main factors: stress (measured with 21 items), depression (measured with 20 items)
and religious/spiritual coping (measured with 20 items). The full questionnaire is given by Silva
and Scheines (2004). Lee’s model is shown in Figure 14.

This model fails a chi-square test: p = 0. The measurement model producedby BUILD -
PURECLUSTERS is shown in Figure 15(a). Note that the variables selected automatically are
proper subsets of Lee’s substantive clustering. The full model automatically produced with GES-
MIMB UILD with the prior knowledge that STRESS is not an effect of other latent variables is given
in Figure 15(b). This model passes a chi square test, p = 0.28, even though the BPC algorithm itself
does not try to directly maximize the fit of the algorithm.

Our FINDHIDDEN implementation took a couple of days to execture and did not perform pro-
duce a reasonable output if the theoretical model should be taken as the gold standard: five latents
were found to have 20 indicators altogether, but they have no correspondence to the theoretical clus-
tering. This is not unexpected, since the sample size is very small and FINDHIDDEN tries to create a
model that includes all 61 variables. BUILD PURECLUSTERScan be seen as a way of doing feature
selection by focusing on the easier, simpler pure models.

8.2 Test Anxiety

A survey of test anxiety indicators was administered to 335 grade 12 male students in British
Columbia. The survey consisted of 20 measures on symptoms of anxiety under test conditions. The
covariance matrix as well as a description of the variables is given by Bartholomew et al. (2002).15

15. The data are available online at http://multilevel.ioe.ac.uk/team/aimdss.html.

221

SILVA , SCHEINES, GLYMOUR AND SPIRTES

19Stress
Depression

Coping

St

St

St

St

3

St4

16

18

20

C CC C9 12 14 15

Dep

Dep

Dep

9

13

+
Stress

Depression

Coping

St

St

St

St

3

St4

16

18

20

C CC C9 12 14 15

Dep

Dep

Dep

9

13

19

+

(a) (b)

Figure 15: The output of BPC and GES-MIMBUILD for the coping study.

Emotionality Worry

X 2

X

X

X

X

X

X

8

9

10

15

16

18

X

X

X

X

X

X

X

X

3

4

5

6

7

14

17

20

Figure 16: A theoretical model for psychological factors of test anxiety.

Using exploratory factor analysis, Bartholomew et al. concluded that two latent common causes
underly the variables in this data set, agreeing with previous studies. The original study identified
items{x2,x8,x9,x10, x15,x16,x18} as indicators of an “emotionality” latent factor (this includes phys-
iological symptoms such as jittery and faster heart beatting), and items{x3,x4,x5,x6,x7,x14,x17,x20}
as indicators of a more psychological type of anxiety labeled “worry” by Bartholomew et al. No
further description is given about the remaining five variables. Bartholomew et al.’s factor analysis
with oblique rotation roughly matches this model. Bartholomew et al.’s exploratory factor analysis
model for a subset of the variables is shown in Figure 16. This model is notintended to be pure.
Instead, the figure represents which of the two latents is more “strongly” connected to each indi-
cator. The measurement model itself is not constrained. Trying to fit this model as a pure model
(i.e., using the graph in Figure 16 instead of a two-factor multivariate Gaussian model with a fully
connected measurement model) gives a p-value of zero according to a chi-square test.

BPC provides the measurement model given in 17(a).16 The labels in the latents were given
to us and should be seen as our particular interpretation. Applying GES-MIMBUILD to the this
measurement model results in the model shown in Figure 17(b). The model passes a chi-square

16. We allowed a latent with less than three indicators. It might correspondto more than one latent in the true model.

222

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

test handily, p = 0.47, even though we used constraint-satisfaction techniques that did not try to
maximize the fitness of the model directly. To summarize, BPC provided a model supported by
the data that is very close to a submodel of the theoretical model (variablesX4,X15,X17,X20 were
removed), except that:

• one of the latents is split in two. To see how this is supported by the data, trying tomerge
latents “Cares about achieving” and ”Self-defeating” will result in a model of p-value of zero;

• variableX11 is used, which is not considered by Bartholomew et al.’s model;

What is remarkable in this case is the ability of reconstructing much of the theoretical model
without using prior knowledge. The model is very simple, i.e., each indicator measures a single
latent, while Bartholomew et al.’s model seems to artificially add edges from all latents into all
indicators to get a model that fits the data. Escaping this artificiality is one of the motivations behind
variable selection in factor analysis methods, such as the one proposed byKano and Harada (2000):
finding a submodel that is a pure model can provide a better understanding of the causal process
being measured than allowing an impure model, whose extra edges might be no more than a patch
to account for residual correlation among indicators, without necessarily existing in the true model.
Kano and Harada’s method, however, requires an initial measurement model to be “purified,” while
BPC works from scratch.

We applied FINDHIDDEN to this data set, obtaining the model shown in Figure 18(a). To sim-
plify presentation, we removed nodes that were not children of any latentin the output model (e.g.,
X3 was not a child of any of the latents, which results on its removal from the picture). Three latents,
labeled by us as “Emotionality 1”, “Emotionality 2” and “Worry” were generated. Both “Emotion-
ality 1” and “Emotionality 2” seem to be a combination of some of the theoretical “Emotionality”
indicators (Figure 16) plus some indicators not included the theoretical model of Figure 16. There
are also lots of edges corresponding to impurities for which no equivalence class is known. As
discussed in Section 3, these edges might correspond to very differentcausal mechanisms than they
might suggest.

Since 5 of the variables are not present in the theoretical model, it is not soeasy to compare
this model against the theoretical model. Therefore, we also provide the result that is obtained from
FINDHIDDEN when the data contains only the 15 indicators used in Figure 16. The result isthe one
shown in Figure 18(b), where we adopted the same latent labels used in BPC’s output. The result
is, surpringly, very different. The model has now a much closer resemblance to BPC’s output,
supporting the plausability of BPC’s output. However, while it seems that BPCis able to find a
pure model among all 20 indicators, FINDHIDDEN in this case was able to find an (almost) pure
modelonlywhen variables were properly pre-selected.

9. Generalizations

In many social science studies, latent structure is represented by so called “non-recursive” structure.
In graphical terms, the dependency graph is cyclic. Richardson (1996) has developed a consis-
tent constraint based search for cyclic graphical models of linear systems, and our procedures for
identifying measurement models can be combined with it to search for such structure.

The procedure we have described here can, however, straightforwardly be generalized to cases
with measured variables taking a small finite range of values by treating the discrete variables as

223

SILVA , SCHEINES, GLYMOUR AND SPIRTES

Self−defeating

Emotionality

X 2

X 14

X 5

X 7

X 6

Cares about achieving
X

X

X

X

X

X

8

9

10

16

18

11

X 3

Self−defeating

Emotionality

X 2

X 14

X 5

X 7

X 6

Cares about achieving
X

X

X

X

X

X

8

9

10

16

18

11

X 3

(a) (b)

Figure 17: The output of BPC and GES-MIMBUILD for the test anxiety study.

Emotionality 1

16X 15 X 18X 13X 2X 1

X

X

X

X

X

X

4

5

6

7

14

20

X

X

8

9

X 10

X

X

11

12

X 19

Worry

Emotionality 2

X

20

Emotionality

X 2

X 14

X 5

X 7

X 6

Cares about achieving

X 17

X

X

X

X

X

8

9

10

16

X 3

Self−defeating15

X 18

X

X

4

(a) (b)

Figure 18: The output of FINDHIDDEN when using all 20 variables (a) and when using only the
variables present in the theoretical model (b).

224

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

X
9

XX
87

X6
X

5
X

4
X2

X
3

X

1
L

2
L

3
L

1

Figure 19: A model with no pure submodel with three indicators per latent.

projections from a Gaussian distribution. These are sometimes called latent trait models in the
literature (Bartholomew and Knott, 1999). Much larger sample sizes are required than for linear,
Gaussian measured variables.

In previous works (Silva et al., 2003; Silva and Scheines, 2005), we developed an approach to
learn measurement models even when the functional relationships among latents are non-linear. In
practice, that generality is of limited use because there are at present no consistent search meth-
ods available for structures with continuous, non-linear variables. A modified version of BUILD -
PURECLUSTERS, however, exists for the problem of learning equivalence classes of measurement
models for non-linear structural models. Some of the results here developed cannot be carried on to
the non-linear case (e.g., rule CS3). Others are substantially modified (Lemma9). With extra prior
knowledge, however, much of the measurement model for non-linear structural models can still be
learned from data.

Finally, there are ways of reliably learning some types of impure models using theresults dis-
cussed in this paper. For instance, only two of the three latents in the model in Figure 19 can be
generated by BUILD PURECLUSTERS. A small modification of the algorithm, which would include
an equivalence class accounting for some types of impurities, would be ableto reconstruct all latents
in this example. A more systematic exploration of such extensions will be treated ina future work.

10. Conclusion

This paper introduced a novel algorithm for learning causal structure inlinear models which, to
the best of our knowledge, presents the first published solution for the problem of learning causal
models with latent variables in a principled way where observed conditional independencies are not
expected to exist. It has the following properties:

• it was designed to learn multiple indicator models, i.e., models where observed variables are
not causes of the hidden variables of interest, but which still encompass alarge class of useful
models;

• no assumptions about the number of hidden variables and how they are connected to observed
variables are needed;

• it is a two-stage algorithm, which first learns equivalence classes of measurement models
(i.e., which latents exist and which observed children they have) and, based on a choice of
measurement model, returns an equivalence class of causal models amongthe latents;

225

SILVA , SCHEINES, GLYMOUR AND SPIRTES

• it is provably correct, in the sense that given the assumptions explicitly described in the pa-
per and in the limit of infinite data, all causal claims made by the output graph holdin the
population;

• it provides a framework which can be partially extended to cover other types of data (discrete,
ordinal) and causal relations (non-linear, non-Gaussian);

Our experiments provide evidence that our procedures can be usefulin practice, but there are
certainly classes of problems where BUILD PURECLUSTERS will not be of practical value. For
instance, learning the causal structure of general blind source separation problems, where measures
are usually indicators of most of the latents (i.e., sources) at the same time.

A number of open problems invite further research, including these:

• completeness of the tetrad equivalence class of measurement models: can we identify all the
common features of measurement models in the same tetrad equivalence class?

• using the more generic rank constraints of covariance matrices to learn measurement models,
possibly identifying the nature of some impure relationships;

• better treatment of discrete variables. Bartholomew and Knott (1999) survey different ways
of integrating factor analysis and discrete variables that can be readily adapted, but the com-
putational cost of this procedure is high;

• finding non-linear causal relationships among latent variables given a fixed linear measure-
ment model, and in other families of multivariate continuous distributions besides the Gaus-
sian;

The fundamental point is that common and appealing heuristics (e.g., factor rotation methods)
fail when the goal is structure learning with a causal interpretation. In manycases it is preferable
to model the relationships of a subset of the given variables than trying to force a bad model over
all of them (Kano and Harada, 2000). Better methods are available now, and further improvements
will surely come from machine learning research.

Acknowledgments

We thank the anonymous reviewers for their comments, which greatly improvedthe presentation of
this paper. Research for this paper was supported by NASA NCC 2-1377 to the University of West
Florida, NASA NRA A2-37143 to CMU and ONR contract N00014-03-01-0516 to the University
of West Florida.

Appendix A. BUILD PURECLUSTERS: Full Algorithm and Implementation

We now introduce the complete version of BUILD PURECLUSTERS. This version has additional
steps that deal with exceptional, but arguably less relevant, situations. This requires removing addi-
tional nodes due to vanishing correlations, as well as merging some clusters. The full algorithm is
given in Table 6.

226

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

Algorithm BUILD PURECLUSTERS

Input: a covariance matrixΣ

1. G←FINDPATTERN(Σ).

2. Choose a set of latents inG. Remove all other latents and all observed nodes that are not
children of the remaining latents and all clusters of size 1.

3. Remove all nodes that have more than one latent parent inG.

4. For all pairs of nodes linked by an undirected edge, choose one element of each pair to be
removed.

5. If for some set of nodes{A,B,C}, all children of the same latent, there is a fourth nodeD in
G such thatσABσCD = σACσBD = σADσBC is not true, remove one of these four nodes.

6. For every latentL with at least two children,{A,B}, if there is some nodeC in G such that
σAC = 0 andσBC 6= 0, splitL into two latentsL1 andL2, whereL1 becomes the only parent of
all children ofL that are correlated withC, andL2 becomes the only parent of all children of
L that are not correlated withC;

7. Remove any cluster with exactly 3 variables{X1,X2,X3} such that there is noX4 where all
three tetrads in the covariance matrixX = {X1,X2,X3,X4} hold, all variables ofX are cor-
related and no partial correlation of a pair of elements ofX is zero conditioned on some
observed variable;

8. While there is a pair of clusters with latentsLi andL j , such that for all subsets{A,B,C,D} of
the union of the children ofLi , L j we haveσABσCD = σACσBD = σADσBC, and no marginal or
conditional independencies (where the condition set is of size 1) are observed in this cluster,
setLi = L j (i.e., merge the clusters);

9. Again, verify all implied tetrad constraints and remove elements accordingly: iterate Steps
6-7-8 until no changes happen;

10. Remove all latents with less than three children, and their respective measures;

11. if G has at least four observed variables, returnG. Otherwise, return an empty model.

Table 6: The complete version of BUILD PURECLUSTERS.

227

SILVA , SCHEINES, GLYMOUR AND SPIRTES

4

L

1
X

2
X

3
X

1 2 3

1 2 3

W

Y Y Y

Z Z Z

W
1 2

W
3

L

L
L

L0

2
3

1

Y

L
0 L

0

W
1 1 1 1

Z X

(a) (b)

Figure 20: The true graph in (a) will generate at some point a purified measurement pattern as in
(b). It is desirable to merge both clusters.

It might be surprising that we merge clusters of variables that we know cannot share a common
latent parent in the true graph. However, we are not guaranteed to finda large enough number
of pure indicators for each of the original latent parents, and as a consequence only a subset of
the true latents will be represented in the measurement pattern. It might be the case that, with re-
spect to the variables present in the output, the observed variables in two different clusters might
be directly measuring some ancestor common to all variables in these two clusters. As an illustra-
tion, consider the graph in Figure 20(a), where double-directed edgesrepresent independent hidden
common causes. Assume any sensible purification procedure will choose toeliminate all elements
in {W2,W3,X2,X3,Y2,Y3,Z2,Z3} because they are directly correlated with a large number of other
observed variables (extra edges and nodes not depicted).

Meanwhile, one can verify that all three tetrad constraints hold in the covariance matrix of
{W1,X1,Y1,Z1}, and therefore there will be no undirected edges connecting pairs of elements in this
set in the corresponding measurement pattern. Rule CS1 is able to separateW1 andX1 into two
different clusters by using{W2,W3,X2,X3} as the support nodes, and analogously the same happens
toY1 andZ1, W1 andY1, X1 andZ1. However, no test can separateW1 andZ1, norX1 andY1. If we do
not merge clusters, we will end up with the graph seen in Figure 20(b) as part of our output pattern.
Although this is a valid measurement pattern, and in some situations we might want tooutput such
a model, it is also true thatW1 andZ1 measure a same latentL0 (as well asX1 andY1). It would be
problematic to learn a structural model with such a measurement model. There isa deterministic
relation between the latent measured byW1 andZ1, and the latent measured byX1 andY1: they
are the same latent! Probability distributions with deterministic relations are not faithful, and that
causes problems for learning algorithms.

Finally, we show examples where Steps 6 and 7 of BUILD PURECLUSTERSare necessary. In
Figure 21(a) we have a partial view of a latent variable graph, where twoof the latents are marginally
independent. Suppose that nodesX4,X5 andX6 are correlated to many other measured nodes not in
this figure, and therefore are removed by our purification procedure.If we ignore Step 6, the result-

228

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

X
9

XX
87

X6
X

5
X

4
X2

X
3

X
1

X
2

X
3

X
9

XX
87

X1

(a) (b)

Figure 21: Suppose (a) is our true model. If for some reason we need to remove nodesX4,X5 and
X6 from our final pure graph, the result will be as shown in Figure (b), unless we apply
Step 6 of BUILD PURECLUSTERS. There are several problems with (b), as explained in
the text.

ing pure submodel over{X1,X2,X3,X7,X8,X9} will be the one depicted in Figure 21(b) ({X1,X2}
are clustered apart from{X7,X8,X9} because of marginal zero correlation, andX3 is clustered apart
from {X7,X8,X9} because of CS1 applied to{X3,X4,X5}×{X7,X8,X9}). However, no linear latent
variable model can be parameterized by this graph: if we let the two latents to becorrelated, this
will imply X1 andX7 being correlated. If we make the two latents uncorrelated,X3 andX7 will be
uncorrelated.

Step 7 exists to avoid rare situations where three observed variables are clustered together and
arepairwisepart of some foursome entailing all three tetrad constraints with no vanishing marginal
and partial correlation, but still should be removed because they are notsimultaneouslyin such a
foursome. They might not be detected by Step 4 if, e.g., all three of them areuncorrelated with all
other remaining observed variables.

In the rest of this section, we describe a practical implementation of BUILD PURECLUSTERS.
The algorithm is described for a given covariance matrix to simplify the exposition. Since typi-
cally one has only a sample covariance matrix, we need a statistical decision procedure. Statistical
tests for tetrad constraints are described by Spirtes et al. (2000). Although it is known that in
practice constraint-based approaches for learning graphical model structure are outperformed on
accuracy by score-based algorithms such as GES (Chickering, 2002), we favor a combination of
a constraint-based approach and a score-based approach due mostlyto computational efficiency.
A smart implementation of constraint-satisfaction algorithms can avoid many statistical shortcom-
ings. If the experimental results are any indication of success, we can claim we provide such an
implementation.

We also describe in full detail how particular choices in BUILD PURECLUSTERS(e.g., Step 2,
where one has to choose a set of latents from the measurement pattern) are solved in our implemen-
tation. We stress that the particularities of the implementation bear no implication on thetheoretical
results given in this paper: the algorithms remain point-wise consistent. The informativeness of the
results (i.e., how much of the true structure is discovered) will vary, but in the particular examples
given in this paper, results were quite insensitive to variations of the following implementation.

229

SILVA , SCHEINES, GLYMOUR AND SPIRTES

A.1 Robust Purification

We do avoid a constraint-satisfaction approach for purification. At leastfor a fixed p-value and using
false discovery rates to control for multiplicity of tests, purification by testing tetrad constraints often
throws away many more nodes than necessary when the number of variables is relative small, and
does not eliminate many impurities when the number of variables is too large. We suggest a robust
purification approach as follows.

Suppose we are given a clustering of variables (not necessarily disjoint clusters) and a undirect
graph indicating which variables might be ancestors of each other, analogous to the undirect edges
generated in FINDPATTERN. We purify this clustering not by testing multiple tetrad constraints,
but through a greedy search that eliminates nodes from a linear measurement model that entails
tetrad constraints. This is iterated till the current model fits the data accordingto a chi-square test
of significance (Bollen, 1989) and a given acceptance level. Details aregiven in Table 7.

This implementation is used as a subroutine for a more robust implementation of BUILD -
PURECLUSTERSdescribed in the next section. However, it can be considerably slow. Analternative
is using the approximation derived by Kano and Harada (2000) to rapidly calculate the fitness of
a factor analysis model when a variable is removed. Another alternative is agreedy search over
the initial measurement model, freeing correlations of pairs of measured variables. Once we found
which variables are directly connected, we eliminate some of them till no pair is impure. Details
of this particular implementation are given by Silva and Scheines (2004). In our experiments with
synthetic data, it did not work as well as the iterative removal of variables described in Table 7.
However, we do apply this variation in the last experiment described in Section 6, because it is com-
putationally cheaper. If the model search in ROBUSTPURIFY does not fit the data after we eliminate
too many variables (i.e., when we cannot statistically test the model) we just return an empty model.

A.2 Finding a Robust Initial Clustering

The main problem of applying FINDPATTERN directly by using statistical tests of tetrad constraints
is the number of false positives: accepting a rule (CS1, CS2, or CS3) as true when it does not hold
in the population. One can see that might happen relatively often when thereare large groups of
observed variables that are pure indicators of some latent: for instance,assume there is a latentL0

with 10 pure indicators. Consider applying CS1 to a group of six pure indicators of L0. The first
two constraints of CS1 hold in the population, and so assume they are correctly identified by the
statistical test. The last constraint,σX1X2σY1Y2 6= σX1Y2σX2Y1, should not hold in the population, but
will not be rejected by the test with some probability. Since there are 10!/(6!4!) = 210 ways of CS1
being wrongly applied due to a statistical mistake, wewill get many false positives in all certainty.

We can highly minimize this problem by separatinggroupsof variables instead of pairs. Con-
sider the test DISJOINTGROUP(Xi ,Xj ,Xk,Ya,Yb,Yc;Σ):

• DISJOINTGROUP(Xi ,Xj ,Xk,Ya,Yb,Yc;Σ) = true if and only if CS1 returns true for all sets
{X1,X2,X3,Y1,Y2,Y3}, where{X1,X2,X3} is a permutation of{Xi ,Xj ,Xk} and{Y1,Y2,Y3} is
a permutation of{Ya,Yb,Yc}. Also, we test an extra redundant constraint: for every pair
{X1,X2} ⊂ {Xi ,Xj ,Xk} and every pair{Y1,Y2} ⊂ {Ya,Yb,Yc} we also require thatσX1Y1σX2Y2 =
σX1Y2σX2Y1.

Notice it is much harder to obtain a false positive with DISJOINTGROUP than, say, with CS1
applied to a single pair. This test can be implemented in steps: for instance, if for no four foursome

230

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

Algorithm ROBUSTPURIFY

Inputs: Clusters, a set of subsets of some setO;
C, an undirect graph overO;
Σ, a sample covariance matrix ofO.

1. Remove all nodes that have appear in more than one set inClusters.

2. For all pairs of nodes that belong to two different sets inClustersand are adjacent inC, remove the
one from the largest cluster or the one from the smallest cluster if this has less than three elements.

3. Let G be a graph. For each setS∈ Clusters, add all nodes inS to G and a new latent as the only
common parent of all nodes inS. Create an arbitrary full DAG among latents.

4. For each variableV in G, fit a graphG′(V) obtained fromG by removingV. UpdateG by choosing
the graphG′(V) with the smallest chi-square score. If some latent ends up with less than two children,
remove it. Iterate till a significance level is achieved.

5. Do mergings if that increases the fitness. Iterate 4 and 5 till no improvement can be done.

6. Eliminate all clusters with less than three variables andreturnG.

Table 7: A score-based purification.

including Xi andYa we have that all tetrad constraints hold, then we do not considerXi andYa in
DISJOINGGROUP.

Based on DISJOINTGROUP, we propose here a modification to increase the robustness of BUILD -
PURECLUSTERS, the ROBUSTBUILD PURECLUSTERSalgorithm, as given in Table 8. It starts with
a first step called FIND INITIAL SELECTION (Table 9). The goal of FIND INITIAL SELECTION is
to find a pure model using only DISJOINTGROUP instead of CS1, CS2 or CS3. This pure model
is then used as an starting point for learning a more complete model in the remaining stages of
ROBUSTBUILD PURECLUSTERS.

In FIND INITIAL SELECTION, if a pair {X,Y} cannot be separated into different clusters, but
also does not participate in any successful application of DISJOINTGROUP, then this pair will be
connected by a GRAY or YELLOW edge: this indicates that these two nodes cannot be in a pure
submodel with three indicators per latent. Otherwise, these nodes are “compatible”, meaning that
theymightbe in such a pure model. This is indicated by a BLUE edge.

In FIND INITIAL SELECTION we then find cliques of compatible nodes (Step 8).17 Each clique
is a candidate for a one-factor model (a latent model with one latent only). We purify every clique
found to create pure one-factor models (Step 9). This avoids using clusters that are large not because
they are all unique children of the same latent, but because there was no way of separating its
elements. This adds considerably more computational cost to the whole procedure.

After we find pure one-factor modelsMi , we search for a combination of compatible groups.
Step 10 first indicates which pairs of one-factor models cannot be part of a pure model with three
indicators each: ifMi andM j are not pairwise a two-factor model with three pure indicators (as
tested by DISJOINTGROUP), they cannot be both part of a valid solution.

CHOOSECLUSTERINGCLIQUE is a heuristic designed to find a large set of one-factor models
(nodes ofH) that can be grouped into a pure model with three indicators per latent (we need a

17. Any algorithm can be used to find maximal cliques. Notice that, by the anytime properties of our approach, one does
not need to find all maximal cliques.

231

SILVA , SCHEINES, GLYMOUR AND SPIRTES

Algorithm ROBUSTBUILD PURECLUSTERS

Input: Σ, a sample covariance matrix of a set of variablesO

1. (Selection,C,C0)←FIND INITIAL SELECTION(Σ).

2. For every pair of nonadjacent nodes{N1,N2} in C where at least one of them is not inSelectionand
an edgeN1−N2 exists inC0, add a RED edgeN1−N2 to C.

3. For every pair of nodes linked by a RED edge inC, apply successively rules CS1, CS2 and CS3.
Remove an edge between every pair corresponding to a rule that applies.

4. LetH be a complete graph where each node corresponds to a maximal clique inC.

5. FinalClustering← CHOOSECLUSTERINGCLIQUE(H).

6. Return ROBUSTPURIFY(FinalClustering,C,Σ).

Table 8: A modified BUILD PURECLUSTERSalgorithm.

heuristic since finding a maximum clique inH is NP-hard). First, we define thesizeof a clustering
Hcandidate(a set of nodes fromH) as the number of variables that remain according to the following
elimination criteria: 1. eliminate all variables that appear in more than one one-factor model inside
Hcandidate; 2. for each pair of variables{X1,X2} such thatX1 andX2 belong to different one-factor
models inHcandidate, if there is an edgeX1−X2 in C, then we remove one element{X1,X2} from
Hcandidate(i.e., guarantee that no pair of variables from different clusters which were not shown to
have any common latent parent will exist inHcandidate). We eliminate the one that belongs to the
largest cluster, unless the smallest cluster has less than three elements to avoid extra fragmentation;
3. eliminate clusters that have less than three variables.

The heuristic motivation is that we expected that a model with a large size will have a large num-
ber of variables after purification. Our suggested heuristic to be implementedas CHOOSECLUS-
TERINGCLIQUE is trying to find a good model using a very simple hill-climbing algorithm that
starts from an arbitrary node inH and add new clusters to the current candidate according to the
one that will increase its size mostly while still forming a maximal clique inH. We stop when we
cannot increase the size of the candidate. This is calculated using each node inH as a starting point,
and the largest candidate is returned by CHOOSECLUSTERINGCLIQUE.

A.3 Clustering Refinement

The next steps in ROBUSTBUILD PURECLUSTERS are basically the FINDPATTERN algorithm of
Table 1 with a final purification. The main difference is that we do not checkanymore if pairs
of nodes in the initial clustering given bySelectionshould be separated. The intuition explaining
the usefulness of this implementation is as follows: if there is a group of latents forming a pure
subgraph of the true graph with a large number of pure indicators for each latent, then the initial
step should identify such group. The consecutive steps will refine this solution without the risk
of splitting the large clusters of variables, which are exactly the ones most likelyto produce false
positive decisions. ROBUSTBUILD PURECLUSTERShas the power of identifying the latents with
large sets of pure indicators and refining this solution with more flexible rules,covering also cases
where DISJOINTGROUP fails.

232

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

Algorithm FIND INITIAL SELECTION

Input: Σ, a sample covariance matrix of a set of variablesO

1. Start with a complete graphC overO.

2. Remove edges of pairs that are marginally uncorrelated oruncorrelated conditioned on a third variable.

3. C0←C.

4. Color every edge ofC as BLUE.

5. For all edgesN1−N2 in C, if there is no other pair{N3,N4} such that all three tetrads constraints hold
in the covariance matrix of{N1,N2,N3,N4}, change the color of the edgeN1−N2 to GRAY.

6. For all pairs of variables{N1,N2} linked by a BLUE edge inC

If there exists a pair{N3,N4} that forms a BLUE clique withN1 in C, and a pair
{N5,N6} that forms a BLUE clique withN2 in C, all six nodes form a clique inC0 and
DISJOINTGROUP(N1,N3,N4,N2,N5,N6;Σ) = true, then remove all edges linking elements in
{N1,N3,N4} to {N2,N5,N6}.

Otherwise, if there is no nodeN3 that forms a BLUE clique with {N1,N2} in C,
and no BLUE clique in {N4,N5,N6} such that all six nodes form a clique inC0 and
DISJOINTGROUP(N1,N2,N3,N4,N5,N6;Σ) = true, then change the color of the edgeN1 − N2

to YELLOW.

7. Remove all GRAY and YELLOW edges fromC.

8. ListC←FINDMAXIMAL CLIQUES(C).

9. Let H be a graph where each node corresponds to an element ofListC and with no edges. LetMi

denote both a node inH and the respective set of nodes inListC. Let Mi← ROBUSTPURIFY(Mi,C,Σ);

10. Add an edgeM1−M2 to H only if there exists{N1,N2,N3} ⊆ M1 and{N4,N5,N6} ⊆ M2 such that
DISJOINTGROUP(N1,N2,N3,N4,N5,N6;Σ) = true.

11. Hchoice←CHOOSECLUSTERINGCLIQUE(H).

12. LetHclustersbe the corresponding set of clusters, i.e., the set of sets ofobserved variables, where each
set inHclusterscorrespond to someMi in Hchoice.

13. Selection←ROBUSTPURIFY(Hclusters,C,Σ).

14. Return(Selection,C,C0).

Table 9: Selects an initial pure model.

Notice that the order by which tests are applied might influence the outcome of the algorithms,
since if we remove an edgeX−Y in C at some point, then we are excluding the possibility of using
some tests whereX andY are required. Imposing such restriction reduces the overall computational
cost and statistical mistakes. To minimize the ordering effect, an option is to run the algorithm
multiple times and select the output with the highest number of nodes.

Appendix B. Proofs

Before we present the proofs of our results, we need a few more definitions:

233

SILVA , SCHEINES, GLYMOUR AND SPIRTES

E

A

B

C D

T

A

B

D

E

C M

C DA B

CP
N

(a) (b) (c)

Figure 22: In (a),C is a choke point for sets{A,B}×{D,E}, since it lies on all treks connecting
nodes in{A,B} to nodes in{D,E} and lies also on the{D,E} side of all of such treks.
For instance,C is on the{D,E} side ofA→ C→ D, whereA is the source of such
a trek. Notice also that this choke point d-separates nodes in{A,B} from nodes in
{D,E}. Analogously,D is also a choke point for{A,B}×{D,E} (there is nothing on
the definition of a choke pointI ×J that forbids it of belongingI ∪J). In Figure (b),C is
a choke point for sets{A,B}×{D,E} that does not d-separate such elements. In Figure
(c),CP is a node that lies on all treks connecting{A,C} and{B,D} but it is not a choke
point, since it does not lie on the{A,C} side of trekA←M→CP→ B and neither lies
on the{B,D} side ofD←N→CP→ A. The same node, however, is a{A,D}×{B,C}
choke point.

• a path in a graphG is a sequence of nodes{X1, . . . ,Xn} such thatXi andXi+1 are adjacent in
G, 1≤ i < n. Paths are assumed to besimpleby definition, i.e., no node appears more than
once. Notice there is an unique set of edges associated with each given path. A path isinto
X1 (or Xn) if the arrow of the edge{X1,X2} is intoX1 ({Xn−1,Xn} into Xn);

• a collider on a path{X1, . . . ,Xn} is a nodeXi , 1 < i < n, such thatXi−1 andXi+1 are parents
of Xi ;

• a trek is a path that does not contain any collider;

• thesourceof a trek is the unique node in a trek to which no arrows are directed;

• the I sideof a trek between nodesI andJ with sourceX is the subpath directed fromX to I .
It is possible thatX = I ;

• a choke point CPbetween two sets of nodesI andJ is a node that lies on every trek between
any element ofI and any element ofJ such thatCP is either (i) on theI side of every such
trek 18 or (ii) on theJ side or every such trek.

With the exception of choke points, all other concepts are well known in the literature of graph-
ical models (Spirtes et al., 2000; Pearl, 1988, 2000). What is interesting ina choke point is that,
by definition, such a node is in all treks linking elements in two sets of nodes. Being in all treks
connecting a nodeXi and a nodeXj is a necessary condition for a node to d-separateXi andXj ,
although this is not a sufficient condition.

18. That is, for every{I ,J} ∈ I ×J, CP is on theI side of every trekT = {I , . . . ,X, . . . ,J}, X being the source ofT.

234

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

Consider Figure 22, which illustrates several different choke points. In some cases, the choke
point will d-separate a few nodes. The relevant fact is that even whenthe choke point is a latent
variable, this has an implication on the observed marginal distribution, as statedby theTetrad Rep-
resentation Theorem:

Theorem 21 (The Tetrad Representation Theorem)Let G be a linear latent variable model, and
let I1, I2,J1,J2 be four variables in G. ThenσI1J1σI2J2 = σI1J2σI2J1 if and only if there is a choke point
between{I1, I2} and{J1,J2}.

Proof: The original proof was given by Spirtes et al. (2000). Shafer et al. (1993) provide an alter-
native and simplied proof.�

Shafer et al. (1993) also provide more details on the definitions and several examples.
Therefore, unlike a partial correlation constraint obtained by conditioning on a given set of

variables, where such a set should be observable,some d-separations due to latent variables can be
inferred using tetrad constraints. We will use the Tetrad Representation Theorem to prove most of
our results. The challenge lies on choosing the right combination of tetrad constraints that allows us
to identify latents and d-separations due to latents, since the Tetrad Representation Theorem is far
from providing such results directly.

In the following proofs, we will frequently use the symbolG(O) to represent a linear latent
variable model with a set of observed nodesO. A choke point between setsI andJ will be denoted
asI ×J. We will first introduce a lemma that is going to be useful to prove several other results.

Lemma 9 Let G(O) be a linear latent variable model, and let{X1,X2,X3,X4} ⊂ O be such that
σX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3. If ρAB 6= 0 for all {A,B} ⊂ {X1,X2,X3,X4}, then an unique
node P entails all the given tetrad constraints, and P d-separates all elements in{X1,X2,X3,X4}.

Proof: Let P be a choke point for pairs{X1,X2}× {X3,X4}. Let Q be a choke point for pairs
{X1,X3}×{X2,X4}. We will show thatP = Q by contradiction.

AssumeP 6= Q. Because there is a trek that linksX1 andX4 throughP (sinceρX1X4 6= 0), we
have thatQ should also be on that trek. SupposeT is a trek connectingX1 to X4 throughP andQ,
and without loss of generality assume this trek follows an order that definesthree subtreks:T0, from
X1 to P; T1, from P to Q; andT2, from Q to X4, as illustrated by Figure 23(a). In principle,T0 andT2

might be empty, i.e., we are not excluding the possibility thatX1 = P or X4 = Q.
There must be at least one trekTQ2 connectingX2 andQ, sinceQ is on every trek betweenX1

andX2 and there is at least one such trek (sinceρX1X2 6= 0). We have the following cases:

Case 1: TQ2 includes P. TQ2 has to be intoP, andP 6= X1, or otherwise there will be a trek connecting
X2 to X1 through a (possibly empty) trekT0 that does not includeQ, contrary to our hypothesis. For
the same reason,T0 has to be intoP. This will imply thatT1 is a directed path fromP to Q, andT2

is a directed path fromQ to X4 (Figure 23(b)).
Because there is at least one trek connectingX1 andX2 (sinceρX1X2 6= 0), and becauseQ is on

every such trek,Q has to be an ancestor of at least one member of{X1,X2}. Without loss of gen-
erality, assumeQ is an ancestor ofX1. No directed path fromQ to X1 can includeP, sinceP is an
ancestor ofQ and the graph is acyclic. Therefore, there is a trek connectingX1 andX4 with Q as the

235

SILVA , SCHEINES, GLYMOUR AND SPIRTES

Q1 X4
T0 T1 T2

PX

Q2

1 X4
T0 T1 T2

X2

P Q

T

X

(a) (b)

2

P

X X
X

X

1

3 4

S
P

X X
X

X

1

3 4

2

(c) (d)

Figure 23: In (a), a depiction of a trekT linking X1 andX4 throughP andQ, creating three subtreks
labeled asT0, T1 andT2. Directions in such treks are left unspecified. In (b), the exis-
tence of a trekTQ2 linking X2 andQ throughP will compel the directions depicted as a
consequence of the given tetrad and correlation constraints (the dotted path represents
any possible continuation ofTQ2 that does not coincide withT). The configuration in
(c) cannot happen ifP is a choke point entailing all three tetrads among marginally de-
pendent nodes{X1,X2,X3,X4}. The configuration in (d) cannot happen ifP is a choke
point for {X1,X3}×{X2,X4}, since there is a trekX1−P−X2 such thatP is not on the
{X1,X3} side of it, and another trekX2−S−P−X3 such thatP is not on the{X2,X4}
side of it.

source that does not includeP, contrary to our hypothesis.

Case 2: TQ2 does not include P. This case is similar to Case 1.TQ2 has to be intoQ, andQ 6= X4, or
otherwise there will be a trek connectingX2 to X4 through a (possible empty) trekT2 that does not
includeP, contrary to our hypothesis. For the same reason,T2 has to be intoQ. This will imply that
T1 is a directed path fromQ to P, andT0 is a directed path fromP to X1. An argument analogous to
Case 1 will follow.

We will now show by thatP d-separates all nodes in{X1,X2,X3,X4}. From theP = Q result,
we know thatP lies on every trek between any pair of elements in{X1,X2,X3,X4}. First consider
the case where at most one element of{X1,X2,X3,X4} is linked toP through a trek that is intoP.
By the Tetrad Representation Theorem, any trek connecting two elements of{X1,X2,X3,X4} goes
throughP. SinceP cannot be a collider on any trek, thenP d-separates these two elements.

236

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

To finish the proof, we only have to show thatP cannot be a collider in a path connecting any
two elements of{X1,X2,X3,X4}. We will prove that by contradiction. That is, assume without loss
of generality that there is a trek connectingX1 andP that is intoP, and a trek connectingX2 and
P that is intoP. We will show this either entails thatρX1X2 = 0 or thatP is not a choke point for
{X1,X3}×{X2,X4}.

Case 3: there is no trek connecting X1 and P that is out of P neither any trek connecting X2 and
P that is out of P. This implies there is no trek connectingX1 andX2, sinceP is on every trek
connecting these two elements according to the Tetrad Representation Theorem. But this implies
ρX1X2 = 0, a contradiction, as illustrated by Figure 23(c).

Case 4(this case will be similar to the example given in Figure 22(c)):assume without loss of gen-
erality that there is also a trek out of P and into X2. Then there is a trek connectingX1 to X2 through
P that is not on the{X1,X3} side of pair{X1,X3}×{X2,X4} to whichP is a choke point. Therefore,
P should be on the{X2,X4} of every trek connecting elements pairs in{X1,X3}×{X2,X4}. Without
loss of generality, assume there is a trek out ofP and intoX3 (because if there is no such trek for
eitherX3 andX4, we fall in the previous case by symmetry). LetSbe the source of a trek intoP and
X2, which should exist sinceX2 is not an ancestor ofP. Then there is a trek of sourceSconnecting
X3 andX2 such thatP is not on the{X2,X4} side of it as shown in Figure 23(d). ThereforeP cannot
be a choke point for{X1,X3}×{X2,X4}. Contradiction.�

Lemma 13Let G(O) be a linear latent variable model. If for some setO′ = {X1,X2,X3,
X4} ⊆ O, σX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3 and for all triplets{A,B,C}, {A,B} ⊂ O′,C ∈ O,
we haveρAB.C 6= 0 andρAB 6= 0, then no element A∈O′ is a descendant of an element ofO′\{A} in
G.

Proof: Without loss of generality, assume for the sake of contradiction thatX1 is an ancestor ofX2.
From the given tetrad and correlation constraints and Lemma 9, there is a node P that lies on every
trek betweenX1 andX2 and d-separates these two nodes. SinceP lies on the directed path fromX1

to X2, P is a descendant ofX1, and therefore an observed node. However, this impliesρX1X2.P = 0,
contrary to our hypothesis.�

Lemma 10Let G(O) be a linear latent variable model. AssumeO′ = {X1,X2,X3,Y1,Y2,Y3} ⊆ O.
If constraints{τX1Y1X2X3,τX1Y1X3X2, τY1X1Y2Y3, τY1X1Y3Y2, ¬τX1X2Y2Y1} all hold, and that for all triplets
{A,B,C},{A,B} ⊂ O′, C∈ O, we haveρAB 6= 0,ρAB.C 6= 0, then X1 and Y1 do not have a common
parent in G.

Proof: We will prove this result by contradiction, by assuming thatX1 andY1 have a common parent
L in G and showing this entailsτX1X2Y2Y1, contrary to the hypothesis.

Initially, we will show by contradiction thatL is a choke point for{X1,Y1}×{X2,X3}. Suppose
L is not a choke point for{X1,X2}×{Y1,X3} corresponding to one of the tetrad constraints given
by hypothesis. Because of the trekX1← L→ Y1, then eitherX1 or Y1 is a choke point. Without
loss of generality, assumeX1 is a choke point in this case. By Lemma 9 and the given constraints,
X1 d-separates any two elements in{X2,X3,Y1} contrary to the hypothesis thatρX2X3.X1 6= 0. By

237

SILVA , SCHEINES, GLYMOUR AND SPIRTES

22

X1

1Y

L

YX

2 YX1 T
2

T1

T3 T4

LS

Y 1

(a) (b)

Figure 24: Figure (a) illustrates necessary treks among elements of{X1,X2,Y1,Y2,L} according to
the assumptions of Lemma 11 if we further assume thatX1 is a choke point for pairs
{X1,X2}×{Y1,Y2} (other treks might exist). Figure (b) rearranges (a) by emphasizing
thatY1 andY2 cannot be d-separated by a single node.

symmetry,Y1 cannot be a choke point. Therefore,L is a choke point for{X1,Y1}×{X2,X3} and by
Lemma 9, it also lies on every trek for any pair inS1 = {X1,X2,X3,Y1}.

Analogously,L is on every trek connecting any pair from the setS2 = {X1,Y1,Y2,Y3}. It fol-
lows thatL is on every trek connecting any pairs in the product{X1,Y1}×{X2,Y2}, and it is on the
{X1,Y1} side of{X1,Y1}×{X2,Y2}, i.e.,L is a choke point that impliesτX1X2Y2Y1. Contradiction.�

Remember that predicateFactor(X,Y,G) is true if and only if there exist two nodesW andZ in
G such thatτWXYZandτWXZY are both entailed, all nodes in{W,X,Y,Z} are correlated, and there is
no observedC in G such thatρAB.C = 0 for {A,B} ⊂ {W,X,Y,Z}.

Lemma 11Let G(O) be a linear latent variable model. AssumeO′ = {X1,X2,X3,Y1,Y2,Y3}
⊆ O, such that Factor(X1,X2,G) and Factor(Y1,Y2,G) hold, Y1 is not an ancestor of Y3 and X1 is
not an ancestor of X3. If constraints{τX1Y1Y2X2,τX2Y1Y3Y2, τX1X2Y2X3,¬τX1X2Y2Y1} all hold, and that for
all triplets {A,B,C},{A,B} ⊂O′,C∈O, we haveρAB 6= 0,ρAB.C 6= 0, then X1 and Y1 do not have a
common parent in G.

Proof: We will prove this result by contradiction. AssumeX1 andY1 have a common parentL.
Because of the tetrad constraints given by hypothesis and the existence of the trekX1← L→ Y1,
one node in{X1,L,Y1} should be a choke point for the pair{X1,X2}×{Y1,Y2}. We will first show
thatL has to be such a choke point, and therefore lies on every trek connectingX1 andY2, as well
asX2 andY1. We then show thatL lies on every trek connectingY1 andY2, as well asX1 andX2.
Finally, we show thatL is a choke point for{X1,Y1}×{X2,Y2}, contrary to our hypothesis.

Step 1: If there is a common parent L to X1 and Y1, then L is a{X1,X2}×{Y1,Y2} choke point.For
the sake of contradiction, assumeX1 is a choke point in this case. By Lemma 13 and assumption

238

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

X2

Y
2 Y

1
P TPY

X2

Y
2 Y

1
X

−1

+1
YP

L

X2

Y
2 Y

1
X

−1

+1
YP

L

−1
Y

(a) (b) (c)

Figure 25: In (a), a depiction ofTY and TX, where edges represent treks (TX can be seen more
generally as the combination of the solid edge betweenX2 andP concatenated with a
dashed edge betweenP andY1 representing the possibility thatTY andTX might intersect
multiple times inTPY, but in principle do not need to coincide inTPY if P is not a choke
point.) In (b), a possible configurations of edges< X−1,P > and< P,Y+1 > that do
not collide inP, andP is a choke point (andY+1 6= Y). In (c), the edge< Y−1,P >
is compelled to be directed away fromP because of the collider with the other two
neighbors ofP.

Factor(X1,X2,G), we have thatX1 is not an ancestor ofX2, and therefore all treks connectingX1

andX2 should be intoX1. SinceρX2Y2 6= 0 by assumption andX1 is on all treks connectingX2 and
Y2, there must be a directed path out ofX1 and intoY2. SinceρX2Y2.X1 6= 0 by assumption andX1 is
on all treks connectingX2 andY2, there must be a trek intoX1 andY2. BecauseρX2Y1 6= 0, there must
be a trek out ofX1 and intoY1. Figure 24(a) illustrates the configuration.

SinceFactor(Y1,Y2,G) is true, by Lemma 9 there must be a node d-separatingY1 andY2 (nei-
therY1 norY2 can be the choke point inFactor(Y1,Y2,G) because this choke point has to be latent,
according to the partial correlation conditions ofFactor). However, by Figure 24(b), treksT2−T3

andT1−T4 cannot both be blocked by a single node. Contradiction. ThereforeX1 cannot be a choke
point for{X1,X2}×{Y1,Y2} and, by symmetry, neither canY1.

Step 2: L is on every trek connecting Y1 and Y2 and on every trek connecting X1 and X2. Let L be the
choke point for pairs{X1,X2}×{Y1,Y2}. As a consequence, all treks betweenY2 andX1 go through
L. All treks betweenX2 andY1 go throughL. All treks betweenX2 andY2 go throughL. Such treks
exist, since no respective correlation vanishes.

Consider the given hypothesisσX2Y1σY2Y3 = σX2Y3σY2Y1, corresponding to a choke point{X2,Y2}×
{Y1,Y3}. From the previous paragraph, we know there is a trek linkingY2 andL. L is a parent ofY1

by construction. That meansY2 andY1 are connected by a trek throughL.

We will show by contradiction thatL is on every trek connectingY1 andY2. Assume there is a
trek TY connectingY2 andY1 that does not containL. Let P be the first point of intersection ofTY

and a trekTX connectingX2 to Y1, starting fromX2. If TY exists, such point should exist, sinceTY

should contain a choke point{X2,Y2}×{Y1,Y3}, and all treks connectingX2 andY1 (includingTX)
contain the same choke point.

239

SILVA , SCHEINES, GLYMOUR AND SPIRTES

Y
2 Y

3
Y

1
X1

LM

Y
2

Y
1

Y
3

X2

M L

3X X1

(a) (b)

Figure 26: In (a),Y2 andX1 cannot share a parent, and because of the given tetrad constraints,L
should d-separateM andY3. Y3 is not a child ofL either, but there will be a trek linking
L andY3. In (b), an (invalid) configuration forX2 andX3, where they share an ancestor
betweenM andL.

Let TPY be the subtrek ofTY starting onP and ending one node beforeY1. Any choke point
{X2,Y2}×{Y1,Y3} should lie onTPY (Figure 25(a)). (Y1 cannot be such a choke point, since all treks
connectingY1 andY2 are intoY1, and by hypothesis all treks connectingY1 andY3 are intoY1. Since
all treks connectingY2 andY3 would need to go throughY1 by definition, then there would be no
such trek, implyingρY2Y3 = 0, contrary to our hypothesis.)

Assume first thatX2 6= P andY2 6= P. Let X−1 be the node beforeP in TX starting fromX2. Let
Y−1 be the node beforeP in TY starting fromY2. Let Y+1 be the node afterP in TY starting fromY2

(notice that it is possible thatY+1 =Y1). If X−1 andY+1 do not collide onP (i.e., there is no structure
X−1→ P←Y+1), then there will be a trek connectingX2 to Y1 throughTPY afterP. SinceL is not
in TPY, L should be beforeP in TX. But then there will be a trek connectingX2 andY1 that does not
intersectTPY, which is a contradiction (Figure 25(b)). If the collider does exist, we have the edge
P← Y+1. Since no colliderY−1→ P← Y+1 can exist becauseTY is a trek, the edge betweenY−1

andP is out ofP. But that forms a trek connectingX2 andY2 (Figure 25(c)), and sinceL is in every
trek betweenX2 andY2 andTY does not containL, thenTX should containL beforeP, which again
creates a trek betweenX2 andY1 that does not intersectTPY.

If X2 = P, thenTPY has to containL, because every trek betweenX2 andY1 containsL. Therefore,
X2 6= P. If Y2 = P, then because every trek betweenX2 andY2 should containL, we again have that
L lies inTX beforeP, which creates a trek betweenX2 andY1 that does not intersectTPY. Therefore,
we showed by contradiction thatL lies on every trek betweenY2 andY1.

Consider now the given hypothesisσX1X2σX3Y2 = σX1Y2σX3X2, corresponding to a choke point
{X2,Y2}×{X1,X3}. By symmetry with the previous case, all treks betweenX1 andX2 go throughL.

Step 3: If L exists, so does a choke point{X1,Y1}×{X2,Y2}. By the previous steps,L intermedi-
ates all treks between elements of the pair{X1,Y1}×{X2,Y2}. BecauseL is a common parent of
{X1,Y1}, it lies on the{X1,Y1} side of every trek connecting pairs of elements in{X1,Y1}×{X2,Y2}.
L is a choke point for this pair. This impliesτX1X2Y2Y1. Contradiction.�

Lemma 12Let G(O) be a linear latent variable model. LetO′ = {X1,X2,X3,Y1,Y2,Y3}
⊆O. If constraints{τX1Y1Y2Y3,τX1Y1Y3Y2, τX1Y2X2X3, τX1Y2X3X2,τX1Y3X2X3,τX1Y3X3X2,
¬τX1X2Y2Y3} all hold, and that for all triplets{A,B,C},{A,B}⊂O′,C∈O, we haveρAB 6= 0,ρAB.C 6=

240

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

0, then X1 and Y1 do not have a common parent in G.

Proof: We will prove this result by contradiction. SupposeX1 andY1 have a common parentL in G.
Since all three tetrads hold in the covariance matrix of{X1,Y1,Y2,Y3}, by Lemma 9 the choke point
that entails these constraints d-separates the elements of{X1,Y1,Y2,Y3}. The choke point should
be in the trekX1← L→ Y1, and since it cannot be an observed node because by hypothesis no
d-separation conditioned on a single node holds among elements of{X1,Y1,Y2,Y3}, L has to be a
latent choke point for all pairs of pairs in{X1,Y1,Y2,Y3}.

It is also given that{τX1Y2X2X3,τX1Y2X3X2,τX1Y1Y2Y3,τX1Y1Y3Y2} holds. Since it is the case that¬τX1X2Y2Y3,
by Lemma 10X1 andY2 cannot share a parent. LetTML be a trek connecting some parentM of Y2

andL. Such a trek exists becauseρX1Y2 6= 0.
We will show by contradiction that there is no node inTML\L that is connected toY3 by a trek

that does not go throughL. Suppose there is such a node, and call itV. If the trek connectingV and
Y3 is intoV, and sinceV is not a collider inTML, thenV is either an ancestor ofM or an ancestor
of L. If V is an ancestor ofM, then there will be a trek connectingY2 andY3 that is not throughL,
which is a contradiction. IfV is an ancestor ofL but notM, then bothY2 andY3 are d-connected
to a nodeV is a collider at the intersection of such d-connecting treks. However,V is an ancestor
of L, which meansL cannot d-separateY2 andY3, a contradiction. Finally, if the trek connectingV
andY3 is out ofV, thenY2 andY3 will be connected by a trek that does not includeL, which again is
not allowed. We therefore showed there is no node with the properties ofV. This configuration is
illustrated by Figure 26(a).

Since all three tetrads hold among elements of{X1,X2,X3,Y2}, then by Lemma 9, there is a
single choke pointP that entails such tetrads and d-separates elements of this set. SinceTML is a
trek connectingY2 to X1 throughL, then there are three possible locations forP in G:

Case 1: P= M. We have all treks betweenX3 and X2 go throughM but not throughL, and
some trek fromX1 to Y3 goes throughL but not throughM. No choke point can exist for pairs
{X1,X3}×{X2,Y3}, which by the Tetrad Representation Theorem means that the tetradσX1Y3σX2X3 =
σX1X2σY3X3 cannot hold, contrary to our hypothesis.

Case 2: P lies between M and L in TML. This configuration is illustrated by Figure 26(b). As before,
no choke point exists for pairs{X1,X3}×{X2,Y3}, contrary to our hypothesis.

Case 3: P= L. Because all three tetrads hold in{X1,X2,X3,Y3} and L d-separates all pairs in
{X1,X2,X3}, one can verify thatL d-separates all pairs in{X1,X2,X3,Y3}. This will imply a{X1,Y3}×
{X2,Y2} choke point, contrary to our hypothesis.�

Theorem 14The output ofFINDPATTERN is a measurement pattern with respect to the tetrad and
vanishing partial correlation constraints ofΣ

Proof: Two nodes will not share a common latent parent in a measurement pattern if and only if
they are not linked by an edge in graphC constructed by algorithm FINDPATTERN and that happens
if and only if some partial correlation vanishes or if any of rules CS1, CS2 or CS3 applies. But
then by Lemmas 10, 11, 12 and the equivalence of vanishing partial correlations and conditional
independence in linearly faithful distributions (Spirtes et al., 2000) the claimis proved. The claim

241

SILVA , SCHEINES, GLYMOUR AND SPIRTES

about undirected edges follows from Lemma 13.�

Theorem 15Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G(O) with latent variablesL , let Gout be the output ofBUILD PURECLUSTERS(Σ) with
observed variablesOout ⊆ O and latent variablesLout. Then Gout is a measurement pattern, and
there is an injective mapping M: Lout→ L with the following properties:

1. Let Lout ∈ Lout. LetX be the children of Lout in Gout. Then M(Lout) d-separates any element
X ∈ X fromOout\X in G;

2. M(Lout) d-separates X from every latent in G for which M−1(.) exists;

3. LetO′ ⊆Oout be such that each pair inO′ is correlated. At most one element inO′ with latent
parent Lout in Gout is not a descendant of M(Lout) in G, or has a hidden common cause with
it;

Proof: We will start by showing that for each clusterCli in Gout, there exists an unique latentLi in
G that d-separates all elements ofCli . This shows the existance of an unique function from latents
in Gout to latents inG. We then proceed to prove the three claims given in the theorem, and finish
by proving that the given function is injective.

Let Cli be a cluster in a non-emptyGout. Cli has three elementsX,Y andZ, and there is at least
someW in Gout such that all three tetrad constraints hold in the covariance matrix of{W,X,Y,Z},
where no pair of elements in{X,Y,Z} is marginally d-separated or d-separated by an observable
variable. By Lemma 9, it follows that there is an unique latentLi d-separatingX, Y andZ. If Cli
has more than three elements, it follows that since no node other thanLi can d-separate all three
elements in{X,Y,Z}, and any choke point for{W′,X,Y,Z}, W′ ∈Cli , will d-separate all elements
in {W′,X,Y,Z}, then there is an unique latentLi d-separating all elements inCli . An analogous
argument concerns the d-separation of any element ofCli and observed nodes in other clusters.

Now we will show that eachLi d-separates eachX in Cli from all other mapped latents. As a
byproduct, we will also show the validity of the third claim of the theorem. Consider {Y,Z}, two
other elements ofCli besidesX, and{A,B,C}, three elements ofCl j . SinceLi andL j each d-separate
all pairs in{X,Y}×{A,B}, and no pair in{X,Y}×{A,B} has both of its elements connected to
Li (L j) through a trek that is intoLi (L j) (sinceLi , or L j , d-separates then), then bothLi andL j are
choke points for{X,Y}×{A,B}. According to Lemma 2.5 given by Shafer et al. (1993), any trek
connecting an element from{X,Y} to an element in{A,B} passes through both choke points in the
same order. Without loss of generality, assume the order is firstLi , thenL j .

If there is no trek connectingX to Li that is intoLi , thenLi d-separatesX andL j . The same
holds forL j andA with respect toLi . If there is a trekT connectingX andLi that is intoLi , and
since all three tetrad constraints hold in the covariance matrix of{X,Y,Z,A} by construction, then
there is no trek connectingA andLi that is intoLi (Lemma 9). Since there are treks connectingLi

andL j , they should be all out ofLi and intoL j . This means thatLi d-separatesX andL j . But this
also creates a trek connectingX andL j that is intoL j . Since all three tetrad constraints hold in the
covariance matrix of{X,A,B,C} by construction, then there is no trek connectingA andL j that is
into L j (by the d-separation implied by Lemma 9). This means thatL j d-separatesA from Li . This
also means that the existance of such a trekT out of X and intoLi forbids the existance of any trek
connecting a variable correlated toX that is intoLi (since all treks connectingLi and someL j are
out ofLi), which proves the third claim of the theorem.

242

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

We will conclude by showing that given two clustersCli andCl j with respective latentsLi and
L j , where each cluster is of size at least three, if they are not merged, thenLi 6= L j . That is, the
mapping from latents inGout to latents inG, as defined at the beginning of the proof, is injective.

AssumeLi = L j . We will show that these clusters will be merged by the algorithm, proving the
counterpositive argument. LetX andY be elements ofCli andW, Z elements ofCl j . It immediately
follows thatLi is a choke point for all pairs in{W,X,Y,Z}, sinceLi d-separates any pair of elements
of {W,X,Y,Z}, which means all three tetrads will hold in the covariance matrix of any subsetof
size four fromCli ∪Cl j . These two clusters will then be merged by BUILD PURECLUSTERS. �

Theorem 16Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G(O) with latent variablesL , let Gout be the output ofBUILD PURECLUSTERS(Σ) with ob-
served variablesOout ⊆ O and latent variablesLout. Let M(Lout) ⊆ L be the set of latents in G
obtained by the mapping function M(). LetΣOout be the population covariance matrix ofOout, i.e.,
the corresponding marginal ofΣ. Let the DAG Gaug

out be Gout augmented by connecting the elements
of Lout such that the structural model of Gaug

out is an I-map of the distribution of M(Lout). Then there
exists a linear latent variable model using Gaug

out as the graphical structure such that the implied
covariance matrix ofOout equalsΣOout .

Proof: If a linear model is an I-map DAG of the true distribution of its variables, then there is a well-
known natural instantiation of the parameters of this model that will represent the true covariance
matrix (Spirtes et al., 2000). We will assume such parametrization for the structural model, and
denote asΣL(Θ) the parameterized latent covariance matrix. Instead of showing thatGaug

out is an
I-map of the respective set of latents and observed variables and usingthe same argument, we will
show a valid instantion of its parameters directly.

Assume without loss of generality that all variables have zero mean. To each observed nodeX
with latent ancestorLX in G such thatM−1(LX) is a parent ofX in Gout, the linear model represen-
tation is:

X = λXLX + εX

For this equation, we have two associated parameters,λX andσ2
εX

, whereσ2
εX

is the variance
of εX. We instantiate them by the linear regression values, i.e.,λX = σXLX/σ2

LX
, andσ2

εX
is the

respective residual variance. The set{λX}∪ {σ2
εX
} of all λX andσ2

εX
, along with the parameters

used inΣL(Θ), is our full set of parametersΘ.
Our definition of linear latent variable model requiresσεXεY = 0, σεXLX = 0 andσεXLY = 0, for all

X 6= Y. This corresponds to a covariance matrixΣ(Θ) of the observed variables with entries defined
as:

E[X2](Θ) = σ2
X(Θ) = λ2

Xσ2
LX

+σ2
εX

E[XY](Θ) = σXY(Θ) = λXλTσLXLY

To prove the theorem, we have to show thatΣOout = Σ(Θ) by showing that correlations between
different residuals, and residuals and latent variables, are actually zero.

The relationσεXLX = 0 follows directly from the fact thatλX is defined by the regression coef-
ficient of X on LX. Notice that ifX andLX do not have a common ancestor,λX is the direct effect

243

SILVA , SCHEINES, GLYMOUR AND SPIRTES

of LX in X with respect toGout. As we know, by Theorem 15, at most one variable in any set of
correlated variables will not fulfill this condition.

We have to show also thatσXY = σXY(Θ) for any pairX,Y in Gout. ResidualsεX andεY are
uncorrelated due to the fact thatX andY are independent given their latent ancestors inGout, and
thereforeσεXεY = 0. To verify thatσεXLY = 0 is less straightforward, but one can appeal to the
graphical formulation of the problem. In a linear model, the residualεX is a function only of the
variables that are not independent ofX givenLX. None of this variables can be nodes inGout, since
LX d-separatesX from all such variables. Therefore, givenLX none of the variables that defineεX

can be dependent onLY, implying σεXLY = 0. �

Theorem17ProblemM P
3 is NP-complete.

Proof: Direct reduction from the 3-SAT problem: letSbe a 3-CNF formula from which we want to
decide if there is an assignment for its variables that makes the expression true. DefineG as a latent
variable graph with a latent nodeLi for each clauseCi in M, with an arbitrary fully connected struc-
tural model. For each latent inG, add five pure children. Choose three arbitrary children of each
latentLi , naming them{C1

i ,C
2
i ,C

3
i }. Add a bi-directed edgeCp

i ↔Cq
j for each pairCp

i ,Cq
j , i 6= j, if

and only that they represent literals over the same variable but of oppositevalues. As in the maxi-
mum clique problem, one can verify that there is a pure submodel ofG with at least three indicators
per latent if and only ifS is satisfiable.�

The next corollary suggests that even an invalid measurement pattern could be used in BUILD -
PURECLUSTERSinstead of the output of FINDPATTERN. However, an arbitrary (invalid) measure-
ment pattern is unlikely to be informative at all after being purified. In constrast, FINDPATTERN

can be highly informative.

Corollary 18 The output ofBUILD PURECLUSTERS retains its guarantees even when rules CS1,
CS2 and CS3 are applied an arbitrary number of times inFINDPATTERN for any arbitrary subset
of nodes and an arbitrary number of maximal cliques is found.

Proof: Independently of the choice made on Step 2 of BUILD PURECLUSTERS and which nodes
are not separated into different cliques in FINDPATTERN, the exhaustive verification of tetrad con-
straints by BUILD PURECLUSTERSprovides all the necessary conditions for the proof of Theorem
15. �

Corollary 20 Given a covariance matrixΣ assumed to be generated from a linear latent variable
model G, and Gout the output ofBUILD PURECLUSTERSgivenΣ, the output ofPC-MIMBUILD or
FCI-MIMB UILD given(Σ,Gout) returns the correct Markov equivalence class of the latents in G
corresponding to latents in Gout according to the mapping implicit inBUILD PURECLUSTERS

Proof: By Theorem 15, each observed variable is d-separated from all othervariables inGout given
its latent parent. By Theorem 16, one can parameterizeGout as a linear model such that the ob-
served covariance matrix as a function of the parameterizedGout equals its corresponding marginal
of Σ. By Theorem 19, the rank test using the measurement model ofGout is therefore a consistent
independence test of latent variables. The rest follows immediately from theconsistency property

244

LEARNING THE STRUCTURE OFL INEAR LATENT VARIABLE MODELS

of PC and FCI given a valid oracle for conditional independencies.�

References

H. Attias. Independent factor analysis.Graphical Models: foundations of neural computation,
pages 207–257, 1999.

F. Bach and M. Jordan. Beyond independent components: trees and clusters.Journal of Machine
Learning Research, 4:1205–1233, 2003.

D. Bartholomew and M. Knott.Latent Variable Models and Factor Analysis. Arnold Publishers,
1999.

D. Bartholomew, F. Steele, I. Moustaki, and J. Galbraith.The Analysis and Interpretation of Multi-
variate Data for Social Scientists. Arnold Publishers, 2002.

K. Bollen. Structural Equation Models with Latent Variables. John Wiley & Sons, 1989.

K. Bollen. Outlier screening and a distribution-free test for vanishing tetrads.Sociological Methods
and Research, 19:80–92, 1990.

D. Chickering. Optimal structure identification with greedy search.Journal of Machine Learning
Research, 3:507–554, 2002.

G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: a structure-based
approach.Neural Information Processing Systems, 13:479–485, 2000.

N. Friedman. The Bayesian structural EM algorithm.Proceedings of 14th Conference on Uncer-
tainty in Artificial Intelligence, 1998.

D. Geiger and C. Meek. Quantifier elimination for statistical problems.Proceedings of 15th Con-
ference on Uncertainty in Artificial Intelligence, 1999.

C. Glymour. Social statistics and genuine inquiry: reflections onthe bell curve. Intelligence, Genes
and Sucess: Scientists Respond to The Bell Curve, 1997.

C. Glymour. The Mind’s Arrow: Bayes Nets and Graphical Causal Models in Psychology. MIT
Press, 2002.

C. Glymour, Richard Scheines, Peter Spirtes, and Kevin Kelly.Discovering Causal Structure:
Artificial Intelligence, Philosophy of Science, and Statistical Modeling. Academic Press, 1987.

Y. Kano and A. Harada. Stepwise variable selection in factor analysis.Psychometrika, 65:7–22,
2000.

J. Loehlin. Latent Variable Models: An Introduction to Factor, Path and Structural Equation
Analysis. Lawrence Erlbaum, 2004.

C. Meek. Graphical Models: Selecting Causal and Statistical Models. PhD Thesis, Carnegie
Mellon University, 1997.

245

SILVA , SCHEINES, GLYMOUR AND SPIRTES

J. Pearl. Probabilistic Reasoning in Expert Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

J. Pearl.Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.

T. Richardson. A discovery algorithm for directed cyclic graphs.Proceedings of 12th Conference
on Uncertainty in Artificial Intelligence, 1996.

G. Shafer, A. Kogan, and P.Spirtes. Generalization of the tetrad representation theorem.DIMACS
Technical Report, 1993.

R. Silva. Automatic discovery of latent variable models.PhD Thesis, Carnegie Mellon University,
http://www.cs.cmu/edu/˜ rbas, 2005.

R. Silva and R. Scheines. Generalized measurement models.Technical Report CMU-CALD-04-101,
Carnegie Mellon University, 2004.

R. Silva and R. Scheines. New d-separation identification results for learning continuous latent
variable models.Proceedings of the 22nd Interational Conference in Machine Learning, 2005.

R. Silva, R. Scheines, C. Glymour, and P. Spirtes. Learning measurementmodels for unobserved
variables.Proceedings of 19th Conference on Uncertainty in Artificial Intelligence, pages 543–
550, 2003.

P. Spirtes, C. Glymour, and R. Scheines.Causation, Prediction and Search. Cambridge University
Press, 2000.

J. Wishart. Sampling errors in the theory of two factors.British Journal of Psychology, 19:180–187,
1928.

N. Zhang. Hierarchical latent class models for cluster analysis.Journal of Machine Learning
Research, 5:697–723, 2004.

246

Journal of Machine Learning Research 7 (2006) 247–282 Submitted 3/05; Revised 10/05; Published 2/06

In Search of Non-Gaussian Components of a
High-Dimensional Distribution

Gilles Blanchard BLANCHAR@FIRST.FHG.DE

Fraunhofer FIRST.IDA
Kekuĺestrasse 7
12489 Berlin, Germany
and
CNRS, Universit́e Paris-Sud
Orsay, France

Motoaki Kawanabe NABE@FIRST.FHG.DE

Fraunhofer FIRST.IDA
Kekuĺestrasse 7
12489 Berlin, Germany

Masashi Sugiyama SUGI@CS.TITECH.AC.JP

Fraunhofer FIRST.IDA
Kekuĺestrasse 7
12489 Berlin, Germany
and
Department of Computer Science
Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

Vladimir Spokoiny SPOKOINY@WIAS-BERLIN.DE

Weierstrass Institute and Humboldt University
Mohrenstrasse 39
10117 Berlin, Germany

Klaus-Robert Müller KLAUS@FIRST.FHG.DE

Fraunhofer FIRST.IDA
Kekuĺestrasse 7
12489 Berlin, Germany
and
Department of Computer Science
University of Potsdam
August-Bebel-Strasse 89, Haus 4
14482 Potsdam, Germany

Editor: Sam Roweis

c©2006 Gilles Blanchard, Motoaki Kawanabe, Masashi Sugiyama,Vladimir Spokoiny and Klaus-Robert M̈uller.

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

Abstract
Finding non-Gaussian components of high-dimensional datais an important preprocessing step for
efficient information processing. This article proposes a new linear method to identify the “non-
Gaussian subspace” within a very general semi-parametric framework. Our proposed method,
called NGCA (non-Gaussian component analysis), is based ona linear operator which, to any
arbitrary nonlinear (smooth) function, associates a vector belonging to the low dimensional non-
Gaussian target subspace, up to an estimation error. By applying this operator to a family of dif-
ferent nonlinear functions, one obtains a family of different vectors lying in a vicinity of the target
space. As a final step, the target space itself is estimated byapplying PCA to this family of vectors.
We show that this procedure is consistent in the sense that the estimaton error tends to zero at a
parametric rate, uniformly over the family, Numerical examples demonstrate the usefulness of our
method.

1. Introduction

Suppose{Xi}ni=1 are i.i.d. samples in a high dimensional spaceR
d drawn from an unknown dis-

tribution with densityp(x) . A general multivariate distribution is typically too complex to analyze
directly from the data, thus dimensionality reduction is useful to decrease thecomplexity of the
model (see Cox and Cox, 1994; Schölkopf et al., 1998; Roweis and Saul, 2000; Tenenbaum et al.,
2000; Belkin and Niyogi, 2003). Here, our point of departure is the following assumption: the high
dimensional data includes low dimensional non-Gaussian components, and the other components
are Gaussian. This assumption follows the rationale that in most real-world applications, the ‘sig-
nal’ or ‘information’ contained in the high-dimensional data is essentially non-Gaussian, while the
‘rest’ can be interpreted as high dimensional Gaussian noise.

1.1 Setting and General Principle

We want to emphasize from the beginning that we donotassume the Gaussian components to be of
smallerorder of magnitude than the signal components; all components are instead typically of the
same amplitude. This setting therefore excludes the use of dimensionality reduction methods based
on the assumption that the data lies, say, on a lower dimensional manifold, up to some small noise.
In fact, this type of methods addresses a different kind of problem altogether.

Under our modeling assumption, therefore, the task is to recover the relevant non-Gaussian
components. Once such components are identified and extracted, varioustasks can be applied in the
data analysis process, say, data visualization, clustering, denoising or classification.

If the number of Gaussian components isat most oneand all the non-Gaussian components are
mutually independent,independent component analysis (ICA)techniques (see, e.g., Comon, 1994;
Hyvärinen et al., 2001) are relevant to identify the non-Gaussian subspace. Unfortunately, however,
this is often a too strict assumption on the data.

The framework we consider is on the other hand very close to that ofprojection pursuit(denoted
PP in short in the sequel) algorithms (Friedman and Tukey, 1974; Huber, 1985; Hyv̈arinen et al.,
2001). The goal of projection pursuit methods is to extract non-Gaussian components in a gen-
eral setting, i.e., the number of Gaussian components can be more than one and the non-Gaussian
components can be dependent.

Projection pursuit methods typically proceed by fixing asingleindex which measures the non-
Gaussianity (or ’interessingness’) of a projection direction. This index isthen optimized over all

248

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

possible directions of projection; the procedure can be repeated iteratively (over directions orthog-
onal to the first ones already found) to find a higher dimensional projection of the data as needed.

However, it is known that some projection indices are suitable for finding super-Gaussian com-
ponents (heavy-tailed distribution) while others are suited for identifying sub-Gaussian components
(light-tailed distribution) (Hyv̈arinen et al., 2001). Therefore, traditional PP algorithms may not
work effectively if the data contains, say, both super- and sub-Gaussian components.

To summarize: existing methods for the setting we consider typically proceed bydefining an
appropriate interestingness index, and then compute a projection that maximizes this index (projec-
tion pursuit methods, and some ICA methods). The philosophy that we would like to promote in
this paper is in a sense different: in fact, we do not specify what we are interested in, but we rather
define what isnot interesting(see also Jones and Sibson , 1987). Clearly, a multi-dimensional Gaus-
sian subspace is a reasonable candidate for an undesired component (our idea could be generalized
by defining, say, a Laplacian subspace to be uninformative). Having defined this uninteresting sub-
space, its (orthogonal) complement is by contrast interesting: this therefore precisely defines our
target space.

1.2 Presentation of the Method

Technically, our new approach to identifying the non-Gaussian subspace uses a very general semi-
parametric framework. The proposed method, callednon-Gaussian component analysis (NGCA),
is essentially based on a central property stating that there exists a linear mapping h 7→ β(h) ∈ R

d

which, to anyarbitrary (smooth) nonlinear functionh : R
d → R , associates a vectorβ lying in

the non-Gaussian target subspace. In practice, the vectorβ(h) has to be estimated from the data,
giving rise to an estimation error. However, our main consistency result shows that this estimation
error vanishes at a rate

√
log(n)/n with the sample sizen. Using a whole family of different

nonlinear functionsh then yields a family of different vectorŝβ(h) which all approximately lie in,
and span, the non-Gaussian subspace. We finally perform PCA on this family of vectors to extract
the principal directions and estimate the target space.

In practice, we consider functions of the particular formhω,a(x) = fa(〈ω,x〉) , where f is a
function class parameterized, say, by a parametera, and‖ω‖= 1. Even for a fixeda, it is infeasi-
ble to compute values ofβ(hω,a) for all possible values ofω (say, on a discretized net of the unit
sphere), because of the cardinality involved. In order to choose a relevant value forω (still for fixed
a), we then opt to use as a heuristic a well-known PP algorithm, FastICA (Hyvärinen, 1999). This
was suggested by the surprising observation that the mappingω→ β(hω,a) is thenequivalentto a
singleiteration of FastICA (although this algorithm was built using different theoretical considera-
tions); hence, in this special case, FastICA is exactly the same as iterating our mapping. In short,
we use a PP method as a proxy to select the most relevant directionω for a fixeda. This results in a
particular choice ofωa , to which we apply the mapping once more, thus yieldingβa = β(hωa,a) . Fi-
nally, we aggregate the different vectorsβa obtained when varyinga by applying PCA as indicated
previously, in order to recover the target space.

Thus, apart from the conceptual point, defining uninterestingness as the point of departure in-
stead of interestingness, another way to look at our method is to say that it allows the combination
of information coming from different indices: here the above functionfa (for fixed a) plays a role
similar to that of a non-Gaussianity index in PP, but we do combine a rich family ofsuch functions
(by varying a and even by considering several function classes at the same time). The important

249

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

point here is that, while traditional projection pursuit does not provide a well-founded justification
for combining directions from using different indices, our framework allows to do precisely this –
thus implicitly selecting, in a given family of indices, the ones which are the most informative for
the data at hand.

In the following section we will outline the theoretical cornerstone of the method, a novel semi-
parametric theory forlinear dimension reduction. Section 3 discusses the algorithmic procedure and
is conluded with theoretical results establishing statistical consistency of the method. In Section 4,
we study on simulated and real data examples the behavior of the algorithm. A brief conclusion is
given in Section 5.

2. Theoretical Framework

In this section, we give a theoretical basis for the non-Gaussian component search within asemi-
parametricframework. We present a population analysis, where expectations can inprinciple be
calculated exactly, in order to emphasize the main idea and show how the algorithm is built. A more
rigorous statistical study of the estimation error will be exposed later in section3.5.

2.1 Motivation

Before introducing the semi-parametric density model which will be used as a foundation for devel-
oping our method, we motivate it by starting from elementary considerations. Suppose we are given
a set of observationsXi ∈ R

d, (i = 1, . . . ,n) obtained as a sum of a signalS and an independent
Gaussian noise componentN :

X = S+N , (1)

whereN ∼N (0,Γ) . Note that no particular structural assumption is made about the noise covari-
ance matrixΓ .

Assume the signalS is contained in a lower-dimensional linear subspaceE of dimensionm<
d . Loosely speaking, we would like to projectX linearly so as to eliminate as much of the noise as
possible while preserving the signal information. An important issue for the analysis of the model
(1) is a suitable representation of the density ofX which reflects the low dimensional structure of
the non-Gaussian signal. The next lemma presents a generic representationof the densityp for the
model (1).

Lemma 1 The density p(x) for the model (1) with the m-dimensional signal S and an independent
Gaussian noise N can be represented as

p(x) = g(Tx)φΓ(x)

where T is a linear operator fromRd to R
m, g(·) is some function onRm and φΓ(x) is the density

of the Gaussian component.

The formal proof of this lemma is given in the Appendix. Note that the above density represen-
tation is not unique, as the parametersg,T,Γ are not identifable from the densityp. However, the
null suspace (kernel)K(T) of the linear operatorT is an identifiable parameter. In particular, is
useful to notice that if the noiseN is standard normal, then the operatorT can be taken equal to the
projector on the signal spaceE . Therefore, in this case,K(T) coincides withE⊥ , the orthogonal

250

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

complementary subspace toE . In the general situation with “colored” Gaussian noise, the signal
spaceE does not coincide with the orthogonal complementary of the kernelI = K(T)⊥ of the
operatorT . However, the density representation of Lemma 1 shows that the the subspace K(T)
is non-informative and contains only noise. The original data can then be projected orthogonally
onto I , which we call thenon-Gaussian subspace, without loss of information. This way, we are
preserving the totality of the signal information. This definition implements the general point of
view outlined in the introduction, namely: we define what is considereduninteresting; the target
space is then defined indirectly as the orthogonal of the uninteresting component.

2.2 Relation to ICA

An equivalent view of the same model is to decompose the noiseN appearing in Eq.(1) into a
componentN1 belonging to the signal spaceE and anindependentcomponentN2 ; it can then be
shown thatN2 belongs to the subspaceK(T) defined above. In this view, the spaceI is orthogonal
to the independent noise component, and projecting the data ontoI amounts to cancelling this
independent noise component by an orthogonal projection.

In the present paper, we assume that we wish to project the dataorthogonally, i.e., that the
Euclidean geometry of the input space is meaningful for the data at hand, and that we want to
respect it while projecting. An alternative point of view would be to disregard the input space
geometry altogether, and to first map the data linearly to a reference space where it has covariance
identity (“whitening” transform), which would be closer to a traditional ICA analysis. This would
have on the one hand the advantage of resulting in an affine invariant procedure, but, on the other
hand, the disadvantage of losing the information of the original space geometry. It is relatively
straightforward to adapt the procedure to fit into this framework. For simplicity, we will stick to our
original goal of orthogonal projection in the original space.

2.3 Main Model

Based on the above motivation, we assume to be dealing with an unknown probability density
function p(x) on R

d which can put under the form

p(x) = g(Tx)φΓ(x), (2)

whereT is an unknown linear mapping fromRd to R
m with m≤ d , g is an unknown function on

R
m, andφΓ is a centered1 Gaussian density with covariance matrixΓ .

Note that thesemi-parametricmodel (2) includes as particular cases both the pure parametric
(m = 0) and purely non-parametric (m = d) models. For practical purposes, however, we are
effectively interested in an intermediate case whered is large andm is relatively small. In what
follows, we denote byI the m-dimensionallinear subspace inRd generated by the adjoint operator
T∗ :

I = K(T)⊥ = ℑ(T∗) ,

whereℑ(·) denotes the range of an operator. We callI thenon-Gaussian subspace.
The proposed goal is therefore to estimateI by some subspacêI computed from an i.i.d. sam-

ple {Xi}ni=1 following the distribution with densityp(x) . In this paper, we assume the effective

1. It is possible to handle a more general situation where the Gaussian part has an unknown mean parameterθ in
addition to the unknown covarianceΓ . For simplicity of exposition, we consider here only the caseθ = 0.

251

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

dimensionm to be known or fixeda priori by the user. Note that we donot estimateΓ nor g
when estimatingI . We measure the closeness of the two subspacesÎ andI by the following error
function:

E(Î ,I) = (2m)−1
∥∥ΠI −Π

Î

∥∥2
Frob = m−1

m

∑
i=1

‖(Id−Π
Î
)vi‖2, (3)

where ΠI denotes the orthogonal projection onI , ‖·‖Frob is the Frobenius norm,{vi}mi=1 is an
orthonormal basis ofI and Id is the identity matrix.

2.4 Key Result

The main idea underlying our approach is summed up in the following Proposition(the proof is
given in Appendix A.2). Whenever variableX has covariance2 matrix identity, this result allows,
from anarbitrary smooth real functionh on R

d , to find a vectorβ(h) ∈ I .

Proposition 2 Let X be a random variable whose density function p(x) satisfies Eq.(2) and sup-
pose that h(x) is a smooth real function onRd . Assume furthermore thatΣ = E

[
XX>

]
= Id . Then,

under mild regularity conditions on h, the following vectorβ(h) belongs to the target spaceI :

β(h) = E [Xh(X)−∇h(X)] . (4)

In the general case where the covariance matrixΣ is different from identity, provided it is non-
degenerated, we can apply a whitening operation (also known as Mahalanobis transform). Namely,
let us putY = Σ− 1

2 X the “whitened” data; the covariance matrix ofY is then identity. Note that if
the density function ofX is of the form

p(x) = g(Tx)φΓ(x),

then by change of variable the density function ofZ = AX is given by

q(z) = cAg(TA−1z)φAΓA>(z),

wherecA is a normalization constant depending onA.
This identity applied toA = Σ− 1

2 and the previous proposition allow to conclude that

βY(h) = E [∇h(y)−yh(y)] ∈ J = ℑ(Σ
1
2 T∗)

and therefore that

γ(h) = Σ−
1
2 βY(h) ∈ I = ℑ(T∗) ,

whereI is the non-Gaussian index space for the initial variableX , and J = Σ 1
2 I the transformed

non-Gaussian space for the whitened variableY .

2. Here and in the sequel, with some abuse we callΣ = E
[
XX>

]
thecovariance matrix, even though we do not assume

the non-Gaussian part of the data to be centered.

252

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

I

h

h

h

h

h

1

2

3

4

5

β
β

1

β
4

2
^

^ ^

3β^ β^
5

h(x)

x

Figure 1: The NGCA main idea: from a varied family of real functions, compute a family of vectors
belonging to the target space up to small estimation error.

3. Procedure

We now use the key proposition established in the previous section to design apractical algorithm
in order to identify the non-Gaussian subspace. The first step is to apply the whitening transform to
the data (where the true covariance matrixΣ is estimated by the empirical covarianceΣ̂). We then
estimate the “whitened” non-Gaussian spaceJ by someĴ (this will be described next); this space
is then finally pulled back in the original space by application ofΣ̂− 1

2 . To simplify the exposition,
in this section we will forget about the whitening/dewhitening steps and always implicitly assume
that we are dealing directly with the whitened data: every time we refer to the non-Gaussian space
it is therefore to be understood that we refer toJ = Σ 1

2 I , corresponding to the whitened dataY .

3.1 Principle of the Method

In the previous section, we have proved that for an arbitrary functionh satisfying mild smoothness
conditions, it is possible to construct a vectorβ(h) which lies in the non-Gaussian subspace. How-
ever, since the unknown densityp(x) is used (via the expectation operator) to defineβ by Eq.(2),
one cannot directly use this formula in practice: it is then natural to approximate it by replacing the
true expectation by the empirical expectation. This gives rise to the estimated vector

β̂(h) =
1
n

n

∑
i=1

Yih(Yi)−∇h(Yi) , (5)

which we expect to be close to the non-Gaussian subspace up to some estimation error. At this
point, the natural next step is to consider a whole family of functions{hi}ni=1 , giving rise to an

associated vector family of{β̂i}Li=1 , all lying close to the target subspace, whereβ̂i := β̂(hi) . The
final step is to recover the non-Gaussian subspace from this set. For thispurpose, we suggest to
use the principal directions of this family, i.e. to apply PCA (although other algorithmic options are
certainly avalaible for this task). This general idea is illustrated on Figure 1.

3.2 Normalization of the Vectors

When extracting information on the target subspace from the set of vectors {β̂i}Li=1 , attention should
be paid to how the functions{hi}Li=1 are normalized. As can be seen from its definition, the opera-

tor which maps a functionh to β(h) (and also its empirical counterpartβ̂(h)) is linear. Therefore,
if, for example, one of the functions{hi}Li=1 is multiplied by an arbitrarily large scalar, the associ-

253

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

Figure 2: For the same estimation error represented as a confidence ball of radius ε , estimated
vectors with higher norm give a more precise information about the true target space.

ated β̂(h) could have an arbitrarily large norm: this is likely to influence heavily the procedure of
principal direction extraction applied to the whole family.

To prevent this problem, the functions{hi}Li=1 should be normalized in some way or other.
Several possibilities can come to mind, like using the supremum orL2 norm of h or of ∇h. We
argue here that a sensible way to normalize functions is such that the average squared deviation
(estimation error) of̂β(h) to its mean is of the same order for all functionsh considered. This
has a first direct intuitive interpretation in terms of making the length of each estimated vector
proportional to its associated signal-to-noise ratio. We argue in more detail that the norm of̂β(h)
after normalization is directly linked to the amount of information brought by this vector about the
target subspace.

Namely, if we measure the information that is brought by a certain vectorβ̂(h) about the target
spaceJ through the angleθ(β̂(h)) between the vector and the space, we have

‖β̂(h)−β(h)‖ ≥ dist(β̂(h),J) = sin(θ(β̂(h)))‖β̂(h)‖ . (6)

Suppose we have ensured by renormalization thatσ(h)2 = E

[
‖β̂(h)−β(h)‖2

]
is constant and in-

dependent ofh, and assume that this results in‖β̂(h)−β(h)‖2 being bounded by some constant
with high probability. It entails that sin(θ(β̂(h)))‖β̂(h)‖ is bounded independently ofh. We expect,
in this situation, that the bigger‖β̂‖ , the smaller is sin(θ) , and therefore the more reliable the infor-
mation aboutJ . This intuition is illustrated in Figure 2, where the estimation error is represented
by a confidence ball of equal size for all vectors.3

Therefore, at least at an intuitive level, it appears appropriate to useσ(h) as a renormalization.
Note that this is just the square root of the trace of the covariance matrix ofβ̂(h) , and therefore
easy to estimate in practice from its empirical counterpart. In section 3.5, we give actual theoretical
confidence bounds for‖β− β̂‖ which justify this intuition in a more rigorous manner.

Finally, to confirm this idea on actual data, we plot in the top row Figure 3 the distribution of
β̂ on an illustrative data set using the normalization scheme just described. In order to investigate

3. Of course, the situation depicted in Figure 2 is idealized: we actually expect (from the Central Limit Theorem)
that β− β̂ has approximately a Gaussian distribution with some non-spherical variance, giving rise to a confidence
ellipsoid rather than a confidence ball. To obtain a spherical error ball, wewould have to apply a (linear) error
whitening transform separately to eachβ̂(h) . However, in that case the error whitening transform would be different
for each h, and the information of the vector family about the target subspace wouldthen be lost. To preserve
this information, only a scalar normalization is adequate, which is why we recommend the normalization scheme
explained here.

254

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

the relation between the norm of the (normalized)β̂ and the amount of information on the non-
Gaussian subspace brought byβ̂ , we plot in the right part of Figure 3 the relation between‖β̂‖ and
‖ΠJ β̂‖/‖β̂‖ = cos(θ(β̂)) . As expected, the vectorŝβ with highest norm are indeed much closer

to the non-Gaussian subspace in general. Furthermore, vectorsβ̂ with norm close to zero appear
to bear almost no information about the non-Gaussian space, which is consistent with the setting
depicted in Figure 2: whenever an estimated vectorβ̂ has norm smaller than the estimation errorε ,
its confidence ball contains the origin, which means that it brings no useableinformation about the
direction of the non-Gaussian subspace.

These findings motivate two important points for the algorithm:

1. It should be beneficial toactively searchfor functionsh which yield an estimated̂β(h) with
higher norm, since these are more informative about the target spaceJ ;

2. The vectorsβ̂ with norm below a certain thresholdε can be discarded as they are non-
informative. So far, the theoretical bounds presented below in section 3.5are not precise
enough to give a canonical value for this threshold: we therefore recommend that it be de-
termined by a preliminary calibration procedure. For this, we consider independent Gaussian
data: in this case,β = 0 for any h and thus‖β̂‖ represents pure estimation noise. A reason-
able choice for the threshold is therefore the 95th percentile (say) of this distribution, which
we expect to reject a large majority of the noninformative vectors.

3.3 Using FastICA as Preprocessing to Find Promising Functions

When considering a parametrized family of functions{hω} , it is a desirable goal to search the
parameter space to find indicesω such that̂β(hω) has a high norm, as proposed in the last section.
From now on we will restrict our attention to functions of the form

hω(x) = f (〈ω,x〉) , (7)

whereω∈R
d , ‖ω‖= 1, and f is a smooth real function of a real variable. Clearly, it is not feasible

to sample the entire parameter space forω as soon as it has more than a few dimensions, and it is not
obviousa priori to find parametersω such that̂β(hω) has a high norm. Remember however that we
do not need to find anexact maximumof this norm over the parameter space. We merely want to find
parameters such that the associated norm is preferably high, because they bring more information;
this may also involve heuristics. Naturally, good heuristics should be able to find parameters giving
rise to vectors with higher norm, bringing more information on the subspace and ultimately better
practical results; nevertheless, the underlying theoretical motivation stays unchanged regardless of
the way the functions are picked.

A particularly relevant heuristic for choosingω comes naturally with a closer look at Eq.(5)
when we plug in functions of the specific form given by Eq.(7):

β̂(hω) =
1
n

n

∑
i=1

(
Yi f (〈ω,Yi〉)− f ′(〈ω,Yi〉)ω

)
. (8)

It is interesting to notice that this equation precisely coincides withone iteration of a well-known
projection pursuit algorithm, FastICA (Hyvärinen, 1999). More precisely, FastICA consists in iter-

255

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||β||^

co
s(

θ)

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||β||^

co
s(

θ)

−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||β||^

co
s(

θ)

Figure 3: Illustrative plots of the method, applied to toy data of type(A) (See section 4.1). Left
column: Distribution ofβ̂ projected on a direction belonging to the target spaceJ (ab-
scissa) and a direction orthogonal to it (ordinate). Right column:‖β̂‖ (after normaliza-
tion) vs. cos(θ(β̂,J)) . From top to bottom rows: random draw of functions, after 1-step,
and after 4-step of FastICA preprocessing.β̂ ’s are normalized as described in section
3.2.

256

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

ating the following update rule to form a sequenceω1, . . . ,ωT :

ωt+1 ∝
1
n

n

∑
i=1

(
Yi f (〈ωt ,Yi〉)− f ′(〈ωt ,Yi〉)ωt

)
(9)

where the sign∝ indicates that vectorωt+1 is renormalized to be of unit norm.
Note that the FastICA procedure is derived from quite a different theoretical setting of what

we considered here (see, e.g., Hyvärinen et al., 2001); its goal is in principle to optimize a non-
Gaussianity measureE [F(〈ω,x〉)] (whereF is such thatF ′ formally coincides with ourf above)
and the solution is reached by an approximate Newton method giving rise to the update rule of
Eq.(9), repeated until convergence.

This formal identity leads us to adopt the FastICA methodology as a heuristic for our method.
Since finding an actual optimum point is not needed, convergence is not an issue, so that we only
iterate the update rule of Eq.(9) for a fixed number of iterationsT to find a relevant directionωT .
Finally we apply Eq.(8) one more time to this choice of parameter, so that the procedure finally
outputs β̂(hωT) . On Figure 3, we plot the effect of a few iterations of this preprocessingfor the
method, applied on toy data and see that it leads to a significant improvement.

Paradoxically, if the convergence of this FastICA preprocessing is too good, there is in principle
a risk that all vectorŝβ end up in the vicinity of one single “best” direction instead of spanning
the whole target space: the preprocessing would then have the opposite effect of what is wished,
namely impoverishing the vector family. One possible remedy against this is to apply so-called
batch FastICA, which consists in iterating equation (9) on am-dimensional system of vectors,
which is orthonormalized anew before each new iteration. In our practicalexperiments we did
not observe any significant change in the results when using this refinement, so we mention this
possibility only as a matter of precaution. We suspect two mitigating factors against this possible
unwished behavior are that (1) it is known that FastICA does not converge to a global maximum, so
that we probably find vectors in the vicinity of different local optima and (2)the “optimal” directions
depend on the functionf used and we combine a large number of such functions.

In the next section, we will describe the full algorithm, which consists in applying the procedure
just described to different choices of the functionf . Since we are using projection pursuit as a
heuristic to find suitable parametersω for a fixed f , the theoretical setting proposed here can
therefore also be seen as a suitable framework for combining projection pursuit results when using
different index functionsf .

3.4 Full Procedure

The previous sections have been devoted to detailing some key points of the procedure. We now
gather these points and describe the full algorithm. We previously considered the case of a basis
function family hω(y) = f (〈ω,y〉) . We now consider a finite family of possible choices{ fk}Lk=1
which are then combined.

In the implementation tested, we have used the following forms of the functionsfk :

f (1)
σ (z) = z3exp

(
− z2

2σ2

)
, (Gauss-Pow3)

f (2)
b (z) = tanh(bz), (Hyperbolic Tangent)

f (3)
a (z) = exp(iaz) , (Fourier4)

257

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

More precisely, we consider discretized ranges forσ ∈ [σmin,σmax] , b∈ [0,B] , anda∈ [0,A] ,
giving rise to a finite collection{ fk} (which therefore includessimultaneouslyfunctions of the
three different above families). Note that usingz3 and Hyperbolic Tangent functions is inspired by
the classical PP algorithms (including FastICA) where these indices are used. We multipliedz3 by
a Gaussian factor in order to satisfy the boundedness assumption neededto control the estimation
error (see Theorem 3 and 4 below). Furthermore, the introduction of theparameterσ2 allows for a
richer family. Finally, the Fourier functions were introduced as they constitute a rich and important
family. A pseudocode for the NGCA algorithm is described in Figure 4.

3.5 Theoretical Bounds on the Statistical Estimation Error

In this section we tackle the question of controlling the estimation error when approximating the
vectorsβ(h) by their empirical estimationŝβ(h) from a rigorous theoretical point of view. These
results were derived with the following goals in mind:

• A cornerstone of the algorithm is that we consider a whole familyh1, . . . ,hL of functions and
pick selected members from it. In order to justify this from a statistical point of view, we
therefore need to control the estimation error not for a single functionh and the associated
β̂(h) , but instead uniformly over the function family. For this, a simple control of, e.g., the

averaged squared deviationE
[
‖β− β̂‖2

]
for each individualh is not sufficient: we need a

stronger result, namely an exponential control of the deviation probability.This allows, by
the union bound, to obtain a uniform control over the whole family with a mild (logarithmic)
dependence on the cardinality of the family.

• We aim at making the covariance tracêσ2 directly appear into the main bounding terms
of our error control. This provides a more solid justification to the renormalization scheme
developed in section 3.2, where we have used arguments based on a non rigorous intuition.
The choice to involve directly theempiricalcovariance in the bound instead of the population
one was made to emphasize that estimation error for the covariance itself is alsotaken into
account for the bound.

• While the control of the deviation of an empirical average of the form givenin Eq.(5) is a
very classical problem, we want to explicitly take into account the effect ofthe empirical
whitening/dewhitening using the empirical covariance matrixΣ̂ . This complicates matters
noticeably since this whitening is itself data-dependent.

• Our goal wasnot to obtain tight confidence intervals or even exact asymptotical behavior.
There is a number of ways in which our results could be substantially refined, for example
obtaining uniform bounds over continuous (instead of finite) families of functions using cov-
ering number arguments; showing asymptotical uniform central limit properties for a precise
study of the typical deviations, etc. Here, we tried to obtain simple, while still mathemati-
cally rigorous, results, covering essential statistical foundations of ourmethod: consistency
and order of the convergence rate.

In the sequel, for a matrixA, we denote‖A‖ its operator norm.

4. In practice, separated into real and complex parts (sine and cosine).

258

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

Input: Data points(Xi) ∈ R
d , dimensionm of target subspace.

Parameters:NumberT of FastICA iterations; thresholdε .

Whitening.
The dataXi is recentered by subtracting the empirical mean.
Let Σ̂ denote the empirical covariance matrix of the data sample(Xi) ;
put Ŷi = Σ̂− 1

2 Xi the empirically whitened data.
Main Procedure.

Loop onk = 1, . . . ,L :
Draw ω0 at random on the unit sphere ofR

d .
Loop on t = 1, . . . ,T : [FastICA loop]

Put β̂t ←
1
n

n

∑
i=1

(
Ŷi fk(〈ωt−1,Ŷi〉)− f ′k(〈ωt−1,Ŷi〉)ωt−1

)
.

Put ωt ← β̂t/‖β̂t‖ .
End Loop ont

Let Nk be the trace of the empirical covarariance matrix ofβ̂T :

Nk =
1
n

n

∑
i=1

∥∥∥Ŷi fk(〈ωT−1,Ŷi〉)− f ′k(〈ωT−1,Ŷi〉)ωT−1

∥∥∥
2
−
∥∥∥β̂T

∥∥∥
2
.

Storev(k)← β̂T ∗
√

n/Nk. [Normalization]
End Loop onk

Thresholding.
From the familyv(k) , throw away vectors having norm smaller than thresholdε .

PCA step.
Perform PCA on the set of remainingv(k) .
Let Ĵ be the space spanned by the firstm principal directions.

Pull back in original space.
Î = Σ̂− 1

2 Ĵ .

Output: Î .

Figure 4: Pseudocode of the NGCA algorithm.

259

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

Analysis of the estimation error with exact whitening. We start by considering an idealized
case where whitening is done using the true covariance matrixΣ : Y = Σ− 1

2 X .
In this case we have the following control of the estimation error:

Theorem 3 Let {hk}Lk=1 be a family of smooth functions fromRd to R . Assume that
supy,k max(‖∇hk(y)‖ ,‖hk(y)‖) < B and that X has covariance matrixΣ with

∥∥Σ−1
∥∥≤ K2 , and is

such that for someλ0 > 0 the following inequality holds:

E [exp(λ0‖X‖)]≤ a0 < ∞. (10)

Denoteh̃(y) = yh(y)−∇h(y) . Suppose X1, . . . ,Xn are i.i.d. copies of X and let Yi = Σ− 1
2 Xi . If we

define

β̂Y(h) =
1
n

n

∑
i=1

h̃(Yi) =
1
n

n

∑
i=1

Yih(Yi)−∇h(Yi) , (11)

and

σ̂2
Y(h) =

1
n

n

∑
i=1

∥∥∥h̃(Yi)− β̂Y(h)
∥∥∥

2
, (12)

then for anyδ < 1
4 , with probability at least1−4δ the following bounds hold simultaneously for

all k ∈ {1, . . . ,L} :

dist
(

β̂Y(hk),J
)
≤ 2

√
σ̂2

Y(hk)
log(Lδ−1)+ logd

n
+C

(
log(nLδ−1) log(Lδ−1)

n
3
4

)
,

and

dist
(

Σ−
1
2 β̂Y(hk),I

)
≤ 2K

√
σ̂2

Y(hk)
log(Lδ−1)+ logd

n
+C′

(
log(nLδ−1) log(Lδ−1)

n
3
4

)
,

where dist(γ,I) denotes the distance between a vectorγ and the subspaceI , and C,C′ are con-
stants depending only on the parameters(d,λ0,a0,B,K) .

Comments.

1. The above inequality tells us that the rate of convergence of the estimated vectors to the target
space is in this case of ordern−1/2 (classical “parametric” rate). Furthermore, the theorem
gives us an estimation of the relative size of the estimation error for different functions h
through the empirical factor̂σY(h) in the principal term of the bound. As announced in our
initial goals, this therefore gives a rigorous foundation to the intuition exposed in section 3.2
for vector renormalization.

2. Also following our goals, we obtained a uniform control of the estimation error over a finite
family with a logarithmic dependence in the cardinality. This does not correspond exactly to
the continuous families we use in practice but comes close enough if we consider adequate
parameter discretization. We will comment on this in more detail after the next theorem.

260

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

Whitening using empirical covariance. When Σ is unknown (which is in general the case), we
use instead the empirical covariance matrixΣ̂ . Here, we will show that, under a somewhat stronger
assumption on the distribution ofX and on the functionsh, we are still able to obtain a convergence
rate of order at most

√
log(n)/n towards the index spaceI .

Let us denotêYi = Σ̂− 1
2 Xi the empirically whitened datapoints,h̃(y) = yh(y)−∇h(y) as previ-

ously, and

β̂Ŷ(h) =
1
n

n

∑
i=1

h̃(Ŷi) =
1
n

n

∑
i=1

Ŷih(Ŷi)−∇h(Ŷi) ; (13)

finally, let us denote

γ̂(h) = Σ̂−
1
2 β̂Ŷ(h) , and σ̂2

Ŷ
(h) =

1
n

n

∑
i=1

∥∥∥h̃(Ŷi)− β̂Ŷ(h)
∥∥∥

2
.

We then have the following theorem:

Theorem 4 Let us assume the following :
(i) There existsλ0 > 0,a0 > 0 such that

E

[
exp
(

λ0‖X‖2
)]

= a0 < ∞ ;

(ii) The covariance matrixΣ of X is such that
∥∥Σ−1

∥∥≤ K2 ;
(iii) supk,ymax(‖∇hk(y)‖ ,‖hk(y)‖) < B;

(iv) The functions̃hk(y) = ∇hk(y)−yhk(y) are all Lipschitz with constant M.
Then for big enough n, with probability at least1− 4

n − 4δ the following bounds hold true
simultaneously for all k∈ {1, . . . ,L} :

dist(β̂Ŷ(hk),J)≤C1

√
d logn

n
+2

√
σ̂2

Ŷ
(hk)

log(Lδ−1)+ logd
n

+C2
log(nLδ−1) log(Lδ−1)

n
3
4

,

and

dist(̂γ(hk),I)≤C′1

√
d logn

n
+2K

√
σ̂2

Ŷ
(hk)

log(Lδ−1)+ logd
n

+C′2
log(nLδ−1) log(Lδ−1)

n
3
4

,

where C1,C′1 are constants depending on parameters(λ0,a0,B,K,M) only and C2,C′2 on
(d,λ0,a0,B,K,M) .

Comments.

1. Theorem 4 implies that the vectorŝγ(hk) obtained from anyh(x) converge to the unknown
non-Gaussian subspaceI uniformlyat a rate of order

√
log(n)/n.

2. The condition (i) is a restrictive assumption as it excludes some densities with heavy tails. We
are considering weakening this assumption in future developments.

261

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

3. In the actual algorithm, we consider a family of functions of the formhω(x) = f (〈ω,x〉) ,
with ω on the unit sphere ofRd . Suppose we approximateω by its nearest neighbor̃ω on a
regular grid of scaleε . Then we only have to apply the bound to a discretized family of size
L = O(ε1−d) , giving rise only to an additional factor in the bound of order

√
d logε−1 . Taking

for exampleε = 1/n (the fact that the function family depends onn is not a problem since
the bounds are valid for any fixedn), this ensures convergence of the discretized functions
to the initial continuous family while introducing only in an additional factor

√
d logn in

the bound: this does not change fundamentally the order of the bound since there is already
another

√
d logn term present.

4. For both Theorems 3 and 4, we have given bounds for estimation of bothI and J , that is,
in terms of the initial data and of the “whitened” data. The result in terms of the initial data
ensures the overall consistency of the approach, but the convergence in the whitened space is
equally interesting since we use it as the main working space for the algorithm and the bound
itself is more precise.

5. Comparing to Theorem 3 obtained for exact whitening, we see in the present case that there
is an additional term of principal order inn coming from the estimation error ofΣ , with
a multiplicative factor which unfortunately is not known accurately. This means that the
renormalization scheme is not completely justified in this case, although we feel the idealized
situation of Theorem 3 already provides some strong argument in this direction. However,
the present result suggests that the accuracy of the normalization could probably be further
improved.

4. Numerical Results

We now turn to numerical evaluations of the NGCA method: first on simulated data, where the
generating distribution is precisely known, then on exemplary, realistic data.All of the experiments
presented below, without exception, where obtained with exactly thesameset of parameters:a∈
[0,4] for the Fourier functions;b∈ [0,5] for the Hyperbolic Tangent functions;σ2 ∈ [0.5,5] for the
Gauss-pow3 functions. Each of these ranges was divided into 1000 equispaced values, thus yielding
a family { fk} of size 4000 (Fourier functions count twice because of the sine and cosine parts). The
preliminary calibration procedure described in the end of section 3.2 suggested to takeε = 1.5 as
the threshold under which vectors are not informative (strictly speaking,the threshold should be
calibrated separately for each functionf but we opted here for a single threshold for simplicity).
Finally we fixed the number of FastICA iterationsT = 10. With this choice of parameters and 1000
data points in the sample, the computation time is typically of the order of less than 10 seconds on
a modern PC under our Matlab implementation.

4.1 Tests in a Controlled Setting

For testing our algorithm and comparing it with PP, we performed numerical experiments using
various synthetic data. Here, we report exemplary results using the following 4 data sets. Each data
set includes 1000 samples in 10 dimensions. The generating distribution consists in 8 independent
standard Gaussian components and 2 non-Gaussian components generated as follows:

262

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

(A) (B) (C) (D)

Figure 5: Densities of non-Gaussian components. The data sets are: (a)2D independent Gaussian
mixtures, (b) 2D isotropic super-Gaussian, (c) 2D isotropic uniform and(d) dependent
1D Laplacian + 1D uniform.

PP(pow3) PP(tanh) NGCA
0

0.5

1

1.5

2

2.5
x 10

−3

PP(pow3) PP(tanh) NGCA
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

PP(pow3) PP(tanh) NGCA
0

0.005

0.01

0.015

0.02

0.025

0.03

PP(pow3) PP(tanh) NGCA
0

0.005

0.01

0.015

0.02

0.025

0.03

(A) (B) (C) (D)

Figure 6: Boxplots of the error criterionE(Î ,I) .

0 0.5 1 1.5 2

x 10
−3

0

0.5

1

1.5

2

x 10
−3

NGCA

P
P

 (
po

w
3)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

NGCA

P
P

 (
po

w
3)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.005

0.01

0.015

0.02

0.025

0.03

NGCA

P
P

 (
po

w
3)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

NGCA

P
P

 (
po

w
3)

0 0.5 1 1.5 2

x 10
−3

0

0.5

1

1.5

2

x 10
−3

NGCA

P
P

 (
ta

nh
)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

NGCA

P
P

 (
ta

nh
)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.005

0.01

0.015

0.02

0.025

0.03

NGCA

P
P

 (
ta

nh
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

NGCA

P
P

 (
ta

nh
)

(A) (B) (C) (D)

Figure 7: Performance comparison plots (for error criterionE(Î ,I)) of NGCA versus FastICA;
top: versus pow3 index; bottom: versus tanh index.

263

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

(A) Simple Gaussian Mixture: 2-dimensional independent Gaussian mixtures, with the density
of each component given by

1
2

φ−3,1(x)+
1
2

φ3,1(x) . (14)

(B) Dependent super-Gaussian:2-dimensional isotropic distribution with density proportional to
exp(−‖x‖) .

(C) Dependent sub-Gaussian:2-dimensional isotropic uniform with constant positive density for
‖x‖ ≤ 1 and 0 otherwise.

(D) Dependent super- and sub-Gaussian:1-dimensional Laplacian with density proportional to
exp(−|xLap|) and 1-dimensional dependent uniformU(c,c+ 1) , wherec = 0 for |xLap| ≤
log2 andc =−1 otherwise.

For each of these situations, the non-Gaussian components are additionallyrescaled coordinatewise
by a fixed factor so that each coordinate has unit variance. The profiles of the density functions of
the non-Gaussian components in the above data sets are described in Figure 5.

We compare the following three methods in the experiments: PP with ‘pow3’ or ‘tanh’ index5

(denoted by PP(pow3) and PP(tanh), respectively), and the proposed NGCA.
Figure 6 shows boxplots of the error criterionE(Î ,I) defined in Eq.(3) obtained from 100

runs. Figure 7 shows comparison of the errors obtained by different methods for each individual
trial. Because PP tends to get trapped into local optima of the index function it optimizes, we
restarted it 10 times with random starting points and took the subspace obtainingthe best index
value. However, even when it is restarted 10 times, PP (especially with the ‘pow3’ index) still gets
caught in local optima in a small percentage of cases (we also tried up to 500 restarts but it led to
negligible improvement).

For the simplest data set (A), NGCA is comparable or slightly better than PP methods. It
is known that PP(tanh) is suitable for finding super-Gaussian components (heavy-tailed distribu-
tion) while PP(pow3) is suitable for finding sub-Gaussian components (light-tailed distribution)
(Hyvärinen et al., 2001). This can be observed in the data sets (B) and (C): PP(tanh) works well for
the data set (B) and PP(pow3) works well for the data set (C), althoughthe upper-quantile is very
large for the data set (C) (because of PP getting trapped in local minima). The sample-wise plots of
Figure 7 confirm that NGCA is on average on par with, or slightly better than,PP with the ‘correct’
non-Gaussianity index, without having to prefix such a non-Gaussianity index. For the data set (C),
NGCA appears to be marginally worse than PP(pow3) (excluding those cases where PP fails due
to local minima: the corresponding points are outside the range of the figure), but the difference
appears hardly significant. The superiority of the index adaptation feature of NGCA can be clearly
observed in the data set (D), which includes both sub- and super-Gaussian components. Because of
this composition, there is no single best non-Gaussianity index for this data set, and the proposed
NGCA gives significantly lower error than that of either PP method.

5. We used the deflation mode of the FastICA algorithm (Hyvärinen et al., 2001) as an implementation of PP. The
‘pow3’ flavor is equivalent to a kurtosis based index: in other words, inthis case, FastICA iteratively maximizes the
kurtosis. On the other hand, the ‘tanh’ flavor uses a robust index whichis appropriate in particular for heavy-tailed
data.

264

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

Failure modes. We now try to explore the limits of the method and the conditions under which
estimation of the target space will fail. First, we study the behaviour of NGCA again compared
with PP as the total dimension of the data increases. We use the same synthetic data sets with 2-
dimensional non-Gaussian components, while the number of Gaussian components increases. The
averaged errors over 100 experiments are depicted in Figure 8. In all cases, we seem to observe a
sharp phase transition between a good behaviour regime and a failure modewhere the procedure
is unable to estimate the correct subspace. In 3 out of 4 cases, however, we observe that the phase
transition to the failure mode occurs for a higher dimension for NGCA than forthe PP methods,
which indicates better robustness of NGCA.

10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Dimension

E
rr

or

NGCA
PP(pow3)
PP(tanh)

10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total Dimension

E
rr

or

NGCA
PP(pow3)
PP(tanh)

(A) (B)

10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Dimension

E
rr

or

NGCA
PP(pow3)
PP(tanh)

10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total Dimension

E
rr

or

NGCA
PP(pow3)
PP(tanh)

(C) (D)

Figure 8: Results when the total dimension of the data increases.

In the synthetic data sets used so far, the data was always generated with acovariance matrix
equal to identity. Another interesting setting to study is the robustness with respect to bad condi-
tioning of the covariance matrix. We consider again a fixed-dimension setting,with 2 non-Gaussian
and 8 gaussian dimensions.

While the non-Gaussian coordinates always have variance unity, the standard deviation of the 8
Gaussian dimensions now follows the geometrical progression 10−r ,10−r+2r/7, . . . ,10r . Thus, the
higher r , the worse conditioned is the total covariance matrix.

265

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Log
10

 noise scaling range

E
rr

or

NGCA
PP(pow3)
PP(tanh)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Log
10

 noise scaling range

E
rr

or

NGCA
PP(pow3)
PP(tanh)

(A) (B)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log
10

 noise scaling range

E
rr

or

NGCA
PP(pow3)
PP(tanh)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log
10

 noise scaling range

E
rr

or

NGCA
PP(pow3)
PP(tanh)

(C) (D)

Figure 9: Results when the Gaussian (noise) components have differentscales (the standard devi-
ations follow a geometrical progression on[10−r ,10r] , wherer is the parameter on the
abscissa).

266

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

The results are depicted in Figure 9, where we observe again a transition to afailure mode when
the covariance matrix is too badly conditioned. Although NGCA still appears asthe best method,
we observe that, on 3 out of 4 data sets, the transition to failure mode seems to happen roughly at
the same point as for PP methods. This suggests that there is no or only little added robustness of
NGCA with respect to PP in this regard. However, this result is not entirely surprising, as we expect
this type of failure mode to be caused by a too large estimation error in the covariance matrix and
therefore in the whitening/dewhitening steps. Since these steps are common to NGCA and the PP
algorithms, it seems logical to expect a parallel evolution of their errors.

4.2 Example of Application for Realistic Data: Visualization and Clustering

We now give an example of application of our methodology to visualization and clustering of real-
istic data. We consider here “oil flow” data, which has been obtained by numerical simulation of
a complex physical model. This data was already used before for testing techniques of dimension
reduction (Bishop et al., 1998). The data is 12-dimensional and it is not known a priori if some
dimensions are more relevant. Here our goal is to visualize the data and possibly exhibit a clustered
structure. Furthermore, it is known that the data is divided into 3 classes. We show classes with
different marker types but the class information is not used in finding the directions (i.e., the process
is unsupervised).

We compare the NGCA methodology described in the previous section, projection pursuit
(“vanilla” FastICA) using the tanh or the pow3 index, and Isomap (non-linear projection method,
see Tenenbaum et al., 2000). The results are shown on Figure 10. A 3Dprojection of the data
was computed using these methods, which was in turn projected in 2D to draw thefigure; this last
projection was chosen manually so as to make the cluster structure as visible aspossible in each
case.

We see that the NGCA methodology gives a much more relevant projection thanPP using either
tanh or pow3 alone: we can distinguish 10-11 clusters versus at most 5 for the PP methods and 7-8
for Isomap. Furthermore, the classes are clearly separated only on the NGCA projection; on the
other ones, they are partially confounded in one single cluster. Finally, weconfirm, by applying the
projection found to held-out test data (i.e., data not used to determine the projection), that the cluster
structure is relevant and not due to some overfitting artifact. This, in passing, shows one advantage
of a linear projection method, namely that it can be extended to new data in a straightforward way.

Presumably, an important difference between the NGCA projection and the others comes from
the Fourier functions, since they are not present in either of the PP methods. It can be confirmed
by looking at the vector norms that Fourier functions are more relevant for this data set; they gave
rise to estimated vectors with generally higher norms and had consequently a sizable influence of
the choice of the projection. One could object that we have been merely lucky for this specific data
because Fourier functions happened to be more relevant, and neither PPmethod uses this index. A
possible suggestion for a fair comparison is to use the PP algorithm with a Fourier index. However,
beside the fact that this index is not generally used in classical PP methods,the results would be
highly dependent of the specific frequency parameter chosen, so we did not make experiments
in that direction (by contrast, the NGCA methodology allows to combine vectors obtained from
different frequencies). On the other hand, another route to investigatethe relevance of this objection
is to look at the results obtained by the NGCA method if Fourier functions arenot used – thus only
considering Gauss-pow3 and tanh. In this case, we still expect an improvement over PP because

267

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

FastICA, tanh index FastICA, pow3 index

NGCA (training data) NGCA (held-out test data)

NGCA without Fourier functions Isomap

Figure 10: 2D projection of the “oil flow” data obtained by different algorithms. Different marker
types/colors indicate the different classes (this information was not used tofind the pro-
jections). For the middle right panel, the 2D projection found from the middle left panel
was used to visualize additional held out test data.

268

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

NGCA is combining indices (as well as combining over the parameters rangesσ2 and b). This
is confirmed in Figure 10: even without the relevant Fourier functions, NGCA yields a projection
where 8 clusters can be distinguished, and the classes are much more clearly separated than with PP
methods. Finally, a visual comparison with the results obtained by Bishop et al.(1998) demonstrated
that the projection found by our algorithm exhibits a clearer clustered structure; moreover, ours is a
purely linear projection whereas the latter reference was a nonlinear data representation

Further analysis on clustering performance with additional data sets are given in the Appendix
and underline the usefulness of our method.

5. Conclusion

We proposed a new semi-parametric framework for constructing a linear projection to separate an
uninteresting multivariate Gaussian ‘noise’ subspace of possibly large amplitude from the ‘signal-
of-interest’ subspace. Our theory provides generic consistency results on how well the non-Gaussian
directions can be identified (Theorem 4). To estimate the non-Gaussian subspace from the set of
vectors obtained, PCA is finally performed after suitable renormalization andelimination of uninfor-
mative vectors. The key ingredient of our NGCA method is to make use of thegradientcomputed
for the nonlinear basis functionh(x) in Eq.(11) after data whitening. Once the low-dimensional
‘signal’ part is extracted, we can use it for a variety of applications suchas data visualization, clus-
tering, denoising or classification.

Numerically, we found comparable or superior performance to, e.g., FastICA in deflation mode
as a generic representative of the family of PP algorithms. Note that, in general, PP methods need
to pre-specify a projection index used to search for non-Gaussian components. By contrast, an
important advantage of our method is that we are able to simultaneously use several families of
nonlinear functions; moreover, inside a same function family, we are able to use an entire range
of parameters (such as frequency for Fourier functions). Thus, our new method provides higher
flexibility, and less restricting assumptionsa priori on the data. In a sense, the functional indices
that are the most relevant for the data at hand are automatically selected.

Future research will adapt the theory to simultaneously estimate the dimension ofthe non-
Gaussian subspace. Extending the proposed framework to non-linear projection scenarios (Cox and
Cox, 1994; Scḧolkopf et al., 1998; Roweis and Saul, 2000; Tenenbaum et al., 2000; Belkin and
Niyogi, 2003; Harmeling et al., 2003) and to finding the most discriminative directions using labels
are examples for which the current theory could be taken as a basis.

Acknowledgements: The authors would like to thank Stefan Harmeling for discussions and J.-F.
Cardoso for suggesting us the pre-whitening step for increased efficiency and robustness. We would
also like to thank anonymous reviewers for many insightful comments, in particular pointing out the
ICA interpretation. We acknowledge partial financial support by DFG, BMBF (under Grant FKZ
01GQ0415) and the EU NOE PASCAL (EU # 506778). G.B. and M.S. also thank the Alexander
von Humboldt foundation for partial financial support.

269

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

Appendix A. Proofs of the Theorems

A.1 Proof of Lemma 1

Suppose first that the noiseN is standard normal. Denote byΠE the projector fromR
d to R

m

which corresponds to the subspaceE . Let alsoE⊥ be the subspace complementary toE andΠE⊥

mean the projector onE⊥ . The standard normal noise can be decomposed asN = N1 uN2 where
N1 = ΠEN and N2 = ΠE⊥N are independent noise components. Similarly, the signalX can be
decomposed as

X = (ΠES+N1)uN2

where we have used the model assumption that the signalS is concentrated inE and it is inde-
pendent ofN . It is clear that the density ofΠES+ N1 in R

m can be represented as the product
g(x1)φ(x1) for some functiong and the standard normal densityφ(x1) , x1 ∈ R

m. The indepen-
dence ofN1 and N2 yields the in the similar way forx = (x1,x2) with x1 = ΠEx and x2 = ΠE⊥x
that p(x) = g(x1)φ(x1)φ(x2) = g(x1)φ(x) . Note that for the linear mappingT = ΠE characterizes
the signal subspaceE . Namely, E is the imageℑ(T∗) of the dual operatorT∗ while E⊥ is the
null subspace (kernel) ofT : E⊥ = K(T) .

Next we drop the assumption of the standard normal noise and assume only that the covariance
matrix Γ of the noise is nondegenerated. Multiplying the both sides of the equation (1)by
the matrix Γ−1/2 leads toΓ−1/2X = Γ−1/2S+ Ñ where Ñ = Γ−1/2N is standard normal. The
transformed signal̃X = Γ−1/2S belongs to the subspacẽE = Γ−1/2E . Therefore, the density
of X̃ can be represented asp(x̃) = g̃(ΠẼx̃)φ(x̃) where ΠẼ is the projector corresponding tõE .
Coming back the variablex yields the density ofX in the form p(x) = g(Tx)φ(Γ−1/2x) where
T = ΠẼΓ−1/2 .

A.2 Proof of Proposition 2

For any functionψ(x) , it holds that
Z

ψ(x+u)p(x)dx=
Z

ψ(x)p(x−u)dx,

if the integrals exists. Under mild regularity conditions onp(x) and ψ(x) allowing differentiation
under the integral sign, differentiating this with respect tou gives

Z

∇ψ(x)p(x)dx=−
Z

ψ(x)∇p(x)dx. (15)

Let us take the following function

ψh(x) := h(x)−x>E [Xh(X)] ,

whose gradient is
∇ψh(x) = ∇h(x)−E [Xh(X)] .

The vectorβ(h) is the expectation of−∇ψh . From Eq.(15) and using∇p(x) = ∇ logp(x) p(x) , we
have

β(h) =
Z

ψh(x)∇ logp(x) p(x)dx.

270

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

Applying Eq.(2) to the above equation yields

β(h) =
Z

ψh(x)∇ logg(Tx) p(x)dx−
Z

ψh(x)Γ−1x p(x)dx

= T∗
Z

ψh(x)∇g(Tx)φθ,Γ(x)dx−Γ−1
Z

xψh(x)p(x)dx. (16)

Under the assumptionE
[
XX>

]
= Id , we get

E [Xψh(X)] = E [Xh(X)]−E

[
XX>

]
E [Xh(X)] = 0,

that is, the second term of Eq.(16) vanishes. Since the first term of Eq.(16) belongs toI by the
definition of I , we finally haveβ(h) ∈ I .

A.3 Proof of Theorem 3

For a fixed functionh, we will essentially apply Lemma 5 stated below for each coordinate ofβY(h) .
Denoting thek-th coordinate of a vectorv by v(k) , andy = Σ− 1

2 x, we have

h̃(k)(x) =
∣∣∣[∇h(y)−yh(y)](k)

∣∣∣≤ B(1+‖y‖)≤ B(1+K ‖x‖) .

It follows that h̃(k)(x) is such that

E

[
exp

(
λ0

BK
h̃(k)(x)

)]
≤ a0exp

(
λ0

K

)
,

and hence satisfies the assumption of Lemma 5. Denoting byσ̂2
k the sample variance of̃h(k) , we

apply the lemma withδ′ = δ/d , obtaining by the union bound that with probability at least 1−4δ ,
for all 1≤ k≤ d :

([
βY− β̂Y

](k))2

≤ 4σ̂2
k
log
(
dδ−1

)

n
+C1(λ0,a0,B,d,K)

log2(nδ−1) log2 δ−1

n
3
2

,

where we have used the inequality(a+b)2≤ 2(a2+b2) , andC1 denotes some function depending
only on the indicated quantities. Now summing over the coordinates, taking the square root and
using

√
a+b≤√a+

√
b leads to:

∥∥∥βY− β̂Y

∥∥∥≤ 2

√
σ̂2

Y(h)
logδ−1 + logd

n
+C2(λ0,a0,B,d,K)

(
log(nδ−1) logδ−1

n
3
4

)
, (17)

with probability at least 1− 4δ . To turn this into a uniform bound over the family{hk}Lk=1, we
simply apply this inequality separately to each function in the family withδ′′ = δ/L. This leads to
the first announced inequality of theorem. We obtain the second one by multiplying the first by
Σ− 1

2 to the left and using the assumption on
∥∥Σ−1

∥∥.

271

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

Lemma 5 Let X be a real random variable such that for someλ0 > 0:

E [exp(λ0 |X|)]≤ a0 < ∞.

Let X1, . . . ,Xn denote an i.i.d. sequence of copies of X . Let µ= E [X] , µ̂ = 1
n ∑n

i=1Xi and σ̂2 =
1

2n(n−1) ∑i 6= j(Xi−Xj)
2 be the sample variance.

Then for anyδ < 1
4 the following holds with probability at least1−4δ , where c is a universal

constant:

|µ− µ̂| ≤
√

2σ̂2 logδ−1

n
+cλ−1

0 max
(
1, log

(
na0δ−1))

((
logδ−1

n

) 3
4

+
logδ−1

n

)
.

Proof For A > 0 denoteXA = X1{|X| ≤ A} . We decompose
∣∣∣∣∣
1
n

n

∑
i=1

Xi−µ

∣∣∣∣∣≤
∣∣∣∣∣
1
n

n

∑
i=1

(
Xi−XA

i

)
∣∣∣∣∣+
∣∣∣∣∣
1
n

n

∑
i=1

XA
i −E

[
XA]

∣∣∣∣∣+
∣∣E
[
X−XA]∣∣ ;

these three terms will be denoted byT1,T2,T3 . By Markov’s inequality, it holds that

P [|X|> t]≤ a0exp(−λ0t) ,

Fixing A = log
(
nδ−1a0

)
/λ0 for the rest of the proof, it follows by takingt = A in the above

inequality that for any 1≤ i ≤ n:

P
[
XA

i 6= Xi
]
≤ δ

n
.

By the union bound, we then haveXA
i = Xi for all i , and thereforeT1 = 0, except for a setΩA of

probability bounded byδ .
We now deal with the third term: we have

T3 = |E [X1{|X|> A}]| ≤ E [X1{X > A}] =
Z ∞

0
P [X1{X > A}> t]dt

≤ AP [X > A]+
Z ∞

A
a0exp(−λ0t)dt

≤ a0
(
A+λ−1

0

)
exp(−λ0A)

=
δ

nλ0

(
1+ log

(
nδ−1a0

))
.

Finally, for the second term, since
∣∣XA
∣∣≤ A= λ−1

0 log
(
nδ−1a0

)
, Bernstein’s inequality ensures

that with probability as least 1−2δ the following holds:
∣∣∣∣∣
1
n

n

∑
i=1

XA
i −E

[
XA]

∣∣∣∣∣≤
√

2Var[XA] logδ−1

n
+2

log
(
nδ−1a0

)
logδ−1

λ0n
.

We finally turn to the estimation of Var
[
XA
]
. The sample variance ofXA is given by

(σ̂A)2 =
1

2n(n−1) ∑
i6= j

(
XA

i −XA
j

)2
.

272

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

Note that(σ̂A)2 is an unbiased estimator of Var
[
XA
]
. Furthermore, replacingXA

i by X′Ai in the
above expression changes this quantity at most of 4A2/n sinceXA

i appears only in 2(n−1) terms.
Therefore, application of the bounded difference (a.k.a. McDiarmid’s)inequality (McDiarmid ,
1989) to the random variablêσA yields that with probability 1−δ we have

∣∣(σ̂A)2−Var
[
XA]∣∣≤ 4A2

√
logδ−1

n
;

finally, except for samples in the setΩA which we have already excluded above, we haveσ̂A = σ̂ .
Gathering these inequalities lead to the conclusion.

A.4 Proof of Theorem 4

In this proof we will denote byC(·) a factor depending only on the quantities inside the parentheses,
and whose exact value can vary from line to line.

From Lemmas 9 and 10 below, we conclude that for big enoughn, the following inequality is
satisfied with probability 1−2/n:

∥∥∥Σ−
1
2 − Σ̂−

1
2

∥∥∥≤C(a0,λ0,K)

√
d logn

n
; (18)

also, it is a a weaker consequence of Lemmas 7 and 8 that the following inequalities hold with
probability at least 1−1/n each (again forn big enough):

1
n

n

∑
i=1

‖Xi‖ ≤C(a0,λ0) , (19)

1
n

n

∑
i=1

‖Xi‖2≤C(a0,λ0) . (20)

Let us denoteΩ the set of samples where (18), (19) and (20) are satisfied simultaneously; from the
above, we conclude that for large enoughn , the setΩ contains the sample with probability at least
1−4/n. For the remainder of the proof, we suppose that this condition is satisfied.

For any functionh, we have

∥∥∥β̂Ŷ−βY

∥∥∥≤
∥∥∥β̂Ŷ− β̂Y

∥∥∥+
∥∥∥β̂Y−βY

∥∥∥ .

Note that (up to some changes in the constants) the assumption on the Laplace transform is stronger
than the assumption of Theorem 3; hence equation (17) in the proof of this theorem holds and we
have with probability at least 1−4δ , for any function in the family{hk}Lk=1 :

∥∥∥βY− β̂Y

∥∥∥≤ 2

√
σ̂2

Y(h)
log(Lδ−1)+ logd

n
+C(λ0,a0,B,d,K)

(
log(nLδ−1) log

(
Lδ−1

)

n
3
4

)
. (21)

273

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

On the other hand, conditions (18) and (19) imply that for any functionh in the family,

∥∥∥β̂Ŷ− β̂Y

∥∥∥=

∥∥∥∥∥
1
n

n

∑
i=1

(
h̃(Ŷi)− h̃(Yi)

)∥∥∥∥∥≤
M
n

n

∑
i=1

∥∥∥Ŷi−Yi

∥∥∥

≤ M
n

∥∥∥Σ−
1
2 − Σ̂−

1
2

∥∥∥
n

∑
i=1

‖Xi‖

≤C(a0,λ0,K)M

√
d logn

n
.

where in the first inequality, we have used the Lispchitz assumption on the functionh.
One remaining technicality is to replace the term̂σY(h) (which cannot be evaluated from the

data since it depends on the exactly whitened dataYi) in (21) by σ̂Ŷ(h) , which can be evaluated
from the data. For this use the following, holding for any functionh in the family:

∣∣∣σ̂2
Y(h)− σ̂2

Ŷ
(h)
∣∣∣=

1
2n(n−1)

∣∣∣∣∣∑i6= j

∥∥∥h̃(Yi)− h̃(Yj)
∥∥∥

2
−
∥∥∥h̃(Ŷi)− h̃(Ŷj)

∥∥∥
2
∣∣∣∣∣ ;

let us now focus on one term of the above sum:
∥∥∥h̃(Yi)− h̃(Yj)

∥∥∥
2
−
∥∥∥h̃(Ŷi)− h̃(Ŷj)

∥∥∥
2

=
(

h̃(Yi)− h̃(Ŷi)− h̃(Yj)+ h̃(Ŷj)
)>(

h̃(Yi)− h̃(Yj)+ h̃(Ŷi)− h̃(Ŷj)
)

≤M2
(∥∥∥Yi−Ŷi

∥∥∥+
∥∥∥Yj −Ŷj

∥∥∥
)(∥∥Yi−Yj

∥∥+
∥∥∥Ŷi−Ŷj

∥∥∥
)

≤M2
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥
(∥∥∥Σ−

1
2

∥∥∥+
∥∥∥Σ̂−

1
2

∥∥∥
)(
‖Xi‖+

∥∥Xj
∥∥)2

≤M2C(a0,λ0,K)

√
d logn

n

(
‖Xi‖2 +

∥∥Xj
∥∥2
)

,

where we have used the Cauchy-Schwarz inequality, the triangular inequality and the Lipschitz
assumption oñh at the third line. Summing this expression overi 6= j , and using condition (20),
we obtain ∣∣∣σ̂2

Y(h)− σ̂2
Ŷ
(h)
∣∣∣≤M2C(a0,λ0,K)

√
d logn

n
,

so that we can effectively replacêσY by σ̂Ŷ in (21) up to additional lower-order terms. This
concludes the proof of the first inequality in the theorem.

For the second inequality, we additionally write

dist(̂γ(h),I)≤
∥∥∥Σ̂−

1
2 β̂Ŷ−Σ−

1
2 βY

∥∥∥

≤
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥‖βY‖+
∥∥∥Σ−

1
2

∥∥∥
∥∥∥β̂Ŷ−βY

∥∥∥+
∥∥∥Σ−

1
2 − Σ̂−

1
2

∥∥∥
∥∥∥β̂Ŷ−βY

∥∥∥ ;

we now conclude using (18), the previous inequalities controlling
∥∥∥β̂Ŷ−βY

∥∥∥ , the assumption on
∥∥∥Σ− 1

2

∥∥∥ and the fact that

‖βY‖= ‖E [Xh(X)−∇h(X)]‖ ≤ B(1+E [‖x‖])≤C(a0,λ0,B) .

274

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

Appendix B. Additional Proofs and Results

We have used Bernstein’s inequality, which we recall here for completeness under the following
form:

Theorem 6 (Bernstein’s inequality) Suppose X1, . . . ,Xn are i.i.d. real random variables such that
|X| ≤ b and VarX= σ2 . Then

P

[∣∣∣∣∣n
−1∑

i

Xi−E(Xi)

∣∣∣∣∣>
√

2σ2 x
n

+2b
x
n

]
≤ 2exp(−x).

The following results concern the estimation ofΣ− 1
2 , needed in the proof of Theorem 4. We divide

this into 4 lemmas.

Lemma 7 Let ξ1, . . . ,ξn be i.i.d. withE [ξ1] = m and assumelogE [expµ(ξ1−m)]≤ cµ2/2 holds
for all µ≤ µ0 , for some positive constants c and µ0 . Then for sufficiently large n

P

[
n−1/2

n

∑
i=1

(ξi−m) > z

]
≤ e−c−1z2/2.

Proof This is an application of Chernoff’s bounding method:

Rn := logP

[
n−1/2

n

∑
i=1

(ξi−m) > z

]

≤ −µz
√

n+ logE

[
exp

n

∑
i=1

µ(ξi−m)

]

= −µz
√

n+nlogE [expµ(ξ1−m)] ,

where the above inequality is Markov’s. We selectµ= zn−1/2c−1 . For n sufficiently large, it holds
that µ≤ µ0 and by the lemma condition

Rn≤−µz
√

n+ncµ2/2 =−z2c−1/2.

The goal of the following Lemma is merely to replace the assumption about the Laplace trans-
form (in the previous Lemma) by a simpler assumption (existence of some exponential moment).
This allows a simpler statement – as far as we are not really interested in the precise constants
involved.

275

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

Lemma 8 Let X be a real random variable such that for some µ0 > 0:

E [exp(µ0 |X|)] = e0 < ∞.

Then there exists c> 0 (depending only on µ0 and e0) such that

∀µ∈ R |µ| ≤ µ0/2⇒ logE [exp(µ(X−E [X]))]≤ cµ2/2.

Proof Note thatX has finite expectation since|X| ≤ µ−1
0 expµ0 |X| . Taylor’s expansion gives that

∀x∈ R, ∀µ∈ R, |µ|< µ0/2⇒ exp(µx)≤ 1+µx+
µ2

2
x2exp(|µ0| |x|/2). (22)

There exists some constantc > 0 (depending onµ0) such that

∀x∈ R, x2exp(|µ0x|/2)≤ c(exp(|µ0x|)) .

Using this and the assumption, taking expectation in (22) yields that forc′ = 1
2ce0 > 0

∀µ∈ R, |µ|< µ0/2⇒ E [exp(µX)]≤ 1+µE [X]+c′µ2≤ exp
(
µE [X]+c′µ2) ,

implying
E [exp(µ(X−E [X]))]≤ exp

(
c′µ2) ;

taking logarithms on both sides yields the conclusion.

The next two Lemmas, once combined, provide the confidence bound on
∥∥∥Σ− 1

2 − Σ̂− 1
2

∥∥∥ which

we need for the proof of Theorem 4.

Lemma 9 Let X1, . . . ,Xn be i.i.d. vectors inRd . Assume that, for some µ0 > 0,

E

[
exp
(

µ0‖X‖2
)]

= e0 < ∞ ; (23)

denoteΣ = E
[
XX>

]
and Σ̂ it empirical counterpart. Then for some constantκ depending only on

(µ0,e0) , and for big enough n,

R∗n := P

[∥∥∥Σ− Σ̂
∥∥∥>

√
κd logn

n

]
≤ 2

n
.

Proof Along this proofC,c will denote constants depending only onµ0,e0 ; their exact value can
change from line to line. Note that by definition ofΣ and Σ̂ ,

∥∥∥Σ− Σ̂
∥∥∥= sup

θ∈Bd

1
n

n

∑
i=1

(
(X>i θ)2−E

[(
X>θ

)2
])

,

where Bd denotes the unit ball ofRd . For ε < 1 , let Bd,ε denote aε-packing set ofBd, that is,
a discreteε -separated set of points ofBd of maximum cardinality. By the maximality assumption
and the triangle inequality,Bd,ε is also a 2ε-covering net ofBd. On the other hand, theε-balls

276

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

centered on these points are disjoint, and their union is included in the ball of radius(1+ε) , so that
a volume comparison allows us to conclude that #(Bd,ε)εd ≤ (1+ ε)d ≤ 2d . This shows thatBd,2ε
is a 4ε-covering set ofBd of cardinality bounded byε−d.

Now, if θ,θ′ ∈ Bd are such that‖θ−θ′‖ ≤ 4ε , then we have
∣∣∣∣∣

n

∑
i=1

(X>i θ)2−
n

∑
i=1

(X>i θ′)2

∣∣∣∣∣=
∣∣∣∣∣

n

∑
i=1

(X>i (θ−θ′))(X>i (θ+θ′))

∣∣∣∣∣

≤ 8ε
n

∑
i=1

‖Xi‖2 ,

where we have applied the Cauchy-Schwarz inequality at the last line.
Now application of Lemmas 7 and 8 yields that forn large enough, with probability at least

1−1/n,

n−1
n

∑
i=1

‖Xi‖2≤ E

[
‖X‖2

]
+

√
clogn

n
≤C.

The above implies that with probability at least 1−1/n,

sup
θ,θ′∈Bd:‖θ−θ′‖≤2ε

n−1/2

∣∣∣∣∣
n

∑
i=1

(X>i θ)2−
n

∑
i=1

(X>i θ′)2

∣∣∣∣∣≤Cε
√

n.

We can also show a similar inequality about the corresponding expectation

sup
θ,θ′∈Bd:‖θ−θ′‖≤2ε

n−1/2
∣∣∣E
[
(X>θ)2

]
−E

[
(X>θ′)2

]∣∣∣≤Cε
√

n.

We now selectε = n−
1
2 . Therefore, approximating anyθ ∈ Bd by its nearest neighbour inBd,2ε

and using the above inequalitites, we obtain that

R∗n ≤ 1
n

+P

[
sup

θ∈Bd,2ε

n−1/2
n

∑
i=1

(
(X>i θ)2−E

[(
X>θ

)2
])

>
√

κd logn−C

]

≤ 1
n

+ ∑
θ∈Bd,2ε

P

[
n−1/2

n

∑
i=1

(
(X>i θ)2−E

[(
X>θ

)2
])

>
√

(κ−C)d logn

]

≤ 1
n

+#(Bd,2ε)exp{−0.5c−1(κ−C)d logn} ≤ 2
n

provided thatκ is chosen so thatc−1(κ−C)d/2 > d/2+1. Here we have again used Lemmas 7
and 8, noting that for anyθ ∈ Bd it holds thatE

[
expµ0

∣∣θ>X
∣∣]≤ E [expµ0‖X‖] < exp(µ0)+e0 by

assumption.

Lemma 10 Let A,B be two real positive definite symmetric matrices satisfying‖A−B‖ ≤ ε with
ε≤ (2

∥∥A−1
∥∥)−1 . Then there exists a constant C such that

∥∥∥A−
1
2 −B−

1
2

∥∥∥≤C
∥∥A−1

∥∥ 3
2 ε .

277

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

Proof
Note that for‖M‖< 1, it holds that

(I −M)−
1
2 = ∑

k≥0

γkM
k ,

with (γk)≥ 0 the coefficients of the power series development of the function 1/
√

1−x.
Denoteλmax(M),λmin(M) the biggest and smallest eigenvalue of a matrixM . Put K = ‖A‖ =

λmax(A) andL =
∥∥A−1

∥∥= λmin(A)−1 . Note thatLK≥ 1 . PutA′= A/K,B′= B/K . All eigenvalues
of A′ belong to(0,1] and therefore

∥∥I −A′
∥∥= λmax(I −A′) = 1−λmin(A

′) = 1− (LK)−1 .

By the assumption thatε≤ (2L)−1 , it holds that

λmax(B
′) = K−1‖B‖ ≤ K−1(‖A‖+ ε)≤ 1+(2LK)−1≤ 3

2
,

and that
λmin(B

′)≥ K−1(λmin(A)− ε)≥ (2KL)−1 ,

from this we deduce that

∥∥I −B′
∥∥= max(λmax(B

′)−1,1−λmin(B
′))≤max

(
1
2
,1− (2LK)−1

)
= 1− (2LK)−1 .

PuttingA = I −A′,B = I −B′ , we have ensured that
∥∥A
∥∥< 1 and

∥∥B
∥∥< 1; we can thus write

A′−
1
2 −B′−

1
2 =

(
I −A

)− 1
2 −
(
I −B

)− 1
2

= ∑
k≥1

γk(A
k−B

k
) .

Noticing that

∥∥∥A
k−B

k
∥∥∥=

∥∥∥∥∥
k−1

∑
i=0

A
i
(A−B)B

k−1−i

∥∥∥∥∥≤ kmax
(∥∥A

∥∥ ,
∥∥B
∥∥)k−1∥∥A′−B′

∥∥ ,

we obtain
∥∥∥A′−

1
2 −B′−

1
2

∥∥∥≤
∥∥A′−B′

∥∥∑
k≥1

kγk
(
1− (2LK)−1)k−1

=
ε
K

1
2
(2LK)

3
2 = CL

3
2 K

1
2 ε .

From this we deduce that
∥∥∥A−

1
2 −B−

1
2

∥∥∥= K−
1
2

∥∥∥A′−
1
2 −B′−

1
2

∥∥∥≤CL
3
2 ε.

278

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

Appendix C. Clustering Results

The goal of NGCA is to discover interesting structure in the data. It is naturally a difficult task to
quantify this property precisely. In this appendix we try to make this apparent using clustering tech-
niques. We apply a mean distance linkage clustering algorithm to data projectedin lower dimension
using various techniques: NGCA, FastICA, PCA, local linear embedding (LLE, Roweis and Saul,
2000), Isomap (Tenenbaum et al., 2000).

There is no single well-defined performance measure for the performance of clustering. Here
we resort to indirect criteria that should however allow a comparative study. We consider the two
following criteria:

(1) Label cross-information. We apply clustering to benchmark data for which label informa-
tion Y is available. Although this information is not used in determining the clustering, wewill
use it as a yardstick to measure whether the clustering gives rise to relevant structure discovery.
We measure this by the scaled mutual informationI(C,Y)/H(Y), whereC is the cluster labelling
and the normalization ensures that the quantity lies between 0 and 1. Note that there isa priori no
mathematical reason why clustering should be related to label information, but this is often the case
for real data, so this can be a relevant criterion of structure discovery. A higher score indicates a
better match between discovered cluster structure and label structure.

(2) Stability. Recent attempts at formalizing criteria for clustering have proposed that clustering
stability should be a relevant criterion for data clustering (see, e.g., Meinecke et al. , 2002; Lange
et al., 2004). Again, this is only an indirect criterion, as, for example, a trivial clustering algorithm
dividing the space without actually looking at the data would be very stable. But with this caveat in
mind, it provides a relevant diagnostic tool. Here, we measured stability in the following way: the
data is divided randomly into 2 groups of equal size on which we apply clustering. Then, the cluster
labels obtained on group 1 are extended to group 2 by the nearest-neighbor rule and vice-versa.
This thus gives rise to two different cluster labellingsC1,C2 of the whole data and we measure their
agreement through relative mutual informationI(C1,C2)/H(C1,C2) . Again, this score lies in the
interval[0,1] and a high score indicates better stability.

Table 1: Description of data sets
Data set Nb. of Classes Nb. of samples Total dimension Projection Dim.

Oil 3 2000 12 3
Wine 3 178 13 3
Vowel 11 528 10 3
USPS 10 7291 30 10

We consider the “oil flow” data already presented in section 4.2, and additional data sets from
the UCI classification repository, for which the features all take continuous values. (When there are
features taking only discrete values, NGCA is inappropriate since these willgenerally be picked up
as strongly non-Gaussian). Size and dimension of these data sets are given in Table 1.

The results are depicted in Figure 11. On the Oil data set, NGCA works verywell for both cri-
teria (as was expected from the good visualization results of section 4.2). On the Wine data set, the
different algorithms appear to be divided in two clear groups, with the performance in the first group
(NGCA, Isomap, LLE) noticeably better than in the second (PCA, FastICA). NGCA belongs to the

279

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nb. of clusters

Oil Data: Class Label Information

NGCA
PCA
LLE
 Isomap
FastICA−tanh
FastICA−pow3
Org.Data

2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nb. of clusters

Oil Data: stability criterion

NGCA
PCA
LLE
 Isomap
FastICA−tanh
FastICA−pow3
Org.Data

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nb. of clusters

Wine Data: Class Label Information

NGCA
PCA
LLE
 Isomap
FastICA−tanh
FastICA−pow3
Org.Data

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nb. of clusters

Wine Data: Stability Criterion

NGCA
PCA
LLE
 Isomap
FastICA−tanh
FastICA−pow3
Org.Data

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Nb. of clusters

Vowel Data: Class Label Information

NGCA
PCA
LLE
 Isomap
FastICA−tanh
FastICA−pow3
Org.Data

2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nb. of clusters

Vowel Data: Stability Criterion

NGCA
PCA
LLE
 Isomap
FastICA−tanh
FastICA−pow3
Org.Data

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Nb. of clusters

USPS Data: Class Label Information

NGCA
PCA
LLE
 Isomap
FastICA−tanh
FastICA−pow3
Org.Data

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Nb. of clusters

USPS Data: Stability Criterion

NGCA
PCA
LLE
 Isomap
FastICA−tanh
FastICA−pow3
Org.Data

Figure 11: Clustering results

280

NON-GAUSSIAN COMPONENTS OF AHIGH-DIMENSIONAL DISTRIBUTION

better group although the best methods appear to be the non-linear projections LLE and Isomap.
The results of the Vowel data set are probably the most difficult to interpret, as most methods appear
to be relatively close. Isomap appears as the winner method in this case, with NGCA quite close
in terms of label cross-information and in the middle range for stability. Finally, for the USPS data
set we used the 30 first principal components obtained by Kernel-PCA and a polynomial kernel of
degree 3. In this case, PCA gives better results in terms of label cross-information with NGCA a
close second, while NGCA is the clear winner in terms of stability.

To summarize: NGCA performed very well in 2 of the 4 data sets tried (Oil data and USPS), and
was in the best group of methods for the Wine Data and had average performance on the last data set.
Even when NGCA is outperformed by nonlinear methods LLE and Isomap, it generally achieves a
comparable performance though being a linear method, which has other advantages such as clearer
geometrical interpretation, direct extension to additional data if needed, andpossible assessment of
variable importance in original space.

References

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.Neural
Computation, 15(6):1373–1396, 2003.

C. M. Bishop, M. Svensen and C. K. I. Wiliams. GTM: The generative topographic mapping.Neural
Computation, 10(1):215–234, 1998.

C. M. Bishop and G. D. James. Analysis of multiphase flow usingdual-energy gamma densitometry and
neural networks.Nuclear Instruments and Methods in Physics Research, A327:580–593, 1993.

P. Comon. Independent component analysis—a new concept?Signal Processing, 36:287–314, 1994.

T. F. Cox and M. A. A. Cox.Multidimensional Scaling. Chapman & Hall, London, 2001.

L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition, Springer, 1996.

B. Efron. Bootstrap methods: Another look at the jackknife.The Annals of Statistics, 7(1):1–26, 1979.

J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data analysis.IEEE Transac-
tions on Computers, 23(9):881–890, 1975.

S. Harmeling, A. Ziehe, M. Kawanabe and K.-R. Müller. Kernel-based nonlinear blind source separation.
Neural Computation, 15(5):1089–1124, 2003.

P. J. Huber. Projection pursuit.The Annals of Statistics, 13:435–475, 1985.

A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis.IEEE Transactions
on Neural Networks, 10(3):626–634, 1999.

A. Hyvärinen, J. Karhunen and E. Oja.Independent Component Analysis. Wiley, 2001.

M. C. Jones and R. Sibson. What is projection pursuit?Journal of the Royal Statistical Society, series A,
150:1–36, 1987.

C. McDiarmid. On the method of bounded differences,Surveys in Combinatorics, London Math. Soc.
Lecture Notes Series 141:148–188, 1989.

281

BLANCHARD , KAWANABE , SUGIYAMA , SPOKOINY AND M ÜLLER

F. Meinecke, A. Ziehe, M. Kawanabe, and K.-R. Müller. A resampling approach to estimate the stabil-
ity of one-dimensional or multidimensional independent components.IEEE Transactions on Biomedical
Engineering, 49:1514–1525, 2002.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.Science, 290(5500):
2323–2326, 2000.

T. Lange, V. Roth, M. L. Braun and J. M. Buhmann. Stability-based validation of clustering solutions.Neural
Computation, 16(6):1299-1323, 2004.

B. Scḧolkopf, A. J. Smola and K.–R. M̈uller. Nonlinear component analysis as a kernel eigenvalueproblem.
Neural Computation, 10(5):1299–1319, 1998.

J. B. Tenenbaum, V. de Silva and J. C. Langford. A global geometric framework for nonlinear dimensionality
reduction.Science, 290(5500):2319–2323, 2000.

282

Journal of Machine Learning Research 7 (2006) 283–306 Submitted 9/05; Published 2/06

Some Discriminant-Based PAC Algorithms

Paul W. Goldberg PWG@DCS.WARWICK .AC.UK

Department of Computer Science
University of Warwick
Coventry, CV4 7AL, UK

Editor: Dana Ron

Abstract
A classical approach in multi-class pattern classificationis the following. Estimate the probability
distributions that generated the observations for each label class, and then label new instances by
applying the Bayes classifier to the estimated distributions. That approach provides more useful
information than just a class label; it also provides estimates of the conditional distribution of class
labels, in situations where there is class overlap.

We would like to know whether it is harder to build accurate classifiers via this approach, than
by techniques that may process all data with distinct labelstogether. In this paper we make that
question precise by considering it in the context of PAC learnability. We propose two restrictions
on the PAC learning framework that are intended to correspond with the above approach, and
consider their relationship with standard PAC learning. Our main restriction of interest leads to
some interesting algorithms that show that the restrictionis not stronger (more restrictive) than
various other well-known restrictions on PAC learning. An alternative slightly milder restriction
turns out to be almost equivalent to unrestricted PAC learning.

Keywords: computational learning theory, computational complexity, pattern classification

1. Introduction

We present some PAC learning algorithms for various learning problems, within a new restriction
of the PAC setting. We begin by explaining the motivation for studying the new restriction, and
continue with some general results about it, followed by the algorithms.

1.1 Background and Motivation

A standard approach to classification problems (see for example (Duda and Hart, 1973), page 17) is
the following. For each class, find adiscriminant functionthat maps elements of the input domain
to real values. These functions can be used to label any elementx of the domain with the class label
whose associated discriminant function takes the largest value onx. The discriminant functions are
usually estimates of the probability densities of points in each class, weighted bythe class prior
(relative frequency of that class), in which case we are using theBayes classifier.

If it is possible to obtain good estimates of the probability distributions that generated the label
classes, then (for reasons we explain below) these are often more useful than just an accurate clas-
sification rule. However, this raises the question of how much harder it becomes to learn to classify
data well, if we actually insist on learning the distributions. This motivates our choice to study this
general question in the context of PAC learning, since PAC learning gives a framework for results

c©2006 Paul W. Goldberg.

GOLDBERG

giving lower bounds on sample-size or computational requirements. Theseresults allow different
models of the learning process to be provably distinguished from each other, in terms of the learning
problems that are tractable within each model.

Most recent work on pattern classification (for example work on support vectors (Cristianini
and Shawe-Taylor, 2000)) of course does not try to learn label classdistributions, but rather to
find decision boundaries that optimize some performance guarantee, usually misclassification rate.
Performance guarantees are derived from observed classification performance in conjunction with
other features of the boundary such as syntactic or combinatorial complexity, or the number of
support vectors and margin of separation. The general approach clearly requires examples with
different labels to be taken in conjunction with each other when finding a decision boundary. By
contrast, discriminant functions are constructed from individual label classes in isolation. It seems
clearly “easier” to find a good classifier by considering all data together (so as to apply empirical
risk minimisation), than by insisting that each label class must be independently converted into a
discriminant function. Noting Vapnik’s observation ((Vapnik, 2000), page 30) that one should not
try to solve a problem via solving a more general problem, why exactly would we want to estimate
the distributions of label classes?

The answer is that when the distributions can be found, the extra informationthat is obtained is
often very useful in practice. In contrast with decision boundaries, weobtain for a domain element
x, the values of the probability densities of label classes atx, which provide a conditional distri-
bution over the class label ofx. A predicted class label forx can then take into account variable
misclassification penalties, or changes in the assumed class priors. There are of course other ways
to obtain such distributions, for example using logistic regression, or more generally (for k-class
classification) neural networks withk real-valued outputs re-scaled using the softmax activation
function (see (Bishop, 1995) for details). However, unsupervised learning for each class—if it can
be done successfully—has other advantages over these techniques, such as the following.

1. Label classes can be added without re-training the system. So for example if a new symbol
were added to a character set, then given a good estimate of the probability distribution over
images of the new symbol, this can be used in conjunction with pre-existing modelsfor how
the other symbols are generated.

2. Outlying instances are those that lie in regions of the domain where the distributions have
low weight. We usually cannot assign a sensible label to such instances, however they may at
least be recognised as a result of all class label distributions having very small weight around
such an instance.

3. For applications such as handwritten digit recognition, it is arguably morenatural—from
the perspective of cognitive modeling—to model the data generation process in terms of 10
separate probability distributions, than as a collection of thresholds betweendifferent digits.
This is because a handwritten zero (say) is nearly always the result of aprocess that first
chooses the label “0” and then creates the image. It is not the result of a process that first
generates a character and then assigns it the label “0” based on context, appearance or other
criteria.

Another difficulty with decision boundaries arises specifically in the contextof multiclass clas-
sification. It has been noted (Allwein et al., 2000) that multiclass classifiersare often constructed

284

SOME DISCRIMINANT-BASED PAC ALGORITHMS

using multiple 2-class classifiers. How to combine them is a challenging topic that has itself re-
ceived much recent attention, see for example (Guruswami and Sahai, 1999; Allwein et al., 2000).
In practical studies such as (Platt et al., 2000) that build a multi-class classifier from a collection of
2-class classifiers, a distinction is made between separating each class from the union of the others
(1-v-r classifiers, where 1-v-r stands for one-versus-rest) and pairwiseseparation (1-v-1classifiers).
Neither is entirely satisfactory—for example it may be possible to perform linear 1-v-1 separation
for all pairs of classes, but not linear 1-v-r separation, while 1-v-1 classification (as studied in (Platt
et al., 2000)) raises the problem of combining the collection of pairwise classifiers in a principled
way to get an overall classification, for example ensuring that all classesare treated the same way.
In (Platt et al., 2000), the first test for any unlabeled input is to apply the separator that distinguishes
0 from 9. Thus 0 and 9 are being treated differently from other digits (which in turn are also treated
differently from each other.)

With regard to PAC learning, the approach of applying unsupervised learning to each label class,
can treat situations where class overlap occurs (as is usually the case in practice). Standard PAC
algorithms do not address this problem (although there have been extensions such as “probabilistic
concepts” (Kearns and Schapire, 1994) that do so, and methods usingsupport vectors that also allow
decision boundaries that do not necessarily agree with all observed data). It is not hard to verify
(see (Palmer and Goldberg, 2005)) that when we have good estimates of the class label distributions
(in a sense described below in Section 1.3) then the associated classifier is approximately optimal in
the agnostic PAC sense. For large data set sizes, it becomes feasible to findgood estimates of these
distributions, and obtain this more useful “summary” of the data.

The algorithms described in this paper are given in the context of simple 2-class classification,
as opposed to multi-class classification. This is because we aim to explore the problems arising
from an insistence upon treating each label class independently. The algorithms would however
apply in a multi-class context where each pair of classes is separated by a boundary belonging to
the given set of boundaries.

1.2 Formal Definition of the Learning Framework

In PAC learning (see for example (Anthony and Biggs, 1992) for a detailed introduction) there is
a source of data consisting of instances generated by a probability distribution D over a domainX,
labeled using an unknown “target function”t : X −→ {0,1}. The objective is to find a classifier
h : X −→{0,1} which is a good approximation tot with respect to probability measureD. As usual
we will let ε denote a misclassification rate (probability thatt andh disagree on randomx) andδ
denote the uncertainty (probability that error rateε is not attained). We refer to the members of
t−1(1) as the “positive examples” and the members oft−1(0) as the “negative examples”.

We say that a setC of functions fromX to {0,1} (the “concept class”) is PAC learnable if there
exists an algorithmA that for anyt ∈ C , with probability at least 1− δ outputsh : X −→ {0,1}
having misclassification rate at mostε. A is required to run in time polynomial inε−1 andδ−1 and
other parameters (usually, the syntactic description length oft and members of the training data).A

may samplex from D in unit time, and obtain(x, t(x)). In this standard definition, we assume thatt
andD may be worst-case (chosen by an adversary).

285

GOLDBERG

Notation. For ` ∈ {0,1} let D` denote the restriction ofD to t−1(`). Let p` denote the class prior
for label`, p` = Prx∼D(t(x) = `). We assume throughout thatp` > 0. Thus

Prx∼D`(x) = 1
p`

Prx∼D(x) for t(x) = `

Prx∼D`(x) = 0 for t(x) = 1− `

For any probability distributionP overX (for exampleD or D`), an algorithmwith access to Pmay
in unit time draw an unlabeled sample fromP.

It is shown in (Haussler et al., 1991) that the standard PAC framework is equivalent to a “two-
button” version, where an algorithm has access to a “positive example oracle” and a “negative
example oracle”. (The two-button version conceals the class priors and only gives the algorithm
access to the distribution as restricted to each class label. Thus the oracles generate examples from
D1 andD0 respectively.) We define a restriction of “two-button” learning as follows.

Definition 1 Suppose algorithmA has access to a distribution P over X, and the output ofA is
a function f : X −→ IR. ExecuteA twice, using D1 (respectively D0) for P. Let f1 and f0 be the
functions obtained respectively. For x∈ X let

h(x) = 1 if f1(x) > f0(x)
h(x) = 0 if f1(x) < f0(x)

h(x) undefined if f1(x) = f0(x)

If A takes time polynomial inε−1 andδ−1, and h is PAC with respect toε andδ, then we will say
that A PAC-learns via discriminant functions.

It is clear that ifA can be found such that the resultingh is PAC, then we have PAC learnability
in the two-button setting, and hence standard PAC learnability.

In specifying the restriction above, we are keeping it both simple and “severe”, in the sense of
making it difficult to find algorithms within the restricted framework. This is with a view to getting
strong positive results, and also to maximizing the potential for negative results (PAC learnable
problems that are hard within the restricted setting). One could devise less severe restrictions to
capture the general idea of learning via discriminant functions. Alternatives are discussed at the end
of this section.

We also consider the following slightly less severe variant related to POSEX learnability as
introduced in (Denis, 1998), in whichA has access toD (in (Denis, 1998) the “EX” oracle), in
addition toD1 (in (Denis, 1998) the “POS” oracle). This is formalized as Definition 2, andit turns
out that we can be much more specific about learnability in this sense, namely itis intermediate
between PAC learnability with uniform misclassification noise and basic PAC learnability.

Definition 2 Suppose algorithmA has access to D in addition to distribution P over X, and the
output ofA is a function f: X −→ IR. ExecuteA twice, using D1 (respectively D0) for P. Let f1
and f0 be the functions obtained respectively. For x∈ X let

h(x) = 1 if f1(x) > f0(x)
h(x) = 0 if f1(x) < f0(x)

h(x) undefined if f1(x) = f0(x)

If A takes time polynomial inε−1 andδ−1, and h is PAC with respect toε andδ, then we will say
that A PAC-learns via discriminant functions with access to D.

286

SOME DISCRIMINANT-BASED PAC ALGORITHMS

POSEX learnability requires thatf1 be a 0/1-valued function that constitutes a PAC hypothesis.
We discuss the relationship in more detail in the next section.
Notation. We refer to the two instances of the unsupervised learning algorithm asA1 andA0, so
thatA1 consists ofA with the (unlabeled) positive data as input, andA0 is A with the (unlabeled)
negative data as input. (Note however that learning according to Definition1 or 2 does not allowA`

to use the value of̀.) We letS̀ denote the sample of unlabeled data drawn byA`.
Let us conclude this section by considering alternative restrictions to PAC learnability that cap-

ture the informal notion of learning via discriminant functions. We could for example ask thatf1
and f0 should be probability distributions. Our reason for not doing so is that, whilewe believe that
the functions produced by our algorithms can be re-scaled on an ad-hocbasis to become probability
distributions, there is no guarantee in the distribution-free PAC setting that they are similar to the
unknown distributionsD1 andD0.

Another natural candidate is a variant in whichA1 andA0 are two distinct agents that know
their class labels. Equivalently, we would be seeking two algorithmsA1 andA0 that respectively
have access to the positive and negative data (equivalently, an algorithmA` that may use the value
`). Observe however that this relaxation is not helpful for any conceptclassC that is closed under
complement (meaning that for allc∈ C , we also haveX \c∈ C). Consequently, any algorithms that
require this relaxation would need to exploit additional prior information about data from different
classes. There’s nothing wrong with that of course, but it departs from our focus on the approach of
independently processing each label class.

1.3 Related Work

There has been much work on the comparison of alternative notions of PAClearning with each
other, with the criterion for distinguishability being that some learning task (concept class) should
be tractable1 in one variant but not in the other. The early paper of (Haussler et al., 1991) showed
that various alternative definitions of PAC learnability are equivalent in thissense. Examples of
distinctions that have been found between different restrictions to the framework include learning
with a restricted focus of attention (Ben-David and Dichterman, 1998, 1994) which is shown to
be more severe that learnability in the presence of uniform misclassification noise. Learnability
with Statistical Queries (Kearns, 1998) is also known to be at least as severe as learnability with
uniform misclassification noise. Perhaps the most important result of this kindis the equivalence
between PAC learnability and “weak” PAC learnability found by (Schapire,1990) which led to
the development of boosting techniques. The paper (Blum, 1994) exhibits aconcept class that
distinguishes PAC learnability from mistake-bound learning, and that is of interest here since we use
the same concept class (in Section 3.3) to show that our restriction of PAC learnability is likewise
distinct from mistake-bound learnability.

We noted that learning under the constraint of Definition 2 is related to POSEXlearning. Specif-
ically we have:

Observation 1 If a concept class and its complement are POSEX learnable, then they are learnable
under Definition 2.

Proof (sketch; the following technique is used in more detail in Theorem 4) LetAP be a POSEX
algorithm forC and letA ′

P be a POSEX algorithm forC ′, the class of sets whose complements are

1. The word “tractable” is usually taken to mean that the computational and sample-size requirements for learning,
should be polynomial in the parameters of the task.

287

GOLDBERG

members ofC . An algorithmA in the sense of Definition 2 works as follows.A can sample from
D, and it uses samples fromD` as “positive” examples.A appliesAP andA ′

P to this data, and at
least one of the two hypothesesh,h′ is PAC, since the “positive” data really is positive from the
perspective of one ofAP andA ′

P.
h andh′ are then tested on further data; the chosen hypothesis should contain almost all samples

from D`, and if bothh andh′ do so, choose the one that contains fewer samples fromD. That
hypothesis with high probability maps samples fromD` to 1 and samples fromD1−` to 0. LetA1

andA0 be the two runs ofA having access toD1 andD0 respectively. The overall hypothesis is
obtained from two functions found byA1 andA0, and its misclassification rate is at most the sum
of their error rates.

In Section 2 we show that if a concept class is learnable in the presence ofnoise, then it and
its complement are POSEX learnable, and hence by the above observation,learnable under Defini-
tion 2. The result of Section 2 answers a question raised by (Letouzey etal., 2000) (the hierarchies
of inclusions given in Equations (4,5) of (Letouzey et al., 2000) can be merged).

There are some interesting algorithms having PAC-like performance guarantees for learning
probability distributions; the topic was introduced in (Kearns et al., 1994), see also (Cryan et al.,
2001; Freund and Mansour, 1999; Frieze et al., 1996; Dasgupta, 1999). The criterion for learning a
distributionD is to obtain a hypothesis distribution which is withinε of D under some measure of
similarity. The KL distance and the variation distance are usually considered.We noted above that
when distributions are learned under these criteria, the Bayes classifier achieves agnostic PAC-ness.
However, the algorithms we describe here differ substantially from these previous ones (as well
as from the algorithms in the much more extensive general literature on unsupervised learning).
The reason is that our aim is not really to approximate a distribution over inputs. Rather, it is to
construct a discriminant function in such a way that we expect it to work well in conjunction with
the corresponding discriminant function constructed on data with the opposite class label.

1.4 Summary of Results

The rest of the paper is organized as follows. In Section 2 we consider learning under Definition 2
in whichA` has access toD in addition toD`. We show that PAC learnability with uniform misclas-
sification noise implies PAC learnability with discriminant functions and access toD. This gives us
a good understanding of how learning under Definition 2 fits in with other restrictions.

In Section 3 we move to the trickier issue of learning according to Definition 1. We exhibit
algorithms that show that the restriction is not more severe than various otherrestrictions of PAC
learning. In Section 3.1 we show that parity functions are learnable in this setting, which dis-
tinguishes it from learnability in the presence of noise (subject to the “noisy parity assumption”,
which is the widespread assumption that parity functions are hard to learn in the presence of uni-
form misclassification noise) as well as Statistical Query (SQ) learnability (Kearns, 1998) (since it
is known from (Kearns, 1998) that parity functions are not learnable using SQs.) In Section 3.2 we
distinguish the setting from learnability from positive data only (or negative data only) by study-
ing the class of unions of intervals on the real line. In Section 3.3 we distinguish the setting from
mistake-bound learning, using a concept class from (Blum, 1994).

The two remaining algorithms indicate some limits to our success at finding algorithms inthe
restricted setting. Section 3.4 shows how to learn linear separators in the plane, using an approach

288

SOME DISCRIMINANT-BASED PAC ALGORITHMS

that we have not been able to extend to three or more dimensions. In Section 3.5 we show how to
learn monomials provided that the input distributionD is an unknown product distribution. Learn-
ing under this sort of assumption is in a sense intermediate between learning withaccess toD
(Definition 2) and learning via discriminant functions in the sense of Definition1.

2. Learning via Discriminant Functions with Access toD

In this section we show that given a standard noise-tolerant PAC learningalgorithm, we may use it
to construct an algorithm for POSEX learning and hence learning in the restriction of Definition 2.
We do this in two stages—Proposition 3 shows how this is achieved provided that an estimate of the
class priorp` is provided toA`, and Theorem 4 extends the result to the setting in which the class
priors are unknown.

Here is an overview of the proofs in this section. Proposition 3 analyses learning with a given
noise rate. This uses a standard definition of noise-tolerant PAC learningin which an algorithmAη

has parameterη. η is the probability that an example is mislabeled; 0≤ η < 1
2. Aη should then be

polynomial in(1
2 −η)−1 in addition to other parameters. Given the class priorp` (the probability

that a random instance has label`) we can generate random samples from a fixed distribution that
is a mixture ofD andD`, such that they have uniform misclassification rate, which allowsAη to be
used. In fact, we show that an additive approximationp` can be used in place ofp`. This is done by
exhibiting a coupling of the two labeled sample distributions (one usingp` and the other usingp`),
in which they are very likely to generate the same data.

In Theorem 4 we exploit the fact that an approximationp` can be used. The algorithm of
Figure 2 tries out a sequence of values forp`, at least one of which is a good approximation top`.
The previous algorithm is used for each of these values, which generates a collection of hypotheses,
and the empirically best hypothesis is shown to be PAC.

Proposition 3 LetAη be an algorithm with parameterη, 0≤η < 1
2, that has access to labeled data,

where elements of X are distributed according to D, with a uniform label noiserate ofη. Suppose
thatAη uses time p(ε−1,δ−1,(1

2−η)−1) (where p is some polynomial), and with probability at least
1−δ returns a hypothesis having error at mostε (with respect to D).

For ` ∈ {0,1} let p̀ = Prx∼D(t(x) = `). Suppose that|p` − p`| ≤ ∆/p(ε−1,δ−1,(1
2 −η)−1).

(∆ ∈ [0,1].) Suppose that the algorithm of Figure 1 is executed with inputp` and access to D̀and
D. Then with probability1−δ−∆, the algorithm outputs f` : X −→ {0,1} satisfying

Prx∼ 1
2(D+D`)

(f`(x) 6= t(x)) ≤ ε for ` = 1

Prx∼ 1
2(D+D`)

(f`(x) 6= 1− t(x)) ≤ ε for ` = 0

Comment. The fact thatf` has error at mostε for x∼ 1
2(D+D`) implies that f` has error at most

2ε for x∼ D.
Proof We may assume that the concept classC is closed under complementation, since ifC is
learnable with misclassification noise then its closure under complementation is alsolearnable under
misclassification noise.

SinceC is closed under complementation, it suffices by symmetry to show thatf1 satisfies: with
probability at least 1−δ−∆, Prx∼ 1

2(D+D1)
(f1(x) 6= t(x)) ≤ ε.

289

GOLDBERG

Input p`, an estimate ofA`’s class prior p̀ (` ∈ {0,1}).
Let η = p`

2p`+1; N = p(ε−1,δ−1,(1
2 −η)−1).

1. Construct a labeled sample S` as follows. For m= 1. . . ,N do:

(a) Let cm be a “fair coin” random variable; cm = 0 or 1 with proba-
bility 1

2; let `m be a0/1 random variable,̀ m = 1 with probability
p`

2p`+1.

(b) If cm = 1, sample x from D and let(x, `m) ∈ S̀ .

(c) If cm = 0, sample x from D̀and let(x,1) ∈ S̀ .

2. Input S̀ to Aη usingη = p`
2p`+1 to obtain a hypothesis h` : X −→ {0,1}.

3. f̀ (x) = h`(x) for all x ∈ X.

Figure 1: Learning in the sense of Definition 2 using noise-tolerant PAC algorithm and estimates of
class priors

Let (x, j) be the element ofS1 constructed on them-th iteration.

Pr(t(x) = 0) = Pr(cm = 1)Prx∼D(t(x) = 0) = 1
2(1− p1)

Pr(t(x) = 1) = 1− 1
2(1− p1) = 1

2(1+ p1)
(1)

Next we give expressions for misclassification rates Pr(j = 0 | t(x) = 1) and Pr(j = 1 | t(x) = 0).
Consider first the case thatt(x) = 1. Note that

Pr(j = 0 | t(x) = 1) = Pr(j = 0 | t(x) = 1∧cm = 0)Pr(cm = 0 | t(x) = 1)
+Pr(j = 0 | t(x) = 1∧cm = 1)Pr(cm = 1 | t(x) = 1).

Pr(j = 0 | t(x) = 1∧cm = 0) = 0, since ifcm = 0 then Step (1c) assigns label 1. Hence

Pr(j = 0 | t(x) = 1) = Pr(j = 0 | t(x) = 1∧cm = 1)Pr(cm = 1 | t(x) = 1). (2)

Whencm = 1, we havej = `m where`m = 1 with probabilityp1/(2p1 +1), so

Pr(j = 0 | t(x) = 1∧cm = 1) = 1− p1

2p1 +1
=

p1 +1
2p1 +1

. (3)

Pr(cm = 1 | t(x) = 1) =
Pr(cm = 1)Pr(t(x) = 1 | cm = 1)

Pr(t(x) = 1)
=

1
2 p1

Pr(t(x) = 1)
.

Pr(t(x) = 1) = 1
2(1+ p1) by Equation (1), hence

Pr(cm = 1 | t(x) = 1) =
1
2 p1

1
2(1+ p1)

=
p1

1+ p1
. (4)

290

SOME DISCRIMINANT-BASED PAC ALGORITHMS

Hence from Equations (2) and (3) and (4),

Pr(j = 0 | t(x) = 1) =
(p1 +1

2p1 +1

)(p1

1+ p1

)
.

Now consider the case thatt(x) = 0 (where(x, j) is the labeled exampled constructed on the
m-th iteration ofA1); note that

Pr(j = 1 | t(x) = 0) = Pr(j = 1 | t(x) = 0∧cm = 0)Pr(cm = 0 | t(x) = 0)
+Pr(j = 1 | t(x) = 0∧cm = 1)Pr(cm = 1 | t(x) = 0).

If cm = 0 then from Step (1c),t(x) = 1. Hence

Pr(cm = 1 | t(x) = 0) = 1
Pr(cm = 0 | t(x) = 0) = 0.

Consequently,
Pr(j = 1 | t(x) = 0) = Pr(j = 1 | t(x) = 0∧cm = 1). (5)

Whencm = 1 we havej = `m where`m = 1 with probabilityp1/(2p1 +1), so

Pr(j = 1 | t(x) = 0∧cm = 1) =
p1

2p1 +1
. (6)

From (5) and (6),

Pr(j = 1 | t(x) = 0) =
p1

2p1 +1
.

Based on the above expressions for the misclassification rates Pr(j = 0 | t(x) = 1) and Pr(j =
1 | t(x) = 0), and noting thatN is defined in Figure 1, Step (1) of the algorithm of Figure 1 is
equivalent to the following:

1. Form= 1. . .N do:

(a) Samplex from the mixture1
2(D+D1).

(b) Samplerm uniformly at random from[0,1].

(c) If t(x) = 1, then ifrm < (p1+1
2p1+1)(p1

1+p1
) labelx incorrectly else labelx correctly.

(d) If t(x) = 0, then ifrm < p1
2p1+1 labelx incorrectly else labelx correctly.

Let DA be the above distribution over samples of sizeN. Let Dη be the following distribution
over samples of sizeN:

1. Form= 1. . .N do:

(a) Samplex from the mixture1
2(D+D1).

(b) Samplerm uniformly at random from[0,1].

(c) If rm < p1
2p1+1 labelx incorrectly else labelx correctly.

291

GOLDBERG

Let SN denote the set of labeled samples of sizeN. Define a distributionD2N over SN ×SN

by using the same sequence ofx’s and rm and the above procedures for constructing the labeled
samples, so that the two marginal distributions overSN areDA andDη. For(S,S′) ∼ D2N,

Pr(S 6= S′) ≤ N · Pr
x∼ 1

2(D+D1)
(t(x) = 1) ·

∣∣∣
(p1 +1

2p1 +1

)(p1

1+ p1

)
− p1

2p1 +1

∣∣∣.

This is because there areN opportunities forSto differ fromS′, and this occurs whenx sampled
from 1

2(D+D′) satisfiest(x) = 1. In that case, the labels will differ whenrm lies between p1
2p1+1 and

(p1+1
2p1+1)(p1

1+p1
). Consequently,

Pr(S 6= S′) ≤ N ·
|p1− p1(

1+p1
1+p1

)|
2p1 +1

≤ N · (2p1 +1)−1 · |p1− p1| ≤ N|p1− p1|.

By definition ofAη, for S∼ Dη, N = p(ε−1,δ−1,(1
2 −η)−1), η = p1

2p1+1, with probability 1−δ,

Aη on inputSreturnsh′ having error Pr(h′(x) 6= t(x)) ≤ ε for x∼ 1
2(D+D1).

Hence forS∼ DA , N = p(ε−1,δ−1,(1
2 −η)−1), with probability 1− δ−N(|p1− p1|), Aη on

input S returnsh′ having error Pr(h′(x) 6= t(x)) ≤ ε for x∼ 1
2(D+D1). Given our assumption that

|p1− p1| ≤ ∆/N = ∆/p(ε−1,δ−1,(1
2 −η)−1), the result follows.

1. Let p(ε,δ) = max0≤η≤1/3 p(ε−1,δ−1,(1
2 − η)−1); where p(·, ·, ·) is the

sample size in terms of error, uncertainty and noise rate used byAη in
Figure 1; Let∆ = δ/32p(ε,δ); N = (16/ε)2 log(128p(ε,δ)/δ2); H = /0.

2. For all p` ∈ [0,1] such thatp` = k∆ for k∈ IN do:

(a) Apply the algorithm of Figure 1 with parameters116ε, 1
4δ.

(b) If h : X −→ {0,1} is returned, add h toH .

3. Draw an unlabeled sample S` of size N using D̀.

4. For each h∈ H , if |{x ∈ S̀ : h(x) = 1}| < (1− 3
16ε)|S̀ | then remove h

from H .

5. Draw a unlabeled sample S of size N using D.

6. Let h′ = argminh∈H |{x∈ S : h(x) = 1}|.

7. f̀ (x) = h′(x) for x∈ X.

Figure 2: Learning in the sense of Definition 2 using noise-tolerant PAC algorithm and unknown
class priors

292

SOME DISCRIMINANT-BASED PAC ALGORITHMS

Theorem 4 Let Aη be a noise-tolerant algorithm as defined in Proposition 3.
For ` ∈ {0,1}, the Algorithm of Figure 2 given access to D` and D, with probability at least

1− δ outputs (in polynomial time) f` with Prx∼D(f`(x) 6= t(x)) ≤ ε for ` = 1, andPrx∼D(f`(x) 6=
1− t(x)) ≤ ε for ` = 0.

Comment. As a consequence we have learnability in the sense of Definition 2, since when we
derive classifierh from f1 and f0, the error ofh is at most the sum of the errors off1 and f0. (By
the error off0 we mean the probability thatf0(x) is not equal to 1− t(x).)
Proof Let P̂rx∈S(π(x)) denote the empirical probability thatx satisfies propertyπ, with respect to
sampleS. We show first that the expression forN used by the algorithm of Figure 2 guarantees that
with probability at least 1− 1

2δ,

∀h∈ H
∣∣∣ Pr
x∼D`

(h(x) = 1)− P̂rx∈S̀ (h(x) = 1)
∣∣∣ ≤ 1

16
ε (7)

∀h∈ H
∣∣∣ Pr
x∼D

(h(x) = 1)− P̂rx∈S(h(x) = 1)
∣∣∣ ≤ 1

16
ε (8)

We are asking that the relative frequencies (overN observations) of a set of at most 2|H | events
should be within 1

16ε of their probabilities. Taking a union bound, it is sufficient thatN should
satisfy: Given anyf : X −→ {0,1}, with probability at least 1−δ/(4|H |)

∣∣∣ Pr
x∼D

(f (x) = 1)− P̂rx∈S(f (x) = 1)
∣∣∣ ≤ 1

16
ε.

Recall Hoeffding’s inequality: LetY1, . . . ,YN be Bernoulli trials with probabilityp of success.
Let T =Y1+ . . .+YN denote the total number of successes. Then forγ ∈ [0,1], Pr(|T− pN|> γN)≤
2e−2Nγ2

.
This means thatN is sufficiently large ifN satisfiesδ/(4|H |) ≥ 2e−2N(ε/16)2

. Since|H | ≤ 1/∆,
it is sufficient forN to satisfyδ∆/4≥ 2e−2N(ε/16)2

.
For ∆ = δ/32p(ε,δ),

δ2/128p(ε,δ) ≥ 2e−2N(ε/16)2

The equation is satisfied by puttingN = (16/ε)2 · log(128p(ε,δ)/δ2), polynomial in the parameters.

Assume that̀ = 1. We assume as before that the concept class is closed under complementation,
so that the proof for̀ = 0 is similar but using the complement oft in place oft.

Note that the algorithm of Figure 1 constructs a noise rateη in the range[0, 1
3] based onp`, so

each application of Algorithm 1 in Step (2a) uses sample size at mostp(1
16ε−1, 1

4δ−1). (Polynomial
p(·, ·) is defined in Figure 2.)

One of the values ofp` used in Step (2a) as input to Algorithm 1 satisfies|p` − p`| < ∆. As a
result, applying Proposition 3 we have that with probability 1− 1

2δ, there existsh∗ ∈ H satisfying

Pr
x∼ 1

2(D+D1)
(h∗(x) 6= t(x)) ≤ 1

16
ε.

We may deduce that
Prx∼D1(h

∗(x) 6= t(x)) ≤ 1
8ε

Prx∼D(h∗(x) 6= t(x)) ≤ 1
8ε. (9)

We show that with probability 1− 1
2δ

293

GOLDBERG

1. for h∈ H , if Prx∼D(h(x) = 0∧ t(x) = 1) > 1
4ε thenh is eliminated in Step 4.

2. h∗ is not eliminated in Step 4.

3. Forh∈ H , if Prx∼D(h(x) = 1∧ t(x) = 0) > 1
2ε thenh is eliminated in Step 6.

Suppose that Prx∼D(h(x) = 0∧ t(x) = 1) > 1
4ε. Then Prx∼D1(h(x) = 0∧ t(x) = 1) > 1

4ε/p1 ≥ 1
4ε.

Hence by (7),

P̂rx∈S1(h(x) = 0∧ t(x) = 1) >
1
4

ε− 1
16

ε =
3
16

ε.

From (7) and (9),

P̂rx∈S1(h
∗(x) = 0∧ t(x) = 1) ≤ 1

8
ε+

1
16

ε =
3
16

ε.

Hence Step 4 does not eliminateh∗ but it eliminates allh with Prx∼D(h(x) = 0∧ t(x) = 1) > 1
4ε.

Now suppose that Prx∼D(h′′(x) = 1∧ t(x) = 0) > 1
2ε for someh′′ ∈ H after Step 4. We have

just shown thath′′ satisfies Prx∼D(h′′(x) = 0∧ t(x) = 1) ≤ 1
4ε. Consequently, Prx∼D(h′′(x) = 1)−

Prx∼D(t(x) = 1) > 1
2ε− 1

4ε = 1
4ε. Meanwhile note from (9) that Prx∼D(h∗(x) = 1)−Prx∼D(t(x) =

1) ≤ 1
8ε. As a result, Prx∼D(h′′(x) = 1)−Prx∼D(h∗(x) = 1) > 1

4ε− 1
8ε = 1

8ε. From (8),

P̂rx∈S(h
′′(x) = 1)− P̂rx∈S(h

∗(x) = 1) > 0.

Henceh′′ is eliminated at Step 6.
Hence allh∈ H with error at leastε are eliminated with probability 1− 1

2δ. With probability
at least 1− 1

2δ there existsh∗ ∈ H with error less thatε. Putting these together, with probability at
least 1−δ we are left withh′ having error less thanε.

3. Learning via Discriminant Functions without Access toD

We exhibit algorithms that show that learnability in the sense of Definition 1 is distinct from various
well-known restrictions of PAC learnability. We also study a special case ofthe problem of learning
monomials (in whichD is known to belong to a particular class of distributions), for which we have
no algorithm in the distribution-independent setting.

Our algorithms are mostly proven to have the PAC property in a standard way,by arguing that the
hypothesis is consistent with the data, and furthermore that it belongs to a class of hypotheses that
have description length polynomial in the parameters of the problem, and sub-linear in the sample
size. (This is the “Occam algorithm” property (Blumer et al., 1987)). For Sections 3.2 and 3.4 we
use the (more generally applicable) Vapnik-Chervonenkis dimension (Blumeret al., 1989; Vapnik,
2000) of the class of hypotheses.

3.1 Parity Functions

The following result distinguishes our learning setting from learnability with uniform misclassifica-
tion noise, or learnability with a restricted focus of attention.

An instance is an element of{0,1}n, representing a sequence of values ofn boolean variables. A
parity function(Helmbold et al., 1992) has an associated subset of the variables, and anassociated
“target parity” (even or odd), and evaluates to 1 provided that the parityof the number of “true”
elements of that subset agrees with the target parity, otherwise the functionevaluates to 0.

294

SOME DISCRIMINANT-BASED PAC ALGORITHMS

Theorem 5 The class of parity functions is PAC learnable via discriminant functions.

Proof Observe that the class is closed under complementation.
To learn a parity function from positive examples only, in an essentially similar way to the algo-

rithm of (Helmbold et al., 1992),A` finds the affine subspace ofGF(2)n spanned by its examples,
and f` assigns a value of 1 to elements of that subspace and a value of 0 to all otherelements of
the domain. (By “span” we mean with respect toGF(2)n, as opposed to IRn. GF(2), the generic
field with two elements 0 and 1, has addition modulo 2, so that the sum of two 0/1 vectors is their
bitwise exclusive-or. Generally the positive examples of a parity function would span all of IRn.)

In more detail, letxi be thei-th entry of bit vectorx. The positive examples of a parity function
satisfy∑i cixi = b (all addition and multiplication modulo 2), whereci ,b ∈ GF(2). Let x′ be an
arbitrary positive example; positive examplesx satisfy∑i ci(xi −x′i) = 0, and negative examples do
not satisfy this. Hence, the subspace constructed byA1 will be a subset of∑i ci(xi − x′i) = 0, and
will contain no negative examples.A0 constructs a subspace that contains all the negative data and
no positive examples.

We have thatf`(x) = 0 for all x with t(x) = 1− `, and f`(x) = 1 for all x ∈ S̀ (the unlabeled
sample obtained byA`).

The overall hypothesish has description lengthO(n2) (a spanning set has at mostn vectors,
each of lengthn) andh is consistent with the training data; thus we have PAC-ness by the standard
Occam-algorithm argument.

3.2 Unions of Intervals

Let X = IR, and lett : X −→{0,1} be the indicator function of a union ofk intervals in IR. We show
that the class of all such functions, is learnable by discriminant functions intime polynomial in
ε−1, δ−1 andk. A union of more than one interval cannot be PAC-learned from just positive or just
negative data, simply because it is impossible to guess where the data with the opposite label may
lie. Learnability via discriminant functions is thus distinct from learnability frompositive examples
only, or from negative examples only.

Theorem 6 The class of unions of k intervals on the real line is learnable via discriminant func-
tions.

Proof Construct discriminant functionsf0 and f1 as follows. Given an (unlabeled) sample, and a
point x∈ IR, our discriminant function mapsx to the negation of its distance to its nearest neighbor
in the sample. (Intuitively, it makes sense thatx should get a higher value if it is close to a data point
in the sample.) We show furthermore that this rule creates a classifier that is “simple” (a union ofk
intervals) and consistent with the data.

More precisely, given (unlabeled) sampleS̀ ⊂ IR of sizeO(k log(δ−1ε−1)/ε), let dNN(x, S̀) =
minx`∈S̀ {|x− x`|}. Let f`(x) = −dNN(x, S̀). Recall thath(x) = 1 if f1(x) > f0(x) andh(x) = 0 if
f1(x) < f0(x). We show thath is PAC.

Forx,x′ ∈ S̀ , supposex,x′ belong to the same interval oft−1(`). Then[x,x′]⊆ h−1(`), since any
point betweenx andx′ is closer to at least one ofx or x′ than to any pointx′′ for which t(x′′) 6= t(x).

Supposex0 ∈S0, x1 ∈S1, x0 < x1, and there does not existx∈S0∪S1 with x0 < x< x1. For a real
numberx such thatx0 < x< x1, if x∈ (x0,

1
2(x0+x1)) thendNN(x,S0) < dNN(x,S1), so f0(x) > f1(x)

295

GOLDBERG

andh(x) = 0 for h constructed according to Definition 1. Similarly, forx∈ (1
2(x0+x1),x1), h(x) = 1.

h(1
2(x0 +x1)) is undefined.
ForS0∪S1 sorted in ascending order, there are at most 2k pairs of consecutive pointsx,x′ in the

sequence wheret(x) 6= t(x′).
Henceh is undefined on at most 2k elements of IR, andh−1(1) is a union of at mostk inter-

vals, andh−1(0) is a union of at mostk+ 1 intervals. The VC dimension of unions ofk intervals
is 2k, so using the results of (Blumer et al., 1987), the sample size required for PAC learning is
O(k log(δ−1ε−1)/ε).

Comment. This nearest-neighbour rule does not work in more than one dimension, given that the
input distributionD is closen by an adversary. Suppose we wish to learn a linear threshold in the
plane IR2. SupposeD is uniform over two parallel line segments that are very close but on opposite
sides of the classification threshold. Then the probability is only about1

2 that the nearest neighbour
of a data pointx will have the same label asx. In Section 3.4 we show how to learn linear thresholds
in the plane using a more sophisticated rule.

3.3 Distinguishing the Model from the Mistake-bound Setting

In (Blum, 1994), Blum exhibits a concept class that is PAC learnable, but isnot (in polynomial time)
learnable using membership and equivalence queries, assuming that one-way functions exist. In this
section we show that the concept class is PAC learnable via discriminant functions in the sense of
Definition 1. We review the concept class introduced in (Blum, 1994). LetX = {0,1}n.

If A is a probabilistic polynomial-time algorithm that computes a function from{0,1}∗ to{0,1},
andg is some function from{0,1}∗ to{0,1}∗, letPk(A,g(s)) denote the probability thatA(g(s)) = 1
for stringss of lengthk generated uniformly at random.

Let G be a Cryptographically Strong Pseudorandom Bit (CSB) generator with stretchp(k) = 2k.
For polynomialp a CSB generator is defined as follows.

Definition 7 A deterministic polynomial-time program G is a CSB generator with stretch p if on
input s∈ {0,1}k it produces an output in{0,1}p(k) and for all probabilistic polynomial-time algo-
rithms A, for all polynomials Q, for sufficiently large k (k depending on A andQ),

|Pk(A,G(s))−Pp(k)(A,s)| < 1
Q(k)

.

Thus, no polynomial-time algorithm can distinguish between strings generated uniformly at
random from{0,1}2k, and strings obtained by taking the output ofG for a random input string of
lengthk. (Technically, the definition allowsA to be a circuit family.)

For stringsx andy, let x◦ y denote their concatenation. For a bit stringx let LSB[x] denote the
rightmost bit ofx. Let λ denote the empty string. For bit strings of lengthk, G(s) is a bit string of
length 2k, and we define the following notation.

1. LetG0(s) be the leftmostk bits ofG(s).

2. LetG1(s) be the rightmostk bits ofG(s).

3. LetG′
0(s) be the rightmostk bits ofG(s).

296

SOME DISCRIMINANT-BASED PAC ALGORITHMS

4. LetG′
1(s) = λ.

5. If i = i1 · · · id (where thei j are binary digits), letGi(s) = Gid(Gid−1(· · ·Gi1(s))).

The concept class is defined as follows:

Definition 8 Let k= b√nc−1 and letC = {cs}s∈{0,1}k where cs is defined as follows.

• cs is the indicator function of{xi
s : i ∈ {0,1}k and LSB[Gi1···ik(s)] = 1}

where for i= i1 · · · ik,

• xi
s = i ◦G′

i1(s)◦G′
i2(Gi1(s))◦G′

i3(Gi1i2(s))◦ . . .◦G′
ik(Gi1···ik−1(s))◦0w

where w is chosen to ensure that|xi
s| = n.

Definition 8 is slightly different from the corresponding definition of (Blum, 1994), wherek= b√nc.
We usek = b√nc−1 so that the length ofxi

s is always less thatn, and we can then “pad it out” to a
length of exactlyn using the string 0w on the right-hand side.

Note that for any fixeds, a bit string of lengthn of the formxi
s is determined entirely byi,

its first k bits. We will let theindexof a bit string of lengthn refer to its firstk bits, viewed as
a binary number (to give the natural ordering on indices). For a stringx let index(x) denote this
number, regardless of whetherx is well-formed according to Definition 8. (Ifx is not well-formed,
x is a negative example ofcs, i.e. cs(x) = 0.) Algorithm Compute-Forward (Figure 3) shows how
to take any positive examplexi

s, together with an indexj > i, and construct the pair〈x j
s,cs(x

j
s)〉 in

polynomial time.
The following notation is used in Algorithm Compute-Forward:

1. Letzi
s be the correctly labeled example〈xi

s,cs(xi
s)〉.

2. Letzi
s be the incorrectly labeled example〈xi

s,1−cs(xi
s)〉.

3. Fori1, . . . , id ∈ {0,1}d, let Gi1···id(s) = G′
i1(s)◦G′

i2(Gi1(s))◦ . . .◦G′
id(Gi1···id−1(s)).

Soxi
s = i ◦Gi1···ik(s)◦0w.
From (Blum, 1994) we know thatC is not learnable (in time polynomial inn) in the mistake-

bound model. We review the PAC learning algorithm of (Blum, 1994) and showhow to adapt it to
the constraint of Definition 1.

We noted that Algorithm Compute-Forward, given a positive examplexi
s and j > i, produces a

correctly-labeled example〈x j
s,cs(x

j
s)〉. Based on this observation, we assign values to examples as

shown in Figure 4.

Theorem 9 The concept class of (Blum, 1994) is learnable via discriminant functions.

Proof We use the algorithm of Figure 4 to construct discriminant functions.
Recall that forx∈ {0,1}n, index(x) denotes thek bit binary number forming a prefix ofx, for

k = b√nc−1. For` ∈ {0,1}, A` denotes the instance of the algorithm that is given access toD`.
As in (Blum, 1994), we will argue that what we have is an “Occam Algorithm” inthe sense

of (Blumer et al., 1987) which is consistent with the training data. Specifically,A1 andA0 memorize

297

GOLDBERG

Algorithm Compute-Forward (Blum, 1994)
On input xis and j> i,

1. Say i= i1 · · · ik and j= j1 · · · jk. Let r be the least index such that ir 6= jr .
Since j> i we have ir = 0 and jr = 1.

2. Extract from xis the portions:

u = G′
i1(s)◦G′

i2(Gi1(s))◦G′
i3(Gi1i2(s))◦ . . .◦G′

ir−1
(Gi1···ir−2(s))

= Gi1···ir−1(s).
v = G′

ir (Gi1···ir−1(s)) = G jr (G j1··· jr−1(s)).

3. Notice that G′jr (G j1··· jr−1(s)) = λ. Since v= G jr (G j1··· jr−1(s)), we can use v

as an intermediate point in the computation of those parts of zj
s that differ

from zis.

4. If r = k, output: 〈 j ◦ u ◦ λ,LSB[v]〉. Otherwise, output: 〈 j ◦ u ◦ λ ◦
G jr+1··· jk(v),LSB[G jk··· jr+1(v)]〉.

Figure 3: Algorithm from (Blum, 1994)

at most 2 training examples each (A0 possibly memorizes none) and their combined hypothesis (the
h in Definition 1) is consistent with the training data.

In particular,A1 (and possibly alsoA0) just retainsxm
s andxM

s , since for any unlabeledx, the
label assigned to it is computed (in polynomial time) usingxm

s and xM
s . (In the case ofA0, the

sampleS0 may fail the testConsistency-Check, in which case no examples are memorized.) Hence
the description length of the rule that labels examples, isO(n).

Note thatf1 from A1 will now give a value of 1 to any positive example whose index is between
the largest and smallest indices it has seen so far, and will give value of 0to all other examples. If an
examplex∈ X is either negative or is ill-formed (“bad” in the terminology of (Blum, 1994)), then
Step 4 will ensuref1(x) = 0, even ifindex(x) is betweenmandM.

At the same time, we claim thatf0 from A0 gives a value of≤ 1
2 to all positive examples.

Suppose for a contradiction thatA0 gives a value of 1 to positive examplex j
s. ThenA0 must have

in its collection an unlabeled examplexM
s andx j

s must predictxM
s as being positive. But that implies

thatxM
s must be positive, and since it belongs toS0 it is negative, a contradiction.

A0 ensures thatf0(x)≥ 1
2 for all x∈S0. A1 ensures thatf1(x)≥ 1 for all x∈S1 and f1(x) = 0 for

all negativex (including allx∈ S0). Hence the combined classifierh is consistent with the training
data.

298

SOME DISCRIMINANT-BASED PAC ALGORITHMS

Input S̀, a sample of unlabeled elements of X= {0,1}n.

1. Apply algorithm Consistency-Check to S`; if S` fails the test, then for all
x∈ X, f̀ (x) = 1

2. Else:

2. Let m and M be the minimum and maximum indices of elements of S`. Call
these elements xm

s and xMs respectively; since Consistency-Check has been
passed, they are unique. For x∈ X, index(x) = j, if j > M or j < m then
f`(x) = 0.

3. If x∈ S̀ then f̀ (x) = 1.

4. Otherwise, if 〈x j
s,1〉 =Compute-Forward(xms , j) and furthermore,

〈xM
s ,1〉 =Compute-Forward(xjs,M) then let f̀(x j

s) = 1.

5. Otherwise, let f̀(xm
s) = 0.

Algorithm Consistency-Check

1. If there exist x1,x2 ∈ S̀ with x1 6= x2, but index(x1) = index(x2), then fail.

2. If there exist x1,x2∈ S̀ such that index(x2) > index(x1), yet with Compute-
Forward(x1, index(x2)) 6= 〈x2,1〉, then fail.

Figure 4: Assigning values to unlabeled data for concept class of (Blum, 1994)

3.4 Linear Separators in the Plane

For X = IR2, suppose eachx ∈ X is labeled 0 or 1 according to whether its coordinates satisfy
some linear inequality; that is, a concept is a half-space in IR2. This problem is well-known to be
PAC-learnable in the standard setting; generally forX = IRn it reduces to linear programming.

Given a sampleS̀ of points int−1(`), note that points within their convex hull2 ought to receive
a “high” value from f`, since the convex hull must be a subset oft−1(`). We need to be able to deal
with the case when the convex hull has most or all ofS̀ at its vertices, as would happen for an input
distributionD` whose domain is the boundary of a circle, for example. Our general approach is to
start out by computing the convex hullP and give maximal value to points insideP. Then give an
intermediate value to points in a polygonQ containingP, whereQ has fewer edges. We argue that
the wayQ is chosen ensures that most points inQ are indeed given the correct label.

Theorem 10 Linear separators in the plane are learnable via discriminant functions.

2. Theconvex hullof a finite setSof points is the smallest convex polygon (more generally, polytope) that containsS.
Any vertex of the convex hull ofS is a member ofS.

299

GOLDBERG

1. Draw a sample S̀of size N= Θ(log(1/δε)/ε2).

2. Let polygon P̀be the convex hull of S`.

3. Let Q̀ be a polygon having at mostd
√

Ne edges such that

(a) Every edge of Q̀intersects P̀at a single vertex, and

(b) Adjacent edges of Q̀contain vertices of P̀that are at most
√

N
apart in the adjacency sequence of P`’s vertices.

4. Define discriminant function f` as follows.

(a) For all x in the interior or boundary of P̀, f`(x) = 1.

(b) For each connected region R in Q` \ P̀ let A(R) denote its area. For
x∈ R let f̀ (x) = (A(R)+1)−1. If A(R) is infinite let f̀ (x) = 0.

(c) For x 6∈ Q` let f`(x) = −1.

Figure 5: Assigning values to unlabeled data for linear separators in the plane

Proof Figure 5 shows the algorithm we use to construct discriminant functions; it isnot hard to
check that the steps can be carried out in polynomial time. Figure 6 illustrates the construction on
an example.

Let h : IR2 −→ {0,1} be the hypothesis constructed fromf0 and f1. We show below that for
` ∈ {0,1}, h−1(`) is a region bounded byO(

√
N) line segments. We also show thath is consistent

with the data, i.e. that forx∈ S̀ (the unlabeled sample drawn byA`), we haveh(x) = `. As before,
PAC-ness follows from an Occam-algorithm argument; the class of hypotheses has VC dimension
O(

√
N), sublinear in the sample size.

To show consistency of the hypothesis, supposex ∈ S1, i.e. x is a positive example. Then
f1(x) = 1 sincex lies in the interior or on the boundary ofP1 (rule 4a). By contrast, whenf0 is
constructed,x lies strictly outside the convex hull of the negative data, so either rule 4b or 4c is
applied, givingf0(x) a value less than 1. By symmetry, members ofS0 are also correctly labeled.

Next we prove our claim that the boundary between the points labeled 0 byh, and the points
labeled 1, is indeed simple. (Specifically,h−1(0) andh−1(1) are bounded byO(

√
N) line segments.)

Let L be the line that defines the target linear threshold functiont. Let R` be the set of connected
regions constructed byA` that lie betweenP̀ andQ`. ForR⊆ IR2 letCH(R) denote the convex hull
of R. Observe that

1. no straight line may pass through more than 2 elements ofR`. (If that occurred, suppose the
line passes throughR,R′,R′′ ∈ R` in that order. Note thatP̀ ∪R∪R′′ is convex. That makes it
impossible for the line to cutR′, which is outsideP̀ ∪R∪R′′.)

300

SOME DISCRIMINANT-BASED PAC ALGORITHMS

2. at most one element ofR0 (respectively,R1) may intersectL. (If two of them intersectedL,
there would be an edge ofQ` on the opposite side ofL from P̀ , hence a vertex ofP̀ on the
wrong side ofL.)

3. for R∈ R`, CH(R) is a region bounded by three line segments. (R has two “outer” edges and
a concave sequence of edges fromP̀ connecting them.)

Suppose thatR0 ∈ R0 intersectsR1 ∈ R1. ThenCH(R0) intersectsCH(R1). From Observation 3
above, the boundary ofCH(R0) has only 2 line segments on the opposite side ofL from P0, and
from Observation 1 the boundary ofCH(R0) intersects at most 4 elements ofR1. For all remaining
regionsR′

1 ∈ R1, eitherR′
1 ⊂ R0 (so that forx∈ R′

1, f1(x) > f0(x)) or R′
1∩R0 = /0 (so that again, for

x∈ R′
1, f1(x) > f0(x)).

For ` ∈ {0,1} let P′
` = P̀ ∪{R̀ : h(R̀) = `}. Note thatP′

` ⊆ h−1(`) and has at most 3d
√

Ne
edges.

The portion oft−1(0) not in P′
0∪P′

1 is divided intoO(
√

N) regions by the remaining edges of
Q0 and the two edges ofQ1 that intersectt−1(0). h is constant within each of these regions, which
allows us to deduce thath−1(0) is indeed bounded by a set of line segments of sizeO(

√
N). By a

similar argument,h−1(1) is bounded byO(
√

N) lines.

L

P

Q

P

Q

1

1

0

0

shaded regions are
subsets of andP’ P’

1 0

Figure 6: Illustration of algorithm for learning linear separators in two dimensions

301

GOLDBERG

3.5 Monomials over Attribute Vectors having a Product Distribution.

Recall that a monomial is a boolean function consisting of the conjunction of a set of literals (where
a literal is either a boolean attribute or its negation). Despite the simplicity of this class of func-
tions, we have not resolved its learnability under the restriction of Definition 1, even for monotone
(negation-free) monomials. IfA0 andA1 are allowed to be different algorithms (A is allowed to
treat the positive data differently from the negative data), then the problem does have a simple solu-
tion (a property of any class of functions that is learnable from either positive examples only or else
negative examples only).f0 from A0 assigns a value of12 to all boolean vectors.A1 uses its data
to find a PAC hypothesis, and assigns a value of 1 to examples satisfying thathypothesis, and 0 to
other examples.

The following problem arises whenA is oblivious to whether it is receiving the positive data.
The distribution over the negative examples could in fact produce booleanvectors that satisfy some
monomial f that differs from target monomialt, but if D(f−1(1)∩ t−1(1)) > ε this may give exces-
sive error.

In view of the importance of the concept class of monomials, we consider whether they are
learnable given that the input distributionD belongs to a given class of probability distributions.
This situation is intermediate between knowingD exactly (in which case by Theorem 4 the prob-
lem would be solved since monomials are learnable in the presence of uniformmisclassification
noise (Angluin and Laird, 1988)) and the distribution-independent setting.

1. Draw a sample S̀of size N= Õ((n3/ε)2 log(1
δ)).

2. For x∈ X let ψ̂ j
`(x) denote the fraction of elements of S` whose j-th entry

is equal to the j-th entry of x.

3. For x∈ X, f̀ (x) = Πn
j=1ψ̂ j

`(x).

Figure 7: Algorithm for learning monomials

Theorem 11 Monomials over the boolean domain are learnable via discriminant functions, pro-
vided that the input distribution D is known to be a product distribution.

Comments.We use the algorithm of Figure 7 which simply fits a product distribution to its data and
assigns a value to unlabeled vectorx that is the estimated likelihood ofx. The proof that it works
heavily exploits the assumption thatD is a product distribution, and does not appear to extend to
larger class of distributions (for example, mixtures of product distributions(Cryan et al., 2001;
Freund and Mansour, 1999)) or more general classes of boolean functions.
Proof We show that the algorithm given in Figure 7 constructs discriminant functions which, when
combined to geth according to Definition 1, ensure thath is PAC.

Forx∼D, x= x1x2 . . .xn wherex j is a 0/1 random variable which is independent ofxk for k 6= j.
By a relevant attributeof t we mean anyx j whose value is fixed for allx that satisfyt. Let t j denote

302

SOME DISCRIMINANT-BASED PAC ALGORITHMS

that value. LetR denote the set of relevant attributes and letI denote the remaining (irrelevant)
attributes.

We say that an examplex′ = x′1x′2 . . .x′n with t(x′) = ` is ordinary if for all b ∈ {0,1} and j ∈
{1, . . . ,n} such that Prx∼D`(x j = b) > 1− ε

n, we havex′j = b. (Thus, an ordinary example is one that
does not have any “very unusual” attribute values in comparison with random examples having the
same label. If there happen to be no bit positions that are very “reliable” for random examples with
the same label, then the property becomes vacuous, or true for all bit strings.)

Note that for` ∈ {0,1}, Prx∼D`(x is ordinary) ≥ 1− ε. Consequently, Prx∼D(x is ordinary) ≥
1− ε. We will show that with probability at least 1− δ, all ordinary examples end up correctly
labeled.

Let P̂rx∈S̀ (x j = b) denote the empirical probability thatx j = b, and we show that sample sizeN
is large enough to ensure that with probability 1−δ, for b∈ {0,1}, j ∈ {1, . . . ,n},

|P̂rx∈S̀ (x j = b)− Pr
x∼D`

(x j = b)| ≤ ε
8n3 . (10)

Applying the same Hoeffding bound as in Theorem 4, it is sufficient thatN should satisfy
2e−2N(ε/8n3)2 ≤ δ

2n2 which is satisfied byN as prescribed in Figure 7.

For ` ∈ {0,1}, x∈ X let ψ j
`(x) denote the probability that a random vector with label` agrees

with x on the j-th entry. Note that ift(x) = ` thenψ̂ j
`(x) (as defined in the algorithm of Figure 7) is

an empirical estimate ofψ j
`(x).

Let ψ`(x) = Π jψ
j
`(x). Note thatf`(x) is an estimate ofψ`(x) (in the sense thatf`(x) converges

to ψ`(x) as the sample size increases). We know from (10) that

ψ̂ j
`(x) ∈

[
ψ j

`(x)−
ε

8n3 ,ψ j
`(x)+

ε
8n3

]
.

If ψ j
`(x) > ε/n, then

ψ̂ j
`(x)/ψ j

`(x) ∈
[
1− 1

8n2 ,1+
1

8n2

]
. (11)

Supposex is ordinary and negative. Observe thatf1(x) = 0. (This is becausex must have an at-
tribute value that disagrees with all corresponding attribute values in the positive data.) Furthermore,
Equation (11) holds for̀ = 0 and all j, implying that

ψ̂0(x)/ψ0(x) ∈
[
1− 1

4n
,1+

1
4n

]
. (12)

So with probability 1− δ, f0(x) > 0, since f0(x) = 0 would contradict Equation (12) taken with
the observation thatψ0(x) > 0. Hence with probability 1− δ, all ordinary negative examples are
correctly labeled.

Supposex is ordinary and positive. We will show that with probability 1− δ, f1(x)/ f0(x) > 1
for all ordinary positive examples. Observe that forj ∈ R , ψ j

1(x) = ψ̂ j
1(x) = 1. (This is because all

positive examples must agree on all the relevant attributes.) We have

f1(x) = Π j∈I ψ̂ j
1(x)

f0(x) = Π j∈I ψ̂ j
0(x)Π j∈R ψ̂ j

0(x).

303

GOLDBERG

For j ∈ I , ψ j
1(x) = ψ j

0(x) (for a product distributionD, the value of an irrelevant attribute is
selected independently of the label class of a bit string). Hence Equation (11) applies for̀ = 0 or 1,
j ∈ I .

f1(x)
f0(x)

≥ (1− (1/8n2))n

(1+(1/8n2))n

(1

Π j∈R ψ̂ j
0(x)

)
.

There existsj∗ ∈ R such that for a fraction at least1
n of elementsx′ ∈ S0, x′j∗ 6= x j∗ . (Each

negative example must disagree withx on at least one relevant attribute.) Hence,

ψ̂ j∗

0 (x) ≤ 1− (1/n)

ψ j∗

0 (x) ≤ 1− (1/n)+(ε/8n2) < 1− (1/2n).

Hence
f1(x)
f0(x)

≥ (1− (1/8n2))n

(1+(1/8n2))n

(1
1− (1/2n)

)
> 1,

as required. Hence with probability 1−δ, all ordinary positive examples are correctly labeled.

4. Conclusion and Open Problems

The algorithms we have given differ significantly from previous PAC algorithms, which usually
work by minimizing the empirical error rate, and arguing that the way a hypothesis is constructed
ensures that the true error is close to the empirical error. The constraintthat we expressed in Defi-
nition 1 forces the positive data and the negative data to be processed independently—an algorithm
does not have access to the empirical error.

This lack of access to the empirical error appears to be quite a severe constraint, one that might
render certain learning problems intractable in the context of PAC learning. Indeed, we have so far
failed to find an algorithm in this setting which learns monomials over the boolean domain, assum-
ing no knowledge of the input distribution. We have also not obtained an algorithm for learning
linear threshold functions in more than two dimensions. Despite those limitations, our positive re-
sults have distinguished learnability subject to this constraint from various other constraints on PAC
learnability that have been studied in the past.

Clearly, the main open question raised by this paper is to elucidate the relationship between
learnability via discriminant functions (Definition 1), and basic PAC learnability. Furthermore, if
they are not equivalent, can they be distinguished using a well-known learning problem, such as
monomials over the boolean domain?

We have a relatively good understanding of learnability subject to the slightlyless severe con-
straint of Definition 2. Namely, it is intermediate between learnability with uniform misclassifi-
cation noise, and standard PAC learnability. Furthermore, subject to the Noisy Parity Assumption
(that it is hard to learn parity functions in the presence of random misclassification noise given the
uniform distribution over input vectors) it is strictly a less severe constraint that learnability with
uniform misclassification noise, since we have shown (Section 3.1) how to learn parity functions
using the more severe constraint of Definition 1.

304

SOME DISCRIMINANT-BASED PAC ALGORITHMS

Acknowledgments

This work was supported by EPSRC Grant GR/R86188/01. This work wassupported in part by
the IST Programme of the European Community, under the PASCAL Network ofExcellence, IST-
2002-506778. This publication only reflects the author’s views. A preliminary version of this paper
was presented at the 2001 COLT conference.

References

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach
for margin classifiers.Journal of Machine Learning Research, 1:113–141, Dec 2000.

D. Angluin and P. Laird. Learning from noisy examples.Machine Learning, 2(4):343–370, 1988.

M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, 1992.

S. Ben-David and E. Dichterman. Learnability with restricted focus of attention guarantees noise-
tolerance. In5th International Workshop on Algorithmic Learning Theory, pages 248–259, 1994.

S. Ben-David and E. Dichterman. Learning with restricted focus of attention. Journal of Computer
and System Sciences, 56(3):277–298, 1998.

C. M. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, 1995.

A. Blum. Separating distribution-free and mistake-bound learning models over the boolean domain.
SIAM Journal on Computing, 23(5):990–1000, 1994.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor. Information Process-
ing Letters, 24:377–380, 1987.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnabilityand the vapnik-
chervonenkis dimension.Journal of the ACM, 36(4):929–965, 1989.

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines. Cambridge Uni-
versity Press, 2000.

M. Cryan, L. A. Goldberg, and P. W. Goldberg. Evolutionary trees canbe learned in polynomial
time in the two-state general markov model.SIAM Journal on Computing, 31(2):375–397, 2001.

S. Dasgupta. Learning mixtures of gaussians. In40th IEEE Symposium on Foundations of Computer
Science, pages 634–644, 1999.

F. Denis. Pac learning from positive statistical queries. InAlgorithmic Learning Theory (ALT), 9th
International Conference, volume 1501 ofLNAI, pages 112–126. Springer, 1998.

R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. Wiley, New York, 1973.

Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In Proceedings of the
12th Workshop on Computational Learning Theory (COLT), pages 53–62. Morgan Kaufmann,
1999.

305

GOLDBERG

A. Frieze, M. R. Jerrum, and R. Kannan. Learning linear transformations. In Proceedings of the
37th IEEE Symposium on Foundations of Computer Science, pages 359–368, 1996.

V. Guruswami and A. Sahai. Multiclass learning, boosting, and error-correcting codes. InProceed-
ings of the 12th Workshop on Computational Learning Theory (COLT), pages 145–155, 1999.

D. Haussler, M. J. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of models for polyno-
mial learnability.Information and Computation, 95(2):129–161, 1991.

D. Helmbold, R. Sloan, and M. K. Warmuth. Learning integer lattices.SIAM Journal on Computing,
21(2):240–266, 1992.

M. J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6):
983–1006, 1998.

M. J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. On the learnability
of discrete distributions. InProceedings of the 26th Annual ACM Symposium on the Theory of
Computing, pages 273–282, 1994.

M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic concepts.Jour-
nal of Computer and System Sciences, 48(3):464–497, 1994.

F. Letouzey, F. Denis, and R. Gilleron. Learning from positive and unlabeled examples. InPro-
ceedings of the 11th International Conference on Algorithmic Learning Theory, pages 71–85,
2000.

N. Palmer and P. W. Goldberg. Pac classification based on pac estimates of label class distributions.
Technical Report 411, University of Warwick, Dept. of Computer Science, 2005.

J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin dags for multiclass classification. In
Proceedings of 12th NIPS conference, 2000.

R. E. Schapire. The strength of weak learnability.Machine Learning, 5:197–227, 1990.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, second
edition, 2000.

306

Journal of Machine Learning Research 7 (2006) 307–342 Submitted 7/05; Revised 1/06; Published 2/06

Kernels on Prolog Proof Trees:
Statistical Learning in the ILP Setting∗

Andrea Passerini PASSERINIa©DSI·UNIFI · IT

Paolo Frasconi P-F a©DSI·UNIFI · IT

Dipartimento di Sistemi e Informatica
Universit̀a degli Studi di Firenze
Via di Santa Marta 3
I-50139 Firenze, Italy

Luc De Raedt DERAEDT a©INFORMATIK ·UNI-FREIBURG·DE

Institute for Computer Science
Albert-Ludwigs Universiẗat Freiburg
Georges-Koehler-Allee 79
D-79110 Freiburg, Germany

Editors: Roland Olsson and Ute Schmid

Abstract
We develop kernels for measuring the similarity between relational instances using background
knowledge expressed in first-order logic. The method allowsus to bridge the gap between tradi-
tional inductive logic programming (ILP) representationsand statistical approaches to supervised
learning. Logic programs are first used to generate proofs ofgiven visitor programs that use predi-
cates declared in the available background knowledge. A kernel is then defined over pairs of proof
trees. The method can be used for supervised learning tasks and is suitable for classification as well
as regression. We report positive empirical results on Bongard-like andM-of-N problems that are
difficult or impossible to solve with traditional ILP techniques, as well as on real bioinformatics
and chemoinformatics data sets.

Keywords: kernel methods, inductive logic programming, Prolog, learning from program traces

1. Introduction

Within the fields of automated program synthesis, inductive logic programming (ILP) and machine
learning, several approaches exist that learn from example-traces.An example-trace is a sequence of
steps taken by a program on a particular example input. For instance, Biermann and Krishnaswamy
(1976) have sketched how to induce Turing machines from example-traces (in this case sequences of
primitive actions and assertions). Mitchell et al. (1983) have developed the LEX system that learned
how to solve symbolic integration problems by analyzing traces (or search trees) for particular ex-
ample problems. Ehud Shapiro’s Model Inference System (1983) inductively infers logic programs
by reconstructing the proof-trees and traces corresponding to particular facts. Zelle and Mooney
(1993) show how to speed-up the execution of logic programs by analyzing example-traces of the
underlying logic program. Finally, De Raedt et al. (2005) proposed a method for learning stochastic

∗. An early version of this paper was presented at the ICML ’05 Workshop on Approaches and Applications of Inductive
Programming (AAIP).

c©2006 Andrea Passerini, Paolo Frasconi and Luc De Raedt.

PASSERINI, FRASCONI AND DE RAEDT

logic programs using proof trees as training examples. The diversity of these applications as well as
the difficulty of the learning tasks considered illustrate the power of learningfrom example-traces
for a wide range of applications.

In this paper, we generalize the idea of learning from example-traces. Rather than explicitly
learning a target program from positive and negative example-traces,we assume that a particular—
so-calledvisitor program—is given and that our task consists of learning from the associated traces.
The advantage is that in principle any programming language can be used to model the visitor pro-
gram and that any machine learning system able to use traces as an intermediate representation can
be employed. In particular, this allows us to combine two frequently employed frameworks within
the field of machine learning: ILP and kernel methods. Logic programs will be used to generate
traces corresponding to specific examples and kernels to quantify the similarity between traces. This
combination yields an appealing and expressive framework for tackling complex learning tasks in-
volving structured data in a natural manner. We calltrace kernelsthe resulting broad family of
kernel functions obtainable as a result of this combination. The visitor program is a set of clauses
that can be seen as theinterfacebetween the available background knowledge and the kernel itself.
Intuitively, the visitor program plays a role that is similar to that of declarativebias in inductive
logic programming systems (Nédellec et al., 1996) (see also Section 6).

Kernels methods have been widely used in many relational learning contexts.Starting from the
seminal work of Haussler (1999) (briefly reviewed in Section 4.1) several researchers have proposed
kernels over discrete data structures such as sequences (Lodhi et al., 2002; Jaakkola and Haussler,
1999; Leslie et al., 2002; Cortes et al., 2004), trees (Collins and Duffy,2002; Viswanathan and
Smola, 2003), annotated graphs (Gärtner, 2003; Scḧolkopf and Warmuth, 2003; Kashima et al.,
2003; Mah́e et al., 2004; Horv́ath et al., 2004; Menchetti et al., 2005), and complex individuals
defined using higher order logic abstractions (Gärtner et al., 2004). Constructing kernels over struc-
tured data types, however, is not the only aim of the proposed framework. In many symbolic ap-
proaches to learning, logic programs allow us to define background knowledge in a natural way.
Similarly, in the case of kernel methods, the notion of similarity between two instances expressed
by the kernel function is the main tool for exploiting the available domain knowledge. It seems
therefore natural to seek a link between logic programs and kernels, alsoas a means for embedding
knowledge into statistical learning algorithms in aprincipledandflexibleway. This aspect is one of
the main contributions of this paper as few alternatives exist to achieve this goal. Propositionaliza-
tion, for example, transforms a relational problem into one that can be solved by an attribute-value
learner by mapping data structures into a finite set of features (Kramer et al., 2000). Although it is
known that in many practical applications propositionalization works well, its flexibility is gener-
ally limited. A remarkable exception is the method proposed by Cumby and Roth (2002) that uses
description logic to specify features and that has been subsequently extended to specify kernels
(Cumby and Roth, 2003). Muggleton et al. (2005) have proposed an approach where the feature
space is spanned by a set of first order clauses induced by an ILP learning algorithm. Declarative
kernels (Frasconi et al., 2004) are another possible solution towards the above aim. A declarative
kernel is essentially based on a background-knowledge dependent relation that allows us to extract
parts from instances. Instances are reduced in this way to “bags-of-parts”and a combination of
sub-kernels between parts is subsequently used to obtain the kernel between instances.

The guiding philosophy of trace kernels is very different from all the above approaches. In-
tuitively, rather than comparing two given instances directly, these kernelscompare the execution
traces of a program that takes instances as its input. Similar instances shouldproduce similar traces

308

KERNELS ONPROLOG PROOFTREES

when probed with programs that express background knowledge and examine characteristics they
have in common. These characteristics can be more general than parts. Hence, trace kernels can
be introduced with the aim of achieving a greater generality and flexibility with respect to various
decomposition kernels (including declarative kernels). In particular,anyprogram to be executed on
data can be exploited within the present framework to form a valid kernel function, provided one
can give a suitable definition of thevisitor program to specify how to obtain relevant traces and
proofs to compare examples. Although in this paper we only study trace kernels for logic programs,
similar ideas could be used in the context of different programming paradigmsand in conjunction
with alternative models of computation such as finite state automata or Turing machines.

In this paper, we focus on a specific learning framework for Prolog programs. The execution
trace of a Prolog program consists of a set of search trees associatedwith a given goal. To avoid
feature explosion due to failed paths, which are typically much more numerousand less informative
than successful ones, we resort to a reduced representation of traces based on proof trees (Russell
and Norvig, 2002) that only maintain successful search paths. Proof trees can be conveniently repre-
sented as Prolog ground terms. Thus, in this case, kernels over traces reduce to Prolog ground terms
kernels (PGTKs) (Passerini and Frasconi, 2005). These kernels (which are reviewed in Section 4.3)
can be seen as a specialization to Prolog of the kernels between higher order logic individuals earlier
introduced by G̈artner et al. (2004). Because of the special nature of terms in the present context,
we also suggest some proper choices for comparing logical terms that represent proofs. One central
advantage of the proposed method, as compared to inductive logic programming, is that it naturally
applies to both classification and regression tasks.

The remainder of this paper is organized as follows. In Section 2 we reviewthe traditional
frameworks of statistical learning and ILP. In Section 3 we develop a new framework for statistical
learning in the ILP setting and introduce visitor programs and their traces. InSection 4 we de-
rive kernel functions over program traces represented as Prolog proof trees. In Section 5 we report
an empirical evaluation of the methodology on some classic ILP benchmarks including Bongard
problems,M-of-N problems on sequences, and real world problems in bioinformatics and chemoin-
formatics. Section 6 contains a discussion on the relations between our approach and traditional
ILP methods, as well as explanation based learning (Mitchell et al., 1986).Finally, conclusions are
drawn in Section 7.

2. Notation and Background

In this section, we briefly review some concepts related to supervised learning (from both the sta-
tistical and the ILP perspective) that will be used for defining the framework of learning from proof
trees presented in the paper.

2.1 Statistical Learning and Kernels

In the usual statistical learning framework (see, e.g., Cucker and Smale, 2002, for a thorough math-
ematical foundation) a supervised learning algorithm is given a training setof input-output pairs
D = {(x1,y1), . . . ,(xm,ym)}, with xi ∈ X andyi ∈ Y . The setX is called the input (or instance)
space and can be any set. The setY is called the output (or target) space; in the case of binary
classificationY = {−1,1} while the case of regressionY is the set of real numbers. A fixed (but
unknown) probability distribution onX ×Y links input objects to their output target values. The

309

PASSERINI, FRASCONI AND DE RAEDT

learning algorithm outputs a functionf : X 7→ Y that approximates the probabilistic relation be-
tween inputs and outputs. The class of functions that is searched is called thehypothesis space.

A (Mercer) kernel is a positive semi-definite symmetric function1 K : X ×X 7→ IR that general-
izes the notion of inner product to arbitrary domains (see, e.g., Shawe-Taylor and Cristianini, 2004,
for details). When using kernel methods in supervised learning, the hypothesis space, denotedFK ,
is the so-called reproducing kernel Hilbert space (RKHS) associated with K. Learning consists of
solving the following Tikhonov regularized problem:

f = arg min
h∈FK

C
m

∑
i=1

V(yi ,h(xi))+‖h‖K (1)

whereV(y,h(x)) is a positive function measuring the loss incurred in predictingh(x) when the target
is y,C is a positive regularization constant, and‖·‖K is the norm in the RKHS. Popular algorithms in
this framework include support vector machines (SVM) (Cortes and Vapnik, 1995) and kernel ridge
regression (Poggio and Smale, 2003; Shawe-Taylor and Cristianini, 2004). The representer theorem
(Kimeldorf and Wahba, 1970) shows that the solution to the above problem can be expressed as a
linear combination of the kernel between individual training examplesxi andx as follows:

f (x) =
m

∑
i=1

ciK(x,xi). (2)

The above form also encompasses the solution found by other algorithms such as the kernel percep-
tron (Freund and Schapire, 1999).

2.2 Inductive Logic Programming

Within the field of inductive logic programming, the standard framework is that of learning from
entailment. In this setting, the learner is given a set of positive and negativeexamplesD+ and
D−, respectively (in the form of ground facts), and a background theory B (as a set of definite
clauses) and has to induce a hypothesisH (also a set of definite clauses) such thatB ∪H covers all
positive examples and none of the negative ones. More formally,∀p(x) ∈D+ : B ∪H |= p(x) and
∀p(x) ∈D− : B ∪H 6|= p(x). In this paper, as in the work by Lloyd (2003), we shall use examples
that are individuals, i.e., first-order logic objects or identifiers. This meansthat we shall effectively
refer to the examples by their identifierx rather than usep(x). The traditional definition of inductive
logic programming does not explicitly—as is the case of regularized empirical risk minimization—
account for noisy data and the possibility that a complete and consistent hypothesis might not exist.
Even though various noise handling techniques exist in inductive logic programming, they are not
as principled as those offered by statistical learning theory.

Example 1 As an illustration of the above concepts, consider the famous mutagenicity benchmark
by Srinivasan et al. (1996). There the examples are of the formmutagenic(id) whereid is a
unique identifier of the molecule and the background knowledge contains information about the
atoms, bonds and functional groups in the molecule. A hypothesis in this case could be

mutagenic(ID) ← nitro(ID,R),lumo(ID,L), L<-1.5.

1. A symmetric functionK : X × X 7→ IR is called a positive semi-definite kerneliff ∀m ∈ IN,∀x1, . . . ,xm ∈
X ,∀a1, . . . ,am∈ IR, ∑m

i, j=1 aia jK(xi ,x j)≥ 0.

310

KERNELS ONPROLOG PROOFTREES

mutagenic(d26).

lumo(d26, -2.072).
logp(d26, 2.17).
atm(d26,d26_1,c,22,-0.093).
atm(d26,d26_2,c,22,-0.093).
atm(d26,d26_3,c,22,-0.093).
atm(d26,d26_4,c,22,-0.093).
atm(d26,d26_5,c,22,-0.093).
atm(d26,d26_6,c,22,-0.093).
atm(d26,d26_7,h,3,0.167).
atm(d26,d26_8,h,3,0.167).

atm(d26,d26_9,h,3,0.167).
atm(d26,d26_10,cl,93,-0.163).
atm(d26,d26_11,n,38,0.836).
atm(d26,d26_12,n,38,0.836).
atm(d26,d26_13,o,40,-0.363).
atm(d26,d26_14,o,40,-0.363).
atm(d26,d26_15,o,40,-0.363).
atm(d26,d26_16,o,40,-0.363).
bond(d26,d26_1,d26_2,7).
bond(d26,d26_2,d26_3,7).
bond(d26,d26_3,d26_4,7).
bond(d26,d26_4,d26_5,7).

bond(d26,d26_5,d26_6,7).
bond(d26,d26_6,d26_1,7).
bond(d26,d26_1,d26_7,1).
bond(d26,d26_3,d26_8,1).
bond(d26,d26_6,d26_9,1).
bond(d26,d26_10,d26_5,1).
bond(d26,d26_4,d26_11,1).
bond(d26,d26_2,d26_12,1).
bond(d26,d26_13,d26_11,2).
bond(d26,d26_11,d26_14,2).
bond(d26,d26_15,d26_12,2).
bond(d26,d26_12,d26_16,2).

nitro(X,[Atom0,Atom1,Atom2,Atom3]) :-
atm(X,Atom1,n,38,_),
bondd(X,Atom0,Atom1,1),
bondd(X,Atom1,Atom2,2),
atm(X,Atom2,o,40,_),
bondd(X,Atom1,Atom3,2),
Atom3 @> Atom2,
atm(X,Atom3,o,40,_).

bondd(X,Atom1,Atom2,Type) :-
bond(X,Atom1,Atom2,Type).

bondd(X,Atom1,Atom2,Type) :-
bond(X,Atom2,Atom1,Type).

�

��

�

�

�

� �

Figure 1: Example from the mutagenesis domain. Top:extensionalrepresentation of an instance
(a molecule). Left: sample fragment ofintensionalbackground theory. Right: chemical
structure of the molecule.

It entails (covers) the molecule listed in Figure 1. It will be convenient to distinguishextensional
predicates, such asatm, logp, lumo andbond, which specify information aboutspecificexamples,
from the intensionalones, such asbbond and nitro, which specify general properties about all
examples.

Regression can be introduced in ILP in different ways. For example in theFirst-Order Re-
gression System (Karalič and Bratko, 1997) some arguments of the target predicate (called con-
tinuous attributes) are real-valued. For instance, in our example one could use examples of the
form mutagenic(d26, -2.072, 2.17, 6.3) where the arguments would be the lumo and logp
values as well as the target activity. FORS then learns from “positive” examples only, covering
subsets of examples on which linear regression between the continuous arguments is solved in a
numerical way. An interesting alternative is Structural Regression Trees, a method based on divide-
and-conquer, similar to regression trees (Kramer, 1996).

3. A Framework for Statistical Learning in the ILP Setting

In this section we introduce the logical framework for defining program traces and, in particular, the
concepts of visitor programs and proof trees.

311

PASSERINI, FRASCONI AND DE RAEDT

3.1 General Assumptions

The methods described in this paper are based on a framework that combines some of the advantages
of the statistical and the ILP settings, in particular noise robustness and the possibility of describing
background knowledge in a flexible declarative language. First, we assume that the instance space
X is a set of first-order logic objects (i.e., individuals in the universe of discourse), each having a
unique identifierx. As in the ILP setting, we assume that a background theoryB is available in
the form of a set of definite clauses. This background theory is dividedinto intensionalpredicates,
which are relevant to all examples, andextensionalones, which specify facts about specific exam-
ples. As in the statistical setting, we assume that a fixed and unknown distribution is defined on
X ×Y and that training dataD consist of input-output pairs(xi ,yi) (for classification or regression).
Rather than having to find a set of clausesH , the learning algorithm outputs a functionf that maps
instances into their targets and whose general form is given by Equation (2). In this sense, our
setting is close to statistical learning and predictions on new instances will be essentially opaque.
However, we make the fundamental assumption thatf also depends on the available background
theory via the kernel function.

3.2 Visitors

A second key difference with respect to the traditional ILP setting is that in addition to dataD and
background knowledgeB, the learner is given an additional set of clauses forming the so-called
visitor program. Clauses in this program should be designed to “inspect” examplesusing other
predicates declared inB. In facts, as detailed in Section 4, the kernel function to be plugged in
Equation (2) will be defined by means of the trace of this program. To this aim, we are not only
interested in determining whether certain clauses succeed or fail on a particular example. In our
approach, the execution traces of the visitor programs are recorded and compared, on the ratio-
nale that examples having similar traces should be mapped to similar representations in the feature
space associated with the kernel. The purpose of visitors is thus to construct useful features during
their execution. This is a major difference with respect to other approaches in which features are
explicitly constructed by computing the truth value for predicates (Muggleton et al., 2005).

Definition 1 (Visitor programs) A visitor program for a background theoryB and domainX is
a setV of definite clauses that contains at least one special clause (called avisitor) of the form
V← B1, . . . ,BN and such that

• V is a predicate of arity 1

• for each j= 1, . . . ,N, Bj is declared inB ∪V ;

Intuitively, if visit/1 is a visitor inV , by answering the queryvisit(x)? we explore the features
of the instance whose constant identifierx is passed to the visitor. Having multiple visitors in the
programV allows us to explore different aspects of the examples and include multiple sources of
information.

Some examples of visitor programs are introduced in the remainder of this section and when
presenting empirical results in Section 5.

312

KERNELS ONPROLOG PROOFTREES

3.3 Traces and Proof Trees

A visitor program trace for a given domain instance is obtained by recording proofs of visitor goals
called on that instance. There are alternative options for choosing the kind of proof to be employed.
Therefore in order to give a precise definition of traces, we now need tomake a specific design
choice. In this paper, we are committed to Prolog-based representations. Hence, a natural option
would be the use of SLD-trees, whose paths correspond to execution sequences of the Prolog in-
terpreter. A drawback of this choice is that an SLD-tree is a very complex and rather unstructured
representation and also contains information about failed paths, potentially leading to an explosion
of redundant and irrelevant features for the purpose of learning. For these reasons we prefer to resort
to proof trees (Russell and Norvig, 2002), defined as follows:

Definition 2 (Proof tree) 2 LetP be a program and G a goal. IfP 6|= G then theproof treefor G is
empty. Otherwise, it is a tree t recursively defined as follows:

• if there is a fact f inP and a substitutionθ such that Gθ = f θ, then Gθ is a leaf of t.

• otherwise there must be a clause H←B1, ...,Bn∈ P and a substitutionθ′ such that Hθ′= Gθ′
andP |= B jθ′ ∀ j, Gθ′ is the root of t and there is a subtree of t for each Bjθ′ which is a proof
tree for Bjθ′.

The kernels used in this paper work on ground proof trees. In general, however, proof trees or
SLD-trees need not be ground. If they are not, they can however always be made ground by skolem-
ization, i.e., by substituting all variables by different constants not yet appearing in the program and
goal. The skolemized proof will then still logically follow from the program. Alternatively, one
could impose the requirement that all clauses are range-restricted, a requirement that is often im-
posed in the logic programming community. Range-restrictedness requires that all variables that
appear in the head of a clause also appear in its body. It is a sufficient requirement for guaranteeing
that all proofs will be ground. Finally, ground proofs can be also obtained by making specific as-
sumptions about the mode of head variables not occurring in the body, so that these variables will
be instantiated in proving the goal. All the visitor programs presented in our empirical evaluation
(see Section 5) yield ground proofs thanks to such assumptions.

Example 2 For the sake of illustration, consider again the mutagenesis domain. Consider the atom
bond representation of the simple molecule in Figure 1. By looking at the molecule as a graph where
atoms are nodes and bonds are edges, we can introduce the common notions of pathandcycle:

1 : cycle(X,A):- 2 : path(X,A,B,M):- 3 : path(X,A,B,M):-
path(X,A,B,[A]), atm(X,A,_,_,_), atm(X,A,_,_,_),
bond(X,B,A,_). bond(X,A,B,_), bond(X,A,C,_),

atm(X,B,_,_,_), not(member(C,M)),
not(member(B,M)). path(X,C,B,[C|M]).

The following simple visitor may be used to inspect cycles in the molecule:

4 : visit(X):
cycle(X,A).

2. Such trees are sometimes also namedand-trees.

313

PASSERINI, FRASCONI AND DE RAEDT

Note that we numbered each clause inV and the intensional part of the background theoryB
(but not in the extensional part3) with a unique identifier. This will allow us to take into account
information about the clauses that are used in a proof. The corresponding proof tree for this example
is shown in Figure 2.

In general, a goal can be satisfied in more than one way. Therefore, each query generates a
(possibly empty) set of proof trees. Since multiple visitors may be available, thetrace of an instance
is a tuple of sets of proof trees, as formalized in the following definition:

Definition 3 (Trace) Let N be the number of visitors inV and for each l= 1, . . . ,N let Tl j ,x denote
the proof tree that represents the j-th proof of the goal Vl (x), i.e., a proof thatB ∪V |= Vl (x). Let

Tl ,x = {Tl1,x, . . . ,Tlsl ,x,x} (3)

where sl ,x ≥ 0 is the number of alternative proofs of goal Vl (x). The trace of an instance x is the
tuple

Tx = [T1,x, . . . ,TN,x]. (4)

3.4 Pruning Proof Trees

In many situations, the proof tree for a given goal will be unnecessary complex in that it may contain
several uninteresting subtrees. In these cases, we will often work withprunedproof trees, which
are trees where subtrees rooted at specific predicates (declared asleaf predicates by the user) are
turned into leafs. This will reduce the complexity of the feature space associated with the kernel
by selectively ignoring subproofs. For instance, consider again the mutagenesis domain described
in Srinivasan et al. (1996) where a theory of rings and functional groups is included as background
knowledge (see Figure 1). In this domain, it may be useful to define visitorsthat explore groups
such as benzene rings:

atoms(X,[]). visit_benzene(X):-
atoms(X,[H|T]):- benzene(X,Atoms),

atm(X,H,_,_,_), atoms(X,Atoms).
atoms(X,T).

If we believe that the presence of the ring and the nature of the involved atoms represent a sufficient
set of features, we may want to ignore details about the proof of the predicatebenzene by pruning
the corresponding proof subtree. This can be accomplished by includingthe following fact in the
visitor program:

leaf(benzene(_,_)).

3.5 Bridging the Gap

We are finally able to give a complete formalization of our framework for learning from example-
traces. The learner is given a data setD = {(x1,y1), . . . ,(xm,ym)}, background knowledgeB, and
visitor programV . For each instancexi , a traceTxi is obtained by running the visitor program

3. The numbers in the extensional part would change from example to example and hence, would not carry any useful
information.

314

KERNELS ONPROLOG PROOFTREES

4 : visit(d26)

1 : cycle(d26,d26 1)

3 : path(d26, d26 1, d26 6, [d26 1])

atm(d26, d26 1, c, 22, -0.093)

bond(d26, d26 1, d26 2, 7)

not(member(d26 2, [d26 1]))

3 : path(d26, d26 2, d26 6, [d26 2, d26 1])

atm(d26, d26 2, c, 22, -0.093)

not(member(d26 3, [d26 2, d26 1]))

3 : path(d26, d26 3, d26 6, [d26 3, d26 2, d26 1])

atm(d26, d26 3, c, 22, -0.093)

bond(d26, d26 3, d26 4, 7)

not(member(d26 4, [d26 3, d26 2, d26 1]))

3 : path(d26, d26 4, d26 6, [d26 4, d26 3, d26 2, d26 1])

atm(d26, d26 4, c, 22, -0.093)

bond(d26, d26 4, d26 5, 7)

not(member(d26 5, [d26 4, d26 3, d26 2, d26 1]))

2 : path(d26, d26 5, d26 6, [d26 5, d26 4, d26 3, d26 2, d26 1])

atm(d26, d26 5, c, 22, -0.093)

bond(d26, d26 5, d26 6, 7)

atm(d26, d26 6, c, 22, -0.093)

not(member(d26 6, [d26 5, d26 4, d26 3, d26 2, d26 1]))

bond(d26, d26 6, d26 1, 7)

bond(d26, d26 2, d26 3, 7)

Figure 2: Proof tree resulting from the goalvisit(d26) in the mutagenesis example.

315

PASSERINI, FRASCONI AND DE RAEDT

according to Definition 3. A kernel machine (e.g., an SVM) is then trained to form the function
f : X 7→ Y defined as

f (x) =
m

∑
i=1

ciK(Txi ,Tx).

The only missing ingredient is the kernel functionK for comparing two visitor traces. The definition
of this function is detailed in the next section.

4. Kernels over Visitor Traces

In this section, we derive kernel functions for comparing traces of visitor programs. We begin by
reviewing some preliminary concepts about convolution kernels (Haussler, 1999), a very general
family of kernels on discrete structures that will be used in the rest of the paper to define kernels
over the logical structures of interest.

4.1 Kernels for Discrete Structures

For the purposes of this subsection, letX be a set of composite structures and forx∈ X let x1, . . . ,xD

denote the “parts” ofx, with xd ∈ Xd for all i ∈ [1,D]. This decomposition can be formally repre-
sented by a relationR on X1× ·· ·×XD×X such thatR(x1, . . . ,xD,x) is true iff x1, . . . ,xD are the
parts ofx. We also write(x1, . . . ,xD) = R−1(x) if R(x1, . . . ,xD,x) is true. Note that the relation
R used in this definition is very general and does not necessarily satisfy anaxiomatic theory for
parts and wholes such as those studied in knowledge representation (Varzi, 1996). For example
if X1 = · · · = XD = X are sets containing all finite strings over a finite alphabet, we can define a
relationR(x1, . . . ,xD,x) which is true iffx = x1 ◦ · · · ◦xD, with ◦ denoting concatenation of strings.
Note that in this examplex can be decomposed in multiple ways. We say that the relationR is finite
if the number of such decompositions is finite. Given a set of kernelsKd : Xd×Xd→ IR, one for
each of the parts ofx, theR-convolutionkernel is defined as

KR,⊗(x,z) = ∑
(x1,...,xD)∈R−1(x)

∑
(z1,...,zD)∈R−1(z)

D

∏
d=1

Kd(xd,zd) (5)

where the sums run over all the possible decompositions ofx andz. Similarly, one could use direct
sum obtaining

KR,⊕(x,z) = ∑
(x1,...,xD)∈R−1(x)

∑
(z1,...,zD)∈R−1(z)

D

∑
d=1

Kd(xd,zd). (6)

For finite relationsR, these functions can be shown to be valid kernels:

Theorem 4 (Haussler 1999)For any finite R on a spaceX , the functions KR,⊗ : X ×X 7→ IR (de-
fined by Equation (5)) and KR,⊕ : X ×X 7→ IR (defined by Equation (6)) are positive semi-definite
kernels onX ×X .

Proof: Follows from closure properties of tensor product and direct sum. See Haussler (1999) for
details.

Theset kernel(Shawe-Taylor and Cristianini, 2004) is a special case of convolution kernel that
will prove useful in defining kernels between visitor traces. Suppose instances are sets and let us

316

KERNELS ONPROLOG PROOFTREES

define the part-of relation as the usual set-membership. The kernel oversetsKset is then obtained
from kernels between set membersKmemberas follows:

Kset(x,z) = ∑
ξ∈x

∑
ζ∈z

Kmember(ξ,ζ). (7)

In order to reduce the dependence on the dimension of the objects, kernels over discrete structures
are often normalized. A common choice is that of using normalization in feature space, i.e., given a
convolution kernelKR:

Knorm(x,z) =
KR(x,z)

√

KR(x,x)
√

KR(z,z)
. (8)

In the case of set kernels, an alternative is that of dividing by the cardinalities of the two sets, thus
computing the mean value between pairwise comparisons:4

Kmean(x,z) =
Kset(x,z)
|x||z|

. (9)

Richer families of kernels on data structures can be formed by applying composition to the feature
mapping induced by a convolution kernel. For example, a convolution kernel KR can be combined
with a Gaussian kernel as follows:

K(x,z) = exp
(

−γ
(

KR(x,x)−2KR(x,z)+KR(z,z)
))

. (10)

4.2 Kernels over Visitor Programs

Going back to the framework defined in Section 3, letX be a set of first-order logic objects and
for x,z∈ X consider the program tracesTx andTz defined by Equations (3) and (4). In order to
define the kernel over program traces we follow a top-down approach. We begin by decomposing
traces into parts associated with different visitors (i.e., the elements of the tuplein Equation (4)) and
applying a decomposition kernel based on direct sum as defined by Equation (6):

K(Tx,Tz) =
N

∑
l=1

Kl (Tl ,x,Tl ,z). (11)

Note that there is a unique decomposition ofTx andTy, that is we just compare proofs of the same
visitor. According to Definition 3 for eachl = 1, . . . ,N, the arguments toKl are sets of proof trees.
Hence, using the set kernel of Equation (7) we further obtain:

Kl (Tl ,x,Tl ,z) =
sl ,x

∑
p=1

sl ,z

∑
q=1

Ktree(Tl p,x,Tlq,z). (12)

In this way, we have shown that the problem boils down to defining a kernelKtree over individual
proof trees. This will be detailed in the remainder of this section. Note that we can define different
kernels for proof trees originating from different visitors.

4. Note that normalizations such as those of Equations (8) and (9) can give indefinite results iff one of the two arguments
(sayx) is the null vector of the feature space associated to the original kernel (i.e.,KR or Kset). In such a case, we will
defineKnorm(x,z) = Kmean(x,z) = 0∀z∈ X ,z 6= x.

317

PASSERINI, FRASCONI AND DE RAEDT

At the highest level of kernel between visitor programs (Equation (11)), it is advisable to employ
a feature space normalization using Equation (8). In some cases it may also be useful to normalize
lower-level kernels, in order to rebalance contributions of individual parts. In particular, the mean
normalization of Equation (9) can be applied to the kernel over individual visitors (Equation (12))
and it is also possible to normalize kernels between individual proof trees,in order to reduce the
influence of the proof size.

4.3 Representing Proof Trees as Prolog Ground Terms

Proof trees are discrete data structures and, in principle, existing kernels on trees could be applied
(e.g. Collins and Duffy, 2002; Viswanathan and Smola, 2003). However, we can gain more expres-
siveness by representing individual proof trees as typed Prolog ground terms. In so doing we can
exploit type information on constants and functors so that different sub-kernels can be applied to
different object types. In addition, while traditional tree kernels would typically compareall pairs
of subtrees between two proofs, the kernel on ground terms presentedbelow results in a more se-
lective approach that compares certain parts of two proofs only when reached by following similar
inference steps (a distinction that would be difficult to implement with traditional tree kernels).
We will use the following procedure to represent a proof tree as a Prologground term:

• Base step: if a node contains a fact, this is already a ground term.

• Induction: if a node contains a clause, then letn be the number of arguments in the head and
m the number of atoms in the body (corresponding to them children of the node). A ground
compound termt havingn+1 arguments is then formed as follows:

– the functor name oft is the functor name of the head of the clause;

– the firstn arguments oft are the arguments of the clause head;

– the last argument oft is a compound term whose functor name is a Prolog constant
obtained from the clause number,5 and whosem arguments are the ground term repre-
sentations of them children of the node.

Example 3 Consider the proof tree of Figure 2 in the mutagenesis domain. The transformation
outlined above yields the following representation as a Prolog ground term:

visit(d26,
cbody4(cycle(d26,

d26_1,
cbody1(path(d26,

d26_1,
d26_6,
[d26_1],
cbody3(...)),

bond(d26,d26_6,d26_1,7))))).

where we skipped the representation of the children ofpathfor the sake of readability.

We are now able to employ kernels on Prolog ground terms as defined in Passerini and Frasconi
(2005) to compute kernels over individual proof trees.

5. Since numbers cannot be used as functor names, this constant canbe simply obtained by prefixing the clause number
by ’cbody’.

318

KERNELS ONPROLOG PROOFTREES

4.4 Kernels on Prolog Ground Terms

We begin with kernels on untyped terms. LetC be a set of constants andF a set of functors, and
denote byU the corresponding Herbrand universe (the set of all ground terms that can be formed
from constants inC and functors inF). Let f /n ∈ F denote a functor having namef and arityn.

Definition 5 (Sum kernels on untyped terms)The kernel between two terms t and s is a function
K : U×U 7→ IR defined inductively as follows:

• if s∈ C and t∈ C then
K(s, t) = κ(s, t) (13)

whereκ : C ×C 7→ IR is a valid kernel on constants;

• else if s and t are compound terms and have different functors, i.e., s= f (s1, . . . ,sn) and
t = g(t1, . . . , tm), then

K(s, t) = ι(f /n,g/m) (14)

whereι : F ×F 7→ IR is a valid kernel on functors;

• else if s and t are compound terms and have the same functor, i.e., s= f (s1, . . . ,sn) and
t = f (t1, . . . , tn), then

K(s, t) = ι(f /n, f /n)+
n

∑
i=1

K(si , ti) (15)

• in all other cases K(s, t) = 0.

Functionsκ andι are calledatomickernels as they operate on non-structured symbols. A special
but useful case is the atomic delta kernelδ defined asδ(x,z) = 1 if x = z andδ(x,z) = 0 if x 6= z.

Example 4 Consider the two lists s= [a,b,c] and t= [a,c]. Recall that in Prolog[a,b] is a short-
hand for.(a, .(b, [])) where the functor./2 is a data constructor for lists and[] is the data constructor
for the empty list. Supposeι(./2, ./2) = 0.25andκ(x,z) = δ(x,z) for all x,z∈ C . Then

K(s, t) = K(.(a, .(b, .(c, []))), .(a, .(c, [])))

= ι(./2, ./2)+K(a,a)+K(.(b, .(c, [])), .(c, []))

= ι(./2, ./2)+κ(a,a)+ ι(./2, ./2)+κ(b,c)+K(.(c, []), [])

= 0.25+1+0.25+0+0 = 1.5

The result obtained in the above example is similar to what would be achieved withthe kernel on
higher-order logic basic terms defined in Gärtner et al. (2004). The following examples illustrate
the case of two other common data structures.

Example 5 Consider the two tuples simulated via a predicater: s = r(a,b,c) and t= r(d,b,a).
Supposeι(r/3,r/3) = 0 andκ(x,z) = δ(x,z) for all x,z∈ C . Then it immediately follows from the
definition that K(s, t) = 1.

319

PASSERINI, FRASCONI AND DE RAEDT

Example 6 As a last example consider data structures intended to describe scientific references:

r = article("Kernels on Gnus and Gnats",journal(ggj,2004))

s = article("The Logic of Gnats",conference(icla,2004))

t = article("Armadillos in Hilbert space",journal(ijaa,2004))

Using κ(x,z) = δ(x,z) for all x,z∈ C and ι(x,z) = δ(x,z) for all x,z∈ F , we obtain K(r,s) = 1,
K(r, t) = 3, and K(s, t) = 1. The fact that all papers are published in the same year does not
contribute to K(r,s) or K(s, t) since these pairs have different functors describing the venue of the
publication; it does contribute to K(r, t) as they are both journal papers. Note that strings have
been treated as constants (as standard in Prolog). Under our above definition the kernel cannot
recognize the fact that r and s share a word in the title.

A finer level of granularity in the definition of ground term kernels can be gained from the
use of typed terms. This extra flexibility may be necessary to specify different kernel functions
associated with constants of different type (e.g., numerical vs categorical). Types are also useful to
specify different kernels associated to different arguments of compound terms. As detailed below,
this allows us to distinguish different roles played by clauses in a proof tree.

Our approach for introducing types is similar to that proposed by Lakshmanand Reddy (1991).
We denote byT the ranked set of type constructors, which contains at least the nullary constructor
⊥. The type signature of a function of arityn has the formτ1×, . . . ,×τn 7→ τ′ wheren≥ 0 is the
number of arguments,τ1, . . . ,τk ∈ T are their types, andτ′ ∈ T is the type of the result. Functions
of arity 0 have signature⊥ 7→ τ′ and can therefore be interpreted as constants of typeτ′. The
type of a function is the type of its result. The type signature of a predicate ofarity n has the form
τ1×, . . . ,×τn 7→Ω whereΩ∈ T is the type of Booleans, and is thus a special case of type signatures
of functions. We writet : τ to assert thatt is a term of typeτ. We denote byG the set of all typed
ground terms, byC ⊂ G the set of all typed constants, and byF the set of typed functors. Finally
we introduce a (possibly empty) set ofdistinguishedtype signaturesD ⊂ T that can be useful to
specify ad-hoc kernel functions on certain compound terms.

Definition 6 (Sum kernels on typed terms)The kernel between two typed terms t and s is defined
inductively as follows:

• if s∈ C , t ∈ C , s : τ, t : τ then

K(s, t) = κτ(s, t) (16)

whereκτ : C ×C 7→ IR is a valid kernel on constants of typeτ;

• else if s and t are compound terms that have the same type but different functors or signatures,
i.e., s= f (s1, . . . ,sn) and t= g(t1, . . . , tm), s : σ1×, . . . ,×σn 7→ τ′, t : τ1×, . . . ,×τm 7→ τ′, then

K(s, t) = ιτ′(f /n,g/m) (17)

whereιτ′ : F ×F 7→ IR is a valid kernel on functors that construct terms of typeτ′

320

KERNELS ONPROLOG PROOFTREES

• else if s and t are compound terms and have the same functor and type signature, i.e., s=
f (s1, . . . ,sn), t = f (t1, . . . , tn), and s, t : τ1×, . . . ,×τn 7→ τ′, then

K(s, t) =

κτ1×,...,×τn 7→τ′(s, t)
if (τ1×, . . . ,×τn 7→ τ′) ∈D

ιτ′(f /n, f /n)+
n

∑
i=1

K(si , ti) otherwise
(18)

whereκτ1×,...,×τn 7→τ′ : U×U 7→ IR is a valid kernel on terms having distinguished type signa-
ture τ1×, . . . ,×τn 7→ τ′ ∈D.

• in all other cases K(s, t) = 0.

Versions of the kernels which combine arguments using products instead ofsums can be easily
defined as follows.

Definition 7 (Product kernels on untyped terms) Use Definition 5 replacing Equation (15) with

K(s, t) = ι(f /n, f /n)
n

∏
i=1

K(si , ti) (19)

Definition 8 (Product kernels on typed terms) Use Definition 6 replacing Equation (18) with

K(s, t) =

κτ1×,...,×τn 7→τ′(s, t)
if (τ1×, . . . ,×τn 7→ τ′) ∈D

ιτ′(f /n, f /n)
n

∏
i=1

K(si , ti) otherwise
(20)

The families of functions in Definitions 5–8 are special cases of Haussler’s decomposition ker-
nels and therefore they are positive semi-definite (see Appendix A for formal results).

4.5 Kernels on Prolog Proof Trees

In order to employ full typed term kernels (as in Definitions 6 and 8) on proof trees, we need a
typed syntax for their ground term representation. We will assume the following default types for
constants:num (numerical) andcat (categorical). Types for compounds terms will be eitherfact,
corresponding to leaves in the proof tree,clause in the case of internal nodes, andbody when
containing the body of a clause. Note that regardless of the specific implementation of kernels
between types, such definitions imply that we actually compare the common subpart of proofs
starting from the goal (the visitor clause), and stop whenever the two proofs diverge.

A number of special cases of kernels can be implemented with appropriate choices of the kernel
for compound and atomic terms. Theequivalencekernel outputs one iff two proofs are equivalent,
and zero otherwise:

Kequiv(s, t) =

{

1 if s≡ t
0 otherwise

(21)

We say that two proofs are equivalent if the same sequence of clauses isproven in the two cases,
and the head arguments in corresponding clauses satisfy a given equivalence relation. A trivial

321

PASSERINI, FRASCONI AND DE RAEDT

implementation of proof equivalence can be obtained using the product kernel on typed terms (Def-
inition 8) in combination with the delta kernel on constants and functors.

In many cases, we will be interested in ignoring some of the arguments of a pairof ground terms
when computing the kernel between them. As an example, consider the atom bond representation of
a molecule shown in the upper part of Figure 1. The first arguments ofatm andbond predicates are
simply molecule and atom identifiers, and we would like to ignore their values whencomparing two
molecules together. This can be implemented using a specialignore type for arguments that should
be ignored in comparisons, and a correspondingconstantkernel which always outputs a constant
value:

Kη(s, t) = η.

It is straightforward to see thatKη is a valid kernel providedη ≥ 0. The constantη should be set
equal to the identity element of the operation used to combine results for the different arguments of
the term under consideration, that isη = 0 for the sum kernel andη = 1 for the product one.

The extreme use for this kernel is that of implementing the notion offunctor equalityfor proof
tree nodes, where two nodes are the same iff they share the same functor,regardless of the specific
values taken by their arguments. Given two ground termss= f (s1, . . . ,sn) andt = g(t1, . . . , tm) the
functor equality kernel is given by:

K f (s, t) =

0 if type(s) 6= type(t)
δ(f /n,g/m) if s, t : fact
δ(f /n,g/m)?K(sn, tm) if s, t : clause
K(s, t) if s, t : body

(22)

whereK is a kernel on ground terms as defined in Section 4.4, and the operator? can be either
sum or product. Note that ifs and t represent clauses (i.e., internal nodes of the proof tree), the
comparison skips clause head arguments, represented by the firstn− 1 (resp. m− 1) arguments
of the terms, and compares the bodies (the last argument, see Section 4.3) thus proceeding on the
children of the nodes. This kernel allows to define a non trivial equivalence between proofs (or parts
of them) checking which clauses are proved in sequence and ignoring thespecific values of their
head arguments.

Moreover, it will often be useful to define custom kernels for specific terms by using distin-
guished type signatures. Appendix B contains details of possible kernel configurations as sets of
Prolog clauses, while Appendix C contains the Prolog code for all visitors and kernel configurations
employed in the experimental section.

5. Experiments

We run a number of experiments in order to demonstrate the possibilities of the proposed method.
In particular, we aim to empirically show that

1. statistical learning in the ILP setting can be addressed, scaling better thantypical ILP algo-
rithms with the complexity of the target hypothesis;

2. problems which are difficult for traditional ILP algorithms can be solved;

3. both classification and regression tasks can be effectively handled;

322

KERNELS ONPROLOG PROOFTREES

4. significant improvements on real world applications can be achieved.

For classification tasks, we employed SVM (Cortes and Vapnik, 1995) using the Gist6 imple-
mentation, which permits to separate kernel calculation from training by accepting the complete
kernel matrix as input. We compared our method with two popular and diverseILP algorithms:
Tilde (Blockeel and De Raedt, 1998), which upgrades C4.5 to induction oflogical decision trees,
and Progol (Muggleton, 1995), which learns logical theories using inverse entailment.

Regression is quite a difficult task for ILP techniques, and few algorithms currently exist which
are able to address it. Conversely, our definition of kernel over prooftrees allows us to apply
standard kernel methods for regression, such as kernel ridge regression (KRR, (Poggio and Smale,
2003)) and support vector regression (Vapnik, 1995). We reportresults using the former approach,
as training was more stable and no significant difference in performance could be noted. However,
when dealing with large data sets, the latter method would be preferable for efficiency reasons. In
Section 5.4 we report regression experiments comparing our approach toa number of propositional
as well as relational learners.

5.1 Bongard Problems

In order to provide a full basic example of visitor program construction and exploitation of the
proof tree information, we created a very simple Bongard problem (Bongard, 1970). The concept
to be learned can be represented with the simple patterntriangle-Xn-triangle for a givenn, meaning
that a positive example is a scene containing two triangles nested into one another with exactlyn
objects (possibly triangles) in between. Figure 3 shows a pair of examples of such scenes with their
representation as Prolog facts and their classification according to the pattern for n = 1.

A possible example of background knowledge introduces the concepts ofnestingin containment
andpolygonas a generic object, and can be represented as follows:

inside(X,A,B):- in(X,A,B). % clause nr 1
inside(X,A,B):- % clause nr 2

in(X,A,C),
inside(X,C,B).

polygon(X,A) :- triangle(X,A). % clause nr 3
polygon(X,A) :- rectangle(X,A). % clause nr 4
polygon(X,A) :- circle(X,A). % clause nr 5

A visitor exploiting such background knowledge, and having hints on the target concept, could be
looking for two polygons contained one into the other. This can be represented as:

visit(X):- % clause nr 6
inside(X,A,B),polygon(X,A),polygon(X,B).

Figure 4 shows the proofs trees obtained running such a visitor on the first Bongard problem in
Figure 3.

A very simple kernel can be employed to solve such a task, namely an equivalence kernel with
functor equality for nodewise comparison. For any value ofn, such a kernel maps the examples
into a feature space where there is a single feature discriminating between positive and negative

6. The Gist package by W. Stafford Noble and P. Pavlidis is available from
http://microarray.genomecenter.columbia.edu/gist/.

323

PASSERINI, FRASCONI AND DE RAEDT

Figure 3: Graphical and Prolog facts representation of two Bongard scenes. The left and right
examples are positive and negative, respectively, according to the pattern triangle-X-
triangle.

examples, while the simple use of ground facts without intensional background knowledge would
not provide sufficient information for the task.

The data set was generated by creatingm scenes each containing a series of` randomly chosen
objects nested one into the other, and repeating the procedure for` varying from 2 to 20. Moreover,
we generated two different data sets by choosingm = 10 andm = 50 respectively. Finally, for
each data set we obtained 15 experimental settings denoted byn∈ [0,14]. In each setting, positive
examples were scenes containing the patterntriangle-Xn-triangle. We run an SVM with the above
mentioned proof tree kernel and a fixed valueC = 10 for the regularization parameter, on the basis
that the data set is noise free. We evaluated its performance with a leave-one-out (LOO) procedure,
and compared it to the empirical error of Tilde and Progol trained on the samedata and background
knowledge (including the visitor). Here we focus on showing that ILP algorithms have troubles
finding a consistent hypothesis for this problem, hence we did not measuretheir generalization.

Figure 5(a) plots results form = 10. Both Tilde and Progol stopped learning the concept for
n > 4. Progol found the trivial empty hypothesis for alln > 4 apart fromn = 6, and Tilde for all
n > 9. While never learning the concept with 100% generalization accuracy, the SVM performance
was much more stable when increasing the nesting level corresponding to positive examples. Figure
5(b) plots results form = 50. Progol was extremely expensive to train with respect to the other
methods. It successfully learned the concept forn≤ 2, but we stopped training forn = 3 after more
than one week training time on a 3.20 GHz PENTIUM IV. Tilde stopped learning the concept for
n > 8, and found the trivial empty hypothesis forn > 12. Conversely, the SVM was almost always
able to learn the concept with 100% generalization accuracy, regardlessof its complexity level.

Note that in order for the ILP algorithms to learn the target concept regardless of the nesting
level, it would be necessary to provide a more informedinside predicate, which explicitly contains
such nesting level as one of its arguments. The ability of the kernel to extract information from the
predicate proof, on the other hand, allows our method to be employed when only partial background
knowledge is available, which is typically the case in real world applications.

5.2 M-of-N Problems

The possibility to plug background knowledge into the kernel allows addressing problems that are
notoriously hard for ILP approaches. An example of such concepts is theM-of-N one, which expects
the model to be able to count and make the decision accordingly.

324

KERNELS ONPROLOG PROOFTREES

Figure 4: Proof trees obtained by running the visitor on the first Bongardproblem in Fig. 3.

Figure 5: Comparison between SVM leave-one-out error, Progol andTilde empirical error in learn-
ing thetriangle-Xn-trianglefor different values ofn, for data sets corresponding tom= 10
(a) andm= 50 (b).

325

PASSERINI, FRASCONI AND DE RAEDT

-1 1
-1 528 0

True
1 94 833

Predicted

Table 1: Contingency table for the strings task with default regularization parameter. Predicted
class is on columns, true class on rows.

We represented this kind of tasks with a toy problem. Examples are strings of integersi ∈ [0,9],
and a string is positive iff more than a half of its pairs of consecutive elementsis ordered, where
we employ the partial ordering relation≤ between numbers. In this task,M andN are example
dependent, while their ratio is fixed.

As background knowledge, we introduced the concepts of “length two substring” and “pairwise
ordering”:

substr([A,B],[A,B|_T]).
substr([A,B],[_H|T]):-

substr([A,B],T).

comp(A,B):- A @> B.
comp(A,B):- A @=< B.

We then designed a visitor which looks for a substring of length two in the example, and compares
its elements:

visit(X):-
string(X,S),substr([A,B],S),comp(A,B).

We also declaredsubstr to be a leaf predicate, thus pruning the proof tree as explained in Section
3.4, because we are not interested in where the substring is located within theexample.

The kernel we employed for this task is a sum kernel with functor equality for nodewise compar-
ison. This kernel basically counts the number of clauses proved in the common subpart of two proof
trees, where common means that the same clauses were proved regardlessof the specific values of
their head arguments.

The data set was created in the following way: the training set was made of 150 randomly
generated strings of length 4 and 150 strings of length 5; the test set was made of 1455 randomly
generated strings of length from 6 to 100. This allowed to verify the generalization performance of
the algorithm for lengths very different from the ones it was trained on.

Accuracy on the test set for a default value of the regularization parameter C = 1 was 93.5%,
with a contingency table as in Table 1. Moreover, false negatives were thenearest to the decision
threshold, and slightly modifying the regularization parameter led to 100% accuracy. On the other
hand, neither Tilde nor Progol were able to induce any approximation of thetarget concept with the
available background knowledge. A number of problems prevented them from learning:

1. All proofs of a given predicate (substr) were necessary ingredients for the target concept.

2. Counting such proofs was needed, conditioned on the proof details.

326

KERNELS ONPROLOG PROOFTREES

3. Gain measures were useless in guiding Tilde hypothesis search, as single atoms forming the
target concept had no discriminative power if taken alone.

These problems are due to the need for an aggregation predicate (in this case count) to correctly
define the target concept. Dealing with aggregation is known to be difficult for relational learning
(Perlich and Provost, 2003; Knobbe et al., 2002).

In order for Progol to learn the target concept, two explicit conditioned counting predicates had
to be provided, counting the number of ordered (resp. unordered) length two substrings of a given
string. Tilde was still unable to learn the concept with such background knowledge, due the above
mentioned problem with gain at intermediate steps of the search, and full lookahead of all building
predicates was needed. Again, this is a known problem for decision tree learners (Van de Velde,
1989).

5.3 Protein Fold Classification

In this experiment, we tested our methodology on the protein fold classification problem studied by
Turcotte et al. (2001). The task consists of classifying proteins into SCOP folds, given their high-
level logical descriptions about secondary structure and amino acid sequence. SCOP is a manually
curated database of proteins hierarchically organized according to theirstructural properties. At the
top level SCOP groups proteins into four main classes (all-α, all-β, α/β, andα + β). Each class
is then divided into folds that group together proteins with similar secondary structures and three-
dimensional arrangements. We used the data set made available as a supplement to the paper by
Turcotte et al. (2001)7 that consists of the five most populated folds from each of the four main
SCOP classes. This setting yields 20 binary classification problems. The data sets for each of the
20 problems are relatively small (from about 30 to about 160 examples perfold, totaling 1143
examples).

We relied on the background knowledge provided in Turcotte et al. (2001), to design a set of
visitors managing increasingly complex information. A global visitor was used toextract protein
level information, such as its length and the number of itsα or β secondary structure segments.
A local visitor explored the details of each of such segments, while a connection visitor looked
for pairs of adjacent segments within the protein. Numerical values were normalized within each
top level fold class. The kernel configuration mainly consisted of type signatures aiming to ignore
identifiers and treat some of the numerical features as categorical ones.A functor equality kernel
was employed for those nodes of the proofs which did not contain valuableinformation in their
arguments. Code details for visitors and kernel configuration can be found in Appendix-C.3.
Following Turcotte et al. (2001), we measured prediction accuracy by 10-fold cross-validation,
micro-averaging the results over the 20 experiments by summing contingency tables. The proof-
tree kernel was combined with a Gaussian kernel (see Equation (10)) in order to model nonlinear
interactions between the features extracted by the visitor program. Model selection (i.e., choice
of the Gaussian widthγ and the SVM regularization parameterC) was performed for each binary
problem with a LOO procedure before running the 10-fold cross validation. Table 2 shows com-
parisons between the best setting for Progol (as reported by Turcotte et al. (2001)), which uses both
propositional and relational background knowledge, results for Tilde using the same setting, and
SVM with our kernel over proof trees. The difference between Tilde and Progol is not significant,
while our SVM achieves significantly higher overall accuracy with respect to both methods.

7. http://www.bmm.icnet.uk/ilp/data/ml 2000.tar.gz.

327

PASSERINI, FRASCONI AND DE RAEDT

Tilde Progol SVM
All- α:

Globin-like 97.4 95.1 94.9
DNA-binding 3-helical bundle 81.1 83.0 88.9
4-helical cytokines 83.3 70.7 86.7
lambda repressor-like DNA-binding domains 70.0 73.4 83.3
EF Hand-like 71.4 77.6 85.7

All- β:
Immunoglobulin-like beta-sandwich 74.1 76.3 85.2
SH3-like barrel 91.7 91.4 93.8
OB-fold 65.0 78.4 83.3
Trypsin-like serine proteases 95.2 93.1 93.7
Lipocalins 83.3 88.3 92.9

α/β:
beta/alpha (TIM)-barrel 69.7 70.7 73.3
NAD(P)-binding Rossmann-fold domains 79.4 71.6 84.1
P-loop containing nucleotide triphosphate hydrolases 64.3 76.0 76.2
alpha/beta-Hydrolases 58.3 72.2 86.1
Periplasmic binding protein-like II 79.5 68.9 79.5

α+β:
Interleukin 8-like chemokines 92.6 92.9 96.3
beta-Grasp 52.8 71.7 88.9
Ferredoxin-like 69.2 83.1 76.9
Zincin-like 51.3 64.3 79.5
SH2-like 82.1 76.8 66.7

Micro average: 75.2 78.3 83.6
±2.5 ±2.4 ±2.2

Table 2: Protein fold classification: 10-fold cross validation accuracy (%) for Tilde, Progol and
SVM for the different classification tasks, and micro averaged accuracies with 95% confi-
dence intervals. Results for Progol are taken from Turcotte et al. (2001).

328

KERNELS ONPROLOG PROOFTREES

5.4 QSAR Regression Tasks

Quantitative structure activity relationship (QSAR) tasks deal with the problem of predicting the
biological activity of a molecule given its chemical structure. They can thus be naturally represented
as regression problems. The chemical structure of molecules is typically represented by atom and
bond predicates, possibly specifying also non topological attributes suchas atom and bond detailed
types and atom partial charge. Additional features include molecule physico-chemical properties,
such as its weight, its hydrophobicity (logP) andlumo, which is the energy of the molecule lowest
unoccupied orbital. Intensional background knowledge can be represented by predicates looking for
ring structures and functional groups within the molecule, such as benzene, anthracene and nitro.
Relational features can also be propositionalized in different ways in order to employ propositional
learners.

In the following we focused on two well known QSAR data sets, mutagenesis and biodegrada-
bility, and compared to published results for different relational and propositional learners, always
attaining to their same experimental settings. In both cases we run a preliminary model selec-
tion phase (optimizing Gaussian width and regularization parameter) on an additional 10 fold cross
validation procedure. We employed the Pearson correlation coefficient as a standard performance
measure, and two tailed Fisherz tests at 0.05 significance level in order to verify if the performance
difference between pairs of methods was statistically significant.

5.4.1 MUTAGENESIS

The mutagenicity problem is a standard benchmark for ILP approaches. The problem is treated in
Srinivasan et al. (1996) as a binary classification task (mutagenic vs. non-mutagenic). Here we
focused on its original formulation as a regression task, and compared to the results presented in
Kramer (1999) for the regression friendly data set.

We employed a global visitor exploring physico-chemical properties of the molecule, that is
logp, lumo, ind1 and inda. We then developed a set of visitors exploiting the ring theory for nitro
aromatic and heteroaromatic compounds, each looking for compounds of a certain type, and ex-
tracting the properties of the atoms belonging to it. We employed pruned trees for such visitors,
as described in the example shown in Section 3.4. Kernel configuration wasmostly made of type
signatures as for the protein fold classification task (Section 5.3, see Appendix-C.4 for code details).
Competing algorithms included S-CART (Kramer, 1999), which is an upgradeof CART to first
order logic, and M5’ (Quinlan, 1993; Wang and Witten, 1997), a propositional regression-tree in-
duction algorithm. Propositionalization was conducted either by (P) counting occurrences of differ-
ent functional groups (together to physico-chemical global properties), or (SP) running a supervised
stochastic propositionalization algorithm as described in Kramer (1999). Table 3 reports experimen-
tal comparisons on four 10 fold cross validation procedures. Our methodconsistently outperforms
all other learners, and such difference is significant on four out of five cases.

5.4.2 BIODEGRADABILITY

Degradation is the process by which chemicals are transformed into components which are not con-
sidered pollutants. A number of different pathways are responsible forsuch process, depending on
environmental conditions. Blockeel et al. (2004) conducted a study focused on aqueous biodegra-
dation under aerobic conditions. Low and high estimates of half life time degradation rate were
collected for 328 molecules. The regression task consisted in predicting thenatural logarithm of the

329

PASSERINI, FRASCONI AND DE RAEDT

System r
KRR 0.898(0.002)
S-CART 0.830 (0.020)
P + S-CART 0.834 (0.010)
P + M5’ 0.893(0.001)
P + SP + S-CART 0.767 (0.038)
P + SP + M5’ 0.835 (0.012)

Table 3: Pearson correlation coefficient for the different learners on the regression friendly muta-
genesis data set. Results are averaged over four 10-fold cross validation procedures, and
standard deviations over the four procedures are reported. Boldface numbers are signif-
icantly better than plain ones. All other differences are not significant. Results for all
systems except for KRR are taken from Kramer (1999).

arithmetic mean of the low and high estimate for a given molecule. A comprehensivebackground
knowledge of rings and functional groups was available as for the mutagenesis data set. Moreover,
relational features had been propositionalized in two different ways. Four sets of features were thus
made available to learning algorithms (Blockeel et al., 2004):

• Global consisted of molecule physico-chemical properties, namely weight and logP.

• P1were counts of rings and functional groups defined in the backgroundtheory.

• P2 were counts of small substructures of molecules (all connected substructures of two or
three atoms, those of four with a star topology).

• Rcontained full relational features: atoms, bonds, ring and functional structures described by
their constituent atoms and those connecting them to the rest of the molecule.

We developed appropriate visitors for each of these feature sets. Visitors for full relational
features (R) explored atoms within rings and functional structures as in the mutagenesis task, addi-
tionally including information about atoms connecting each compound to the restof the molecule.
Numerical features8 were normalized. The kernel configuration was again similar to that in the
protein fold classification task (Section 5.3), but we also modified the defaultcombining operator
for a few type signatures in order to compared substructures of the same type only (code details in
Appendix-C.5).

A number of relational and propositional learners were compared in Blockeel et al. (2004) on
different feature sets: apart from S-CART and M5’, already introduced for the mutagenesis data set,
simple linear regression (LR) and the version of Tilde learning regressiontrees (Blockeel and De
Raedt, 1998). Table 4 reports average and standard deviation of Pearson correlation coefficient on
five 10-fold cross validation procedures, for different combinations of the feature sets. Our kernel
outperforms all other methods on four out of five scenarios, and in two cases results are significantly
better than any competitor (see Figure 6).

8. Apart from those inP1which had a small range ([0,4]).

330

KERNELS ONPROLOG PROOFTREES

System G G+P1 G+P2 G+R G+P1+P2+R
KRR 0.472 (0.005) 0.701 (0.005) 0.683 (0.006) 0.694 (0.005) 0.695 (0.005)
Tilde 0.487 (0.020) 0.596 (0.029) 0.615 (0.014) 0.616 (0.021) 0.595 (0.020)
S-CART 0.476 (0.031) 0.563 (0.010) 0.595 (0.032) 0.605 (0.023) 0.606 (0.032)
M5’ 0.503 (0.012) 0.579 (0.024) 0.646 (0.013)
LR 0.436 (0.004) 0.592 (0.014) 0.443 (0.026)

Table 4: Pearson correlation coefficient for the different learners for various combinations of fea-
tures on the biodegradability data set. Results are averaged over five 10-fold cross valida-
tion procedures, and standard deviations over the five procedures are reported. Results for
all systems except for KRR are taken from Blockeel et al. (2004).

Figure 6: Significance of performance difference between learners for the biodegradability data set.
A black box indicates that the learner on the row is significantly better than thaton the
column for the given feature setting.

331

PASSERINI, FRASCONI AND DE RAEDT

System G G+P1 G+P2 G+R G+P1+P2+R
KRR 0.498 (0.004) 0.700 (0.005) 0.683 (0.006) 0.694 (0.005) 0.695 (0.005)
Tilde 0.495 (0.015) 0.612 (0.022) 0.619 (0.021) 0.635 (0.018) 0.618 (0.022)
S-CART 0.478 (0.016) 0.581 (0.015) 0.636 (0.015) 0.659 (0.019) 0.631 (0.026)
M5’ 0.502 (0.014) 0.592 (0.013) 0.646 (0.014)
LR 0.437 (0.005) 0.592 (0.013) 0.455 (0.022)

Table 5: Pearson correlation coefficient for the different learners for various combinations of fea-
tures on the biodegradability data set (second batch). Results are averaged over five 10-fold
cross validation procedures, and standard deviations over the five procedures are reported.
Results for all systems except for KRR are taken from Blockeel et al. (2004).

Figure 7: Significance of performance difference between learners for the biodegradability data set
(second batch). A black box indicates that the learner on the row is significantly better
than that on the column for the given feature setting.

In a second batch of experiments, Blockeel et al. (2004) separately predicted low and high
estimates of half life time degradation rate, and reported the mean of such predictions. Results are
shown in Table 5. While other methods often improve their performance over the previous batch,
our method is almost unaffected. Still, it outperforms all learners on the same four scenarios, and in
one case it obtains significantly better results than any other algorithm (Figure 7).

6. Discussion and Related Work

When tackling inductive learning problems using the presented techniques,there are a number of
design decisions to be made. These include: the choice of the backgroundtheoryB, visitor program
V and also the kernelK. As compared to traditional ILP, the background theoryB is similar, the
visitor program plays the role of the declarative and inductive bias, and the kernel can perhaps be
related to some distance based learning approaches (Ramon and Bruynooghe, 1998; Horvath et al.,
2001). The visitor program, however, constitutes an entirely different form of bias than the typical
declarative language bias employed in ILP (Nédellec et al., 1996), which is purely syntactic. The
visitor incorporates a much more procedural bias, which is perhaps more similar to explanation-

332

KERNELS ONPROLOG PROOFTREES

based learning (Mitchell et al., 1986). Indeed, explanation-based learning also starts from proof
trees or traces for specific examples and then generalizes them using deductive methods (such as
regression or partial evaluation (Van Harmelen and Bundy, 1988)). There has, however, also been a
strong interest in integrating inductive concept-learning with explanation-based learning (Mitchell
et al., 1986). To some extent, the combination of the proof trees with the kernel realizes such an
integration, although it does not produce interpretable rules, due to the use of the kernel. The notion
and use of background theory has—to some degree—always been debated. The reason is that, on
the one hand, it provides the user with a flexible means to guide and influencethe learning process,
but, on the other hand, it is not always easy to define a background theory that will yield accurate
hypotheses. For instance, in applying traditional ILP systems to the Bongard example (Section 5.1),
it is clear that by using only the outcome of theinside predicate, one loses the information of how
many objects are between the outermost and innermost triangle. But this couldeasily be fixed by
defininginside(X,Y,Z) as “X is inside Y with Z objects between them.” In other words, a change
of background definitions makes it possible to learn the correct concept,even by traditional ILP
systems. This is one example that shows that background theory is a powerful but sometimes hard
to master tool.

To gain some further insights into the relationship of our method to traditional ILP, let us try to
relate the background theory to the visitor program. From an ILP perspective, it does seem natural
to add the visitor program to the background theory and run the traditional ILP system. Whereas
this is—in principle—possible, there are some major differences that would result. Indeed, the
ILP system could only use the predicates mentioned in the visitor program as conditions in its
hypotheses, and it would not have any means to look into the trace or proof.For instance, if there is
a predicatev in the visitor program that is defined using two different clauses, the ILP system will
not be able to distinguish instances ofv proven using the first clause from those proven using the
second one. Also, differences and similarities between proof trees couldnot be discovered unless
one would also add the meta-program (implemented as a Prolog predicate) thatgenerates the proof
tree to the background theory. In this case, the information about the structure of proof trees and the
clauses being used in there could be employed in the hypotheses of the ILP system. This would yield
conditions such asprove(visitor(x), proof-tree). However, since ILP systems have severe
search problems when dealing with large structured and terms and recursion, this idea cannot be
applied in practice. The use of kernels to realize the generalization is much more appealing because
there is no search involved in computing the kernel. Finally, let us remark thatit would be interesting
to further investigate the design choices(B,V ,K) to be made. In particular, one may wonder under
what conditions two possible choices (say(B,V ,K) and(B ′,V ′,K′)) are equivalent, and whether
this would allow us to reformulate one element (say the visitor) as a part of another one (say the
background theory).

7. Conclusions

We have introduced the general idea of kernels over program traces and specialized it to the case
of Prolog proof trees in the logic programming paradigm. The theory and the experimental results
that we have obtained indicate that this method can be seen as a successfulattempt to bridge several
aspects of symbolic and statistical learning, including the ability of working with relational data, the
incorporation of background knowledge in a flexible and principled way,and the use of regulariza-
tion. Computational complexity is also an advantage compared to typical ILP systems. The kernel

333

PASSERINI, FRASCONI AND DE RAEDT

matrix can be computed in time quadratic in the size of the training set and the complexity of the
learning problem is that of the kernel method employed (e.g., SVM or KRR) which is typically in-
ferior to ILP algorithms. This may potentially open the road towards some large-scale applications
of learning in the ILP setting.

The advantages of the proposed approach were experimentally verified. The Bongard problems
showed that our method scales better than typical ILP algorithms with the complexity of the target
concept. Furthermore, it is able to effectively address problems (like theM-of-N one) that require
precise counting, and are difficult to solve with classic ILP approaches.Both classification and re-
gression tasks can be naturally handled using appropriate kernel methods. Finally, the robust nature
of statistical learning can offer advantages with respect to symbolic approaches when dealing with
noisy data sets, as shown by the improved performance on the bioinformaticsand chemoinformatics
tasks.

Besides the cases of classification and regression that have been studied in this paper, other
learning tasks could naturally benefit from the proposed framework including clustering, ranking,
and novelty detection. One advantage of ILP as compared to the present work is the intrinsic ability
of ILP to generatetransparent explanations of the learned function. Developing kernel machines
capable of providing transparent predictions and the use of kernel-based approaches to guide hy-
pothesis search as in ILP remain interesting open issues.

Acknowledgments

This research is supported by EU Grant APrIL II (contract n◦ 508861). PF and AP are also partially
supported by MIUR Grant 2003091149002. We would like to thank the anonymous reviewers
whose comments contributed to improve the paper substantially.

Appendix A. Proofs of Theorems

We give in this appendix a result showing that the class of functions studiedin this paper are positive
semi-definite and therefore valid Mercer kernels.

Theorem 9 The kernel function on Prolog ground terms given in Definition 5 is positive semi-
definite.

Proof. Let us introduce the following decomposition structure (see Shawe-Taylorand Cristianini,
2004):R = 〈(X1,X2),R,(k1,k2)〉 with X1 = F , X2 = (F ,U), and

R=
{

(f /n,(f /n,a),s)s.t.s is a term having functorf /n and tuple of argumentsa
}

.

Then it can be immediately verified that the kernel function of Equations (14)and (15) correspond
to the direct sum decomposition kernel associated with the decomposition structureR if k1 = ι and
k2((f /n,a),(g/m,b)) = δ(f /n,g/m)k′(a,b) where givena = (s1, . . . ,sn) andb = (t1, . . . , tn)

k′(a,b) =
n

∑
i=1

K(si , ti).

334

KERNELS ONPROLOG PROOFTREES

Note thatk′ is a valid kernel ifK is (being a direct sum). The proof then follows by induction
using the fact that kernels for base steps (κ (Equation (13)) andι (Equation (14))) are by hypothesis
positive semi-definite, and the induction step simply consists of combining positivesemi-definite
kernels by direct sum which itself produces valid kernels (Theorem 4).�

Theorem 10 The kernel function on typed Prolog ground terms given in Definitions 6 is positive
semi-definite.

Proof. We can use the same technique as for Theorem 9 but including types in the decomposition
structure:R = 〈(X1,X2),R,(k1,k2)〉 with X1 = (F ,T), X2 = (F ,T ,U), and

R= {((f /n,τ),(f /n,(τ1×, . . . ,×τn 7→ τ), t),s) s.t. s is a term having functorf /n,
tuple of argumentst, and type signatureτ1×, . . . ,×τn 7→ τ}.

The kernel function of Equations (17) and (18) correspond to the direct sum decomposition kernel
associated with the decomposition structureR if:

k1((f /n,τ),(g/m,σ)) = δ(τ,σ)ιτ(f /n,g/m)

and

k2((f /n,τ1×, . . . ,×τn 7→ τ,a),(g/m,σ1×, . . . ,×σm 7→ σ,b)) =

δ(f /n,g/m)δ(τ1×, . . . ,×τn 7→ τ,σ1×, . . . ,×σm 7→ σ)k′(a,b).

The proof follows from Theorem 4 and by induction using the fact thatκτ (Equation (16)),
ιτ (Equation (17)) and kernels on distinguished types (see Equation (18))are by hypothesis valid
kernels.�

Theorem 11 The kernel functions on Prolog ground terms given in Definitions 7 and 8 are positive
semi-definite.

Proof. Same as in Theorem 9 and 10 respectively, simply replacing direct sums with tensor prod-
ucts.�

Appendix B. Kernel Configuration Details

The kernel specification defines the way in which data and knowledge should be treated. The
default way of treating compound terms can be declared to be eithersumor product, by writing
compound_kernel(sum) or compound_kernel(product) respectively.

The default atomic kernel is the delta one for symbols, and the product for numbers. Such
behavior can be modified by directly specifying the type signature of a given clause or fact. As an
example, the following definition overrides the default kernel betweenatm terms in mutagenesis:

type(atm(ignore,ignore,cat,cat,num)).

It allows to ignore identifiers for molecule and atom, and change the default behavior for atom type
(which is a number) to categorical. At this level, it is possible to specify a combining operator for
predicate arguments which is different from the default one:

type(atm(ignore,ignore,cat,cat,num),product).

335

PASSERINI, FRASCONI AND DE RAEDT

Here we are stating that atoms of different types will always have zero similarity. Default
behaviors can also be overridden by defining specific kernels for particular clauses or facts. This
corresponds to specifying distinguished types together to appropriate kernels for them. Thus, the
last kernel between atoms could be equivalently specified by writing:

term_kernel(atm(_,_,Xa,Xt,Xc), atm(_,_,Ya,Yt,Yc),K) :-
delta_kernel(Xa,Ya,Ka),
delta_kernel(Xt,Yt,Kt),
dot_kernel(Xc,Yc,Kc),
K is Ka * Kt * Kc.

A useful kernel which can be selected is thefunctor equalitykernel as defined in Equation (22). For
example, by writing

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

at the end of the configuration file it is possible to force the default behavior for all remaining terms
to functor equality, where the combination operator employed for internal nodes will be the one
specified with thecompound_kernel statement.

Appendix C. Visitors and Kernels Used in Experiments

C.1 Bongard Problems

visit(X):-
inside(X,A,B),polygon(X,A),polygon(X,B).

compound_kernel(product).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

C.2 M-of-N Problems

visit(X):-
string(X,S),substr([A,B],S),comp(A,B).

leaf(substr(_,_)).

compound_kernel(sum).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

336

KERNELS ONPROLOG PROOFTREES

C.3 Protein Fold Classification

visit_global(X):- visit_unit(X):-
normlen(X,Len), sec_struc(X,A),
normnb_alpha(X,NumAlpha), unit_features(A).
normnb_beta(X,NumBeta).

unit_features(A):-
visit_adjacent(X):- normsst(A,B,C,D,E,F,G,H,I,J,K),

adjacent(X,A,B,PosA,TypeA,TypeB), has_pro(A).
normcoil(A,B,LenCoil),
unit_features(A), unit_features(A):-
unit_features(B). normsst(A,B,C,D,E,F,G,H,I,J,K),

not(has_pro(A))).

leaf(adjacent(_,_,_,_,_,_)).
leaf(normcoil(_,_,_)).

compound_kernel(sum).

type(normlen(ignore,num)).
type(normnb_alpha(ignore,num)).
type(normnb_beta(ignore,num)).
type(normsst(ignore,ignore,ignore,ignore,ignore,num,ignore,num,num,num,ignore)).
type(adjacent(ignore,ignore,ignore,cat,cat,cat)).
type(normcoil(ignore,ignore,num)).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

C.4 Mutagenesis

visit_global(X):-
lumo(X,Lumo),
logp(X,Logp),
ind1(X,Ind1),
inda(X,Inda).

visit_ring_size_5(X):-
ring_size_5(X,Atoms),
atoms(X,Atoms).

% ... etc.

visit_benzene(X):-
benzene(X,Atoms),
atoms(X,Atoms).

visit_anthracene(X):-
anthracene(X,[Ring1,Ring2,Ring3]),
atoms(X,Ring1),
atoms(X,Ring2),
atoms(X,Ring3).

compound_kernel(sum).

leaf(benzene(_,_)).
leaf(anthracene(_,_)).
leaf(ring_size_5(_,_)).
% ... etc.

atoms(X,[]).
atoms(X,[H|T]):-

atm(X,H,_,_,_),atoms(X,T).

type(atm(ignore,ignore,cat,cat,num)).
type(bond(ignore,ignore,ignore,cat)).
type(lumo(ignore,num)).
type(logp(ignore,num)).
type(ind1(ignore,num)).
type(inda(ignore,num)).

337

PASSERINI, FRASCONI AND DE RAEDT

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

C.5 Biodegradability

visit_p1(X):-
sscount(X,_SSType,_SSCount).

visit_p2(X):-
p2countnorm(X,_P2Type,_P2Count).

visit_global(X):-
normlogP(X,_LogP),
normmweight(X,_Mweight).

visit_alcohol(X):-
alcohol(X,Atoms,Conns),
atoms(X,Atoms),
atoms(X,Conns).

visit_aldehyde(X):-
aldehyde(X,Atoms,Conns),
atoms(X,Atoms),
atoms(X,Conns).

visit_ar_halide(X):-
ar_halide(X,Atoms,Conns),
atoms(X,Atoms),
atoms(X,Conns).

% ... etc.

leaf(alcohol(_,_,_)).
leaf(aldehyde(_,_,_)).
leaf(ar_halide(_,_,_)).
% ... etc.

atoms(X,[]).
atoms(X,[H|T]):-

atm(X,H,_,_,_),
atoms(X,T).

compound_kernel(sum).

type(atm(ignore,ignore,cat,ignore,ignore)).
type(normlogP(ignore,num)).
type(normmweight(ignore,num)).
type(sscount(ignore,cat,num),product).
type(normp2count(ignore,cat,num),product).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

References

A. W. Biermann and R. Krishnaswamy. Constructing programs from examplecomputations.IEEE
Transactions on Software Engineering, 2(3):141–153, 1976.

H. Blockeel and L. De Raedt. Top-down induction of first-order logicaldecision trees.Artificial
Intelligence, 101(1-2):285–297, 1998.

H. Blockeel, S. Dzeroski, B. Kompare, S. Kramer, B. Pfahringer, andW. Van Laer. Experiments in
predicting biodegradability.Applied Artificial Intelligence, 18(2):157–181, 2004.

M. Bongard.Pattern Recognition. Spartan Books, 1970.

M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. InProceedings of the Fortieth Annual Meeting on Associa-
tion for Computational Linguistics, pages 263–270, Philadelphia, PA, USA, 2002.

338

KERNELS ONPROLOG PROOFTREES

C. Cortes, P. Haffner, and M. Mohri. Rational kernels: Theory and algorithms.Journal of Machine
Learning Research, 5:1035–1062, 2004.

C. Cortes and V. N. Vapnik. Support vector networks.Machine Learning, 20:1–25, 1995.

F. Cucker and S. Smale. On the mathematical foundations of learning.Bulletin (New Series) of the
American Mathematical Society, 39(1):1–49, 2002.

C. M. Cumby and D. Roth. Learning with feature description logics. In S. Matwin and C. Sammut,
editors,Proceedings of the Twelfth International Conference on Inductive Logic Programming,
volume 2583 ofLNAI, pages 32–47. Springer-Verlag, 2002.

C. M. Cumby and D. Roth. On kernel methods for relational learning. InProceedings of the Twen-
tieth International Conference on Machine Learning, pages 107–114, Washington, DC, USA,
2003.

L. De Raedt, K. Kersting, and S. Torge. Towards learning stochastic logic programs from proof-
banks. InProceedings of the Twentieth National Conference on Artificial Intelligence(AAAI’05),
pages 752–757, 2005.

P. Frasconi, A. Passerini, S. Muggleton, and H. Lodhi. Declarative kernels. Technical Report RT
2/2004, Dipartimento di Sistemi e Informatica, Università di Firenze, 2004.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.Machine
Learning, 37(3):277–296, 1999.

T. Gärtner. A survey of kernels for structured data.SIGKDD Explorations Newsletter, 5(1):49–58,
2003.

T. Gärtner, J. W. Lloyd, and P. A. Flach. Kernels and distances for structured data. Machine
Learning, 57(3):205–232, 2004.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10,
University of California, Santa Cruz, 1999.

T. Horváth, T. G̈artner, and S. Wrobel. Cyclic pattern kernels for predictive graph mining. In
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 158–167. ACM Press, 2004.

T. Horvath, S. Wrobel, and U. Bohnebeck. Relational instance-basedlearning with lists and terms.
Machine Learning, 43(1/2):53–80, April 2001.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminativeclassifiers. InAdvances
in Neural Information Processing Systems 11, pages 487–493, Cambridge, MA, USA, 1999. MIT
Press.

A. Karalič and I. Bratko. First order regression.Machine Learning, 26(2-3):147–176, 1997.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. InProceed-
ings of the Twentieth International Conference on Machine Learning, pages 321–328, Washing-
ton, DC, USA, 2003.

339

PASSERINI, FRASCONI AND DE RAEDT

G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic
processes and smoothing by splines.The Annals of Mathematical Statistics, 41:495–502, 1970.

A. J. Knobbe, A. Siebes, and B. Marseille. Involving aggregate functions in multi-relational search.
In Proceedings of the Sixth European Conference on Principles and Practice of Knowledge Dis-
covery in Databases, volume 2431 ofLNCS, pages 287–298. Springer-Verlag, 2002.

S. Kramer. Structural regression trees. InProceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 812–819, Cambridge/Menlo Park, 1996. AAAI Press/MIT Press.

S. Kramer. Relational Learning vs. Propositionalization: Investigations in Inductive Logic Pro-
gramming and Propositional Machine Learning. PhD thesis, Technischen Universität Wien,
Wien, Austria, 1999.

S. Kramer, N. Lavrac, and P. Flach. Propositionalization approaches torelational data mining. In
Relational Data Mining, pages 262–286. Springer-Verlag, NY, 2000.

T. K. Lakshman and U. S. Reddy. Typed prolog: A semantic reconstruction of the mycroft-O’keefe
type system. In V Saraswat and K. Ueda, editors,Proceedings of the 1991 International Sympo-
sium on Logic Programming, pages 202–220, San Diego, CA, October 1991. MIT Press.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: a string kernel for svm protein clas-
sification. InProceedings of the Seventh Pacific Symposium on Biocomputing, pages 564–575,
Lihue, Hawaii, USA, 2002.

J. W. Lloyd. Logic for learning: learning comprehensible theories from structured data. Springer-
Verlag, 2003.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels.Journal of Machine Learning Research, 2:419–444, 2002.

P. Mah́e, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginalized graph kernels.
In R. Greiner and ACM Press D. Schuurmans, editors,Proceedings of the Twenty-first Interna-
tional Conference on Machine Learning, pages 552–559, Banff, Alberta, Canada, 2004.

S. Menchetti, F. Costa, and P. Frasconi. Weighted decomposition kernels.In Proceedings of the
Twenty-second International Conference on Machine Learning, pages 585–592, New York, NY,
USA, 2005. ACM Press.

T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation based generalization: a unifying
view. Machine Learning, 1:47–80, 1986.

T. M. Mitchell, P. E. Utgoff, and R. Banerji. Learning by experimentation: Acquiring and refining
problem-solving heuristics. InMachine learning: An artificial intelligence approach, volume 1,
pages 163–190. Morgan Kaufmann, 1983.

S. Muggleton. Inverse entailment and Progol.New Generation Computing, Special issue on Induc-
tive Logic Programming, 13(3-4):245–286, 1995.

340

KERNELS ONPROLOG PROOFTREES

S. H. Muggleton, H. Lodhi, A. Amini, and M. J. E. Sternberg. Support vector inductive logic
programming. InProceedings of the Eighth International Conference on Discovery Science,
volume 3735 ofLNAI, pages 163–175, 2005.

C. Nédellec, H. Ad́e, F. Bergadano, and B. Tausend. Declarative bias in ILP. In L. De Raedt, editor,
Advances in Inductive Logic Programming, volume 32 ofFrontiers in Artificial Intelligence and
Applications, pages 82–103. IOS Press, 1996.

A. Passerini and P. Frasconi. Kernels on prolog ground terms. InProceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, pages 1626–1627, Edinburgh, Scotland,
UK, 2005.

C. Perlich and F. Provost. Aggregation-based feature invention and relational concept classes. In
Proceedings of the Ninth SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 167–176. ACM Press, 2003.

T. Poggio and S. Smale. The mathematics of learning: Dealing with data.Notices of the American
Mathematical Society, 50(5):537–544, 2003.

J. R. Quinlan. Combining instance-based and model-based learning. InProceedings of the Tenth
International Conference on Machine Learning, pages 236–243, Amherst, Massachusetts, 1993.
Morgan Kaufmann.

J. Ramon and M. Bruynooghe. A framework for defining distances between first-order logic ob-
jects. In D. Page, editor,Proceedings of the Eighth International Conference on Inductive Logic
Programming, volume 1446 ofLNAI, pages 271–280. Springer-Verlag, 1998.

S. Russell and P. Norvig.Artifical Intelligence: A Modern Approach. Prentice-Hall, 2nd edition,
2002.

B. Scḧolkopf and M. K. Warmuth, editors.Kernels and Regularization on Graphs, volume 2777 of
LNCS, 2003. Springer.

E. Y. Shapiro.Algorithmic program debugging. MIT Press, 1983.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for mutagenicity: A
study in first-order and feature-based induction.Artificial Intelligence, 85(1-2):277–299, 1996.

M. Turcotte, S. H. Muggleton, and M. J. E. Sternberg. The effect of relational background knowl-
edge on learning of protein three-dimensional fold signatures.Machine Learning, 43(1,2):81–96,
April-May 2001.

W. Van de Velde. IDL, or taming the multiplexer. In K. Morik, editor,Proceedings of the Third
European Working Session on Machine Learning, pages 211–226. Pitmnann, 1989.

F. Van Harmelen and A. Bundy. Explanation based generalization = partialevaluation. Artificial
Intelligence, 36:401–412, 1988.

341

PASSERINI, FRASCONI AND DE RAEDT

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

A. C. Varzi. Parts, wholes, and part-whole relations: the prospects of mereotopology. Data and
Knowledge Engineering, 20:259–286, 1996.

S. V. N. Viswanathan and A. J. Smola. Fast kernels for string and tree matching. In S. Thrun
S. Becker and K. Obermayer, editors,Advances in Neural Information Processing Systems 15,
pages 569–576. MIT Press, Cambridge, MA, 2003.

Y. Wang and I. Witten. Inducing model trees for continuous classes. InProceedings of the Ninth
European Conference on Machine Learning, pages 128–137, Prague, Czech Republic, 1997.

J. M. Zelle and R. J. Mooney. Combining FOIL and EBG to speed-up logic programs. InProceed-
ings of the Thirteenth International Joint Conference on Artificial Intelligence, pages 1106–1111,
Chamb́ery, France, 1993.

342

Journal of Machine Learning Research 7 (2006) 343–378 Submitted 7/05; Revised 12/05; Published 2/06

Using Machine Learning to Guide Architecture Simulation

Greg Hamerly HAMERLY @CS.BAYLOR .EDU

Department of Computer Science
Baylor University
One Bear Place #97356
Waco, TX 76798-7356, USA

Erez Perelman EPERELMA@CS.UCSD.EDU

Jeremy Lau JL@CS.UCSD.EDU

Brad Calder CALDER@CS.UCSD.EDU

Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0404, USA

Timothy Sherwood SHERWOOD@CS.UCSB.EDU

Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106, USA

Editor: Haym Hirsh

Abstract

An essential step in designing a new computer architecture is the careful examination of dif-
ferent design options. It is critical that computer architects have efficient means by which they
may estimate the impact of various design options on the overall machine. This task is compli-
cated by the fact that different programs, and even different parts of thesameprogram, may have
distinct behaviors that interact with the hardware in different ways. Researchers use very detailed
simulators to estimate processor performance, which models every cycle of an executing program.
Unfortunately, simulating every cycle of a real program cantake weeks or months.

To address this problem we have created a tool called SimPoint that uses data clustering algo-
rithms from machine learning to automatically find repetitive patterns in a program’s execution. By
simulating one representative of each repetitive behaviorpattern, simulation time can be reduced to
minutes instead of weeks for standard benchmark programs, with very little cost in terms of accu-
racy. We describe this important problem, the data representation and preprocessing methods used
by SimPoint, the clustering algorithm at the core of SimPoint, and we evaluate different options for
tuning SimPoint.

Keywords: k-means, random projection, Bayesian information criterion, simulation, SimPoint

1. Introduction

Understanding the cycle level behavior of a processor during the execution of an application is cru-
cial to modern computer architecture research. To gain this understanding, researchers typically
employ detailed simulators that model each and every cycle of the underlying machine. Unfortu-
nately, this level of detail comes at the cost of speed. Even on the fastestsimulators, modeling

c©2006 Greg Hamerly, Erez Perelman, Jeremy Lau, Brad Calder and Timothy Sherwood.

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

the full execution of a single benchmark can take weeks or months to complete,and nearly all in-
dustry standard benchmarks require the execution of asuiteof programs. For example, the SPEC
benchmark suite consists of 26 different programs, requiring the execution of a combined total of
approximately 6 trillion instructions. Still worse, architecture researchers need to simulate each
benchmark over a variety of different architectural configurations and design options, to find the
set of features that provides an appropriate trade-off between performance, complexity, area, and
power. The same program binary, with the exact same input, may be run hundreds or thousands of
times to examine how, for example, the effectiveness of a given architecture changes with its cache
size. Researchers need techniques which can reduce the number of machine-months required to
estimate the impact of an architectural modification without introducing an unacceptable amount of
error or excessive simulator complexity. We present a method, distributed as a software package
called SimPoint, which can meet this need by exploiting the structured way in whichindividual
programs change behavior over time.

As a program executes its behavior changes. These changes are notrandom, but rather are
often structured as sequences of a small number of recurring behaviors, which we termphases.
Identifying this repetitive and structured behavior can be of great benefit, since it means we only
need to sample each unique behavior once to create a complete representation of the program’s
execution. This is the underlying philosophy of SimPoint (Sherwood et al., 2001, 2002; Perelman
et al., 2003; Biesbrouck et al., 2004; Lau et al., 2004, 2005b). SimPointintelligently chooses a
very small set of samples from an executed program calledsimulation pointsthat, when simulated
and weighted appropriately, provide an accurate picture of the complete execution of the program.
Simulating in detail only these carefully chosen simulation points can save hoursof simulation time
over a random sampling of the program, while still providing the accuracy needed to make reliable
decisions based on the outcome of the cycle level simulation.

Before we developed SimPoint, architecture researchers would simulate SPEC programs for 300
million instructions from the start of execution, or fast forward 1 billion instructions to try to get past
the initialization part of the program. These techniques can result in error rates of up to 3736% in
predicting the architecture metrics we wish to measure. SimPoint achieves verylow error rates (2%
average error, 8% maximum error for the results in this paper) and on average reduces simulation
time by a factor of 1,500, compared to simply simulating the whole program. This approach is now
used by researchers in the architecture community, and companies such asIntel (Patil et al., 2004).
This paper shows how repetitive phase behavior can be found in programs through machine learning
and describes how SimPoint automatically finds these phases and picks simulation points.

The rest of the paper is laid out as follows. First, Section 2 describes a summary of the sim-
ulation methodology in processor architecture research. Section 3 explains the phase behavior
paradigm, and defines terms that are essential in describing the analysis. The correlation between
the executing code and performance of a program is described in Section4, as well as how this
code is represented in vector format to capture program behavior. Section 5 describes the machine
learning algorithms used to automatically detect phases using the code vectors. Section 6 describes
how simulation points are picked from the phases, and the accuracy resulting from representing
the entire program execution using the simulation points. Section 7 examines parameters that sig-
nificantly influence the performance of the SimPoint algorithm in terms of accuracy and run-time.
Section 8 examines prior work in phase analysis that uses machine learning.Ongoing and future
work is described in Section 9 and our findings are summarized in Section 10.

344

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

2. The Application - Simulation

In this section we explain the tools modern computer architects use to evaluate designs and the
methods we use to evaluate our solutions.

2.1 Background

Processor architecture research quantifies the effectiveness of a design by executing a program on
a software model of the architecture design called an architecture simulator.It is difficult to accu-
rately compare studies that provide results for different sets of programs. To set a standard in the
community, the Standard Performance Evaluation Corporation (SPEC) was established to provide a
collection of benchmarks to evaluate processor performance. In the samemanner, the architecture
simulator needs to have a common baseline. SimpleScalar (Burger and Austin, 1997) is a cycle
level processor simulator that has become a standard model for architecture research.

2.1.1 SPEC CPU BENCHMARKS

The SPEC CPU2000 benchmark suite has 26 programs, of which 12 are integer programs (primary
execution is of integer instructions) and 14 are floating-point programs (primary execution is of
floating-point instructions). The benchmark suite is chosen to stress a processor across its many
components in a rigorous manner. Each program in the suite has 3 different inputs: test, train, and
reference, which respectively correspond to a short test, a more representativetraining, and a full
reference run. The test, train and reference inputs typically execute onthe order of a few million,
a few billion, and hundreds of billions of instructions respectively. Tables1 and 2 show all the
SPEC CPU2000 benchmarks, divided into integer and floating-point programs. The tables provide
a high level description of each benchmark, its source language, and thenumber of instructions
executed (in billions) with the reference and test inputs. These programs were compiled for the
Alpha Instruction Set Architecture (ISA) with full optimizations. On average, the reference inputs
execute for 223 billion instructions. The programparser has the maximum instruction count at
546 billion instructions.

SPEC periodically releases a benchmark suite to evaluate current and future processors. To keep
up with the ever increasing rate of processor speeds, SPEC has significantly increased the duration
of benchmark execution from the previous suite release in 1995 to the current release of 2000. This
is because the reference input needs to run long enough to achieve a valid timing for the benchmark
run. This means that with current and future speeds that future releases of the SPEC benchmark
suite will need to execute on the order of trillions of instructions for the reference inputs.

2.1.2 SIMPLESCALAR

SimpleScalar is a program that models the cycle level execution of a processor. It takes as input a
program-input pair and simulates the execution from beginning to end, while computing relevant
statistics for architecture research, such as cycles per instruction (CPI), cache miss rates, branch mis-
predictions, and power consumption. SimpleScalar has several models to represent different levels
of execution detail. At the coarsest level of detail,sim-fastmodels only the functional execution of
a program at the instruction level. A more detailed level,sim-cache, models the memory hierarchy
and computes miss rates for those structures. The level of highest detail,sim-outorder, models the
cycle-level out-of-order execution of a super-scalar processor.It is a superset of all the other mod-

345

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

Benchmark Ref Length Test Length Language Category
bzip2 143 8.82 C Compression
crafty 191 4.26 C Game Playing: Chess
eon 80 0.09 C++ Computer Visualization
gap 269 1.17 C Group Theory, Interpreter
gcc 46 2.02 C C Programming Language Compiler
gzip 84 3.37 C Compression
mcf 61 0.26 C Combinatorial Optimization

parser 546 4.20 C Word Processing
perlbmk 111 2.0 C PERL Programming Language

twolf 346 0.26 C Place and Route Simulator
vortex 118 9.81 C Object-oriented Database

vpr 84 0.69 C FPGA Circuit placement and routing

Table 1: SPEC CPU2000 Integer Benchmarks (lengths in billions of instructions)

Benchmark Ref Length Test Length Language Category
ammp 326 5.49 C Computational Chemistry
applu 223 0.18 Fortran 77 Parabolic / Elliptic Partial Differential Equations
apsi 347 5.28 Fortran 77 Meteorology: Pollutant Distribution
art 41 1.48 C Image Recognition / Neural Networks

equake 131 1.44 C Seismic Wave Propagation Simulation
facerec 211 4.12 Fortran 90 Image Processing: Face Recognition
fma3d 268 0.00 Fortran 90 Finite-element Crash Simulation
galgel 409 4.34 Fortran 90 Computational Fluid Dynamics
lucas 142 3.71 Fortran 90 Number Theory / Primality Testing
mesa 281 2.88 C 3-D Graphics Library
mgrid 419 16.77 Fortran 77 Multi-grid Solver: 3D Potential Field

sixtrack 470 8.59 Fortran 77 High Energy Nuclear Physics AcceleratorDesign
swim 225 0.43 Fortran 77 Shallow Water Modeling

wupwise 349 3.63 Fortran 77 Physics / Quantum Chromodynamics

Table 2: SPEC CPU2000 Floating-Point Benchmarks (lengths in billions of instructions)

346

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

I Cache 16k 2-way set-associative, 32 byte blocks, 1 cycle latency
D Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency
L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle latency
Main Memory 150 cycle latency
Branch Pred hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodal predictor
O-O-O Issue out-of-order issue of up to 8 operations per cycle, 128 entryre-order buffer
Mem Disambig load/store queue, loads may execute when all prior store addresses are known
Registers 32 integer, 32 floating point
Func Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integerMULT/DIV, 2-FP

MULT/DIV
Virtual Mem 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions

complete

Table 3: Baseline Simulation Model.

els and provides the highest level of execution detail. The architecture research community uses
SimpleScalar extensively, and today it is considered a standard architecture simulator.

The different models in SimpleScalar each have a stable execution rate. Thefastest model,sim-
fast, executes on the order of tens of billion instructions per hour on a 1 GHz machine. The slowest
yet most accurate model,sim-outorder, executes on the order of hundreds of million instructions
per hour, which is several orders of magnitude slower than the native hardware. It would take
months of computation time to simulate the entire SPEC benchmark suite withsim-outorder. What
makes matters worse is that researchers need to evaluate many different hardware configurations to
measure the effectiveness of a design. This enormous turnaround time for a study makes simulating
the full benchmark infeasible, and the majority of researchers only simulate afew hundred million
instructions from each benchmark.

2.2 Methodology

For this study, we performed our analysis for the complete set of SPEC CPU2000 programs for mul-
tiple inputs using the Alpha binaries from the SimpleScalar website. We collect allof the frequency
vector profiles, described in Section 4, using SimpleScalar. To generate our baseline results, we
executed all programs from start to completion using SimpleScalar, gatheringthe hardware metrics.
The baseline microarchitecture model is detailed in Table 3.

To examine the accuracy of our approach we provide results in terms of CPI prediction error
andk-means variance (since SimPoint usesk-means clustering). The CPI prediction error is the
percent difference between CPI predicted using only simulation points chosen by SimPoint and the
baseline (true) CPI of the complete execution of the program. Thek-means variance is the sum-of-
squared distances between every clustered point and its closest center, which is the criterionk-means
optimizes.

3. Defining Phase Behavior

Since phases are a way of describing the recurring behavior of a program executing over time, we
begin by describing phase analysis with a demonstration of the time-varying behavior (Sherwood
and Calder, 1999) of two programs from the SPEC 2000 benchmark suite,gcc and gzip. To
characterize the behavior of these programs we have simulated their completeexecution from start

347

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

 1

 2

 3

 4

 0 200 400 600 800 1000

C
lu

st
er

 ID

Billions of instructions executed

0.2

0.3

0.4

0.5

0.6

0.7

D
is

ta
nc

e
to

 a
ve

ra
ge

 B
B

V

0.4

0.5

0.6

C
P

I

Figure 1: These plots show the relationship between measured performance (CPI) and code usage
for the programgzip-graphic, and SimPoint’s ability to capture phase information by
only looking at what code is being executed. For each of the three plots, the horizontal
axis represents the execution of the program over time, and each point plotted represents
one 10-million instruction interval. The top plot shows the CPI for the executingprogram.
The middle plot shows the distance of each interval’s basic block vector (explained in
Section 4) to the “target vector”, which is a basic block vector that represents the entire
program’s execution. The target vector is a signature of the program’s overall average
behavior, and this plot shows how similar the code of each part of the program is to the
overall behavior of the program, lower meaning more similar. The bottom plot shows
how SimPoint classifies each interval into one of four phases. The phasetransitions
correspond to changes in the CPI in the top graph, though SimPoint does not use metrics
like CPI to classify intervals.

to finish. Each program executes many billions of instructions, and gathering these results took
several machine-months of simulation time. The behavior of each program is shown in the top
graphs of Figures 1 and 2. Each top graph shows how the CPI rate changes for these two programs
over time. CPI is a commonly used metric in the processor architecture community for measuring
processor performance. Each point on the graph represents the average CPI taken over a window
(we call it an interval) of 10 million executed instructions. These graphs showthat programs are
fairly complex, changing behaviors frequently.

Note that not only do the behaviors of the programs change over time, they change on the
largest of time scales, and even at a large scale one can find repeating behaviors. Programs may
have stable behavior for billions of instructions and then change suddenly. In addition to CPI, we
have found for the SPEC 95 and 2000 programs that the behavior ofall of the architecture metrics
(branch prediction, cache misses, etc.) tend to change in unison, though not necessarily in the same

348

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

 1
 2
 3
 4
 5
 6
 7
 8

0 10 20 30 40

C
lu

st
er

 ID

Billions of instructions executed

0.0

0.5

1.0

1.5

2.0

D
is

ta
nc

e
to

 a
ve

ra
ge

 B
B

V

0.0

2.0

4.0

6.0

8.0
C

P
I

Figure 2: These plots show the relationship between measured performance (CPI) and code usage
for the programgcc-166, and SimPoint’s ability to capture phase information by only
looking at what code is being executed. For each of the three plots, the horizontal axis
represents the execution of the program over time, and each point plotted represents one
10-million instruction interval. The top plot shows the CPI for the executing program.
The middle plot shows the distance of each interval’s basic block vector to the“target
vector”, which is a basic block vector (explained in Section 4) that represents the entire
program’s execution. The target vector is a signature of the program’s overall average
behavior, and this plot shows how similar the code of each part of the program is to the
overall behavior of the program, lower meaning more similar. The bottom plot shows
how SimPoint classifies each interval into one of eight phases. The phasetransitions
correspond to changes in the CPI in the top graph, though SimPoint does not use metrics
like CPI to classify intervals.

direction (Sherwood and Calder, 1999; Sherwood et al., 2002). These corresponding changes are
due to underlying changes in program execution.

The underlying methodology used in this work is the ability to automatically identify these
underlying program changeswithout relying on architectural metrics. To ground our discussion in
a common vocabulary, the following is a list of definitions to describe programbehavior and its
automated classification.

• Interval – To perform our analysis we break a program’s execution upinto non-overlapping
intervals of execution. An interval is a section of contiguous execution (a timeslice) of a
program’s execution. For example, when using an interval size of 100 millioninstructions,
the first interval of execution starts at instruction 0 and ends at the 100 millioninstruction
executed, the second interval of execution are the instructions 100 million upto 200 million

349

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

in the program’s execution, the third interval represents instructions 200 to300 million, etc.
For the results in this work all intervals are chosen to be the same length, as measured in the
number of instructions committed within an interval. This is usually 1, 10, or 100 million
instructions, as used by Perelman et al. (2003).

• Similarity – A similarity metric measures the similarity in behavior between two intervals of
a program’s execution, and is specific to the representation of those intervals.

• Phase – A set of intervals within a program’s execution that all have similar behavior,regard-
lessof temporal adjacency. A phase may be made up of intervals which are disjoint in time;
we would call this a phase with a repeating behavior. A “well-formed” phaseshould have
intervals with similar behavior across various architecture metrics (e.g. CPI,cache misses,
branch misprediction). In this paper we consider the terms ‘cluster’ and ‘phase’ to be equiv-
alent.

• Phase Classification – Using machine learning to group intervals from a program/input pair
into phases (clusters) with similar behavior.

4. The Strong Correlation Between Code and Performance

In this section we describe how we identify phase behavior in an architecture independent fashion.

4.1 Using an Architecture-Independent Metric for Phase Classification

To find program phases, we need a notion of how similar are two differentparts of a program’s
execution. In creating this metric it is advantageous to not rely on hardware-based statistics such as
cache miss rates or performance (i.e. CPI), since using these would tie the phases to those statistics
which change depending on the architecture configuration. If such statistics were used, the phases
would need to be re-analyzed every time there was a change to some architectural parameter (either
statically if the size of the cache changed, or dynamically if some policy changes adaptively). This is
not acceptable, since our goal is to find a set of samples that can be usedacross an architecture design
space exploration, where many of these parameters may change. To address this, we need a metric
that is independentof any particular hardware-based statistic, but still relates to the fundamental
changes in behavior like those shown in the top graphs of Figures 1 and 2.

An effective way to design such a metric is to base it on the behavior of a program in terms
of the code that is executed over time. We have shown that there is a very strong correlation (Lau
et al., 2005b) between the set of paths executed in a program and the time-varying architectural
behavior observed. The intuition behind this is that the executed code determines the behavior of
the program. With this idea it is possible to find the phases in programs usingonly a metric related
to how the code is being exercised (i.e. both what code is touched and how often). The central idea
behind SimPoint is that it can find the phase behavior shown in the top graphsof Figures 1 and 2 by
examining only the frequency with which the code parts (e.g., basic blocks) are executed over time.

4.2 Basic Block Vector

The basic block vector (BBV) (Sherwood et al., 2001) is a structure designed to concisely capture
information about how a program is changing behavior over time. A basic block is a section of

350

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

code (e.g. a contiguous set of instructions) that is executed from start tofinish with one entry and
one exit. The metric we will use for comparing two time intervals in a program is based on the
differences in the execution frequencies for each basic block executed during those two intervals.
The intuition behind this is that the behavior of the program at a given time is directly related to the
code it is executing during that interval, and basic block vectors provide us with this information.

A program, when run for any interval of time, will execute each basic blocka certain number
of times. Knowing this information provides a code signature for that intervalof execution, and
shows where the application is spending its time in the code. The basic idea is thatknowing the
basic block distribution for two different intervals gives two separate signatures which we can then
compare to find out how similar the intervals are to one another. If the signatures are similar, then
the two intervals spend about the same amount of time in the same code, and the performance of
those two intervals should be similar.

We represent a basic block vector as a one-dimensional array, with oneelement in the array
for each static basic block in the program. Each interval in an executed program is represented by
one BBV, and at the beginning of each interval, its corresponding BBV has all zeros. During each
interval, we count the number of times each basic block has been entered, and record that number
into the corresponding element in the vector. This number is weighted by the number of instructions
in the basic block, since we want every individual instruction to have the same influence. Therefore,
each element in the array is the count of how many times its corresponding basicblock has been
entered during an interval of execution, multiplied by the number of instructions in that basic block.
For example, if the 50th basic block has one instruction and is executed 15 timesin an interval, then
bbv[50] = 15 for that interval. At the end of an interval’s execution, we normalize the BBV to sum
to 1.

We call the vectors used to guide phase analysisFrequency Vectors, of which basic block vec-
tors are one type. Frequency vectors can represent basic blocks, branch edges, or any other type
of program related structure which provides a representative summary of a program’s behavior for
each interval of execution. We recently examined frequency vector structures other than basic block
vectors for the purpose of phase classification. We have looked at frequency vectors for data, loops,
procedures, register usage, instruction mix, and memory behavior (Lau et al., 2004). We found that
using register usage vectors, which simply counts for a given interval thenumber of times each
register is defined and used, provides similar accuracy to using basic block vectors. In addition, us-
ing only loop and procedure branch execution frequencies performs almost as well as using the full
basic block information. We also found, for SPEC 2000 programs, that creating frequency vectors
by including both code and data access patterns into the vectors did not improve classification over
just using code (Lau et al., 2004).

4.3 Basic Block Vector Difference

In order to find patterns in a program we must first have some way of comparing the similarity
of two basic block vectors. The operation should take two basic block vectors and return a single
number corresponding to how similar (or different) they are.

There are several ways of measuring the similarity of two vectors, such astaking the dot product
between the vectors, finding the Euclidean (2-norm) distance of the connecting vector, or Manhattan
(1-norm) distance of the connecting vector. The Euclidean distance has been shown to be effective
for off-line phase analysis (Sherwood et al., 2002; Perelman et al., 2003). The SimPoint approach

351

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

we examine in this paper uses Euclidean distance as the metric for comparing basic block vectors,
since it is based onk-means. For on-the-fly phase analysis (e.g. predicting phases during computa-
tion), the Manhattan distance is more efficiently implemented in hardware. It hasbeen shown to be
useful in previous work in online phase prediction (Sherwood et al., 2003; Lau et al., 2005c).

4.4 Showing the Correlation Between Code Signatures and Performance

For a detailed study showing that there is a strong correlation between executed code and real
performance, please see Lau et al. (2005b). The top two graphs of Figure 2 give one illustration of
this correlation by showing the time-varying CPI and BBV distance graphs next to each other for
gcc-166. The top graph plots the CPI for each interval executed (at 10M intervallength) showing
how the program’s CPI varies over time. Similarly, the BBV distance graph plotsfor each interval
the Manhattan distance of the BBV (code signature) for that interval fromthe whole program’s
target vector. The whole program’s target vector is a BBV that comes from viewing the whole
program as a single interval. The same information is also provided forgzip in the top two graphs
of Figure 1. These graphs show that changes in CPI have corresponding changes in code signatures,
which is one indication of strong phase behavior for these applications.

These graphs show a strong correlation between code changes and CPI changes even for com-
plex programs likegcc. The graphs forgzip show that phase behavior can be found even if the
intervals’ CPIs have small variance. This brings up an important point about classifying intervals
based on code similarity rather than based on similarity of CPI or some other hardware metric. As-
sume we have two intervals withdifferent code signaturesbut they have verysimilar CPIsbecause
both of their working sets fit completely in the cache. During a design space exploration search,
as the cache size changes, their CPIs may differ dramatically if one of them no longer fits into the
cache. This is why it is important to perform the phase analysis by comparingthe code signatures
independent of the underlying architecture. We have found that the BBVcode signatures correctly
identify differences like these, which cannot be seen by looking at just the CPI.

4.5 Basic Block Similarity Matrix

Now that we have methods of comparing program execution intervals, we can use them for finding
phase-based behavior. A phase of program behavior can be defined in several ways. Past definitions
were built around the idea of a phase being a contiguous interval of execution during which a
measured program metric is relatively stable. We extend this notion of a phaseto include all similar
sections of execution regardless of temporal adjacency. Thus, a phase may appear several times in
the execution of a program.

A key observation from this paper is that the phase behavior seen in any program metric is a
function of the code being executed. Because of this we can use the comparison between the basic
block vectors to get an idea of how closely related any other metrics will be between those two
intervals.

To find how all intervals of execution relate to one another we create abasic block similarity
matrix for a program/input pair. The similarity matrix is an upper-triangularn×n matrix, where
n is the number of intervals in the program’s execution. An entry at(x,y) in the matrix represents
the Manhattan distance between the basic block vector at intervalx and the basic block vector at
intervaly.

352

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

Figures 3 (left and right) and 4 (left) shows the similarity matrices forgzip, bzip, andgcc using
the Manhattan distance. The diagonal of the matrix represents the program’s execution over time
from start to completion. The darker the points, the more similar the intervals are(the Manhattan
distance is closer to 0), and the lighter they are the more different they are (the Manhattan distance
is closer to the maximum value — which is 2 since each vector is normalized to sum to 1).

Consider the points along the matrix diagonal. The top left corner of each matrix is the start
of program execution(0,0), and the bottom right is the point(n− 1,n− 1) (end of execution).
Each interval is perfectly similar to itself, so the points on the diagonal are all dark. Starting from
a point on the diagonal, you can compare how its corresponding interval relates to its neighbors
forward (backward) in execution by tracing horizontally (vertically) from that point. For example,
to compare a given intervalx with the interval atx+ m, start at the point(x,x) on the matrix and
trace to the right until you reach(x,x+m).

Let us first examinegzip because it has behaviors that are evident at such a large scale that they
are easy to see. An interval taken from 70 billion instructions into execution inFigure 3 (left) is
directly in the middle of a large phase shown by the triangle of dark points that surround this point.
This means that this interval is very similar to its neighbors both forward and backward in time. We
can also see that the intervals at 50 billion and 90 billion instructions are also very similar to the
program behavior at 70 billion instructions. While it may be hard to see in a printed version, the
intervals around 70 billion instructions are similar to the intervals around 10 billionand 30 billion
instructions, and even more similar to those around 50 and 90 billion instructions.

Overall, Figure 3 (left) shows that the phase behavior seen in the similarity matrix lines up quite
closely with the behavior of the program seen in the top graph of Figure 1, with 5 large regions of
self-similar behavior (the first 2 being different from the last 3) each divided by a small region of
self-similar behavior. All of the small self-similar regions are also very similar toeach other.

The similarity matrix forbzip (shown on the right of Figure 3) is very interesting.Bzip has
complicated behavior, with two large parts to its execution: compression and decompression. This
can readily be seen in the figure as the large dark triangular and square patches. The interesting
thing aboutbzip is that even within each of these sections of execution there is complex behavior.
This, as will be shown later, makes the behavior ofbzip impossible to capture using only one small
contiguous section of execution.

An even more complex case for finding phase behavior isgcc, which is shown on the left of
Figure 4 (the matrix on the right of that figure will be explained in more detail in Section 5.1.1).
The left matrix shows thatgcc does have regular behavior. Even for such a complex program, we
see that there is common code shared between sections of execution, suchas the intervals around 13
billion instructions and 36 billion instructions. In fact the strong dark diagonal line cutting through
the matrix indicates that there is large-scale repetition between the first half and second half of the
program. By analyzing the graph we can see that code at each intervalx is very similar to interval
(x+23.6B instructions).

5. Automatically Finding Phase Behavior

In this section we describe the algorithms used to automatically detect patterns using the frequency
vectors described in the previous section.

353

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

0
B

2
0
B

4
0
B

6
0
B

8
0
B

1
0
0
B

0
B

5
0
B

1
0
0
B

Figure 3: Basic block similarity matrix for the programsgzip-graphic (shown left) and
bzip-graphic (shown right). The diagonal of the matrix represents the program’s exe-
cution from beginning to end, with units in billions of instructions. The darker the points,
the more similar the intervals are (the Manhattan distance is closer to 0), and the lighter
the points the more different they are (the Manhattan distance is closer to 2).

0
B

1
0
B

2
0
B

3
0
B

4
0
B

0
B

1
0
B

2
0
B

3
0
B

4
0
B

Figure 4: The original similarity matrix for the programgcc-166 (left), and the similarity matrix
for the projection ofgcc-166 (right). The figure on the left uses the original basic block
vectors (each of which has over 100,000 dimensions), and uses the Manhattan distance
for calculating the difference. The figure on the right uses the same data,but projected
down to 15 dimensions, and uses the Euclidean distance for calculating the difference.

354

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

5.1 Using Clustering for Phase Classification

A primary goal of SimPoint is to have an automated way of extracting phase information from
programs. Data clustering algorithms from unsupervised machine learning have been shown to
be very effective at breaking the complete execution of a program into phases that have similar
frequency vectors (Sherwood et al., 2002). Because the frequency vectors correlate to the overall
performance of the program, grouping intervals based on their frequency vectors produces phases
that are similar not only in the distribution of program structures used, but also in every other
architecture metric measured, including overall performance.

The goal of clustering is to divide a set of points into clusters such that points within each cluster
are similar to one another (by some metric), and points in different clusters are different from one
another. We use the machine learning term ‘cluster’ and the architecture term ‘phase’ to express the
same concept.

Thek-means algorithm (MacQueen, 1967) is an efficient and well-known clustering algorithm,
which we use to split program intervals into phases. Prior to clustering, we use random linear
projection (Dasgupta, 2000) to reduce the dimension of the input vectors. One drawback of the
k-means algorithm is that it requires the number of clustersk as an input to the algorithm, but we
do not know beforehand what value is appropriate. To address this, we run the algorithm for several
values ofk, and then use a penalized likelihood score to guide our final choice fork. Taken to the
extreme, if every interval of execution is given its very own cluster, then every cluster will have
homogeneous behavior. Our goal is to choose a clustering with a minimum number of clusters
which still models the program behavior well.

The following steps summarize the SimPoint phase clustering algorithm at a high level.

1. Profile the program by dividing the program’s execution into contiguousintervals of fixed
length (e.g., 1 million, 10 million, or 100 million instructions). For each interval, collect a
frequency vector tracking the program’s use of some program structure (basic blocks, branch
edges, loops, register usage, etc.). Each frequency vector is normalized so that the sum of all
the elements equals 1.

2. Reduce the dimensionality of the frequency vector data to a much smaller number of dimen-
sions using random linear projection. Using projected data speeds up thek-means algorithm
significantly and reduces the memory requirements by several orders of magnitude while pre-
serving the essential similarity information.

3. Run thek-means clustering algorithm on the projected data with values ofk in the range
from 1 toK, whereK is a user-prescribed maximum number of phases that can be detected.
Each run ofk-means produces a clustering, which is a partition of the data intok different
phases/clusters. Each run ofk-means begins with a random initialization step, which requires
a random seed.

4. To compare and evaluate the different clusters formed for differentk, we use the Bayesian
Information Criterion (BIC) as a measure of the “goodness of fit” of a clustering to a data
set. A high BIC score indicates the clustering is a good fit to the data. For each clustering
(k∈ {1,2, . . . ,K}), the fitness of the clustering is scored using the BIC.

5. The final step is to choose the clustering with a smallk such that its BIC score is nearly as
good as the best observed. The chosen clustering is the final groupingof intervals into phases.

355

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

The above algorithm groups intervals into phases. This algorithm has several important param-
eters: interval length, projected dimension, the maximum number of clustersK, how the BIC is to
be used to select the best clustering, etc. Each must be tuned to create accurate and representative
simulation points using SimPoint. We discuss these parameters in more detail later in this paper.

5.1.1 RANDOM PROJECTION

For this clustering problem, we have to address the problem of high dimensionality. Many clustering
algorithms suffer from the so-called “curse of dimensionality,” which refers to the fact that finding
an optimal clustering is intractable as the number of dimensions increases. Oneproblem is that ge-
ometric optimizations that give significant speedup in low-dimensional data often have the opposite
effect in high dimensions (e.g.k-d trees for speeding up nearest neighbor queries). For basic block
vectors, the number of dimensions is the number of executed basic blocks in the program, which
ranges from 2,756 to 102,038 for the SPEC benchmark suite, and could grow into the millions for
very large programs. For example, one Microsoft application we studied consisted of over 800,000
basic blocks, which is representative of desktop applications. Another practical problem is that the
running time and memory requirements ofk-means depend on the dimension of the data, making
the algorithm slow if the dimension grows too large. Also, we observe thatk-means tends to get
stuck easily in sub-optimal solutions if the dimension is too high. This is evidencedby the small
number of iterationsk-means requires to converge on high-dimensional data, as we have observed
on this data. The algorithm does not improve much over its initialization.

Two broad methods of reducing the dimension of data are dimension selection and dimension
reduction. Dimension selection simply removes some of the dimensions, based ona measure of
goodness of each dimension for describing the data. However, this can throw away a lot of infor-
mation in the dimensions which are ignored. Also, in finding a measure to select useful dimensions
is not as clear for unsupervised learning as for supervised learning.Dimension reduction reduces
the number of dimensions by creating a new lower-dimensional space and then projecting each data
point into the new space (where the new space’s dimensions are not necessarily related to the old
space’s dimensions).

For this work we use random linear projection (Dasgupta, 2000) to createa new low-dimensional
space into which we orthogonally project the data. This is a simple and fast technique that is very
effective at reducing the number of dimensions while retaining the essentialstructure of the data.
There are two steps to projecting a data set down to a lower-dimensional version. Consider a data
setX which is represented as a matrix ofn×d real values, wheren is the number of vectors, and
d is the original dimension. We want a low-dimension versionX′ which isn×d′, whered′ is the
projected number of dimensions. To createX′, we do the following:

• Create a projection matrixP sized×d′. Fill each entry in the matrix with a random value
chosen uniformly in[−1,1].

• Use a matrix multiplication to obtainX′ = X×P.

The analysis given by Dasgupta (Dasgupta, 2000) shows that when using random linear projec-
tion for clustering data, there are two primary theoretical benefits. The first is that clusters that are
very eccentric will become more spherical in their low-dimensional representation. This is appropri-
ate for thek-means algorithm which searches for spherical clusters. The second isthat a mixture of

356

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

k Gaussian clusters can be projected into onlyO(logk) dimensions while retaining the approximate
level of separation between clusters.

Principal components analysis (PCA) is a widely-used method for dimension reduction based
on directions of high variance. However, performing PCA on ad-dimensional data set requires
O(d3) operations, which is too expensive for data sets of the size we are considering here that can
have hundreds of thousands of dimensions. Constructing the random projection matrix requires
only O(dd′) time, so it is linear in the original and the new dimension. Dasgupta further showed
that there are many simple examples where PCA is not able to reliably reducek well-separated
Gaussian clusters to belowΩ(k) dimensions and keep them well-separated in the low-dimensional
projection. Examining the use of PCA for BBV dimension reduction is part of our future research.

For our application, we found that 15 dimensions is low enough to be computationally tractable,
but sufficiently high to discover the different phases of execution with clustering. We found this by
running experiments which are reported in earlier work (Sherwood et al.,2002). These experiments
projected all the data sets we are interested in to a varying number of dimensions and then recorded
the number of clusters found byk-means and the BIC. We found that for fewer than 15 dimensions,
the number of clusters found dropped off, but for more than 15 dimensions, the number of clusters
found did not increase significantly. Similar results were also found using the G-means algorithm
to incrementally learnk (without using the BIC) by Hamerly and Elkan (2003). Section 7 evaluates
how the choice of dimension affects the accuracy of SimPoint.

Figure 4 shows the similarity matrix forgcc on the left using original BBVs, whereas the simi-
larity matrix on the right shows the same matrix but on the data that has been projected down to 15
dimensions. For the reduced dimension data we use the Euclidean distance to measure differences,
rather than the Manhattan distance used on the original data. Some informationis lost because of
the projection, but overall phase behavior we see in the original data is stilleasily discernible with
only 15 dimensions. A scatterplot of the programgzip projected to 2 dimensions and clustered into
3 clusters usingk-means is shown in Figure 5.

5.1.2 BAYESIAN INFORMATION CRITERION

To compare the different clusterings formed for differentk, we use the Bayesian Information Crite-
rion, or BIC (Schwarz, 1978), as a measure of the “goodness of fit” of a clustering to a data set. The
BIC is an approximation of the probability of the clustering, given the data thathas been clustered.
Thus, the larger the BIC score, the higher the probability that the clusteringbeing scored is a “good
fit” to the data being clustered. The BIC formulation we use is appropriate forclustering withk-
means, however other formulations of the BIC could also be used for otherclustering models. The
BIC is only one method of choosing a good model from a set of models; othermethods such as the
Akaike information criterion (AIC) (Akaike, 1974), minimum description length(MDL) (Rissanen,
1978), and Monte-carlo cross-validation (MCCV) (Smyth, 1996) may alsobe appropriate.

There are two parts of the BIC: the likelihood and the penalty. The likelihood isa measure of
how well the clustering models the data. For thek-means likelihood, each cluster’s model is con-
sidered a spherical Gaussian distribution (which is the assumptionk-means makes). The likelihood
of a cluster is the product of the probabilities of each point in the cluster given by the cluster’s
Gaussian. The likelihood for the whole model is just the product of the likelihoods for all clusters.
However, the likelihood tends to increase without bound as more clusters are added. Therefore the
second term is a penalty that offsets the likelihood growth based on the modelcomplexity (i.e. the

357

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

D
im

en
si

on
 2

Dimension 1

Cluster 1: 296 points

Cluster 2: 525 points

Cluster 3: 217 points

Figure 5: This plot shows a two-dimensional projection of the basic block vectors for the program
gzip, having 1038 total intervals, and clustered into three clusters withk-means. The
lines show divisions between the three clusters. Note that SimPoint normally operates in
more than two dimensions, but this illustrates the fact that that program behavior does
form natural groups that can be found through data clustering.

number of clusters). The BIC is formulated as

BIC(X,Ck) = L(X|Ck)−
p
2

log(n)

whereL(X|Ck) is the log-likelihood of the clustered dataX given the clusteringCk havingk clusters,
n = |X| is the number of points in the data, andp = (k−1)+ dk+ 1 = k(d+ 1) is the number of
parameters to estimate:(k−1) cluster probabilities,k cluster center estimates which each requires
d mean estimates, and one variance estimate (shared over all clusters). The log-likelihood of the
k-means model given the data is

L(X|Ck) = −nd
2

log(2πσ2)− 1
2σ2

k

∑
j=1

∑
i∈Cj

||Xi −c j ||2 +
k

∑
j=1

n j log(n j/n)

wheren j is the number of points in thejth cluster (son j/n is the estimated prior probability of
cluster j), andσ2 is the average squared Euclidean distance from each point to its cluster center.
The termCj represents the set of all indexes ofX that are members of clusterj, Xi is theith point in
data setX, andc j =

1
n j

∑i∈Cj
Xi is the location of thejth cluster center. The centerc j is the maximum

likelihood solution for the cluster’s center. The maximum likelihood estimator forσ2 is

σ̂2 =
1
nd

k

∑
j=1

∑
i∈Cj

||Xi −c j ||2.

358

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

For the purposes of calculating the BIC, we can substitute this maximum likelihoodestimate forσ2

into the log-likelihood formulation, to get a simpler version:

L(X|Ck) = −nd
2

log(2πσ2)− nd
2

+
k

∑
j=1

n j log(n j/n).

The BIC formulation we present basically follows that given by Pelleg and Moore (2000).
For a given program and inputs, the BIC score is calculated for eachk-means clustering, forK

in the range 1 toK. We then choose the clustering that achieves a BIC score that is close to the
highest BIC score seen. This is explained more in Section 7.

5.2 Clusters and Phase Behavior

The bottom plots in Figures 1 and 2 show the results of running our phase-finding clustering al-
gorithm ongzip andgcc. These results use an interval length of 10 million instructions and the
maximum number of phases (K) is set to 10. The horizontal axis corresponds to the execution of the
program (in billions of instructions), and each interval is classified to belong to one of the clusters
(labeled on the vertical axis).

For gzip, the program’s execution is partitioned into 4 clusters. Looking at the middle plot for
comparison, the cluster behavior captured by our algorithm lines up quite closely with the behavior
of the program. Clusters 2 and 4 represent the large sections of execution which are similar to one
another. Cluster 3 captures the smaller phase that lies in between these larger phases. Cluster 1
represents the phase transitions between the three dominant phases. Theintervals in cluster 1 are
grouped into the same phase because they execute a similar combination of code, which happens to
be part of the code behavior in either cluster 2 or 4 and part of code executed in cluster 3. These
transition points in cluster 1 also correspond to the same intervals that have large spikes in CPI seen
in the top graph (these spikes are due to increased cache misses for thoseregions).

The bottom plot of Figure 2 shows howgcc is partitioned into 8 clusters. Comparing this to
the middle and top plots in the same figure, we see that even the more complicated behavior ofgcc
is captured well by SimPoint. The dominant behaviors in the top two graphs canbe seen grouped
together in phases 1, 3, 5,and 7.

6. Choosing Simulation Points from the Phase Classification

After the phase classification algorithm has done its job, intervals with similar code usage will be
grouped together into the same phases (clusters). Then from each phase, SimPoint chooses one
representative interval that will be simulated in detail to represent the behavior of the whole phase.
Therefore, by simulatingonlyone representative interval per phase, we can extrapolate and capture
the behavior of the entire program.

To choose a representative for a cluster, SimPoint picks the interval thatis closest (Euclidean
distance) to the cluster’sk-means center. The center can be viewed as a pseudo-interval which
behaves most like the average behavior of the entire phase. Most likely there is no interval that
exactly matches the center, so SimPoint chooses the closest interval. The selected interval is called
asimulation pointfor that phase (Perelman et al., 2003; Sherwood et al., 2002). We can then perform
detailed simulation on the set of simulation points.

As part of its output SimPoint also gives a weight for each simulation point. Each weight is a
fraction: it is the total number of instructions represented by the intervals in the cluster from which

359

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

the simulation point was taken divided by the number of instructions in the program. With the
weights and the detailed simulation results of each simulation point, we can compute aweighted
average for the architecture metric of interest (CPI, cache miss rate, etc.)for the entire program’s
execution.

These simulation points are chosen once for a program/input combination because they are
chosen based only on how the code is executed, and not based on architecture metrics. Therefore,
they only need to be calculated once for a binary/input combination and can be used repeatedly
across all of the runs for an architecture design space exploration.

The number of simulation points that SimPoint chooses has a direct effect onthe simulation
time that will be required for those points. The maximum number of clusters,K, along with the
interval length, represents the maximum amount of simulation time that will be needed. When fixed
length intervals are used,(K ∗ interval length) is a limit on the number of simulated instructions.

SimPoint allows users to trade off simulation time with accuracy. Researchers inarchitecture
tend to want to keep simulation time to below a fixed number of instructions (e.g., 300million)
for a run. If this is a goal, we find that an interval length of 10 million instructions with K = 30
provides very good accuracy (as we show in this paper) with reasonable simulation time (220 million
instructions on average). If even more accuracy is desired, then decreasing the interval length to 1
million and settingK = 300 performs well for the SPEC 2000 programs, as does settingK =

√
n

(wheren is the number of clustered intervals). Empirically we discovered that as the granularity
becomes finer, the number of phases discovered increases at a sub-linear rate. The upper bound
defined by this square-root heuristic works well for the SPEC benchmarks.

The length of the interval chosen by users of SimPoint depends upon theirsimulation infras-
tructure and how much they want to deal with warmup. Warmup is the process of initializing the
simulator’s state (caches, branch predictor, etc.) at the start of a simulationpoint so that it is the same
as if we simulated from the beginning of the program to that point. For many programs, using a
long interval length (e.g., more than 100 million instructions) will make warmup unnecessary. This
is the approach used by Intel’s PinPoint for simulation (Patil et al., 2004). They simulate intervals
of length 300-500 million instructions so they do not have to worry about implementing warmup in
their simulation infrastructure. With such long intervals the architecture structures are warmed up
sufficiently during the beginning of the interval’s execution to provide accurate simulation results.
In comparison, short interval lengths can be used, but this requires having an approach for warming
up the architecture state. One way to do this is with an architecture checkpoint,which stores the po-
tential contents of the major architecture components at the start of the simulationpoint (Biesbrouck
et al., 2005). This can significantly reduce warmup time, since warmup consists of just reading the
checkpoint from a file and using it to initialize the architecture structures.

6.1 Accuracy of SimPoint

We now show the accuracy of using SimPoint for the complete SPEC 2000 benchmark suite and
their reference inputs. Figure 6 shows the simulation accuracy results using SimPoint (and other
methods) for the SPEC 2000 programs when compared to the complete execution of the programs.
For these results we use an interval length of 100 million instructions and limit the number of
simulation points to no more than 10. With the above parameters SimPoint finds 4 phases forgzip,
and 8 forgcc. As described above, one simulation point is chosen for each cluster, sothis means

360

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

68%

51%
58%

13%

33%

23%

4%
8%

2%
8%

3736% 1986%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip gcc Median Max

E
rr

o
r

in
 P

e
rf

o
rm

a
n

c
e

E
s
ti

m
a
ti

o
n

 (
IP

C
)

From Start Skip 1 Billion Sample Per Phase

Figure 6: Simulation accuracy for the SPEC 2000 benchmark suite when performing detailed simu-
lation for several hundred million instructions compared to simulating the entire execution
of the program. Results are shown for simulating from the start of the program’s execu-
tion, for fast-forwarding 1 billion instructions before simulating, and for using SimPoint
to choose at most ten 100-million-instruction intervals to simulate. The results areshown
as percent error of predicted IPC, which is how much the estimated IPC using SimPoint
is different from the complete execution of the program. IPC is the inverse of CPI. The
median and maximum results are for the complete SPEC 2000 benchmarks.

that a total of 400 million instructions were simulated forgzip. The results show that this results in
only a 4% error in performance estimation forgzip.

For these results, we compare this estimated IPC using SimPoint to the baseline IPC. IPC (In-
structions Per Cycle) is the inverse of CPI, and often used instead of CPIwhen describing perfor-
mance. The baseline was gathered from spending months of simulation time to simulate the entire
execution of each SPEC program. The results in Figure 6 compare SimPoint tohow architecture re-
searchers use to choose where to simulate before SimPoint. The first technique was to just simulate
the first N million instructions of a benchmark’s execution. The second technique was to blindly
skip the first billion instructions of execution to get past the initialization of the program’s execu-
tion, and then simulate for N million instructions. The results show that simulating from the start
of execution, for the exact same number of instructions as simulated with SimPoint, results in a
median error of 58%. If instead, we fast forwarded for 1 billion instructions and then simulate for
the same number of instructions as chosen by SimPoint, we see a median 23% IPCerror. When
using SimPoint to create multiple simulation points we have a median IPC error of 2%.Note that
the maximum error seen for the prior techniques are significant for the SPEC programs, but it is
very reasonable (only 8%) for SimPoint.

6.2 Relative Error During Design Space Exploration

The absolute error of a program/input run on one hardware configuration is not as important as
tracking the change in metrics across different architecture configurations. There is a lot of discus-
sion and research into getting lower simulation error rates. But what often isnot discussed is that a

361

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

gcc-166

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Configuration

IP
C

0%

5%

10%

15%

20%

D
L
1

/
U

L
2

C
a

ch
e

M
R

True IPC S PIPC

True DL1 S PDL1

True UL2 S PUL2

Figure 7: This plot shows the true and estimated IPC and cache miss rates for19 different architec-
ture configurations for the programgcc. The lefty-axis is for the IPC and the righty-axis
is for the cache miss rates for the L1 data cache and unified L2 cache. Results are shown
for the complete execution of the configuration and when using SimPoint.

low error rate for a single configuration is not as important as achieving thesame relative error rates
across the design space search and having them all biased in the same direction.

We now examine how SimPoint tracks the relative change in hardware metrics across several
different architecture configurations. To examine the independence ofthe simulation points from
the underlying architecture, we used the simulation points for the SimPoint algorithm with an in-
terval length of 1 million instructions and the maximumK set to 300. For the program/input runs
examined, we performed full program simulations while varying the memory hierarchy, and for
every run we used the same set of simulation points when calculating the SimPointestimates. We
varied the configurations and the latencies of the L1 and L2 caches as described by Perelman et al.
(2003).

Figure 7 shows the results across 19 different architecture configurations forgcc-166. The left
y-axis represents the performance in Instructions Per Cycle (IPC) and thex-axis represents different
memory configurations from the baseline architecture. The righty-axis shows the miss rates for the
data cache and unified L2 cache, and the L2 miss rate is a local miss rate. Foreach metric, two lines
are shown: “True” for the true metric from thecompletedetailed simulation, and the “SP” for the
estimated metric using our simulation points. For the results, the configurations on the x-axis are
sorted by the IPC of the full run.

This figure shows that the simulation points, which are chosen by only lookingat code us-
age, can be used across different architecture configurations to makeaccurate architecture design
trade-off decisions and comparisons. The simulation points are able to trackthe relative changes in
performance metrics between configurations. This means we are able to makethe same decision be-
tween two architectures, in terms of which one is better, using SimPoint as the complete simulation
of the program. One interesting observation is that although the simulation results from SimPoint
have a bias in its predictions, this bias is consistent across the different configurations for a given

362

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

program/input. This is true for both IPC and cache miss rates. We believe onereason for the bias is
that SimPoint chooses the most representative interval from each phase, and intervals that represent
phase change boundaries are less likely to be fully represented acrossthe chosen simulation points.

7. Clustering Analysis

In this section we describe the primary parameters that have influence on how SimPoint and thek-
means algorithm behave. We first focus on how we achieve a reasonablerunning time fork-means,
and then examine how to search overk to find a good clustering. For the experiments in this section,
we use basic block vectors with 100 million instruction intervals. Where it is not specified, we also
usek = 30 clusters and 15 projected dimensions.

7.1 Methods for Reducing the Run-Time ofk-Means

Even though SimPoint only needs to be run once per binary/input combination, we still want a fast
clustering algorithm that produces accurate simulation points. To address the run-time of SimPoint,
we first look at the three parts which affect most the running time of a single run of k-means. The
three parts are the number of intervals to cluster, the dimension of the intervalsbeing clustered, and
the number of iterations it takes to perform a clustering.

We first examine how the number of intervals affects the running time of the SimPoint algorithm.
Figure 8 shows the time (in seconds) for running SimPoint on different numbers of intervals as we
vary the number of clusters. For this experiment, the clustered vectors arerandomly generated from
uniformly random noise in 15 dimensions. We use random data in these experiments because it does
not bias these results based on a particular benchmark and it gives comparable results across a wide
range of parameter settings. But more importantly, prior theoretical work byIndyk et al. (1999)
suggests that it is most difficult to accelerate (i.e. make more efficient using geometric reasoning)
clustering algorithms on data without structure, such as uniformly random data. This is supported
by experiments by Moore (2000) and Elkan (2003). So these experimentsform a comparable set
of challenging results for the per-iteration run-time of SimPoint. The number ofiterations will vary
depending on the structure of the data, however. For example, usingk-means to cluster data from
very well-separated clusters is likely to converge in a low number of iterations, while clusters which
overlap are likely to require more iterations.

The first graph shows that for 100,000 vectors andk = 128, it took about 3.5 minutes for Sim-
Point 3.0 to perform the clustering. It is clear that the number of vectors clustered and the value
of k both have a large effect on the run-time of SimPoint. The run-time changes linearly with the
number of clusters and the number of vectors, as expected. Also, we cansee that the time per basic
operation actually goes down ask increases. This is due to a simple optimization calledpartial
distance search(McNames, 2000; Cheng et al., 1984) that allows the algorithm to avoid calculating
the full distance from a point (interval) to every cluster center in the first step ofk-means. The goal
of this step is to find the closest cluster center to the point, so that the interval may be assigned to
that center. To find this closest center, a simple loop searches for the cluster center with the min-
imum squared Euclidean distance. The squared distance calculation sums thesquared dimension
difference between the point and the cluster center over all dimensions. While searching for the
minimum squared distance from a point to all centers, partial distance search keeps the smallest
squared distance seen thus far. When calculating the distance to another center, it may find that
the intermediate squared distance result (after processing some of the dimensions) is larger than the

363

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

se
co

nd
s

k

total time to cluster

1000 vectors
10000 vectors

100000 vectors

0.001

0.01

0.1

1

10

100

1 10 100 1000

se
co

nd
s

k

time / iterations

1000 vectors
10000 vectors

100000 vectors

1e-07

1e-06

1e-05

1 10 100 1000

se
co

nd
s

k

time / (n * k * iterations)

1000 vectors
10000 vectors

100000 vectors

Figure 8: These plots show how varying the number of vectors and clusters affects the amount of
time required to cluster with SimPoint 3.0. For this experiment we generated uniformly
random data in 15 dimensions. The first plot shows total time, the second plotshows the
time normalized by the number of iterations performed, and the third plot shows the time
normalized by the number of basic operations performed. Both the number ofvectors and
the number of clusters have a linear influence on the run-time ofk-means. The bottom
plot shows a decreasing trend due to optimizations ink-means which are more beneficial
for largerk.

smallest squared distance seen to a different center. If this is the case, the distance we are calculat-
ing cannot be minimal, so the current calculation is stopped short of calculating the entire squared
distance over all of the dimensions. This optimization does not change the correctness of the al-
gorithm. Partial distance search is most beneficial when there are many clusters, since the more
centers there are, the more it is likely that there will be a close center that cangive a good lower
bound for the partial search. Partial distance search is also useful in high dimensional data, since
work is saved when computing per-dimension differences, and the more dimensions there are the
more computations can potentially be avoided.

364

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

Program # Vecs× # B.B. SP3-All SP3-BinS
gcc-166 4692× 102038 9 min 3.5 min

crafty 19189× 16970 84 min 10.7 min

Table 4: This table shows the running times (in minutes) by SimPoint 3.0 without using binary
search (SP3-All) and SimPoint 3.0 using binary search (SP3-BinS). SimPoint is run
searching for the best clustering fromk=1 to 100, uses 5 random seeds perk, and projects
the vectors to 15 dimensions. The second column shows how many vectors and the size of
the vector (static basic blocks) the programs have.

7.1.1 NUMBER OF INTERVALS AND SUB-SAMPLING

Each iteration of thek-means algorithm has a run-time that is linear in the number of clusters, the
number of intervals, and the dimensionality. However, sincek-means is an iterative algorithm, many
iterations may be required to reach convergence. We already found in prior work (Sherwood et al.,
2002), and revisit in Section 7.1.2 that we can reduce the number of dimensions down to 15 and still
maintain SimPoint’s accuracy. Therefore, the main influence on execution time for SimPoint is the
number of intervals.

To show this effect, Table 4 shows the SimPoint running time forgcc-166 andcrafty-ref,
which shows the lower and upper limits for the number of intervals and basic block vectors seen in
SPEC 2000 with an interval length of 10 million instructions. The second and third columns show
the number of intervals and original number of dimensions for each basic block vector. The last
two columns show the time it took to execute SimPoint 3.0 searching for the best clustering from
k=1 to 100, with 5 random initializations (seeds) perk. The fourth column shows the time it took
to run SimPoint when searching over allk, and the last column shows clustering time when using
the new binary search described in Section 7.2.3. The results show that increasing the number of
intervals by 4 times increased the running time of SimPoint around 10 times. The results also show
that the number of intervals clustered has a large impact on the running time of SimPoint, since it
can take many iterations to converge, which is the case forcrafty. We used 15 dimensions during
clustering for these results.

The effect of the number of intervals on the running time of SimPoint becomes critical when
using very small interval lengths like 1 million instructions or fewer, which can create millions of
intervals to cluster. To speed the execution of SimPoint on these very large inputs, we sub-sample
the set of intervals that will be clustered, and runk-means on only this sample. To sample with
SimPoint, the user specifies the number of desired interval samples, and thenSimPoint chooses that
many intervals (without replacement). The probability of each interval beingchosen is proportional
to the weight of its interval (the number of dynamically executed instructions it represents). For
vectors which all represent the same interval length (as we consider in thispaper), this weight
is uniform. If vectors represent non-uniform interval lengths (called variable-length intervals, or
VLIs), then each vector’s weight is proportional to its interval length. Wesummarize our work with
variable length intervals in Section 9.

Sampling is common in clustering for data sets which are too large to fit in main memory (Farn-
strom et al., 2000; Provost and Kolluri, 1999). After clustering the data set sample, we have a set of
clusters with centers found byk-means. SimPoint then makes a single pass through the unclustered

365

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

intervals and assigns each interval to the cluster that has the nearest center (centroid) to that interval.
This then represents the final clustering from which the simulation points are chosen. We originally
examined using sub-sampling for variable length intervals (VLI) in Lau et al.(2005a). When us-
ing VLIs we had millions of intervals, and had to sub-sample 10,000 to 100,000 intervals for the
clustering to achieve a reasonable running time for SimPoint, while still providingvery accurate
simulation points.

The experiments shown in Figure 9 show the effects of sub-sampling across all the SPEC 2000
benchmarks using an interval length of 10 million instructions, 30 clusters, and 15 projected di-
mensions. Results are shown for creating the initial clustering using sub-sampling with only 1/8,
1/4, 1/2, and all of the execution intervals in each program, as described above. The first two plots
show the effects of sub-sampling on the CPI errors andk-means variance, both of which degrade
gracefully when smaller samples are used. The average SPEC INT (integer) and SPEC FP (floating
point) average results are shown. It is standard to break the results into these two groupings for
architecture results. The CPI error is computed in the following manner:

CPI Error=
|True CPI−SimPoint Estimated CPI|

True CPI
.

The averagek-means variance is the average squared distance between every frequency vector
and its closest cluster center. Lower variances are better. When sub-sampling, we still report the
variance based on every vector (not just the sub-sampled ones). Therelative k-means variance
reported in the experiments is measured on a per-input basis as the ratio of thek-means variance for
clustering on a sample to that of clustering on the whole input.

As shown in the second graph of Figure 9, sub-sampling a program can causek-means to find
a slightly less representative clustering, which results in higherk-means variance on average. Note
that thek-means variance for these experiments are reported on all the input vectors, not just the
sampled ones. Even so, when sub-sampling, we found in some cases that itcan reduce thek-
means variance and/or CPI error (compared to using all the vectors), because sub-sampling can
remove outliers in the data set thatk-means may be trying to fit. This is a benefit noted in the work
of Fayyad et al. (1998) when they use subsampling to initialize iterative clustering algorithms.

It is interesting to note the difference between floating point and integer programs, as shown
in the first two plots. The results shown in the first plot show we can capturethe behavior of the
SPEC floating point programs more easily, that is, without using all the original data. In addition,
the second plot suggests that SPEC floating point programs are also easier to cluster than the SPEC
INT, as we can do quite well (in terms ofk-means variance) even with only small samples. This
suggests that they have more regular or uniform code usage patterns than integer programs. The
third plot shows the effect of the number of vectors on the running time of SimPoint. This plot
shows the time required to cluster all of the benchmark/input combinations and their 3 sub-sampled
versions. In addition, we have fit a logarithmic curve with least-squares to the points to give a rough
idea of the growth of the run-time. Note that two different data sets with the samenumber of vectors
may require different amounts of time to cluster due to the number ofk-means iterations required
for the clustering to converge.

7.1.2 NUMBER OF DIMENSIONS AND RANDOM PROJECTION

Along with the number of vectors, the other most influential aspect in the running time ofk-means
is the number of dimensions of the data. Figure 10 shows the effect of changing the number of pro-

366

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

I e
rr

or

sample fraction

INT programs
FP programs

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

re
la

tiv
e

k-
m

ea
ns

 v
ar

ia
nc

e

sample fraction

INT programs
FP programs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45

tim
e

(s
ec

on
ds

)

number of vectors (sample size) x1000

Figure 9: These three plots show how sub-sampling before clustering affects the CPI errors,k-
means variance, and the run-time of SimPoint. The first plot shows the average CPI
error across the integer and floating-point SPEC benchmarks. The second plot shows the
averagek-means clustering variance relative to clustering with all the vectors. The last
plot shows a scatter plot of the run-time to cluster the full benchmarks and sub-sampled
versions, and a logarithmic curve fit with least squares.

jected dimensions on both the CPI error (left) and the run-time of SimPoint (right). For this exper-
iment, we varied the number of projected dimensions from 1 to 100. As the number of dimensions
increases, the time to cluster the vectors increases linearly, as expected. It is more interesting that
the run-time also increases for very low dimensions. This is because the points are more “crowded”
and the clusters are less well-separated, sok-means requires more iterations to converge.

If we use too few dimensions, the data does not retain sufficient informationto cluster the data
well. This is reflected by the fact that the CPI errors increase rapidly forvery low dimensions.
However, we can see that at 15 dimensions, the SimPoint default, the CPI errors are quite low,
and using a higher number of dimensions does not improve them significantly but requires more
computation. Using too many dimensions is also a problem in light of the well-known“curse of
dimensionality” (Bellman, 1961), which implies that as the number of dimensions increases, the
number of vectors that would be required to densely populate that space grows exponentially. This
means that using a higher dimension makes it more likely that a clustering algorithmwill converge

367

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 10 20 30 40 50 60 70 80 90 100

C
P

I e
rr

or

projected dimensions

INT programs
FP programs

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(r
el

at
iv

e
to

 1
00

 d
im

en
si

on
s)

projected dimensions

INT programs
FP programs

Figure 10: These two plots show the effects of changing the number of projected dimensions when
using SimPoint. The default number of projected dimensions SimPoint uses is 15, but
here we show results for 1 to 100 dimensions. The left plot shows the average CPI error,
and the right plot shows the average time relative to 100 dimensions. Both plotsare
averaged over all the SPEC 2000 benchmarks, for a fixedk = 30 clusters.

to a poor solution, since the input space is not very densely filled. Therefore, it is wise to choose a
dimension that is low enough to allowk-means to find a good clustering, but not so low that critical
information is lost. We find that 15 dimensions works well in these regards.

7.1.3 NUMBER OF ITERATIONS NEEDED

The final aspect we examine for affecting the running time of thek-means algorithm is the number
of iterations it takes for a run to converge. We provide this analysis to illustrate typical requirements
of running SimPoint on a set of benchmarks, and because finding a tight upper-bound on the number
of iterations required byk-means is an open problem (Dasgupta, 2003), we must rely on evidence
to show us what to expect.

The k-means algorithm iterates either until it hits a user-specified maximum number of itera-
tions, or until it reaches convergence. In SimPoint, the default limit is 100 iterations, but this can
easily be changed. More iterations may be required, especially if the numberof intervals is very
large compared to the number of clusters. The interaction between the numberof intervals and the
number of iterations required is the reason for the large SimPoint running time for crafty-ref in
Table 4.

For our results, we observed that only 1.1% of all runs on all SPEC 2000benchmarks reach
100 iterations. This experiment was with 10-million instruction intervals,k=30, 15 dimensions,
and with 10 random initializations ofk-means. Figure 11 shows the number of iterations required
for all runs in this experiment. Out of all of the SPEC program and input combinations run, only
crafty-ref, gzip-program, perlbmk-splitmail had runs that had not converged by 100 iter-
ations. The longest-running clusterings for these programs reached convergence in 160, 126, and
101 iterations, respectively. If desired, SimPoint can always runk-means to convergence (with no
iteration limit).

368

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

 0

 20

 40

 60

 80

 100

N
um

be
r

of
 it

er
at

io
ns

am
m

p-
re

f
ap

pl
u-

re
f

ap
si

-r
ef

ar
t-

11
0

ar
t-

47
0

bz
ip

2-
gr

ap
hi

c
bz

ip
2-

pr
og

ra
m

bz
ip

2-
so

ur
ce

cr
af

ty
-r

ef
eo

n-
co

ok
eo

n-
ka

jiy
a

eo
n-

ru
sh

m
ei

er
eq

ua
ke

-r
ef

fa
ce

re
c-

re
f

fm
a3

d-
re

f
ga

lg
el

-r
ef

ga
p-

re
f

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

in
te

gr
at

e
gc

c-
sc

ila
b

gz
ip

-g
ra

ph
ic

gz
ip

-lo
g

gz
ip

-p
ro

gr
am

gz
ip

-r
an

do
m

gz
ip

-s
ou

rc
e

lu
ca

s-
re

f
m

cf
-r

ef
m

es
a-

re
f

m
gr

id
-r

ef
pa

rs
er

-r
ef

pe
rlb

m
k-

di
ffm

ai
l

pe
rlb

m
k-

m
ak

er
an

d
pe

rlb
m

k-
pe

rf
ec

t
pe

rlb
m

k-
sp

lit
m

ai
l

si
xt

ra
ck

-r
ef

sw
im

-r
ef

tw
ol

f-
re

f
vo

rt
ex

-o
ne

vo
rt

ex
-t

hr
ee

vo
rt

ex
-t

w
o

vp
r-

ro
ut

e
w

up
w

is
e-

re
f

Figure 11: This plot shows the number of iterations required for 10 randomized initializations of
each benchmark, with 10 million instruction length intervals,k = 30, and 15 dimensions.
Note that only three program/inputs had a total of 5 runs that required more than the
default limit of 100 iterations, and these all converge within 160 iterations or less.

7.2 Searching for a Smallk with a Good Clustering

We suggest setting the maximum number of clustersK as appropriate for the maximum amount of
simulation time a user will tolerate for a single simulation. SimPoint uses three techniques to search
over the possible clusterings, which we describe here. The goal is to try topick a smallk so that the
number of simulation points is also small, thereby reducing the simulation time required.

7.2.1 SETTING THE BIC PERCENTAGE

As we examine several clusterings and values ofk, we need to have a method for choosing the best
clustering. The Bayesian Information Criterion (BIC) (Pelleg and Moore,2000) gives a score of the
how well a clustering represents the data it clustered. However, we haveobserved that the BIC score
often increases as the number of clusters increase. Thus choosing the clustering with the highest
BIC score can lead to often selecting the clustering with the most clusters. Therefore, we look at
the range of BIC scores, and select the score which attains some high percentage of this range. The
SimPoint default BIC threshold is 90%. When the BIC rises and then levels off ask increases, this
method chooses a clustering with the fewest clusters that is near the maximum BIC value. Choosing
a lower BIC threshold would prefer fewer clusters, but at the risk of less accurate simulation.

Figure 12 shows the effect of changing the BIC threshold on both the CPIerror (left) and the
number of simulation points chosen (right). These experiments are for usingbinary search (ex-
plained in Section 7.2.3) withK = 30, 15 dimensions, and 5 random seeds. BIC thresholds of 70%,
80%, 90% and 100% are examined. As the BIC threshold decreases, the average number of simu-
lation points decreases, and similarly the average CPI error increases. At the 70% BIC threshold,
perlbmk-splitmail has the maximum CPI error in the SPEC suite. This anomaly is an artifact

369

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45
C

P
I e

rr
or

BIC score fraction
0.7 0.8 0.9 1.0

max
max-1

average

 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 s

im
ul

at
io

n
po

in
ts

 c
ho

se
n

BIC score fraction
0.7 0.8 0.9 1.0

max
max-1

average

Figure 12: These plots show how the CPI error and number of simulation points chosen are affected
by varying the BIC threshold. Bars labeled “max-1” show the second largest value
observed.

of the low threshold. Since higher BIC scores point to better clusterings and better error rates, we
recommend the BIC threshold to be set at 90%.

7.2.2 VARYING THE NUMBER OF RANDOM SEEDS, AND k-MEANS INITIALIZATION

Thek-means clustering algorithm starts from a randomized initialization, which requires a random
seed. Because of this, runningk-means multiple times can produce very different results depending
on the initializations, sok-means can sometimes converge to a locally-good solution that is poor
compared to the best clustering on the same data for that number of clusters.Therefore, conventional
wisdom suggests that it is good to runk-means several times using a different randomized starting
point each time, and take the best clustering observed, based on thek-means variance or the BIC.
SimPoint does this, using different random seeds to initializek-means each time. Based on our
experience, we have found that using 5 random seeds works well.

SimPoint allows users to provide their ownk-means initialization, or it will choose an initial-
ization based on one of two methods: sampling and furthest-first (Gonzalez, 1985; Hochbaum and
Shmoys, 1985). The sampling method choosesk random locations for the initial cluster centers
from the input data without replacement. The furthest-first method chooses one input point at ran-
dom, and then repeatedly chooses a point that is furthest away from all the already-chosen points,
until k points are chosen. This has the tendency to spread the initially chosen pointsout along the
convex hull of the input space, and subsequently chosen points in the interior.

Figure 13 shows the effect on CPI error of using two differentk-means initialization methods
(furthest-first and sampling) along with different numbers of initialk-means seeds. These experi-
ments are for using binary search withK = 30, 15 dimensions, and a BIC threshold of 90%. When
multiple seeds are used, SimPoint runsk-means multiple times with different starting conditions
and takes the best result.

Based on these results we see that sampling outperforms furthest-firstk-means initialization.
This can be attributed to the data we are clustering, which can have a large number of outlying
points, which furthest-first initialization pays special attention to. The furthest-first method is likely

370

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

C
P

I e
rr

or

number of k-means initializations seeds
1 5 10

max-furthest first
max-sample

avg-furthest first
avg-sample

Figure 13: This plot shows the average and maximum CPI errors for both sampling and furthest-
first k-means initializations, and using 1, 5, or 10 different random seeds. These results
are over the SPEC 2000 benchmark suite for 10-million instruction vectors, 15 dimen-
sions, andk = 30.

to pick those anomaly points as initial centers since they are the furthest pointsapart. It is also
beneficial to try multiple seed initializations in order to avoid a locally minimal solution. The
results in Figure 13 shows that 5 seed initializations should be sufficient in finding good clusterings.

7.2.3 BINARY SEARCH FORPICKING k

SimPoint 3.0 makes it much faster to find the best clustering and simulation points for a program
trace over earlier versions. Since the BIC score generally increases ask increases, SimPoint 3.0 uses
this knowledge to perform a binary search for the bestk. For example, if the maximumk desired is
100, with earlier versions of SimPoint one might search in increments of 5:k= 5,10,15, . . . ,90,100,
requiring 20 clusterings. With the binary search method, we can ignore large parts of the set of
possiblek values and examine only about 7 clusterings.

The binary search method first clusters 3 times: atk = 1, k = K, andk = (K + 1)/2. It then
proceeds to divide the search space and cluster again based on the BICscores observed for each
clustering and the user-specified BIC threshold. Thus the binary search method requires the user
only to specify the maximum number of clustersK, and performs at most log2(K) clusterings.

Figure 14 shows the comparison between the new binary search method forchoosing the best
clustering, and the old method, which searched over allk values in the same range. The top graph
shows the CPI error for each program, and the bottom graph shows the number of simulation points
(clusters) chosen. These experiments are for using binary search withK = 30, 15 dimensions, 5
random seeds, and a BIC threshold of 90%. Exhaustive search performs slightly better than binary
search, since it searches allk values. Using the binary search, it possible that it will not find a
clustering with as few clusters as found by the exhaustive search. This isshown in the bottom graph
of Figure 14, where the exhaustive search picked 19 simulation points on average, and binary search
chose 22 simulation points on average. In terms of CPI error rates, the average is about the same
across the SPEC programs between exhaustive and binary search. Recall that the binary search

371

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

C
P

I e
rr

or

am
m

p

ap
pl

u

ap
si

ar
t-

11
0

ar
t-

47
0

bz
ip

2-
gr

ap
hi

c

bz
ip

2-
pr

og
ra

m

bz
ip

2-
so

ur
ce

cr
af

ty

eo
n-

co
ok

eo
n-

ka
jiy

a

eo
n-

ru
sh

m
ei

er

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

in
te

gr
at

e

gc
c-

sc
ila

b

gz
ip

-g
ra

ph
ic

gz
ip

-lo
g

gz
ip

-p
ro

gr
am

gz
ip

-r
an

do
m

gz
ip

-s
ou

rc
e

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rlb

m
k-

di
ffm

ai
l

pe
rlb

m
k-

m
ak

er
an

d

pe
rlb

m
k-

pe
rf

ec
t

pe
rlb

m
k-

sp
lit

m
ai

l

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex
-o

ne

vo
rt

ex
-t

hr
ee

vo
rt

ex
-t

w
o

vp
r-

ro
ut

e

w
up

w
is

e

av
er

ag
e

SimPoint All
Binary Search

 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 s

im
ul

at
io

n
po

in
ts

 c
ho

se
n

am
m

p

ap
pl

u

ap
si

ar
t-

11
0

ar
t-

47
0

bz
ip

2-
gr

ap
hi

c

bz
ip

2-
pr

og
ra

m

bz
ip

2-
so

ur
ce

cr
af

ty

eo
n-

co
ok

eo
n-

ka
jiy

a

eo
n-

ru
sh

m
ei

er

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

in
te

gr
at

e

gc
c-

sc
ila

b

gz
ip

-g
ra

ph
ic

gz
ip

-lo
g

gz
ip

-p
ro

gr
am

gz
ip

-r
an

do
m

gz
ip

-s
ou

rc
e

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rlb

m
k-

di
ffm

ai
l

pe
rlb

m
k-

m
ak

er
an

d

pe
rlb

m
k-

pe
rf

ec
t

pe
rlb

m
k-

sp
lit

m
ai

l

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex
-o

ne

vo
rt

ex
-t

hr
ee

vo
rt

ex
-t

w
o

vp
r-

ro
ut

e

w
up

w
is

e

av
er

ag
e

SimPoint All
Binary Search

Figure 14: These plots show the CPI error and number of simulation points chosen for two dif-
ferent ways of searching for the best clustering. The first method, which was used in
SimPoint 2.0, searches over allk between 1 and 30, and chooses the smallest clustering
that achieves the BIC threshold of 90%. The second method is the binary search for
K = 30, which examines at most 5 clusterings.

method operates many times faster than the brute force search method (see Table 4 for some timing
results).

As we can see from the graphs in Figure 14, SimPoint is able to achieve a 1.5%CPI error rate
averaged across all SPEC 2000 benchmarks, with a maximum error of around 6%. These results
require an average simulation time of about 220 million instructions per program(for the binary
search method). These error rates are sufficiently low to make design decisions, and the simulation
time is small enough to do large-scale design space explorations.

372

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

8. Related Machine Learning Work on Phase Analysis

SimPoint is the first research to apply machine learning techniques (k-means, dimension reduction,
BIC) to the problem of program phase analysis and workload performance prediction. Recently
two other clustering techniques have been examined for SimPoint, which are multinomial cluster-
ing (Sanghai et al., 2005) and regression trees (Annavaram et al., 2004). Neither of these perform
better than SimPoint withk-means clustering.

Sanghai et al. (2005) proposed utilizing mixtures of multinomials trained by EM tocluster pro-
gram intervals. Unlike ak-means cluster, the multinomial is a probability model that explicitly
models each dimension. Multinomials are used frequently in machine learning formodeling and
clustering text documents, which are high-dimensional and sparse, much like the data we see in
program analysis using basic block vectors. Sanghai et al. used a mixture of multinomial models to
cluster the program data, and formulated a version of the BIC that applies tomultinomial models.
They also considered dimension reduction via a different construction ofrandom linear projection.
Their random linear projection is based on a sparse matrix where each value may be 0 or 1 (rather
than real-valued). This is similar to what Achlioptas (2001) proposed for “database-friendly” projec-
tions. Following on their proposed model, we have done a full comparison ofmultinomial mixtures
with k-means (Hamerly et al., 2006), and we found thatk-means performs better for program phase
analysis, but that multinomials have some benefits. We summarize that work in Section 9.

Annavaram et al. (2004) employed a regression tree clustering algorithmto predict performance
for database applications and SPEC2000. Code signatures were generated through periodic sam-
pling with a tool called VTune that samples the hardware counters. In addition tocode signatures,
the CPI for each interval of execution was sampled. This is a necessary parameter in the regression
tree algorithm. The code signatures are divided into two groups based on the split that would min-
imize the variance in the CPI for the corresponding execution intervals. Subsequently, each new
group is split again based on the same criteria and this is repeated recursively until no more splits
can be made. To reduce complexity, up to 50 splits were applied on the data (Annavaram et al.,
2004). To determine the number of clusters to be used from the data, a cross-validation step is
applied with reserved CPI data that was not used in the splitting process.

The regression tree method may be effective in reducing the variance of CPI within clusters, but
the need for CPI in computing clusters is a drawback. It is computationally expensive to compute the
CPI for the entire execution of a program via simulation. In addition, the use of CPI data from one
architecture configuration to form clusters would bind that clustering to thatparticular configuration.
A different architecture configuration which may produce different CPI values would not necessarily
fit under the former clustering formation; thus the method is not architecture independent. Thek-
Means approach employed in SimPoint uses only the code signatures to formclusters, which results
in an architecture independent representation that is applicable across many configurations as shown
in Section 6.

9. Current Directions

In this section we describe some of our current and future directions forphase analysis.

373

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

9.1 Matching Simulation Points to Code Boundaries

With the original SimPoint approach, representatives selected for simulationare identified by dy-
namic instruction count using fixed length intervals. For example, SimPoint may tell the user to
start detailed simulation when 5,000,000 instructions have executed, and stopjust before 6,000,000
instructions have executed, using an interval size of 1,000,000 instructions. This ties the simulation
points to that specific binary, but the idea of SimPoint should be applicable across different compila-
tions of the same source code. The same phase behavior should occur, though perhaps with different
code patterns. If we can identify these behaviors and map them back to the source code level, then
we could use the same phase analysis for a program compiled for different compiler optimizations
or even architectures with different instruction sets. This will allow us to examine the exact same
set of simulation points across different compilations of the same source code.

To address this, we propose breaking the program’s execution up at procedure call and loop
boundaries instead of breaking up the program’s execution using fixed length intervals. Programs
exhibit patterns of repetitive behavior, and these patterns are largely due to procedure call and loop-
ing behavior. Our software phase marker approach (Lau et al., 2006)detects recurring call chains
and looping patterns and identifies the source code instructions to which theycorrespond. We then
mark specific procedure calls and loop branches, so that when they occur during execution, they
will indicate the end of one code signature (interval boundary) and the start of another. Therefore,
instead of using fixed-length intervals with some fixed number of instructions,intervals are defined
by procedure and loop boundaries. This results inVariable Length Intervals(VLIs) of execution.

To support VLIs, we had to modify the SimPoint software to allow sub-sampling(since we
may be dealing with a huge number of intervals), and clustering with variable-length intervals (Lau
et al., 2005a), where the weights of each interval are taken into consideration during thek-means
clustering. An interesting machine-learning result of clustering variable-length intervals is how we
modified the likelihood calculated for the BIC to allow it to consider the length of each interval.
Because we view longer intervals as more important than shorter ones, the likelihood should reflect
this. Therefore, we reformulate the likelihood we present in this paper to beappropriate for variable-
length intervals. When the interval length is uniform, the modified BIC gives thesame answer as
the BIC presented in this paper.

The accuracy and simulation time results for software phase markers with VLIs are similar
to fixed-length-interval SimPoint. Therefore the main advantage of the phase marker approach is
portability of the phase analysis across compilations and architectures. In prior work (Lau et al.,
2005a), we also showed that there is a clear hierarchy of phase behaviors, from fine-grained to
coarse-grained depending upon the interval sizes used, and there is still future research to be done
to determine how to pick the correct granularity for the target use of the phase analysis.

9.2 Multinomial Clustering

Recently, Sanghai et al. (2005) proposed using a mixture of multinomial models as a clustering
model for phase analysis, as described in Section 8. Their research was a preliminary study; we
have performed a more complete set of experiments comparing multinomial clustering with EM to
thek-means algorithm, as applied to phase analysis (Hamerly et al., 2006).

We found that multinomial clustering does not improve uponk-means clustering in terms of
performance prediction, despite the fact that basic block vectors seem tobe a natural fit to multi-
nomials. We also showed a comparison between different projection methodsin conjunction with

374

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

multinomial clustering, and alternative methods of choosing the sample to simulate from each clus-
ter. Further, we verified Sanghai et al.’s claim that the number of dimensions required to get good
results using multinomial clustering may be much higher than the 15 dimensions we use with k-
means. Following their work, we used up to 100 projected dimensions to find clustering results that
work well for phase analysis with this approach.

We also found that EM clustering is much slower thank-means. The hard assignment ofk-means
enables optimizations like partial distance search described in Section 7.1. But for EM clustering,
its soft assignment requires that we cannot stop short on examining any dimensions, so it cannot
benefit from such optimizations. This together with the increase in number of dimensions required
by multinomials makes multinomial EM clustering much slower thank-means. Even if we use the
same number of dimensions to randomly project to, we still find that EM clusteringof multinomials
is roughly 10 times slower thank-means.

We did find that there are some benefits to using multinomials. One benefit is that multinomial
clustering tends to choose fewer clusters on average (according to a BIC score formulated for multi-
nomial mixtures), resulting in lower simulation times. Another benefit is that the EM algorithm uses
soft assignment, unlike the hard assignment ofk-means. This allows us to derive a metric of clus-
ter “purity”. The idea is that if many vectors have high membership in multiple clusters, then the
clustering is more impure than if each vector (interval) belongs mostly to only oneof the clusters.
This purity score allows us to see if multinomial clustering is a good solution for a particular data
set, and gives us a metric for deciding whether to apply multinomial clustering if the purity score
is high enough, ork-means otherwise. We found that this combined approach provides a solution
which picks fewer simulation points compared with using onlyk-means, and gets lower prediction
errors than using only multinomial clustering.

10. Summary

Understanding the cycle level behavior of a processor running an application is crucial to modern
computer architecture research, and gaining this understanding can be done efficiently by judi-
ciously applying detailed cycle level simulation to only a few simulation points. By targeting only
one or a few carefully chosen samples for each of the small number of behaviors found in real pro-
grams, the cost of simulation can be reduced to a reasonable level while achieving very accurate
performance estimates.

The main idea behind SimPoint is the realization that programs typically only exhibita few
unique behaviors which are interleaved with one another through time. By finding these behaviors
and then determining the relative importance of each one, we can maintain both ahigh level picture
of the program’s execution and at the same time quantify the cycle level interaction between the
application and the architecture. The key to being able to find these phases ina efficient and robust
manner is the development of a metric that can detect the underlying shifts in a program’s execution
that result in the changes in observed behavior. In this paper we have discussed one such method of
quantifying executed code similarity, and use it to find program phases through the application of
unsupervised learning techniques.

The methods described in this paper are distributed as part of SimPoint (Perelman et al., 2003;
Sherwood et al., 2002). SimPoint automates the process of picking simulation points using an off-
line phase classification algorithm based onk-means clustering, which significantly reduces the
amount of simulation time required. Selecting and simulating only a handful ofintelligentlypicked

375

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

sections of the full program provides an accurate picture of the complete execution of a program,
which gives a highly accurate estimate of performance. The SimPoint software can be downloaded
at:

http://www.cse.ucsd.edu/users/calder/simpoint/
For the industry-standard SPEC programs, SimPoint has less than a 6% error rate (2% on av-

erage) for the results in this paper, and is 1,500 times faster on average than performing simulation
for the complete program’s execution. Because of this time savings and accuracy, our approach is
currently used by architecture researchers and industry companies (e.g. Patil et al. (2004) at Intel)
to guide their architecture design exploration.

Acknowledgments

We would like to thank the anonymous reviewers for providing helpful feedback on this paper.
This work was funded in part by NSF grant No. CCF-0342522, NSF grant No. CCF-0311710, a UC
MICRO grant, and a grant from Intel and Microsoft.

References

D. Achlioptas. Database-friendly random projections. InPODS ’01: Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of databasesystems, pages 274–281, New York,
NY, USA, 2001. ACM Press. ISBN 1-58113-361-8.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19:
716–723, 1974.

M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and B. Davies. The fuzzy correlation between
code and performance predictability. InInternational Symposium on Microarchitecture, December 2004.

R. E. Bellman.Adaptive Control Processes. Princeton University Press, 1961.

M. Van Biesbrouck, L. Eeckhout, and B. Calder. Efficient sampling startup for uniprocessor and simultaneous
multithreading simulation. InInternational Conference on High Performance Embedded Architectures and
Compilers, November 2005.

M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix to guide simultaneous multithreading
simulation. InIEEE International Symposium on Performance Analysis of Systems and Software, March
2004.

D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison, June 1997.

D. Cheng, A. Gersho, B. Ramamurthi, and Y. Shoham. Fast search algorithms for vector quantization and
pattern matching.Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 9.11.1–9.11.4, 1984.

S. Dasgupta. Experiments with random projection. InUncertainty in Artificial Intelligence: Proceedings of
the Sixteenth Conference (UAI-2000), pages 143–151, 2000.

S. Dasgupta. How fast isk-means? InCOLT, page 735, 2003.

376

USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

C. Elkan. Using the triangle inequality to acceleratek-means. InICML, pages 147–153, 2003.

F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering algorithms revisited.SIGKDD Explor. Newsl.,
2(1):51–57, 2000.

U. Fayyad, C. Reina, and P. Bradley. Initialization of iterative refinement clustering algorithms. InPro-
ceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD), pages
194–198. AAAI Press, 1998.

T. Gonzalez. Clustering to minimize the maximum intercluster distance.Theoretical Computer Science, 38:
293–306, 1985.

G. Hamerly and C. Elkan. Learning thek in k-means. InAdvances in NIPS, 2003.

G. Hamerly, E. Perelman, and B. Calder. Comparing multinomial andk-means clustering for SimPoint. In
Proceedings of the 2006 IEEE International Symposium on Performance Analysis of Systems and Software,
2006.

D. Hochbaum and D. Shmoys. A best possible heuristic for thek-center problem.Mathematics of Operations
Research, 10(2):180–184, 1985.

P. Indyk, A. Amir, A. Efrat, and H H. Samet. Efficient algorithms and regular data structures for dilation,
location and proximity problems. InProceedings of the Annual Symposium on Foundations of Computer
Science, pages 160–170, 1999.

J. Lau, E. Perelman, and B. Calder. Selecting software phasemarkers with code structure analysis. In
Proceedings of the International Symposium on Code Generation and Optimization, March 2006.

J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for variable length intervals and
hierarchical phase behavior. InIEEE International Symposium on Performance Analysis of Systems and
Software, March 2005a.

J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong correlation between code signatures
and performance. InIEEE International Symposium on Performance Analysis of Systems and Software,
March 2005b.

J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classification. InIEEE International Sympo-
sium on Performance Analysis of Systems and Software, March 2004.

J. Lau, S. Schoenmackers, and B. Calder. Transition phase classification and prediction. In11th International
Symposium on High Performance Computer Architecture, February 2005c.

J. MacQueen. Some methods for classification and analysis ofmultivariate observations. In L. M. LeCam
and J. Neyman, editors,Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297, Berkeley, CA, 1967. University ofCalifornia Press.

J. McNames. Rotated partial distance search for faster vector quantization encoding.IEEE Signal Processing
Letters, 7(9), 2000.

A. Moore. The anchors hierarchy: Using the triangle inequality to survive high-dimensional data. InPro-
ceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages 397–405. AAAI Press,
2000.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing representative portions
of large Intel Itanium programs with dynamic instrumentation. In International Symposium on Microar-
chitecture, December 2004.

377

HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

D. Pelleg and A. Moore.X-means: ExtendingK-means with efficient estimation of the number of clusters.
In Proceedings of the 17th International Conf. on Machine Learning, pages 727–734, 2000.

E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and early simulation points. InInterna-
tional Conference on Parallel Architectures and Compilation Techniques, September 2003.

F. J. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms.Data Mining and
Knowledge Discovery, 3(2):131–169, 1999.

J. Rissanen. Modeling by shortest data description.Automatica, 14:465–471, 1978.

K. Sanghai, T. Su, J. Dy, and D. Kaeli. A multinomial clustering model for fast simulation of computer
architecture designs. InKDD, pages 808–813, 2005.

G. Schwarz. Estimating the dimension of a model.The Annnals of Statistics, 6(2):461–464, 1978.

T. Sherwood and B. Calder. Time varying behavior of programs. Technical Report UCSD-CS99-630, UC
San Diego, August 1999.

T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find periodic behavior and
simulation points in applications. InInternational Conference on Parallel Architectures and Compilation
Techniques, September 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large scale program
behavior. In10th International Conference on Architectural Support for Programming, October 2002.

T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In30th Annual International Symposium
on Computer Architecture, June 2003.

P. Smyth. Clustering using Monte Carlo cross-validation. In Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining, August 1996.

378

Journal of Machine Learning Research 7 (2006) 379–411 Submitted 8/05; Published 2/06

Superior Guarantees for Sequential Prediction
and Lossless Compression via Alphabet Decomposition

Ron Begleiter RONBEG@CS.TECHNION.AC.IL

Ran El-Yaniv RANI@CS.TECHNION.AC.IL
Department of Computer Science
Technion - Israel Institute of Technology
Haifa 32000, Israel

Editor: Dana Ron

Abstract

We present worst case bounds for the learning rate of a known prediction method that is based on
hierarchical applications of binary context tree weighting (CTW) predictors. A heuristic application
of this approach that relies on Huffman’s alphabet decomposition is known to achieve state-of-
the-art performance in prediction and lossless compression benchmarks. We show that our new
bound for this heuristic is tighter than the best known performance guarantees for prediction and
lossless compression algorithms in various settings. Thisresult substantiates the efficiency of this
hierarchical method and provides a compelling explanationfor its practical success. In addition, we
present the results of a few experiments that examine other possibilities for improving the multi-
alphabet prediction performance of CTW-based algorithms.

Keywords: sequential prediction, the context tree weighting method,variable order Markov mod-
els, error bounds

1. Introduction

Sequence prediction and entropy estimation are fundamental tasks in numerous machine learning
and data mining applications. Here we consider a standard discrete sequence prediction setting
where performance is measured via the log-loss (self-information). It is well known that this setting
is intimately related to lossless compression, where in fact high quality predictionis essentially
equivalent to high quality lossless compression.

Despite the major interest in sequence prediction and the existence of a number of universal
prediction algorithms, some fundamental issues related to learning from finite (and small) samples
are still open. One issue that motivated the current research is that the finite-sample behavior of
prediction algorithms is still not sufficiently understood.

Among the numerous compression and prediction algorithms there are very few that offer both
finite sample guarantees and good practical performance. Thecontext tree weighting(CTW) method
of Willems et al. (1995) is a member of this exclusive family of algorithms. TheCTW algorithm is
an “ensemble method,” mixing the predictions of many underlying variable order Markov models
(VMMs), where each such model is constructed using zero-order conditional probability estimators.
The algorithm isuniversalwith respect to the class of bounded-order VMM tree-sources. Moreover,
the algorithm has a finite sample point-wise redundancy bound (for any particular sequence).

c©2006 Ron Begleiter and Ran El-Yaniv.

BEGLEITER AND EL-YANIV

The high practical performance of the originalCTW algorithm is most apparent when applied to
binaryprediction problems, in which case it uses the well-known (binary) KT-estimator (Krichevsky
and Trofimov, 1981). When the algorithm is applied to non-binary prediction/compression problems
(using the multi-alphabet KT-estimator), its empirical performance is mediocre compared to the best
known results (Tjalkens et al., 1997). Nevertheless, a cleveralphabet decompositionheuristic, sug-
gested by Tjalkens et al. (1994) and further developed by Volf (2002), does achieve state-of-the-art
compression and prediction performance on standard benchmarks (see, e.g., Volf, 2002; Sadakane
et al., 2000; Shkarin, 2002; Begleiter et al., 2004). In this approach themulti-alphabet problem
is hierarchically decomposed into a number of binary prediction problems. Weterm the resulting
procedure “theDECO algorithm.” Volf suggested applying theDECO algorithm using Huffman’s
tree as the decomposition structure, where the tree construction is based onletter frequencies. We
are not aware of any previous compelling explanation for the striking empirical success ofDECO.

Our main contribution is a general worst case redundancy bound for algorithm DECO applied
with any alphabet decomposition structure. The bound proves that the algorithm is universalwith
respect to VMMs. A specialization of the bound to the case of Huffman decompositions results in a
tight redundancy bound. To the best of our knowledge, this new boundis the sharpest available for
prediction and lossless compression for sufficiently large alphabets and sequences.

We also present a few empirical results that provide some insight into the following questions:
(1) Can we improve on the Huffman decomposition structure using an optimized decomposition
tree? (2) Can other, perhaps “flat” types of alphabet decomposition schemes outperform the hierar-
chical approach? (3) Can standardCTW multi-alphabet prediction be improved with other types of
(non-KT) zero-order estimators?

Before we start with the technical exposition, we introduce some standard terms and definitions.
Throughout the paper,Σ denotes a finite alphabet withk = |Σ| symbols. Suppose we are given
a sequencexn

1 = x1x2 · · ·xn. Our goal is to generate a probabilistic predictionP̂(xn+1|xn
1) for the

next symbol given the previous symbols. Clearly this is equivalent to beingable to estimate the
probability P̂(xn

1) of any complete sequence, sinceP̂(xn+1|xn
1) = P̂(xn+1

1)/P̂(xn
1) (provided that the

marginality condition∑σ P̂(xn
1σ) = P̂(xn

1) holds).
We consider a setting where the performance of the prediction algorithm is measured with re-

spect to the best predictor in some reference, which we call here acomparison class. In our case
the comparison class is the set of all variable order Markov models (see details below). LetALG be
a prediction algorithm that assigns a probability estimatePALG(xn

1) for any givenxn
1. The point-

wise redundancyof ALG with respect to the predictorP and the sequencexn
1 is RALG(xn

1,P) =
logP(xn

1)− logPALG(xn
1). The per-symbol point-wise redundancy is1

nRALG(xn
1,P). ALG is called

universalwith respect to a comparison classC , if

lim
n→∞

sup
P∈C

max
xn

1

1
n

RALG(xn
1,P) = 0. (1)

2. Preliminaries

This section presents the relevant technical background for the present work. The contextual back-
ground appears in Section 7. We start by presenting the class oftree sources. We then describe
the CTW algorithm and discuss some of its known properties and performance guarantees. Finally,
we conclude this section with a description of theDECO method for predicting multi-alphabet se-
quences using binaryCTW predictors.

380

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

2.1 Tree Sources

The parametric distribution estimated by theCTW algorithm is the set of depth-bounded tree-
sources. A tree-source is a variable order Markov model (VMM). LetΣ be an alphabet of size
k andD a non-negative integer. AD-bounded tree sourceis any full k-ary tree1 whose height≤ D.
Each leaf of the tree is associated with a probability distribution overΣ. For example, in Figure 1
we depict three tree-sources over a binary alphabet. In this case, the trees are full binary trees. The
single node tree in Figure 1(c) is a zero-order (Bernoulli) source and the other two trees (Figure 1(a)
and (b)) are 2-bounded sources. Another useful way to view a tree-source is as a setS ⊆ Σ≤D of
“suffixes” in which eachs∈ S is a path (of length up toD) froma (unique) leaf to the root. We also
refer toS as the (tree-source)topology. For example,S = {0,01,11} in Figure 1(b). The path from
the middle leaf to the root corresponds to the sequences= 01 and therefore we refer to this leaf
simply ass. For convenience we also refer to an internal node by the (unique) pathfrom that node
to the root. Observe that this path is a suffix of somes∈ S . For example, the right child of the root
in Figure 1(b) is denoted by the suffix1.

The (zero-order) distribution associated with the leafs is denotedzs(σ), ∀σ∈Σ, where∑σ zs(σ)=
1 andzs(·) ≥ 0.

(a) (b) (c)
ε

0

(.5, .5)

0

(.15, .85)

1

1

(.7, .3)

0

(.55, .45)

1

ε

(.25, .75)

0 1

(.35, .65)

0

(.12, .88)

1

ε

(.25, .75)

Figure 1: Three examples forD = 2 bounded tree-sources overΣ = {0,1}. The correspond-
ing suffix-sets areS(a) = {00,10,01,11}, S(b) = {0,01,11}, and S(c) = {ε} (ε is the
empty sequence). The probabilities for generatingx3

1 = 100 given initial context00
areP(a)(100|00) = P(a)(1|00)P(a)(0|01)P(a)(0|10) = 0.5·0.7·0.15,P(b)(100|00) = 0.75·
0.35·0.25, andP(c)(100|00) = 0.75·0.25·0.25.

We denote the set of allD-bounded tree-source topologies (suffix sets) byCD. For example,
C0 = {{ε}} andC1 = {{ε}, {0,1}}, whereε is the empty sequence.

For eachn, a D-bounded tree-source induces a probability distribution over the setΣn of all n-
length sequences. This distribution depends on an initial “context” (or “state”), x0

1−D = x1−D · · ·x0,
which can be any sequence inΣD. The tree-source induced probability of the sequencexn

1 =
x1x2 · · ·xn is, by the chain rule,

PS (xn
1) =

n

∏
t=1

PS (xt |xt−1
t−D), (2)

wherePS (xt |xt−1
t−D) is zs(xt) = PS (xt |s) ands is the (unique) suffix ofxt−1

t−D in S . Clearly, a tree-
source can generate sequences: theith symbol is randomly drawn using the conditional distribution

1. A full k-ary tree is a tree in which each node has exactly zero ork children.

381

BEGLEITER AND EL-YANIV

PS (·|xi−1
i−D). Let SUBs(xn

1) be theorderednon-contiguous sub-sequence of symbols appearing after
the contexts in xn

1. For example, ifx8
1 = 01100101, ands= 0, then,SUBs(x8

1) = 1011. Let sbe any
suffix in S andym

1 = SUBs(xn
1). For everyxn

1 6= ε we definezs(xn
1) = ∏m

i=1zs(yi) and for the empty
sequencezs(ε) = 1. Thus, we can rewrite Equation (2) as

PS (xn
1) = ∏

s∈S

zs(xn
1). (3)

2.2 The Context-Tree Weighting Method

Here we describe theCTW prediction algorithm (Willems et al., 1995), originally presented as a
lossless compression algorithm.2 The goal of theCTW algorithm is to predict a sequence (nearly)
as good as the the best tree-source. This goal can be divided into two sub-problems. The first is to
guess the topology of the best tree-source, and the second is to estimate thedistributions associated
with its leaves.

Suppose, first, that the best tree topology (i.e., the suffix-setS) is known. A good solution
assigns to eachs∈ S a zero-order estimator̂zs that estimates the true probability distributionzs

associated withs. This can be done using standard statistical methods; that is, by considering all
occurrences ofs in xn

1 and constructing ˆzs via counting and smoothing. We currently consider ˆzs as
a generic estimator and discuss specific implementations later on.

In practice, however, the best tree-source’s topology is unknown. Instead of guessing this topol-
ogy, CTW considers all possibleD-bounded topologiesS (each is a subtree of the perfectk-ary
tree), and for eachS it constructs a predictor by estimating its zero-order leaf probabilities.CTW

then takes a weighted mixture of all these predictors, corresponding to all topologies. Clearly, there
are exponentially manyD-bounded topologies. The beauty of theCTW algorithm is the efficient
computation of this mixture of exponential size.

In the following description of theCTW algorithm, the output of the algorithm is a probability
PCTW(xn

1) for the entire sequencexn
1. Observe that this is equivalent to estimating the next-symbol

probabilities because
PCTW(σ|xn

1) = PCTW(xn
1σ)/PCTW(xn

1) (4)

for eachσ∈Σ (provided that these probabilities can be marginalized, i.e.,∑σ PCTW(xn
1σ)= PCTW(xn

1)).
We require the following definitions. Letxn

1 be any sequence (inΣn) and fix a boundD and
an initial contextx0

1−D. Let s be any context inS , andym
1 = SUBs(xn

1). Thesequentialzero-order
estimation forxn

1 is, by the chain-rule,

ẑs(xn
1) =

m

∏
i=1

ẑ(yi |yi−1
1), (5)

wherey0
1 = ε and ẑ(yi |yi−1

1) is a zero-order probability estimate based on the symbol counts in
yi−1

1 . The product of such predictions is ˆzs(xn
1), and hence, we refer to it as a sequential zero-order

estimate.
We now describe the mainCTW idea via a simple example and then provide a pseudo-code for

the generalCTW algorithm. Consider a binary alphabet and the caseD = 1. Here,CTW works on
the perfect binary tree of height one and therefore should mix the predictions associated with two

2. As mentioned above, any lossless compression algorithm can be translated into a sequence prediction algorithm and
vice versa (see, e.g., Merhav and Feder, 1998).

382

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

topologies:S0 = {ε} (whereε is the empty sequence), andS1 = {0,1}. Note thatS0 corresponds
to the zero-order topology as in Figure 1(c). The algorithm takes a mixture of the zero-order esti-
mateẑε(xn

1) and the one-order estimate. The latter is exactly ˆz0(xn
1) · ẑ1(xn

1) because ˆz0 andẑ1 are
independent. Thus, the final estimate is

PCTW(xn
1) =

1
2
ẑε(xn

1)+
1
2

(ẑ0(xn
1) · ẑ1(xn

1)) .

For larger trees (D > 1), CTW uses the same idea, but now, instead of taking zero-order estimates
for the root’s children, theCTW algorithm recursively computes their estimates. The pseudo-code
of the CTW recursive mixture computation appears in Algorithm 1. We later show in Lemma 3
that this code calculates the mixture of allD-bounded tree-source predictions weighted by their
complexities, which are defined as follows.

Algorithm 1 The context-tree weighting algorithm

/* This code calculates theCTW probability for the (whole) sequencexn
1, PCTW(xn

1|x0
1−D). The input argu-

ments include the sequencexn
1, an initial contextx0

1−D (that determines the suffixes for predicting the first
symbols), a bound D on the order, and an implementation for the sequential zero-order estimatorsẑs(·).
The code uses themix procedure (see below).*/

CTW(xn
1, x0

1−D, D, ẑs(·)) {
for everys∈ Σ≤D do

calculate and store ˆzs(xn
1) as given in Equation (5).

end for
return PCTW(xn

1) = mix(ε,xn
1,x

0
1−D).

}

/* This procedure mixes the predictions of all continuations s′s of s∈ Σ≤D, such that s′s is also inΣ≤D.
Note that the context of the first few symbols is determined bythe initial contextx0

1−D. */
mix (s,xn

1,x
0
1−D) {

if |s| = D then
return ẑs(xn

1).
else

return 1
2 ẑs(xn

1)+ 1
2 ∏σ∈Σ mix(σs,xn

1,x
0
1−D).

end if
}

Definition 1 Let TS denote the tree associated with the suffix setS . The complexityof TS is defined
to be

|TS | = |{s∈ S : |s| < D}|+ |S |−1
k−1

.

Recall that the number of leaves in TS is exactly|S | and there are|S |−1
k−1 internal nodes in any full

k-ary tree. Therefore,|TS | is the number of nodes in TS minus the number of leaves s∈ S with
maximal depth D.

For example, letT(a) be the tree of Figure 1(a) (resp. for(b) and(c)); |T(a)| = 0+ 3 = 3; |T(b)| =
1+2 = 3 (= |T(a)); |T(c)| = 1+0 = 1.

383

BEGLEITER AND EL-YANIV

Observation 2 Let Sσ = {s : sσ ∈ S}. For any D-bounded topologyS , |S | > 1,

|TS | = 1+ ∑
σ∈Σ

|TSσ |.

Note thatSσ is a(D−1)-bounded topology. Note also that the complexity depends on D. Therefore,
for the base case (when|S | = 1), the complexity of TS is zero if D= 0 and one if D≥ 1.

The proof of the following lemma is a straightforward generalization of the onefor binary alphabets
by Willems et al. (1995).

Lemma 3 Let0≤ d ≤ D and s∈ Σd. Then,

mix (s,xn
1,x

0
1−D) = ∑

U∈CD−d

2−|TU | ∏
u∈U

ẑus(xn
1).

Recall thatCm is the set of all m-bounded topologies;mix is defined in Algorithm 1.

Proof By induction onD−d. WhenD−d = 0, CD−d = C0 contains only the single-node topology
U = {ε}. In this case|TU | = 0+ 1−1

k−1 = 0, by Definition 1. Notice that the size|s| = d = D, so
mix(s,xn

1,x
0
1−D) = ẑs(xn

1). We conclude that,

mix(s,xn
1,x

0
1−D) = ẑs(xn

1) = 2−0− 1−1
k−1 ẑs(xn

1) = ∑
U∈C0

2−|TU | ∏
u∈U

ẑus(xn
1).

Assume that the statement holds for some 0≤ D− d− 1 and consider the caseD− d; that
is, |s| = d < D. In this caseU ∈ CD−d. In the following derivations we also refer to alphabet
symbols by their indices,i = 1, . . . ,k (according to some fixed order) or byσi . For example,Ui is
the topology corresponding to the subtree ofTU whose root is defined byσi ; thus,Ui is a D−d
bounded tree-source. We thus have

mix(s,xn
1,x

0
1−D) =

1
2
ẑs(xn

1)+
1
2 ∏

σ∈Σ
mix(σs,xn

1,x
0
1−D) (6)

=
1
2
ẑs(xn

1)+
1
2 ∏

σ∈Σ

{

∑
U∈CD−d

2−|TU | ∏
u∈U

ẑuσs(xn
1)

}

(7)

=
1
2
ẑs(xn

1)+

∑
U1

· · ·∑
Uk

2−(1+∑k
i=1 |TUi |) ∏

u∈U1

ẑuσ1s(xn
1) · · · ∏

u∈Uk

ẑuσks(xn
1) (8)

= ∑
U∈CD−d

2−|TU | ∏
u∈U

ẑus(xn
1), (9)

where step (6) is by the definition ofmix(s,xn
1,x

0
1−D); (7) is by the induction hypothesis; (8) is by

exchanging the product of sums with sums of products; and finally, (9) follows from Observation 2.

The next corollary expresses theCTW prediction as a mixture of allD-bounded tree-sources. The
proof of this corollary directly follows from Lemma 3 and from the definition ofPCTW(xn

1) in Algo-
rithm 1.

384

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

Corollary 4
PCTW(xn

1) = mix (ε,xn
1,x

0
1−D) = ∑

S∈CD

2−|TS |∏
s∈S

ẑs(xn
1). (10)

Remark 5 The number of tree-source topologies inCD is superexponential (recall that eachS ∈ C

is a pruning of the perfect k-ary tree of height D). Thus, for practical reasons, the calculation of
Equation (10) must be efficient. The pseudo-code of theCTW in Algorithm 1 is conceptual rather
than efficient. However, the beauty of theCTW is that it can calculate the tree-source mixture in
linear time with respect to n. For a description of an efficient implementation of theCTW algorithm,
see for example, Sadakane et al. (2000) and Chapter 4.4 of Volf (2002). Our Java implementation
of theCTW algorithm can be found athttp://www.cs.technion.ac.il/˜rani/code/
vmm.

2.3 Analysis of CTW for Multi-Alphabets

The analysis ofCTW for multi-alphabets (multi-CTW) relies upon specific implementations of the
sequential zero-order estimators ˆzs(·). Such estimators are in general counters of past events. How-
ever, these estimators should not neglect unobserved events. In the context of log-loss prediction,
assigning zero probability to these “zero frequency” events is harmful because the log-loss of an
unobserved but possible event is infinite. The problem of assigning probability mass to unobserved
events is also called the “missing-mass problem” (or the “zero frequency problem”).

The originalCTW algorithm applies the well-knownKT estimator (Krichevsky and Trofimov,
1981).

Definition 6 Fix anyxn
1 and let Nσ be the frequency ofσ ∈ Σ in xn

1. TheKT estimator assigns the
following (sequential zero-order) probability to the sequencexn

1,

ẑ KT(xn
1) = ẑ KT(xn−1

1)
Nxn +1/2

∑σ∈Σ Nσ +k/2
, (11)

whereẑ KT(ε) = 1.

Observe that the termP(σ|xn
1) = Nσ+1/2

∑σ∈Σ Nσ+k/2, is anadd-half predictor that belongs to the family of

add-constant predictors.3

TheKT estimator provides a prediction that is uniformly close to the setZ of zero-order distri-
butions overΣ. Each distributionz ∈ Z is a probability vector from(

�
+)k, andz(σ) denotes the

probability ofσ. Thus,z(xn
1) = ∏σ z(σ)Nσ . The next theorem provides a performance guarantee on

the worst-case redundancy of theKT estimator. This guarantee is for a whole sequencexn
1. Notice

that the per-symbol redundancy ofKT diminishes withn at a ratelogn
n . For completeness, the proof

of the following theorem is provided in Appendix A.

Theorem 7 (Krichevsky and Trofimov) LetΣ be any alphabet with|Σ|= k≥ 2. For any sequence
xn

1 ∈ Σn,

RKT(xn
1) = logsup

z∈Z

z(xn
1)− logẑ KT(xn

1) ≤
k−1

2
logn+ logk. (12)

3. Another famous add-constant predictor is the add-one predictor, also calledLaplace’s law of succession(Laplace,
1995).

385

BEGLEITER AND EL-YANIV

Remark 8 Krichevsky and Trofimov (1981) originally definedKT to be a mixture of all zero-order
distributions inZ, weighted by the Dirichlet (1/2) distribution. Thus, this mixture is

ẑ KT(xn
1) =

Z

Z

w(dz)z(xn
1),

where w(dz) is the Dirichlet distribution with parameter1/2 defined by

w(dz) =
1√
k

Γ(k
2)

Γ(1
2)k

k

∏
i=1

z(i)−1/2λ(dz), (13)

Γ(x) =
R�

+ tx−1exp(−t)dt is the gamma function (see, for example, Courant and John, 1989), and
λ(·) is a measure onZ. Shtarkov (1987) was the first to show that this mixture can be calculated
sequentially as in Definition 6.

The upper bound of Theorem 7 on the redundancy of theKT estimator is a key element in
the proof of the following theorem, providing a finite-sample point-wise redundancy bound for the
multi-CTW (see, e.g., Tjalkens et al., 1993; Catoni, 2004).

Theorem 9 (Willems et al.) LetΣ be any alphabet with|Σ|= k≥ 2. For any sequencexn
1 ∈ Σn and

any D-bounded tree-source with a topologyS and distribution PS , the following holds:

RCTW(xn
1,PS) ≤

{

nlogk+ k|S |−1
k−1 , n < |S |;

(k−1)|S |
2 log n

|S | + |S | logk+ k|S |−1
k−1 , n≥ |S |.

Proof

RCTW(xn
1,PS) = logPS (xn

1)− logPCTW(xn
1)

= log
PS (xn

1)

∏s∈S ẑs(xn
1)

︸ ︷︷ ︸

(i)

+ log
∏s∈S ẑs(xn

1)

PCTW(xn
1)

︸ ︷︷ ︸

(ii)

(14)

We now bound the term (14)(i) and define the following auxiliary function:

f (x) =

{

xlogk ,0≤ x < 1;
k−1

2 logx+ logk ,x≥ 1.

386

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

Note that this function is continuous and concave in[0,∞). Let Nσ(s) denote the frequency ofσ in
SUBs(xn

1). Thus,

log
PS (xn

1)

∏s∈S ẑs(xn
1)

= ∑
s∈S

log
zs(xn

1)

ẑs(xn
1)

(15)

≤ ∑
s∈S , s.t.

∑Nσ(s)>0

(

k−1
2

log(∑
σ

Nσ(s))+ logk

)

(16)

= |S |∑
s∈S

1
|S | f (∑

σ
Nσ(s))

≤ |S | f (∑s∈S ∑σ Nσ(s)
|S |) (17)

= |S | f (n
|S |)

=

{

nlogk, n < |S |;
(k−1)|S |

2 log n
|S | + |S | logk, n≥ |S |, (18)

where step (15) follows from an application of Equation (3); step (16) is by the performance guar-
antee for theKT prediction, as given in Theorem 7; and step (17) is by Jensen’s inequality.

We now bound the term (14)(ii)

log
∏s∈S ẑs(xn

1)

PCTW(xn
1)

= log
∏s∈S ẑs(xn

1)

∑S∈CD
2−|TS | ∏s∈S ẑs(xn

1)
(19)

≤ log
∏s∈S ẑs(xn

1)

∑S∈CD
2−

k|S |−1
k−1 ∏s∈S ẑs(xn

1)
(20)

≤ log
∏s∈S ẑs(xn

1)

2−
k|S |−1

k−1 ∏s∈S ẑs(xn
1)

= log2
k|S |−1

k−1

=
k|S |−1

k−1
, (21)

where in step (19) we applied Equation (10) and the justification for (20) is that |{s∈ S : |s| < D}| ≤
|S |. Thus, according to Definition 1,|TS | ≤ |S |+ |S |−1

k−1 = k|S |−1
k−1 . We complete the proof by summing

up (18) and (21).

Remark 10 TheCTW bound used by Catoni (2004) is somewhat tighter than the bound of Theo-
rem 9 but contains some implicit terms.

Remark 11 Willems (1998) provided extensions for theCTW algorithm that eliminate its depen-
dency on the maximal bound D and the initial contextx0

1−D. For the extended algorithm and binary
prediction problems, Willems derived a point-wise redundancy bound of

|S |
2

log
n−∆s(xn

1)

|S | +2|S |−1+∆s(xn
1),

387

BEGLEITER AND EL-YANIV

where∆s(xn
1)≤ D denotes the number of symbols in the prefix ofxn

1 that do not appear after a suffix
s∈ S .

Remark 12 Interestingly, it can be shown that theCTW algorithm is an instance of the well-known
genericexpert-advicealgorithm of Vovk (1990). This observation is new, to the best of our knowl-
edge, although there are citations that connect theCTW algorithm with the expert-advice scheme
(see, e.g., Merhav and Feder, 1998; Helmbold and Schapire, 1997).

It can be shown that these two algorithms are identical when Vovk’s algorithm is applied with
the log-loss (see, e.g., Haussler et al., 1998, example 3.12). In this case, the set of experts in
Vovk’s algorithm consists of all D-bounded tree-sources,CD; the initial weight of each expert,S ,
corresponds to its complexity|TS |; and the weight of each expert at round t equals2−|TS |PS (xt−1

1).
Note, however, that the power of theCTW method is in its efficiency in mixing exponentially many
sources (or experts). Vovk’s algorithm is not concerned with how to compute this average.

2.4 Hierarchical CTW Decompositions

TheCTW algorithm is known to achieve excellent empirical performance inbinaryprediction prob-
lems. However, when applyingCTW on sequences over larger alphabets, the resulting performance
falls short of the best known (Tjalkens et al., 1997). This fact motivatesdifferent approaches for
applying theCTW algorithm on multi-alphabet sequences. Volf targeted this issue in his Ph.D. the-
sis (2002). Following Tjalkens et al. (1994), who proposed a rudimentary alphabet decomposition
approach, he studied a solution to the multi-alphabet prediction problem that isbased on a tree hi-
erarchy of binary problems. Each of these binary problems is solved using a slight variation of the
binaryCTW algorithm. We now describe the resulting ‘decomposedCTW’ approach, which we term
for short the “DECO” algorithm.

Consider a full binarydecomposition tree Twith k = |Σ| leaves, where each leaf is uniquely
associated with a symbol inΣ. Each internal nodev of T corresponds to the binary problem of
predicting whether the next symbol is a leaf onv’s left subtree or a leaf onv’s right subtree. For ex-
ample, forΣ = {a,b,c,d,r}, Figure 2 depicts a decomposition treeT such that its root corresponds
to the problem of predicting whether the next symbol isa or one of the symbols in{b,c,d,r}. The
idea is to learn a binary predictor that is based on theCTW algorithm, for each internal node.

Let v be any internal node ofT and letL(v) (resp.,R(v)) be the left (resp., right) child ofv. Also,
let Σv be the set of leaves (symbols) in the sub-tree rooted byv. We denote byCTWv any perfect
k-ary tree that provides binary predictions over the binary alphabet{0v,1v}. The supersymbol
0v (resp., 1v) representsany of the symbols inΣL(v) (resp.,ΣR(v)). While CTWv generates binary
predictions (for its supersymbols), it still depends on a suffix set over the entirek-ary alphabetΣ.
Thus, internal nodev yields the probabilityPCTWv(σsuper|s), whereσsuper ∈ {0v,1v} ands∈ S ⊆
Σ≤D. For example, in Figure 2(b) we depictCTW3. Observe that ˆzs estimates a binary distribution
that is based on the counts appearing in the table of Figure 2(b).

Let x be any sequence andσ ∈ Σ. Algorithm DECO generates the multi-alphabet prediction
PDECO(σ|x) by multiplying the binary predictions of allCTWv along the path from the root ofT to
the leafσ. Hence,PDECO(σ|x) = ∏v, s.t.,σ∈Σv

PCTWv(σ|x), wherePCTWv(σ|x) is the binary prediction
of the appropriate supersymbol (either 0v or 1v).

388

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

(a)

ctw1

right

ctw2

ctw3

ctw4

c

d

r

b

a
left

(b)

CTW3 (for x = rcdr)
s N{c,d}(s) N{r}(s)

ε 1 1
c 1 0
d 0 1
r 0 0
rc 1 0
cd 0 1
cc 0 0
...

...
...

rr 0 0

c

c
d

r

d
c

d

r

r

c
d

r

Figure 2: ADECO predictor corresponding to the sequenceabracadabra. (a) depicts the decom-
position treeT. Each internal node inT utilizes aCTW predictor to “solve” a binary
problem. In (b) we depictCTW3, a 2-bounded predictor whose binary problem is: “deter-
mine if σ ∈ {c,d} (or σ = r).” (Nσ(s) denotes the frequency ofσ in SUBs(x) and dashed
lines mark tree paths with zero counts).

There are many possibilities for constructing the decomposition treeT.4 A major open problem
is how to identify useful decomposition trees. Intuitively, it appears that placing high frequency
symbols close to the root is a good idea for two reasons: (i) When traversing the tree from the
root to such symbols, the number of visits to other internal nodes is minimized, thus reducing extra
loss; (ii) High frequency symbols appearing closer to the root could be involved in “easier” binary
problems because of the denser statistics we have on them.

Tjalkens et al. (1997) and Volf (2002, Chapter 5) suggested takingT as the Huffman coding tree
computed with respect to the frequency counts of the symbols inxn

1. While intuitively appealing,
there is currently no compelling explanation for this heuristic. In Section 3.1 weprovide a formal
motivation for Huffman decompositions.

4. We can map every decomposition tree with the partition of 1 into sums ofk terms, each of which is a power of 1/2,
where each leafσ at level `σ defines the power(1/2)`σ . (This is possible due to Kraft’s inequality.) Therefore,
the number of such decomposition trees is obtained by multiplyingk! (all permutations ofΣ) with this number of
partitions. The former is known as sequence A002572 in Sloane and Plouffe (1995). For example, fork = 26 we
have 26!·565168= 227927428502001453851738112000000 possible decomposition trees.

389

BEGLEITER AND EL-YANIV

3. Redundancy Bounds For the DECO Algorithm

We start this section with some definitions that formalize the hierarchical alphabet decomposition
approach. We also define a new category of sources called “decomposed sources,” which will
aid in the analysis of algorithmDECO. To this end, we use an equivalence between decomposed
sources and the ordinary tree-sources of Section 2.1. The main result of this section is Theorem 19,
providing a pointwise redundancy bound for theDECOalgorithm. This bound, in particular, implies
a performance guarantee for Huffman decomposition trees, which is given in Corollary 23.

Let Σ be a multi-alphabet withk symbols and fix some order boundD and initial contextx0
1−D.

We refer to a decomposition-tree (see Section 2.4) simply as atreeand to an ordinary tree source as
amulti-source, denoted byM = (S ,PS).

Definition 13 (Decomposed Source)A (D-bounded) decomposed sourceT overΣ is a pair

T = (T, {M1, M2, · · · , Mk−1}) ,

where T is a (decomposition) tree overΣ and for each internal node, v∈ T, there is a matching
source Mv = (Sv, Pv) whose suffix set,Sv, contains all paths of some full k-ary tree (of maximal
height D). Additionally, for every s∈ Sv, Pv(·|s) is abinarydistribution over{0v,1v}. Note that Mi is
not a standard multi-source because it predicts binary sequences of supersymbols while depending
on multi-alphabet contexts. Such sources will always be denoted by Mv for some internal node v.
Letx ∈ ΣD be any sequence andσ ∈ Σ. The prediction induced byT is

PT (σ|x) = ∏
v, s.t.,σ∈Σv

Pv(σ|x). (22)

We say that two probabilistic tree-sources overΣ areequivalentif they agree on the probability
of every sequencex ∈ Σ∗. Note that two structurally different tree-sources can be equivalent. A
multi-source isminimal if it has no redundant suffixes. A decomposed source is minimal if all its
Mv models are minimal. The formal definitions follow.

Definition 14 (Minimal Sources) (i) A multi-source M= (S , PS) is minimalif there is no s∈ Σ<D

for which PS (·|σis) = PS (·|σ js) for all σi 6= σ j and bothσis andσ js are in S . (ii) We say that
T = (T, {Mv}) is a minimal decomposed sourceif for all internal nodes v of T , Mv is minimal.

For example, we depict in Figure 3 two equivalent multi-sources. The multi-source in Figure 3 (a)
is a minimal multi-source while the multi-source in Figure 3 (b) is not minimal.

There is a simple procedure for transforming a non-minimal source into its equivalent minimal
form: Replace each redundant suffix,σs, with its suffixs. That is, trim all children ofs and assign
PS (·|s) = PS (·|σs) for someσ.

The following two lemmas facilitate a “translation” between decomposed and multi sources.

Lemma 15 For every multi-source M and tree T there exists a minimal decomposed source T =
(T,{Mv}) such that M andT are equivalent.

Proof Let M = (S , P) be aD-bounded multi-source and letT be a tree. We start with the definition
of the modelsMv = (Sv,Pv) and set the suffix setSv = S , for every internal nodev. Let PS (0v|s) =

390

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

(a)

(.5, .1, .4)

a

(.3, .3, .4)

b

(.9, .1, 0)

c

(b)

a

(.5, .1, .4)

a

(.5, .1, .4)

b

(.5, .1, .4)

c

(.3, .3, .4)

b

(.9, .1, 0)

c

Figure 3: An example of two equivalent multi-sources. Both sources generate the same probability
to every sequence of length larger than two. Take for examplex = aaba with initial
contextba. Both sources will induce the following prediction:P(aaba|ba) = 0.5 ·0.5 ·
0.1·0.3= 0.0075. Observe that the source in (a) is minimal while the other source is not.

∑σ∈0v
PS (σ|s) for any (internal node)v ands∈ Sv(= S). Similarly, PS (1v|s) = ∑σ∈1v

PS (σ|s). Let
parent(v) denote the parent of nodev. For every internal nodev ands∈ Sv we define

Pv(0v|s) = PS (0v|s)/Pparent(v)(0v∪1v|s),

and similarly forPv(1v|s). For the base case (i.e., the root) we do not divide by the denominator.
Clearly, Pv(·|s) is a valid distribution and the resulting structureT = (T, {Mv}) is a decomposed
source.

We shall now prove thatT andM are equivalent. Recall thatS = Sv for every internal nodev.
Let v (6= root) be any internal node inT andu = parent(v). Assume, without loss of generality,
that 0v ⊂ 1u, and therefore, 0v∪1v = 1u. Note that, for everys∈ S ,

Pu(1u|s)Pv(0v|s) = Pu(1u|s)(PS (0v|s)/Pu(0v∪1v|s)) = PS (0v|s).

Therefore,PT (σ|s) of Equation (22) is a telescopic product; hence, for everyσ ∈ Σ and s∈ S ,
PT (σ|s) = PS (σ|s). This proves thatM andT are equivalent. Finally, for minimality, we replace
everySv with its minimal source.

Lemma 16 For every decomposed sourceT there exists a minimal multi-source M that is equiva-
lent toT .

Proof Let T = (T, {Mv = {Sv,Pv}}) be a decomposed source. We provide the following construc-
tive scheme for building the equivalent multi-source,M = (S , PS). Start withM = Mroot (the model
corresponding to the root ofT). We traverse the internal vertices ofT (minus the root) such that
parent nodes are visited before their descendants (i.e., using preorder). We start with one of the
root’s children and for each internal node inT we do the following. For each (internal node)v∈ T
and for everysv ∈ Sv, exactly one of the following three cases holds (because bothSv andS form a
full k-ary tree): (a)sv = s∈ S ; or (b)∃s∈ S such thats is a suffix ofsv; or (c)∃s∈ S such thatsv is
a suffix ofs. We treat these cases as follows. For the first case, we refine the support set ofPS (·|s)

391

BEGLEITER AND EL-YANIV

by replacing the supersymbol corresponding to 0v∪1v with the two (super) symbols 0v and 1v, and
define,

PS (0v|s) = PS (0v∪1v|s) ·Pv(0v|s);
PS (1v|s) = PS (0v∪1v|s) ·Pv(1v|s). (23)

Note thatPS (0v∪1v|s) has been already assigned (due to the preorder node traversal). Cases (b) and
(c) are treated in exactly the same manner. In case (b) also replaceswith its extensionsv.

We should now prove that the resultingM = (S , PS) is a multi-source and thatM is equivalent
to T . Both proofs are by induction on|Σ|= k. Fork = 2, T consists only ofMroot, which is a binary
tree source. Hence, obviously,M = Mroot is a tree source equivalent toT . Assume the statement
holds fork−1≥ 2 and examine|Σ|= k. Letv∈T be the last visited node in the constructive scheme.
Clearly, by the preorder traversal, the children ofv are both leaves (both 0v and 1v are singletons).
Merge the two symbols inΣv ⊆ Σ into some supersymbolσv and considerT ′ = (T ′,{Mv′}), which
is the decomposed source induced by this replacement. The number of leaves of T ′, which can
be denotedΣ′ = Σ \Σv∪{σv}, is equal tok−1. Thus, by the inductive hypothesis, we construct
M′ = {S ′,PS ′}, a multi-source that is equivalent toT ′. We now apply the constructive step onM′

andv, resulting withM = (S , PS). Case (b) of the constructive scheme is the only place that we
changeS ′ (to retrieveS). S ′ is a tree source topology by the induction hypothesis; so isSv and
clearly, the treatment of case (b) induces a valid tree-source topology (that corresponds to a full
k-ary tree). Therefore,S is a tree-source topology. It is also easy to see that the refinement of the
support set ofS ′, as in (23), induces a valid distribution overΣ. We conclude thatM = (S , PS) is a
multi-source overΣ.

We now turn to prove the equivalence. For everys∈ S and any symbolσ ∈ Σ\Σv, we have by
Equation (22) thatPT (σ|s) = PT ′(σ|s), and by the induction hypothesis,PT ′(σ|s) = PS ′(σ|s). Note
that, by the construction, everys′ ∈ S ′ is asuffixof somes∈ S . Therefore, for symbolsσ ∈ Σ\Σv,
PS ′(σ|s′) = PS ′(σ|s) = PS (σ|s) (wheres′ is the suffix ofs). Now for symbolsσ ∈ Σv, recall that
|Σv| = 2 and therefore, 0v represents some (ordinary) symbolσ ∈ Σ (resp., 1v). Thus,

PS (σ|s) = PS ′(σv|s)Pv(σ|s) (24)

= PT ′(σv|s)Pv(σ|s) (25)

=

(

∏
u, s.t.,u∈T ′∧σ∈Σu

Pu(σ|s)
)

Pv(σ|s) (26)

= ∏
u, s.t.,u∈T∧σ∈Σu

Pu(σ|s) (27)

= PT (σ|s),

where (24) is by the construction (23) withσ ∈ {0v,1v}; (25) is by the induction hypothesis; (26)
and (27) are by Equation (22). This proves thatM is equivalent toT . Finally, for satisfying the
minimality of M, we take its equivalent minimal multi-source.

Remark 17 It can be shown that a minimal decomposed source (resp., multi-source) is unique.
Hence, Lemmas 15 and 16 imply that, for a given tree T , there is a one-to-one mapping between the
minimal decomposed sources and multi-sources.

392

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

Consider algorithmDECO applied with a treeTDECO. The redundancy of theDECO algorithm on
a sequencexn

1, with respect to any decomposed sourceT = (T,{Mv}), is

RDECO(xn
1,T) = logPT (xn

1)− logPDECO(xn
1).

We do not know how to express this redundancy directly in terms of the unknown sourceT . How-
ever, we can express it in terms of an equivalent decomposed sourceT ′ that has the same tree as in
the algorithm. This “translation” is done using an equivalent multi-source mediator that can be con-
structed according to Lemmas 15 and 16. To facilitate this discussion, we define, for a decomposed
sourceT = (T,{Mv}), its T ′-equivalentsource to be any equivalent decomposition source with tree
T ′. By Lemmas 15 and 16 this source exists.

Corollary 18 For any decomposed sourceT = (T,{Mv}) and a tree T′ there exists a T′-equivalent
sourceT ′ = (T ′,{M′

i}).

Theorem 19 Let TDECO be any tree andxn
1 a sequence. For every internal node v∈ TDECO, denote

by CTWv the correspondingCTW predictor of theDECO algorithm applied with TDECO. Let T =
(T,{Mv}) be any decomposed source. Then, RDECO(xn

1,PT) ≤ ∑k−1
i=1 Ri(xn

1), where i is an internal-
node in TDECO, and

Ri(xn
1) =

|Si |
2 log ni

|Si | + |Si |+ k|Si |−1
k−1 ,ni ≥ |Si |;

ni +
k|Si |−1

k−1 ,0 < ni < |Si |;
0 ,ni = 0.

(28)

Si is the suffix set of the ith (internal) node of the T′-equivalent source ofT , and ni is the number of
times this node is visited when predictingxn

1.

Proof Let T ′ = (TDECO,{Mv′}) be theTDECO-equivalent decomposed source ofT . Fix any order on
the internal nodes ofTDECO. We will refer to internal nodes both by their order’s index and by the
notationv. By the chain-rule,Pv(xn

1) = ∏xt∈Σv
Pv(xt |xt−1

1−D), wherePv(xt |xt−1
1−D) = Pv(xt |s) ands∈ Sv

is a suffix ofxt−1
1−D. Thus,

PT (xn
1) = PT ′(xn

1) (29)

=
n

∏
t=1

PT ′(xt |xt−1
1−D)

=
n

∏
t=1

∏
v∈TDECO, s.t.,xt∈Σv

Pv(xt |xt−1
1−D)

= ∏
v∈TDECO

∏
xt∈Σv

Pv(xt |xt−1
1−D) = ∏

v∈TDECO

Pv(xn
1), (30)

where (29) follows from by Corollary 18.

393

BEGLEITER AND EL-YANIV

We show thatRDECO(xn
1,PT) ≤ ∑k−1

i=1 Ri(xn
1).

RDECO(xn
1,PT) = logPT (xn

1)− logPDECO(xn
1) (31)

= logPT ′(xn
1)− logPDECO(xn

1) (32)

=
k−1

∑
j=1

logPj(xn
1)−

k−1

∑
i=1

logPCTWi (x
n
1) (33)

=
k−1

∑
i=1

(logPi(xn
1)− logPCTWi (x

n
1)) (34)

≤
k−1

∑
i=1

Ri(xn
1),

where (31) follows from Corollary 18; in Equations (32) and (33) the probabilitiesPj andPi refer to
internal nodes ofT ′; in (32) we used Equation (30); and finally, equality (34) directly follows from
the proof of Theorem 9. In that proof, we applied the bound (18) for the term (14i) with k = 2,
because the zero-order predictors,zs(·) , of CTWv provide binary predictions. The bound on the
term (14ii) remains as is becauseCTWv uses ak-ary tree.

The precise values of the model orders|Si | in the above upper bound are unknown since the
decomposed source is unknown. Nevertheless, for eachi, |Si | ≤ kD. It follows that anyDECO

scheme is universal with respect to the class ofD-bounded (multi) tree-sources. Specifically, given
any multi-source, consider itsTDECO-equivalent decomposed sourceT . For a sequencexn

1, by Theo-
rem 19 the per-symbol redundancy is1

nRDECO(xn
1,PT) ≤ 1

n ∑k−1
i=1 Ri(xn

1), which vanishes withn since
ni ≤ n for every internal-nodei.

Remark 20 The dependency of theDECOalgorithm on the maximal bound D and the initial context
x0

1−D can be eliminated by using the extensions for theCTW algorithm suggested by Willems (1998).
Recall that Willems provided a point-wise redundancy bound for this case (see Remark 11). Thus,
we can straightforwardly use this result to derive a corresponding boundfor the DECO algorithm
(the details are omitted).

3.1 Huffman Decompositions

The general bound of Theorem 19 holds for any decomposition tree. However, it is expected that
some trees will result in a tighter bound. Therefore, it is desirable to optimize the bound over all
trees. Unfortunately, the sizes|Si | are unknown. Even if the sizes|Si | were known, it is an NP-hard
problem even to decide on the optimal partition corresponding to the root. Thishardness result can
be obtained by a reduction from MAX-CUT (see, e.g., Papadimitriou, 1994,Chapter 9.3). Hence,
we can only hope to approximate the optimal tree.

However, if we replace each|Si | value with its maximal valuekD, we are able to show that the
bound is optimized when the decomposition tree is the Huffman decoding tree (see, e.g., Cover and
Thomas, 1991, Chapter 5.6) of the sequencexn

1.
For any decomposition treeT and a sequencexn

1, let ni be the number of times that the internal
nodei ∈ T is visited when predictingxn

1 using theDECO algorithm. These are precisely theni used
in Theorem 19, Equation (28). We call theseni “the counters ofT”.

394

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

Lemma 21 Let xn
1 be a sequence and T a decomposition tree constructed using Huffman’s proce-

dure, which is based on the empirical distributionP̂(σ) = Nσ/n. Let{ni} be the counters of T .
Then,∑k−1

i=1 ni and∏k−1
i=1 ni are both minimal with respect to any other decomposition tree.

Proof Any treeT induces the following prefix-code overΣ. The codeword of a symbolσ ∈ Σ is
the path from the root ofT to the leafσ. The length of this code for someT, with respect toxn

1, is
`(xn

1) = ∑n
t=1`(xt), where`(xt) is the codeword length of the symbolxt . It is not hard to see that

`(xn
1) = ∑

σ
Nσ · `(σ) =

k−1

∑
i=1

ni . (35)

If T is constructed using Huffman’s algorithm, the average code length,1
n ∑σ Nσ · `(σ), is the

smallest possible. Therefore,T minimizes1
n ∑k−1

i=1 ni .

To prove that Huffman’s tree also minimizes∏k−1
i=1 ni , we define the following lexicographic

order on the set of inner nodes of any tree. Given a tree, we letnv be the counter corresponding to
inner nodev. We can order the inner nodes, first in ascending order of their counters nv, and then
(among nodes with equal counters), in ascending order of the heights ofthe sub-trees they root. Let
T be a Huffman tree, andT ′ be any other tree. Let{nv} be the counters ofT and let{nv′} be the
counters ofT ′. We already know that∑vnv ≤∑v′ nv′ . We can order (separately) both sets of counters
according to the above lexicographic order such thatnv1 ≤ ·· · ≤ nvk−1 (and similarly, forv′i). We
prove, by induction onk, thatnvi ≤ nv′i

, for i = 1, . . . ,k−1. Fork = 2 the statement trivially holds.
Assume that fori = 1, . . . ,k−1, nvi ≤ nv′i

. We examine now the case wherei = 1, . . . ,k. According
to the construction scheme of the Huffman tree (see, Cover and Thomas, 1991, Chapter 5.6), we
have thatnv1 ≤ nv′1

. Note that the children ofv1 andv′1 are all leaves. Otherwise, the non-leaf child
must have the same counter as its parent and is rooting a sub-tree with smaller height. Therefore, by
our lexicographic order, the counter of this child must appear before thecounter of its parent, which
is a contradiction.

Replacev1 (resp.,v′1) with a leaf. Note that every nodev (resp.,v′) in the resulting trees keeps
its original counternv (resp.,nv′). Hence, nodes can change their order only with nodes of equal
counter. Thus, by applying the inductive hypothesis we concluded thatnvi ≤ nv′i

for i = 1, . . . ,k.

Remark 22 After establishing Lemma 21, we found that Glassey and Karp (1976) showed that if
f (·) is an arbitrary concave function, then the Huffman tree minimizes∑k−1

i=1 f (ni). This general
result clearly implies Lemma 21.

From Lemma 21 it follows that the tree constructed by Huffman’s algorithm minimizes any
linear function of either∑i ni or ∑i logni , which proves, using Theorem 19, the following corollary.

Corollary 23 Let R̄i be the Ri of Equation (28) with every|Si | replaced by its maximal value, kD.
Then, RDECO(xn

1,PT) ≤ ∑i R̄i(xn
1) and the Huffman coding tree minimizes this bound. The resulting

bound is given in Corollary 25.

395

BEGLEITER AND EL-YANIV

4. Mind the Gap

Here we compare our redundancy (upper) bound forDECO and the known bound for multi-CTW.
Relying on Corollary 23, we focus on the case whereDECO uses the Huffman tree.

A clear advantage of theDECO algorithm is that it “activates” only internal node (binary) pre-
dictors corresponding to observed symbols. This can be seen by the bound of Theorem 19, which
decreases with the number of unobserved symbols. Since the multi-CTW bound is insensitive to al-
phabet sparsity, this suggests thatDECO will outperform the multi-CTW when predicting sequences
in which alphabet symbols are sparse.

In this section we prove that the redundancy bound ofDECO is strictly better than the corre-
sponding multi-CTW bound, for any sufficiently long sequence. For this purpose, we examine the
difference between the two bounds using a worst-case expression of the DECO bound.

Let Σ be an alphabet with|Σ| = k andxn
1 be a sequence overΣ. Fix some orderD and letS be

the topology corresponding to theD-bounded tree-source that maximizes the probability ofxn
1 over

CD. Denote byR̄CTW the multi-CTW redundancy bound (see Theorem 9),

R̄CTW(xn
1) =

(k−1)|S |
2

log
n
|S | + |S | logk+

k|S |−1
k−1

. (36)

Similarly, letR̄HUFF denote the redundancy ofDECO applied with a Huffman-tree (see Theorem 19),

R̄HUFF(xn
1) =

k−1

∑
i=1

(
Ψ
2

log
ni

Ψ
+Ψ+

kΨ−1
k−1

)

, (37)

whereΨ is an upper-bound on the model-sizes|Si | (see Equation 28). We would like to bound
below the gapR̄CTW − R̄HUFF between these bounds.

The next lemma and corollary provide a worst case upper bound forR̄HUFF.

Lemma 24 Let xn
1 be a sequence overΣ. Let T be the corresponding Huffman decomposition tree

and{ni}k−1
i=1 its internal node counters. Then,

k−1

∑
i=1

logni < (k−1) · (logn+ log(1+ logk)− log(k−1)) (38)

Proof Recall that for every symbolσ ∈ Σ, Nσ denote the number of occurrences ofσ in xn
1 and`(σ)

denotes the length of the path from the root ofT to the leafσ. Denote byĤ the empirical entropy,
Ĥ = −∑σ∈Σ

Nσ
n log Nσ

n .

k−1

∑
i=1

1
k−1

logni ≤ log

(
k−1

∑
i=1

1
k−1

logni

)

(39)

= log

(
k−1

∑
i=1

logni

)

− log(k−1)

= log

(

∑
σ∈Σ

Nσ`(σ)

)

− log(k−1) (40)

< log
(
n· (1+ Ĥ)

)
− log(k−1) (41)

≤ log(n· (1+ logk))− log(k−1) (42)

= logn+ log(1+ logk)− log(k−1). (43)

396

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

In (39) we used Jensen’s inequality; (40) is an application of Equation (35); T yields a Huffman
code with an average code length of∑σ∈Σ

Nσ
n `(σ) < 1+ Ĥ (see, e.g., Cover and Thomas, 1991,

Section 5.4 and 5.8), which implies (41); finally, (42) follows from the fact that Ĥ ≤ logk (see, e.g.,
Cover and Thomas, 1991, Theorem 2.6.4). We conclude by multiplying both sides byk−1.

Corollary 25

R̄HUFF(xn
1) <

(k−1)Ψ
2

(

log
n
Ψ

+ log(1+ logk)− log(k−1)+2+
2k

k−1

)

.

Proof

R̄HUFF(xn
1) =

k−1

∑
i=1

(
Ψ
2

log
ni

Ψ
+Ψ+

kΨ−1
k−1

)

=
k−1

∑
i=1

(
Ψ
2

logni

)

+
k−1

∑
i=1

(

−Ψ
2

log(Ψ)+Ψ+
kΨ−1
k−1

)

=
Ψ
2

k−1

∑
i=1

(logni)+(k−1)

(

−Ψ
2

log(Ψ)+Ψ+
kΨ−1
k−1

)

<
(k−1)Ψ

2
(logn+ log(1+ logk)− log(k−1))+

(k−1)

(

−Ψ
2

log(Ψ)+Ψ+
kΨ−1
k−1

)

(44)

=
(k−1)Ψ

2

(

log
n
Ψ

+ log(1+ logk)− log(k−1)
)

+(k−1)

(

Ψ+
kΨ−1
k−1

)

<
(k−1)Ψ

2

(

log
n
Ψ

+ log(1+ logk)− log(k−1)+2+
2k

k−1

)

. (45)

Here (44) follows by application of (38) and we obtained (45) usingkΨ−1
k−1 < kΨ

k−1.

The next theorem characterizes cases where theDECO algorithm has a strictly smaller redun-
dancy bound than the multi-CTW bound.

Theorem 26 Let Σ be an alphabet with|Σ| = k ≥ 118andxn
1 be a sequence overΣ generated by

the (unknown) D-bounded multi-sourceM = (S ,PS). Then,R̄CTW(xn
1) > R̄HUFF(xn

1).

Proof We take the upper boundΨ = |S |. By the proof of Lemma 15, when translatingM into its
equivalent decomposed source, the internal node topologies are firstinitiated withS and then may

397

BEGLEITER AND EL-YANIV

be pruned to achieve minimality. Hence,|S | is an upper bound on the sizes|Si |. Thus, we have

R̄CTW(xn
1)− R̄HUFF(xn

1) =
(k−1)|S |

2
log

n
|S | + |S | logk+

k|S |−1
k−1

−

k−1

∑
i=1

(|S |
2

log
ni

|S | + |S |+ k|S |−1
k−1

)

>
(k−1)|S |

2
log

n
|S | + |S | logk+

k|S |−1
k−1

− (k−1)|S |
2

×
(

log
n
|S | + log(1+ logk)− log(k−1)+2+

2k
k−1

)

(46)

= |S | logk+
k|S |−1

k−1
−

(k−1)|S |
2

(

log(1+ logk)− log(k−1)+2+
2k

k−1

)

, (47)

where (46) is by Corollary 25. Using straightforward analysis it is not hard to show that (47) grows
with k and is positive fork≥ 118. This completes the proof.

The gap, between theCTW andDECO bounds, shown in Theorem 26 is relevant when the inter-
nal node redundancies ofDECO areRi = |Si |

2 log ni
|Si | + |Si |+ k|Si |−1

k−1 . By a simple analysis of Equa-

tion (28) using the functionf (x) = x
2 log n

x + x+ kx−1
k−1 , we can show that the gap is positive when

ni ≥ max{0.17·Ψ,Si}.
We conclude that the redundancy bound ofDECO algorithm converges faster than the bound of

the CTW algorithm for alphabet of sizek ≥ 118. Currently, theCTW algorithm is known to have
the best convergence rate (see Table 5). Therefore, the current bound is the tightest one known for
prediction (and lossless compression) in realistic settings.

Remark 27 The result of Theorem 26 is obtained using a worst-case analysis for theDECO re-
dundancy. This analysis considered a sequence that contains all alphabet symbols; each symbol
appears sufficiently many times. However, in many practical applications(such as predictions of
ASCII sequences) most of the symbols are expected to have small frequencies (e.g., by Zipf ’s Law).
In this case, theDECO redundancy is even smaller than the worst case bound of Corollary 25 and
the gap between the two bounds is larger.

5. Examining Other Alphabet Decompositions

The boundR̄HUFF, given in Equation (37), is optimized using a Huffman decomposition tree (Corol-
lary 23). However, replacing each|Si | with its maximal value can affect the bound considerably.
For example, if we manage to place a very easy (binary) prediction problem at the root, it could
be the case that the “true” model order for this problem is very small. Such considerations are not
explicitly treated by the Huffman tree optimization. Therefore, it is of major interest to consider
other types of alphabet decomposition trees. Also, if our goal is to utilize the (successful)binary
CTW in multi-alphabet problems, there is no apparent reason why we should restrict ourselves to
hierarchicalalphabet decompositions as discussed so far. The parallel study of “multi-category de-

398

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

compositions” in supervised learning suggests other approaches suchone-vs-all, all-pairs, etc. (see,
e.g., Allwein et al., 2001).

We empirically targeted two questions: (i) Are there better alphabet decomposition trees for the
DECO algorithm? (ii) Can the “flat” decomposition techniques of supervised learningbe effectively
applied in our sequential prediction setting?

To answer the first question, we developed a simple heuristic procedure that attempts to increase
log-likelihood performance of theDECO algorithm, starting from any decomposition tree. This
procedure searches for a locally optimal tree using the actual performance of DECO on a given
sequence. Starting from a given tree, this procedure attempts to swap an alphabet symbol from
one subtree to the other while recursively “optimizing” the resulting subtrees. Each such swap is
‘accepted’ only if it improves the actual performance. We applied this procedure using a Huffman
tree as the starting point and refer to the resulting algorithm as ‘Improved’.

Sequence Random Improved Huffman Huffman Inverted
Comb Huffman-Comb

bib 1.91 1.81 1.83 2.04 2.16
news 2.47 2.34 2.36 2.65 2.75
book1 2.26 2.20 2.21 2.28 2.38
book2 1.99 1.92 1.94 2.06 2.14
paper1 2.40 2.26 2.27 2.58 2.69
paper2 2.31 2.21 2.23 2.41 2.53
paper3 2.60 2.45 2.47 2.74 2.87
paper4 2.95 2.72 2.75 3.20 3.34
paper5 3.12 2.86 2.89 3.42 3.56
paper6 2.50 2.32 2.36 2.67 2.84
trans 1.52 1.40 1.43 1.71 1.89
progc 2.51 2.32 2.35 2.76 2.87
progl 1.74 1.64 1.67 1.88 2.01
progp 1.78 1.63 1.66 1.92 2.09

Average 2.29 2.15 2.17 2.45 2.58

Table 1: Comparing average log-loss ofDECO with different decomposition structures. The best
results appear in boldface. Results for the random decomposition reflectan average on ten
random trees.

We experimented withDECO, ‘Improved,’ and several others decomposition schemes. Follow-
ing standard convention in the lossless compression community, we examined thealgorithms over
the ‘Calgary Corpus.’ This Corpus serves as a standard benchmark for testing log-loss prediction
and lossless compression algorithms (Bell et al., 1990; Witten and Bell, 1991;Cleary and Teahan,
1995; Begleiter et al., 2004). The corpus consists of 18 files of nine different types. Most of the
files are pure ASCII files and four are binary files. The ASCII files consist of English texts (books
1-2 and papers 1-6), a bibliography file (bib), a batch of unedited newsarticles (news), some source
code of computer programs (prog c,l,p), and a transcript of a terminal session (trans). The longest
file (book1) has 785kb symbols and the shortest (paper5) 12kb symbols.

399

BEGLEITER AND EL-YANIV

In addition to the Huffman and ‘Improved’ decompositions, we include the performance of a
random tree and two types of “Huffman Comb” trees. The random tree wasconstructed bottom-up
in agglomerative random fashion where symbol cluster pairs to be merged were selected uniformly
at random among all available nodes at each ‘merge’ step. Each of the two‘comb’ trees is a full
(binary) tree of heightk−1. That is, such trees operate similarly todecision lists. The comb tree
whose leaves (symbols) are ordered top-down according to their ascending frequencies inxn

1 is
referred to as the “Huffman Comb,” and the comb tree whose leaves are reversely ordered is called
the “Inverted Huffman Comb.” Obviously, it is expected at the outset that the inverted Huffman
comb will give rise to inferior performance.

In all the experimental results below we analyzed the statistical significance of pairwise compar-
isons between algorithms using the Wilcoxon signed rank test (Wilcoxon, 1945)5 with a confidence
level of 95%.

Table 1 shows the average prediction performance ofDECO compared to several tree structures
over the text files of the Calgary Corpus. The slightly better but statistically significant performance
of the improved-DECO indicates that there are more effective trees than Huffman’s. It is also inter-
esting to see that the random tree (based on an average of 10 random trees) is significantly better
than both the Huffman Comb trees. The latter observation suggests that it is hard to construct very
inefficient decomposition structures.

Sequence∗10% DECO All-Pairs One-vs-All
progc 3.11 4.28 4.04
progl 1.66 2.27 2.16
progp 2.69 3.53 3.50
paper1 3.08 3.82 3.67
paper2 3.15 3.66 3.62
paper3 3.39 4.10 4.00
paper4 3.89 4.62 4.54
paper5 3.91 4.82 5.02
paper6 3.32 4.11 4.00

Average 3.13 3.91 3.84

Table 2: Comparing three decomposition methods over a reduced version ofthe Calgary Corpus.
The best results appear in boldface.

To investigate the second question, regarding other decomposition schemes, we implemented
the ‘one-vs-all’ and ‘all-pairs’ schemes, straightforwardly adapted to our sequential setting. The
reader is referred to Rifkin and Klautau (2004) for a discussion of these techniques in standard
supervised learning. The prediction results, over a reduced version of the Calgary text files, appear
in Table 2. In this reduced dataset we took 10% (from the start) of each original sequence. The
reason for considering smaller texts (of shorter sequences) is the excessive memory requirements
of the ‘all-pairs’ algorithm, which requires

(k
2

)
= 8128 different binary predictors (compared to the

5. The Wilcoxon signed rank test is a nonparametric alternative to the paired t-test, which is similar to the Fisher sign
test. This test assumes that there is information in the magnitudes of the differences between paired observations, as
well as the signs.

400

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

k− 1 andk binary predictors required byDECO and ‘one-vs-all’, respectively).6 The results of
Table 2 indicate that the hierarchical decomposition is better than the other two flat decomposition
schemes. (Note that the advantage of ‘one-vs-all’ over ‘all-pairs’ is at90% confidence.)

6. On Applying CTW with Other Zero-Order Estimators

Another interesting direction when attempting to improve the performance of the standardCTW on
multi-alphabet sequences is to use other, perhaps stronger (in some sense), zero-order estimators
instead of theKT estimator. In particular, it seems most appropriate to consider well-known esti-
mators such as Good-Turing and the very recent ones proposed by Orlitsky et al. (2003), some of
which have strong performance guarantees in a certain worst case sense.

To this end, we compared the prediction quality of multi-CTW and DECO each applied with
four different sequential zero-order estimators: Good-Turing (denoted ẑGT), “Improved add-one”
(denoted ˆz+1), “improved Good-Turing” (denoted ˆzGT*) and standardKT (denoted ˆzKT). The de-
scription of the first three estimators is provided in Appendix B.

Sequence ẑKT ẑ+1 ẑGT ẑGT*

bib 2.47 2.35 2.27 2.29
news 2.92 2.82 2.75 2.75
book1 2.50 2.46 2.42 2.42
book2 2.32 2.24 2.19 2.20
paper1 2.98 2.83 2.73 2.75
paper2 2.77 2.68 2.60 2.61
paper3 3.16 3.08 3.00 2.99
paper4 3.57 3.50 3.41 3.38
paper5 3.76 3.66 3.57 3.56
paper6 3.10 2.95 2.84 2.85
trans 2.18 1.92 1.76 1.84
progc 3.04 2.89 2.79 2.82
progl 2.29 2.14 2.05 2.08
progp 2.26 2.11 2.00 2.04

Average 2.80 2.69 2.60 2.61

Table 3: Comparing the average log-loss of multi-CTW with different sequential zero-order estima-
tors. The comparison is made with textual (|Σ| = 128) sequences taken from the Calgary
Corpus, and with parameterD = 5. Each numerical value is the average log-loss (the loss
per symbol). The best (minimal) result of each comparison is marked in boldface.

All four estimators have worst-case performance guarantees based ona maximallikelihood
ratio, which is the ratio between the highest possible probability assigned by some distribution
and the probability assigned by the estimators. The set of “all possible distributions” considered is
referred to as the comparison class. Orlitsky et al. analyzed the performance of these estimators

6. With our two gigabyte RAM machine the runs with the entire corpus would takeapproximately two months.

401

BEGLEITER AND EL-YANIV

Sequence ẑKT ẑ+1 ẑGT ẑGT*

bib 1.84 2.39 2.02 2.35
news 2.36 2.94 2.54 2.85
book1 2.22 2.39 2.23 2.38
book2 1.94 2.27 2.02 2.26
paper1 2.28 3.03 2.53 2.93
paper2 2.23 2.74 2.39 2.68
paper3 2.47 3.08 2.66 2.98
paper4 2.75 3.52 3.00 3.36
paper5 2.90 3.78 3.18 3.59
paper6 2.36 3.16 2.63 3.04
trans 1.43 2.43 1.83 2.35
progc 2.35 3.16 2.61 3.03
progl 1.67 2.33 1.90 2.26
progp 1.66 2.44 1.95 2.37

Average 2.18 2.83 2.39 2.74

Table 4: Comparing predictions ofDECOwith different sequential zero-order estimators. The com-
parison is made with textual (|Σ| = 128) sequences taken from the Calgary Corpus, and
with parameterD = 5. Each numerical value resemble the average log-loss (the loss per-
symbol). The best (minimal) result of each comparison is marked in boldface.

for infinite discrete alphabets and a comparison class consisting ofall possible distributions over
n-length sequences. They showed that the averageper-symbolratio is infinite for sequential add-
constant estimators such asKT. The Good-Turing and Improved add-one estimators assign to each
(‘large’) sequence a probability which is at most a factor ofcn (for some constantc> 1) smaller than
the maximal possible probability; the improved Good-Turing estimator assigns to each sequence a
probability that is within a sub-exponential factor of the maximal probability.

In addition to the above, theKT and Good-Turing estimators enjoy the following guarantees. In
Theorem 7 we stated afinite-sampleguarantee for the redundancy of theKT estimator. Recall that
this guarantee refers tofinitealphabets and a comparison class consisting of zero-order distributions.
Moreover, within this setting,KT was shown to be (asymptotically) close, up to a constant, to the
best possible ratio (Xie and Barron, 2000; Freund, 2003), and the constant is proportional to the
alphabet size. Thus, when considering the per-symbol ratio,KT is asymptoticallyoptimal. Along
with the above worst-case guarantees, the Good-Turing estimator also hasa convergence guarantee
to the “true” missing mass probability (McAllester and Schapire, 2000), assuming the existence of
a true underlying distribution that generated the sequence.

In Tables 3 and 4 we provide the respective per symbol log-loss obtainedwith these estimators
for all the textual (ASCII) sequences from the Calgary Corpus (14 datasets). In all the experiments
below we analyzed the statistical significance of the results using the Wilcoxonsigned rank test at a
confidence of 95%.

Table 3 presents the log-loss of the four zero-order estimators when used as the zero-order
predictor within the multi-CTW scheme. The support set of the zero-order estimators is of size 128.

402

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

Observe that multi-CTW with ẑKT suffers the worst log-loss. On the other hand, when applying these
estimators inDECO (thus, when solving binary prediction problems), as depicted in Table 4, theẑKT

outperforms all the other estimators. Also observe that the best multi-CTW result (ẑGT in Table 3) is
worse than the bestDECO result (ẑKT in Table 4).

In summarizing these results, we note that:

• For text sequences, theCTW algorithm can be significantly improved when applied with the
Good-Turing estimator (instead of theKT estimator).

• The improved Good-Turing estimator proposed by Orlitsky et al. (2003) does not improve the
Good-Turing.

• The Deco-Huffman algorithm achieves best performance with the original(binary) KT esti-
mator.

7. Related Work

To the best of our knowledge, hierarchical alphabet decompositions in the log-loss prediction/comp-
ression setting were first considered by Tjalkens, Willems and Shtarkov (1994).7 In this paper, the
authors study a hierarchical decomposition where each internal node in the decomposition tree is
associated with a (binary)KT estimator (instead of binary-CTW instances inDECO). In this setting
the comparison class is the set of all zero order sources. The authors derived a redundancy bound
of k− 1+ 1

2 ∑ni>0 logni for this algorithm, where theni terms are the node counters as defined
in Theorem 19. This result is similar to a special case of our bound, 2+ 1

2 ∑ni>0 logni , obtained
using Theorem 19 for the special caseD = 0 (implying |Si | = 1). In that paper Tjalkens et al.
proposed the essence of theDECO algorithm as presented here; however, they did not provide the
details. A thorough study of algorithmDECO and otherCTW-based approaches for dealing with
multi-alphabets are presented in Volf’s Ph.D. thesis (Volf, 2002). In particular, an in-depth empiri-
cal study ofDECO, over the Calgary and Canterbury Corpora, indicated that this algorithm achieves
state-of-the-art performance in lossless compression. Thus, it matchesthe good performance of the
prediction by partial match(PPM) family of heuristics.8 Further empirical evidence that substanti-
ated this observation appears in Sadakane et al. (2000); Shkarin (2002); Begleiter et al. (2004).

There are also many discrete prediction algorithms that are not CTW-based. We restrict the
discussion here to some of the most popular algorithms that are known to be universal with respect
to some comparison class. Probably the most famous (and the first) universal lossless compression
algorithms were proposed by Ziv and Lempel (1977; 1978). For example, the well-known LZ78
algorithm is a fast dictionary method that avoids explicit statistical considerations. This algorithm
is universal (with respect to the set of ergodic sources); however,in contrast to both conventional
wisdom and the algorithm’s phenomenal commercial success, it is not among the best lossless
compressors (see, e.g., Bell et al., 1990).

Two more recent universal algorithms are the Burrows-Wheeler transform (BWT) (Burrows
and Wheeler, 1994) and grammar-based compression (Yang and Kieffer, 2000). The public-domain

7. A similar paper by Tjalkens, Volf and Willems, proposing the same methodand results, appeared a few years later
(Tjalkens et al., 1997).

8. As far as we know, the best PPM performance over the Calgary Corpus is reported for the PPM-II variant, proposed
by Shkarin (2002).

403

BEGLEITER AND EL-YANIV

version of BWT, called BZIP, is considered to be a relatively strong compressor over the Calgary
Corpus, which is fast but somewhat inferior to PPM andDECO. The grammar-based compression
algorithm has the advantage of providing an “explanation” (grammar) for the way it compressed the
target sequence.

The point-wise (worst case) redundancy of the prediction game was introduced by Shtarkov
(1987). Given a comparison classC of target distributionsP and some hypothesis classP , from
which the prediction algorithm selects one approximating distributionP̂, the point-wise redundancy
of this game is

R∗
n(C) = inf

P̂∈P

sup
P∈C

max
xn

1

log
P(xn

1)

P̂(xn
1)

.

Shtarkov also presented the first asymptotic lower bound on the redundancy for the case where both
the hypothesis and comparison classes are the setD-order Markov sources. To date, the tightest
asymptoticlower bound on the point-wise redundancy forD-gram Markov sources was recently
given by Jacquet and Szpankowski (2004, Theorem 3). They showed that for large (but unspecified)

n, the lower bound isk
D(k−1)

2 log n
2π + logA(D,k)+ log(1+ O(1

n)), whereA(D,k) is a constant de-
pending on the orderD and the alphabet sizek. In Table 5 we present known upper-bounds (leading
term) on the redundancy of the algorithms mentioned above. As can be seen,the CTW algorithm
enjoys the tightest bound. Note that there exist sequential prediction algorithms that enjoy other
types of performance guarantees. One example is theprobabilistic suffix trees(PST) algorithm
(Ron et al., 1996). The PST is a well-known algorithm that is mainly used in the bioinformatic
community (see, e.g., Bejerano and Yona, 2001). The algorithm enjoys a PAC-like performance
guarantee with respect to the class of VMMs (which is valid only if the predicted sequence was
generated by a VMM).

Algorithm Per Symbol Comparison Class Source
Point-wise Redundancy

LZ78 O(1/ logn) Markov Sources Savari (1997);
Kieffer and Yang (1999);
Potapov (2004)

CTW |S |(|Σ|−1)
2n logn Markov sources Willems et al. (1995);

Willems (1998)

BWT |S |(|Σ|+1)
2n logn D-order Markov sources Effros et al. (2002)

(average redundancy)

Grammar Based O(log logn/ logn) Ergodic sources Yang and Kieffer (2000)
Asymptotic

Lower Bound |S |(|Σ|−1)
2n logn D-order Markov sources Shtarkov (1987)

Table 5: Point-wise redundancy (leading term) of several universal lossless compression (and pre-
diction) algorithms. The predicted sequence is of lengthn. Note that the stated BWT
redundancy matches theaverage redundancy; hence, it bounds the BWT point-wise re-
dundancy from below.

404

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

8. Concluding Remarks

Our main result is the first redundancy bound for theDECO algorithm. Our bounding technique
can be adapted toDECO-like decomposition schemes using any binary predictor that has a (binary)
point-wise redundancy bound with respect to VMMs. To the best of our knowledge, our bound
for the Huffmann decomposition algorithm (proposed by Volf) is the tightest known for predic-
tion under the log-loss and therefore, for lossless compression. This result provides a compelling
justification for the superior empirical performance of theDECO-Huffman predictor/compressor as
indicated in several works (see, e.g., Volf, 2002; Sadakane et al., 2000).

Our experiments with random decomposition structures indicate that theDECO scheme is quite
robust to the choice of the tree, and even a random tree is likely to outperform the multi-CTW.
However, the excellent performance of the Huffman decomposition clearlymotivates attempts to
optimize it. Our local optimization procedure is able to generate better trees than Huffman’s, sug-
gesting that better prediction can be obtained with better optimization of the tree structure. Similar
observations were also reported in Volf (2002). Since finding the best decomposition is an NP-hard
problem, a very interesting research question is whether one could optimize the DECO redundancy
bound over the possible decompositions.

Interestingly, our numerical examples strongly indicate that hierarchical decompositions are bet-
ter suited to sequential prediction than the standard ‘flat’ approaches (‘one-vs-all’ and ’all-pairs’)
commonly used in supervised learning. This result may further motivate the consideration of hierar-
chical decompositions in supervised learning (e.g., as suggested by Huo et al., 2002; Cheong et al.,
2004; El-Yaniv and Etzion-Rosenberg, 2004).

The fact that the other zero-order estimators can improve the multi-CTW performance (with
larger alphabets) motivates further research along these lines. First, it would be interesting to try
combiningCTW with other zero-order estimators. Second, it would be interesting to analyzethe
combined algorithm(s), possibly by relying on the worst case results of Orlitsky et al. (2003).

But perhaps the most important research target at this time is the developmentof a lower bound
on the redundancy of predictors for finite (and short) sequences. While the Jacquet and Szpankowski
(2004) lower bound is indicative on the asymptotical achievable rates, it is meaningless in the finite
(and small) sample context. For example, our bounds, and even the multi-CTW bounds known today,
are smaller than the Jacquet and Szpankowskilower bound.

9. Acknowledgments

We thank Paul A. Volf and Roee Engelberg for the helpful discussions and Tjalling J. Tjalkens for
providing relevant bibliography.

Appendix A. On the KT Estimator - Proof of Theorem 7

We provide a proof for the (worst-case) performance guarantee of the KT estimator as stated in
Theorem 7. This proof is based on lecture notes by Catoni (2004).9

9. Krichevsky and Trofimov (1981) proved an asymptotic version of Theorem 7 for the average redundancy; Willems
et al. (1995) provided a proof for binary alphabets.

405

BEGLEITER AND EL-YANIV

Lemma 28 Consider the case whereKT counts all the symbols of the sequencexn
1 (i.e., s= ε).

Then,

ẑ KT(xn
1) =

Γ(k
2)∏σ∈Σ Γ(Nσ + 1

2)

Γ(1
2)kΓ(∑σ∈Σ Nσ + k

2)
, (48)

whereΓ(x) =
R�

+ tx−1exp(−t)dt is the gamma function.10

Proof
The proof is based on the identityΓ(x+1) = xΓ(x) and on a rewriting of Definition 6,

ẑKT(xn
1) = ẑKT(xn−1

1)
Nxn +1/2

∑σ∈Σ Nσ +k/2

=
∏σ∈Σ ((1/2) · (1+1/2) · (2+1/2) · · ·(Nσ +1/2))

(k/2) · (1+k/2) · (2+k/2) · · ·(∑σ∈Σ Nσ +k/2)

=
∏σ∈Σ

(
1

Γ(1
2)k Γ(Nσ + 1

2)
)

1
Γ(k

2)
Γ(∑σ∈Σ Nσ + k

2)
,

and (48) is obtained by rearranging the terms.

We now provide a proof for Theorem 7. Recall that this theorem states anupper bound of
k−1

2 logn+ logk for the worst-case redundancy of ˆzKT(xn
1).

Proof It is sufficient to prove that

ẑKT(xn
1)

supz∈Z z(xn
1)

n
k−1

2 ≥ 1
k
. (49)

Let a = (ai)
k
i=1 ∈ � k be a vector of arbitrary symbol counts for some sequencexn

1.11 For these

counts, by Lemma 28,KT would assign the probability,
Γ(k

2)

Γ(1
2)k

∏k
i=1 Γ(ai+

1
2)

Γ(∑k
i=1 ai+

k
2)

. Let z be the correspond-

ing empirical distribution:z(xn
1) = ∏k

i=1

(
ai

∑k
i=1 ai

)ai

, wheren = ∑k
i=1ai . It is well known that, given

the countsa, the distribution that maximizes the probability ofxn
1 is z, the maximum likelihood dis-

tribution (see, e.g., Cover and Thomas, 1991, Theorem 12.1.2). Thus, taking z= argmaxz′∈Z z′(xn
1),

inequality (49) becomes

∆(a) =
Γ(k

2)

Γ(1
2)k

∏k
i=1 Γ(ai +

1
2)

Γ(∑k
i=1ai +

k
2)

(∑k
i=1ai)∑i ai+

k−1
2

∏k
i=1aai

i

≥ 1
k
.

We have to show that for anya 6= (0,0, . . . ,0), ∆(a) ≥ 1
k .

Observe that∆(a) is invariant under any permutation of the coordinations ofa. Also note that,
by the identity,Γ(x+1) = xΓ(x),

∆((1,0, . . . ,0)) =
Γ(k

2)Γ(1+ 1
2)

Γ(1
2)Γ(1+ k

2)
=

1
k
.

10. It can be shown thatΓ(1) = 1 and thatΓ(x+1) = xΓ(x). Therefore, ifn≥ 1 is an integer,Γ(n+1) = n!. For further
information see, e.g., Courant and John (1989).

11. In information theorya is called atype. See, e.g., Cover and Thomas (1991, Chapter 12).

406

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

It is sufficient to prove that for anya = (a1,a2, . . . ,an) with a1 > 1, ∆(a) ≥ ∆((a1−1,a2, . . . ,ak)).
Observe that

∆(a) = ∆(a1−1,a2, . . . ,ak)
(a1− 1

2)(a1−1)a1−1

aa1
1

nn+ k−1
2

(n+ k
2 −1)(n−1)n−1+ k−1

2

.

Thus, it is enough to show that

(a1− 1
2)(a1−1)a1−1

aa1
1

nn+ k−1
2

(n+ k
2 −1)(n−1)n−1+ k−1

2

≥ 1, wherea1 ≥ 1, n≥ 2.

This can be done by showing that

f (t) = log

(

(t − 1
2)(t −1)t−1

tt

)

≥−1;

g(q) = log

(

qq+ k−1
2

(q+ k
2 −1)(q−1)q−1+ k−1

2

)

≥ 1.

Recall that limx→+∞(1+ y
x)

x = ey and observe that,

lim
t→+∞

f (t) = lim
t→+∞

log

(

1− 1
2t

)

+(t −1) log

(

1− 1
t

)

= −1;

lim
q→+∞

g(q) = lim
q→+∞

−
(

q−1+
k−1

2

)

log

(

1− 1
q

)

− log

(

1+
k−2
2q

)

= 1.

We conclude by showing that both functions decreasing monotone to their limits,hence,f ′(t) ≤ 0
andg′(q) ≤ 0. For f ′(t) we next show that it is a a non-decreasing function (i.e.,f ′′(t) ≥ 0) that is
bounded from above by zero.

f ′(t) =
1

t − 1
2

+ log

(
t −1

t

)

;

lim
t→+∞

f ′(t) = 0;

f ′′(t) =
−1

(t − 1
2)2

+
1

t(t −1)
;

=
−1

(t − 1
2)2

+
1

(t − 1
2)2− 1

4

≥ 0.

Therefore,f ′(t) ≥ 0 for anyt > 1. In a similar manner,

g′(q) = log

(
q

1−q

)

+
k−1

2

(
1
q
− 1

q−1

)

− 1

q+ k
2 −1

;

lim
q→+∞

g′(q) = 0;

g′′(q) ≥ 0.

407

BEGLEITER AND EL-YANIV

Appendix B. Zero Order Estimators

In this appendix we describe the sequential zero-order estimators: Good-Turing, “Improved add-
one”, “improved Good-Turing” by their “next-symbol” probability assignment. These estimators
are compared along withKT in Section 6.

Recall that, by the chain-rule, ˆz(xn
1) = ∏n−1

t=0 ẑ(xt+1|xt
1), wherex0

1 is the empty sequence. Hence,
it is sufficient to define the next-symbol prediction, ˆz(xt+1|xt

1), which is based on the symbol counts
Nσ in xt

1. We require the following definition. Letxt
1 be a sequence. Defineam to be the number of

symbols that appear exactlym times inxt
1, i.e.,am = |{σ ∈ Σ : Nσ = m}|. We denote the “improved

add-one” estimator by ˆz+1 and the “improvedGT” by ẑGT* .12

The Good-Turing (GT) estimator (Good, 1953) is well known and most commonly used in
language modeling for speech recognition (see, e.g., Chen and Goodman,1996).13 The next-
symbol probability generated byGT is

ẑGT(σ|xt
1) =

1
St+1

×

a′1
t×a0

, if Nσ = 0;
Nσ+1

t
a′Nσ+1

a′Nσ
, otherwise,

(50)

wherea′m is a smoothed version ofam andSt+1 is a normalization factor.14 In the following experi-
ments we used the simple smoothing suggested by Orlitsky et al. (2003) wherea′m = max(am,1).

Denote bym the number of distinct symbols inxt
1 (i.e., m= ∑t

i=1ai). The next-symbol proba-
bility of the improved add-one estimator is

ẑ+1(σ|xt
1) =

1
St+1

×
{ m+1

a0
, if Nσ = 0;

(t −m+1)Nσ
t , Nσ > 0,

(51)

whereSt+1 is a normalization factor.
For any natural numberc, define the functionfc(a) = max(a,c). Also define the integer-

sequencecn = dn1/3e. The next-symbol probability assigned by the improvedGT estimator is

ẑGT* (σ|xt
1) =

1
St+1

×

fct+1(a1+1)

a0
, if Nσ = 0;

(Nσ +1)
fct+1(aNσ+1)

fct+1(aNσ) , otherwise,
(52)

whereSt+1 is a normalization factor. The improvedGT estimator (ˆzGT*) is optimal with respect to
the worst-case criterion of Orlitsky et al. (2003).

References

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying approach
for margin classifiers.Journal of Machine Learning Research, 1:113–141, 2001.

R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order Markov models.Journal
of Artificial Intelligence Research, 22:385–421, 2004.

12. In Orlitsky et al. (2003) the ˆz+1 estimator is denoted byq+1′ andẑGT* by q1/3.
13. I. J. Good and A. M. Turing used this estimator to break the Enigma Cipher (Hodges, 2000) during World War II.
14. Orlitsky et al. mention that Turing had an intuitive motivation for this estimator. Unfortunately, this explanation was

never published.

408

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

G. Bejerano and G. Yona. Variations on probabilistic suffix trees: Statistical modeling and the
prediction of protein families.Bioinformatics, 17(1):23–43, 2001.

T. C. Bell, J. G. Cleary, and I. H. Witten.Text Compression. Prentice-Hall, Inc., 1990.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
Report 124, Digital Equipement Corporation, 1994.

O. Catoni. Statistical learning theory and stochastic optimization.Lecture Notes in Mathematics,
1851, 2004.

S. F. Chen and J. Goodman. An empirical study of smoothing techniques forlanguage modeling. In
Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics, pages
310–318, 1996.

S. Cheong, S. H. Oh, and S. Lee. Support vector machines with binary tree architecture for multi-
class classification.Neural Information Processing - Letters and Reviews, 2(3):47–51, March
2004.

J. G. Cleary and W. J. Teahan. Experiments on the zero frequency problem. InDCC ’95: Pro-
ceedings of the Conference on Data Compression, page 480, Washington, DC, USA, 1995. IEEE
Computer Society.

R. Courant and F. John.Introduction to Calculus and Analysis. Springer-Verlag, 1989.

T. Cover and J. Thomas.Elements of Information Theory. John Wiley and Sons, Inc., 1991.

M. Effros, K. Visweswariah, S. R. Kulkarni, and S. Verdu. Universal lossless source coding with
the Burrows Wheeler transform.IEEE Transactions on Information Theory, 48(5):1061–1081,
2002.

R. El-Yaniv and N. Etzion-Rosenberg. Hierarchical multiclass decompositions with application to
authorship determination. Technical Report CS-2004-15, Technion - Israel Institute of Technol-
ogy, March 2004.

Y. Freund. Predicting a binary sequence almost as well as the optimal biased coin. Information and
Computation, 182(2):73–94, 2003.

C. R. Glassey and R. M. Karp. On the optimality of Huffman trees.SIAM Journal on Applied
Mathematics, 31(2):368–378, September 1976.

I. J. Good. The population frequencies of species and the estimation of population parameters.
Biometrika, 1953.

D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of individual sequences under
general loss functions.IEEE Transactions on Information Theory, 44(5):1906–1925, 1998.

D. P. Helmbold and R. E. Schapire. Predicting nearly as well as the best pruning of a decision tree.
Machine Learning, 27(1):51–68, 1997.

A. Hodges.Alan Turing: the enigma. Walker and Co., 2000.

409

BEGLEITER AND EL-YANIV

X. Huo, J. Chen, S. Wang, and K. L. Tsui. Support vector trees: Simultaneously realizing the
principles of maximal margin and maximal purity. Technical report, The Logistics Institute,
Georgia Tech, and Asia Pacific, National University of Singapore, 2002.

P. Jacquet and W. Szpankowski. Markov types and minimax redundancyfor Markov sources.IEEE
Transactions on Information Theory, 50:1393–1402, 2004.

J. C. Kieffer and E. H. Yang. A simple technique for bounding the pointwise redundancy of the
1978 Lempel-Ziv algorithm. InDCC ’99: Proceedings of the Conference on Data Compression,
page 434. IEEE Computer Society, 1999.

R. Krichevsky and V. Trofimov. The performance of universal encoding. IEEE Transactions on
Information Theory, 27:199–207, 1981.

P. Laplace. Philosophical essays on probabilities.Springer-Verlag, 1995. Translated by A. Dale
from the 5th (1825) edition.

D. McAllester and R. Schapire. On the convergence rate of Good-Turing estimators. InIn Proceed-
ings of the Thirteenth annual conference on computational learning theory, 2000.

N. Merhav and M. Feder. Universal prediction.IEEE Transactions on Information Theory, 44(6):
2124–2147, 1998.

A. Orlitsky, N. P. Santhanam, and J. Zhang. Always Good Turing: Asymptotically optimal proba-
bility estimation.Science, 302(5644):427–431, October 2003.

C. H. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.

V. N. Potapov. Redundancy estimates for the Lempel-Ziv algorithm of data compression.Discrete
Applied Mathematics, 135(1-3):245–254, 2004. ISSN 0166-218X.

R. Rifkin and A. Klautau. In defense of one-vs-all classification.Journal of Machine Learning
Research, 5:101–141, 2004.

D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic automata with
variable memory length.Machine Learning, 25(2–3):117–149, 1996.

K. Sadakane, T. Okazaki, and H. Imai. Implementing the context tree weighting method for text
compression. InData Compression Conference, pages 123–132, 2000.

S. A. Savari. Redundancy of the Lempel-Ziv incremental parsing rule.IEEE Transactions on
Information Theory, 43:9–21, 1997.

D. Shkarin. PPM: One step to practicality. InData Compression Conference, pages 202–212, 2002.

Y. Shtarkov. Universal sequential coding of single messages.Problems in Information Transmission,
23:175–186, 1987.

N. J. A. Sloane and S. Plouffe.The Encyclopedia of Integer Sequences. Academic Press, 1995.

T. J. Tjalkens, Y. Shtarkov, and F. M. J. Willems. Context tree weighting: Multi-alphabet sources.
In Proc. 14th Symp. on Info. Theory, Benelux, pages 128–135, 1993.

410

SUPERIORGUARANTEES FORSEQUENTIAL PREDICTION AND LOSSLESSCOMPRESSION

T. J. Tjalkens, P. A. Volf, and F. M. J. Willems. A context-tree weighting method for text generating
sources. InData Compression Conference, page 472, 1997.

T. J. Tjalkens, F. M. J. Willems, and Y. Shtarkov. Multi-alphabet universal coding using a binary
decomposition context tree weighting algorithm. InProc. 15th Symp.on Info. Theory, Benelux,
pages 259–265, 1994.

P. A. Volf. Weighting Techniques in Data Compression Theory and Algorithms. PhD thesis, Tech-
nische Universiteit Eindhoven, 2002.

V. Vovk. Aggregating strategies. InProceedings of the 3rd Annual Workshop on Computational
Learning Theory, pages 371–383, 1990.

F. Wilcoxon. Individual comparisons by ranking methods.Biometrics, 1:80–83, 1945.

F. M. J. Willems. The context-tree weighting method: Extensions.IEEE Transactions on Informa-
tion Theory, 44(2):792–798, March 1998.

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context-tree weighting method: Basic
properties.IEEE Transactions on Information Theory, pages 653–664, 1995.

I. H. Witten and T. C. Bell. The zero-frequency problem: estimating the probabilities of novelevents
in adaptive text compression.IEEE Transactions on Information Theory, 37(4):1085–1094, 1991.

Q. Xie and A. R. Barron. Asymptotic minimax regret for data compression, gambling, and predic-
tion. IEEE Transactions on Information Theory, 46(2):431–445, 2000.

E. H. Yang and J. C. Kieffer. Efficient universal lossless data compression algorithms based on a
greedy sequential grammar transform. part one: Without context models.IEEE Transactions on
Information Theory, 46(3):755–777, 2000.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory, 23:337–343, May 1977.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.IEEE Trans-
actions on Information Theory, 24:530–536, 1978.

411

Journal of Machine Learning Research 7 (2006) 413–427 Submitted 5/05; Revised 1/06; Published 2/06

Geometric Variance Reduction in Markov Chains:
Application to Value Function and Gradient Estimation

Rémi Munos REMI.MUNOS@POLYTECHNIQUE.FR

Centre de Mathématiques Appliquées
Ecole Polytechnique
91128 Palaiseau, France

Editor: Shie Mannor

Abstract
We study a variance reduction technique for Monte Carlo estimation of functionals in Markov

chains. The method is based on designingsequential control variatesusing successive approxi-
mations of the function of interestV. Regular Monte Carlo estimates have a variance ofO(1/N),
whereN is the number of sample trajectories of the Markov chain. Here, we obtain a geometric
variance reductionO(ρN) (with ρ < 1) up to a threshold that depends on the approximation error
V −AV, whereA is anapproximation operatorlinear in the values. Thus, ifV belongs to the right
approximation space (i.e.AV = V), the variance decreases geometrically to zero.

An immediate application is value function estimation in Markov chains, which may be used
for policy evaluation in a policy iteration algorithm for solving Markov Decision Processes.

Another important domain, for which variance reduction is highly needed, is gradient estima-
tion, that is computing the sensitivity∂αV of the performance measureV with respect to some
parameterα of the transition probabilities. For example, in policy parametric optimization, com-
puting an estimate of the policy gradient is required to perform a gradient optimization method.

We show that, using two approximations for thevalue functionand thegradient, a geometric
variance reduction is also achieved, up to a threshold that depends on the approximation errors of
both of those representations.

1. Introduction

We consider a Markov chain over a finite state spaceX defined by the transition matrixP. Note that
although we consider a finite state space for simplicity, this work can be easily extended to the case
of infinite state spaces (countable or continuous). WriteX(x) a trajectory(xt)t≥0 starting at a state
x0 = x. Let Ψ(r,X(x)) be a functional that depends on some functionr : X → IR and the trajectory
X(x), and writeV(x) the expectation of the functional that we wish to evaluate:

V(x) = E[Ψ(r,X(x))]. (1)

Here, the quantity of interestV is expressed in terms of aprobabilistic representation, as an
expectation of a functional that depends on trajectories. We will considera functionalΨ(r, ·) that is
linear in r, and such that its expectationV may equivalently be expressed in terms of asolution to
a linear system

LV = r, (2)

(wherer andV are considered as column vectors) withL an invertible linear operator (matrix).

c©2006 Rémi Munos.

MUNOS

Such an example ofΨ is the sum of discounted rewardsr received along the trajectory:

Ψ(r,X(x)) = ∑
t≥0

γtr(xt). (3)

with 0 < γ < 1 being a discount factor. In that case,V is the solution to the Bellman equation (2)
with L = I − γP. Indeed, using matrix notations,V = ∑t≥0 γtPtr = (I − γP)−1r.

A regular Monte-Carlo (MC) method would estimateV(x) by samplingN independent trajec-
tories{Xn(x)}1≤n≤N starting fromx and calculate the average1N ∑N

n=1 Ψ(r,Xn(x)). The variance of
such an estimator is of order 1/N. Variance reduction is crucial since the numerical approximation
error of the quantity of interest is directly related to the variance of its estimate.

Variance reduction techniques include importance sampling, correlated sampling, control vari-
ates, antithetic variates and stratified sampling, see e.g. (Hammersley and Handscomb, 1964; Hal-
ton, 1970). Geometric variance reduction rates have been obtained by processing these variance
reduction methods iteratively, the so-calledsequential(or recursive) Monte-Carlo. Examples in-
clude adaptive importance sampling (Kollman et al., 1999) and what Halton called the “Third Se-
quential Method” (Halton, 1994) based on sequential correlated samplingand control variates. This
approach has been recently developed in (Maire, 2003) for numericalintegration and, more related
to our work, applied to (continuous time) Markov processes in (Gobet andMaire, 2005).

The idea is to replace the expectation ofΨ(r, ·) by the expectation ofΨ(r −LW, ·) for some
functionW close toV. From the linearity ofΨ and the equivalence between the representations (1)
and (2), for anyW, one has

V(x) = W(x)+E[Ψ(r −LW,X(x))].

Thus, ifW is a good approximation ofV, the residualr −LW is small, and the variance is low.
In the sequential method described in this paper, we use successive approximationsVn of V to

estimate by Monte Carlo a correctionEn using the residualr −LVn in Ψ, which is used to process
a new approximationVn+1. We consider an approximation operatorA that is linear in the values.
We show that (for enough sample trajectories at each iteration) the variance of the estimator has a
geometric rateρN (with ρ < 1, andN the total number of sampled trajectories) until some threshold
is reached, whose value is related to the approximation errorAV −V.

An interesting extension of this idea concerns the estimation of the gradient∂αV of V with re-
spect to (w.r.t.) some parameterα of the transition matrixP. A useful application of such sensitivity
analysis appears in policy gradient estimation. An optimal control problem maybe approximated
by a parametric optimization problem in a given space of parameterized policies. Thus, the transi-
tion matrixP depends on some (possible multidimensional) policy parameterα. In order to apply
gradient methods to search for a local maximum of the performance in the parameter space, one
wishes to estimate the policy gradient, i.e. the sensitivityZ = ∂αV of the performance measure
with respect toα. The gradient may be expressed as an expectationZ(x) = E[Φ(r,X(x))], using the
so-calledlikelihood ratioor score method(Reiman and Weiss, 1986; Glynn, 1987; Williams, 1992;
Baxter and Bartlett, 2001; Marbach and Tsitsiklis, 2003). The gradientZ is also the solution to a
linear system

LZ = −∂αL L
−1r = −∂αLV. (4)

(note that the derivative operator∂α only applies toL). Indeed, sinceV solvesV = L−1r, we have
Z = ∂αV = −L−1∂αL L−1r. For example, in the infinite horizon, discounted case (3), we have

414

GEOMETRIC VARIANCE REDUCTION IN MARKOV CHAINS

L = I − γP, thus∂αL = −γ∂αP and

Z = γ(I − γP)−1∂αP(I − γP)−1r = ∑
t≥0

γt+1Pt∂αP ∑
s≥0

γsPsr.

The functionalΦ may thus be defined as

Φ(r,X(x)) = ∑
t≥0

γt+1 ∂αP(xt ,xt+1)

P(xt ,xt+1)
∑
s≥0

γsr(xs+t+1), (5)

which may be rewritten as

Φ(r,X(x)) = ∑
t≥0

γtr(xt)
t−1

∑
s=0

∂αP(xs,xs+1)

P(xs,xs+1)
.

We show that, using two approximationsVn andZn of the value functionand thegradient, a
geometric variance reduction is also achieved, up to a threshold that depends on the approximation
errors of both of those representations.

Numerical experiments on a simple Gambler’s ruin problem illustrate the approach.

2. Value Function Estimation

We first describe the approximation operatorlinear in the valuesconsidered here, then describe the
algorithm, and state the main result on geometric variance reduction.

2.1 Approximation Operator A

We consider a fixed set ofJ representative statesXJ := {x j ∈ X }1≤ j≤J andbasis functions{φ j :
X → IR}1≤ j≤J. The linear approximation operatorA maps any functionW : XJ → IR to the function
AW : X → IR, according to

AW(x) =
J

∑
j=1

W(x j)φ j(x). (6)

With a slight abuse of notation, for any functionW : X → IR, we defineAW : X → IR similarly
from the values ofW at XJ. This kind of function approximation includes:

• Linear approximation , for example withSpline, Polynomial, Radial Basis, FourierorWavelet
decomposition.AW is the projection of a functionW onto the space spanned by a set of func-
tions {ψk : X → IR}1≤k≤K , i.e. the function minimizing some norm (induced by a discrete
inner product〈 f ,g〉 := ∑J

j=1µj f (x j)g(x j), for some distributionµ overXJ):

min
α∈IRK

∣∣∣
∣∣∣

K

∑
k=1

αkψk−W
∣∣∣
∣∣∣
2
.

The solutionα solves the linear systemAα = b with A an K ×K-matrix of elementsAkl =
〈ψk,ψl 〉 andbaK-vector of componentsbk = 〈W,ψk〉. Thusαk = ∑K

l=1A−1
kl ∑J

j=1µjψl (x j)W(x j)

and the best fit∑K
k=1 αkψk is thus of type (6) with

φ j(x) = µj

K

∑
k=1

K

∑
l=1

A−1
kl ψl (x j)ψk(x). (7)

415

MUNOS

• Non-parametric approximation, such ask-nearest neighbors(whereφ j(x) = 1
k if x hasx j

as one of itsk−nearest neighbors, andφ j(x) = 0 otherwise),locally weighted learningand
Kernel regression(Atkeson et al., 1997; Hastie et al., 2001), where functions similar to (7)
may be derived (with the matrixA being dependent onx through the kernel), andSupport
Vector Regression(when using a quadratic loss function) (Vapnik et al., 1997; Vapnik, 1998).

2.2 The Algorithm

We assume the equivalence between the probabilistic interpretation (1) and the representation as
solution to the linear system (2), i.e. for any functionf : X → IR,

f (x) = E[Ψ(L f ,X(x))]. (8)

We consider successive approximationsVn ∈ IRJ of V defined at the statesXJ = (x j)1≤ j≤J recur-
sively:

• We initializeV0(x j) = 0.

• At stagen, we use the valuesVn(x j) to provide a new estimate ofV(x j). Let En(x j) :=
V(x j)−AVn(x j) be the approximation error at the states(x j)1≤ j≤J. From the equivalence
property (8), we have:AVn(x) = E[Ψ(LAVn,X(x))]. Thus, by linearity ofΨ w.r.t. its first
variable,

En(x j) = E[Ψ(r −LAVn,X(x j))].

Now, we use a Monte Carlo technique to estimateEn(x j) at each representative statex j , using
M trajectories(Xn,m(x j))1≤m≤M: we calculate the average

Ên(x j) :=
1
M

M

∑
m=1

Ψ(r −LAVn,X
n,m(x j)),

and define the new approximation at the statesXJ:

Vn+1(x j) := AVn(x j)+ Ên(x j). (9)

Remark 1 Notice that there is a slight difference between this algorithm and that of (Gobet and
Maire, 2005), which may be written

Vn+1(x j) = Vn(x j)+A

[1
M

M

∑
m=1

Ψ(r −LVn,X
n,m(x j))

]
.

Our formulation enables us to avoid the assumption of the idempotent propertyfor A (i.e. that
A2 = A) which does not hold in general in non-parametric approximation (e.g. ink-nearest neigh-
bors, for k≥ 2) and guarantees that Vn is an unbiased estimate of V , for all n, as showed in the next
paragraph.

2.3 Properties of the EstimatesVn

We write the conditional expectations and variances:

E
n[Y] = E[Y|Xp,m(x j), 0≤ p < n, 1≤ m≤ M, 1≤ j ≤ J]

and Varn[Y] = E
n[Y2]− (En[Y])2. We have the following properties on the estimates:

416

GEOMETRIC VARIANCE REDUCTION IN MARKOV CHAINS

Expectation ofVn. From the definition (9),

E
n[Vn+1(x j)] = AVn(x j)+En(x j) = V(x j).

ThusE[Vn(x j)] = V(x j) for all n≥ 1: the approximationVn(x j) is an unbiased estimate ofV(x j).

Variance of Vn. Write vn = sup1≤ j≤J Var Vn(x j). The following result (whose proof is provided
in Appendix A) expresses that for large enough values ofM, the variance decreases geometrically
with n.

Theorem 2 We have

vn+1 ≤ ρMvn +
2
M

VΨ(V −AV) (10)

with ρM = 2
M

(
∑J

j=1

√
VΨ(φ j)

)2
, using the notation

VΨ(f) := sup
1≤ j≤J

Var Ψ(L f ,X(x j)).

Thus, for large enough values of M, (i.e. wheneverρM < 1), (vn)n decreases geometrically at rate
ρM, up to the threshold

limsup
n→∞

vn ≤
1

1−ρM

2
M

VΨ(V −AV).

If V belongs to the space of functions that are representable byA , i.e. AV = V, then the
variance geometrically decreases to 0 at rateρN with ρ := ρ1/M

M andN being the total number of
sample trajectories per statex j (i.e. N is the product of the numbern of iterations by the numberM
of trajectories per iteration and statex j).

Notice that the threshold depends on the variance ofΨ for the functionL(V−AV) = r −LAV,
the residual of the representation (byA) of V. Notice also that this threshold depends onV −
AV only at states reached by the trajectories{X(x j)}x j∈XJ : a uniform (over the whole domain)
representation ofV is not required.

Of course, once the threshold is reached, a further convergence ofO(1/N) can be obtained
thereafter, using regular Monte Carlo.

2.4 Example: The Infinite Horizon, Discounted Case

Let us illustrate the sequential control variates algorithm to value function estimation in Markov
chains in the infinite horizon, discounted case (3). The value function

V(x) = E
[
∑
t≥0

γtr(xt)
]

solves Bellman’s equation:V = r + γPV, which may be written as the linear system (2) withL =
I − γP.

In the previous algorithm, at stagen, the approximation errorEn(x j) =V(x j)−AVn(x j) is there-
fore the expectation

En(x j) = E
[
∑
t≥0

γt [r(xt)−AVn(xt)+ γPAVn(xt)]|x0 = x j
]
. (11)

417

MUNOS

We notice that the termr−AVn+γPAVn is theBellman residualof the approximationAVn. The
estimate thus has zero variance if this approximation happens to be the value function. Following the
algorithm, the next approximationVn+1 is defined by (9) witĥEn(x j) being a Monte Carlo estimate
of (11).

Remark 3 Note that the expectation operator P may not be easy to process. In model-free learning,
it would be interesting to replace the term PAVn(xt) by AVn(xt+1) in (11) leaving the expectation
unchanged. However, this would introduce some additional variance that annihilates the benefit of
the technique.

Nevertheless, the term PAVn may actually be computed asA ′Vn, whereA ′ is an approximation
operator defined by another set of basis functions{φ′

j := Pφ j}1≤ j≤J (i.e. φ′
j(x) := ∑y∈X P(x,y)φ j(y),

1≤ j ≤ J). Indeed, for any W: XJ → IR,

PAW(x) = ∑
y∈X

P(x,y)
J

∑
j=1

W(x j)φ j(y) =
J

∑
j=1

W(x j)φ′
j(x) = A

′W(x).

These functions{φ′
j := Pφ j}1≤ j≤J may be precomputed before simulations, or approximated on-line

with function approximation techniques.

2.5 Other Examples

Other possible settings include the finite-horizon time, the infinite horizon stochastic shortest path,
and average reward problems, briefly described now.

In a finite-time horizon problem, the valueV(t,x) is time-dependent. So letX(t,x) = {xs}t≤s≤T

be a trajectory starting fromx∈ X at timet ∈ {0, . . .T}. Write Ψ(r,X(t,x)) := ∑T
s=t r(xs). The value

functionV(t,x) = E[Ψ(r,X(t,x))] solves Bellman’s equation

V(t,x) = r(x)+ ∑
y∈X

P(x,y)V(t +1,y), for 0≤ t < T

andV(T,x) = r(x). A similar variance reduction method holds in the product space{0, . . . ,T}×
X . Approximate functionsAW are defined on a grid{(t j ,x j)}1≤ j≤J over the product space, as a
linear combination of basis functions{φ j(t,x)}: for any functionW defined on the product space,
AW(t,x) := ∑J

j=1W(t j ,x j)φ j(t,x). The variance reduction result of the previous section applies
immediately to this case.

In infinite horizon stochastic shortest path problems, we usually assume that the reward function
is non-negative (or non-positive if it represents a cost function) andthat there exists an absorbing
state (with a zero reward) that is reached, from any initial state, in finite time withprobability
1. The functional isΨ(r,X(x)) := ∑t≥0 r(xt) and the value functionV solves Bellman’s equation
(I −P)V = r with (I −P) being invertible.

The case ofaverage reward problemsis more subtle and would deserve deeper treatment. We
simply provide the idea of the possible application to this case. The functional isΨ(r,X(x)) :=
limT→∞

1
T ∑T−1

t=0 r(xt). In aperiodic, recurrent, unichain Markov chains, the average expected gainρ

ρ(x) :=
(

lim
T→∞

1
T

T−1

∑
t=0

Ptr
)
(x)

418

GEOMETRIC VARIANCE REDUCTION IN MARKOV CHAINS

is independent from the start stateρ(x) = ρ, and satisfiesρ = πr, whereπ is the stationary dis-
tribution of the chain (π is considered as a row vector), i.e.πP = π. The relative value function
V(x) := E[Ψ(r −ρ,X(x))] solves the equation(I −P)V = r −ρ. This equation has several solutions
but a unique oneV such thatPπV = 0, with Pπ being the matrix with all rows equal toπ.

In this setting, a possible extension of the variance reduction technique would process two ap-
proximationsρn andVn of the average rewardρ and the relative value functionV, respectively.

2.6 Numerical Experiment

We consider theGambler’s ruin problemdescribed in (Kollman et al., 1999): a gambler withi
dollars bets repeatedly against the house, whose initial capital isL− i. Each bet is one dollar and the
gambler has probabilityp of winning. The state space isX = {0, . . . ,L} and the transition matrixP
is defined, fori, j ∈ X , by

Pi j =

p, if j − i = 1 and 0< i < L,
1− p, if i− j = 1 and 0< i < L,
0, otherwise.

Betting continues until either the gambler is ruined (i = 0) or he has “broken the bank” (i = L)
(thus 0 andL are terminal states). This is an infinite-horizon time stochastic shortest path problem.
We are interested in computing the probability of the gambler’s eventual ruinV(i) when starting
from initial fortunei. We thus define the functionr(0) = 1 andr(i 6= 0) = 0. The value functionV
solves the Bellman equation(I −P)V = r, and its value is

V(i) =
λi −λL

1−λL , for i ∈ X , (12)

with λ := 1−p
p when p 6= 0.5, andV(i) = 1− i/L for p = 0.5. The representative states areXJ =

{1,7,13,19} (hereL = 20). We consider two linear function approximationsA1 andA2 that are
projection operators (minimizing theL2 norm at the statesXJ) onto the space spanned by a set of
functions{ψk : X → IR}1≤k≤K . A1 usesK = 2 functionsψ1(i) = 1,ψ2(i) = λi , i ∈ X , whereasA2

usesK = 4 functionsψ1(i) = 1,ψ2(i) = i,ψ3(i) = i2,ψ4(i) = i3, i ∈X . Notice thatV is representable
by A1 (i.e. A1V = V) but not byA2. We chosep = 0.51.

We ran the algorithm withL = I −P (which is an invertible matrix). At each iteration, we used
M = 100 simulations per state. Figure 1 shows theL∞ approximation error (maxj∈XJ |V(j)−Vn(j)|)
in logarithmic scale, as a function of the iteration number 1≤ n ≤ 10. This approximation error
(which is the true quantity of interest) is directly related to the variance of the estimatesVn.

For the approximationA1, we observe the geometric convergence to 0, as predicted in Theorem
2. It takes less than 10×100 simulations per state to reach an error of 10−15. UsingA2, the error
does not decrease below some threshold' 2.10−5 due to the approximation errorV −A2V. This
threshold is reached using about 5×100 simulations per state. For comparison, usual MC reaches
an error of 10−4 with 108 simulations per state.

The variance reduction obtained when using such sequential control variates is thus consider-
able.

419

MUNOS

1 2 3 4 5 6 7 8 9 10
-16

10

-11
10

-6
10

-1
10

A
pp

ro
xi

m
at

io
n

er
ro

r
(in

 lo
g

sc
al

e)

Number of iterations

MC with 10^8 trajectories

Approximation 2

Approximation 1

Figure 1: Approximation error for regular MC and sequential control variate algorithm using two
approximationsA1 andA2, as a function of the number of iterations.

3. Gradient Estimation

Here, we assume that the transition matrixP depends on some parameterα, and that we wish to
estimate the sensitivity ofV(x) = E[Ψ(r,X(x))] with respect toα, which we writeZ(x) := ∂αV(x).

An example of interest consists in solving approximately a Markov Decision Problem by search-
ing for a feedback control law in a given class of parameterized stochastic policies. The optimal
control problem is replaced by a parametric optimization problem, which may be solved (at least in
order to find a local optimum) using gradient methods. Thus we are interestedin estimating the gra-
dient of the performance measure w.r.t. the parameter of the policy. In this example, the transition
matrix P would be the transition matrix of the MDP combined with the parameterized stochastic
policy.

As mentioned in the introduction, the gradient may be expressed as an expectation Z(x) =
E[Φ(r,X(x))] (using the so-calledlikelihood ratioorscore method(Reiman and Weiss, 1986; Glynn,
1987; Williams, 1992; Baxter and Bartlett, 2001; Marbach and Tsitsiklis, 2003)) whereΦ(r,X(x))
is also a functional that depends on the trajectoryX(x), and that is linear in its first variable. For
example, in the discounted case (3), the functionalΦ is given by (5). The variance is usually high,
thus variance reduction techniques are highly needed (Greensmith et al., 2005).

The gradientZ is also the solution to the linear system (4). Unfortunately, this linear expression
is not of the form (2) since∂αL is not invertible, which prevents us from using directly the method
of the previous section.

However, the linear equation (4) provides us with another representationfor Z in terms of a
probabilistic representation:

Z(x) = E[Φ(r,X(x))] = E[Ψ(−∂αLV,X(x))]. (13)

420

GEOMETRIC VARIANCE REDUCTION IN MARKOV CHAINS

We may extend the previous algorithm to the estimation ofZ by using two representations:Vn

andZn. The approximationVn of V is updated from Monte-Carlo estimation of the residualr −LVn,
andZn, which approximatesZ, is updated from the gradient residual−∂αLVn −LZn built from
the currentVn. This approach may be related to the so-calledActor-Critic algorithms(Konda and
Borkar, 1999; Sutton et al., 2000), which use the representation (13) with an approximation of the
value function.

A geometric variance reduction is also achieved, up to a threshold that depends on the approxi-
mation errors of both of those representations.

Finally, we present a variance reduction technique that only makes use ofthe gradient repre-
sentationZn (which may be useful for Partially Observable MDPs) but at the cost of avariance
increase.

3.1 The Algorithm

Although the approximation operators forV andZ may be different in practice (they may use dif-
ferent sets of representative states and basis functions), in this section, we will use the same approx-
imation operatorA for simplicity.

From (13) and the equivalence property (8), we obtain the following representation forZ:

Z(x) = AZn(x)+E
[
Ψ(−∂αLV −LAZn,X(x))

]

= AZn(x)+E
[
Ψ(−∂αL(V −AVn),X(x))−Ψ(∂αLAVn +LAZn,X(x))

]

= AZn(x)+E
[
Φ(r −LAVn,X(x))−Ψ(∂αLAVn +LAZn,X(x))

]
. (14)

from which the algorithm is deduced. We consider successive approximationsVn ∈ IRJ of V and
Zn ∈ IRJ of Z defined at the statesXJ = (x j)1≤ j≤J.

• We initializeV0(x j) = 0, Z0(x j) = 0.

• At stagen, we simulate by Monte CarloM trajectories(Xn,m(x j))1≤m≤M and define the new
approximationsVn+1 andZn+1 at the statesXJ:

Vn+1(x j) = AVn(x j)+
1
M

M

∑
m=1

Ψ(r −LAVn,X
n,m(x j))

Zn+1(x j) = AZn(x j)+
1
M

M

∑
m=1

[
Φ(r −LAVn,X

n,m(x j))

−Ψ(∂αLAVn +LAZn,X
n,m(x j))

]
.

3.2 Properties of the EstimatesVn and Zn

Expectation ofVn and Zn. We have already seen thatE[Vn] = V for all n > 0. Now, (14) implies
thatEn[Zn+1] = Z, thusE[Zn] = Z for all n > 0.

Variance ofVn and Zn. We writevn = sup1≤ j≤J Var Vn(x j) andzn = sup1≤ j≤J Var Zn(x j). The next
theorem (proved in Appendix B) states the geometric variance reduction for large enough values of
M.

421

MUNOS

Theorem 4 We have

vn+1 ≤ ρMvn +
2
M

VΨ(V −AV)

zn+1 ≤ ρMzn +
2
M

[c1(V −AV,Z−AZ)+c2vn]

with ρM = 2
M

(
∑J

j=1

√
VΨ(φ j)

)2
, and the coefficients

c1(f ,g) =
(√

VΦ(f)+
√

VΨ(L−1∂αL f)+
√

VΨ(g)
)2

c2 =
[J

∑
j=1

√
VΦ(φ j)+

√
VΨ(L−1∂αLφ j)

]2
,

using the notationsVΨ(f) := sup1≤ j≤J Var Ψ(L f ,X(x j)) andVΦ(f) := sup1≤ j≤J Var Φ(L f ,X(x j)).
Thus, for large enough values of M, (i.e. wheneverρM < 1), the convergence of(vn)n and(zn)n is
geometric at rateρM, up to the thresholds

limsup
n→∞

vn ≤
1

1−ρM

2
M

VΨ(V −AV)

limsup
n→∞

zn ≤
1

1−ρM

2
M

[
c1(V −AV,Z−AZ)+c2

1
1−ρM

2
M

VΨ(V −AV)
]
.

Here also, ifV andZ are representable byA , then the variance converges geometrically to 0.

3.3 Numerical Experiment

Again we consider theGambler’s ruin problemdescribed previously. The transition matrix is pa-
rameterized byα = p, the probability of winning. The gradientZ(i) = ∂αV(i) may be derived from
(12):

Z(i) =
L(1−λi)λL−1− i(1−λL)λi−1

(1−λL)2α2 for i ∈ X ,

(for α 6= 0.5), andZ(i) = 0 for α = 0.5. Again we use the representative statesXJ = {1,7,13,19}.
Here, we consider two possible approximatorsA1 andA2 for the value function representationsVn

(as defined previously), and two approximatorsA2 andA3 for the gradient representationsZn, where
A3 is the projection that usesK = 3 functionsψ1(i) = 1,ψ2(i) = λi ,ψ3(i) = iλi , i ∈ X . Notice that
Z is representable byA3 but not byA2. We choosep = 0.51 andM = 1000.

Figure 2 shows theL∞ approximation error ofZ (maxj∈XJ |Z(j)−Zn(j)|) in logarithmic scale,
for the different possible approximations ofV andZ.

When bothV andZ may be perfectly approximated (i.e.A1 for V andA3 for Z) we observe
the geometric convergence to 0, as predicted in Theorem 4. The error is around 10−14 using a
total of 104 simulations. When either the value function or the gradient is not representable in
the approximation spaces, the error does not decrease below some threshold (' 3.10−3 when Z
is not representable) reached in 2.103 simulations. The threshold is lower (' 2.10−4) whenZ is
representable. For comparison, usual MC reaches an error (forZ) of 3.10−3 with 108 simulations
per state.

422

GEOMETRIC VARIANCE REDUCTION IN MARKOV CHAINS

The variance reduction of this sequential method compared to regular MC is thus also consider-
able.

1 2 3 4 5 6 7 8 9 10
-14

10

-7
10

0
10

Number of iterations

A for V, A for Z

A for V, A for Z2

12
A

pp
ro

xi
m

at
io

n
er

ro
r

of
 Z

 (
in

 lo
g

sc
al

e)

3

2A for V, A for Z2

A for V, A for Z1 3

Figure 2: Approximation error of the gradientZ = ∂αV using approximatorsA1 and A2 for the
value function, andA2 andA3 for the gradient.

3.4 Variance Reduction with OnlyZ Representation

It would be desirable to design a similar variance reduction method using the gradient approximation
only. However, as seen previously, the linear system (4) does not enable to recoverr from the
gradient (since∂αL is not invertible), which prevents us from directly using the method of Section
2.

Nevertheless, from (13), we have the representation forZ:

Z(x) = AZn(x)+E
[
Φ(r,X(x))−Ψ(LAZn,X(x))

]
,

from which we deduce the following algorithm: at stagen, simulateM trajectoriesXn,m per state
(x j) and update the approximationZn according to

Zn+1(x j) = AZn(x j)+
1
M

M

∑
m=1

[
Φ(r,Xn,m(x j))−Ψ(LAZn,X

n,m(x j))
]
.

Unfortunately, we may not expect this algorithm to exhibit a variance reduction to 0 in the case
of perfect approximation of the gradient (i.e.AZ = Z). Indeed, there is an incompressible variance
term that comes from the estimation ofΦ(r,X(x)) instead ofΨ(LZ,X(x)) = Ψ(−∂αL L−1r,X(x)).

To illustrate, in the infinite-horizon, discounted case (5), this incompressiblevariance term ap-
pears in the estimation of

Φ(r,X(x))−Ψ(LZ,X(x)) = ∑
t≥0

γt
[∂αP(xt ,xt+1)

P(xt ,xt+1)
∑
s≥0

γs+1r(xs+t+1)− (I − γP)Z(xt)
]
.

423

MUNOS

However this variance (which can be related to the variance of the value functionV(xt+1) esti-
mation by the sum of future rewards∑s≥0 γsr(xs+t+1) and a bound on the likelihood ratios∂αP(xt ,xt+1)

P(xt ,xt+1)
)

is much lower (especially whenγ is close to 1) than the initial variance of the direct estimation of
E[Φ(r,X(x))].

Thus, this algorithm would provide a geometric variance reduction, up to a threshold that de-
pends onVΨ(Z−AZ) plus this incompressible variance term (the proof is a simple extension of
that of Theorem 2 taking into account the additional variance term). This algorithm may be interest-
ing in Partially Observable MDPs, and provide an alternative technique compared to other variance
reduction techniques developed in this setting (Greensmith et al., 2005).

4. Conclusion

We described a sequential control variates method for estimating the expectation of functionals
in Markov chains, using linear approximation (in the values). We illustrate the method on value
function and gradient estimates. We proved geometric variance reduction up to a threshold that
depends on the approximation error of the functions of interest.

There are several possible directions for future research, among which:

• Estimate the number of sample trajectoriesM per state that enables the method to exhibit a
geometric variance reduction (i.e. wheneverρM < 1).

• For a total budget ofN trajectories per state, define what is the best trade-off between the
number of iterationsn and the number of trajectoriesM per iteration (such thatN = nM).

• Define a stopping criterion (i.e. whenever there is no more variance decrease) from which we
should continue (if needed) with a regular Monte Carlo method.

• Consider the case where the initial states are drawn according to some distribution overX

instead of using the set of representative statesXJ.

• Consider non-linear function approximation.

• Extend this work to a model-free, on-line learning framework.

Appendix A. Proof of Theorem 2

From the decomposition

V −AVn = V −AV +
J

∑
i=1

(V −Vn)(xi)φi , (15)

we have

Vn+1(x j) = AVn(x j)+
1
M

M

∑
m=1

[
Ψ(L(V −AV),Xn,m(x j))

+
J

∑
i=1

(V −Vn)(xi)Ψ(Lφi ,X
n,m(x j))

]
.

424

GEOMETRIC VARIANCE REDUCTION IN MARKOV CHAINS

Thus

VarnVn+1(x j) =
1
M

Varn
[
Ψ(L(V −AV),X(x j))

+
J

∑
i=1

(V −Vn)(xi)Ψ(Lφi ,X(x j))
]
.

We use the general bound

Var
[
∑

i

αiYi
]

= ∑
i1,i2

αi1αi2Cov(Yi1,Yi2)

≤ ∑
i1,i2

|αi1||αi2|
√

Var [Yi1]
√

Var [Yi2] ≤
[
∑

i

|αi |
√

Var [Yi]
]2

, (16)

for any real numbers(αi)i and square integrable real random variables(Yi)i , to deduce that

VarnVn+1(x j) ≤
1
M

[√
VΨ(V −AV)+

J

∑
i=1

|V −Vn|(xi)
√

VΨ(φi)
]2

, (17)

with VΨ(f) := sup1≤ j≤J Var Ψ(L f ,X(x j)). Now, we use the variance decomposition

Var Vn+1(x j) = Var [En[Vn+1(x j)]]+E[Varn[Vn+1(x j)]]

= E[Varn[Vn+1(x j)]],

and the general bound (deduced similarly to (16))

E
[
(α0 +

J

∑
i=1

αiYi)
2] ≤ 2α2

0 +2
(J

∑
i=1

|αi |
√

E[Y2
i]

)2
, (18)

to deduce from (17) that

vn+1 ≤
2
M

[
VΨ(V −AV)+

(J

∑
i=1

√
VΨ(φi)

)2
vn

]
,

which gives (10). Now, ifM is such thatρM := 2
M

(
∑J

i=1

√
VΨ(φi)

)2
< 1, then taking the upper limit

finishes the proof of Theorem 2.

Appendix B. Proof of Theorem 4

Using (4) and (6), we have the decomposition

−∂αLAVn−LAZn = −∂αLA(Vn−V)−∂αL(AV −V)

+L(Z−AZ)+LA(Z−Zn)

=
J

∑
i=1

(V −Vn)(xi)∂αLφi −∂αL(AV −V)

+L(Z−AZ)+
J

∑
i=1

(Z−Zn)(xi)Lφi .

425

MUNOS

Now, using (15), the variance may be written

VarnZn+1(x j) =
1
M

Varn
[
Φ(L(V −AV),X(x j))

+
J

∑
i=1

(V −Vn)(xi)Φ(Lφi ,X(x j))−Ψ(∂αL(AV −V),X(x j))

+
J

∑
i=1

(V −Vn)(xi)Ψ(∂αLφi ,X(x j))+Ψ(L(Z−AZ),X(x j))

+
J

∑
i=1

(Z−Zn)(xi)Ψ(Lφi ,X(x j))
]
.

We use (16) to deduce the bound

VarnZn+1(x j) ≤
1
M

[√
VΦ(V −AV)+

√
VΨ(L−1∂αL(AV −V))

+
J

∑
i=1

|V −Vn|(xi)
(√

VΦ(φi)+
√

VΨ(L−1∂αLφi)
)

+
√

VΨ(Z−AZ)+
J

∑
i=1

|Z−Zn|(xi)
√

VΨ(φi)
]2

,

Now, we use (18) to deduce that

zn+1 ≤
2
M

{(√
VΦ(V −AV)+

√
VΨ(L−1∂αL(AV −V))

+
[J

∑
i=1

√
VΦ(φi)+

√
VΨ(L−1∂αLφi)

]2
vn

+
√

VΨ(Z−AZ)+
[J

∑
i=1

√
VΨ(φi)

]2
zn

}
,

and Theorem 4 follows.

References

C. G. Atkeson, S. A. Schaal, and Andrew W. Moore. Locally weighted learning. AI Review, 11,
1997.

J. Baxter and P. L. Bartlett. Infinite-horizon gradient-based policy search. Journal of Artificial
Intelligence Research, 15:319–350, 2001.

P. W. Glynn. Likelihood ratio gradient estimation: an overview. In A. Thesen, H. Grant, and W. D.
Kelton, editors,Proceedings of the 1987 Winter Simulation Conference, pages 366–375, 1987.

E. Gobet and S. Maire. Sequential control variates for functionals of Markov processes.SIAM
Journal on Numerical Analysis, 43(3):1256–1275, 2005.

426

GEOMETRIC VARIANCE REDUCTION IN MARKOV CHAINS

E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for gradient estimates in
reinforcement learning.Journal of Machine Learning Research, 5:1471–1530, 2005.

J. H. Halton. A retrospective and prospective survey of the Monte-Carlo method.SIAM Review, 12
(1):1–63, 1970.

J. H. Halton. Sequential Monte-Carlo techniques for the solution of linear systems. Journal of
Scientific Computing, 9:213–257, 1994.

J. M. Hammersley and D. C. Handscomb.Monte-Carlo Methods. Chapman and Hall, 1964.

T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer Series in
Statistics, 2001.

C. Kollman, K. Baggerly, D. Cox, and R. Picard. Adaptive importance sampling on discrete Markov
chains.The Annals of Applied Probability, 9(2):391–412, 1999.

V. R. Konda and V. S. Borkar. Actor-critic-type learning algorithms for Markov decision processes.
SIAM Journal of Control and Optimization, 38:1:94–123, 1999.

S. Maire. An iterative computation of approximations on Korobov-like spaces. J. Comput. Appl.
Math., 54(6):261–281, 2003.

P. Marbach and J. N. Tsitsiklis. Approximate gradient methods in policy-space optimization of
Markov reward processes.Journal of Discrete Event Dynamical Systems, 13:111–148, 2003.

M. I. Reiman and A. Weiss. Sensitivity analysis via likelihood ratios. In J. Wilson, J. Henriksen,
and S. Roberts, editors,Proceedings of the 1986 Winter Simulation Conference, pages 285–289,
1986.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation.Neural Information Processing Systems. MIT Press, pages
1057–1063, 2000.

V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

V. Vapnik, S. E. Golowich, and A. Smola. Support vector method for function approximation,
regression estimation and signal processing.In Advances in Neural Information Processing Sys-
tems, pages 281–287, 1997.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning.Machine Learning, 8:229–256, 1992.

427

Journal of Machine Learning Research 7 (2006) 429–454 Submitted 7/05; Revised 1/06; Published 2/06

Inductive Synthesis of Functional Programs:
An Explanation Based Generalization Approach

Emanuel Kitzelmann emanuel.kitzelmann@wiai.uni-bamberg.de

Ute Schmid ute.schmid@wiai.uni-bamberg.de

Department of Information Systems and Applied Computer Science
Otto-Friedrich-University
Bamberg, Germany

Editors: Roland Olsson and Leslie Pack Kaelbling

Abstract

We describe an approach to the inductive synthesis of recursive equations from input/output-
examples which is based on the classical two-step approach to induction of functional Lisp
programs of Summers (1977). In a first step, I/O-examples are rewritten to traces which
explain the outputs given the respective inputs based on a datatype theory. These traces
can be integrated into one conditional expression which represents a non-recursive pro-
gram. In a second step, this initial program term is generalized into recursive equations
by searching for syntactical regularities in the term. Our approach extends the classical
work in several aspects. The most important extensions are that we are able to induce a
set of recursive equations in one synthesizing step, the equations may contain more than
one recursive call, and additionally needed parameters are automatically introduced.
Keywords: inductive program synthesis, inductive functional programming, explanation
based generalization, recursive program schemes

1. Introduction

Automatic induction of recursive programs from input/output-examples (I/O-examples) is
an active area of research since the sixties and of interest for AI research as well as for soft-
ware engineering (Lowry and McCarthy, 1991; Flener and Partridge, 2001). In the seventies
and eighties, there were several approaches to the synthesis of Lisp programs from examples
or traces (see Biermann et al. 1984 for an overview). The most influential approach was
developed by Summers (1977), who put inductive synthesis on a firm theoretical foundation.

Summers’ early approach is an explanation based generalization (EBG) approach, thus
it widely relies on algorithmic processes and only partially on search: In a first step, traces—
steps of computations executed from a program to yield an output from a particular input—
and predicates for distinguishing the inputs are calculated for each I/O-pair. Construction
of traces, which are terms in the classical functional approaches, relies on knowledge of the
inductive datatype of the inputs and outputs. That is, traces explain the outputs based
on a theory of the used datatype given the respective inputs. The classical approaches for
synthesizing Lisp-programs used the general Lisp datatype S-expression. By integrating
traces and predicates into a conditional expression a non-recursive program explaining all
I/O-examples is constructed as a result of the first synthesis step. In a second step, regular-

c©2006 Emanuel Kitzelmann and Ute Schmid.

Kitzelmann and Schmid

ities are searched for between the traces and predicates respectively. Found regularities are
then inductively generalized and expressed in the form of the resulting recursive program.

The programs synthesized by Summers’ system contain exactly one recursive function,
possibly along with one constant term calling the recursive function. Furthermore, all
synthesizable functions make use of a small fixed set of Lisp-primitives, particularly of
exactly one predicate function, atom, which tests whether its argument is an atom, e.g.,
the empty list. The latter implies two things: First, that Summers’ system is restricted to
induce programs for structural problems on S-expressions. That means, that execution of
induced programs depends only on the structure of the input S-expression, but never on
the semantics of the atoms contained in it. For example, reversing a list is a structural
problem, yet not sorting a list. The second implication is, that calculation of the traces is
a deterministic and algorithmic process, i.e., does not rely on search and heuristics.

Due to only limited progress regarding the class of programs which could be inferred by
functional synthesis, interest decreased in the mid-eighties. There was a renewed interest of
inductive program synthesis in the field of inductive logic programming (ILP) (Flener and
Yilmaz, 1999; Muggleton and De Raedt, 1994), in genetic programming and other forms of
evolutionary computation (Olsson, 1995) which rely heavily on search.

We here present an EBG approach which is based on the methodologies proposed by
Summers (1977). We regard the functional two-step approach as worthwhile for the follow-
ing reasons: First, algebraic datatypes provide guidance in expressing the outputs in terms
of the inputs as the first synthesis step. Second, it enables a seperate and thereby special-
ized handling of a knowledge dependent part and a purely syntactic driven part of program
synthesis. Third, using both algebraic datatypes and seperating a knowledge-dependent
from a syntactic driven part enables a more accurate use of search than in ILP or evolu-
tionary programming. Fourth, the two-step approach using algebraic datatypes provides a
systematic way to introduce auxiliary recursive equations if necessary.

Our approach extends Summers in several important aspects, such that we overcome
fundamental restrictions of the classical approaches to induction of Lisp programs: First, we
are able to induce a set of recursive equations in one synthesizing step, second, the equations
may contain more than one recursive call, and third, additionally needed parameters are
automatically introduced. Furthermore, our generalization step is domain-independent, in
particular independent from a certain programming language. It takes as input a first-order
term over an arbitrary signature and generalizes it to a recursive program scheme, that is, a
set of recursive equations over that signature. Hence it can be used as a learning component
in all domains which can represent their objects as recursive program schemes and provide a
system for solving the first synthesis step. For example, we use the generalization algorithm
for learning recursive control rules for AI planning problems (cp. Schmid and Wysotzki
2000; Wysotzki and Schmid 2001).

2. Overview Over the Approach

The three central objects dealt with by our system are (1) sets of I/O-examples specifying
the algorithm to be induced, (2) initial (program) terms explaining the I/O-examples, and
(3) recursive program schemes (RPSs) representing the induced algorithms. Their func-
tional role in our two-step synthesis approach is shown in Figure 1.

430

An EBG Approach to Inductive Synthesis of Functional Programs

I/O-examples

1. Step: Explanation, based

on knowledge of datatypes−−−−−−−−−−−−−−−−−−−−−→ Initial Term

2. Step: Generalization,

purely syntactic driven−−−−−−−−−−−−−−−−−−→ RPS

Figure 1: Two synthesis steps

2.1 First Synthesis Step: From I/O-examples to an Initial Term

An example for I/O-examples is given in Table 1. The examples specify the lasts function
which takes a list of lists as input and yields a list of the last elements of the lists as
output. In the first synthesis step, an initial term is constructed from these examples. An

[] 7→ [],
[[a]] 7→ [a],

[[a, b]] 7→ [b],
[[a, b, c], [d]] 7→ [c, d],

[[a, b, c, d], [e, f]] 7→ [d, f],
[[a], [b], [c]] 7→ [a, b, c]

Table 1: I/O-examples for lasts

initial term is a term respecting an arbitrary first-order signature extended by the special
constant symbol Ω, meaning the undefined value and directing generalization in the second
synthesis step. Suitably interpreted, an initial term evaluates to the specified output when
its variable is instantiated with a particular input of the example set and to undefined for
all other inputs.

Table 2 gives an example of an initial term. It shows the result of applying the first
synthesis step to the I/O-examples for the lasts function as shown in Table 1. if means
the 3ary non-strict function which returns the value of its second parameter if its first
parameter evaluates to true and otherwise returns the value of its third parameter; empty
is a predicate which tests, whether its argument is the empty list; head and tail yield the
first element and the rest of a list respectively; cons constructs a list from one element and
a list; and [] denotes the empty list.

Calculation of initial terms relies on knowledge of the datatypes of the example inputs
and outputs. For our exemplary lasts program inputs and outputs are lists. Lists are
uniquely constructed by means of the empty list [] and the constructor cons. Furthermore,
they are uniquely decomposed by the functions head and tail . That allows to calculate
a unique term which expresses an example output in terms of the input. For example,
consider the fourth I/O-example from Table 1: If x denotes the input [[a, b, c], [d]], then the
term cons(head(tail(tail(head(x)))), head(tail(x))) expresses the specified output [c, d] in
terms of the input. Such traces are constructed for each I/O-pair. The overall concept for
integrating the resulting traces into one initial term is to go through all traces in parallel
position by position. If the same function symbol is contained at the current position in all
traces, then it is introduced to the initial term at this position. If at least two traces differ
at the current position, then an if -expression is introduced. Therefore a predicate function
is calculated to discriminate the inputs according to the different traces. Construction
of the initial term proceeds from the discriminated inputs and traces for the second and

431

Kitzelmann and Schmid

if(empty(x), [],
cons(
head(
if(empty(tail(head(x))), head(x),
if(empty(tail(tail(head(x)))), tail(head(x)),
if(empty(tail(tail(tail(head(x))))), tail(tail(head(x))),
Ω)))),

if(empty(tail(x)), [],
cons(
head(
if(empty(tail(head(tail(x)))), head(tail(x)),
Ω)),

if(empty(tail(tail(x))), [],
Ω)))))))

Table 2: Initial term for lasts

third branch of the if -tree respectively. We describe the calculation of initial terms from
I/O-examples, i.e., the first synthesis step, in Section 4.

2.2 Second Synthesis Step: From Initial Terms to Recursive Equations

In the second synthesis step, initial ground terms are generalized to a recursive program
scheme. Initial terms are considered as (incomplete) unfoldings of an RPS which is to be
induced by generalization. An RPS is a set of recursive equations whose left-hand-sides
consist of the names of the equations followed by their parameter lists and whose right-
hand-sides consist of terms over the signature from the initial terms, the set of the equation
names, and the parameters of the equations. One equation is distinguished to be the main
one. An example is given in Table 3. This RPS, suitably interpreted, computes the lasts
function as described above and specified by the examples in Table 1. It results from

lasts(x) = if(empty(x), [], cons(head(last(head(x))), lasts(tail(x))))

last(x) = if(empty(tail(x)), x, last(tail(x)))

Table 3: Recursive Program Scheme for lasts

applying the second synthesis step to the initial term shown in Table 2. Note that it is a
generalization from the initial term in that it not merely computes the lasts function for the
example inputs but for input-lists of arbitrary length containing lists of arbitrary length.

The second synthesis step does not depend on domain knowledge. The meaning of the
function symbols is irrelevant, because the generalization is completely driven by detecting
syntactical regularities in the initial terms. To understand the link between initial terms
and RPSs induced from them, we consider the process of incrementally unfolding an RPS.

432

An EBG Approach to Inductive Synthesis of Functional Programs

Unfolding of an RPS is a (non-deterministic and possibly infinite) rewriting process which
starts with the instantiated head of the main equation of an RPS and which repeatedly
rewrites a term by substituting any instantiated head of an equation in the term with
either the equally instantiated body or with the special symbol Ω. Unfolding stops, when
all heads of recursive equations in the term are rewritten to Ω, i.e., the term contains no
rewritable head any more. Consider the last equation from the RPS shown in Table 3 and
the initial instantiation {x 7→ [a, b, c]}. We start with the instantiated head last([a, b, c])
and rewrite it to the term:

if(empty(tail([a, b, c])), [a, b, c], last(tail([a, b, c])))

This term contains the head of the last equation instantiated with {x 7→ tail([a, b, c])}.
When we rewrite this head again with the equally instantiated body we obtain:

if(empty(tail([a, b, c])), [a, b, c],
if(empty(tail(tail([a, b, c]))), tail([a, b, c]),

last(tail(tail([a, b, c]))))

This term now contains the head of the equation instantiated with {x 7→ tail(tail([a, b, c]))}.
We rewrite it once again with the instantiated body and then replace the head in the
resulting term with Ω and obtain:

if(empty(tail([a, b, c])), [a, b, c],
if(empty(tail(tail([a, b, c]))), tail([a, b, c]),

if(empty(tail(tail(tail([a, b, c])))), tail(tail([a, b, c])),Ω)))

The resulting finite term of a finite unfolding process is also called unfolding. Unfoldings
of RPSs contain regularities if the heads of the recursive equations are more than once
rewritten with its bodies before they are rewritten with Ωs. The second synthesis step is
based on detecting such regularities in the initial terms.

We describe the generalization of initial terms to RPSs in Section 3. The reason why
we first describe the second synthesis step and only afterwards the first synthesis step is,
that the latter is governed by the goal of constructing a term which can be generalized in
the second step. Therefore, for understanding the first step, it is necessary to know the
connection between initial terms and RPSs as established in the second step.

2.3 Characteristics and Limitations of the Approach

The overall objective of our approach is automatical induction of recursive functional pro-
grams from I/O-examples which are correct with respect to the functional behaviour desired
by the user. Since the approach is based on finding differences between traces, i.e., analyzing
one example in relation to the following example, the examples have to be the first k exam-
ples according to an ordering of the underlying data-type with the first example beeing the
least complex instance for which the target recursive program is defined. This is in contrast
to learning from a randomly chosen set of training data (according to some distribution)
which is the common setting in most learning approaches, e.g., in all PAC-learning (Valiant,
1984) algorithms. Another implication of this generalization methodology is that very few

433

Kitzelmann and Schmid

examples are sufficient. This is again in contrast to most learning settings, especially in
contrast to the identification-in-the-limit setting (Gold, 1967). A third implication is that
the examples have to be correct, i.e., the desired function has to be consistent with the
examples. This is not a limitation in our view since we assume that the examples are given
by some (end-user) programmer who knows the functional behaviour of the target program
and thus can provide a few correct examples. A fourth implication of the example-driven
approach is, that termination is assured for the induced programs. This is an important
characteristic since in general, termination is not decidable. Our algorithms output a set
of recursive equations which are consistent with the I/O-examples, i.e., which compute any
specified example-output from the respective example-input.

There are restrictions regarding the programs which can be synthesized. The first step
(see Section 2.1 for an overview and Section 4 for details) is restricted to structural problems,
i.e., functions on lists may only depend on the list structure but not on the meaning of the
items in the lists. The induced recursive equations stand in some call-relation. Due to
the second synthesis step (see Section 2.2 for an overview and Section 3 for details), this
relation is restricted to be flat, that is, recursive calls cannot be nested. Furthermore, the
relation is non-mutual, i.e., if one equation calls a second one, then the second one cannot
call the first one. Since the induction process relies on two successive synthesis steps, the
overall restrictions are the sum of the restrictions of the first step and the restrictions of the
second step. On the other hand, the two-step approach provides some modularity. Since the
limitation to structural problems is a restriction of only the first step, it would be sufficient
to only extend or substitute the first step to extend our approach to be capable of dealing
with non-structural problems, e.g., sorting problems.

For experimental results, a discussion of the approach, and a comparison to other in-
ductive programming systems see Sections 5 and 6.

3. Generalizing an Initial Term to an RPS

Since our generalization algorithm exploits the relation between an RPS and its unfoldings,
in the following we will first introduce the basic terminology for terms, substitutions, and
term rewriting as for example presented in Dershowitz and Jouanaud (1990). Then we will
present definitions for RPSs and the relation between RPSs and their unfoldings. The set
of all possible RPSs constitutes the hypothesis language for our induction algorithm. Some
restrictions on this general hypothesis language are introduced and finally, the components
of the generalization algorithm are described.

3.1 Preliminaries

We denote the set of natural numbers starting with 0 by N and the natural numbers greater
than 0 by N+. A signature Σ is a set of (function) symbols with α : Σ→ N giving the arity
of a symbol. We write TΣ for the set of ground terms, i.e., terms without variables, over Σ
and TΣ(X) for the set of terms over Σ and a set of variables X. We write TΣ,Ω for the set of
ground terms—called partial ground terms—constructed over Σ∪{Ω}, where Ω is a special
constant symbol denoting the undefined value. Furthermore, we write TΣ,Ω(X) for the set
of partial terms constructed over Σ∪{Ω} and variables X. With T∞Σ,Ω(X) we denote the set
of inifinite partial terms over Σ and variables X. Over the sets TΣ,Ω, TΣ,Ω(X) and T∞Σ,Ω(X)

434

An EBG Approach to Inductive Synthesis of Functional Programs

a complete partial order (CPO) ≤ is defined by: a) Ω ≤ t for all t ∈ TΣ,Ω, TΣ,Ω(X), T∞Σ,Ω(X)
and b) f(t1, . . . , tn) ≤ f(t′1, . . . , t

′
n) iff ti ≤ t′i for all i ∈ [1;n].

Terms can uniquely be expressed as labeled trees: If a term is a constant symbol or
a variable, then the corresponding tree consists of only one node labeled by the constant
symbol or variable. If a term has the form f(t1, . . . , tn), then the root node of the corre-
sponding tree is labeled with f and contains from left to right the subtrees corresponding
to t1, . . . , tn. We use the terms tree and term as synonyms. A position of a term/tree is
a sequence of positive natural numbers, i.e., an element from N ∗

+ . The set of positions of
a term t, denoted pos(t), contains the empty sequence ε and the position iu, if the term
has the form t = f(t1, . . . , tn) and u is a position from pos(ti), i ∈ [1;n]. Each position
of a term uniquely denotes one subterm. We write t|u for denoting that subterm which is
determined as follows: (a) t|ε = t, (b) if t = f(t1, . . . , tn) and u is a position in ti, then
t|iu = ti|u, i ∈ [1;n]. E.g., for the term f(x, y, g(h(a, p(s, t), b), z)) the position 312 denotes
the subterm p(s, t) because it is the second subterm of the first subterm of the third subterm
of the original term. We say that position u is smaller than position u′, u ≤ u′, if u is a
prefix of u′. If u is a position of term t and u′ ≤ u, then u′ is a position of t. For a term t
and a position u, node(t, u) denotes the fixed symbol f ∈ Σ, if t|u = f(t1, . . . , tn) or t|u = f
respectively. The set of all positions at which a fixed symbol f appears in a term is denoted
by pos(t, f). The replacement of a subterm t|u by a term s in a term t at position u is
written as t[u← s]. Let U denote a set of positions in a term t. Then t[U ← s] denotes the
replacement of all subterms t|u with u ∈ U by s in t.

A substitution σ is a mapping from variables to terms. Substitutions are naturally
continued to mappings from terms to terms by σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). Sub-
stitutions are written in postfix notation, i.e., we write tσ instead of σ(t). Substitutions
β : X → TΣ from variables to ground terms are called (variable) instantiations. A term p is
called pattern of a term t, iff t = pσ for a substitution σ. A pattern p of a term t is called
trivial, iff p is a variable and non-trivial otherwise. We write t ≤s p iff p is a pattern of t
and t <s p iff additionally holds, that p and t can not be unified by variable renaming only.

A term rewriting system (TRS) over Σ and X is a set of pairs of terms R ⊆ TΣ(X) ×
TΣ(X). The elements (l, r) of R are called rewrite rules and are written l → r. A term t′

can be derived in one rewrite step from a term t using R (t→R t′), if there exists a position
u in t, a rule l → r ∈ R, and a substitution σ : X → TΣ(X), such that (a) t|u = lσ and
(b) t′ = t[u ← rσ]. R implies a rewrite relation →R⊆ TΣ(X) × TΣ(X) with (t, t′) ∈→R if
t→R t′.

3.2 Recursive Program Schemes

Definition 1 (Recursive Program Scheme) Given a signature Σ, a set of function
variables Φ = {G1, . . . , Gn} for a natural number n > 0 with Σ∩Φ = ∅ and arity α(Gi) > 0
for all i ∈ [1;n], a natural number m ∈ [1;n], and a set of equations

G =

{ G1(x1, . . . , xα(G1)) = t1,

...
Gn(x1, . . . , xα(Gn)) = tn }

435

Kitzelmann and Schmid

where the ti are terms with respect to the signature Σ ∪ Φ and the variables x1, . . . , xα(Gi),
S = (G,m) is an RPS. Gm(x1, . . . , xα(Gm)) = tm is called the main equation of S.

The function variables in Φ are called names of the equations, the left-hand-sides are called
heads, the right-hand-sides bodies of the equations. For the lasts RPS shown in Table 3
holds: Σ = {if , empty , cons, head , tail , []}, Φ = {G1, G2} with G1 = lasts and G2 = last ,
and m = 1. G is the set of the two equations.

We can identify a TRS with an RPS S = (G,m):

Definition 2 (TRS implied by an RPS) Let S = (G,m) be an RPS over Σ, Φ and
X, and Ω the bottom symbol in TΣ,Ω(X). The equations in G constitute rules RS =
{Gi(x1, . . . , xα(Gi)) → ti | i ∈ [1;n]} of a term rewriting system. The system addition-
ally contains rules RΩ = {Gi(x1, . . . , xα(Gi))→ Ω | i ∈ [1;n], Gi is recursive}.

The standard interpretation of an RPS, called free interpretation, is defined as the
supremum in T∞Σ,Ω(X) of the set of all terms in TΣ,Ω(X) which can be derived by the
implied TRS from the head of the main equation. Two RPSs are called equivalent, iff
they have the same free interpretation, i.e., if they compute the same function for every
interpretation of the symbols in Σ. Terms in TΣ,Ω which can be derived by the instantiated
head of the main equation regarding some instantiation β : X → TΣ are called unfoldings
of an RPS relative to β. Note, that terms derived from RPSs are partial and do not contain
function variables, i.e., all heads of the equations are eventually rewritten by Ωs.

The goal of the generalization step is to find an RPS which explains a set of initial
terms, i.e., to find an RPS such that the initial terms are unfoldings of that RPS. We
denote initial terms by t̄ and a set of initial terms by I. We liberalize I such that it may
include incomplete unfoldings. Incomplete unfoldings are unfoldings, where some subtrees
containing Ωs are replaced by Ωs.

We need to define four further concepts, namely recursion positions which are positions
in the equation bodies where recursive calls appear, substitution terms which are the argu-
ment terms in recursive calls, unfolding positions which are positions in unfoldings at which
the heads of the equations are rewritten with their bodies, and finally parameter instanti-
ations in unfoldings which are subterms of unfoldings resulting from the initial parameter
instantiation and the substitution terms:

Definition 3 (Recursion Positions and Substitution Terms) Let G(x1, . . . , xα(G)) =
t with parameters X = {x1, . . . , xα(G)} be a recursive equation. The set of recursion posi-
tions of G is given by R = pos(t, G). Each recursive call of G at position r ∈ R in t implies
substitutions σr : X → TΣ(X) : xj 7→ t|rj for all j ∈ [1;α(G)] for the parameters in X. We
call the terms t|rj substitution terms of G.

For equation lasts of the lasts RPS (Table 3) holds R = {32} and xσ32 = tail(x). For
equation last holds R = {3} and xσ3 = tail(x).

Now consider an unfolding process of a recursive equation and the positions at which
rewrite steps are applied in the intermediate terms. The first rewriting is applied at root-
position ε, since we start with the instantiated head of the equation which is completely
rewritten with the instantiated body. In the instantiated body, rewrites occur at recursion

436

An EBG Approach to Inductive Synthesis of Functional Programs

positions R. Assume that on recursion position r ∈ R the instance of the head is rewritten
with an instance of the body. Then, relative to the resulting subtree at position r, rewrites
occur again at recursion positions, e.g., at position r′ ∈ R. Relative to the entire term these
latter rewrites occur therefore at compositions of position r and recursion positions, e.g.,
at position rr′ and so on. We call the infinite set of positions at which rewrites can occur
in the intermediate terms within an unfolding of a recursive equation unfolding positions.
They are determined by the recursion positions as follows:

Definition 4 (Unfolding Positions) Let R be the recursion positions of a recursive equa-
tion G. The set of unfolding positions U of G is defined as the smallest set of positions
which contain the position ε and, if u ∈ U and r ∈ R, the position ur.

The unfolding positions of equation lasts of the lasts RPS are {32, 3232, 323232, . . .}.
Now we look at the variable instantiations occuring during unfolding a recursive equa-

tion. Recall the unfolding process of the last equation (see Table 3) described at the end of
Section 2.2. The initial instantiation was βε = β = {x 7→ [a, b, c]}, thus in the body of the
equation (replaced for the instantiated head as result of the first rewrite step), its variable
is instantiated with this initial instantiation. Due to the substitution term tail(x), the vari-
able of the head in this body is instantiated with β3 = σ3 βε = {x 7→ tail([a, b, c])}, i.e., the
variable in the body replaced for this instantiated head is instantiated with σ3 βε. A further
rewriting step implies the instantiation β33 = σ3 σ3 βε = σ3 β3 = {x 7→ tail(tail([a, b, c]))}
and so on. We index the instantiations occuring during unfolding with the unfolding posi-
tions at which the particular instantiated heads were placed. They are determined by the
substitutions implied by recursive calls and an initial instantiation as follows:

Definition 5 (Instantiations in Unfoldings) Let G(x1, . . . , xα(G)) = t be a recursive
equation with parameters X = {x1, . . . , xα(G)}, R and U the recursion positions and unfold-
ing positions of G resp., σr the substitutions implied by the recursive call of G at position
r ∈ R, and β : X → TΣ an initial instantiation. Then a family of instantiations indexed
over U is defined as βε = β and βur = σr βu for u ∈ U, r ∈ R.

3.3 Restrictions and the Generalization Problem

An RPS which can be induced from initial terms is restricted in the following way: First,
it contains no mutual recursive equations, second, there are no calls of recursive equations
within calls of recursive equations (no nested recursive calls). The first restriction is not a
semantical restriction, since each mutual recursive program can be transformed to an equiv-
alent (regarding a particular algebra) non-mutual recursive program. Yet it is a syntactical
restriction, since unfoldings of mutual RPSs can not be generalized using our approach. A
restriction similar to the second one was stated by Rao (2004). He names TRSs complying
with such a restriction flat TRSs.

Inferred RPSs conform to the following syntactical characteristics: First, all equations,
potentially except of the main equation, are recursive. The main equation may be recursive
as well, but, it is the only equation not required to be recursive. Second, inferred RPSs are
minimal, in that (i) each equation is directly or indirectly (by means of other equations)
called from the main equation, and (ii) no parameter of any equation can be omitted

437

Kitzelmann and Schmid

if

empty

x

x

tail

tail

head

tail

tail

tail

head

Omega

if

if

cons

if

if

cons

if

if

[]

x

empty

x

empty

x

[]empty

[]empty

empty

x

empty

x

x

x

x

x

head

tail

head

head

tail

tail

head

tail

head

tail

tail

head

tail

head

head

tail

tail

tail

Omega

Omega

Figure 2: Initial Tree for lasts

without changing the free interpretation. RPSs complying with the stated restrictions and
characteristics are called minimal, non-mutual, flat recursive program schemes.

There might be several RPSs which explain an initial term t̄, but have different free
interpretations. For example, Ω is an unfolding of every RPS with a recursive main equation.
Therefore, an important question is which RPS will be induced. Summers (1977) required
that recurrence relations hold at least over three succeeding traces and predicates to justify
a generalization. A similar requirement would be that induced RPSs explain the initial
terms recurrently, meaning that I contains at least one term t̄ which can be derived from
an unfolding process, in which each recursive equation had to be rewritten at least three
times with its body. We use a slightly different requirement: One characteristic of minimal
RPSs is, that if at least one substitution term is replaced by another, then the resulting
RPS has a different free interpretation. We call this characteristic substitution uniqueness.
Thus, it is sensible to require that induced RPSs are substitution unique regarding the
initial terms, i.e., that if some substitution term is changed, then the resulting RPS no
longer explains the initial terms. It holds, that a minimal RPS explains a set of initial trees
recurrently, if it explains it substitution uniquely.

Thus the problem of generalizing a set of initial terms I to an RPS is to find an RPS
which explains I and which is substitution unique regarding I.

3.4 Solving the Generalization Problem

We will not state the generalization algorithm in detail in this section but we will describe
the underlying concepts and the algorithm in a more informal manner. For this section and
its subsections we use the term body of an equation for terms which are strictly speaking
incomplete bodies: They contain only the name of the equation instead of complete recursive
calls including substitution terms at recursion positions. For example, we refer to the term
if (empty(x), [], cons(head(last(head(x))), lasts)) as the body for equation lasts of the lasts

438

An EBG Approach to Inductive Synthesis of Functional Programs

RPS (see Table 3). The reason is, that we infer the complete body in two steps: First the
term which we name body in this context, second the substitution terms for the recursive
calls.

Generalization of a set of initial terms to an RPS is done in three successive steps,
namely segmentation of the terms, construction of equation bodies and calculation of sub-
stitution terms. These three generalization steps are organized in a divide-and-conquer
algorithm, where backtracking can occur to the divide-phase. Segmentation constitutes the
divide-phase which proceeds top-down through the initial terms. Within this phase recur-
sion positions (see Definition 3) and positions indicating further recursive equations are
searched for each induced equation. The latter set of positions is called subscheme positions
(see Definition 6 below). Found recursion positions imply unfolding positions (see Defini-
tion 4). As a result of the divide-phase the initial terms are divided into several parts by
the subscheme positions, such that—roughly speaking—each particular part is assumed to
be an unfolding of one recursive equation. Furthermore, the particular parts are segmented
by the unfolding positions, such that—roughly speaking—each segment is assumed to be
the result of one unfolding step of the respective recursive equation.

Consider the initial tree in Figure 2, it represents the initial term for lasts, shown in
Table 2. The curved lines on the path to the rightmost Ω divide the tree into three segments
which correspond to unfolding steps of the main equation, i.e., equation lasts. Note, that
the rightmost segment is incomplete. The short broad lines denote two subtrees which
are—except of their root head—unfoldings of the last equation. The curved lines within
these subtrees divide each subtree into segments, such that each segment corresponds to
one unfolding step of the last equation.

When the initial trees are segmented, calculation of equation bodies and of substitution
terms follows within the conquer-phase. These two steps proceed bottom-up through the
divided initial trees and reduce the trees during this process. The effect is, that bodies and
substitution terms for each equation are calculated from trees which are unfoldings of only
the currently induced equation and hence, each segment in these trees is an instantiation
of the body of the currently induced equation. For example, for the lasts tree shown in
Figure 2, a body and substitution terms are first calculated from the two subtrees, i.e.,
for the last equation. Since there are no further recursive equations called by the last
equation—i.e., the segments of the two subtrees contain themselves no subtrees which are
unfoldings of further equations—each segment is an instantiation of the body of the last
equation. When this equation is completely inferred, the two subtrees are replaced by
suitable instantiations of the head of the inferred last equation. The resulting reduced tree
is an unfolding of merely one recursive equation, the lasts equation. The three segments
in this reduced tree—indicated by the curved lines on the path to the rightmost Ω—are
instantiations of the body of the searched for lasts equation. From this reduced tree, body
and substitution terms for the lasts equation are induced and the RPS is completely induced.

Segmentations are searched for, whereas calculation of bodies and substitution terms
are algorithmic. Construction of bodies always succeeds, whereas calculation of substitution
terms—such that the inferred RPS explains the initial terms—may fail. Thus, an inferred
RPS can be seen as the result of a search through a hypothesis space where the hypotheses
are segmentations (divide-phase), and a constructive goal test, including construction of
bodies and calculation of substitution terms (conquer-phase), which tests, whether the

439

Kitzelmann and Schmid

completely inferred RPS explains the initial terms (and is substitution unique regarding
them). In the following we describe each step in more detail:

3.4.1 Segmentation

When induction of an RPS from a set of initial trees I starts, the hypothesis is, that
there exists an RPS with a recursive main equation which explains I. First, recursion and
subscheme positions for the hypothetical main equation Gm are searched for.

Definition 6 (Subscheme Positions) Subscheme positions are all smallest positions in
the body of a recursive equation G which denote subterms, in which calls of further recursive
equations from the RPS appear, but no recursive call of equation G.

E.g., the only subscheme position of equation lasts of the lasts RPS (Table 3) is u = 31. A
priori, only particular positions from the initial trees come into question as recursion and
subscheme positions, namely those which belong to a path leading from the root to an Ω.
The reason is, that eventually each head of a recursive equation at any unfolding position
in an intermediate term while unfolding this equation is rewritten with an Ω:

Lemma 7 (Recursion and Subscheme Positions imply Ωs) Let t̄ ∈ TΣ,Ω be an (in-
complete) unfolding of an RPS S = (G,m) with a recursive main equation Gm. Let R, U
and S be the sets of recursion, unfolding and subscheme positions of Gm respectively. Then
for all u ∈ U ∩ pos(t̄) holds:

1. pos(t̄|u,Ω) 6= ∅
2. ∀s ∈ S : if us ∈ pos(t̄) then pos(t̄|us,Ω) 6= ∅

It is not very difficult to see that this lemma holds. For a lack of space we do not give the
proof here. It can be found in (Kitzelmann, 2003) where Lemma 7 and Lemma 9 are proven
as one lemma. Knowing Lemma 7, before search starts, the initial trees can be reduced to
their skeletons which are terms resulting from replacing subtrees without Ωs with variables.

Definition 8 (Skeleton) The skeleton of a term t ∈ TΣ,Ω(X), written skeleton(t) is the
minimal pattern of t for which holds pos(t, Ω) = pos(skeleton(t),Ω).

For example, consider the subtree indicated by the leftmost short broad line of the tree in
Figure 2. Omitting the root head , it is an unfolding of the last equation of the lasts RPS
shown in Table 3. Its skeleton is the substantially reduced term:

if (x1, x2, if (x3, x4, if (x5, x6,Ω)))

Search for recursion and subscheme positions is done on the skeletons of the original
initial trees. Thereby the hypothesis space is substantially narrowed without restricting the
hypothesis language, since only those hypotheses are ruled out which are a priori known to
fail the goal test.

Ωs are not only implied by recursion and subscheme positions, but also imply Ωs recur-
sion and subscheme positions since Ωs in unfoldings result only from rewriting an instanti-
ated head of a recursive equation in a term with an Ω:

440

An EBG Approach to Inductive Synthesis of Functional Programs

Lemma 9 (Ωs imply recursion and subscheme positions) Let t̄ ∈ TΣ,Ω be an (in-
complete) unfolding of an RPS S = (G,m) with a recursive main equation Gm. Let R, U
and S be the sets of recursion, unfolding and subscheme positions of Gm respectively. Then
for all v ∈ pos(t̄, Ω) hold

• It exists an u ∈ U ∩ pos(t̄), r ∈ R with u ≤ v < ur or

• it exists an u ∈ U ∩ pos(t̄), s ∈ S with us ≤ v.

Proof: in (Kitzelmann, 2003).

From the definition of subscheme positions and the previous lemma follows, that subscheme
positions are determined, if a set of recursion positions has been fixed. Lemma 7 restricts the
set of positions which come into question as recursion and subscheme positions. Lemma 9
together with characteristics from subscheme positions suggests to organize the search as a
search for recursion positions with a depending parallel calculation of subscheme positions.
When hypothetical recursion, unfolding, and subscheme positions are determined they are
checked regarding the labels in the initial trees on pathes leading to Ωs. The nodes between
one unfolding position and its successors in unfoldings result from the same body (with
different instantiations). Since variable instantiations only occur in subtrees at positions
not belonging to pathes leading to Ωs, for each unfolding position the nodes between it and
its successors are necessarily equal :

Lemma 10 (Valid Segmentation) Let t̄ ∈ TΣ,Ω be an unfolding of an RPS S = (G,m)
with a recursive main equation Gm. Then there exists a term ťG ∈ TΣ,Ω(X) with pos(ťG,Ω) =
R∪S such that for all u ∈ U ∩pos(t̄) hold: ťG ≤Ω t̄|u where ≤Ω is defined as (a) Ω ≤Ω t if
pos(t,Ω) 6= ∅, (b) x ≤Ω t if x ∈ X and pos(t, Ω) = ∅, and (c) f(t1, . . . , tn) ≤Ω f(t′1, . . . , t

′
n)

if ti ≤Ω t′i for all i ∈ [1;n].
Proof: in (Kitzelmann, 2003).

This lemma has to be slightly extended, if one allows for initial trees which are incomplete
unfoldings. Lemma 10 states the requirements to assumed recursion and subscheme posi-
tions which can be assured at segmentation time. They are necessary for an RPS which
explains the initial terms, yet not sufficient to assure, that an RPS complying with them
exists which explains the initial trees. That is, later a backtrack can occur to search for
other sets of recursion and subscheme positions. If found recursion and subscheme positions
R and S comply with the stated requirements, we call the pair (R, S) a valid segmentation.

In our implemented system the search for recursion positions is organized as a greedy
search through the space of sets of positions in the skeletons of the initial trees. When
a valid segmentation has been found, compositions of unfolding and subscheme positions
denote subtrees in the initial trees assumed to be unfoldings of further recursive equations.
Segmentation proceeds recursively on each set of (sub)trees denoted by compositions of
unfolding positions and one subscheme position s ∈ S. We denote such a set of initial
(sub)trees Is.

3.4.2 Construction of Equation Bodies

Construction of each equation body starts with a set of initial trees I for which at segmen-
tation time a valid segmentation (R, S) has been found, and an already inferred RPS for

441

Kitzelmann and Schmid

each subscheme position s ∈ S which explains the subtrees Is. These subtrees of the trees
in I are replaced by the suitably instantiated heads or respectively bodies of the main equa-
tions of the already inferred RPSs. For example, consider the initial tree for lasts shown in
Figure 2. When calculation of a body for the main equation lasts starts from this tree, an
RPS containing only the last equation which explains all three subtrees indicated by the
short broad lines has already been inferred. The initial tree is reduced by replacing these
three subtrees by suitable instantiations of the head of the last equation. We denote the set
of reduced initial trees also with I and its elements also with t̄. By reducing the initial trees
based on already inferred recursive equations, the problem of inducing a set of recursive
equations is reduced to the problem of inducing merely one recursive equation (where the
recursion positions are already known from segmentation).

An equation body is induced from the segments of an initial tree which is assumed to
be an unfolding of one recursive equation.

Definition 11 (Segments) Let t̄ be an initial tree, R a set of (hypothetical) recursion
positions and U the corresponding set of unfolding positions. The set of complete segments
of t̄ is defined as: {t̄|u[R← G] | u ∈ U ∩ pos(t̄), R ⊂ t̄|u}

For example, consider the subtree indicated by the leftmost short broad line of the initial
tree in Figure 2 without its root head . It is an unfolding of the last equation as stated in
Table 3. When the only recursion position 3 has been found it can be splitted into three
segments, indicated by the curved lines:

1. if(empty(tail(head(x))),head(x), G)

2. if(empty(tail(tail(head(x)))), tail(head(x)), G)

3. if(empty(tail(tail(tail(head(x))))), tail(tail(head(x))), G)

Expressed according to segments, the fact of a repetitive pattern between unfolding positions
(see Lemma 10) becomes the fact, that the sequences of nodes between the root and each
G are equal for each segment. Each segment is an instantiation of the body of the currently
induced equation. In general, the body of an equation contains other nodes among those
between its root and the recursive calls. These further nodes are also equal in each segment.
Differences in segments of unfoldings of a recursive equation can only result from different
instantiations of the variables of the body. Thus, for inducing the body of an equation
from segments, we assume each position in the segments which is equally labeled in all
segments as belonging to the body of the assumed equation, but each position which is
variably labeled in at least two segments as belonging to the instantiation of a variable.
This assumption can be seen as an inductive bias since it might occur, that also positions
which are equal over all segments belong to a variable instantiation. Nevertheless it holds,
that if an RPS exists which explains a set of initial trees, then there also exists an RPS
which explains the initial trees and is constructed based on the stated assumption. Based
on the stated assumption, the body of the equation to be induced is determined by the
segments and defined as follows:

Definition 12 (Valid Body) Given a set of reduced initial trees, the most specific maxi-
mal pattern of all segments of all the trees is called valid body and denoted t̂G.

442

An EBG Approach to Inductive Synthesis of Functional Programs

The maximal pattern of a set of terms can be calculated by first order anti-unification
(Plotkin, 1969).

Calculating a valid body regarding the three segments enumerated above results in
the term if (empty(tail(x)), x,G). The different subterms of the segments are assumed
to be instantiations of the parameters in the calculated valid body. Since each segment
corresponds to one unique unfolding position, instantiations of parameters in unfoldings as
defined in Definition 5 are now given. For example, from the three segments enumerated
above we obtain:

1. βε(x) = head(x)

2. β3(x) = tail(head(x))

3. β33(x) = tail(tail(head(x)))

3.4.3 Inducing Substitution Terms

Induction of substitution terms for a recursive equation starts on a set of reduced initial
trees which are assumed to be unfoldings of one recursive equation, an already inferred
(incomplete) equation body which contains only a G at recursion positions, and variable
instantiations in unfoldings according to Definition 5. The goal is to complete each occurence
of G to a recursive call including substitution terms for the parameters of the recursive
equation.

The following lemma follows from Definition 5 and states characteristics of parameter
instantiations in unfoldings more detailed. It characterizes the instantiations in unfoldings
against the substitution terms of a recursive equation considering each single position in
them.

Lemma 13 (Instantiations in Unfoldings) Let G(x1, . . . , xα(G)) = t be a recursive equa-
tion with parameters X = {x1, . . . , xα(G)}, recursion positions R and unfolding positions U ,
β : X → TΣ an instantiation, σr substitution terms for each r ∈ R and βu instantiations as
defined in Definition 5 for each u ∈ U . Then for all i, j ∈ [1;α(G)] and positions v hold:

1. If (xi σr)|v = xj then for all u ∈ U hold (xiβur)|v = xjβu.

2. If (xi σr)|v = f((xi σr)|v1, . . . , (xi σr)|vn), f ∈ Σ, α(f) = n then for all u ∈ U hold
node(xiβur, v) = f .

We can read the implications stated in the lemma in the inverted direction and thus we
get almost immediately an algorithm to calculate the substitution terms of the searched for
equation from the known instantiations in unfoldings.

One interesting case is the following: Suppose a recursive equation, in which at least
one of its parameters only occurs within a recursive call in its body, for example the equa-
tion G(x, y, z) = if (zerop(x), y,+(x,G(prev(x), z, succ(y)))) in which this is the case for
parameter z.1 For such a variable no instantiations in unfoldings are given when induction
of substitution terms starts. Also such variables are not contained in the (incomplete) valid

1. A practical example is the tower-of-hanoi-problem.

443

Kitzelmann and Schmid

equation body. Our generalizer introduces them each time, when none of the both implica-
tions of Lemma 13 hold. Then it is assumed, that the currently induced substitution term
contains such a “hidden” variable at the current position. Based on this assumption the
instantiations in unfoldings of the hidden variable can be calculated and the inference of
subtitution terms for it proceeds as described for the other parameters.

When substitution terms have been found, it has to be checked, whether they are sub-
stitution unique with regard to the reduced initial terms. This can be done for each substi-
tution term that was found separately.

3.4.4 Inducing an RPS

We have to consider two further points: The first point is that segmentation presupposes the
initial trees to be explainable by an RPS with a recursive main equation. Yet in Section 3.3
we characterized the inferable RPSs as liberal in this point, i.e., that also RPSs with a non-
recursive main equation are inferable. In such a case, the initial trees contain a constant
(not repetitive) part at the root such that no recursion positions can be found for these
trees (as for example the three subtrees indicated by the short broad lines in Figure 2 which
contain the constant root head). In this case, the root node of the trees is assumed to belong
to the body of a non-recursive main equation and induction of RPSs recursively proceeds
at each subtree of the root nodes.

The second point is that RPSs explaining the subtrees which are assumed to be un-
foldings of further recursive equations at segmentation time are already inferred. Based
on these already inferred RPSs, the initial trees are reduced and then a body and substi-
tution terms are induced. Calculation of a body always succeeds, whereas calculation of
substitution terms may fail. To deal with induction of RPSs explaining the subtrees as an
independent problem requires, that if there exists a set of RPSs explaining the subtrees
such that substitution terms can be calculated then substitution terms can be calculated
for any set of RPSs explaining the subtrees.

Fortunately we could prove, that this requirement holds provided the main equation is
constructed according to the “maximal-body” principle (see Definition 12). A proof sketch is
as follows: Assume there are two different RPSs explaining the subtrees of a fixed subscheme
position. Provided the main equations of the two RPSs are constructed according to the
“maximal-body” principle, one can prove that the main equations of both RPSs have the
same number of parameters with the same instantiations for explaining the subtrees (see
Schmid, 2003, page 203, Theorem 7.3.3). Though the main equations of the RPSs might be
different in their non-parameter positions, it is then assured that induction of the current
equation will succeed for either both of the two different RPSs or for none of them but not
for only one. The reason is that the possibly different non-parameter positions only affect
the calculation of the body which always succeeds and that the critical point of inferring
substitution terms is only affected by the parameters of the main equations of the RPSs
and their instantiations.

4. Generating an Initial Term

Our theory and prototypical implementation for the first synthesis step uses the datatype
List , defined as follows: The empty list [] is an (α-)list and if a is in element of type α and

444

An EBG Approach to Inductive Synthesis of Functional Programs

l is an α-list, then cons(a, l) is an α-list. Lists may contain lists, i.e., α may be of type
List α′.

4.1 Characterization of the Approach

The constructed initial terms are composed from the list constructor functions [], cons, the
functions for decomposing lists head , tail , the predicate empty testing for the empty list,
one variable x, the 3ary (non-strict) conditional function if as control structure, and the
bottom constant Ω meaning undefined. Similar to Summers (1977), the set of functions
used in our term construction approach implies the restriction of induced programs to solve
structural list programs. An extension to Summers is that we allow the example inputs
to be partially ordered instead of only totally ordered. This is related to the extension of
inducing sets of recursive equations as described in Section 3 instead of only one recursive
equation.

We say that an initial term explains I/O-examples, if it evaluates to the specified output
when applied to the respective input or to undefined. The goal of the first synthesis step is to
construct an initial term which explains a set of I/O-examples and which can be explained
by an RPS.

4.2 Basic Concepts

Definition 14 (Subexpressions) The set of subexpressions of a list l is defined to be the
smallest set which includes l itself and, if l has the form cons(a, l′), all subexpressions of a
and of l′. If a is an atom, then a itself is its only subexpression.

Since head and tail—which are defined by head(cons(a, l)) = a and tail(cons(a, l)) = l—
decompose lists uniquely, each subexpression can be associated with the unique term which
computes the subexpression from the original list. E.g., consider the list [[a], [b]]. The
set of all subexpressions together with their associated terms is: {x = [[a], [b]], head(x) =
[a], tail(x) = [[b]], head(head(x)) = a, tail(head(x)) = [], head(tail(x)) = [b], tail(tail(x)) =
[], head(head(tail(x))) = b, tail(head(tail(x))) = []}.

Since lists are uniquely constructed by the constructor functions [] and cons, traces
which compute the specified output can uniquely be constructed from the terms for the
subexpressions of the respective input:

Definition 15 (Construction of Traces) Let i 7→ o be an I/O-pair (i is a list). If o is
a subexpression of i, then the trace is defined to be the term associated with o. Otherwise
o has the form cons(a, l). Let t and t′ be the traces for the I/O-pairs i 7→ a and i 7→ l
respectively. The trace for i 7→ o is defined to be the term cons(t, t′).

For example, the trace for computing (the example-output) [a, b] from (the example-input)
[[a], [b]] is the term cons(head(head(x)), head(tail(x))).

Similar to Summers, we discriminate the inputs with respect to their structure, more
precisely with regard to a partial order over them implied by their structural complexity.
As stated above, we allow for arbitrarily nested lists as inputs. A partial order over such
lists is given by: [] ≤ l for all lists l and cons(a, l) ≤ cons(a′, l′), iff l ≤ l′ and, if a and a′

are again lists, a ≤ a′.

445

Kitzelmann and Schmid

Consider any unfolding of an RPS. Generally it holds, that greater positions on a path
leading to an Ω result from more rewritings of a head of a recursive equation with its body
compared to some smaller position. In other words, the computation represented by a node
at a greater position is one on a deeper recursion level than a computation represented by a
smaller position. Since we use only the complexity of an input list as criterion whether the
recursion stops or whether another call appears with the input decomposed in some way,
deeper recursions result from more complex inputs in the induced programs.

4.3 Solving the Term Construction Problem

The overall concept of constructing the initial tree is to introduce the nodes from the traces
position by position to the initial tree as long as the traces are equal and to introduce an
if -expression as soon as at least two (sub)traces differ. The predicate in the if -expression
divides the inputs into two sets. The “then”-subtree is recursively constructed from the
input/trace-pairs whose inputs evaluate to true with the predicate and the “else”-subtree
is recursively constructed from the other input/trace-pairs. Eventually only one single
input/trace-pair remains when an if -expression is introduced. In this case an Ω indicating
a recursive call on this path is introduced as leaf at the current position in the initial term
and (this subtree of) the initial tree is finished. The reason for introducing an Ω in this case
is, that we assume, that if the input/trace-set would contain a pair with a more complex
input, than the respective trace would at some position differ from the remaining trace and
thus it would imply an if -expression, i.e., a recursive call at some deeper position. Since
we do not know the position at which this difference would occur, we can not use this
single trace, but have to indicate a recursive call on this path by an Ω. Thus, for principal
reasons, the constructed initial terms are undefined for the most complex inputs of the
example set. There are two consequences of this particular loss of information in the initial
terms compared to the I/O-examples. Since the following generalization step is based on
the initial terms (1) the neccessary number of examples increases and (2) if the generalized
program is incorrect it could especially be incorrect for the most complex examples. Thus
consistence of the induced programs with respect to the I/O-examples is generally only
assured for all examples except of the most complex ones.

We now consider the both cases that all roots of the traces are equal and that they differ
respectively more detailed.

4.3.1 Equal Roots

Suppose all generated traces have the same root symbol. In this case, this symbol constitutes
the root of the initial tree. Subsequently the sub(initial)trees are calculated through a recur-
sive call to the algorithm. Suppose the initial tree has to explain the I/O-examples {[a] 7→
a, [a, b] 7→ b, [a, b, c] 7→ c}. Calculating the traces and replacing them for the outputs yields
the input/trace-set {[a] 7→ head(x), [a, b] 7→ head(tail(x)), [a, b, c] 7→ head(tail(tail(x)))}.
All three traces have the same root head , thus we construct the root of the initial tree
with this symbol. The algorithm for constructing the initial subterm of the constructed
root head now starts recusively on the set of input/trace-pairs where the traces are the
subterms of the roots head from the three original traces, i.e., on the set {[a] 7→ x, [a, b] 7→
tail(x), [a, b, c] 7→ tail(tail(x))}.

446

An EBG Approach to Inductive Synthesis of Functional Programs

The traces from these new input/trace-set have different roots, that is, an if -expression
is introduced as subtree of the constructed initial tree.

4.3.2 Introducing Control Structure

Suppose the traces (at least two of them) have different roots, as for example the traces of
the second input/trace-set in the previous subsection. That means that the initial term has
to apply different computations to the inputs corresponding to the different traces. This is
done by introducing the conditional function if , i.e., the root of the initial term becomes
the function symbol if and contains from left to right three subtrees: First, a predicate
term with the predicate empty as root to distinguish between the inputs which have to
be computed differently with regard to their complexity; second, a tree explaining all I/O-
pairs whose inputs are evaluated to true from the predicate term; third, a tree explaining
the remaining I/O-examples. It is presupposed, that all traces corresponding to inputs
evaluating to true with the predicate are equal. These equal subtraces become the second
subtree of the if -expression, i.e., they are evaluated, if an input evaluates to true with the
predicate. That means that never an Ω occurs in a “then”-subtree of a constructed initial
tree, i.e., that recursive calls in the induced RPSs may only occur in the “else”-subtrees. For
the “else”-subtree the algorithm is recursively processed on all remaining input/trace-pairs.

For the predicate must hold that it evaluates to true for the least complex inputs be-
cause the “then”-subtree represents the termination of recursion whereas the “else”-subtree
represents a further recursive call (for more complex inputs) of the induced program. An
algorithm for calculating predicates evaluating to true for a particular expression and to
false for any more complex expression can be found in (Smith, 1984, page 310). If, for
example, the two input lists [a, b] and [a, b, c] shall be distinguished then the predicate is
empty(tail(tail(x))). For more complex data types as for example trees, or for nested lists,
calculation of predicates might not be unique. Then a strategy for chosing a predicate has
to be applied.

5. Experimental Results

We have implemented prototypes (without any thoughts about efficiency) for both described
steps, construction of the initial tree and generalization to an RPS. The implementations
are in Common-Lisp. In Table 4 we have listed experimental results for a few sample
problems. Due to the restrictions of the first synthesis step all these induced programs
deal with structural problems and are composed of only the primitive functions stated in
Section 4.1. Many interesting programs, as for example quicksort or towers-of-hanoi, do
not meet these restrictions and are not regarded. Due to the restriction of the second
synthesis step all these programs contain no nested recursive calls. The first column lists
the names for the induced functions, the second column lists the number of given I/O-pairs,
the third column lists the total number of induced equations and in parentheses the number
of induced recursive equations, and the fourth column lists the times consumed by the first
step, the second step, and the total time respectively. The experiments were performed on
a Pentium 4 with Linux and the program runs are interpreted with the clisp interpreter.

All induced programs compute the intended function. The number of given examples is
in each case the minimal one. When given one example less, the system does not produce

447

Kitzelmann and Schmid

function #expl #eqs(#rec) times in sec
last 4 2(1) .003 / .001 / .004
unpack 4 1(1) .003 / .002 / .005
init 4 1(1) .004 / .002 / .006
evenpos 7 2(1) .01 / .004 / .014
switch 6 1(1) .012 / .004 / .016
lasts 6 2(2) .014 / .015 / .029
shift 6 3(2) .015 / .033 / .048
mult-lasts 6 3(3) .023 / .21 / .233
reverse 6 4(3) .031 / .422 / .453
multi 12 5(5) .114 / 6.96 / 7.074

Table 4: Some inferred functions

an unintended program, but produces no program. Indeed, an initial term is produced in
such a case which is consistent with the example set, but no RPS is generalized, because it
exists no RPS which explains the initial term and is substitution unique with regard to it
(see Section 3.3).

last computes the last element of a list. The main equation is not recursive and only
applies a head to the result of the induced recursive equation which computes a one element
list containing the last element of the input list. unpack produces an output list, in which
each element from the input list is encapsulated in a one element list, e.g., unpack([a, b, c]) =
[[a], [b], [c]]. unpack is the classical example in (Summers, 1977). init returns the input list
without the last element. evenpos computes a list containing each second element of the
input list. The main equation is not recursive and only deals with the empty input list
as special case. switch returns a list, in which each two successive elements of the input
list are on switched positions, e.g., switch([a, b, c, d, e]) = [b, a, d, c, e]. lasts is the program
described in Section 2. The given I/O-examples are those from Table 1. shift moves the
last element of the input list to the front of the list. The main equation is not recursive
and only deals with the empty list and a one-element-list as special cases. The two induced
recursive equations compute the last element and the init of the input list respectively and
are combined to compute the shift function. mult-lasts takes a list of lists as input just
like lasts. It returns a list of the same structure as the input list where each inner list
contains repeatedly the last element of the corresponding inner list from the input. For
example, mult-lasts([[a, b], [c, d, e], [f]]) = [[b, b], [e, e, e], [f]]. All three induced equations are
recursive. The third equation computes a one element list containing the last element of
an input list. The second equation calls the third equation and returns a list of the same
structure as a given input list where the elements of the input list are replaced by the last
element. The first equation calls the second equation to compute the inner lists. reverse
reverses a list. The induced program has an unusual form, nevertheless it is correct. Finally
multi is a combination of mult-lasts, unpack, and switch. It takes a list of lists as input and
applies mult-lasts to the first list, unpack to the second list, switch to the third list, and then
again mult-lasts to the fourth list, unpack to the fifth list, switch to the sixth list and so on.
multi is in one run induced from the examples shown in Table 5. The induced program is

448

An EBG Approach to Inductive Synthesis of Functional Programs

[] 7→ [],
[[a]] 7→ [[a]],

[[a, b]] 7→ [[b, b]],
[[a, b, c], [d]] 7→ [[c, c, c], [[d]]],

[[a, b, c, d], [e, f], [g]] 7→ [[d, d, d, d], [[e], [f]], [g]],
[[a, b, c, d, e], [f, g, h], [i, j]] 7→ [[e, e, e, e, e], [[f], [g], [h]], [j, i]],
[[a], [b, c, d, e], [f, g, h], [i]] 7→ [[a], [[b], [c], [d], [e]], [g, f, h], [i]],

[[a], [b], [c, d, e, f], [g, h]] 7→ [[a], [[b]], [d, c, f, e], [h]],
[[a], [b], [c, d, e, f, g], [h], [i]] 7→ [[a], [[b]], [d, c, f, e, g], [h], [[i]]],

[[a], [b], [c, d, e, f, g, h], [i], [j, k], [l]] 7→ [[a], [[b]], [d, c, f, e, h, g], [i], [[j], [k]], [l]],
[[a], [b], [c], [d], [e], [f, g]] 7→ [[a], [[b]], [c], [d], [[e]], [g, f]],

[[a], [b], [c], [d], [e], [f], [g]] 7→ [[a], [[b]], [c], [d], [[e]], [f], [g]]

Table 5: I/O-examples for multi

shown in Table 6. Note that the names multi, switch, unpack etc. of the equations of the
induced RPS are ex post introduced from us; the system introduces names G1, G2,

multi(x) = if(empty(x), [], cons(multlasts(head(x)),
if(empty(tail(x)), [], cons(unpack(head(tail(x))),

if(empty(tail(tail(x))), [], cons(switch(head(tail(tail(x)))),
multi(tail(tail(tail(x))))))))))

switch(x) = if(empty(tail(x)), x, cons(head(tail(x)), cons(head(x),
if(empty(tail(tail(x))), [], switch(tail(tail(x)))))))

unpack(x) = cons(cons(head(x), []), if(empty(tail(x)), [], unpack(tail(x))))

multlasts(x) = if(empty(tail(x)), x, cons(head(last(x)),multlasts(tail(x))))

last(x) = if(empty(tail(tail(x))), tail(x), last(tail(x)))

Table 6: Recursive Program Scheme for multi

Considering the times taken by the first and second synthesis step for the problems
listed in Table 4 one finds (1) that they depend on the number of examples for the first step
and on the number of recursive equations for the second step and (2) that the times taken
from the second step increase faster than the times taken from the first step. A detailed
analysis of the complexities of the two synthesis steps has still to be done. For some results
regarding the second step see (Schmid, 2003, Section 7.4.1).

449

Kitzelmann and Schmid

6. Comparison with Other Inductive Programming Systems

Inductive learning of programs is in general primarily known from the field of inductive
logic programming (ILP), where the target language is relational descriptions in form of
logic programs, e.g., Prolog programs. However the usual goal of ILP is learning concepts
in form of a single, non-recursive predicate but not learning recursive algorithms with mul-
tiple interdependent predicates. Nevertheless there are ILP systems that have reasonable
behaviour on inducing recursive logic programs, GOLEM (Muggleton and Feng, 1990) as
an example. One interactive ILP system specializing in synthesizing recursive programs
is DIALOGS (Flener, 1997). For a comparison of different ILP systems specializing in
learning recursive predicates see (Flener and Yilmaz, 1999). More recent approaches to
learn recursive logic programs are the approach of Rao and Sattar (2001) and the system
ATRE (Malerba, 2003; Berardi et al., 2004). Two non-ILP systems for inducing recursive
programs are the evolutionary computation system ADATE (Automatic Design of Algo-
rithms Through Evolution) (Olsson, 1995) which induces functional programs in Standard
ML and the Optimal Ordered Problem Solver (OOPS) (Schmidhuber, 2004). All these sys-
tems and approaches differ in their induction strategy, in the training data (many examples
vs. few examples, only positive vs. both positive and negative examples, I/O-examples vs.
example-inputs together with an evaluation function), in whether the induction relies on
background knowledge, and in the limitations regarding inducable programs.

Our approach is different from most of the other approaches in that it is mostly ana-
lytical instead of search-based. In the following, we discuss this difference considering our
system, ADATE, the well known ILP system FOIL (Quinlan, 1990) which was extended
with concepts to learn recursive clauses (Cameron-Jones and Quinlan, 1993), and the Op-
timal Ordered Problem Solver. FOIL as well as ADATE and our system are capable of
inducing more than one recursive function/clause in one run. FOIL needs a specification
for every clause it shall induce, whereas ADATE and our system are capable of automat-
ically introduce auxiliary recursive functions and thereby auxiliary parameters. E.g., one
can give a specification of reversing a list to our system in terms of the I/O-examples
{[] 7→ [], [a] 7→ [a], [a, b] 7→ [b, a], [a, b, c] 7→ [c, b, a], [a, b, c, d] 7→ [d, c, b, a]} and it automat-
ically introduces an auxiliary function containing the second accumulating variable. When
ADATE or our system outputs more than one recursive function these functions clearly are
interdependent. In contrast, when different predicates to learn in one run are specified in
FOIL, they are mostly learned independently one after another though foremost learned
predicates can be used as background knowledge for the remaining predicates. FOIL has
no knowledge of structured datatypes, e.g. lists, on its own and actually can handle only
atoms. Thus lists have to be simulated with constants and one has to specify procedures
for “composing” and “decomposing” such simulated lists as background knowldedge.

FOIL and ADATE directly search through a hypothesis space, whereas our system
deterministically constructs an explanation of the I/O-examples in a first step and only
then searches a hypothesis space for a generalization of the explanation. The main effect
regarding this difference is that FOIL and ADATE can be given any background knowledge
in terms of additional predicate specifications in the case of FOIL and predefined SML
functions in the case of ADATE respectively. These predicates or functions respectively
are then used in the synthesized programs. Since the branching factor in the search spaces

450

An EBG Approach to Inductive Synthesis of Functional Programs

grows as this background knowledge increases, increasing background knowledge supposably
tends to result in increasing run times. In contrast—though our generalization component is
domain independent—, our system on the whole is restricted to background knowledge that
admits an almost deterministic explanation of the I/O-examples. Therefore it cannot be
given any predefined functions to be used in a synthesized program. Until now, synthesized
programs can only be composed of the predefined functions stated in Section 4.1. Since the
particular knowledge of datatypes admits deterministic explanations, it is used to restrict
the hypothesis search space.

It would be interesting to compare the run times of FOIL, ADATE, and our system.
However, since the systems have different restrictions, it is not trivial to find adequate and
significant problems and specifications for a comparison. The restrictions of FOIL—no han-
dling with structured datatypes and no automatic introduction of auxiliary predicates and
variables—could be dealt with by simulating lists and by specifying all needed predicates.
On the other side, the restrictions of our system—only particular primitive functions can
be used in the synthesized programs—cannot be bypassed at present. For problems which
need only few predicates/functions as background knowledge and contain only one recursive
predicate/function as for example last or member, FOIL as well as our system take less than
one second on a Pentium 4 with Linux. We have not measured the run times of the ADATE
system for these simple problems, but on the web pages of the ADATE system2 Roland
Olsson reports on 570 seconds on a 200MHz PentiumPro for reversing a list.

Like FOIL and ADATE, the Optimal Ordered Problem Solver is based on a “generate-
and-test” method. In (Schmidhuber, 2004), inducing a recursive program for towers-of-
hanoi is reported. The induction takes a few days on a personal computer.

It is theoretically plausible as well as empirically evident that higher generality of ind-
ucable programs leads to higher computational effort of the program synthesizer. ADATE
as well as OOPS are highly general program synthesizers with high run times. On the
other extreme is our system with strong restrictions regarding synthesizable programs but
much faster program inductions. An interesting question is, whether it could be possible
to combine both approaches. We think that one approach to combine both methods could
be to generate the traces and predicates with some “generate-and-test” method and then
generalizing the integrated initial terms with our generalization algorithm. This would over-
come the restrictions to structural problems as well as to restricted background knowledge
which are implied by our analytical trace and predicate construction method. On the other
hand, by keeping the construction and generalization of traces one would (1) presumably
hold some advantage regarding run time compared to pure “generate-and-test” algorithms
because searching for traces is less elaborate than searching for a recursive program and
(2) hold the important point of constructing programs which are assured to terminate.
Thus this could be a good compromise regarding the conflicting aspects of generality of
the induced programs, computational effort of the induction algorithm, and assurance of
termination for the induced programs.

2. http://www-ia.hiof.no/˜rolando/

451

Kitzelmann and Schmid

7. Conclusion and Further Research

We presented an EBG approach to inducing sets of recursive equations representing func-
tional programs from I/O-examples. The underlying methodologies are inspired by classi-
cal approaches to induction of functional Lisp-programs, particularly by the approach of
Summers (1977). The presented approach goes in three main aspects beyond Summers’
approach: Sets of recursive equations can be induced at once instead of only one recur-
sive equation, each equation may contain more than one recursive call, and additionally
needed parameters are introduced systematically. We have implemented prototypes for
both steps. The generalizer works domain-independent and all problems which comply to
our general program scheme (Definition 1) with the restrictions described in Section 3.3 can
be solved, whereas construction of initial terms as described in Section 4 relies on knowledge
of datatypes.

We are investigating several extensions for the first synthesis step: First, we try to inte-
grate knowledge about further datatypes such as trees and natural numbers. For example,
we believe, that if we introduce zero and succ, denoting the natural number 0 and the suc-
cessor function resp. as constructors for natural numbers, prev for “decomposing” natural
numbers and the predicate zerop as bottom test on natural numbers, then it should be
possible to induce a program returning the length of a list for example. Another extension
will be to allow for more than one input parameter in the I/O-examples, such that append
becomes inducable for example. A third extension should be the ability to use user-defined
or in a previous step induced functions within an induction step.

Until now our approach suffers from the restriction to structural problems due to the
principal approach to calculate traces deterministically without search in the first synthesis
step. We work on overcoming this restriction, i.e., on extending the first synthesis step to
the ability of dealing with problems which are not (only) structural, list sorting for example.
A strong extension to the second step would be the ability to deal with nested recursive
calls, yet this would imply a much more complex structural analysis on the initial terms.

Acknowledgments

We would like to acknowledge previous work from Martin Mühlpfordt and Fritz Wysotzki.
Martin Mühlpfordt implemented the second synthesis step. We also like to thank three
anonymous reviewers for their very helpful comments and suggestions for improving an
earlier draft of this paper.

References

M. Berardi, A. Varlaro, and D. Malerba. On the effect of caching in recursive theory learning.
In R. Camacho, R. D. King, and A. Srinivasan, editors, Inductive Logic Programming:
ILP 2004, pages 44–62. Springer, 2004.

A. W. Biermann, G. Guiho, and Y. Kodratoff, editors. Automatic Program Construction
Techniques. Collier Macmillan, 1984.

452

An EBG Approach to Inductive Synthesis of Functional Programs

R. Mike Cameron-Jones and J. Ross Quinlan. Avoiding pitfalls when learning recursive
theories. In IJCAI, pages 1050–1055. Morgan Kaufmann, 1993.

N. Dershowitz and J.-P. Jouanaud. Rewrite systems. In J. Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B. Elsevier, 1990.

P. Flener. Inductive logic program synthesis with DIALOGS. In S. Muggleton, editor,
Proceedings of ILP’96, pages 175–198. Springer, 1997.

P. Flener and D. Partridge. Inductive programming. Autom. Softw. Eng., 8(2):131–137,
2001.

P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs: Achievements and
prospects. Journal of Logic Programming, 41(2–3):141–195, 1999.

E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967.

E. Kitzelmann. Inductive functional program synthesis – a term-construction and
folding approach. Master’s thesis, Dept. of Computer Science, TU Berlin, 2003.
http://www.cogsys.wiai.uni-bamberg.de/kitzelmann/documents/thesis.ps.

M. L. Lowry and R. D. McCarthy. Autmatic Software Design. MIT Press, Cambridge,
Mass., 1991.

D. Malerba. Learning recursive theories in the normal ILP setting. Fundamenta Informat-
icae, 57(1):39–77, 2003.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal
of Logic Programming, Special Issue on 10 Years of Logic Programming, 19-20:629–679,
1994.

S. H. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the
First Conference on Algorithmic Learning Theory, pages 368–381, Tokyo, 1990. Ohmsha.

R. Olsson. Inductive functional programming using incremental program transformation.
Artificial Intelligence, 74(1):55–83, 1995.

G. D. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5, pages
153–163. Edinburgh University Press, 1969.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,
1990.

M. R. K. Krishna Rao. Inductive inference of term rewriting systems from positive data.
In Algorithmic Learning Theory, pages 69–82, 2004.

M. R. K. Krishna Rao and A. Sattar. Polynomial-time learnability of logic programs with
local variables from entailment. Theoretical Computer Science, 268(2):179–198, 2001.

453

Kitzelmann and Schmid

U. Schmid. Inductive Synthesis of Functional Programs – Universal Planning, Folding of
Finite Programs, and Schema Abstraction by Analogical Reasoning. Springer, 2003.

U. Schmid and F. Wysotzki. Applying inductive programm synthesis to macro learning.
In Proc. 5th International Conference on Artificial Intelligence Planning and Scheduling
(AIPS 2000), pages 371–378. AAAI Press, 2000.

J. Schmidhuber. Optimal ordered problem solver. Machine Learning, 54(3):211–254, 2004.

D. R. Smith. The synthesis of LISP programs from examples: A survery. In A. W. Biermann,
G. Guiho, and Y. Kodratoff, editors, Automatic Program Construction Techniques, pages
307–324. Macmillan, 1984.

P. D. Summers. A methodology for LISP program construction from examples. Journal
ACM, 24(1):162–175, 1977.

L. G. Valiant. A theory of the learnable. In STOC ’84: Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pages 436–445, New York, NY, USA, 1984.
ACM Press.

F. Wysotzki and U. Schmid. Synthesis of recursive programs from finite examples by
detection of macro-functions. Technical Report 01-2, Dept. of Computer Science, TU
Berlin, Germany, 2001.

454

Journal of Machine Learning Research 7 (2006) 455–491 Submitted 12/04; Revised 10/05; Published 2/06

Optimising Kernel Parameters and Regularisation Coefficients for
Non-linear Discriminant Analysis

Tonatiuh Peña Centeno TPENA@DCS.SHEF.AC.UK

Neil D. Lawrence NEIL@DCS.SHEF.AC.UK

Department of Computer Science
The University of Sheffield
Regent Court, 211 Portobello Street
Sheffield, S1 4DP, U.K.

Editor: Greg Ridgeway

Abstract
In this paper we consider a novel Bayesian interpretation ofFisher’s discriminant analysis. We re-
late Rayleigh’s coefficient to a noise model that minimises acost based on the most probable class
centres and that abandons the ‘regression to the labels’ assumption used by other algorithms. Opti-
misation of the noise model yields a direction of discrimination equivalent to Fisher’s discriminant,
and with the incorporation of a prior we can apply Bayes’ ruleto infer the posterior distribution of
the direction of discrimination. Nonetheless, we argue that an additional constraining distribution
has to be included if sensible results are to be obtained. Going further, with the use of a Gaussian
process prior we show the equivalence of our model to a regularised kernel Fisher’s discriminant. A
key advantage of our approach is the facility to determine kernel parameters and the regularisation
coefficient through the optimisation of the marginal log-likelihood of the data. An added bonus of
the new formulation is that it enables us to link the regularisation coefficient with the generalisation
error.

1. Introduction

Data analysis typically requires a preprocessing stage to give a more parsimonious representation
of data, such preprocessing consists of selecting a group of characteristic features according to an
optimality criterion. Tasks such as data description or discrimination commonly relyon this prepro-
cessing stage. For example, Principal Component Analysis (PCA) describes data more efficiently
by projecting it onto the principal components and then by minimising the reconstruction error, see
e.g. (Jolliffe, 1986). In contrast, Fisher’s linear discriminant (Fisher,1936) separates classes of data
by selecting the features1 that maximise the ratio of projected class means to projected intraclass
variances.

The intuition behind Fisher’s linear discriminant (FLD) consists of looking for a vector of com-
poundsw such that, when a set of training samples are projected on to it, the class centres are far
apart while the spread within each class is small, consequently producing a small overlap between
classes (Schölkopf and Smola, 2002). This is done by maximising a cost function known in some
contexts as Rayleigh’s coefficient,J(w). Kernel Fisher’s discriminant (KFD) is a nonlinearisation

1. In Fisher’s terminology the features are grouped into a vector of ‘compounds’.

c©2006 Tonatiuh Peña Centeno and Neil D. Lawrence.

PEÑA CENTENO AND LAWRENCE

that follows the same principle but in a typically high-dimensional feature space F . In this case,
the algorithm is reformulated in terms ofJ(α), whereα is the new direction of discrimination. The
theory of reproducing kernels in Hilbert spaces (Aronszajn, 1950) gives the relation between vectors
w andα, see Section 5.1. In either case, the objective is to determine the most ‘plausible’ direction
according to the statisticJ.

Mika et al. (1999) demonstrated that KFD can be applied to classification problems with com-
petitive results. KFD shares many of the virtues of other kernel based algorithms: the appealing
interpretation of a kernel as a mapping of an input to a high dimensional space and good perfor-
mance in real life applications, among the most important. However, it also suffers from some of the
deficiencies of kernelised algorithms: the solution will typically include a regularisation coefficient
to limit model complexity and parameter estimation will rely on some form of cross validation.
Unfortunately, there is no principled approach to set the former, while the latter precludes the use
of richer models.

In this paper we introduce a novel probabilistic interpretation of Fisher’s discriminant. Classical
FLD is revised in Section 2 while an alternative noise model is outlined in Section 3. We build
on the model in Section 4 by first applying priors over the direction of discrimination to develop a
BayesianFisher discriminant and later we use a Gaussian process prior to reformulate the problem.
In Section 5, we compare our model to other approaches. We explore the connections of our model
to the expected generalisation error in Section 6. Section 7 details an EM-based algorithm for
estimating the parameters of the model (kernel and regularisation coefficients) by optimising the
marginal log likelihood. We present the results of our approach by applying it on toy data and by
classifying benchmark data sets, in Section 8. Finally we address future directions of our work in
Section 9.

2. Fisher’s Discriminant Analysis

As mentioned above, discriminant analysis involves finding a vector of compoundsw ∈ R
d×1 for

which class separation will be maximised according to some defined statistic. Considering a set

of training data and labels,D = (X,y) =
{

x(n),y(n)
}N

n=1 ∈ R
N×(d+1), the discriminant reduces the

dimensionality of the data through a linear combination, such that a set of singlevariates
{(

µ1,σ2
1

)

,
(

µ0,σ2
0

)}

is produced; where we define
(

µq,σ2
q

)

as the sample mean and variance of each projected
group. The hope is that both groups will be distinguished from one another by using this new set.
Fisher was the first to conclude that the compounds should be given by maximising the ratio of
between to within class variances,

J =
(µ1−µ0)

2

σ2
1 +σ2

0

. (1)

We will use the following definitions. A vector of projections is generated by taking the product
f = Xw ∈ R

N×1 and the sample means for each class aremq = N−1
q ∑n∈Nq

x(n)
q , hence the projected

mean and variance are given by

µq = N−1
q wTmq

= N−1
q fTyq, (2)

456

OPTIMIZING KERNEL PARAMETERS

and

σ2
q = ∑

n∈Nq

(

wTx(n)
q −µq

)2

= ∑
n∈Nq

(

f (n)−µq

)2
, (3)

respectively. Abusing the notation, we have split the training data into two disjoint groups(X,y) =

(X0,y0)∪(X1,y1), with y(n)
q ∈ {0,1}. The coefficientNq is the cardinality of each group,q∈ {0,1}.

Modern texts on pattern recognition and machine learning (Fukunaga, 1990; Duda and Hart,
1973; Bishop, 1995; Ripley, 1996) prefer to make explicit the dependence of this statistic on the
vector of compounds. Hence, with some manipulation and the introduction of a couple of matrices
we arrive at

J(w) =
wTΣBw
wTΣww

, (4)

whereΣB = (m1−m0)(m1−m0)
T andΣw = ∑q∈{0,1} ∑Nq

n=1

(

x(n)
q −mq

)(

x(n)
q −mq

)T
, are between

and within covariance matrices respectively. MatrixΣB measures the separation between class
means whileΣw gives an estimation of the spread around them. A solution for this problem consists
of taking the derivative of Equation 4 w.r.t.w and solving. This leads to a generalised eigenvalue
problem of the formΣ−1

w ΣBw = λw, with λ being the eigenvalues. A solution for the discriminant
can also be derived from geometric arguments. Given a test pointx?, the discriminant is a hyper-
planeD(x?) = wTx? +b, that outputs a number according to the class membership of the test point,
whereb is a bias term. In this contextw is a vector that represents the direction of discrimina-
tion. Following this line, the solutionw ∝ Σ−1

w (m0−m1) is sometimes easier to interpret than the
eigenvalue problem.

As it was demonstrated by Mika (2001), a more detailed analysis of FLD allowsit to be cast as
a quadratic programming problem. In order to do so, we observe that the magnitude of the solution
is not relevant, so for example, the numerator of Equation 1 can be fixed to an arbitrary scalar while
the denominator is minimised. In other words, the variance of the projections is minimised while
the distance between projected means is kept at, sayd = µ0−µ1. Rayleigh’s statistic can then be
written asJ = d2

/(

σ2
1 +σ2

0

)

. The subsequent discussion will make use of this ‘average distance’
constraint to reformulate the discriminant problem.

3. Probabilistic Interpretation

We introduce some notation that will be used throughout the rest of the paper. The set of variables
D = (X,y) ∈ R

N×(d+1) is observed or instantiated,f ∈ R
N×1 is a dependent or latent variable and

t ∈ R
N×1 is a vector of targets that have been observed as well. The random variables will follow

some probability law and in this model, in particular, we study the relationship between observed
and latent variables: the noise model. From Section 2, we know that every observation inD is
projected into a single variate that ideally can take only two values which are theprojected class
centres, where the variance around the projections tries to be minimised. We define the parameters
c0 andc1 as the true class centres in the projected space. Additionally, we introduce aprecisionβ
that corresponds to the variance around the projected data. Because of the nature of the mapping

457

PEÑA CENTENO AND LAWRENCE

process, it is convenient to define some auxiliary variables as well,t1 is a vector filled withc1’s
whenevery(n) = 1 and filled with zeros otherwise;t0 is a vector filled withc0’s whenevery(n) = 0
and with zeros otherwise. We also takey1 = y and y0 = 1− y and denote bŷv the maximum
likelihood estimate of a vector/scalarv.

3.1 The Noise Model

Figure 1 models the causal relationship between the observationsD and the variablesf andt, such
that the distributionp(f, t|D,) can be decomposed into noise modelp(t|y, f) and priorp(f|X),
disregarding the parameterβ. For the moment, we will ignore the prior and consider only the noise
model. In graphical notation every fully shaded circle corresponds to anobserved variable and a
blank circle indicates a latent variable. We make use as well of partially shaded circles to indicate
the binary nature of the discriminant, that is, that targets should only take oneof two different
values. In Figure 1 the variablet(n)

1 is observed whenevery(n) = 1; andt(n)
0 , whenevery(n) = 0. Both

variablest0 andt1 are discrete, with each of their elements being given by the class centresc0 andc1,
nevertheless, we will make a Gaussian2 approximation such that every elementt(n)

q ∼N
(

f (n),β−1
)

.
From this approximation the noise model can be defined as

p(t|y, f,β) =
β N

2

(2π)
N
2

exp

{

−β
2 ∑

q∈{0,1}
(tq− f)T diag(yq)(tq− f)

}

. (5)

� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

t

f

X

y

0 1

10y

t β

Figure 1: The proposed graphical model for discriminant analysis. The graph models the joint distribution
over the latent variablesf and the targetst = t0∪ t1, which have been decomposed into their two
possible types. Disregarding the parameterβ, the joint probability is factorised asp(f, t|D) =
p(t|y, f) p(f|X), where the noise model is given byp(t|y, f) and the prior byp(f|X). Note that
we express the labels into two different groupsy0 andy1. Shaded nodes indicate instantiated
variables, blank ones correspond to latent variables and partially shaded (t0 and t1) nodes are
only observed according to the values of the labels (y0 andy1, respectively). We assume that

every observed target is distributed according tot(n)
q ∼ N

(

f (n),β−1
)

, whereβ is the precision
parameter.

As it can be observed from both the figure and Equation 5, there is a conditional independence
assumption on the observed targets giveny and f; in other words, the noise model can be further

2. We use the notationN (x|m,Σ) to indicate a multivariate Gaussian distribution overx with meanm and covariance
Σ.

458

OPTIMIZING KERNEL PARAMETERS

decomposed asp(t|y, f) = p(t0|y0, f) p(t1|y1, f), where we have disregarded the dependence on
β.

We can substitute every elementt(n)
q by its class centrecq and take the log of (5) to obtain

L (f,β) = −β
2

N

∑
n=1

[

y(n)
(

c1− f (n)
)2

+
(

1−y(n)
)(

c0− f (n)
)2
]

+C, (6)

where C=
N
2

log
β
2π

.

Note that the class centres can be made to coincide with the labels. In such a ‘regression to the
labels’ scheme, FLD can be recovered in a straightforward manner.

3.1.1 MAXIMUM L IKELIHOOD

Parameter estimates can be found by zeroing the gradient ofL with respect to eachf (n) andβ and
solving the resulting expressions for each parameter. This leads to the fixed point equations

f̂
(n)

=
(

1−y(n)
)

c0 +y(n)c1 (7)

and

β̂ =
N

∑N
n=1yn

(

c1− f (n)
)2

+∑N
n=1(1−yn)

(

c0− f (n)
)2 . (8)

However, the values of the class centresc0 andc1 are not known, soL can also be maximised w.r.t.
them to obtain

ĉq =
1
Nq

Nq

∑
n=1

y(n)
q f (n) forq∈ {0,1} . (9)

The resultsf̂ (n) andĉq suggest applying an iterative scheme to find the maximum. This can be done
by substitutingf̂ (n) andĉq on the right hand sides of Equations 9 and 7, respectively, initialising one
of the variables to an arbitrary value and updating all of them until convergence.

3.2 Model Equivalence

We now turn to the connections between Rayleigh’s statistic and the proposednoise model. In
particular, we want to show that maximum likelihood learning in our framework isequivalent to
maximisation of Rayleigh’s coefficient. In order to do so, we back substitute the values ˆcq into L
(Equation 6) compute the gradient w.r.tβ and solve the resulting expression forβ. The substitution
of each class centre by their most probable values is indispensable and central to our framework.
As a result of this substitution we can create a cost function that reduces the error around the most
probable class centres. The solution forβ leads to an expression of the form

β̂ =
N

σ2
1 +σ2

0

,

with σ2
q defined in Equation 3, forq ∈ {0,1}, and where we have recognised that Equation 2 is

equivalent to Equation 9. The result above is proportional to the constrained version of Rayleigh’s

459

PEÑA CENTENO AND LAWRENCE

quotient mentioned before,J = d2
/(

σ2
1 +σ2

0

)

, hence we can write

J(f) =
d2β̂
N

. (10)

It is clear that this quantity monotonically increases over the domainR
+ becausêβ can only take

positive values. Meanwhile the likelihood, the exponential of Equation 6, expressed in terms of the
estimatêβ takes the form

L(f) =
β̂N/2

(2π)N/2
exp

{

−N
2

}

, (11)

which is monotonic as well on this estimate.
Therefore, as Equations 10 and 11 are monotonic inβ̂, their maximisation with respect to this

parameter must yield equivalent results.

3.3 Parametric Noise Model

In this section we make two modifications to Equations 5 and 6 in order to parameterise the noise
model. First, the vector of targetst is replaced by a new vector filled with the estimates ˆcq such that
t̂ = t̂0∪ t̂1 is generated. Second, every latent variable is related to the observationsvia a vector of
parametersw. In a linear relation this is expressed by the inner productf (n) = wTx(n). Therefore
after making these changes the log-likelihood becomes

L = −β
2

N

∑
n=1

[

y(n)
(

ĉ1−wTx(n)
)2

+
(

1−y(n)
)(

ĉ0−wTx(n)
)2
]

+C. (12)

Thus a new probabilistic model is obtained, which is depicted in Figure 2.

0y y1

0t̂ t 1
^

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

X w

β

Figure 2: Partially modified graphical model for discriminant analysis. In comparison with Figure 1, the
latent variablef has been replaced by a vector of parametersw. Ignoring the parameterβ, the graph
factorises the joint distributionp

(

t̂,w
∣

∣D
)

with the productp
(

t̂
∣

∣D,w
)

× p(w), whereD = (X,y)

is the training data;̂t = t̂1∪ t̂0, the modified targets andy0 andy1 are the class labels. The log
of the noise modelp

(

t̂
∣

∣D,w
)

is expressed in Equation 12 while the priorp(w) is specified in
Section 4.

Furthermore, we look not only to parameterise the latent variables, but the class centres as
well. Equation 9 can be used to this purpose, substituting everyf (n) in it with their parametric
versionswTx(n) leads to ˆcq = 1

Nq
∑Nq

n=1y(n)
q wTx(n). The vector of parameters can be pulled out of

460

OPTIMIZING KERNEL PARAMETERS

the summation and leave a quantity that we recognise to be the sample mean for class q, which we
express asmq. Hence we can write ˆcq = wTmq. Therefore the log of the new noise model can be
expressed as

L = −β
2

N

∑
n=1

[

y(n)
(

wTm1−wTx(n)
)2

+
(

1−y(n)
)(

wTm0−wTx(n)
)2
]

+C. (13)

As it will be seen in Section 5, most models make the assumption that class centresand class
labels coincide, that iscq = yq; including the least squares support vector machine of Suykens and
Vandewalle (1999). However this approach is suboptimal because thereis no guarantee that class
centres should map perfectly with the labels. Instead of following this ‘regression to the labels’
assumption, we have preferred to make use of the maximum likelihood estimates ofthe class centres.
As we saw above, by taking this step, the class centres can be parameterised as well.

3.3.1 MAXIMUM L IKELIHOOD

Maximisation of this new form ofL (Equation 13) has to be carried out in a slightly different way
to the one presented in Section 3.1.1. Previously, the class centres were parameters which we knew
beforehand were separated by some given distance. However, their parameterisation implies that the
separation constraint must be considered explicitly. We therefore introduce a Lagrange multiplier
to force the projected class centres to lie at a distanced, leading to the following function

Λ(w,λ) =

−β
2

N

∑
n=1

[

y(n)
(

wTm1−wTx(n)
)2

+
(

1−y(n)
)(

wTm0−wTx(n)
)2
]

+λ
[

wT (m0−m1)−d
]

+C.

A solution for this constrained optimisation problem is given by

ŵ =
λ
β

Σ−1
w (m0−m1) ,

with

λ = dβ
[

(m0−m1)
T Σ−1

w (m0−m1)
]−1

.

Therefore, by letting∆m = m0−m1, we can express the solution as

ŵ =
dΣ−1

w ∆m

∆mTΣ−1
w ∆m

, (14)

which is equivalent to that produced by FLD up to a constant of proportionality (see Section 2).
This completes the discussion of an alternative noise model for FLD. The new probabilistic

formulation is based on a noise model that reduces the error around the class centres, instead of the
class labels. Furthermore, we were interested on parameterising not only the latent variables in the
model but also the centres themselves. Through the introduction of a Lagrange multiplier we saw
that a constrained maximisation of the new likelihood was equivalent to standard FLD.
In this section we made use only of one part of the graphical models presented in Figures 1 and
2. In the next section we complete the analysis by including the prior distributions that were left

461

PEÑA CENTENO AND LAWRENCE

unattended. First we complete the study of Figure 2 by incorporating a priorover the parameters,
p(w), and later study the model of Figure 1 under the assumption that the prior,p(f|X), is a
Gaussian process.

4. Bayesian Formulation

One of the aims of discriminant analysis is to determine the group membership of aninputx? outside
the training set. From a probabilistic perspective this process is only possible if a noise model and a
prior distribution have been identified. Then the posterior over the parameters p(w|D) can be found
as well as the corresponding predictive distribution. The posterior distribution is important because
it summarises the knowledge gained after having observed the training set. The application of a
Bayesian probabilistic approach offers some intrinsic advantages over other methods, for example
the ability to compute ‘error bars’ and, in the context of our model, the possibility to introduce
Gaussian process priors in a natural way.

This section will show that the introduction of a separable Gaussian prior over w leads to a
posterior distribution that is not enough to recover FLD’s solution. Later on, it will be argued that
an additional step is required to ensure the equivalence is achieved. Thisadditional step will also
include the distance constraint previously implemented through a Lagrange multiplier.

4.1 Weight Space Formulation

So far we have found a maximum likelihood estimate of the parameters’ vector (see Equation 14).
Now what we seek is a distribution over this vector which is obtained by combiningthe noise model
with a prior distribution through Bayes’ rule,

p
(

w| t̂,D
)

=
p
(

t̂
∣

∣D,w
)

p(w)

p
(

t̂
∣

∣D
) ,

where we have usedD to indicate the training set(X,y) and have omitted the dependence onβ.
A common choice of prior is a separable Gaussian,p(w) = N

(

w|0,A−1
)

, whith zero mean
and diagonal covarianceA−1. The combination of this prior with the parametric noise model of
Equation 13 gives a posterior of the form

p(w| t̂,D) ∝ exp

{

−β
2

N

∑
n=1

[

y(n)
(

wTm1−wTx(n)
)2

+ . . .

(

1−y(n)
)(

wTm0−wTx(n)
)2
]

− 1
2

wTAw
}

. (15)

In order to obtain a complete expression forp(w|D) it is necessary to define the normalisation
constant. As the expression is quadratic inw we know the posterior distribution will be Gaussian.
However, it is still necessary to specify the mean and covariance of the distribution. In order to do
so, Bayesian methods take advantage of an important property of Gaussians: if two sets of variables
are Gaussian, likêt andw, then the conditional distribution of one set conditioned on the other is
Gaussian as well. On the RHS of (15), we look to condition variablew on t̂. The process simply
consists of considering the variablet̂ as being given and on grouping terms inw. This leads to a
Gaussian posterior of the form

p(w|D) = N
(

w|0,B−1) ,

462

OPTIMIZING KERNEL PARAMETERS

with zeromean and covariance matrixB = βXTLX +A, where

L = I −N−1
1 y1yT

1 −N−1
0 y0yT

0 . (16)

The posterior obtained is not equivalent to FLD because the mean ofw is zero. In consequence,
the posterior mean projection of anyx? will collapse to the origin. Nonetheless, this formulation
yields a consistent result if we consider that standard discriminant analysis exhibits a sign symmetry
for the vectorw, hence the average is zero. What our new model is missing is the incorporation of
the distance constraint. In Section 3.3.1, knowledge about the variabled was incorporated to the
noise model in the form of a Lagrange multiplier. We look to do the same again butin a Bayesian
approach this requires that we deal with every variable in terms of probability distributions.

We propose to use the posteriorp(w|D) as the prior for a new model that is depicted in Figure 3.
In the new formulation,d is considered an extra random variable that has been observed and that
depends on the distribution overw|D. From the figure we can deduce that the joint factorises as
p(d,w|D,γ) = p(d|D,w,γ) p(w|D), with γ being a positive parameter. Note that this time we
have madeD =

(

t̂,X,y
)

.

d

D

γ

w

Figure 3: Graphical model to constrain the projected distanced. The graph specifies the distribution
p(d,w|D,γ) which is composed by the distributionsp(w|D) and p(d|D,w,γ). The former
is the posterior over the direction of discrimination, described in Section 4.1, and the latter is the
constraining distribution, defined in Equation 17.

One of our main concerns is to keep the model tractable at all stages, but weare also interested
in having a realistic representation of the discriminant. In order to guaranteeboth conditions we
assumed is Gaussian with infinite precisionγ,

p(d|D,w,γ) = lim
γ→∞

γ 1
2

√
2π

exp
(

− γ
2

(

d−wT∆m
)2
)

. (17)

We can see that this distribution introduces the same effect as the Lagrangian of Section 3.3.1 by
placing all its mass at the pointd = µ0−µ1 when the limitγ → ∞ is taken.

The process to determine a posteriorp(w|D,d) is based on combiningp(w|D) with p(d|D,w,γ)
and then conditioningw ond. However, a final step needs to be added to work out the limit to elim-
inate the dependence overγ. As a partial result, the conditional distributionp(w|D,d,γ) will be
N (w| w̄,Σ) with mean

w̄ = lim
γ→∞

γdΣ∆m,

and covariance
Σ = lim

γ→∞

(

B+ γ∆m∆mT)−1
.

463

PEÑA CENTENO AND LAWRENCE

With some algebraic manipulations and the application of the Morrison-Woodbury formula (Golub
and Van Loan, 1996) we can arrive to the desired result. See AppendixA for the detailed derivation.
After taking the limit, the resulting distribution will be a Gaussian

p(w|D,d) = N (w |w̄ ,Σ)

with parameters

w̄ =
dB−1∆m

∆mTB−1∆m

and

Σ = B−1− B−1∆m∆mTB−1

∆mTB−1∆m
.

Noticing thatB = βXTLX +A, the mean of the new posterior coincides with the maximum likeli-
hood solution of Section 3.3 when an improper prior is used (i.e.A = limα→∞ αI). Note that the
matrix Σ is positive semidefinite and therefore not invertible, this is a consequence of the fact that
any vectorw which does not satisfy the constraint imposed by the distributionp(d|D,w,γ) has a
posterior probability of zero. Nevertheless, variances associated with the posterior projections can
still be computed by applying

var
(

wTx
)

= xTB−1x− xTB−1∆m∆mTB−1x
∆mTB−1∆m

,

which will be zero if the pointx is on the direction of∆m.
The Bayesian approach we have outlined leads to a posterior distribution over the direction of

discrimination which can be used to compute expected outputs and their associated variances for
any given inputx. However, the limitation imposed by applying a linear model is a strong one.
There is an extensive amount of literature explaining why linear models are not always convenient.
A common solution is to use a set of nonlinear basis functionsφ such that the new function is linear
in the parameters but nonlinear in the input spacef = wTφ(x), see for example (Ruppert et al.,
2003) and (Bishop, 1995). However the problem is shifted to that of specifying which and what
number of basis functions to use. In the next section we shall consider thealternative approach of
placing a prior directly over the vector of projectionsf, such that we will be working with a possibly
infinite amount of basis functions. This approach will lead to a regularised version of kernel Fisher’s
discriminant and ultimately to an alternative strategy to select model parameters.

4.2 Gaussian Process Formulation

The choice of a Gaussian probability measure over functions has been justified by the study of the
limiting prior distribution in the neural network case when the number of hidden units ‘reaches’
infinity, (Neal, 1996). A Gaussian process (GP) is a type of stochastic process that is defined by a
mean and a covariance function. By stochastic process we understand that a countable infinite set
of observations{ f1, . . . , fN} has been sampled from a common probability distribution.

In GP’s (O’Hagan, 1978) a prior is placed directly over the latent variables such that a posterior
distribution over them can be inferred. Although there are many GP’s with anequivalent ‘weight
space’ prior, there exists a large class of them for which no finite dimensional expansion exists. In

464

OPTIMIZING KERNEL PARAMETERS

this regard, a covariance function (or kernel) measuresa priori the expected correlation between
any two pair of pointsx(n) andx(m) in the training set. For example, in a function parameterised as

f (n) = wTφ
(

x(n)
)

,

with a prior overw specified by a spherical Gaussian with zero mean,p(w) = N
(

w|0,α−1I
)

, the
implied correlation between two points is

E
[

f (n), f (m)
∣

∣

∣
w
]

= α−1φ
(

x(n)
)T

φ
(

x(m)
)

.

In other words, provided that the product is positive and symmetric, the correlation between the
two points will lead to a Mercer kernel; see (Schölkopf and Smola, 2002). However, under these
circumstances it no longer makes sense to talk about a prior over the vectorw, but rather a prior
over instantiations of the functions is considered.

4.2.1 PREDICTION OVER A TEST POINT

In order to adopt GP’s we need to go back to the formulation of the discriminant presented in Figure
1. In this figure the graph models the joint distributionp(f, t|D) with the product of noise model
p(t|y, f) and priorp(f|X). In this section we need to make two assumptions before doing any kind
of prediction. First of all, the joint distribution over every instancef belonging to the training set
or not will be a multivariate Gaussian, that is a GP. Secondly, we will continueto work with the
maximum likelihood estimates of the class centres, which were denoted ˆcq. In other words, if we
use Equation 9 to form a vectort̂ and substitute it into Equation 5 we will obtain the distribution
p
(

t̂
∣

∣y, f
)

.
Following the steps of the previous section, we could work out the posteriordistributionp

(

f| t̂,D
)

.
However, this is not what we are looking for because what we truly wantis to make predictions out
of new test data. Therefore, what we seek ultimately is the distributionp(f ?|D,d), where the dis-
tance variabled has been included. In order to do so, first we propose to compute the jointdistribu-
tion p

(

t̂,d, f+
∣

∣y,γ
)

, where the variablef+ is given by an extended vector of the formf+ =
[

fT , f ?
]T

,
with f ? being a point outside the training set. Second, the distributionp(f ?|D,d) can be found
from p

(

t̂,d, f+
∣

∣y,γ
)

by marginalising out the variablesf and conditioning the resulting distribution
on the variableŝt andd. Lastly, the dependence on the parameterγ can be eliminated by taking the
limit γ → ∞.

This process is facilitated if the joint distribution is factorised into well known factors. For
example,p

(

t̂,d, f+
∣

∣y,γ
)

, can be given by the product of noise model,p
(

t̂|y, f
)

; Gaussian process
prior p(f+); and constraining distributionp(d|y, f,γ). Firstly, the modified noise model is defined
in terms off by applying the values of ˆcq and rearranging, (see Appendix B). The result is

p
(

t̂|y, f
)

∝ exp

(

−β
2

fTLf
)

, (18)

with L defined in Equation 16. Secondly, let the augmented vectorf+ be correlated with a covariance
matrixK+ ∈ R

(n+1)×(n+1), then the prior is a GP of the form

p(f+) ∝ exp

(

−1
2

fT
+K−1

+ f+

)

. (19)

465

PEÑA CENTENO AND LAWRENCE

For future reference, the inverse ofK+ is partitioned as

K−1
+ =

(

C c
cT c?

)

,

with
c? =

(

k?−kTK−1k
)−1

,

c = −c?K−1k,

C = K−1 +c?K−1kkTK−1.

Note that the vectork ∈ R
N×1 is filled with scalarsk(n) = K

(

x(n),x
)

for x ∈ X .
Finally, the model still needs to consider that projected class means must be separated by the dis-
tanced. The introduction of a constraining distribution of the form of Equation 17 is what is needed.
We can express this distribution in terms off by replacing the termwT∆m inside the exponential by
fT∆ŷ, where∆ŷ = N−1

0 y0−N−1
1 y1. Therefore the constraint becomes

p(d|y, f,γ) = lim
γ→∞

γ 1
2

√
2π

exp
(

− γ
2

(

d− fT∆ŷ
)2
)

. (20)

Hence we can write the marginal distribution (after marginalisation off) as

p
(

f ?, t̂,d
∣

∣y,γ
)

=
Z

p
(

t̂
∣

∣y, f
)

p(d|y, f,γ) p(f+)∂f.

This is a Gaussian integral that can be solved straightforwardly by applying (for example) the ma-
terial on exponential integrals (Bishop, 1995) that we present in Appendix C. After conditioningf ?

on botht̂ andd, the solution is a Gaussian of the form

p(f ?|D,d,γ) ∝ exp

{

− 1

2(σ?)2

(

f ?− f̄ ?
)2

}

with mean

f̄ ? = lim
γ→∞

−γd(σ?)2cTQ−1∆ŷ.

and variance

(σ?)2 = lim
γ→∞

(

c?−cTQ−1c
)−1

,

where we have defined the matrixQ = βL +C+ γ∆ŷ∆ŷT .

Just as in Section 4.1, the dependence onγ is eliminated by taking the limit asγ→∞. This procedure
is detailed in Appendix C. The parameters of the distribution are

f̄ ? =
dkTA−1K∆ŷ

∆ŷTKA −1K∆ŷ
, (21)

466

OPTIMIZING KERNEL PARAMETERS

and
(σ?)2 = k?−kT (K−1−D−1)k, (22)

with the matrices

D =
(

A−1−A−1K∆ŷ
(

∆ŷTKA −1K∆ŷ
)−1 ∆ŷTKA −1

)−1

and
A = βKLK +K . (23)

The predictive mean is given by a linear combination of the observed labels,in this case ex-
pressed by∆ŷ. Additionally, the predictive variance is composed by two terms, one representing
the test point and the other representing the observed data. These results are similar to those of
typical GP regression, described in (Williams, 1999). The scheme proposed above will be termed
Bayesian Fisher’s discriminant (BFD) to facilitate its referencing.

5. Relationship with Other Models

There are several well known connections between discriminant analysis and other techniques. In
the statistics community, FLD is equivalent to at-test orF-test for significant difference between the
mean of discriminants for two sampled classes, in fact, the statistic is designed to have the largest
possible value (Michie et al., 1994). In this section, however, we preferto explore the connections
of our approach to some algorithms that have been applied to machine learningproblems, namely
kernel Fisher’s discriminant and the least-squares and proximal support vector machines.

5.1 Kernel Fisher’s Discriminant

The algorithm known as kernel Fisher’s discriminant consists of a two stage procedure. The first
consists of embedding the data spaceX into a possibly infinite dimensional reproducing kernel
Hilbert spaceF via a kernel functionk. The second simply consists of applying FLD in this new
data space. As the second stage is exactly the same as standard linear discriminant, many of the
properties for FLD observed inX will hold also in F ; for example, some form of regularisation
needs to be included. However there is an extra effort involved in preparing the original data for a
new data representation in the induced space, namely in terms of the kernel function.

Data embedding is carried out by applying a non-linear transformationφ : X → F that induces
a positive definite kernel function. From the theory of reproducing kernels (Aronszajn, 1950) it is
well known that the vector of compounds is a weighted combination of the training samples, such
thatw = ∑N

i=1α(i)φ
(

x(i)
)

. The application of this property plus the decomposition of the kernel into
its spectrum:

k(x,x′) =
d

∑
i=1

λiφi (x)φi
(

x′
)

leads to the formulation of the Rayleigh coefficient in the feature space. Following the path of other
kernel methods, the novelty in (Mika et al., 1999) resides in defining the kernel function directly
and working without any reference to the spectral-based formulation.

A direct implication of working in an infinite dimensional space is that there is no form to
express directly the matricesΣw andΣB. Nonetheless, the discriminant function can still be written

467

PEÑA CENTENO AND LAWRENCE

as the ruleD(x?) = ∑N
i=1 α(i)k

(

x?,x(i)
)

+b with the coefficientsα(i)’s being obtained as the solution
of maximizing a new form of the statistic

J(α) =
αTMα
αTNα

.

WhereM =
(

mF
0 −mF

1

)(

mF
0 −mF

1

)T
, N = KLK andmF

q = N−1
q Kyq. Just as in FLD, in KFD

the ‘within scatter’ matrix is not full rank. This implies that some form of regularisation will need
to be applied when invertingN and this will generally be done by applyingNδ = N + δC, with C
being the identity or the kernel matrices. Therefore the solution can be computed by either solving
a generalised eigenproblem or by taking

αKFD ∝ (N+δC)−1
(

mF
0 −mF

1

)

. (24)

We are now in position to show the equivalence of KFD and our scheme, BFD.

Demonstration Disregarding the bias term, the projection of a new test point under KFD will be

f̄ ? = αT
KFDk. (25)

Our claim is that Equation 21 is equivalent to Equation 25. In other words, that the projection of a
new test point in KFD is equal to the mean of the predictive distribution for a test point under BFD.
As in both equations the vectork is the same, we can write Equation 21 as

f̄ ? = αT
BFDk,

with the vector
αBFD ∝ dA−1K∆ŷ (26)

and the constant of proportionality being given by the denominator of (21). Then our proof reduces
to showing that the coefficientsαKFD andαBFD are the same.

On one hand, we start by analysing KFD’s main result which is given by Equation 24. From the

definition ofmF
q , the difference

(

mF
0 −mF

1

)

can be written asK∆ŷ, with ∆ŷ =
(

N−1
0 y0−N−1

1 y1
)

,

and by regularisingN with a multiple of the kernel matrix we obtain

αKFD ∝
(

KLK +β−1K
)−1

K∆ŷ,

where β−1 is the regularisation coefficient.
On the other hand, substituting the value ofA (Equation 23) into Equation 26, premultiplying byβ
and ignoringd we get

αBFD ∝
(

KLK +β−1K
)−1

K∆ŷ,

which clearly is the regularised version of KFD that we were talking about.
As an additional insight, we observe that the coefficientsαBFD have an equivalentαKFD if and

only if KFD uses a regularisation based on a multiple of the kernel matrix. This equivalence is lost
if the regulariser is based on the identity matrix.

468

OPTIMIZING KERNEL PARAMETERS

5.2 Least Squares Support Vector Machines

A least squares support vector machine (LS-SVM) implements a two-norm cost function3 and uses
equality constraints instead of the inequalities present in the standard SVM (Vapnik, 1995). This
greatly simplifies the way to obtain the solution as the resulting system of equationsis linear. Un-
fortunately the sparseness which is characteristic of the SVM is lost. LS-SVM’s have been related
to ridge regression with modified targets, discriminant analysis in the feature space (KFD) and, as
many other kernelised algorithms, to GP’s.

Given a set of training dataD = (X,y) with labelsy(i) ∈ {−1,1}∀i, the primal optimisation
problem for an LS-SVM is expressed as

min C =
µ
2

wTw+
ζ
2

N

∑
n=1

(

e(n)
)2

s.t. e(n) =
(

y(n)−wTx(n)
)

∀n,

with µandζ being positive coefficients. This formulation in particular was given by VanGestel et al.
(2002) to elaborate the Bayesian framework of the LS-SVM. Such framework is nothing else but
the recognition that the primal problem implements a regularised least squarescost function with
regression to the labels. This cost function arises from the model depictedin Figure 4. In this figure,
the joint distribution over labels and parameters factorises asp(y,w|X) = p(y|X,w)× p(w), with
noise modelp(y|X,w) = N

(

Xw,ζ−1I
)

and priorp(w) = N
(

0|µ−1I
)

.

y

X wµ

ζ

Figure 4: LS-SVM noise model assumes a regularised least squares costfunction. The model depicted can
be interpreted as the joint distributionp(y,w) = p(y|X,w) p(w), whereby the noise is Gaussian,
p(y|X,w) = N

(

Xw,ζ−1I
)

, as is the priorp(w) = N
(

0|µ−1I
)

. In this model the targets and the
labels are the samet ≡ y.

It is clear from the figure that LS-SVM employs a different noise model thanBFD. In practice,
the regression to the labels assumption can work well. However, it suffersfrom the fundamental
missconception that the class labels±1 have to coincide with the projected class centrescq. The
main difference with our algorithm is that the LS-SVM assumes that targets andlabels are the same,
t ≡ y, but we do not.

Van Gestel et al. (2002) were aware of this limitation4 and relaxed the assumptiont ≡ y by
modelling the distributionp

(

t̂q
∣

∣X,w
)

by application of Bayes’ rule. In other words, they computed
p
(

t̂q
∣

∣X,w
)

∝ p
(

X| t̂q,w
)

p
(

t̂q
)

. This is in marked contrast with the strategy adopted in this paper.
As is shown by Equation 12, in BFD we model directly the distributionp

(

t̂q
∣

∣X,y,w
)

. Hence it can

3. This is instead of the traditional`1.
4. See Section 3.2 of their paper.

469

PEÑA CENTENO AND LAWRENCE

be seen that in our approachy is used as a conditioning value whereas in Van Gestel’s paper it is
not.

5.2.1 PROXIMAL SUPPORTVECTORMACHINES

Another related approach is known as the proximal support vector machine or P-SVM, proposed by
Fung and Mangasarian (2001). A P-SVM is very close to LS-SVM in the sense that both of them
consider equality constraints and implement regularised least squares cost functions. However, P-
SVM’s have been interpreted from the point of view of classifying points by clustering data around
two parallel hyperplanes; whereas LS-SVM’s have been interpreted from the more classical point
of view of maximising the margin around a single hyperplane. P-SVM’s have also been approached
from a probabilistic point of view by Agarwal (2002). Indeed, by following Agarwal’s work it
is possible to see that they also implement the graphical model depicted in Figure4, except for a
few changes in parameters. Ignoring the bias term, in P-SVM’s the joint distribution p(y,w|X) is
factorised according to the noise modelp(y|X,w)= N

(

Xw,σ2I
)

and the prior distributionp(w)=
N
(

0,νσ2I
)

. The parameterσ2 is the variance of the residuals5 while ν is known as ridge parameter.
In many applications, such as data mining, the ridge parameter is chosen by cross-validation. It is
clear that this task becomes unfeasible if the ridge parameter is taken to the extreme of considering
one parameter for every ‘predictor’, in other words, if we take as rigdeparameter a matrix of the
form diag(ν1, . . . ,νd).

In (Agarwal, 2002) the problem of tuning the ridge parameter is addressed by studying its effects
on ridge regression. This can be observed by writing up the regularisedP-SVM cost function

CPSVM=
1

σ2

[

(y−Xw)T (y−Xw)+
1
ν

wTw
]

.

Wheneverν becomes small, the ridge part takes over, but if it becomes large the ‘noise’part will
dominate. Nevertheless, it is clear that BFD implements a different type of noise model when
compared to LS-SVM’s and P-SVM’s.

6. Connections with the Generalisation Error

In Section 3.1.1 we saw that optimisation of the proposed noise model and that ofRayleigh’s coef-
ficient give equivalent results. In both cases the solution to the discriminant problem was given by
adjusting the level ofβ. In order to understand better the physical significance that this represents, it
is useful to analyse the problem from the point of view of classification of two populations. Specif-
ically, during this section we will refer to the plot in Figure 5 and always assume that both classes
have the same cost of misclassification.

In Figure 5, it can be observed that both mapping distributions share the same precision. Under
this assumption, for fixedd, we can see that the generalisation error will decrease asβ increases,
i.e. asβ−1/2 decreases. From the point of view of projected data, the problem has shifted from
computing the direction of discrimination to that of minimising the generalisation errorthrough the
adjustment of the variableβ.

The likelihood functionL(f) defined in Equation 11 allows us to think ofβ as an extra random
variable. Hence placing a prior over it not only places a prior over the generalisation error but on

5. The residuals are defined ase(n) = y(n) −wTx(n),∀n.

470

OPTIMIZING KERNEL PARAMETERS

� 	 �

�

�

�

�

�

Figure 5: Generalisation error as it relates toβ andd. The shaded area gives the generalisation error if the
true densities conform to those given by two Gaussians with equal precisionβ. The class centres
have been denoted bycq with q∈ {1,0}.

Rayleigh’s coefficient as well. Consider, for example, the case whered = 2 and the class priors are
equal: if the data does truly map to the mixture distribution, then the generalisation error will be

Eeq =
1
2
− 1

2
erf

(
√

β
2

)

.

Let Equation 11 be a ‘likelihood function’, then by considering a gamma distribution G (β|a,b) as
a prior,

p(β) =
ba

Γ(a)
βa−1exp(−bβ) ,

the MAP solution forβ will be (see Appendix D)

β̂MAP =
N+2a−2

σ2
1 +σ2

0 +2b
. (27)

By settinga = b = 0.5 we indirectly obtain a uniform distribution overEeq, which is also a chi-
square distribution with one degree of freedom. This special case leads toa new expression of the
form

β̂MAP =
N−1

σ2
1 +σ2

0 +1
, (28)

which can be viewed as a regularised version of Equation 8. The prior could also be used to biasβ
towards low or high generalisation errors if this is thought appropriate.

From the discussion of Section 5.1, taking the limit asβ → ∞ leads to the standard kernel
Fisher’s discriminant. From Figure 5 it can be seen that ana priori setting ofβ−1 to zero is equiva-
lent to assuming that we can achieve a generalisation error of zero.

471

PEÑA CENTENO AND LAWRENCE

OTHER SPECIAL CASES

Taking the limit asβ → 0 causes the mean prediction forf ? and its variance to take on a much
simpler form,

f̄ ? = αT
β k

where

αβ =
d∆ŷ

∆ŷTK∆ŷ
,

and

(σ?)2 = k?−kT ∆ŷT∆ŷ
∆ŷTK∆ŷ

k.

This result is remarkable for the absence of any requirement to invert thekernel matrix, which
greatly reduces the computational requirements of this algorithm. In fact, driving β to zero leads
to the well known Parzen windows classifier, sometimes known as probabilisticneural network,
(Duda and Hart, 1973). See the work of Schölkopf and Smola (2002) orRoth (2005) for some
related studies in limiting cases.

7. Optimising Kernel Parameters

One key advantage of our formulation is that it leads to a principled approach for determining all
the model parameters. In the Bayesian formalism it is quite common to make use of the marginal
likelihood to reach this purpose, therefore we look to optimise

L (Θt) = logp(t|D,Θt) ,

with respect to the model parametersΘt . Recall in Section 3.1 that we optimised the likelihood with
respect to the parametersc0 andc1 leading to a new encoding of the targets

t̂q =

(

fTyq

Nq

)

yq.

We back substituted these values into the likelihood in order to demonstrate the equivalence with
maximisation of Rayleigh’s coefficient. Unfortunately, one side effect of this process is that it
makes the new targetst̂ dependent on the inputs. As a consequence, the targets will shift when-
ever the kernel parameters are changed. As expressed in Section 3.1.1, one solution could be to
iterate between determiningt0, t1 and optimising the rest of the parameters. This approach is sim-
ple, but it may be difficult to prove convergence properties. We therefore prefer to rely on an
expectation-maximisation (EM) algorithm (Dempster et al., 1977) which finesses this issue and for
which convergence is proved.

7.1 EM Algorithm

We denote the parameters of the prior asΘk and the complete set of model parameters asΘt =
{Θk,β}. Then the goal is to solve the problem argmaxΘt logp

(

t̂
∣

∣X,Θt
)

, where we have made use
again of the modified targetŝt. In order to solve the problem, a variational lower bound on the
marginal log-likelihood is imposed

L (Θt) ≥
Z

q(f) log
p
(

t̂
∣

∣y, f,β
)

p(f|X,Θk)

q(f)
df, (29)

472

OPTIMIZING KERNEL PARAMETERS

whereq(f) is a distribution over the latent variables that is independent on the currentvalueΘt .
EM consists of the alternation of the maximisation ofL with respect toq(f) andΘt , respectively,
by holding the other fixed. This procedure repeated iteratively guarantees a local maxima for the
marginal likelihood will be found. Thus our algorithm will be composed of the alternation of the
following steps:

E-step Given the current parametersΘit
t , approximate the posterior with

qit (f) ∝ exp

(

−1
2

fTΣ−1
p f
)

,

where
Σp =

(

K−1 +βL
)−1

. (30)

M-step Fix qit (f) to its current value and make the update

Θit+1
t = argmax

Θt

L , (31)

where the evidence is computed asL =
〈

logp
(

t̂
∣

∣y, f,β
)

p(f|X,Θk)
〉

q(f). We have used the notation

〈·〉p(x) to indicate an expectation under the distributionp(x).
Maximisation with respect toΘk, the kernel parameters, cannot be done in closed form and

has to rely on some optimisation routine, for example gradient descent, therefore it is necessary
to specify the gradients of Equation 29 w.r.t.Θk. An update forβ can be worked out quite easily
because the maximisation ofL with respect to this parameter has a closed form solution. The
expression obtained is of the form

β̂it =
N

σ̄2
1 + σ̄2

0

,

whereσ̄2
1 = ∑yn

〈

(fn−µ1)
2
〉

and the expectation〈·〉 is computed under the predictive distribution

for thenth training point, see Equation 21. An expression forσ̄2
0 is given in a similar way.

7.2 Updatingβ

Following our discussion in Section 6, we propose (and in fact used) Equation 28 to update the
value ofβ at every iteration. We repeat the expression here

β̂it
MAP =

N−1

σ̄2
1 + σ̄2

0 +1
. (32)

The resulting optimisation framework is outlined in Algorithm 1.

8. Experiments

In this section we report the results of experiments that we carried out to test our algorithmic ap-
proach. A first batch of experiments was carried out on classification ofsynthetic data with the
purpose of understanding better the behaviour of the algorithm, and in order to test it more realisti-
cally, a second batch of experiments was carried out on benchmark data.

473

PEÑA CENTENO AND LAWRENCE

Algorithm 1 A possible ordering of the updates.
SelectConvergence tolerancesηβ andηΘk.

SetInitial valuesΘ(0)
k andβ̂(0).

Require Data-setD = (X,y).

while change in̂β(it) < ηβ and change inΘ(it)
k < ηΘk do

• Compute kernel matrixK usingΘ(it)
k .

• UpdateΣp with Equation 30

• Use scale conjugate gradients to maximiseL with respect toΘ(it)
k . Apply Equation 31

• Updateβ̂(it), use Equation 32.
end

8.1 Toy Data

As a first experiment, we compared the KFD, LS-SVM and BFD algorithms on four synthetic data
sets using an RBF kernel. Additionally, as a second experiment, we used BFD with an ARD prior
on the same data sets to observe some of the capabilities of our approach. Inorder to facilitate
further reference, each data set will be named according to its characteristics. Firstly,Spiral6 can
only be separated by highly non-linear decision boundaries.Overlap comes from two Gaussian
distributions with equal covariance, and is expected to be separated by a linear plane. Bumpy
comes from two Gaussians but by being rotated at 90 degrees, quadraticboundaries are called for.
Finally, Relevanceis a case where only one dimension of the data is relevant to separate the data.

We hypothesized BFD would perform better than LS-SVM and KFD in all the cases because
it models directly the class conditional densities. In order to compare the threeapproaches, we
trained KFD, LS-SVM and BFD classifiers with a standard RBF kernel, as specified in Appendix E.
Model parameters for KFD and LS-SVM were selected by 10-fold cross-validation whereas BFD
was trained by maximising the evidence, using Algorithm 1.

In Figure 6 we present a comparison of the three algorithms. We can observe a similar perfor-
mance in the case ofSpiral; however it is encouraging to observe that BFD gives more accurate
results in the rest of the cases. Despite not producing a straight line, KFDand BFD give accu-
rate results inOverlap, whereas LS-SVM overfits. If none of the algorithms separates this data
set with a line it is because obtaining a linear boundary from an RBF kernelis extremely difficult
(see Gramacy and Lee, 2005). InBumpy, the three algorithms give arguably the same solution,
with BFD having the smoothest boundary. Lastly, inRelevanceall the algorithms provide accurate
results, with BFD giving the smoothest solution. In all these experiments we set the initial Θt = 1
for BFD and furthermore, observed that BFD did not present any initialisation problems. In all our
simulations, we let the algorithm stop wheneverηβ < 1×10−6 or the change inηΘk < 1×10−6.

As a second experiment, we were interested in training BFD to test the different facets of the
following kernel

k
(

xi ,x j)= θ1exp

(

−θ2

2

(

xi −x j)T Θard
(

xi −x j)
)

+θ3
(

xi)T Θardx j +θ4 +θ5δi j , (33)

6. This was first used by Lang and Witbrock (1988).

474

OPTIMIZING KERNEL PARAMETERS

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Spiral Overlap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−3

−2

−1

0

1

2

3

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Bumpy Relevance

Figure 6: Comparison of classification of synthetic data sets using anRBF kernel. Two classes are shown as
pluses and circles. The separating lines were obtained by projecting test data over a grid. The lines
in blue (dark), magenta (dashed) and cyan (gray) were obtained with BFD, KFD and LS-SVM
respectively. Kernel and regularisation parameters for KFD and LS-SVM were obtained by 10-
fold cross validation, whereas BFD related parameters wereobtained by evidence maximisation.
We trained BFD using Algorithm 1; details of our implementations are given in Appendix E.

whereδi j is the Kronecker delta and the matrixΘard = diag(θ6, . . . ,θ6+d−1) with d being the di-
mension ofX. This kernel has four components: an RBF part composed of(θ1,θ2,Θard); a linear
part, composed of(θ3,Θard); a bias term given byθ4 and the so-called ‘nugget’ termθ5 which,
for a large enough valueθ5, ensures thatK is positive definite and therefore invertible at all times.
Therefore, the parameters of the model areΘt = (Θk,β), with Θk = (θ1, . . . ,θ6+d−1).

On this occassion, BFD got stuck into local minima so we resorted to do model selection to
choose the best solution. This process was carried out by training eachdata set with three different
initial values forθ2 while the remainingθi6=2 were always initialised to 1. In the cases ofBumpy and
Relevancewe made the initialθ2 =

[

10−2, 10−1, 1
]

, for Spiral we made it equal to[1, 10, 100] and
for Overlap,

[

1.5×10−2, 10−1, 1
]

. From the resulting solutions (three per data set), we selected the
model that produced the highest marginal likelihoodL . In all our simulations, we let the algorithm

475

PEÑA CENTENO AND LAWRENCE

stop wheneverηβ < 1× 10−6 or the change inηΘk < 1× 10−6. The parameterβ was always
initialised to 1. The selected models for each set are summarised in Figure 7.

The results are promising. InSpiral, the separating plane is highly non-linear as expected.
Meanwhile, we observe inOverlap that the predominating decision boundary in the solution is
linear. InBumpy, the boundary starts to resemble a quadratic and, finally, forRelevance, only one
dimension of the data is used to classify the data. Note that the values forΘk, summarised in Table 1,
go in accordance with these observations. For example, inOverlap andRelevance, the value of
θ6 is significantly lower thanθ7, indicating that only one dimension of the data is relevant for the
solution. This is markedly different to the cases ofSpiral andBumpy, where both dimensions
(θ6 andθ7) have been given relatively the same weights. Hence, for every case we have obtained
sensible solutions. All the kernel parameters determined by the algorithm, forthe four experiments,
are given in Table 1.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Spiral(L = 674.2) Overlap(L = 650.1)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−3

−2

−1

0

1

2

3

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Bumpy(L = 636.8) Relevance(L = 998.9)

Figure 7: Classification results on toy data sets using an ARD prior. Two classes are shown as pluses and
circles. The decision boundary is given by the solid line. Dotted lines indicate points at 1/4 of
the distance (as measured in the projected space) from the decision boundary to the class mean.
Log-likelihood values appear enclosed by brackets.

476

OPTIMIZING KERNEL PARAMETERS

Figure 8 shows an example of the result of trainingSpiral with a poor initialisation. It can be
seen that the value of the marginal likelihood in this case is smaller to the one presented in Figure 7.
However, this behaviour is not exclusive of BFD, indeed we observeda very similar situation with
a poorly initialised Bayesian LS-SVM and with KFD cross-validated with a badlyselected grid.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: The solution for the spiral data with a poor initialisationθ2 = 1. Associated log-likelihoodL =
562.7.

Experiment lnθ1 lnθ2 lnθ3 lnθ4 lnθ5 lnθ6 lnθ7

Spiral 8.5015 −9.5588 1.0139 −4.9759 −10.6373 −2.78 −2.9609
Overlap 0.5011 −7.9801 1.1455 −4.8319 −8.5990 −6.9953 −0.1026
Bumpy 4.9836 −10.8222 1.1660 −4.7495 −13.5996 −3.9131 −3.7030

Relevance 4.6004 −9.5036 1.2734 −4.9351 −13.8155 −6.9968 −1.5386

Table 1: log-values of the parameters learnt with BFD for the different toy experiments. InOverlap and
Relevance, the weights of the featureθ6 are low if compared with the featureθ7. This is in contrast
with Spiral andBumpy, where both features have been given relatively the same weights.

8.2 Benchmark Data Sets

In order to evaluate the performance of our approach, we tested five different algorithms on well
known problems. The algorithms used were: linear and quadratic discriminants (LDA and QDA),
KFD, LS-SVM and BFD. The last two algorithms provided the opportunity to use ARD priors so
they were reported as well. We used a synthetic set (banana) along with 12 other real world data sets
coming from theUCI , DELVE andSTATLOG repositories.7 In particular, we used instances of
these data that had been preprocessed an organised by Rätsch et al. (1998) to do binary classification
tests. The main difference between the original data and Rätsch’s is that heconverted every problem

7. The breast cancerdomain was obtained from the University Medical Center, Institute of Oncology, Ljubljana,
Yugoslavia. Thanks to M. Zwitter and M. Soklic for the data.

477

PEÑA CENTENO AND LAWRENCE

into binary classes and randomly partitioned every data set into 100 training and testing instances.8

In addition, every instance was normalised to have zero mean and unit standard deviation. More
details can be found at (Rätsch et al., 1998).

Mika et al. (1999) and Van Gestel et al. (2002) have given two of the most in depth comparisons
of algorithms related to FLD. Unfortunately, the reported performance in both cases is given in
terms of test-set accuracy (or error rates), which implied not only the adjustment of the bias term
but also the implicit assumption that the misclassification costs of each class wereknown. Given
that discriminant methods operate independently of the method of bias choice,we felt it more
appropriate to use a bias independent measure like the area under the ROCcurve (AUC).

The LDA and QDA classifiers were provided by the Matlab functionclassify with the options
‘linear’ and ‘quadratic’, respectively. In both cases, no training phase was required, as described
by Michie et al. (1994). The output probabilities were used as latent values to trace the curves.
Meanwhile, for KFD’s parameter selection we made use of the parameters obtained previously by
Mika et al. (1999) and which are available athttp://mlg.anu.edu.au/˜raetsch . The ROC
curves for KFD were thus generated by projecting every instance of thetest set over the direction of
discrimination.
Mika trained a KFD on the first five training partitions of a given data set andselected the model
parameters to be the median over those five estimates. A detailed explanation of the experimental
setup for KFD and related approaches can be found in Rätsch et al. (1998) and Mika et al. (1999).
In the case of LS-SVM, we tried to follow a similar process to estimate the parameters, hence we
trained LS-SVM’s on the first five realisations of the training data and then selected the median of
the resulting parameters as estimates. In the same way, projections of test datawere used to generate
the ROC curves.
Finally, for BFD we also tried to follow the same procedure. We trained a BFD model with Nx = 8
different initialisations over the first five training instances of each data set. Hence we obtained an
array of parameters of dimensions 8×5 where the rows were the initialisations, the columns were
the partitions and each element a vectorΘt . For each column, we selected the results that gave the
highest marginal likelihood, so that the array reduced from 40 to only 5 elements. Then we followed
the KFD procedure of selecting the median over those parameters. In theseexperiments, we used
the tolerancesηβ andηΘk to be less than 1×10−6. More details of the experimental setup are given
in Appendix E.

In Table 2 we report the averages of the AUC’s over all the testing instances of a given data set.
In the cases of KFD, LS-SVM and BFD we used the RBF kernel of Appendix E. Computation of
the ROC curves were done with the functionROC provided by Pelckmans et al. (2003) and Suykens
et al. (2002) and no further processing of the curves was required,for instance removing convexities
was unnecessary.
It can be observed that BFD outperforms all the other methods in 6

/

13 data sets, comes second in 3
cases and third in the remaining 4. In particular, it is remarkable to see BFD performing consistently
better than KFD across most of the problem domains. It seems that leaving the‘regression to the
labels’ assumption pays-off in terms of areas under the ROC curves. It isalso interesting to observe
that LDA performs well in almost all the problems (exceptbanana) and it thus indicates that most
of these data sets could be separated with a linear hyperplane with acceptable results. From these
results we can conclude that the better designed noise model in BFD allows it tooutperform ‘similar’

8. Data sets can be obtained fromhttp://mlg.anu.edu.au/~raetsch .

478

OPTIMIZING KERNEL PARAMETERS

state of the art approaches. The P-SVM was not included in the experiments because it is a ‘type-of’
LS-SVM.

RBF Banana Breast Diabetis German Heart Image

LDA 53.7 (1.3) 71.2 (5.2) 82.7(1.6) 78.5 (2.5) 90.1 (2.6) 87.9 (0.7)

QDA 64.7 (2.5) 70.8 (5.5) 80.3 (2.0) 76.5 (2.6) 86.9 (3.1) 91.2 (1.5)

KFD 96.1(0.4) 70.9 (5.8) 76.7 (2.3) 69.9 (4.7) 88.8 (3.0) 99.5(0.1)
LS-SVM 95.5 (0.4) 61.1 (5.2) 73.7 (2.3) 74.0 (2.8) 89.9 (2.8) 98.8 (0.3)

BFD 95.1 (0.6) 73.4(5.3) 81.1 (1.9) 79.0(2.5) 90.9(2.7) 98.2 (0.4)

RBF Ringnorm Flare S. Splice Thyroid Titanic Twonorm Waveform

LDA 80.0 (0.8) 73.9(1.9) 91.8 (0.4) 86.6 (5.8) 70.8 (1.0) 99.7 (0.0) 92.5(0.7)
QDA 99.8 (0.0) 61.6 (1.8) 93.0(0.4) 97.5 (1.7) 71.4 (2.0) 99.5 (0.0) 91.2 (0.4)

KFD 99.8 (0.0) 65.6 (2.5) 91.3 (0.5) 97.4 (3.6) 70.9 (1.0) 99.8(0.0) 88.6 (0.5)

LS-SVM 99.6 (0.1) 73.8 (1.6) 88.2 (0.7) 97.8 (1.4) 73.8(2.4) 93.8 (0.8) 83.3 (1.2)

BFD 99.9(0.0) 72.9 (2.0) 91.6 (0.5) 98.5(1.1) 71.6 (0.6) 99.8(0.0) 91.6 (0.8)

Table 2: Average classification results of benchmark data. We reportmean and standard deviations (within
brackets) of the AUC over all testing instances. The compared algorithms are: linear discriminant
(LDA), quadratic discriminant (QDA), kernel Fisher’s discriminant (KFD), least squares support
vector machine (LS-SVM) and Bayesian Fisher’s discriminant (BFD). In all the experiments an
RBF kernel was used. It can be observed that BFD performs better in 6 out of 13 problem domains.

The BFD framework allows for the inclusion of some type of ARD priors. Incorporation of
this type of prior performs feature selection by assigning very high weightsto some of the posterior
values of the hyperparameters and hence prunning out features, (see Mackay, 1995). We were
interested in comparing our approach with the Bayesian version of the LS-SVM, which can also
make use of ARD priors. Our results are presented in Table 3. In this case, however, the comparison
is tighter with LS-SVM performing narrowly better than BFD in 7 out of the 13 problems. The EM
algorithm we proposed is slower to converge than direct optimisation of the marginal likelihood as
can be applied to the LS-SVM. Our use of the EM algorithm is necessary dueto the nature of the
moving targets, this is a disadvantage of our approach. Hence to obtain a solution in a reasonable
time, we were obliged to reduce the number of initialisations toNx = 3 and to increase the tolerances
ηβ andηΘk to be less than 1×10−5 and 1×10−6, respectively.

In Figure 9 we show a comparison of the weights assigned to each feature intwo data sets,
Ringnorm and Splice. We were interested on showing if there was any correlation on the degree
of importance assigned to each feature by the two algorithms. Ringnorm and Splice were specially
selected because they were examples in which BFD performed better (marginally) and worse than
LS-SVM, respectively. In the figure, we report the values of the inverse weights,Θard, for BFD
while for LS-SVM we report the ‘ranking’ coefficients produced by theLS-SVM implementation
we used (see Appendix E). These coefficients are related to the valuesΘard. For identical results we
expected to observe a high degree of correlation between BFD weights and LS-SVM rankings. As a
first example, in Figure 9 we observe that Ringnorm is assigned varied values by BFD and LS-SVM.
In fact, for features[3−6] and 18, there is a reasonable degree of overlap between assigned values,
and this could help to explain why both algorithms performed similarly well. This observation goes

479

PEÑA CENTENO AND LAWRENCE

in accordance with our intuition. It is noticeable that none of the features in BFD has been driven to
zero, which indicates that this algorithm required all of the features to learna solution. The second
case corresponds to Splice. In this data set, LS-SVM performed better than BFD by a wide margin
and this could well be explained by the aggressive pruning of features that BFD performed; as it is
shown in the figure.

ARD Banana Breast Diabetis German Heart Image

LS-SVM 91.6 (1.0) 72.3 (5.4) 83.3(1.7) 79.5(2.5) 90.5 (2.6) 98.9(0.6)
BFD 95.1(0.6) 74.2(5.1) 81.1 (1.6) 77.9 (2.6) 90.9(2.7) 76.8 (0.9)

ARD Ringnorm Flare S. Splice Thyroid Titanic Twonorm Waveform

LS-SVM 99.8 (0.0) 66.0 (3.3) 95.7(0.3) 99.5(0.5) 73.6(2.6) 99.6 (0.0) 96.4(0.2)
BFD 99.9(0.0) 73.2(1.7) 88.8 (0.5) 98.9 (0.8) 71.9 (1.1) 99.7(0.0) 94.0 (0.1)

Table 3: Average classification results of benchmark data. We reportmean and standard deviations (within
brackets) of the AUC over all testing instances. This table compares the BFD algorithm against an
LS-SVM, both employing ARD based kernels. In this case Bayesian LS-SVM outperforms BFD
in 7 out of 13 cases.

2 4 6 8 10 12 14 16 18 20
−1000

−500

0

500

2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

10 20 30 40 50 60
−2000

−1500

−1000

−500

0

500

1000

10 20 30 40 50 60
0

5

10

15

20

25

30

Ringnorm Splice

Figure 9: Plot of the feature values learned by BFD and LS-SVM on Ringnorm and Splice data sets. For
both algorithms we used an ARD kernel. The weights learned inLS-SVM are plotted in cyan
(gray) and correspond to the lefty-axis, whereas the weights learned in BFD are plotted in blue
(dark) and correspond to the righty-axis. We report weight values for BFD while for LS-SVM,
‘ranking’ coefficients. These coefficients are related to the weightsΘard. Ideally we would expect
to see a perfect match between feature values of BFD and rankings in LS-SVM. As it is shown in
Table 3, BFD performed better in Ringnorm while LS-SVM did better in Splice.

8.2.1 HISTOGRAMS OFPROJECTEDDATA

A good way to visualize whether an FLD-based algorithm is performing adequately consists of gen-
erating histograms of projected data. We briefly compare the output distributions generated by BFD
and KFD on training and test instances of the Waveform and Twonorm datasets. We used the data
produced from the experiments with an RBF kernel to generate Figures 10and 11.

480

OPTIMIZING KERNEL PARAMETERS

In the Figure 10, BFD produced very consistent outputs between trainingand test sets for both
Twonorm and Waveform. In particular, it is encouraging to see that Twonorm projects very close
to two Gaussian distributions because this data set comes from two multivariate Gaussians. Mean-
while, in Figure 11, KFD produced very consistent output distributions in Twonorm but failed to do
so in Waveform. Following similar arguments to those of Mika (2002), we believethis is one of the
reasons for BFD performing better than KFD, in terms of AUC.

−3 −2 −1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12
Twonorm train set

−2 −1 0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Waveform train set

−3 −2 −1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12
Twonorm test set

−2 −1 0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Waveform test set

Figure 10: Comparison of output distributions on training and test sets for BFD. The data sets depicted
are Twonorm and Waveform, respectively. It is clearly observable that training and test set
distributions for BFD are quite consistent.

9. Conclusions and Future Work

We have presented a Bayesian probabilistic approach to discriminant analysis that can correspond
to kernel Fisher’s discriminant. Regularisation of the discriminant arises naturally in the proposed
framework and through maximisation of the marginal likelihood we were able to determine kernel

481

PEÑA CENTENO AND LAWRENCE

−3 −2 −1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Twonorm train set

−3 −2 −1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12
Waveform train set

−3 −2 −1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Twonorm test set

−3 −2 −1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12
Waveform test set

Figure 11: Comparison of output distributions on training and test sets for KFD. The data sets depicted
are Twonorm and Waveform. Observe that training and test distributions for Waveform are
noticeably different; this might explain KFD’s lower classification performance if compared to
BFD, see Table 2.

parameters. This paper has established the theoretical foundations of theapproach and has shown
that for a range of simple toy problems the methodology does discover sensible kernel parameters.
The optimisation is only guaranteed to find a local minimum and therefore the quality of the solu-
tion can be sensitive to the initialisation. We performed experiments on real world data obtaining
results which are competitive with the state of the art, moreover, we were able todo some relevance
determination on the data set features.

Future directions of this work will be centred on sparsifying the kernel matrix. We intend
to adapt the informative vector machine model to our framework (Lawrenceet al., 2003). This
should make larger data sets practical because at present, we are restricted by theO

(

N3
)

complexity
associated with inverting the kernel matrix. Another direction of research will consist of allowing

482

OPTIMIZING KERNEL PARAMETERS

the model to learn in the presence of label noise, building on work by Lawrence and Schölkopf
(2001).

Acknowledgements

Both authors gratefully acknowledge support from the EPSRC grant number GR/R84801/01 ‘Learn-
ing Classifiers from Sloppily Labelled Data’. T.P.C. wishes to thank the continuous support provided
by Banco de México and helpful discussions with Guido Sanguinetti and Gavin C. Cawley. Finally,
we thank Jonathan Laidler for comments on the final version of this manuscript.

Appendix A. Weight Space Approach

In order to derive the distribution ofw under the constraintd, we first realise that the combination
of p(w |D) andp(d |D,w,γ) yields a Gaussian distribution. Therefore, after conditioning ond, the
resulting distribution will be Gaussian with the formp(w|D,d,γ) = lim

γ→∞
N (w̄,Σ) and parameters

w̄ = lim
γ→∞

γdΣ∆m (34)

and

Σ = lim
γ→∞

(

B+ γ∆m∆mT)−1
. (35)

Inversion ofΣ through Morrison-Woodbury formula allows us to take the limit, such as is shown
below

Σ = lim
γ→∞

(

B−1− B−1∆m∆mTB−1

γ−1 +∆mTB−1∆m

)

,

hence

Σ = B−1− B−1∆m∆mTB−1

∆mTB−1∆m
.

The mean̄w can be obtained by substituting Equation 35 (without evaluating the limit) into Equation
34. Then, the application of Morrison-Woodbury formula and some extra manipulations will lead
to a form suitable for taking the limit.

Appendix B. Expressingp
(

t̂
∣

∣ f,y
)

in terms of f and L

Disregarding an additive constant, the log of the modified noise modelp
(

t̂
∣

∣ f,y
)

is

L (ĉ0, ĉ1) = −β
2

N

∑
n=1

[

yn(ĉ1− fn)
2 +(1−yn)(ĉ0− fn)

2
]

,

483

PEÑA CENTENO AND LAWRENCE

where we have used Equation 6 as base. From Equation 9, we substitute thevalues of each estimate
ĉq so that

L = −β
2

N

∑
n=1

[

yn

(

1
N1

yT
1 f− fn

)2

+(1−yn)

(

1
N0

yT
0 f− fn

)2
]

= −β
2

(

ffT − 1
N1

yT
1 ffTy1−

1
N0

yT
0 ffTy0

)

= −β
2

(

fTLf
)

.

Appendix C. Gaussian Process Approach

In this section we find the parameters of a new projected data point, namely its mean f̄ ? and variance
(σ?)2, as specified in Equations 21 and 22. In the model we have three types of distributions:
p
(

t̂
∣

∣y, f
)

, the noise model;p(f+), an extended GP prior that includes the pointf ? and the constraint
p(d|y, f,γ). In order to derive the distributionp(f ?|D,d,γ) we first compute the joint distribution

p
(

f+, t̂,d
∣

∣y,γ
)

= p
(

t̂
∣

∣y, f
)

p(d|y, f,γ) p(f+) ,

and then take advantage of the separability off+ into
[

fT , f ?
]T

to be able to marginalise the latent
variablesf, which are associated with the training set. In other words we do

p
(

f ?, t̂,d
∣

∣y,γ
)

=
Z

p
(

f ?, f, t̂,d
∣

∣y,γ
)

∂f (36)

The rest of the process consists of conditioningf ? on the targetŝt and the distanced and on taking
the limit γ → ∞. In the remaining part of this section we detail this process.

C.1 Derivations

Grouping Equations 18, 19 and 20 gives

p(f+, t̂,d
∣

∣y,γ) ∝ exp

{

−β
2

fTLf − 1
2

f+K−1
+ f+− γ

2

(

d− fT∆ŷ
)2
}

.

The idea consists of expanding and collecting terms inf and f ?. In order to do so, we partition the

inverse of the extended kernel by makingK−1
+ =

[

C c
cT c?

]

. Thus we know that the product

fT
+K−1

+ f+ = fTCf +2 f ?cT f +c? (f ?)2.

Hence we get

p(f ?, f, t̂,d
∣

∣y,γ) ∝ exp
{

−1
2fTQf− (f ?c− γd∆ŷ)T f− 1

2c? (f ?)2
}

(37)

with
Q =

(

βL +C+ γ∆ŷ∆ŷT) . (38)

484

OPTIMIZING KERNEL PARAMETERS

MARGINALISING LATENT VARIABLES

We are now in position to determine the distribution for a new mappingf ?. The marginalisation of
f is done by computing the integral of Equation 36 using as integrand the expression in (37). First

we observe that the term
(

−1
2c? (f ?)2

)

will be required when computing the distribution overf ?

and when taking the limit, so it will be kept apart from the integral and used ata later stage.
The integral in Equation 36 is of exponential form, so we know how to solve itin a straightfor-

ward way. See below that

Z

exp

(

−1
2

fTQf +hT f
)

∂f ∝ exp

(

1
2

hTQ−1h
)

,

where we recognise that
h = −(f ?c− γd∆ŷ)T .

Therefore the result, after incorporating
(

−1
2c? (f ?)2

)

, is

p(f ?, t̂,d
∣

∣y,γ) ∝ exp

{

1
2

hTQ−1h− 1
2

c? (f ?)2
}

. (39)

OBTAINING CONDITIONAL DISTRIBUTION

The distributionp(f ?|D,d,γ), with D =
(

t̂,y
)

, is obtained by conditioning the expression in (39)
on t̂ andd. Therefore we will work with the argument inside theexponentialof (39) and group
terms in f ?, ignoring the rest. We begin by substitutingh and expanding

1
2

(f ?c− γd∆ŷ)T Q−1(f ?c− γd∆ŷ)− 1
2

c? (f ?)2 =

−1
2

(

c?−cTQ−1c
)

[

(f ?)2+
2γdcTQ−1∆ŷ
c?−cTQ−1c

f ?

]

+
1
2

[

(γd)2 ∆ŷTQ−1∆ŷ
]

.

Completing the squares onf ? gives a Gaussian

p(f ?|D,d,γ) ∝ exp
{

− 1
2(σ?)2

(

f ?− f̄ ?
)2
}

where the variance is
(σ?)2 = lim

γ→∞

(

c?−cTQ−1c
)−1

(40)

and the mean,
f̄ ? = − lim

γ→∞
γd(σ?)2cTQ−1∆ŷ. (41)

WORKING OUT (σ?)2

We now determine the limitγ → ∞ in Equation 40. First, we express each of the terms that form the
inverse of the kernel matrix:

c? =
(

k?−kTK−1k
)−1

, (42)

485

PEÑA CENTENO AND LAWRENCE

c = −c?K−1k, (43)

and
C = K−1 +c?K−1kkTK−1. (44)

Partitioning the kernel matrix implies that

K+ =

(

K k
kT k?

)

.

Substituting (38) and (43) into Equation 40 gives

(σ?)2 = lim
γ→∞

(

c?−c2
?kT [βKLK + γK∆ŷ∆ŷTK +KCK

]−1
k
)−1

.

The productKCK can be worked out by using Equation 44. Therefore

(σ?)2 = lim
γ→∞

(

c?−c2
?kT [βKLK + γK∆ŷ∆ŷTK +K +c?kkT]−1

k
)−1

.

Defining
Dγ = γK∆ŷ∆ŷTK +A, (45)

with A = βKLK +K leads to

(σ?)2 = lim
γ→∞

[

c?−c2
?kT (Dγ +c?kkT)−1

k
]−1

,

= c−1
? +kTD−1

γ k.

Using Equation 42, we arrive to an expression for which(σ?)2 only depends onγ by the termDγ,

(σ?)2 = lim
γ→∞

[

k?−kT (K−1−D−1
γ
)

k
]

. (46)

Working with D −1
γ Inversion ofDγ (Equation 45) through the Morrison-Woodbury lemma allows

us to obtainD by taking the limit. See below.

D−1
γ = A−1−A−1K∆ŷ

(

1
γ

+∆ŷTKA −1K∆ŷ
)−1

∆ŷTKA −1.

Therefore, by takingγ → ∞ we obtain

D =
(

A−1−A−1K∆ŷ
(

∆ŷTKA −1K∆ŷ
)−1 ∆ŷTKA −1

)−1
.

Substituting this expression into (46) gives the desired result,

(σ?)2 = k?−kT (K−1−D−1)k.

486

OPTIMIZING KERNEL PARAMETERS

WORKING OUT THE MEAN

Substituting Equations 38 and 43, the values ofQ andc, into Equation 41 leads to

f̄ ? = lim
γ→∞

γd(σ?)2c?kT (Dγ +c?kkT)−1
K∆ŷ.

Inverting the matrix
(

Dγ +c?kkT
)

and substituting the value ofc? gives

f̄ ? = lim
γ→∞

γd(σ?)2[k?−kT (K−1−D−1
γ
)

k
]−1

kTD−1
γ K∆ŷ.

Using (46) implies that
f̄? = lim

γ→∞
γdkTD−1

γ K∆ȳ.

Substituting (45) and inverting gives

f̄ ? = lim
γ→∞

d

(

1
γ

+∆ŷTKA −1K∆ŷ
)−1

kTA−1K∆ŷ.

Taking the limit gives the desired result

f̄? =
dkTA−1K∆ŷ

∆ŷTKA −1K∆ŷ
.

Appendix D. Obtaining MAP Solution for β

Making
V = ∑N

n=1yn(ĉ1− fn)
2 +∑N

n=1(1−yn)(ĉ0− fn)
2 ,

= σ2
1 +σ2

0.

the modified noise model9 becomes

p
(

t̂ |f,β
)

=
βN/2

(2π)N/2
exp

{

−β
2

V

}

.

Then combining it with a gamma priorG(β|a,b) gives a posterior of the form
G(β|N/2+a,(V/2+b)), that is

p
(

β| t̂, f
)

∝ βN/2+a−1exp

{

−β
(

V
2

+b

)}

.

Taking the derivative of the log of this distribution, equating the result to zero and solving will give
Equation 27.

Appendix E. Experimental Setup

In this section we give more details on the way we carried out our experimentson toy and real data.

9. Use Equation 6 and substitute the class centrescq by their estimates ˆcq.

487

PEÑA CENTENO AND LAWRENCE

E.1 Toy Data

In all our experiments with synthetic data we used an RBF kernel of the form

k(xi ,x j) = θ1exp

(

−θ2

2

∣

∣

∣

∣xi −x j
∣

∣

∣

∣

2
)

+θ3δi j . (47)

For KFD and LS-SVM we worked with the bandwidth of the kernelσ = 1/θ2, whereas for BFD we
usedθ2 itself. The nugget parameterθ3 ensures thatK can be inverted at all times.

Regarding model training, we used the matlab implementation of Baudat and Anouar (2000)
to solve the generalized eigenvalue problem, see their functionBuildGDA. Furthermore, we used
the functioncrossvalidate, provided by Pelckmans et al. (2003) and Suykens et al. (2002), to
cross-validate the values ofσ and of the ‘threshold’ of the mininum accepted eigenvalue. The latter
was used instead of the regularisation coefficient because of the way theeigenvalue problem is
solved, see Baudat’s implementation for more details. In the LS-SVM case, weused the toolbox
LS-SVMlab of Pelckmans et al. (2003) and Suykens et al. (2002) to do the classifications. The
values ofσ andC were cross-validated, with the latter being the coefficient associated with the
support vector formulation. Lastly, in BFD, we used our own implementation which is available at

http://www.dcs.shef.ac.uk/˜neil/bfd .

In this case, the functionscg provided in Netlab’s toolbox (Nabney, 2002) was used to adapt kernel
parameters.

E.2 Benchmark Data Sets

In the BFD experiments with an RBF kernel, we usedNx = 8 different initialisations of the parameter
θ2 (Equation 47) during the training phase. The initialisations selected ranged from 1×10−4 to 1×
104; initialisations that produced numerical errors were ignored. We trained on the first 5 realisations
(partitions) of each data set and computed their marginal loglikelihood. In thisway, an array of
Nx×5 elements was obtained. See below.

Init . Part.1 . . . Part.5

θ1
2 Θ(11)

t . . . Θ(15)
t

...
...

...
...

θNx
2 Θ(Nx1)

t . . . Θ(Nx5)
t

For each partition, we selected the vectorΘ(ip)
t with highest associated marginal likelihood, with

p ∈ [1,5] and i ∈ [1,8]. Hence the original array of 40 elementsΘip
t was reduced to an array of 5

elements. The final vector of parameters was determined by extracting the trained valuesθ2 from
each element of the reduced array and taking the median over them. The selected vectorΘsel

t was
the one associated with the median value ofθ2.

For the ARD experiments, we changedNx = 3. The initialisations were given by
[

1×10−3,1,10
]

.
The Bayesian LS-SVM experiments were carried out using the toolbox LS-SVMLab (see Suykens

et al., 2002). We trained LS-SVM’s on the first five realisations of the training data and selected the
median of the parameters. We observed that this algorithm was susceptible to fall into local minima
so in order to avoid this problem, we used the functionbay_initlssvm to have good initialisations.
The ARD rankings were obtained by applying the functionbay_lssvmARD.

488

OPTIMIZING KERNEL PARAMETERS

References

Deepak K. Agarwal. Shrinkage estimator generalizations of proximal support vector machines.
In KDD ’02: Proceedings of the eighth ACM SIGKDD International conference on Knowledge
Discovery and Data Mining, pages 173–182, New York, NY, USA, 2002. ACM Press.

N. Aronszajn. Theory of reproducing kernels.Transactions of the American Mathematical Society,
68:337–404, May 1950.

Gaston Baudat and Fatiha Anouar. Generalized discriminant analysis using a kernel approach.
Neural Computation, 12(10):2385–2404, 2000.

Christopher M. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, 1995.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm.Journal of the Royal Statistical Society, Series B (Methodological), 39:1–38,
1977.

Richard O. Duda and Peter E. Hart.Pattern Recognition and Scene Analysis. John Wiley, 1973.

Ronald A. Fisher. The use of multiple measurements in taxonomic problems.Annals of Eugenics,
7:179, 1936.

Keinosuke Fukunaga.Introduction to Statistical Pattern Recognition. Academic Press Inc., Boston,
Massachusetts, 2nd edition, 1990.

Glenn Fung and Olvi L. Mangasarian. Proximal support vector machine classifiers. InKDD ’01:
Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 77–86, New York, NY, USA, 2001. ACM Press.

Gene H. Golub and Charles F. Van Loan.Matrix computations. Johns Hopkins University Press,
Baltimore, MD, USA, 3rd edition, 1996.

Robert B. Gramacy and Herbert K. H. Lee. Gaussian processes andlimiting linear models. Tech-
nical Report ams2005-01, Department of Applied Mathematics and Statistics,University of Cal-
ifornia, Santa Cruz., 2005.

Ian T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1st edition, 1986.

Kevin J. Lang and Michael J. Witbrock. Learning to tell two spirals apart. In David S. Touret-
zky, Geoff E. Hinton, and Terrence J. Sejnowski, editors,Proceedings of the 1988 Connectionist
Models Summer School. Morgan Kauffman, 1988.

Neil D. Lawrence and Bernhard Schölkopf. Estimating a kernel Fisher discriminant in the presence
of label noise. In Carla E. Brodley and Andrea P. Danyluk, editors,Proceedings of the 18th Inter-
national Conference on Machine Learning, Williamstown, MA, July 2001. Morgan Kauffman.

Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process methods: the
informative vector machine. In Suzanna Becker, Sebastian Thrun, andKlaus Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 609–616, Cambridge, MA, 2003.
MIT Press.

489

PEÑA CENTENO AND LAWRENCE

David J. C. Mackay. Probable networks and plausible predictions - a review of practical Bayesian
methods for supervised neural networks.Network: Computation in Neural Systems, 6(3):469–
505, 1995.

Donald Michie, David J. Spiegelhalter, and Charles C. Taylor, editors.Machine Learning, Neural
and Statistical Classification. Ellis Horwood, 1994.

Sebastian Mika. A mathematical approach to kernel Fisher algorithm. In ToddK. Leen and Thomas
G. Dietterich Völker Tresp, editors,Advances in Neural Information Processing Systems 13,
pages 591–597, Cambridge, MA, 2001. MIT Press.

Sebastian Mika.Kernel Fisher Discriminants. PhD thesis, Technischen Universität, Berlin, Ger-
many, 2002.

Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf,and Klaus-Robert Müller.
Fisher discriminant analysis with kernels. In Y.-H. Hu, E. Wilson J. Larsen, and S. Douglas,
editors,Neural Networks for Signal Processing IX, pages 41–48. IEEE, 1999.

Ian T. Nabney.Netlab: Algorithms for Pattern Recognition. Springer-Verlag, 2002.

Radford M. Neal.Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

Anthony O’Hagan. Curve fitting and optimal design for prediction.Journal of the Royal Statistical
Society, Series B (Methodological), 40(1):1–42, 1978.

Kristiaan Pelckmans, Johan A. K. Suykens, Tony Van Gestel, Jos De Brabanter, Lukas Lukas, Bart
Hamers, Bart De Moor, and Joos Vandewalle.LS-SVMlab Toolbox User’s Guide. Katholieke
Universiteit, Leuven. ESAT-SCD-SISTA, 2003.

Gunnar Rätsch, Takashi Onoda, and Klaus-Robert Müller. Soft margins for AdaBoost. Technical
Report NC-TR-98-021, Royal Holloway College, University of London, U. K., 1998.

Brian D. Ripley.Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

Volker Roth. Outlier detection with one-class kernel Fisher discriminants. InLawrence K. Saul,
Yair Weiss, and Léon Bottou, editors,Advances in Neural Information Processing Systems 17,
pages 1169–1176, Cambridge, MA, 2005. MIT Press.

David Ruppert, Matthew P. Wand, and Raymond J. Carroll.Semiparametric Regression. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, U.
K., 2003.

Bernhard Schölkopf and Alexander J. Smola.Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond. MIT Press, 2002.

Johan A. K. Suykens, Tony Van Gestel, Jos De Brabanter, Bart De Moor, and Joos Vandewalle.
Least Squares Support Vector Machines. World Scientific, 2002.

Johan A. K. Suykens and Joos Vandewalle. Least squares supportvector machines.Neural Pro-
cessing Letters, 9(3):293–300, 1999.

490

OPTIMIZING KERNEL PARAMETERS

Tony Van Gestel, Johan A. K. Suykens, Gert Lanckriet, Annemie Lambrechts, Bart de Moor, and
Joos Vandewalle. Bayesian framework for least squares support vector machine classifiers, Gaus-
sian processes and kernel discriminant analysis.Neural Computation, 14(5):1115–1147, 2002.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

Christopher K. I. Williams. Prediction with Gaussian processes: from linearregression to linear pre-
diction and beyond. In Michael I. Jordan, editor,Learning in Graphical Models, D, Behavioural
and social sciences 11. Kluwer, Dordrecht, The Netherlands, 1999.

491

Journal of Machine Learning Research 7 (2006) 493–518 Submitted 7/05; Published 3/06

Learning Recursive Control Programs from Problem Solving

Pat Langley LANGLEY @CSLI.STANFORD.EDU

Dongkyu Choi DONGKYUC@STANFORD.EDU

Computational Learning Laboratory
Center for the Study of Language and Information
Stanford University
Stanford, CA 94305–4115 USA

Editors: Roland Olsson and Ute Schmid

Abstract
In this paper, we propose a new representation for physical control – teleoreactive logic programs
– along with an interpreter that uses them to achieve goals. In addition, we present a new learning
method that acquires recursive forms of these structures from traces of successful problem solving.
We report experiments in three different domains that demonstrate the generality of this approach.
In closing, we review related work on learning complex skills and discuss directions for future
research on this topic.

Keywords: teleoreactive control, logic programs, problem solving, skill learning

1. Introduction

Human skills have a hierarchical character, with complex procedures defined in terms of more basic
ones. In some domains, these skills are recursive in nature, in that structures are specified in terms
of calls to themselves. Such recursive procedures pose a clear challenge for machine learning that
deserves more attention than it has received in the literature. In this paper we present one response
to this problem that relies on a new representation for skills and a new method for acquiring them
from experience.

We focus here on the task of learning controllers for physical agents. We are concerned with ac-
quiring the structure and organization of skills, rather than tuning their parameters, which we view
as a secondary learning issue. We represent skills asteleoreactive logic programs, a formalism
that incorporates ideas from logic programming, reactive control, and hierarchical task networks.
This framework can encode hierarchical and recursive procedures that are considerably more com-
plex than those usually studied in research on reinforcement learning (Sutton & Barton, 1998) and
behavioral cloning (Sammut, 1996), but they can still be executed in a reactive yet goal-directed
manner. As we will see, it also embodies constraints that make the learning process tractable.

We assume that an agent uses hierarchical skills to achieve its goals whenever possible, but
also that, upon encountering unfamiliar tasks, it falls back on problem solving. The learner begins
with primitive skills for the domain, including knowledge of their applicability conditions and their
effects, which lets it compose them to form candidate solutions. When the system overcomes such
an impasse successfully, which may require substantial search, it learnsa new skill that it stores in
memory for use on future tasks. Thus, skill acquisition is incremental and intertwined with problem

c©2006 Pat Langley and Dongkyu Choi.

LANGLEY AND CHOI

solving. Moreover, learning is cumulative in that skills acquired early on form the building blocks
for those mastered later. We have incorporated our assumptions about representation, performance,
and learning into ICARUS, a cognitive architecture for controlling physical agents.

Any approach to acquiring hierarchical and recursive proceduresfrom problem solving must
address three issues. These concern identifying the hierarchical organization of the learned skills,
determining when different skills should have the same name or head, and inferring the conditions
under which each skill should be invoked. To this end, our approach to constructing teleoreactive
logic programs incorporates ideas from previous work on learning and problem solving, but it also
introduces some important innovations.

In the next section, we specify our formalism for encoding initial and learned knowledge, along
with the performance mechanisms that interpret them to produce behavior. After this, we present
an approach to problem solving on novel tasks and a learning mechanism that transforms the results
of this process into executable logic programs. Next, we report experimental evidence that the
method can learn control programs in three recursive domains, as well asuse them on tasks that are
more complex than those on which they were acquired. We conclude by reviewing related work on
learning and proposing some important directions for additional research.

2. Teleoreactive Logic Programs

As we have noted, our approach revolves around a representationalformalism for the execution of
complex procedures – teleoreactive logic programs. We refer to these structures as “logic programs”
because their syntax is similar to the Horn clauses used in Prolog and related languages. We have
borrowed the term “teleoreactive” from Nilsson (1994), who used it to refer to systems that are goal
driven but that also react to their current environment. His examples incorporated symbolic control
rules but were not cast as logic programs, as we assume here.

A teleoreactive logic program consists of two interleaved knowledge bases. One specifies a set
of concepts that the agent uses to recognize classes of situations in the environment and describe
them at higher levels of abstraction. These monotonic inference rules have the same semantics as
clauses in Prolog and a similar syntax. Each clause includes a single head, stated as a predicate
with zero or more arguments, along with a body that includes one or more positive literals, negative
literals, or arithmetic tests. In this paper, we assume that a given head appears in only one clause,
thus constraining definitions to be conjunctive, although the formalism itself allows disjunctive
concepts.

ICARUS distinguishes between primitive conceptual clauses, which refer only to percepts that
the agent can observe in the environment, and complex clauses, which refer to other concepts in
their bodies. Specific percepts play the same role as ground literals in traditional logic programs,
but, because they come from the environment and change over time, we do not consider them part of
the program. Table 1 presents some concepts from the Blocks World. Concepts likeunstackableand
pickupableare defined in terms of the conceptsclear, on, ontable, andhand-empty, the subconcept
clear is defined in terms ofon, andon is defined using two cases of the perceptblock, along with
arithmetic tests on their attributes.

A second knowledge base contains a set of skills that the agent can execute in the world. Each
skill clause includes a head (a predicate with zero or more arguments) and abody that specifies a
set of start conditions and one or more components. Primitive clauses havea single start condition
(often a nonprimitive concept) and refer to executable actions that alter theenvironment. They also

494

LEARNING RECURSIVECONTROL PROGRAMS

((on ?block1 ?block2)
:percepts ((block ?block1 xpos ?x1 ypos ?y1)

(block ?block2 xpos ?x2 ypos ?y2 height ?h2))
:tests ((equal ?x1 ?x2) (>= ?y1 ?y2) (<= ?y1 (+ ?y2 ?h2))))

((ontable ?block ?table)
:percepts ((block ?block xpos ?x1 ypos ?y1)

(table ?table xpos ?x2 ypos ?y2 height ?h2))
:tests ((>= ?y1 ?y2) (<= ?y1 (+ ?y2 ?h2))))

((clear ?block)
:percepts ((block ?block))
:negatives ((on ?other ?block)))

((holding ?block)
:percepts ((hand ?hand status ?block)

(block ?block)))

((hand-empty)
:percepts ((hand ?hand status ?status))
:tests ((eq ?status empty)))

((three-tower ?b1 ?b2 ?b3 ?table)
:percepts ((block ?b1) (block ?b2) (block ?b3) (table ?table))
:positives ((on ?b1 ?b2) (on ?b2 ?b3) (ontable ?b3 ?table)))

((unstackable ?block ?from)
:percepts ((block ?block) (block ?from))
:positives ((on ?block ?from) (clear ?block) (hand-empty)))

((pickupable ?block ?from)
:percepts ((block ?block) (table ?from))
:positives ((ontable ?block ?from) (clear ?block) (hand-empty)))

((stackable ?block ?to)
:percepts ((block ?block) (block ?to))
:positives ((clear ?to) (holding ?block)))

((putdownable ?block ?to)
:percepts ((block ?block) (table ?to))
:positives ((holding ?block)))

Table 1: Examples of concepts from the Blocks World.

specify the effects of their execution, stated as literals that hold after their completion, and may state
requirements that must hold during their execution. Table 2 shows the four primitive skills for the
Blocks World, which are similar in structure and spirit to STRIPSoperators, but may be executed in
a durative manner.

In contrast, nonprimitive skill clauses specify how to decompose activity intosubskills. Because
a skill may refer to itself, either directly or through a subskill, the formalism supports recursive
definitions. For this reason, nonprimitive skills do not specify effects, which can depend on the
number of levels of recursion, nor do they state requirements. However,the head of each complex
skill refers to some concept that the skill aims to achieve, an assumption Reddy and Tadepalli

495

LANGLEY AND CHOI

((unstack ?block ?from)
:percepts ((block ?block ypos ?y)

(block ?from))
:start ((unstackable ?block ?from))
:actions ((*grasp ?block) (*move-up ?block ?y))
:effects ((clear ?from)

(holding ?block)))

((pickup ?block ?from)
:percepts ((block ?block ypos ?y)

(table ?from))
:start ((pickupable ?block ?from))
:actions ((*grasp ?block) (*move-up ?block ?y))
:effects ((holding ?block)))

((stack ?block ?to)
:percepts ((block ?block)

(block ?to xpos ?x ypos ?y height ?height))
:start ((stackable ?block ?to))
:actions ((*move-over ?block ?x)

(*move-down ?block (+ ?y ?height))
(*ungrasp ?block))

:effects ((on ?block ?to)
(hand-empty)))

((putdown ?block ?to)
:percepts ((block ?block)

(table ?to ypos ?y height ?height))
:start ((putdownable ?block ?to))
:actions ((*move-sideways ?block)

(*move-down ?block (+ ?y ?height))
(*ungrasp ?block))

:effects ((ontable ?block ?to)
(hand-empty)))

Table 2: Primitive skills for the Blocks World domain. Each skill clause has a head that specifies
its name and arguments, a set of typed variables, a single start condition, a set of effects,
and a set of executable actions, each marked by an asterisk.

(1997) have also made in their research on task decomposition. This connection between skills
and concepts constitutes a key difference between the current approach and our earlier work on
hierarchical skills in ICARUS (Choi et al., 2004; Langley & Rogers, 2004), and it figures centrally
in the learning methods we describe later. Table 3 presents some recursiveskills for the Blocks
World, including two clauses for achieving the conceptclear.

Teleoreactive logic programs are closely related to Nau et al.’s SHOP (1999) formalism for
hierarchical task networks. This organizes knowledge into tasks, whichserve as heads of clauses,
and methods, which specify how to decompose tasks into subtasks. Primitive methods describe
the effects of basic actions, much like STRIPS operators. Each method also states its application

496

LEARNING RECURSIVECONTROL PROGRAMS

((clear ?B) 1 ((unstackable ?B ?A) 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
:start ((unstackable ?C ?B)) :start ((on ?B ?A) (hand-empty))
:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

((hand-empty) 2 ((clear ?A) 4
:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))
:start ((putdownable ?C ?T)) :start ((on ?B ?A) (hand-empty))
:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

Table 3: Some nonprimitive skills for the Blocks World domain that involve recursive calls. Each
skill clause has a head that specifies the goal it achieves, a set of typedvariables, one or
more start conditions, and a set of ordered subskills. Numbers after the head distinguish
different clauses that achieve the same goal.

conditions, which may involve predicates that are defined in logical axioms. In our framework, skill
heads correspond to tasks, skill clauses are equivalent to methods, and concept definitions play the
role of axioms. In this mapping, teleoreactive logic programs are a special class of hierarchical
task networks in which nonprimitive tasks always map onto declarative goalsand in which top-level
goals and the preconditions of primitive methods are always single literals. Wewill see that these
two assumptions play key roles in our approach to problem solving and learning.

Note that every skill/taskScan be expanded into one or more sequences of primitive skills. For
each skillS in a teleoreactive logic program, ifS has conceptC as its head, then every expansion
of S into such a sequence must, if executed successfully, produce a state in which C holds. This
constraint is weaker than the standard assumption made for macro-operators (e.g., Iba, 1988); it
does not guarantee that, once initiated, the sequence will achieveC, since other events may intervene
or the agent may encounter states in which one of the primitive skills does not apply. However, if
the sequence of primitive skills can be run to completion, then it will achieve the goal literalC. The
approach to learning that we report later is designed to acquire programswith this characteristic,
and we give arguments to this effect at the close of Section 4.

3. Interpreting Teleoreactive Logic Programs

As their name suggests, teleoreactive logic programs are designed for reactive execution in a goal-
driven manner, within a physical setting that changes over time. As with most reactive controllers,
the associated performance element operates in discrete cycles, but it also involves more sophisti-
cated processing than most such frameworks.

On each decision cycle, ICARUSupdates a perceptual buffer with descriptions of all objects that
are visible in the environment. Each such percept specifies the object’s type, a unique identifier, and
zero or more attributes. For example, in the Blocks World these would include structures like(block
A xpos 5 ypos 1 width 1 height 1). In this paper, we emphasize domains in which the agent perceives
the same objects on successive time steps but in which some attributes change value. However, we
will also consider teleoreactive systems for domains like in-city driving (Choi et al., 2004) in which
the agent perceives different objects as it moves through the environment.

497

LANGLEY AND CHOI

Once the interpreter has updated the perceptual buffer, it invokes an inference module that elab-
orates on the agent’s perceptions. This uses concept definitions to drawlogical conclusions from
the percepts, which it adds to a conceptual short-term memory. This dynamicstore contains higher-
level beliefs, cast as relational literals, that are instances of generic concepts. The inference module
operates in a bottom-up, data-driven manner that starts from descriptionsof perceived objects, such
(block A xpos 5 ypos 1 width 1 height 1)and(block B xpos 5 ypos 0 width 1 height 1), matches
these against the conditions in concept definitions, and infers beliefs about primitive concepts like
(on A B). These trigger inferences about higher-level concepts, such as(clear A), which in turn
support additional beliefs like(unstackable A B). This process continues until the agent has added
all beliefs that are implied by its perceptions and concept definitions.1

After the inference module has augmented the agent’s perceptions with high-level beliefs, the
architecture’s execution module inspects this information to decide what actions to take in the en-
vironment. To this end, it also examines its current goal, which must be encoded as an instance of
some known concept, and its skills, which tell it how to accomplish such goals. Unlike inference,
the execution process proceeds in a top-down manner, finding paths through the skill hierarchy that
terminate in primitive skills with executable actions. We define askill path to be a chain of skill
instances that starts from the agent’s goal and descends through the hierarchy along subskill links,
unifying the arguments of each subskill consistently with those of its parent.

Furthermore, the execution module only considers skill paths that areapplicable. This holds if
no concept instance that corresponds to a goal along the path is satisfied, if the requirements of the
terminal (primitive) skill instance are satisfied, and if, for each skill instance in the path not executed
on the previous cycle, the start condition is satisfied. This last constraint isnecessary because skills
may take many cycles to achieve their desired effects, making it important to distinguish between
their initiation and their continuation. To this end, the module retains the path through the skill
hierarchy selected on the previous time step, along with the variable bindings needed to reconstruct
it.

For example, imagine a situation in which the block C is on B, B is on A, and A is on the
table, in which the goal is(clear A), and in which the agent knows the primitive skills in Table 2
and the recursive skills in Table 3. Further assume that this is the first cycle, so that no previous
activities are under way. In this case, the only path through the skill hierarchy is [(clear A) 4],
[(unstackable B A) 3], [(clear B) 1], [(unstack C B)]. Applying the primitive skill(unstack C B)
produces a new situation that leads to new inferences, and in which the onlyapplicable path is
[(clear A) 4], [(unstackable B A) 3], [(hand-empty) 2], [(putdown CT)]. This enables a third path
on the next cycle,[(clear A) 4], [(unstack B A)], which generates a state in which the agent’s goal
is satisfied. Note that this process operates much like the proof procedurein Prolog, except that it
involves activities that extend over time.

The interpreter incorporates two preferences that provide a balance between reactivity and per-
sistence. First, given a choice between two or more subskills, it selects the first one for which the
corresponding concept instance is not satisfied. This bias supports reactive control, since the agent
reconsiders previously completed subskills and, if unexpected events have undone their effects, re-
executes them to correct the situation. Second, given a choice between two or more applicable skill
paths, it selects the one that shares the most elements from the start of the path executed on the

1. Although this mechanism reasons over structures similar to Horn clauses, its operation is closer in spirit to the
elaboration process in Soar (Laird et al., 1986) than to the query-driven reasoning in Prolog.

498

LEARNING RECURSIVECONTROL PROGRAMS

?

 skill
learning

problem
 solving

reactive
 control

solution trace
primitive skills

impasse?

problemteleoreactive logic program

no

yes

Figure 1: Organization of modules for reactive execution, problem solving, and skill learning, along
with their inputs and outputs.

previous cycle. This bias encourages the agent to keep executing a high-level skill it has started
until it achieves the associated goal or becomes inapplicable.

Most research on reactive execution emphasizes dynamic domains in whichunexpected events
can occur that fall outside the agent’s control. Domains like the Blocks Worlddo not have this
character, but this does not mean one cannot utilize a reactive controllerto direct behavior (e.g., see
Fern et al., 2004). Moreover, we have also demonstrated (Choi et al., 2004) the execution module’s
operation in the domain of in-city driving, which requires reactive response to an environment that
changes dynamically. Our framework is relevant to both types of settings.

To summarize, ICARUS’ procedure for interpreting teleoreactive logic programs relies on two
interacting processes – conceptual inference and skill execution. On each cycle, the architecture per-
ceives objects and infers instances of conceptual relations that they satisfy. After this, it starts from
the current goal and uses these beliefs to check the conditions on skill instances to determine which
paths are applicable, which in turn constrains the actions it executes. The environment changes,
either in response to these actions or on its own, and the agent begins another inference-execution
cycle. This looping continues until the concept that corresponds to the agent’s top-level goal is
satisfied, when it halts.

4. Solving Problems and Learning Skills

Although one can construct teleoreactive logic programs manually, this process is time consuming
and prone to error. Here we report an approach to learning such programs whenever the agent en-
counters a problem or subproblem that its current skills do not cover. In such cases, the architecture
attempts to solve the problem by composing its primitive skills in a way that achieves the goal.
Typically, this problem-solving process requires search and, given limitedcomputational resources,

499

LANGLEY AND CHOI

may fail. However, when the effort is successful the agent producesa trace of the solution in terms
of component skills that achieved the problem’s goal. The system transforms this trace into new
skill clauses, which it adds to memory for use on future tasks.

Figure 1 depicts this overall organization. As in some earlier problem-solvingarchitectures like
PRODIGY (Minton, 1988) and Soar (Laird et al., 1986), problem solving and learning are tightly
linked and both are driven by impasses. A key difference is that, in these systems, learning pro-
duces search-control knowledge that makes future problem solving more effective, whereas in our
framework it generates teleoreactive logic programs that the agent usesin the environment. Never-
theless, there remain important similarities that we discuss later at more length.

4.1 Means-Ends Problem Solving

As described earlier, the execution module selects skill clauses that shouldachieve the current goal
and that have start conditions which match its current beliefs about the environment. Failure to
retrieve such a clause produces an impasse that leads the architecture to invoke its problem-solving
module. Table 4 presents pseudocode for the problem solver, which utilizes a variant of means-ends
analysis (Newell & Simon, 1961) that chains backward from the goal. Thisprocess relies on a goal
stack that stores both subgoals and skills that might accomplish them. The top-level goal is simply
the lowest element on this stack.

Despite our problem-solving method’s similarity to means-ends analysis, it differs from standard
formulation in three important ways:
• whenever the skill associated with the topmost goal on the stack becomes applicable, the system

executes it in the environment, which leads to tight interleaving of problem solving and control;
• both the start conditions of primitive skills (i.e., operators) and top-level goals must be cast as

single relational literals, which may be defined concepts;2

• backward chaining can occur not only off the start condition of primitive skills but also off the
definition of a concept, which means the single-literal assumption causes no loss of generality.

As we will see shortly, the second and third of these assumptions play key roles in the mechanism
for learning new skills, but we should first examine the operation of the problem-solving process
itself.

As Table 4 indicates, the problem solver pushes the current goal G onto the goal stack, then
checks it on each execution cycle to determine whether it has been achieved. If so, then the module
pops the stack and focuses on G’s parent goal or, upon achieving thetop-level goal, simply halts. If
the current goal G is not satisfied, then the architecture retrieves all nonprimitive skills with heads
that unify with G and, if any participate in applicable paths through the skill hierarchy, selects the
first one found and executes it. This execution may require many cycles, but eventually it produces
a new environmental state that either satisfies G or constitutes another impasse.

If the problem solver cannot find any complex skills indexed by the goal G,it instead retrieves
all primitive skills that produce G as one of their effects. The system then generates candidate
instances of these skills by inserting known objects as their arguments. To select among these skill
instances, it expands the instantiated start condition of each skill instance todetermine how many of
its primitive components are satisfied, then selects the one with the fewest literalsunsatisfied in the
current situation. If the candidates tie on this criterion, then it selects one atrandom. If the selected

2. We currently define all concepts manually, but it would not be difficultto have the system define them automatically
for operator preconditions and conjunctive goals.

500

LEARNING RECURSIVECONTROL PROGRAMS

Solve(G)
Push the goal literal G onto the empty goal stack GS.
On each cycle,

If the top goal G of the goal stack GS is satisfied,
Then pop GS.
Else if the goal stack GS does not exceed the depth limit,

Let S be the skill instances whose heads unify with G.
If any applicable skill paths start from an instance in S,
Then select one of these paths and execute it.
Else let M be the set of primitive skill instances that

have not already failed in which G is an effect.
If the set M is nonempty,
Then select a skill instance Q from M.

Push the start condition C of Q onto goal stack GS.
Else if G is a complex concept with the unsatisfied

subconcepts H and with satisfied subconcepts F,
Then if there is a subconcept I in H that has not yet failed,

Then push I onto the goal stack GS.
Else pop G from the goal stack GS.

Store information about failure with G’s parent.
Else pop G from the goal stack GS.

Store information about failure with G’s parent.

Table 4: Pseudocode for interleaving means-ends problem solving with skill execution.

skill instance’s condition is met, the system executes the skill instance in the environment until it
achieves the associated goal, which it then pops from the stack. If the condition is not satisfied, the
architecture makes it the current goal by pushing it onto the stack.

However, if the problem solver cannot find any skill clause that would achieve the current goal
G, it uses G’s concept definition to decompose the goal into subgoals. If more than one subgoal is
unsatisfied, the system selects one at random and calls the problem solveron it recursively, which
makes it the current goal by pushing it onto the stack. This leads to chainingoff the start condition of
additional skills and/or the definitions of other concepts. Upon achieving a subgoal, the architecture
pops the stack and, if other subconcepts remain unsatisfied, turns its attention to achieving them.
Once all have been satisfied, this means the parent goal G has been achieved, so it pops the stack
again and focuses on the parent.

Of course, the problem-solving module must make decisions about which skillsto select during
skill chaining and the order in which it should tackle subconcepts during concept chaining. The
system may well make the incorrect choice at any point, which can lead to failure on a given subgoal
when no alternatives remain or when it reaches the maximum depth of the goalstack. In such cases,
it pops the current goal, stores the failed candidate with its parent goals to avoid considering them
in the future, and backtracks to consider other options. This strategy produces depth-first search
through the problem space, which can require considerable time on some tasks.

Figure 2 shows an example of the problem solver’s behavior on the BlocksWorld in a situation
where block A is on the table, block B is on A, block C is on B, and the hand is empty. Upon
being given the objective(clear A), the architecture looks for any executable skill with this goal as
its head. When this fails, it looks for a skill that has the objective as one of itseffects. In this case,

501

LANGLEY AND CHOI

(clear C)

(hand−empty)

(on C B)

(holding C)(ontable A T)

(on B A)

(clear B)

(hand−empty)

(clear A)

C

B

A

initial state

(unstack C B)

(unstack B A)(unstackable B A)

goal

initial state

(putdown C T)

final state

CA

B

(unstackable C B)

Figure 2: A trace of successful problem solving in the Blocks World, which ellipses indicating
concepts/goals and rectangles denoting primitive skills.

invoking the primitive skill instance(unstack B A)would produce the desired result. However, this
cannot yet be applied because its instantiated start condition,(unstackable B A), does not hold, so
the system stores the skill instance with the initial goal and pushes this subgoal onto the stack.

Next, the problem solver attempts to retrieve skills that would achieve(unstackable B A)but,
because it has no such skills in memory, it resorts to chaining off the definitionof unstackable. This
involves three instantiated subconcepts –(clear), (on B A), and(hand-empty)– but only the first of
these is unsatisfied, so the module pushes this onto the goal stack. In response, it considers skills
that would produce this literal as an effect and retrieves the skill instance(unstack C B), which it
stores with the current goal.

In this case, the start condition of the selected skill,(unstackable C B), already holds, so the
architecture executes(unstack C B), which alters the environment and causes the agent to infer
(clear B)from its percepts. In response, it pops this goal from the stack and reconsiders its parent,
(unstackable B A). Unfortunately, this has not yet been achieved because executing the skill has
caused the third of its component concept instances,(hand-empty), to become false. Thus, the
system pushes this onto the stack and, upon inspecting memory, retrieves theskill instance(putdown
C T), which it can and does execute.

This second step achieves the subgoal(hand-empty), which in turn lets the agent infer(unstack-
able B A). Thus, the problem solver pops this element from the goal stack and executes the skill
instance it had originally selected,(unstack B A), in the new situation. Upon completion, the system
perceives that the altered environment satisfies the top-level goal,(clear A), which leads it to halt,
since it has solved the problem. Both our textual description and the graph inFigure 2 represent
the trace of successful problem solving; as noted earlier, finding sucha solution may well involve
search, but we have omitted missteps that require backtracking for the sake of clarity.

Despite the clear evidence that humans often resort to means-ends analysis when they encounter
novel problems (Newell & Simon, 1961), this approach to problem solving has been criticized in

502

LEARNING RECURSIVECONTROL PROGRAMS

the AI planning community because it searches over a space of totally ordered plans. As a result,
on problems for which the logical structure of a workable plan is only partiallyordered, it can carry
out extra work by considering alternative orderings that are effectively equivalent. However, the
method also has clear advantages, such as low memory load because it must retain only the current
stack rather than a partial plan. Moreover, it provides direct supportfor interleaving of problem
solving and execution, which is desirable for agents that must act in their environment.

Of course, executing a component skill before it has constructed a complete plan can lead the
system into difficulty, since the agent cannot always backtrack in the physical world and can pro-
duce situations from which it cannot recover without starting over on the problem. In such cases,
the problem solver stores the goal for which the executed skill caused trouble, along with every-
thing below it in the stack. The system begins the problem again, this time avoidingthe skill and
selecting another option. If a different execution error occurs this time, the module again stores the
problematic skill and its context, then starts over once more. In this way, the architecture continues
to search the problem space until it achieves its top-level goal or exceeds the number of maximum
allowed attempts.3

4.2 Goal-Driven Composition of Skills

Any method for learning teleoreactive logic programs or similar structures must address three issues.
First, it must determine the structure of the hierarchy that decomposes problems into subproblems.
Second, the technique must identify when different clauses should havethe same head and thus be
considered in the same situations. Finally, it must infer the conditions under which to invoke each
clause. The approach we describe here relies on results produced bythe problem solver to answer
these questions. Just as problem solving occurs whenever the system encounters an impasse, that is,
a goal it cannot achieve by executing stored skills, so learning occurs whenever the system resolves
an impasse by successful problem solving. The ICARUS architecture shares this idea with earlier
frameworks like Soar and PRODIGY, although the details differ substantially.

The response to the first issue is thathierarchical structure is determined by the subproblems
handled during problem solving. As Figure 2 illustrates, this takes the form of a semilattice in
which each subplan has a single root node. This structure follows directlyfrom our assumptions
that each primitive skill has one start condition and each goal is cast as a single literal. Because
the problem solver chains backward off skill and concept definitions, the result is a hierarchical
structure that suggests a new skill clause for each subgoal. Table 5 (a)presents the clauses that the
system proposes based on the solution to the(clear A)problem, without specifying their heads or
conditions. Figure 2 depicts the resulting hierarchical structure, using numbers to indicate the order
in which the system generates each clause.

The answer to the second question is thatthe head of a learned skill clause is the goal literal that
the problem solver achieved for the subproblem that produced it. This follows from our assumption
that the head of each clause in a teleoreactive logic program specifies some concept that the clause
will produce if executed. At first glance, this appears to confound skillswith concepts, but another
view is that it indexes skill clauses by the concepts they achieve. Table 5 (b) shows the clauses
learned from the problem-solving trace in Figure 2 once the heads have been inserted. Note that this

3. The problem solver also starts over if it has not achieved the top-levelobjective within a given number of cycles.
Jones and Langley (in press) report another variant of means-ends problem solving that uses a similar restart strategy
but keeps no explicit record of previous failed paths.

503

LANGLEY AND CHOI

(a) (<head> 1 (<head> 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
:start <conditions> :start <conditions>
:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

(<head> 2 (<head> 4
:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))
:start <conditions> :start <conditions>
:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

(b) ((clear ?B) 1 ((unstackable ?B ?A) 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
:start <conditions> :start <conditions>
:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

((hand-empty) 2 ((clear ?A) 4
:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))
:start <conditions> :start <conditions>
:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

(c) ((clear ?B) 1 ((unstackable ?B ?A) 3
:percepts ((block ?C) (block ?B)) :percepts ((block ?A) (block ?B))
:start ((unstackable ?C ?B)) :start ((on ?B ?A) (hand-empty))
:skills ((unstack ?C ?B))) :skills ((clear ?B) (hand-empty)))

((hand-empty) 2 ((clear ?A) 4
:percepts ((block ?C) (table ?T)) :percepts ((block ?B) (block ?A))
:start ((putdownable ?C ?T)) :start ((on ?B ?A) (hand-empty))
:skills ((putdown ?C ?T))) :skills ((unstackable ?B ?A)

(unstack ?B ?A)))

Table 5: Skill clauses for the Blocks World learned from the trace in Figure2 (a) after hierarchical
structure has been determined, (b) after the heads have been identified,and (c) after the
start conditions have been inserted. Numbers after the heads indicate the order in which
clauses are generated.

strategy leads directly to the creation of recursive skills whenever a conceptual predicateP is the
goal andP also appears as a subgoal. In this example, because(clear A) is the top-level goal and
(clear B)occurs as a subgoal, one of the clauses learned forclear is defined recursively, although
this happens indirectly throughunstackable.

Clearly, introducing recursive statements can easily lead to overly general or even nonterminat-
ing programs. Our approach avoids the latter because the problem solvernever considers a subgoal
if it already occurs earlier in the goal stack; this ensures that subgoals which involve the same
predicate always have different arguments. However, we still requiresome means to address the
third issue of determining conditions on learned clauses that guards against the danger of overgen-

504

LEARNING RECURSIVECONTROL PROGRAMS

Learn(G)
If the goal G involves skill chaining,
Then let S1 and S2 be G’s first and second subskills.

If subskill S1 is empty,
Then create a new skill clause N with head G,

with the head of S2 as the only subskill,
and with the same start condition as S2.

Return the literal for skill clause N.
Else create a new skill clause N with head G,

with the heads of S1 and S2 as ordered subskills,
and with the same start condition as S1.

Return the literal for skill clause N.
Else if the goal G involves concept chaining,

Then let C1, ..., Ck be G’s initially satisfied subconcepts.
Let Ck+1, ..., Cn be G’s stored subskills.
Create a new skill clause N with head G,
with Ck+1, ..., Cn as ordered subskills,
and with C1, ..., Ck as start conditions.

Return the literal for skill clause N.

Table 6: Pseudocode for creation of skill clauses through goal-driven composition.

eralization. The response differs depending on whether the problem solver resolves an impasse by
chaining backward on a primitive skill or by chaining on a concept definition.

Suppose the agent achieves a subgoalG through skill chaining, say by first applying skillS1

to satisfy the start condition forS2 and executing the skillS2, producing a clause with headG and
ordered subskillsS1 andS2. In this case,the start condition for the new clause is the same as that for
S1, since whenS1 is applicable, the successful completion of this skill will ensure the start condition
for S2, which in turn will achieveG. This differs from traditional methods for constructing macro-
operators, which analytically combine the preconditions of the first operator and those preconditions
of later operators it does not achieve. However,S1 was either selected because it achievesS2’s start
condition or it was learned during its achievement, both of which mean thatS1’s start condition is
sufficient for the composed skill.4

In contrast, suppose the agent achieves a goal conceptG through concept chaining by satisfying
the subconceptsGk+1, . . . ,Gn, in that order, while subconceptsG1, . . . ,Gk were true at the outset.
In response, the system would construct a new skill clause with headG and the ordered subskills
Gk+1, . . . ,Gn, each of which the system already knew and used to achieve the associated subgoal or
which it learned from the successful solution of one of the subproblems.In this case,the start con-
dition for the new clause is the conjunction of subgoals that were already satisfied beforehand. This
prevents execution of the learned clause when some ofG1, . . . ,Gk are not satisfied, in which case
the sequenceGk+1, . . . ,Gn may not achieve the goalG. Table 6 gives pseudocode that summarizes
both methods for determining the conditions on new clauses.

Table 5 (c) presents the conditions learned for each of the skill clauses learned from the trace in
Figure 2. Two of these (clauses 1 and 2) are trivial because they result from degenerate subproblems
that the system solves by chaining off a single primitive operator. Another skill clause (3) is more

4. If skill S2 is executed without invoking another skill to meet its start condition, the method creates a new clause, with
S2 as its only subskill, that restates the original skill in a new form withG in its head.

505

LANGLEY AND CHOI

Solve(G)
Push the goal literal G onto the empty goal stack GS.
On each cycle,

If the top goal G of the goal stack GS is satisfied,
Then pop GS and let New be Learn(G).

If G’s parent P involved skill chaining,
Then store New as P’s first subskill.
Else if G’s parent P involved concept chaining,

Then store New as P’s next subskill.
Else if the goal stack GS does not exceed the depth limit,

Let S be the skill instances whose heads unify with G.
If any applicable skill paths start from an instance in S,
Then select one of these paths and execute it.
Else let M be the set of primitive skill instances that

have not already failed in which G is an effect.
If the set M is nonempty,
Then select a skill instance Q from M.

Push the start condition C of Q onto goal stack GS.
Store Q with goal G as its last subskill.
Mark goal G as involving skill chaining.

Else if G is a complex concept with the unsatisfied
subconcepts H and with satisfied subconcepts F,

Then if there is a subconcept I in H that has not yet failed,
Then push I onto the goal stack GS.

Store F with G as its initially true subconcepts.
Mark goal G as involving concept chaining.

Else pop G from the goal stack GS.
Store information about failure with G’s parent.

Else pop G from the goal stack GS.
Store information about failure with G’s parent.

Table 7: Pseudocode for interleaved problem solving and execution extended to support goal-driven
composition of skills. New steps are indicated in italic font.

interesting because it results from chaining off the concept definition forunstackable. This has
the start conditions(on ?A ?B)and(hand-empty)because the subconcept instances(on A B) and
(hand-empty)held at the outset.5 The final clause (4) is most intriguing because it results from
using a learned clause (3) followed by the primitive skill instance(unstack B A). In this case, the
start condition is the same as that for the first subskill clause (3).

Upon initial inspection, the start conditions for clause 3 for achievingunstackablemay appear
overly general. However, recall that the skill clauses in a teleoreactivelogic program are interpreted
not in isolation but as parts of chains through the skill hierarchy. The interpreter will not select
a path for execution unless all conditions along the path from the top clause tothe primitive skill
are satisfied. This lets the learning method store very abstract conditions for new clauses with
less danger of overgeneralization. On reflection, this scheme is the only one that makes sense for
recursive control programs, since static preconditions cannot characterize such structures. Rather,

5. Although primitive skills have only one start condition, we do not currently place this constraint on learned clauses,
as they are not used in problem solving and it makes acquired programsmore readable.

506

LEARNING RECURSIVECONTROL PROGRAMS

the architecture must compute appropriate preconditions dynamically, depending on the depth of
recursion. The Prolog-like interpreter used for skill selection providesthis flexibility and guards
against overly general behavior.

We refer to the learning mechanism that embodies these answers asgoal-driven composition.
This process operates in a bottom-up fashion, with new skills being formed whenever a goal on the
stack is achieved. The method is fully incremental, in that it learns from single training cases, and
it is interleaved with problem solving and execution. The technique shares this characteristic with
analytical methods for learning from problem solving, such as those found in Soar and PRODIGY.
But unlike these methods, it learns hierarchical skills that decompose problems into subproblems,
and, unlike most methods for forming macro-operators, it acquires disjunctive and recursive skills.
Moreover, learning is cumulative in that skills learned from one problem are available for use on
later tasks. Taken together, these features make goal-driven compositiona simple yet powerful
approach to learning logic programs for reactive control. Nor is the method limited to working with
means-ends analysis; it should operate over traces of any planner thatchains backward from a goal.

The architecture’s means-ends module must retain certain information duringproblem solving
to support the composition of new skill clauses. Table 7 presents expanded pseudocode that specifies
this information and when the system stores it. The form and content is similar to that recorded in
Veloso and Carbonell’s (1993) approach to derivational analogy. The key difference is that their
system stores details about subgoals, operators, and preconditions in specific cases that drive future
problem solving, whereas our approach transforms these instances intogeneralized hierarchical
structures for teleoreactive control.

We should clarify that the current implementation invokes a learned clause only when it is ap-
plicable in the current situation, so the problem solver never chains off its start conditions. Mooney
(1989) incorporated a similar constraint into his work on learning macro-operators to avoid the
utility problem (Minton, 1990), in which learned knowledge reduces search but leads to slower
behavior. However, we have extended his idea to cover cases in which learned skills can solve sub-
problems, which supports greater transfer across tasks. In our framework, this assumption means
that clauses learned from skill chaining have a left-branching structure, with the second subskill
being primitive.

In Section 2, we stated that every skill clause in a teleoreactive logic program can be expanded
into one or more sequences of primitive skills, and that each sequence, if executed legally, will
produce a state that satisfies the clause’s head concept. Here we arguethat goal-driven composition
learns sets of skill clauses for which this condition holds. As in most research on planning, we
assume that the preconditions and effects of primitive skills are accurate, and also that no external
forces interfere. First consider a clause with the headH that has been created as the result of suc-
cessful chaining off a primitive skill. This learned clause is guaranteed to achieve the goal concept
H becauseH must be an effect of its final subskill or the chaining would never have occurred.

Now consider a clause with the headH that has been created as the result of successful chain-
ing off a conjunctive definition of the conceptH. This clause describes a situation in which some
subconcepts ofH hold but others must still be achieved to makeH true. Some subconcepts may
become unsatisfied in the process and need to be reachieved, but the ordering on subgoals found
during problem solving worked for the particular objects involved, and replacing constants with
variables will not affect the result. Thus, if the clause’s start conditionsare satisfied, achieving the
subconcepts in the specified order will achieveH. Remember that our method doesnot guaran-

507

LANGLEY AND CHOI

tee, like those for learning macro-operators, that a given clause expansionwill run to completion.
Whether this occurs in a given domain is an empirical question, to which we nowturn.

5. Experimental Studies of Learning

As previously reported (Choi & Langley, 2005), the means-ends problem solving and learning
mechanisms just described construct properly organized teleoreactivelogic programs. After learn-
ing, the agent can simply retrieve and execute the acquired programs to solve similar problems
without falling back to problem solving. Here we report promising results from more systematic
and extensive experiments. The first two studies involve inherently recursive but nondynamic do-
mains, whereas the third involves a dynamic driving task.

5.1 Blocks World

The Blocks World involves an infinitely large table with cubical blocks, along with a manipulator
that can grasp, lift, carry, and ungrasp one block at a time. In this domain,we wrote an initial
program with nine concepts and four primitive skills. Additionally, we provided a concept for each
of four different goals.6 Theoretically, this knowledge is sufficient to solve any problem in the
domain, but the extensive search required would make it intractable to solvetasks with many blocks
using only basic knowledge. In fact, only 20 blocks are enough to make thesystem search for half
an hour. Therefore, we wanted the system to learn teleoreactive logic programs that it could execute
recursively to solve problems with arbitrary complexity. We have already discussed a recursive
program acquired from one training problem, which requires clearing thelowest object in a stack of
three blocks, but many other tasks are possible.

To establish that the learned programs actually help the architecture to solve more complex prob-
lems, we ran an experiment that compared the learning and non-learning versions. We presented the
system with six ten-problem sets of increasing complexity, one after another. More specifically, we
used sets of randomly generated problems with 5, 10, 15, 20, 25, and 30 blocks. If the goal-driven
composition mechanism is effective, then it should produce noticeable benefits in harder tasks when
the learning is active.

We carried out 200 runs with different randomized orders within levels oftask difficulty. In each
case, we let the system run a maximum of 50 decision cycles before starting over on a problem and
attempt a task at most five times before it gave up. For this domain, we set the maximum depth of
the goal stack used in problem solving to eight. Figure 3 displays the number of execution cycles
and the CPU time required for both conditions, which shows a strong benefitsfrom learning.

With number of cycles as the performance measure, we see a systematic decrease as the system
gains more experience. Every tenth problem introduces five additional objects, but the learning
system requires no extra effort to solve them. The architecture has constructed general programs
that let it achieve familiar goals for arbitrary numbers of blocks without resorting to deliberative
problem solving. Inspection reveals that it acquires the nonprimitive skill clauses in Table 3, as
well as additional ones that make recursive calls. In contrast, the nonlearning system requires more
decision cycles on harder problems, although this levels off later in the curve, as the problem solver
gives up on very difficult tasks.

6. These concerned achieving situations in which a given block is clear, one block is on another, one block is on another
and a third block is on the table, and three blocks are arranged in a tower.

508

LEARNING RECURSIVECONTROL PROGRAMS

0 10 20 30 40 50 60

Number of problems encountered

0
20

40
60

80
10

0
12

0

N
um

be
r

of
 c

yc
le

s

Learning off

Learning on

0 10 20 30 40 50 60

Number of problems encountered

0
10

0
20

0
30

0
40

0

C
P

U
 s

ec
on

ds

Learning off

Learning on

Figure 3: Execution cycles and CPU times required to solve a series of 5, 10, 15, 20, 25, and 30-
block problems (10 different tasks at each level) in the Blocks World as a function of the
number of tasks with and without learning. Each learning curve shows the mean over 200
different task orders and 95 percent confidence intervals.

The results for solution time show similar benefits, with the learning condition substantially
outperforming the condition without. However, the figure also indicates that even the learning
version slows down somewhat as it encounters problems with more blocks. Analysis of individual
runs suggests this results from the increased cost of matching against objects in the environment,
which is required in both the learning and nonlearning conditions. This poses an issue, not for our
approach to skill construction but to our architectural framework, so it deserves attention in future
research.

Table 8 shows the average results for each level of problem complexity, including the probability
that the system can solve a problem within the allowed number of cycles and attempts. In addition
to presenting the first two measures at more aggregate levels, it also reveals that, without learning,
the chances of finding a solution decrease with the number of blocks in the problem. Letting the
system carry out more search would improve these scores, but only at the cost of increasing the
number of cycles and CPU time needed to solve the more difficult problems.

5.2 FreeCell Solitaire

FreeCell is a solitaire game with eight columns of stacked cards, all face up and visible to the player,
that has been used in AI planning competitions (Bacchus, 2001). There are four free cells, which
can hold any single card at a time, and four home cells that correspond to thefour different suits.
The goal is to move all the cards on the eight columns to the home cells for their suits in ascending
order. The player can move only the cards on the top of the eight columns andthe ones in the free
cells. Each card can be moved to a free cell, to the proper home cell, or to an empty column. In
addition, the player can move a card to a column whose top card has the next number and a different
color. As in the Blocks World, we provided a simulated environment that allowslegal moves and
updates the agent’s perceptions.

509

LANGLEY AND CHOI

Blocks Learning No Learning

cycles CPU P(sol) cycles CPU P(sol)

5 21.25 4.03 0.997 52.52 8.82 0.958
10 13.61 6.90 0.997 85.15 40.60 0.857
15 11.22 11.13 0.995 98.82 94.93 0.816
20 9.76 16.09 0.997 92.06 149.05 0.863
25 11.04 27.41 0.996 91.77 230.43 0.842
30 11.67 40.85 0.995 95.89 344.49 0.826

Table 8: Aggregate scaling results for the Blocks World.

0 20 40 60 80 100

Number of problems encountered

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

N
um

be
r

of
 c

yc
le

s
re

qu
ire

d

learning off

learning on

0 20 40 60 80 100

Number of problems encountered

0
10

00
20

00
30

00
40

00

C
P

U
 ti

m
e

re
qu

ire
d

learning off

learning on

Figure 4: Execution cycles and CPU times required to solve a series of 8, 12, 16, 20, and 24-card
FreeCell problems (20 different tasks each) as a function of the numberof tasks with and
without learning. Each learning curve shows the mean over 300 different task orders and
95 percent confidence intervals.

For this domain, we provided the architecture with an initial program which involves 24 con-
cepts and 12 primitive skills that should, in principle, let it solve any initial configuration with a
feasible solution path. (Most but not all FreeCell problems are solvable.)However, the agent may
find a solution only after a significant amount of search using its means-ends problem solver. Again
we desired the system to learn teleoreactive logic programs that it can execute on complex FreeCell
problems with little or no search. In this case, we presented tasks as a sequence of five 20-problem
sets with 8, 12, 16, 20, and 24 cards. On each problem, we let the system run at most 1000 decision
cycles before starting over, attempt the task no more than five times before halting, and create goal
stacks up to 30 in depth. We ran both the learning and nonlearning versionson 300 sets of randomly
generated problems and averaged the results. Figure 4 shows the numberof cycles and the CPU
time required to solve tasks as a function of the number of problems encountered.

In the learning condition, the system rapidly acquired recursive FreeCell programs that reduced
considerably the influence of task difficulty as compared to the nonlearningversion. As before,

510

LEARNING RECURSIVECONTROL PROGRAMS

0 1 2 3 4 5

Number of trials

0
50

10
0

15
0

20
0

25
0

30
0

N
um

be
r

of
 c

yc
le

s
re

qu
ire

d

execution

planning

total

Figure 5: The total number of cycles required to solve a particular right-turn task along with the
planning and execution times, as a function of the number of trials. Each learning curve
shows the mean computed over ten sets of trials and 95 percent confidenceintervals.

the benefits are reflected in both the number of cycles needed to solve problems and in the CPU
time. However, increasing the number of cards in this domain can alter the structure of solutions, so
the learning system continued to invoke means-ends problem solving in later portions of the curve.
For instance, situations with 20 cards often require column-to-column moves that do not appear in
simpler tasks, which caused comparable behavior in the two conditions at this complexity level.
However, the learning system took advantage of this experience to handle24-card problems with
much less effort. Learning also increased the probability of solution (about 80 percent) over the
nonlearning version (around 50 percent) on these tasks.

5.3 In-City Driving

The in-city driving domain involves a medium-fidelity simulation of a downtown driving environ-
ment. The city has several square blocks with buildings and sidewalks, street segments, and inter-
sections. Each street segment includes a yellow center line and white dotted lane lines, and it has its
own speed limit the agent should observe. Buildings on each block have unique addresses, to help
the agent navigate through the city easily and to allow specific tasks like package deliveries. A typ-
ical city configuration we used has nine blocks, bounded by four vertical streets and four horizontal
streets with four lanes each.

For this domain, we provided the system 41 concepts and 19 primitive skills. Withthe basic
knowledge, the agent can describe its current situation at multiple levels of abstraction and perform
actions for accelerating, decelerating, and steering left or right at realistic angles. Thus, it can
operate a vehicle, but driving safely in a city environment is a totally different story. The agent must
still learn how to stay aligned and centered within lane lines, change lanes, increase or decrease
speed for turns, and stop for parking. To encourage such learning,we provided the agent with the
task of moving to a destination on a different street segment that requires aright turn. To achieve
this task, it resorted to problem solving, which found a solution path that involved changing to the

511

LANGLEY AND CHOI

rightmost lane, staying aligned and centered until the intersection, steering right to place the car in
the target segment, and finally aligning and centering in the new lane.

We recorded the total number of cycles to solve this task, along with its breakdown into the
cycles devoted to planning and to execution, as a function of the number of trials. Figure 5 shows the
learning curve that results from averaging over ten different sets of trials. As the system accumulates
knowledge about the driving task, its planning effort effectively disappears, which leads to an overall
reduction in the total cycles, even though the execution cycles increase slightly. The latter occurs
because the vehicle happens to be moving in the right direction at the outset, which accidently brings
it closer to the goal while the system is engaged in problem solving. After learning, the agent takes
the same actions intentionally, which produces the increase in execution cycles. We should note that
this task is dominated by driving time, which places a lower bound on the benefitsof learning even
when behavior becomes fully automatized.

We also inspected the skills that the architecture learned for this domain. Table9 shows the five
clauses it acquires by the end of a typical training run. These structuresinclude two recursive refer-
ences, one in whichin-intersection-for-right-turninvokes itself directly, but also a more interesting
one in whichdriving-in-segmentcalls itself indirectly throughin-segment, in-intersection-for-right-
turn, andin-rightmost-lane. Testing this teleoreactive logic program on streets with more lanes than
occur in the training task suggests that it generalizes correctly to these situations.

6. Related Research

The basic framework we have reported in this paper incorporates ideas from a number of traditions.
Our representation and organization of knowledge draws directly from the paradigm of logic pro-
gramming (Clocksin & Mellish, 1981), whereas its utilization in a recognize-actcycle has more in
common with production-system architectures (Neches, Langley, & Klahr,1987). The reliance on
heuristic search to resolve goal-driven impasses, coupled with the caching of generalized solutions,
comes closest to the performance and learning methods used in problem-solving architectures like
Soar (Laird, Rosenbloom, & Newell, 1986) and PRODIGY (Minton, 1990). Finally, we have already
noted our debt to Nilsson (1994) for the notion of a teleoreactive system.

However, our approach differs from earlier methods for improving the efficiency of problem
solvers in the nature of the acquired knowledge. In contrast to Soar andPRODIGY, which create flat
control rules, our framework constructs hierarchical logic programs that incorporate nonterminal
symbols. Methods for learning macro-operators (e.g., Iba, 1988; Mooney, 1989) have a similar
flavor, in that they explicitly specify the order in which to apply operators, but they do not typically
support recursive references. Shavlik (1989) reports a system that learns recursive macro-operators
but that, like other work in this area, does not acquire reactive controllers.

Moreover, both traditions have used sophisticated analytical methods that rely on goal regres-
sion to collect conditions on control rules or macro-operators, nonincremental empirical techniques
like inductive logic programming, or combinations of such methods (e.g., Estlin & Mooney, 1997).
Instead, goal-driven composition transforms traces of successful means-ends search directly into
teleoreactive logic programs, determining their preconditions by a simple methodthat involves nei-
ther analysis or induction, as normally defined, and that operates in an incremental and cumulative
fashion.

Previous research on learning for reactive execution, like work on search control, has empha-
sized unstructured knowledge. For example, Benson’s (1995) TRAILacquires teleoreactive control

512

LEARNING RECURSIVECONTROL PROGRAMS

((driving-in-segment ?me ?g994 ?g1021)
:percepts ((segment ?g994) (lane-line ?g1021) (self ?me))
:start ((in-segment ?me ?g994) (steering-wheel-straight ?me))
:skills ((in-lane ?me ?g1021)

(centered-in-lane ?me ?g994 ?g1021)
(aligned-with-lane-in-segment ?me ?g994 ?g1021)
(steering-wheel-straight ?me)))

((driving-in-segment ?me ?g998 ?g1008)
:percepts ((segment ?g998) (lane-line ?g1008) (self ?me))
:start ((steering-wheel-straight ?me))
:skills ((in-segment ?me ?g998)

(centered-in-lane ?me ?g998 ?g1008)
(aligned-with-lane-in-segment ?me ?g998 ?g1008)
(steering-wheel-straight ?me)))

((in-segment ?me ?g998)
:percepts ((self ?me) (intersection ?g978) (segment ?g998))
:start ((last-lane ?g1021))
:skills ((in-intersection-for-right-turn ?me ?g978)

(steer-for-right-turn ?me ?g978 ?g998)))

((in-intersection-for-right-turn ?me ?g978)
:percepts ((lane-line ?g1021) (self ?me) (intersection ?g978))
:start ((last-lane ?g1021))
:skills ((in-rightmost-lane ?me ?g1021)

(in-intersection-for-right-turn ?me ?g978)))

((in-rightmost-lane ?me ?g1021)
:percepts ((self ?me) (lane-line ?g1021))
:start ((last-lane ?g1021))
:skills ((driving-in-segment ?me ?g994 ?g1021)))

Table 9: Recursive skill clauses learned for the in-city driving domain.

programs for use in physical environments, but it utilizes inductive logic programming to determine
local rules for individual actions rather than hierarchical structures.Fern et al. (2004) report an
approach to learning reactive controllers that trains itself on increasinglycomplex problems, but
that also acquires decision lists for action selection. Khardon (1999) describes another method for
learning ordered, but otherwise unstructured, control rules from observed problem solutions.

Our approach shares some features with research on inductive programming, which focuses
on synthesizing iterative or recursive programs from input-output examples. For instance, Schmid’s
(2005) IPAL generates an initial program from the results of problem solving by replacing constants
with constructive expressions with variables, then transforms it into a recursive program through
inductive inference steps. Olsson’s (1995) ADATE also generates recursive programs through pro-
gram refinement transformations, but carries out an iterative deepening search guided by criteria
like fit to training examples and syntactic complexity. Schmid’s work comes closerto our own,
in that both operate over problem-solving traces and generate recursive programs, but our method
produces these structures directly, rather than using explicit transformation or revision steps.

513

LANGLEY AND CHOI

Perhaps the closest relative to our approach is Reddy and Tadepalli’s (1997) X-Learn, which
acquires goal-decomposition rules from a sequence of training problems.Their system does not
include an execution engine, but it generates recursive hierarchicalplans in a cumulative manner
that also identifies declarative goals with the heads of learned clauses. However, because it in-
vokes forward-chaining rather than backward-chaining search to solve new problems, it relies on
the trainer to determine program structure. X-Learn also uses a sophisticated mixture of analyti-
cal and relational techniques to determine conditions, rather than our much simpler method. Ruby
and Kibler’s (1991) SteppingStone has a similar flavor, in that it learns generalized decomposi-
tions through a mixture of problem reduction and forward-chaining search. Marsella and Schmidt’s
(1993) system also acquires task-decomposition rules by combining forward and backward search
to hypothesize state pairs, which in turn produce rules that it revises afterfurther experience.

Finally, we should mention another research paradigm that deals with speeding up the execution
of logic programs. One example comes from Zelle and Mooney (1993), whoreport a system that
combines ideas from explanation-based learning and inductive logic programming to infer the con-
ditions under which clauses should be considered. Work in this area startsand ends with standard
logic programs, whereas our system transforms a weak problem-solving method into an efficient
program for reactive control. In summary, although our learning technique incorporates ideas from
earlier frameworks, it remains distinct on a number of dimensions.

7. Directions for Future Research

Despite the promise of this new approach to representing, utilizing, and learning knowledge for
teleoreactive control, our work remains in its early stages. Future research should demonstrate the
acquisition of complex skills on additional domains. These should include both classical domains
like logistics planning and dynamic settings like in-city driving. We have reported preliminary
results on the latter, but our work in this domain to date has dealt with relatively simple skills, such
as changing lanes and slowing down to park. Humans’ driving knowledgeis far more complex, and
we should demonstrate that our methods are sufficient to acquire many more of them.

Note that, although driving involves reactive control, it also benefits fromroute planning and
other high-level activities. Recall that our definition of teleoreactive logicprograms, and our method
for learning them, guarantees only that a skill will achieve its associated goal if it executes success-
fully, not that such execution is possible. For such guarantees, we mustaugment the current exe-
cution module with some lookahead ability, as Nau et al. (1999) have already done for hierarchical
task networks. This will require additional effort from the agent, but stillfar less than solving a
problem with means-ends analysis.

Another response would use inductive logic programming or related methodsto learn additional
conditions on skill clauses that ensure they will achieve their goal, even without lookahead. To this
end, we can transform the results of lookahead search into positive andnegative instances of clauses,
based on whether they would lead to success, much as in early work on inducing search-control rules
from solution paths (Sleeman et al., 1982). Even if such conditions are incomplete, they should still
reduce the planning effort required to ensure the agent’s actions will produce the desired outcome.

Another important limitation concerns our assumption that the agent always executes a skill
to achieve a desired situation. The ability to express less goal-directed activities, such as playing
a piano piece, are precisely what distinguishes hierarchical task networks from classical planning
(Erol, Hendler, & Nau, 1994). We hope to extend our framework in this direction by generalizing

514

LEARNING RECURSIVECONTROL PROGRAMS

its notion of goals to include concepts that describe sets of situations that holdduring certain time
intervals. To support the hierarchical skill acquisition, this augmented representation will require
extensions to both the problem solving and learning mechanisms. In addition, we should extend our
framework to handle skill learning in nonserializable domains, such as tile-sliding puzzles, which
motivated much of the early research on macro-operator formation (e.g., Iba, 1988).

Future work should also address a related form of overgeneralization we have observed on the
Tower of Hanoi puzzle. In this domain, the approach learns reasonablehierarchical skills that can
solve the task without problem solving, but that only do so about half the time.In other runs, the
learned skills attempt to move the smallest disk to the wrong peg, which ultimately causes the system
to fail. Humans often make similar errors but also learn to avoid them with experience. Inspection
of the behavioral trace suggests this happens because one learned skill clause includes variables
that are not mentioned in the head but are bound in the body. We believe thatincluding contextual
conditions about variables bound higher in the skill hierarchy will remove this nondeterminism and
produce more correct behavior.

In addition, recall that the current system does not chain backward from the start condition of
learned skill clauses. We believe that cases will arise in which such chaining, even if not strictly
necessary, will make the acquisition of complex skills much easier. Extending the problem solver to
support this ability means defining new conceptual predicates that the agent can use to characterize
situations in which its learned skills are applicable. This will be straightforwardfor some domains
and tasks, but some recursive skills will need recursively defined start concepts, which requires a
new learning mechanism. Augmenting the system in this manner may also lead to a utility problem
(Minton, 1990), not during execution of learned teleoreactive logic programs but during the problem
solving used for their acquisition, which we would then need to overcome.

Finally, we should note that, although our approach learns recursive logic programs that gen-
eralize to different numbers of objects, its treatment of goals is less flexible.For example, it can
acquire a general program for clearing a block that does not dependon the number of other objects
involved, but it cannot learn a program for constructing a tower with arbitrarily specified com-
ponents. Extending the system’s ability to transfer across different goals, including ones that are
defined recursively, is another important direction for future research on learning hierarchical skills.

8. Concluding Remarks

In the preceding pages, we proposed a new representation of knowledge – teleoreactive logic pro-
grams – and described how they can be executed over time to control physical agents. In addition,
we explained how a means-ends problem solver can use them to solve novel tasks and, more impor-
tant, transform the traces of problem solutions into new clauses that can beexecuted efficiently. The
responsible learning method – goal-driven composition – acquires recursive, executable skills in an
incremental and cumulative manner. We reported experiments that demonstrated the method’s abil-
ity to acquire hierarchical and recursive skills for three domains, along with its capacity to transfer
its learned structures to tasks with more objects than seen during training.

Teleoreactive logic programs incorporate ideas from a number of traditions, including logic pro-
gramming, adaptive control, and hierarchical task networks, in a manner that supports reactive but
goal-directed behavior. The approach which we have described for acquiring such programs, and
which we have incorporated into the ICARUS architecture, borrows intuitions from earlier work on
learning through problem solving, but its details rely on a new mechanism thatbears little resem-

515

LANGLEY AND CHOI

blance to previous techniques. Our work on learning teleoreactive logic programs is still in its early
stages, but it appears to provide a novel and promising path to the acquisition of effective control
systems through a combination of reasoning and experience.

Acknowledgements

This material is based on research sponsored by DARPA under agreement numbers HR0011-04-
1-0008 and FA8750-05-2-0283 and by Grant IIS-0335353 from the National Science Foundation.
The U. S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Discussions with Nima Asgharbeygi, Kirstin Cum-
mings, Glenn Iba, Negin Nejati, David Nicholas, Seth Rogers, and Stephanie Sage contributed to
the ideas we have presented in this paper.

References

Bacchus, F. AIPS’00 planning competition.AI Magazine, 22, 47–56, 2001.

Benson, S. Induction learning of reactive action models.Proceedings of the Twelfth International
Conference on Machine Learning, pp. 47–54. San Francisco: Morgan Kaufmann, 1995.

Choi, D., Kaufman, M., Langley, P., Nejati, N., and Shapiro, D. An architecture for persistent
reactive behavior.Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi Agent Systems, pp. 988–995. New York: ACM Press, 2004.

Choi, D., and Langley, P. Learning teleoreactive logic programs from problem solving.Proceedings
of the Fifteenth International Conference on Inductive Logic Programming, pp. 51–68. Bonn,
Germany: Springer, 2005.

Clocksin, W. F., and Mellish, C. S.Programming inPROLOG. Berlin: Springer-Verlag, 1981.

Erol, K., Hendler, J., and Nau, D. S. HTN planning: Complexity and expressivity. Proceedings of
the Twelfth National Conference on Artificial Intelligence, pp. 1123–1128. Seattle: MIT Press,
1994.

Estlin, T. A., and Mooney, R. J. Learning to improve both efficiency and quality of planning.Pro-
ceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 1227–1232.
Nagoya, Japan, 1997.

Fern, A., Yoon, S. W., and Givan, R. Learning domain-specific controlknowledge from random
walks. Proceedings of the Fourteenth International Conference on Automated Planning and
Scheduling, pp. 191–199. Whistler, BC: AAAI Press, 2004.

Iba, G. A. A heuristic approach to the discovery of macro-operators.Machine Learning, 3, 285–317,
1989.

Jones, R. M., and Langley, P. A constrained architecture for learning and problem solving.Compu-
tational Intelligence, 21, 480–502, 2005.

Khardon, R. Learning action strategies for planning domains.Artificial Intelligence, 113, 125–148,
1999.

516

LEARNING RECURSIVECONTROL PROGRAMS

Laird, J. E., Rosenbloom, P. S., and Newell, A. Chunking in Soar: The anatomy of a general learning
mechanism.Machine Learning, 1, 11–46, 1986.

Langley, P., and Rogers, S. Cumulative learning of hierarchical skills.Proceedings of the Third
International Conference on Development and Learning. San Diego, CA, 2004.

Marsella, S., and Schmidt, C. F. A method for biasing the learning of nonterminal reduction rules.
In S. Minton (Ed.),Machine learning methods for planning. San Mateo, CA: Morgan Kaufmann,
1993.

Minton, S. N. Quantitative results concerning the utility of explanation-basedlearning. Artificial
Intelligence, 42, 363–391, 1990.

Mooney, R. J. The effect of rule use on the utility of explanation-based learning.Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, pp. 725–730. Detroit: Morgan
Kaufmann, 1989.

Nau, D., Cao, Y., Lotem, A., and Muñoz-Avila, H. SHOP: Simple hierarchical ordered planner.
Proceedings of the Sixteenth International Joint Conference on ArtificialIntelligence, pp. 968–
973. Stockholm: Morgan Kaufmann, 1999.

Neches, R., Langley, P., and Klahr, D. Learning, development, and production systems. In D.
Klahr, P. Langley, and R. Neches (Eds.),Production system models of learning and development.
Cambridge, MA: MIT Press, 1987.

Newell, A., and Simon, H. A. GPS, A program that simulates human thought. In H. Billing (Ed.),
Lernende automaten. Munich: Oldenbourg KG. Reprinted in E. A. Feigenbaum & J. Feldman
(Eds.),Computers and thought. New York: McGraw-Hill, 1961.

Nilsson, N. Teleoreactive programs for agent control.Journal of Artificial Intelligence Research, 1,
139–158, 1994.

Olsson, R. Inductive functional programming using incremental programtransformation.Artificial
Intelligence, 74, 55–83, 1995.

Reddy, C., and Tadepalli, P. Learning goal-decomposition rules using exercises.Proceedings of the
Fourteenth International Conference on Machine Learning, pp. 278–286. San Francisco: Morgan
Kaufmann, 1997.

Ruby, D., and Kibler, D. SteppingStone: An empirical and analytical evaluation. Proceedings of
the Tenth National Conference on Artificial Intelligence, pp. 527–532. Menlo Park, CA: AAAI
Press, 1991.

Sammut, C. Automatic construction of reactive control systems using symbolic machine learning.
Knowledge Engineering Review, 11, 27–42, 1996.

Schmid, U. A cognitive model of learning by doing.Models and human reasoning – Festschrift für
Bernd Mahr. Berlin: Wissenschaft & Technik Verlag, 2005.

517

LANGLEY AND CHOI

Shavlik, J. W. Acquiring recursive concepts with explanation-based learning. Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, pp. 688–693. Detroit, MI:
Morgan Kaufmann, 1989.

Sleeman, D., Langley, P., and Mitchell, T. Learning from solution paths: An approach to the credit
assignment problem.AI Magazine, 3, 48–52, 1982.

Sutton, R. S. and Barto, A. G.Reinforcement learning. Cambridge, MA: MIT Press, 1998.

Veloso, M. M., and Carbonell, J. G. Derivational analogy in PRODIGY: Automating case acquisi-
tion, storage, and utilization.Machine Learning, 10, 249–278, 1993.

Zelle, J. M., and Mooney, R. J. Combining FOIL and EBG to speed up logic programs.Proceed-
ings of the Thirteenth International Joint Conference on Artificial Intelligence, pp. 1106–1111.
Chambery, France: Morgan Kaufmann, 1993.

518

Journal of Machine Learning Research 7 (2006) 519–549 Submitted 6/05; Revised 11/05; Published 3/06

Learning Coordinate Covariances via Gradients

Sayan Mukherjee SAYAN@STAT.DUKE.EDU

Institute of Statistics and Decision Sciences
Institute for Genome Sciences and Policy
Department of Computer Science
Duke University
Durham, NC 27708, USA

Ding-Xuan Zhou MAZHOU@CITYU .EDU.HK

Department of Mathematics
City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong, China

Editor: John Shawe-Taylor

Abstract

We introduce an algorithm that learns gradients from samples in the supervised learning framework.
An error analysis is given for the convergence of the gradient estimated by the algorithm to the true
gradient. The utility of the algorithm for the problem of variable selection as well as determining
variable covariance is illustrated on simulated data as well as two gene expression data sets. For
square loss we provide a very efficient implementation with respect to both memory and time.

Keywords: Tikhnonov regularization, variable selection, reproducing kernel Hilbert space, gen-
eralization bounds

1. Introduction

The advent of data sets with many variables or coordinates in the biological and physical sciences
has driven the use of a variety of machine learning approaches based on Tikhonov regularization
or global shrinkage such as support vector machines (SVMs) (Vapnik, 1998) and regularized least
square classification (Poggio and Girosi, 1990). These algorithms have been very successful in
both classification and regression problems. However, in a number of applications the classical
questions from statistical linear modelling of which variables are most relevant to the prediction
and how the coordinates vary with respect to each other have been revived. In the context of high
dimensional data with few examples, the “large p, small n” paradigm (West, 2003), this leads to
foundational questions in constructing and interpreting statistical models. Since statistical models
based on shrinkage or regularization (Vapnik, 1998; West, 2003) have had success in the framework
of both classification and regression, we formulate the problem of learningcoordinate covariation
and relevance in this framework.

We first describe the Tikhonov regularization method for classification and regression in order
to define notation and basic concepts. We then introduce an algorithm that learns gradients of a
function. We also motivate the algorithm and give an intuition of how the gradient can be used to
learn coordinate covariation and relevance.

c©2006 Sayan Mukherjee and Ding-Xuan Zhou.

MUKHERJEE ANDZHOU

1.1 Classification and Regression

Classification and regression problems can be addressed in the framework of learning or estimat-
ing functions from a hypothesis space given sample values. An efficientlearning method is the
Tikhonov regularization scheme. LetX be a compact metric space and the hypothesis space,H , be
a set of functionsX → Y ⊂ R. If we assign a penalty functionalΩ : H → R+ on H and choose
a loss functionV : R

2 → R+, the Tikhonov regularization scheme inH associated with(V,Ω) is
defined for a samplez =

{
(xi ,yi)

}m
i=1 ∈ (X×Y)m andλ > 0 as

fV
z = arg min

f∈H

{ 1
m

m

∑
i=1

V(yi , f (xi))+λΩ(f)
}
. (1)

The efficiency of learning algorithms of type (1) in machine learning can be seen whenH takes the
special choice of a reproducing kernel Hilbert space generated by aMercer kernel.

Let K : X×X → R be continuous, symmetric and positive semidefinite, i.e., for any finite set of
distinct points{x1, · · · ,xm} ⊂ X, the matrix(K(xi ,x j))

m
i, j=1 is positive semidefinite. Such a function

is called aMercer kernel.
The reproducing kernel Hilbert space(RKHS) HK associated with the Mercer kernelK is

defined (see Aronszajn (1950)) to be the completion of the linear span of the set of functions
{Kx := K(x, ·) : x∈X} with the inner product〈·, ·〉K satisfying〈Kx,Ky〉K = K(x,y). The reproducing
property ofHK is

〈Kx, f 〉K = f (x), ∀x∈ X, f ∈ HK . (2)

If H = HK andΩ(f) = ‖ f‖2
K in (1), the reproducing property (2) tells us that

fV
z =

m

∑
i=1

ciKxi

and the coefficients{ci}m
i=1 can be found by solving an optimization problem inR

m.
Assume thatρ is a probability distribution onZ := X×Y andz=

{
(xi ,yi)

}m
i=1 ∈ Zm is a random

sample independently drawn according toρ.
When the loss function is the least-square lossV(y, t) = (y−t)2, the algorithm (1) is least-square

regression and the objective is to learn the regression function

fρ(x) =
Z

Y
ydρ(y|x), x∈ X (3)

from the random samplez. Hereρ(·|x) is the conditional distribution ofρ at x. DenoteρX as the
marginal distribution ofρ onX andL2

ρX
as theL2 space with the metric‖ f‖ρ := (

R

X | f (x)|2dρX)1/2.
There has been a vast literature (e.g. (Evgeniou et al., 2000; Zhang, 2003; Vito et al., 2005; Smale
and Zhou, 2006b)) in learning theory showing for this least-square regression algorithm the con-
vergence offV

z to fρ in the metric‖ · ‖ρ under the assumption thatfρ lies in the closure ofHK and
λ = λ(m) → 0 asm→ ∞.

For the (binary) classification purpose, we takeY = {1,−1}. A real valued functionf : X → R

induces a classifier sgn(f) : X →Y. In this case, one uses a (convex) loss functionφ : R → R+ to
measure the empirical errorφ(t), t = y f(x), when sgn(f (x)) is applied to predicty∈Y. Examples
of such a convex loss functionφ include the logistic loss

φ(t) = log
(
1+e−t), t ∈ R (4)

520

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

and the hinge lossφ(t) = max{0,1− t}. For V(y, f (x)) = φ(t) in (1) extensive investigation in
learning theory (e.g. (Cortes and Vapnik, 1995; Evgeniou et al., 2000;Schoelkopf and Smola,
2001; Vapnik, 1998; Wu and Zhou, 2005)) has shown that sgn(fV

z) converges to the Bayes rule
sgn(fρ) with respect to the misclassification error:

R (sgn(f)) = Prob{sgn(f (x)) 6= y}.

1.2 Learning the Gradient

In this paper we are interested in learning the gradient offρ from the function sample values. Let
X ⊂ R

n. Denotex = (x1,x2, . . . ,xn)T ∈ R
n. The gradient offρ is the vector of functions (if the

partial derivatives exist)

∇ fρ =

(
∂ fρ

∂x1 , . . . ,
∂ fρ

∂xn

)T

. (5)

The relevance of learning the gradient with respect to the problems of variable selection and
estimating coordinate covariation is that the gradient provides the following information:

(a) variable selection: the norm of a partial derivative‖ ∂ fρ
∂xi ‖ indicates the relevance of this variable,

since a small norm implies a small change in the functionfρ with respect to thei-th coordinate,

(b) coordinate covariation: the inner product between partial derivatives
〈

∂ fρ
∂xi ,

∂ fρ
∂x j

〉
indicates the

covariance of thei-th and j-th coordinates with respect to variation infρ.
We now motivate the derivation of our gradient learning algorithm. Taylor expanding a function

g(u) around the pointx gives us

g(u) ≈ g(x)+
Z

∆x∈Γx

〈∇g,∆x〉,

where the inner product and a neighborhoodΓx of x are determined according to what is natural for
different settings. For example, in the manifold setting we know the marginalρX is concentrated on
a manifoldM and it is natural to formulate the following expansion

g(u) ≈ g(x)+
Z

∆x∈M x

〈∇M g,∆x〉,

where∆x∈M x are points on the manifold aroundx with respect to the intrinsic distance on the
manifold and the inner product isL2 over the manifold (Belkin and Niyogi, 2004). In the graph
setting we are given a sparse sample on the manifold which can be thought ofas vertices of
a graph and the distance between the points is the weight matrix of the graph. Anatural for-
mulation in this setting is to setΓx to be vertices connected tox and the inner product as the
weight matrix. Minimizing the empirical error (with regularization) betweeng(u) and its expan-
siong(x)+

R

∆x∈Γx
〈∇g,∆x〉 ≈ g(x)+∇g(x) · (u−x) for u≈ x results in various learning algorithms.

For regression the algorithm to learn gradients will use least-square loss tominimize the error
of the Taylor expansion at sample points. To learn vectors of functions weuse the hypothesis
spaceH n

K which is ann-fold of HK : each~f ∈ H n
K can be written as a column vector of functions

~f = (f1, f2, . . . , fn)T with fℓ ∈ HK . Define〈~f ,~h〉K = ∑n
ℓ=1〈 fℓ,hℓ〉K . Then‖~f‖2

K = ∑n
ℓ=1‖ fℓ‖2

K . The
empirical error on sample pointsx = xi ,u = x j will be measured by the square loss

(
g(u)−g(x)−∇g(x) · (u−x)

)2
=
(
yi −y j +~f (xi) · (x j −xi)

)2
.

521

MUKHERJEE ANDZHOU

The restrictionu ≈ x will be enforced by weights:wi, j = w(s)
i, j > 0 corresponding to(xi ,x j) with

the requirement thatw(s)
i, j → 0 as|xi − x j |/s→ ∞. For x = (x1,x2, . . . ,xn)T ∈ R

n, we denote|x| =
(
∑n

j=1(x
j)2
)1/2

.
One possible choice of weights is given by a Gaussian with variances. Let w = ws be the

function onR
n given byw(x) = 1

sn+2 e−
|x|2
2s2 . Then this choice of weights is

wi, j = w(s)
i, j =

1
sn+2e−

|xi−xj |2

2s2 = w(xi −x j), i, j = 1, . . . ,m. (6)

For regression we define the algorithm by the following optimization problem withweights
being arbitrary positive numberswi, j = w(s)

i, j which depend on an indexs> 0.

Definition 1 The least-square type learning scheme is defined for the samplez∈ Zm as

~fz,λ := arg min
~f∈H n

K

{
1

m2

m

∑
i, j=1

w(s)
i, j

(
yi −y j +~f (xi) · (x j −xi)

)2

+λ‖~f‖2
K

}
, (7)

whereλ,s are two positive constants called the regularization parameters.

A similar algorithm can be defined for classification with a convex loss functionφ(·) like the
hinge or logistic loss.

Definition 2 The regularization scheme for classification is defined for the samplez∈ Zm as

~fz,λ = arg min
~f∈H n

K

{
1

m2

m

∑
i, j=1

w(s)
i, j φ
(

yi
(
y j +~f (xi) · (xi −x j)

))
+λ‖~f‖2

K

}
. (8)

Remark 3 Some algorithms for computing numerical derivative by means of partition were intro-
duced in Wahba and Wendelberger (1980). They work well in low dimensional spaces. In high
dimensional spaces, partition is difficult. Our method can be regarded asan algorithm for numeri-
cal derivatives in high dimensional spaces.

At first thought, a natural approach to computing partial derivatives would be to estimate the
regression function and then compute partial derivatives. The problem withthis approach is that
the partial derivatives are no longer in the RKHS of the regression function.This leaves us with the
problem of not having a norm or computable metric to work with. The advantage of our method
is the derived functions are already approximations of the partial derivatives and they have RKHS
inner products which are computed in the estimation process. The inner products reflect the nature
of the measure, which is often on a low dimensional manifold embedded in a large dimensional
space.

The hypothesis spaceH n
K in the optimization problem (7) may be replaced by some other space

of vector-valued functions (Micchelli and Pontil, 2005) in order to learn thegradients.

Remark 4 Estimation of coordinate covariation is not possible in standard regression models that
allow for variable selection such as: recursive feature elimination (RFE) (Guyon et al., 2002), least
absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), and basis pursuits denoising
(Chen et al., 1999).

522

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

1.3 Overview

In Sections 2 and 3, we shall derive linear systems for solving the optimizationproblem (7). In
particular, whenm<< n, an efficient algorithm will be provided.

The regularization parameters in (7) depend onm: λ = λ(m), s= s(m) and generallyλ(m),s(m)→
0 asm becomes large. In Section 4, we show for a Gaussian weight function (6)how a particular
choice of the two regularization parameters leads to rates of convergenceof our estimate of the
gradient to the true gradient,~fz,λ to ∇ fρ.

The utility of the algorithm is demonstrated in Section 5 in applications to simulated data as
well as gene expression data. We close with a brief discussion in Section 6.

2. Representer Theorem

The optimization problem defining the least-square algorithm (7) can be solved as a linear sys-
tem of equations. DenoteRp×q as the space ofp× q matrices,In the n× n identity matrix, and
diag{B1,B2, · · · ,Bm} them×m block diagonal matrix with eachBi ∈ R

n×n. To save space, we ex-
press anmncolumn vector with blocks{ci ∈R

n} by the following abuse of notionc= (c1,c2, . . . ,cm)T .
The following theorem is an analog of the standard representer theorem (Schoelkopf and Smola,

2001) that states the minimizer of the optimization problem defined by (7) has the form

~fz,λ =
m

∑
i=1

ci,zKxi (9)

with cz = (c1,z, . . . ,cm,z)
T ∈ R

mn.

Theorem 5 For i = 1, . . . ,m, let Bi

Bi =
m

∑
j=1

wi, j(x j −xi)(x j −xi)
T ∈ R

n×n, Yi =
m

∑
j=1

wi, j(y j −yi)(x j −xi) ∈ R
n. (10)

Then~fz,λ = ∑m
i=1ci,zKxi with cz = (c1,z, . . . ,cm,z)

T ∈ R
mn satisfying the linear system

{
m2λImn+diag{B1,B2, · · · ,Bm}

[
K(xi ,x j)In

]m
i, j=1

}
c = (Y1,Y2, . . . ,Ym)T . (11)

Proof By projecting onto the span of{Kxi}m
i=1 the reproducing property (2) ensures that~fz,λ =

∑m
i=1ci,zKxi , with ci,z ∈ R

n for eachi. Note thatx · v = ∑n
i=1xivi = xTv for x,v∈ R

n. To find{ci,z},
we consider~f = ∑m

i=1ciKxi ∈ H n
K with ci ∈ R

n. Then

~f (xi) · (x j −xi) =
m

∑
p=1

K(xp,xi)cp · (x j −xi) =
m

∑
p=1

K(xp,xi)(x j −xi)
Tcp

and

‖~f‖2
K =

m

∑
i, j=1

K(xi ,x j)ci ·c j .

Define theempirical error E z as

E z(~f) =
1

m2

m

∑
i, j=1

w(s)
i, j

(
yi −y j +~f (xi) · (x j −xi)

)2

.

523

MUKHERJEE ANDZHOU

It is a function ofmnvariables{ck
q : 1≤ q≤ m,1≤ k≤ n} where theq-th coefficientcq ∈ R

n of ~f
is expressed as(ck

q)
n
k=1 = (c1

q, . . . ,c
n
q)

T . Forq∈ {1, . . . ,m} , k∈ {1, . . . ,n},

∂
∂ck

q

{
E z(~f)+λ‖~f‖2

K

}
= 2λ

m

∑
i=1

K(xq,xi)c
k
i

+
2

m2

m

∑
i, j=1

wi, j

(
yi −y j +

m

∑
p=1

K(xp,xi)(x j −xi)
Tcp

)
K(xq,xi)(x

k
j −xk

i).

Notice from (2) that forg,h ∈ span{Kxi}m
i=1, g(xi)− h(xi) = 0 for i = 1, . . . ,m implies thatg− h

is orthogonal to eachKxi , and henceg−h = 0. Then we know that~fz,λ = ∑m
i=1 c̃i,zKxi wherec̃z =

{c̃i,z}m
i=1 is the solution to the linear system

λci +
1

m2

m

∑
j=1

wi, j

(
yi −y j +

m

∑
p=1

K(xp,xi)(x j −xi)
Tcp

)
(x j −xi) = 0, i = 1, . . . ,m.

Since(x j − xi)
Tcp is a scalar,[(x j − xi)

Tcp](x j − xi) = (x j − xi)(x j − xi)
Tcp. So the above system

can be expressed as

Bi

m

∑
p=1

K(xi ,xp)cp +m2λci = Yi , i = 1, . . . ,m. (12)

This is exactly the system in (11).

Remark 6 One might consider solving the optimization problem (7) by finding each component of
~fz,λ separately. However, to find(~fz,λ)ℓ by minimizing over f∈ HK , one needs to replace yi − y j

by yi − y j + ∑k6=ℓ(~fz,λ)k(xi)(xk
j − xk

i). So the optimization problems for components of~fz,λ are not
completely separable. It would be interesting to have a separable method for (7).

3. Reducing the Matrix Size

In some applications of variable selection, the numbern of variables is much larger than the sample
size m. In such a situation, the system (11) for implementing the learning algorithm (7)is not
satisfactory, since the size of the linear system (11) is(mn)× (mn).

Observe that each term in the summation definingBi in (10) is a rank one matrix. Hence the
rank of then×n matrixBi is at mostm for eachi. This raises the expectation of reducing the matrix
size in the linear system (11). In this section, we show how to reduce this sizeto (Sm)× (Sm) with
S ≤ m−1. Moreover, an approximation algorithm will be introduced which is often implemented
with S << m.

We use the well known approach of singular value decomposition. It may beapplied to the
coefficient matrix of (11) to reduce the matrix size. Here we prefer to applythe approach to a
matrix involving the data only, leaving us flexibility for the weightswi, j .

Consider the matrix involving the datax given by

Mx = [x1−xm,x2−xm, . . . ,xm−1−xm,xm−xm] ∈ R
n×m. (13)

Assume the rank ofMx is d. Thend ≤ min{m−1,n} since the last column of the matrix is zero.
The theory of singular value decomposition tells us that there exists ann× n orthogonal matrix

524

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

V = [V1,V2, . . . ,Vn] and am×morthogonal matrixU = [U1,U2, . . . ,Um] such that

Mx = VΣUT = [V1 V2 · · · Vn]

[
diag{σ1,σ2, · · · ,σd} 0

0 0

]

UT
1

UT
2
...

UT
m

 . (14)

Hereσ1 ≥ σ2 ≥ ·· · ≥ σd > σd+1 = . . . = σmin{m,n} = 0 are the singular values ofMx. The matrixΣ
is n×m and has entries zero except that(Σ)i,i = σi for i = 1, . . . ,d. From expression (14), we see
that

Mx =
d

∑
ℓ=1

σℓVℓU
T
ℓ .

Note thatUT
ℓ = [U1

ℓ , . . . ,Um
ℓ]. The j-th column ofMx equalsx j −xm = ∑d

ℓ=1 σℓVℓU
j
ℓ and

x j −xi =
d

∑
ℓ=1

σℓ

(
U j

ℓ −U i
ℓ

)
Vℓ. (15)

It follows thatYi = ∑m
j=1wi, j(y j −yi)∑d

ℓ=1 σℓ

(
U j

ℓ −U i
ℓ

)
Vℓ and

Bi =
m

∑
j=1

wi, j

d

∑
ℓ=1

d

∑
p=1

σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
VℓV

T
p . (16)

Now we can reduce the matrix size by solving an approximation to the linear system derived
from the singular values. A strong correlation among the vectors{xi} would result in a large number
of small singular values. If we ignore the small singular valuesσS+1, . . . ,σd, the error is proportional
to σS+1. This follows from the idea of low-rank approximations in singular value decomposition.
The following theorem quantifies the above statement.

Theorem 7 Assume|y| ≤ M almost surely. Denoteκ = supx∈X

√
K(x,x). Let1≤ S ≤ d. Set

B i =
m

∑
j=1

wi, j

[
σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)]S
ℓ,p=1

∈ R
S×S , i = 1, . . . ,m (17)

and

Y i =
m

∑
j=1

wi, j(y j −yi)
[
σℓ

(
U j

ℓ −U i
ℓ

)]S
ℓ=1

∈ R
S , i = 1, . . . ,m. (18)

Solve the linear system
{

m2λImS +diag{B1, · · · ,Bm}
[
K(xi ,x j)IS

]m
i, j=1

}
b̂ = (Y1, . . . ,Ym)T . (19)

The solutionb̂z = (b̂1,z, . . . , b̂m,z)
T ∈ R

mS gives an approximation~fz,λ,S = ∑m
i=1bi,zKxi with bi,z =

∑Sℓ=1 b̂ℓ
i,zVℓ. The error between bz = (bi,z)

m
i=1 and cz can be bounded as

∣∣bz−cz
∣∣
ℓ2(Rmn)

≤ 4MσS+1

m2λ

{√
d∆m+

2κ2σ2
1

mλ
√
S ∆m

}
, (20)

where∆m := max1≤i≤m
(
∑m

j=1wi, j
)2

+∑m
i, j=1

(
wi, j
)2

.

525

MUKHERJEE ANDZHOU

See Appendix B for the proof.

If we setS = d, we can solve for~fz,λ exactly with a linear system of reduced size. This is stated
in the following corollary.

Corollary 8 Let σ1 ≥ σ2 ≥ ·· · ≥ σd > 0 be all the positive singular values of Mx and U,V be the
orthogonal matrices in (14). Then~fz,λ = ∑m

i=1

{
∑d

ℓ=1 c̃ℓ
i,zVℓ

}
Kxi wherec̃z satisfies (19) withB i and

Y i given by (17) and (18) withS = d, respectively.

Theorem 7 provides a theoretical foundation for the following approximation algorithm with
reduced matrix size that accurately approximates~fz,λ by ~fz,λ,S .

3.1 Reduced Matrix Size Algorithm

The following is an outline of the reduced matrix algorithm. See appendix C for Matlabr code
implementing this algorithm.

Algorithm 1 : Approximation algorithm with reduced matrix size to approximate~fz,λ

input : inputs(xi)
m
i=1, labels(yi)

m
i=1, kernelK, weights(wi, j), eigenvalue thresholdε > 0

return : coefficients(bi,z)
m
i=1

Mx = [x1−xm,x2−xm, . . . ,xm−1−xm,xm−xm] ∈ R
n×m;

GivenMx compute the singular value decomposition (14) with orthogonal matricesU,V and
singular valuesσ1 ≥ σ2 ≥ ·· · ≥ σS > ε;
t j =

(
σ1U

j
1 , . . . ,σSU

j
S

)T ∈ R
S for 1≤ j ≤ m;

B i = ∑m
j=1wi, j(t j − ti)(t j − ti)T for 1≤ i ≤ m;

Y i = ∑m
j=1wi, j(y j −yi)(t j − ti) for 1≤ i ≤ m;

[
K̃
]
=

B1K(x1,x1) B1K(x1,x2) · · · B1K(x1,xm)
B2K(x2,x1) B2K(x2,x2) · · · B2K(x2,xm)

...
.. . · · · ...

BmK(xm,x1) BmK(xm,x2) · · · BmK(xm,xm)

 , ~Y =

Y1

Y2
...
Ym

b̂z = (b̂1,z, . . . , b̂m,z)
T ∈ R

mS where

{
m2λImS +

[
K̃
]}

b̂z = ~Y (21)

bi,z = ∑Sℓ=1 b̂ℓ
i,zVℓ and~fz,λ,S = ∑m

i=1bi,zKxi is an approximation of~fz,λ;
return(bi,z)

m
i=1

526

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

4. Error Analysis

In what follows we use Gaussian weights (equation (6)) and estimate errorbounds. We show that
~fz,λ → ∇ fρ as m→ ∞ for suitable choices of the regularization parameters going to zero,λ =
λ(m) → 0,s= s(m) → 0. Since we are learning gradients, some regularity conditions on both the
marginal distribution and the density are required. The following case illustrates the idea (this case
corresponds to the realizable setting in the PAC learning paradigm and will bea corollary of the
error analysis that follows).

Proposition 9 Assume|y| ≤ M almost surely. Suppose that for some0 < τ ≤ 2/3,cρ > 0, the
marginal distributionρX satisfies

ρX
(
{x∈ X : inf

u∈Rn\X
|u−x| ≤ s}

)
≤ c2

ρs4τ, ∀s> 0, (22)

and the density p(x) of dρX(x) exists and satisfies

sup
x∈X

p(x) ≤ cρ, |p(x)− p(v)| ≤ cρ|v−x|τ, ∀v,x∈ X. (23)

Chooseλ = λ(m) = m− τ
n+2+3τ and s= s(m) = (κcρ)

2
τ m− 1

n+2+3τ . If ∇ fρ ∈ H n
K and the kernel K is C3,

then there is a constant Cρ,K such that for any0 < δ < 1 and m≥ 1, with confidence1−δ, we have

‖~fz,λ −∇ fρ‖ρ ≤Cρ,K log

(
2
δ

)(
1
m

)− τ
2(n+2+3τ)

. (24)

The condition (23) means the density of the marginal distribution is Hölder τ. The condition
(22) is about the behavior ofρX near the boundary ofX. They are natural assumptions for learning
gradients of the regression function. When the boundary is piecewise smooth, (23) implies (22).

The idea behind the proof for the convergence of the gradient consistsof simultaneously con-
trolling a sample or estimation error term and a regularization or approximation error term. The
first term, the sample error, is bounded using a concentration inequality since it is a function of the
sample,z. The second term, the regularization error, does not depend on the sample and we use
functional analysis to bound this quantity.

4.1 Sample Error

First we estimate the sample error by means of the sampling operator introducedin Smale and Zhou
(2004, 2006b,a).

Definition 10 Thesampling operatorSx :H n
K →R

mn associated with a discrete subsetx = {xi}m
i=1

of X is defined by

Sx(~f) =
(
~f (xi)

)m
i=1 =

(
~f (x1), . . . , ~f (xm)

)T
.

The adjoint of the sampling operator,ST
x : R

mn→ H n
K , is given by

ST
x c =

m

∑
i=1

ciKxi , c = (ci)
m
i=1 = (c1, . . . ,cm)T ∈ R

mn.

527

MUKHERJEE ANDZHOU

DenoteDx = diag{B1,B2, · · · ,Bm} and~Y = (Y1,Y2, . . . ,Ym)T .
Consider equation (12) satisfied bycz. The quantity∑m

p=1K(xi ,xp)cp,z equals~fz,λ(xi). Then

(12) implies
(
ST

x DxSx +m2λI
)
~fz,λ = ST

x
~Y. Therefore,

~fz,λ =
(1

m2ST
x DxSx +λI

)−1 1
m2ST

x
~Y. (25)

We introduce ans-generalization error corresponding to the empirical error as follows.

Definition 11 The s-generalization error E = E s is defined for vectors of functions as

E (~f) =
Z

Z

Z

Z
w(x−u)

(
y−v+~f (x) · (u−x)

)2

dρ(x,y)dρ(u,v).

If we denoteσ2
s =

Z

Z

Z

Z
w(x−u)(y− fρ(x))

2dρ(x,y)dρ(u,v), then

E (~f) = 2σ2
s +

Z

X

Z

X
w(x−u)

[
fρ(x)− fρ(u)+~f (x) · (u−x)

]2

dρX(x)dρX(u). (26)

A data independent limit of~fz,λ is

~fλ = arg min
~f∈H n

K

{
E (~f)+λ‖~f‖2

K

}
. (27)

Taking the functional derivatives, we know from (26) that~fλ can be expressed in terms of the

following integral operator on the space
(
L2

ρX

)n
with norm‖~f‖ρ =

(
‖ fℓ‖2

ρ
)1/2

.

Proposition 12 Let LK,s :
(
L2

ρX

)n →
(
L2

ρX

)n
be the integral operator defined by

LK,s~f =
Z

X

Z

X
w(x−u)(u−x)Kx(u−x)T~f (x)dρX(x)dρX(u). (28)

It is a positive operator on
(
L2

ρX

)n
and

~fλ =
(
LK,s+λI

)−1~fρ,s. (29)

where
~fρ,s :=

Z

X

Z

X
w(x−u)(u−x)Kx

(
fρ(u)− fρ(x)

)
dρX(x)dρX(u). (30)

The operatorLK,s has its range inH n
K . It can also be regarded as a positive operator onH n

K . We
shall use the same notion for the operators on these two different domains.

To bound the sample error~fz,λ−~fλ, we shall introduce a McDiarmid-Bernstein type probability
inequality for vector-valued random variables.

528

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

Proposition 13 Letz= {zi}m
i=1 be i.i.d. draws from a probability distributionρ on Z,(H,‖ ·‖) be a

Hilbert space, and F: Zm → H be measurable. If there is̃M ≥ 0 such that‖F(z)−Ezi (F(z))‖ ≤ M̃
for each1≤ i ≤ m and almost everyz∈ Zm, then for everyε > 0,

Probz∈Zm{‖F(z)−Ez(F(z))‖ ≥ ε} ≤ 2exp

{
− ε2

2(M̃ε+σ2)

}
, (31)

whereσ2 := ∑m
i=1supz\{zi}∈Zm−1 Ezi{‖F(z)−Ezi (F(z))‖2}. For any0< δ < 1, with confidence1−δ,

there holds

‖F(z)−Ez(F(z))‖ ≤ 2log
2
δ
{

M̃ +
√

σ2
}
.

Proof Apply Theorem 3.3 of Pinelis (1994) (see Appendix A) to the finite sequence{ f j = Ezm,...,zj F−
Ezm,...,z1F : j = 1,2, . . . ,m+1}. So f1 = 0 and fm+1 = F(z)−Ez(F(z)). Note that‖ f j − f j−1‖ ≤ M̃
almost surely and∑m+1

j=2 Ezj−1‖ f j − f j−1‖2 ≤ σ2. The conditions of Theorem 3.3 of Pinelis (1994)

hold with B2 = σ2, Γ = M̃. As pointed out in a correction of Pinelis (1999), the probability should
be 2exp

{
− r2

rΓ+B2+B
√

B2+2rΓ

}
, which is bounded by 2exp

{
− r2

2(rΓ+B2)

}
. Inequality (31) follows from

the theorem.
Chooseε such that ε2

2M̃ε+2σ2 = log 2
δ . That is,ε satisfies

ε2 = 2M̃ log
2
δ

ε+2σ2 log
2
δ
.

Therefore, with confidence at least 1−δ, we have

‖F(z)−Ez(F(z))‖ ≤ ε ≤ 2M̃ log
2
δ

+

√
2σ2 log

2
δ
≤ 2log

2
δ
{

M̃ +
√

σ2
}
.

This proves the proposition.
Now we can give the main result on the sample error‖~fz,λ −~fλ‖K . Denote the diameter ofX as

Diam(X) = maxx,t∈X |x− t| and the moments of the Gaussian as

Jp :=
Z

Rn
e−

|x|2
2 |x|pdx, p≥ 0.

In the following sample error estimates, the bounds are valid for anym,λ, ands, though they yield
reasonable learning rates only for suitable choices ofλ = λ(m) ands = s(m) which we state in
Proposition 9.

Theorem 14 Assume|y| ≤ M almost surely.

1. For any0 < δ < 1, with confidence1−δ, we have

‖~fz,λ −~fλ‖K ≤ 16κDiam(X) log(2/δ)√
mλsn+2

{
2M +κDiam(X)‖~fλ‖K

}
+

1
m
‖~fλ‖K . (32)

2. If the density p(x) of dρX(x) exists and satisfiessupx∈X p(x)≤ cρ, then for any0< s≤ 1, with
confidence1−δ, there holds

‖~fz,λ −~fλ‖K ≤ 8κ log(2/δ)√
mλs1+n/2

(
√

cρ +
Diam(X)√

ms1+n/2

)

(
2M

√
J2 +κ(Diam(X)+

√
J4)‖~fλ‖K

)
+

1
m
‖~fλ‖K . (33)

529

MUKHERJEE ANDZHOU

Proof By (25), we have

~fz,λ −~fλ =
(1

m2ST
x DxSx +λI

)−1
{

1
m2ST

x
~Y− 1

m2ST
x DxSx~fλ −λ~fλ

}
.

Define a vector-valued functionF : Zm → H n
K by

F(z) =
1

m2ST
x
~Y− 1

m2ST
x DxSx~fλ.

That is,

F(z) =
1

m2

m

∑
i=1

m

∑
j=1

wi, j(x j −xi)Kxi (y j −yi)−
1

m2

m

∑
i=1

m

∑
j=1

wi, j(x j −xi)Kxi (x j −xi)
T~fλ(xi).

By independence, the expected value ofF(z) equals

1
m2

m

∑
i=1

Ezi ∑
j 6=i

Ez j

{
wi, j(x j −xi)Kxi

[
(y j −yi)− (x j −xi)

T~fλ(xi)
]}

=
m−1

m2

m

∑
i=1

Ezi

{
Z

X
w(xi −u)(u−xi)Kxi

[
(fρ(u)−yi)− (u−xi)

T~fλ(xi)
]
dρX(u)

}
.

It follows that

Ez(F(z)) =
m−1

m
~fρ,s−

m−1
m

LK,s~fλ.

By (29),LK,s~fλ +λ~fλ = ~fρ,s. Henceλ~fλ = ~fρ,s−LK,s~fλ = m
m−1Ez(F(z)). Therefore,

‖~fz,λ −~fλ‖K ≤ 1
λ
‖F(z)− m

m−1
Ez(F(z))‖K ≤ 1

λ
‖F(z)−Ez(F(z))‖K +

1
m
‖~fλ‖K .

The reproducing property (2) together with the upper boundκ implies

‖ f‖ρ ≤ ‖ f‖∞ ≤ κ‖ f‖K , ∀ f ∈ HK . (34)

Then we apply Proposition 13 to the functionF(z) to get our error bound.
Let i ∈ {1, . . . ,m}. We know thatF(z)−Ezi (F(z)) equals

1
m2 ∑

j 6=i

w(xi −x j)(x j −xi)

{
Kxi

[
y j −yi − (x j −xi)

T~fλ(xi)
]

+Kx j

[
y j −yi − (x j −xi)

T~fλ(x j)
]}

− 1
m2 ∑

j 6=i

Z

X
w(x−x j)(x j −x)

{
Kx
[
y j − fρ(x)− (x j −x)T~fλ(x)

]

+Kx j

[
y j − fρ(x)− (x j −x)T~fλ(x j)

]}
dρX(x).

Using (34) for~fλ and|x−x j | ≤ Diam(X) for anyx∈ X, we see that

‖F(z)−Ezi (F(z))‖K ≤ M̃ =
4κDiam(X)

msn+2

{
2M +κDiam(X)‖~fλ‖K

}
.

530

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

1. We first prove (32). Apply the trivial boundσ2 ≤ mM̃2. Then Proposition 13 tells us that for
any 0< δ < 1, with confidence 1−δ, there holds

‖F(z)−Ez(F(z)‖K ≤ 2log
2
δ
{

M̃ +
√

mM̃
}
≤ 4log

2
δ
√

mM̃.

This proves (32).
2. To prove (33) we need to improve on our estimate of the varianceσ2, we bound‖F(z)−

Ezi (F(z))‖K by

1
m2 ∑

j 6=i

w(xi −x j)|x j −xi |
{

2κ2M +2|x j −xi |κ2‖~fλ‖K

}

+
1

m2 ∑
j 6=i

Z

X
w(x−x j)|x j −x|

{
2κ2M +2|x j −x|κ2‖~fλ‖K

}
dρX(x).

It follows that
(
Ezi (‖F(z)−Ezi (F(z))‖2

K)
)1/2

is bounded by

2
m2 ∑

j 6=i

{
Z

X

(
w(x−x j)

)2|x j −x|2
{

4κM +2|x j −x|κ2‖~fλ‖K

}2

dρX(x)

}1/2

≤ 2
m2 ∑

j 6=i

{
Z

X
s−2(n+2)e−

|x−xj |2

s2 |x j −x|2
{

4κM
}2

cρdx

}1/2

+
2

m2 ∑
j 6=i

{
Z

X
s−2(n+2)e−

|x−xj |2

s2 |x j −x|4(2κ2)2‖~fλ‖2
Kcρdx

}1/2

.

Here we have used the assumptiondρX(x) = p(x)dx with p(x) ≤ cρ. Bounding the above integrals
by those on the whole spaceR

n, we see from the definition of the momentsMr that

Ezi (‖F(z)−Ezi (F(z))‖2
K) ≤ 2(m−1)

m2

{
4κM

√
cρ

√
J2

sn+221+n/2
+2κ2‖~fλ‖K

√
cρ

√
J4

sn22+n/2

}
.

It follows then that fors≤ 1

σ2 ≤ 16cρκ2

msn+2

{
21/4M

√
J2 +κ‖~fλ‖K

√
J4

}2

.

The second statement (inequality (33)) follows from Proposition 13.

4.2 Regularization Error

In this subsection, we shall bound the regularization error‖~fλ − ∇ fρ‖ by a functional analysis
approach. To illustrate the idea, we state the result for a special case when ∇ fρ ∈ H n

K . It is a
corollary of Theorem 17 and Theorem 19 withr = 1/2.

Proposition 15 Assume (22) and (23). Denote Vρ =
R

X(p(x))2dx> 0. Suppose that∇ fρ ∈ H n
K and

for some c′ρ > 0,

| fρ(u)− fρ(x)−∇ fρ(x) · (u−x)| ≤ c′ρ|u−x|2, ∀ u,x∈ X. (35)

531

MUKHERJEE ANDZHOU

Then for anyλ > 0 and0 < s≤ min
{{

2κ2cρ
(
M2+τ +J4 +cρJ2

)}1/τλ1/τ,1
}

, there holds

‖~fλ −∇ fρ‖ρ ≤
(
κ2c′ρJ3

) s
λ

+
{

2
(
Vρn(2π)n/2)−1/2‖∇ fρ‖K

}√
λ.

To estimate the regularization error, we need to consider the convergenceof Lk,s ass→ 0.

Lemma 16 Assume that for some0 < τ < 1, conditions (22) and (23) hold. Then Vρ ≤ cρ and for
any0 < s≤ 1 we have

‖LK,s−Vρn(2π)n/2LK‖H n
K→H n

K
≤ sτκ2cρ

(
M2+τ +J4 +cρJ2

)
, (36)

where LK is a positive operator onH n
K defined by

LK~f =
Z

X
Kx~f (x)

p(x)
Vρ

dρX(x). (37)

The operator LK is also a positive operator on(L2
ρX

)n satisfying

‖LK,s−Vρn(2π)n/2LK‖(L2
ρX

)n→(L2
ρX

)n ≤ sτκ2cρ
(
M2+τ +J4 +cρJ2

)
, ∀ 0 < s≤ 1. (38)

Proof Let ~f ∈ (L2
ρX

)2. Denote

~g =
Z

X

{
Z

X
w(x−u)(u−x)Kx(u−x)Tdu

}
p(x)~f (x)dρX(x).

Then by (23) and the Cauchy-Schwartz inequality we see that‖LK,s~f −~g‖K is bounded by

Z

X

{
Z

X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2‖Kx‖Kcρ|u−x|τdu

}∣∣~f (x)
∣∣dρX(x) ≤ sτκcρM2+τ‖~f‖ρ.

Observe thatn(2π)n/2 = J2 and
R

Rn w(u−x)(ui −xi)(u j −x j)du= 0 wheni 6= j. Then
R

Rn
1
sn e−

|u−x|2
2s2
(

u−x
s

)(
u−x

s

)T
du= J2In. Hence

Vρn(2π)n/2LK~f =
Z

X

{
Z

Rn

1
sne−

|u−x|2
2s2
(u−x

s

)(u−x
s

)T
du

}
p(x)Kx~f (x)dρX(x).

It follows that

‖~g−Vρn(2π)n/2LK~f‖K =

∥∥∥∥
Z

X

{
Z

Rn\X

1
sne−

|u−x|2
2s2
(u−x

s

)(u−x
s

)T
du

}
p(x)Kx~f (x)dρX(x)

∥∥∥∥
K

≤
Z

X

{
Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2du

}
κ|~f (x)|p(x)dρX(x).

Separate the domainX into Xs := {x ∈ X : infu∈Rn\X |u− x| ≤ √
s}, consisting of those points

whose distance to the boundary is at most
√

s, and its complementX \Xs.

If x∈ X \Xs, anyu∈ R
n\X satisfies|u−x| ≥ √

s and thereby 1≤ s
∣∣u−x

s

∣∣2. Hence

Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2du≤ s
Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣4du≤ sJ4.

532

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

It follows from (23) that
Z

X\Xs

{
Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2du

}
κ|~f (x)|p(x)dρX(x) ≤ sκcρM4

Z

X\Xs

|~f (x)|dρX(x)

which is bounded bysκcρM4‖~f‖ρ.
For the subsetXs, we use the Cauchy-Schwartz inequality and (23) to obtain

Z

Xs

{
Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2du

}
κ|~f (x)|p(x)dρX(x) ≤

Z

Xs

κcρM2|~f (x)|dρX(x).

This is bounded byκcρM2
√

ρX(Xs)‖~f‖ρ. By (22),ρX(Xs) ≤ c2
ρs2τ. Thus, for 0< s≤ 1,

‖~g−n(2π)n/2LK~f‖K ≤ sτκcρ
(
M4 +cρJ2

)
‖~f‖ρ.

Combine the above two estimates. There holds for any 0< s≤ 1

‖LK,s~f −Vρn(2π)n/2LK~f‖K ≤ sτκcρ
(
M2+τ +J4 +cρJ2

)
‖~f‖ρ

which proves (38) by (34). When~f ∈ H n
K , we have from (34) again that

‖LK,s~f −Vρn(2π)n/2LK~f‖K ≤ sτκ2cρ
(
M2+τ +J4 +cρJ2

)
‖~f‖K .

This verifies (36) and proves the lemma.
The measurep(x)

Vρ
dρX is probability one onX. So we know (see Cucker and Smale (2001))

that the operatorLK can be used to define the reproducing kernel Hilbert space: LetLr
K be ther-th

power of the positive operatorLK on (L2
ρX

)n having range inH n
K . ThenH n

K is the range ofL1/2
K :

‖~f‖ρ = ‖L1/2
K

~f‖K for any~f ∈ (L2
ρX

)n.

Theorem 17 Under the assumption (35), we have

‖~fλ −∇ fρ +λ
(
LK,s+λI

)−1∇ fρ‖K ≤ s
λ

κc′ρJ3.

Proof By (29), we find that

~fλ −∇ fρ +λ
(
LK,s+λI

)−1∇ fρ =
(
LK,s+λI

)−1
{

~fρ,s−LK,s∇ fρ

}
.

Then

‖~fλ −∇ fρ +λ
(
LK,s+λI

)−1∇ fρ‖K ≤ ‖
(
LK,s+λI

)−1‖H n
K→H n

K
‖~fρ,s−LK,s∇ fρ‖K

which is bounded by1λ‖~fρ,s−LK,s∇ fρ‖K . Using (35) on the integral

~fρ,s−LK,s∇ fρ =
Z

X

Z

X
w(x−u)(u−x)Kx

{
fρ(u)− fρ(x)− (u−x)T∇ fρ(x)

}
dρX(x)dρX(u),

we know that

‖~fρ,s−LK,s∇ fρ‖K ≤
Z

X

Z

X
w(x−u)|u−x|‖Kx‖Kc′ρ|u−x|2dρX(x)dρX(u) ≤ sκc′ρJ3.

This proves the theorem.
Finally, we need to studyλ

(
LK,s+λI

)−1∇ fρ in order to estimate the error‖~fλ −∇ fρ‖.

533

MUKHERJEE ANDZHOU

Lemma 18 Assume (22) and (23). Denote c′′
ρ =

(
2κ2cρ

(
M2+τ +J4 +cρJ2

))1/τ
. Then

‖
(
LK,s+λI

)−1~f‖ ≤ 2‖
(
Vρn(2π)n/2LK +λI

)−1~f‖, ∀0 < s≤ min
{

c′′ρλ1/τ,1
}
,

where~f is either in the spaceH n
K or in (L2

ρX
)n, and‖ · ‖ is the corresponding norm.

Proof Write
(
LK,s+λI

)−1~f =
{[

Vρn(2π)n/2LK +λI
]
−
[
n(2π)n/2LK −LK,s

]}−1~f as

{
I −
[
Vρn(2π)n/2LK +λI

]−1[
Vρn(2π)n/2LK −LK,s

]}−1[
Vρn(2π)n/2LK +λI

]−1~f .

This in connection with Lemma 16 implies

∥∥(LK,s+λI
)−1~f

∥∥≤
{

1− 1
λ

sτκ2cρ
(
M2+τ +J4 +cρJ2

)}−1∥∥[Vρn(2π)n/2LK +λI
]−1~f

∥∥.

This verifies the lemma.
Lemma 18 yields the convergence of‖λ

(
LK,s+λI

)−1∇ fρ‖. The convergence rates require some
conditions on∇ fρ relative to the pair(L2

ρX
,HK). The assumption we shall use is‖L−r

K ∇ fρ‖ρ <
∞. It means that∇ fρ lies in the range ofLr

K . In particular, in the caser = 1/2, the condition

‖L−1/2
K ∇ fρ‖ρ < ∞ means∇ fρ ∈ H n

K . For more examples about this condition, see Smale and Zhou
(2006a).

Theorem 19 Assume (22), (23), and (35). Let0< s≤ min
{

c′′ρλ1/τ,1
}

. If ‖L−r
K ∇ fρ‖ρ < ∞ for some

0 < r ≤ 1, then

‖λ
(
LK,s+λI

)−1∇ fρ‖ρ ≤ 2λr(Vρn(2π)n/2)−r‖L−r
K ∇ fρ‖ρ, ∀λ > 0.

If moreover r≥ 1/2, then we have for anyλ > 0,

‖λ
(
LK,s+λI

)−1∇ fρ‖K ≤ 2λr−1/2(Vρn(2π)n/2)−r‖L−r
K ∇ fρ‖ρ.

In the general situation, we can see that‖λ
(
LK,s+λI

)−1∇ fρ‖ρ → 0 asλ → 0, provided thatHK

is dense inL2
ρX

(Smale and Zhou, 2003). This can be seen from the following convergence estimate.

Proposition 20 Assume (22), (23), and (35). Then

‖λ
(
LK,s+λI

)−1∇ fρ‖ρ ≤ 2K

(
∇ fρ,

√
λ

Vρn(2π)n/2

)
, ∀ 0 < s≤ min

{
c′′ρλ1/τ,1

}
,

whereK (~f , t) is the K-functional of the pair
(
(L2

ρX
)n,H n

K

)
defined as

K (~f , t) = inf
~g∈H n

K

{
‖~f −~g‖ρ + t‖~g‖K

}
, t > 0. (39)

534

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

The proof of Proposition 9 shows how our error analysis can be applied.
Proof of Proposition 9. Since the kernelK is C3 and∇ fρ ∈ H n

K , we know from Zhou (2003) that
∂ fρ
∂xi is C1 for eachi. It follows that fρ is C2 and condition (35) is satisfied for some constantc′ρ > 0.

Sinceλ =
(
1/m

)γ
with γ = τ

n+2+3τ ands= (κcρ)
2/τλ1/τ, we see from the factJ2 > 1 that form≥

(κcρ)
2(n+2+3τ)/τ, the restriction 0< s≤ min

{{
2κ2cρ

(
M2+τ +J4 +cρJ2

)}1/τλ1/τ,1
}

in Proposition
15 and Lemma 18 is satisfied. Then by Proposition 15, since1

τ −1≥ 1
2, we have for some constant

Cρ > 0 that

‖~fλ −∇ fρ‖ρ ≤Cρ

(s
λ

+
√

λ
)
≤Cρ(1+(κcρ)

2/τ)

(
1
m

) γ
2

.

Applying Lemma 18, we know that

‖λ
(
LK,s+λI

)−1∇ fρ‖K ≤ 2‖λ
(
Vρn(2π)n/2LK +λI

)−1∇ fρ‖K ≤ 2‖∇ fρ‖K .

This in connection with Theorem 17 implies that

‖~fλ‖K ≤ ‖∇ fρ‖K +2‖∇ fρ‖K +
s
λ

κc′ρJ3 ≤ 3‖∇ fρ‖K +(κcρ)
2/τκc′ρJ3.

Finally, we apply (33) of Theorem 14 and know that for a constantC′
ρ > 0, with confidence

1−δ,

‖~fz,λ −~fλ‖K ≤C′
ρ

{
log(2/δ)√
mλs1+n/2

+
1
m

}
≤C′

ρ log(2/δ)

{(
1
m

) 1
2−γ− γ

2(1+ n
2)

(κcρ)
− 2

τ (1+ n
2) +

1
m

}
.

which is bounded byC′′
ρ log

(
2
δ
)(

1
m

)− τ
2(n+2+3τ) with a constantC′′

ρ . This is true form≥ (κcρ)
2(n+2+3τ)/τ.

Replacing the constantC′′
ρ by a new one enables us to bound errors for the finitely many terms with

m< (κcρ)
2(n+2+3τ)/τ. Thus Proposition 9 is proved.

5. Simulated Data and Gene Expression Data

In this section we apply the least-squares gradient algorithm (7) to the variable selection and variable
covariance problems. Our idea is to rank the importance of variables according to the norm of their

partial derivatives‖ ∂ fρ
∂xℓ ‖, since a small norm implies small changes on the function with respect

to this variable. By our error analysis, we expect~fz,λ ≈ ∇ fρ. So we shall use the norms of the
components of~fz,λ to rank the variables.

Definition 21 The relative magnitude of the norm for the variables is defined as

sρ
ℓ =

‖
(
~fz,λ
)
ℓ
‖K

(
∑n

j=1‖
(
~fz,λ
)

j‖2
K

)1/2
, ℓ = 1, . . . ,n.

In the same way, we can study coordinate covariances by the variance ofan empirical matrix.

Definition 22 Theempirical gradient matrix (EGM), Fz, is the n×m matrix whose columns are
~fz,λ(x j) with j = 1, . . . ,m. Theempirical covariance matrix (ECM),Ξz, is the n×n matrix of inner
products of the directional derivative of two coordinates

Cov(~fz,λ) :=
[
〈
(
~fz,λ
)

p,
(
~fz,λ
)

q〉K

]n

p,q=1
=

m

∑
i, j=1

ci,zc
T
j,zK(xi ,x j).

535

MUKHERJEE ANDZHOU

The ECM gives us the covariance between the coordinates while the EGM gives us information
as how the variables differ over different sections of the space.

We apply our idea to three data sets. The first data set is an artificial one which we use to
illustrate the procedure. The second is a cancer classification problem that has been well studied
and serves as further confirmation of the utility of the method. The third data set provides a gold
standard as to relevant variables.

5.1 Artificial Data

We construct a function in ann = 80 dimensional space which consists of three linear functions
over different partitions of the space. We generate 30 samples as follows:

1. For samples{xi}10
i=1

x j ∼ N (1,σx), for j = 1, . . . ,10; x j ∼ N (0,σx), for j = 11, . . . ,80.

2. For samples{xi}20
i=11

x j ∼ N (1,σx), for j = 11, . . . ,20; x j ∼ N (0,σx), for j = 1, . . . ,10,21, . . . ,80.

3. For samples{xi}30
i=21

x j ∼ N (1,σx), for j = 41, . . . ,50; x j ∼ N (0,σx), for j = 1, . . . ,40,51, . . . ,80.

A draw of thisx matrix is shown in figure (1a). Three vectors with support over different dimensions
were constructed as follows:

w1 = 2+ .5sin(2πi/10) for i = 1, ...,10 and 0 otherwise,

w2 = −2− .5sin(2πi/10) for i = 11, ...,20 and 0 otherwise,

w3 = −2− .5sin(2πi/10) for i = 41, ...,50 and 0 otherwise.

The values for{yi}30
i=1 were given by the following linear equations

1. For samples{yi}10
i=1

yi = xi ·w1 +N (0,σy),

2. For samples{yi}20
i=11

yi = xi ·w2 +N (0,σy),

3. For samples{yi}30
i=21

yi = xi ·w3 +N (0,σy).

A draw of they values is shown in figure (1b).
In figure (1c) we plot the norm of each component of the estimate of the gradient,{‖(~fz,λ)ℓ‖K}80

ℓ=1
for σx = .05 andσy = .30. The norm of each component gives an indication of the importance of a
variable and variables with small norms can be eliminated. Note that the coordinates with nonzero
norm are the ones we expect,ℓ = 1, . . . ,20,41, . . . ,50.

Perhaps more interesting is that we can evaluate the gradient at each sample{xi}m
i=1. This leads

to an estimate of the covariation of the variables. In figure (1d) we plot the EGM, while the ECM is
displayed in figure (1e). The blocking structure of the ECM indicates the coordinates that covary.

536

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

5 10 15 20 25 30

10

20

30

40

50

60

70

80

Sample

D
im

e
n

si
o

n

0 5 10 15 20 25 30

−25

−20

−15

−10

−5

0

5

10

15

20

25

y
-v

a
lu

e

Sample

0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Dimension

N
o

rm

(a) (b) (c)

5 10 15 20 25 30

10

20

30

40

50

60

70

80
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Samples

G
ra

d
ie

n
t

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

−0.5

0

0.5

1

1.5

Dimension

D
im

e
n

si
o

n

(d) (e)

Figure 1: a) The data matrixx where each sample corresponds to a column, b) the vector ofy
values generated by sampling the function, c) the RKHS norm for each dimension, d)
an estimate of the gradient at each sample, the samples correspond to columns, e) the
empirical covariance matrix.

537

MUKHERJEE ANDZHOU

5.2 Gene Expression Data

In computational biology, specifically in the subfield of gene expression analysis variable selection
and estimation of covariation is of fundamental importance. Microarray technologies enable ex-
perimenters to measure the expression level of thousands of genes, the entire genome, at once. The
expression level of a gene is proportional to the number of copies of mRNAtranscribed by that gene.
This readout of gene expression is considered a proxy of the state of the cell. The goals of gene
expression analysis include using the expression level of the genes to predict classes, for example
tissue morphology or treatment outcome, or real-valued quantities such as toxicity or sensitivity.
Fundamental to understanding the biology giving rise to the outcome or toxicity isdetermining
which genes are most relevant for the prediction.

5.2.1 LEUKEMIA CLASSIFICATION

We apply our procedure to a well studied expression data set. The data set is a result of a study
using expression data to discriminate acute myeloid leukemia (AML) from acute lymphoblastic
leukemia (ALL) (Golub et al., 1999; Slonim et al., 2000) and estimating the genes most relevant to
this discrimination. The data set contains 48 samples of AML and 25 samples of ALL. Expression
levels ofn= 7,129 genes and expressed sequence tags (ESTs) were measured via an oligonucleotide
microarray for each sample. This data set was split into a training set of 38 samples and a test set of
35 samples.

Various variable selection algorithms have been applied to this data set by using the training set
specified in Golub et al. (1999) to select variables and build a classificationmodel and then compute
the classification error on the test set. We estimate~fz,λ from the training data and then select the
S variables with the largestsρ

ℓ . We then use a linear Support Vector Machine (SVM) to build a
classification model and compute the accuracy on the test set. Table 1 reports test errors for various
values ofS . The classification accuracy is very similar to other feature selection algorithms such as
recursive feature elimination (RFE) (Guyon et al., 2002; Lee et al., 2004) and radius-margin bound
(RMB) (Chapelle et al., 2002) both of which were developed specifically for SVMs.

genes (S) 5 55 105 155 205 255 305 355 405 455
test errors 1 3 2 1 1 1 1 1 1 1

Table 1: Number of errors in classification for various values ofS using the genes corresponding to
dimensions with the largest norms. A linear SVM was used for classification.

In figure (2a-d) we plot the relative magnitude sequencesρ
ℓ for the genes. On this data set the

decay in the ranked scoressρ
(ℓ) is steeper than that for most statistics that have been previously used

on this data. To illustrate this we compared the gradient score to the Fisher score Slonim et al.
(2000) for each gene

tℓ =
|µ̂AML

ℓ − µ̂ALL
ℓ |

σ̂AML
ℓ + σ̂ALL

ℓ

,

whereµ̂AML
ℓ is the mean expression level for the AML samples in theℓ-th gene, ˆµALL

ℓ is the mean
expression level for the ALL samples in theℓ-th gene,σ̂AML

ℓ is the standard deviation of the expres-
sion level for the AML samples in theℓ-th gene, and̂σALL

ℓ is the standard deviation of the expression

538

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

level for the ALL samples in theℓ-th gene. We then normalize these scores

sF
ℓ =

tℓ(
∑n

p=1 t2
p

)1/2
.

Figure (2a-d) displays the relative decay ofsρ
(ℓ) andsF

(ℓ) over various numbers of dimensions. In all

plots it is apparent that the decay rate ofsρ
(ℓ) is much steeper. Plotting the decay of the elements for

the normalized hyperplanew
0

‖w0‖ that is the solution of a linear SVM results in a plot much more like
that of the Fisher score than the gradient statistic. Whether and how this steepness (sparsity) has an
implication on the generalization error is an open question.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) (b)

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(c) (d)

Figure 2: The decay ofsρ
(ℓ) (blue) andsF

(ℓ) (red) over: a) all the genes/dimensions, b) the top 2000
genes/dimensions, c) the top 1000 genes/dimensions, d) the top 500 genes/dimensions.

We can also examine the EGM and the ECM. The EGM in this case is a 7,129×38 matrix and
the ECM is 7,129×7,129 matrix. We plot the EGM in the space of the dimensions corresponding
to the top 50 norms ordered by a clustering metric in figure (3a). The covariation in the coordinates
is plotted for the top 50 dimensions ordered in the same way as the EGM (see figure (3b)). The
blocking structure of the matrix gives us coordinate covariance.

5.2.2 GENDER: “A G OLD STANDARD”

In this section we assess the accuracy of the algorithm with respect to a dataset for which a priori
biological knowledge gives us a set of important variables. This servesas a gold standard.

539

MUKHERJEE ANDZHOU

5 10 15 20 25 30 35

5

10

15

20

25

30

35

40

45

50

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

D
im

e
n

si
o

n
s

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.05

0

0.05

0.1

0.15

Dimensions

D
im

e
n

si
o

n
s

(a) (b)

Figure 3: The a) EGM for the top 50 dimensions ordered by clustering the EGM and b) the ECM
for the top 50 dimensions ordered in the same way.

We examine a gene expression data set with 15 male and 17 females samples from lymphblas-
toid cell lines (unpublished). Expression levels ofn = 22,283 probes corresponding to genes and
expressed sequence tags (ESTs) were measured via an oligonucleotidemicroarray for each sample.

In figure (4a-d) we plot the relative magnitude sequencesρ
ℓ for the genes as compared to those

of the relative Fisher scoresF
ℓ and we see again the quicker decay for the gradient norms.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30 35 40 45 50
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(c) (d)

Figure 4: The decay ofsρ
(ℓ) (blue) andsF

(ℓ) (red) over: a) all the genes/dimensions, b) the top 200
genes/dimensions, c) the top 100 genes/dimensions, d) the top 50 genes/dimensions.

From a priori biological knowledge we would predict that the most discriminative genes for
gender would be those on the Y chromosome as well as genes on the X chromosome known to

540

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

escape X inactivation. The reason that all the genes on the X chromosome would not be expected to
be discriminative is due to dosage compensation in expression which takes compensates for the fact
that women have two X chromosomes and men have one. The mechanism for thiscompensation
is X inactivation. However, there are genes known to escape X inactivation and these should be
differentially expressed. We obtained a list of such genes by combining listsreported in two sources
(Carrel et al., 1999; Disteche et al., 2002). There were 35 probes in the X inactivation set and 66
probes corresponding to genes on the Y chromosome.

An important caveat is that while these 101 probes would be expected to be differentially ex-
pressed they would not all be expected to rank at the top of a list of genesthat are differentially
expressed. This is due to the fact that in the cell line or tissue of question there may be other genes
that are more strongly differentially expressed due to local conditions. This is why the term gold
standard is quoted.

We first used a standard variation filter (Slonim et al., 2000) which reduced the number of
probes to about 12,000. This data set was then standardized (the expression values for each gene
was recentered and scaled to be zero mean and standard deviation of one). We then iteratively ran
our procedure 20 times, each time removing the bottom 10% of the probes. We found that 16 of
the 101 probes appeared in the top ranked 500 probes. Ranking by the Fisher score we found 22
of the top 101 probes in the top ranked 500 probes. Using the logistic loss mayresult in more like
the Fisher score since it is a more appropriate model for classification. Bothresults are significant
with respect to a hypergeometric distribution as the model for the null hypothesis. However, the
assumptions of independence in the model which gives rise to the hypergeometric distribution are
completely inappropriate in this problem (the probes tend to be strongly correlated). There are
statistical tests that account for the correlations but this topic is beyond the scope of this paper
(Sweet-Cordero et al., 2005; Subramanian et al., 2005).

6. Discussion

We introduce an algorithm that learns gradients from samples of function values and show its rele-
vance to variable selection. An error analysis is given for the convergence of the estimated gradient
to the true gradient. This method also places the problem of variable selection into the powerful
framework of Tikhonov regularization. There are many extensions and refinements to this method
which we discuss below:

1. Logistic regression model: In Definition 2 we state an algorithm for classification. As many
applications of this method are for classification problems it is important to implementa
reduced matrix version of this algorithm as was done for regression by Algorithm 1. In
addition, an error analysis for the classification setting is also necessary.

2. Fully Bayesian model: The Tikhonov regularization framework coupled with the use of an
RKHS allows us to implement a fully Bayesian version of the procedure in the context of
Bayesian radial basis (RB) models Liao et al. (2005); Liao (2005). TheBayesian RB frame-
work can be extended to develop a proper probability model for the gradient learning problem.
The optimization procedures 1 and 2 would be replaced by Markov Chain Monte-carlo meth-
ods and the full posterior rather than the maximum a posteriori estimate would becomputed.
A very useful result of this is that in addition to the point estimates for the gradient we would
also be able to compute confidence intervals.

541

MUKHERJEE ANDZHOU

3. Intrinsic dimension: In Proposition 9 the rate of convergence of the gradient has the form
of O(m−1/n) which can be extremely slow ifn is large. However, in most data sets and
when variable selection is meaningful the data are concentrated on a much lower dimensional
manifold embedded in the high dimensional space. In this setting an analysis thatreplaces
the ambient dimensionn with the intrinsic dimension of the manifoldnM would be of great
interest.

4. Semi-supervised setting: Intrinsic properties of the manifoldX can be further studied by unla-
belled data. This is one of the motivations of semi-supervised learning. In many applications,
it is much easier to obtain unlabelled data with a larger sample sizeu>> m. For our purpose,
unlabelled datax = (xi)

m+u
i=m+1 can be used to reduce the dimension or correlation. Since we

learn the gradient by~f , it is natural to use the unlabelled data to control the approximate norm
of ~f in some Sobolev spaces and introduce a semi-supervised learning algorithmas

~fz,x,λ,µ = argmin~f∈H n
K

{
1

m2 ∑m
i, j=1w(s)

i, j

(
yi −y j +~f (xi) · (x j −xi)

)2

+ µ
(m+u)2 ∑m+u

i, j=1Wi, j |~f (xi)−~f (x j)|2ℓ2(Rn)
+λ‖~f‖2

K

}
, (40)

where{Wi, j} are edge weights in the data adjacency graph,µ is another regularization param-
eter and often satisfiesλ = o(µ).

Acknowledgments

We would like to thank Andŕe Elisseeff and Misha Belkin for useful discussions. We would like to
thank Aravind Subramanian for help with the X inactivation sets. We would like toacknowledge
support for this project from the National Science Foundation and fromthe University Grants Coun-
cil of Hong Kong (Project No. CityU 103303) and the Institute for Genome Sciences & Policy at
Duke.

Appendix A

Let S (X) denote the class of all sequencesf = (f0, f1, ...) of Bochner-integrable random vectors in
X with f0 ≡ 0, defined on a probability space. LetM (X) denote the class of all sequencesf j ∈ S (X)
that are martingales. The following theorem can be found in (Pinelis, 1994)as Theorem 3.3 with a
correction made in Pinelis (1999). Note that Hilbert spaces are(2,D)-smooth Banach spaces with
D = 1.

Theorem 23 (Pinelis, 1994) Suppose that f∈M (X), X is a(2,D)-smooth separable Banach space
and ∥∥∥∥

∞

∑
j=1

E j−1‖ f j − f j−1‖m

∥∥∥∥
∞
≤ m!Γm−2B2/(2D2)

for someΓ > 0,B > 0 and m= 2,3, ... Then for all r≥ 0,

Prob(sup
j
‖ f j‖ ≥ r) ≤ 2exp

(
− r2

Γr +B2 +B
√

B2 +2Γr

)
.

542

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

Appendix B

We give the proof for Theorem 7.
Proof We divide our approximation in three steps.

Step 1. Approximatecz by c̃z which is defined by

c̃z =
(

m2λImn+diag{B1, · · · ,Bm}
[
K(xi ,x j)In

]m
i, j=1

)−1
(Ỹ1, . . . , Ỹm)T ,

whereỸ i = ∑m
j=1wi, j(y j −yi)∑Sℓ=1 σℓ

(
U j

ℓ −U i
ℓ

)
Vℓ. For eachi,

∣∣Ỹ i −Yi
∣∣
ℓ2(Rn)

≤
m

∑
j=1

wi, j2MσS+1

(
d

∑
ℓ=S+1

(
U j

ℓ −U i
ℓ

)2
)1/2

.

Since the matrixU is orthogonal, we know that∑m
ℓ=1

(
U j

ℓ

)2
= 1 for eachj and∑m

j=1

(
U j

ℓ

)2
= 1

for eachℓ. By the Schartz inequality,
∣∣Ỹ i −Yi

∣∣2
ℓ2(Rn)

is bounded by

(4MσS+1)
2

{
m

∑
j=1

(
wi, j
)2 ·

m

∑
j=1

d

∑
ℓ=S+1

(
U j

ℓ

)2
+

(m

∑
j=1

wi, j

)2 d

∑
ℓ=S+1

(
U i

ℓ

)2

}
.

It follows that

∣∣cz− c̃z
∣∣
ℓ2(Rmn)

≤ 1
m2λ

{
m

∑
i=1

∣∣Ỹ i −Yi
∣∣2
ℓ2(Rn)

}1/2

≤ 4MσS+1
√

d− S
m2λ

√
∆m.

Step 2. Approximatẽcz by b̃z which is defined by

b̃z =
(

m2λImn+diag{B̃1, · · · , B̃m}
[
K(xi ,x j)In

]m
i, j=1

)−1
(Ỹ1, . . . , Ỹm)T ,

where

B̃i =
m

∑
j=1

wi, j

S

∑
ℓ=1

S

∑
p=1

σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
VℓV

T
p .

Forb∈ R
n, the vector

(
Bi − B̃i

)
b equals

{
d

∑
ℓ=S+1

S

∑
p=1

+
d

∑
ℓ=1

d

∑
p=S+1

}
σℓσp

m

∑
j=1

wi, j

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
(VT

p b)Vℓ.

By the Schwartz inequality, theℓ2(Rn) norm of the first term above is bounded by

m

∑
j=1

wi, jσS+1

d

∑
ℓ=S+1

(
U j

ℓ −U i
ℓ

)2
(
S

∑
p=1

σp
(
U j

p−U i
p

)
(VT

p b)

)2

1/2

≤
m

∑
j=1

wi, jσS+1

{
d

∑
ℓ=S+1

(
U j

ℓ −U i
ℓ

)2
}1/2

|b|ℓ2(Rn)

{
S

∑
p=1

σ2
p

(
U j

p−U i
p

)2

}1/2

.

543

MUKHERJEE ANDZHOU

This is at most 2σS+1σ1|b|ℓ2(Rn) ∑m
j=1wi, j . Theℓ2(Rn) norm of the second term in the expression of(

Bi − B̃i
)
b can be bounded in the same way and we thus have

∥∥∥
(
Bi − B̃i

)
b
∥∥∥

ℓ2(Rn)
≤ 4σS+1σ1|b|ℓ2(Rn)

m

∑
j=1

wi, j .

Then we have the following estimate for the operator norm of the differenceof the diagonal opera-
tors ∥∥∥∥diag{B1, · · · ,Bm}−diag{B̃1, · · · , B̃m}

∥∥∥∥≤ 4σS+1σ1 max
1≤i≤m

m

∑
j=1

wi, j .

It follows that
∥∥∥∥diag{B1, · · · ,Bm}

[
K(xi ,x j)In

]m
i, j=1−diag{B̃1, · · · , B̃m}

[
K(xi ,x j)In

]m
i, j=1

∥∥∥∥

≤ 4κ2mσS+1σ1 max
1≤i≤m

m

∑
j=1

wi, j .

Notice that for two invertible operatorsL1,L2 on a Hilbert space, there holds

L−1
1 −L−1

2 = L−1
1 (L2−L1)L

−1
2 .

Hence
‖L−1

1 −L−1
2 ‖ ≤ ‖L−1

1 ‖ ‖L2−L1‖ ‖L−1
2 ‖.

Applying this to our setting, we have

∣∣b̃z− c̃z
∣∣
ℓ2(Rmn)

≤ 4κ2mσS+1σ1

(m2λ)2

{
max

1≤i≤m
∑

j

wi, j

}
∥∥(Ỹ1, . . . , Ỹm)T

∥∥
ℓ2(Rmn)

.

For eachi, we have

∣∣Ỹ i
∣∣
ℓ2(Rn)

≤ 2M
m

∑
j=1

wi, j

{(S
∑
ℓ=1

σ2
ℓ

(
U j

ℓ

)2
)1/2

+

(S
∑
ℓ=1

σ2
ℓ

(
U i

ℓ

)2
)1/2}

.

It follows that
∣∣b̃z− c̃z

∣∣
ℓ2(Rmn)

≤ 8Mκ2mσS+1σ2
1

√
S

(m2λ)2 ∆m.

Step 3. Find the coefficients̃bz. The linear system it satisfies is

m2λb̃i,z +
m

∑
q=1

m

∑
j=1

wi, j

S

∑
ℓ=1

S

∑
p=1

σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
VℓV

T
p K(xi ,xq)b̃q,z = Ỹ i ,

wherei = 1, . . . ,m. SinceỸ i lies in span{Vℓ}Sℓ=1, we know that each̃bi,z also lies in this subspace of
R

n. That is, there is a vectorb∗i,z ∈ R
S such that

b̃i,z =
S

∑
ℓ=1

b∗ℓi,zVℓ, i = 1, . . . ,m.

544

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

Substituting this expression into the linear system forb̃z, we know thatb∗z can be solved by the
linear system

m2λb∗ℓi,z +
m

∑
q=1

m

∑
j=1

wi, j

S

∑
p=1

σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
K(xi ,xq)b

∗p
q,z

=
m

∑
j=1

wi, j(y j −yi)σℓ

(
U j

ℓ −U i
ℓ

)
, 1≤ ℓ ≤ S ,1≤ i ≤ m.

This is exactly the linear system (19). Therefore,b̂i,z = b∗i,z for eachi and b̃z = bz is the desired

coefficients for the function~fz,λ,S .

Appendix C

The following is Matlabr code that implements algorithm (1), the approximation algorithm with
reduced matrix size. The code could be made more efficient by exploiting the vector nature of
Matlab. However, we include the version with loops for transparency.

% a matrix x that is dim by m where m is the number of samples
% a vector y that is m by 1
% eps is a constraint on the ratio of the top s eigenvalues to th e sum over
% all eigenvalues
% lambda is the regularization constant
% sigma is the variance of the weight matrix computed automat ically from the
% data
% F is the gradient evaluated at each sample again a dim by m mat rix
% nrm is the RKHS norm for each dimension

function [F,nrm,sigma] =
solveder(x,y,lambda,eps)

[dim,m] = size(x);

% this subroutine computes distances between all pairs and s ets sigma to the
% median
a = zeros(m,m);

for i=1:m
for j=1:m

a(i,j) = norm(x(:,i)-x(:,j));
end

end
sigma = median(median(a));

% this subroutine computes the weight matrix
a = zeros(m,m);

545

MUKHERJEE ANDZHOU

for i=1:m
for j=1:m

a(i,j) = (1/(sigma*sqrt(2*pi)))*exp(-norm(x(:,i)-x(:, j))ˆ2/(2*sigmaˆ2));
end

end

% the kernel matrix is computed will add nonlinear version
K = zeros(m,m); K = transpose(x)*x;

% constructs the matrix of differences between all points
M = zeros(dim,m); for i=1:m

M(:,i) = x(:,i)-x(:,m);
end

% computes the eigenvalues and eigenvectors of Mˆt M
% and keeps s eigenvectors as specified by eps
d = eig(K);
W = transpose(M)*M;
[V,d] = eig(W);
d = diag(d);
vals = cumsum(d);
inds = find(vals/vals(m) < eps);
s = m-max(inds);

% since matlab indexes eigenvalues from smallest to largest we reverse
U = zeros(m,m);
dp = zeros(m,1);
for i=1:m

U(:,m-i) = V(:,i);
dp(i) = d(m-i);

end

% projects of the paired differences into the subspace of the s eigenfunctions
t = zeros(s,m); for i=1:m

t(:,i) = sqrt(dp(1:s)).*transpose(U(i,1:s));
end

Ktilde = zeros(m*s,m*s);
ytilde = zeros(m*s,1);

% computes the Ktilde matrix and the vector script Y
for i=1:m

Bmat = zeros(s,s);
yv = zeros(s,1);

546

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

for j=1:m
Bmat = Bmat+a(i,j)* (t(:,j)-t(:,i))*(transpose(t(:,j)- t(:,i)));
yv = yv + a(i,j)*(y(j)-y(i))*(t(:,j)-t(:,i));

end

ytilde((i-1)*s+1:i*s,1) = yv;

for j=1:m
Ktilde((i-1)*s+1:i*s,(j-1)*s+1:j*s) = K(i,j)*Bmat;

end
end

% solves the linear system for coefficients c
I = eye(m*s);
c = (mˆ2*lambda*I+Ktilde) \ytilde;

% uwraps the coefficients into a vector for each sample
Cmat = zeros(dim,m);
for i = 1:m

vec=zeros(dim,1);
for j=1:s

vec = vec+(c((i-1)*s+j,1)/sqrt(dp(j,1)))*M*U(:,j);
end
Cmat(:,i) = vec;

end

% computes the gradient for each sample
F = zeros(dim,m);
F = Cmat*K;

%computes the norm for each dimension
nrm = zeros(dim,1);
for i=1:dim

nrm(i) = Cmat(i,:)*K*transpose(Cmat(i,:));
end

References

N. Aronszajn. Theory of reproducing kernels.Transactions of the American Mathematical Society,
686:337–404, 1950.

M. Belkin and P. Niyogi. Semi-Supervised Learning on Riemannian Manifolds. Machine Learning,
56(1-3):209–239, 2004.

547

MUKHERJEE ANDZHOU

I. Carrel, A. Cottle, K. Coglin, and H. Willard. A first-generation X-incativation profile of the
human X chromosome.Proc. Natl. Acad. Sci. USA, 96:14440–14444, 1999.

O. Chapelle, V. N. Vapnik, O. Bousquet, and S. Mukherjee. Choosing Multiple Parameters for
Support Vector Machines.Machine Learning, 46(1-3):131–159, 2002.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.SIAM
Journal on Scientific Computing, 20(1):33–61, 1999.

C. Cortes and V. N. Vapnik. Support-Vector Networks.Machine Learning, 20(3):273–297, 1995.

F. Cucker and S. Smale. On the mathematical foundations of learning.Bull. Amer. Math. Soc., 39:
1–49, 2001.

C. Disteche, G. Flippova, and K. Tsuchiya. Escape from X inactivation.Cytogenet. Genome Res.,
99:35–43, 2002.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization Networks and Support Vector Machines.
Advances in Computational Mathematics, 13:1–50, 2000.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L.
Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification
of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531–
537, 1999.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using
support vector machines.Machine Learning, 46(1-3):389–422, 2002.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: theory and applications to the
classification of microarray data and satellite radiance data.Journal of the American Statistical
Society, 99:67–81, 2004.

M. Liao. Bayesian estimation of gene expression index and Bayesian kernel models. PhD thesis,
Duke University, Durham, NC, 2005.

M. Liao, F. Liang, S. Mukherjee, and M. West. Bayesian kernel regression and radial basis function
models. Preprint, 2005.

C. A. Micchelli and M. Pontil. On learning vector-valued functions.Neural Computation, 17:
177–204, 2005.

I. Pinelis. Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab.,
22:1679–1706, 1994.

I. Pinelis. Correction: ”Optimum bounds for the distributions of martingales in Banach spaces”.
Ann. Probab., 27:2119, 1999.

T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer
networks.Science, 247:978–982, 1990.

548

LEARNING COORDINATE COVARIANCES VIA GRADIENTS

B. Schoelkopf and A. Smola.Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

D. K. Slonim, P. Tamayo, J. P. Mesirov, T. R. Golub, and E. S. Lander. Class prediction and
discovery using gene expression data. InProc. of the 4th Annual International Conference on
Computational Molecular Biology (RECOMB), pages 263–272, 2000.

S. Smale and D. X. Zhou. Learning theory estimates via integral operators and their approximations.
Constr. Approx., 24, 2006a.

S. Smale and D. X. Zhou. Shannon sampling II. Connections to learning theory. Appl. Comput.
Harmonic Anal., 19:285–302, 2006b.

S. Smale and D. X. Zhou. Shannon sampling and function reconstruction from point values.Bull.
Amer. Math. Soc., 41:279–305, 2004.

S. Smale and D. X. Zhou. Estimating the approximation error in learning theory.Anal. Appl., 1:
17–41, 2003.

A. Subramanian, P. Tamayo, VK. Mootha, S. Mukherjee, BL. Ebert, MA.Gillette, A. Paulovich, SL.
Pomeroy, TR. Golub, ES. Lander, and JP. Mesirov. Gene set enrichment analysis: A knowledge-
based approach for interpreting genome-wide expression profiles.Proc Natl Acad Sci U S A,
2005.

A. Sweet-Cordero, S. Mukherjee, A. Subramanian, H. You, J. J. Roix, C. Ladd-Acosta, J. P. Mesirov,
T. R. Golub, and T. Jacks. An oncogenic KRAS2 expression signatureidentified by cross-species
gene-expression analysis.Nature Genetics, 37:48–55, 2005.

R. Tibshirani. Regression shrinkage and selection via the lasso.J Royal Stat Soc B, 58(1):267–288,
1996.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

E. De Vito, A. Caponnetto, and L. Rosasco. Model selection for regularized least-squares algorithm
in learning.Foundat. Comput. Math., 5:59–85, 2005.

G. Wahba and J. Wendelberger. Some new mathematical methods for variational objective analysis
using splines and cross-validation.Monthly Weather Rev., 108:1122–1145, 1980.

M. West. Bayesian factor regression models in the “large p, small n” paradigm. In J. M. Bernardo
et al., editor,Bayesian Statistics 7, pages 723–732. Oxford, 2003.

Q. Wu and D. X. Zhou. Support vector machine classifiers: linear programming versus quadratic
programming.Neural Computation, 17:1160–1187, 2005.

T. Zhang. Leave-one-out bounds for kernel methods.Neural Computation, 15(6):1397–1437, 2003.

D. X. Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory,
49:1743–1752, 2003.

549

Journal of Machine Learning Research 7 (2006) 551–585 Submitted 5/05; Published 3/06

Online Passive-Aggressive Algorithms

Koby Crammer∗ CRAMMER@CIS.UPENN.EDU

Ofer Dekel OFERD@CS.HUJI.AC.IL
Joseph Keshet JKESHET@CS.HUJI.AC.IL
Shai Shalev-Shwartz SHAIS@CS.HUJI.AC.IL
Yoram Singer† SINGER@CS.HUJI.AC.IL
School of Computer Science and Engineering
The Hebrew University
Jerusalem, 91904, Israel

Editor: Manfred K. Warmuth

Abstract
We present a family of margin based online learning algorithms for various prediction tasks. In

particular we derive and analyze algorithms for binary and multiclass categorization, regression,
uniclass prediction and sequence prediction. The update steps of our different algorithms are all
based on analytical solutions to simple constrained optimization problems. This unified view al-
lows us to prove worst-case loss bounds for the different algorithms and for the various decision
problems based on a single lemma. Our bounds on the cumulative loss of the algorithms are relative
to the smallest loss that can be attained by any fixed hypothesis, and as such are applicable to both
realizable and unrealizable settings. We demonstrate someof the merits of the proposed algorithms
in a series of experiments with synthetic and real data sets.

1. Introduction

In this paper we describe and analyze several online learning tasks through the same algorithmic
prism. We first introduce a simple online algorithm which we call Passive-Aggressive (PA) for on-
line binary classification (see also (Herbster, 2001)). We then proposetwo alternative modifications
to the PA algorithm which improve the algorithm’s ability to cope with noise. We provide a unified
analysis for the three variants. Building on this unified view, we show how to generalize the binary
setting to various learning tasks, ranging from regression to sequence prediction.

The setting we focus on is that of online learning. In the online setting, a learning algorithm ob-
serves instances in a sequential manner. After each observation, the algorithm predicts an outcome.
This outcome can be as simple as a yes/no (+/−) decision, as in the case of binary classification
problems, and as complex as a string over a large alphabet. Once the algorithm has made a predic-
tion, it receives feedback indicating the correct outcome. Then, the online algorithm may modify
its prediction mechanism, presumably improving the chances of making an accurate prediction on
subsequent rounds. Online algorithms are typically simple to implement and their analysis often
provides tight bounds on their performance (see for instance Kivinen and Warmuth (1997)).

∗. Current affiliation: Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut
Street, Philadelphia, PA 19104, USA.

†. Current affiliation: Google, Moutain View, CA 94043, USA.

c©2006 Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz and Yoram Singer.

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

Our learning algorithms use hypotheses from the set of linear predictors.While this class may
seem restrictive, the pioneering work of Vapnik (1998) and colleaguesdemonstrates that by us-
ing Mercer kernels one can employ highly non-linear predictors and still entertain all the formal
properties and simplicity of linear predictors. For concreteness, our presentation and analysis are
confined to the linear case which is often referred to as the primal version (Vapnik, 1998; Cristianini
and Shawe-Taylor, 2000; Schölkopf and Smola, 2002). As in other constructions of linear kernel
machines, our paradigm also builds on the notion of margin.

Binary classification is the first setting we discuss in the paper. In this setting each instance
is represented by a vector and the prediction mechanism is based on a hyperplane which divides
the instance space into two half-spaces. The margin of an example is proportional to the distance
between the instance and the hyperplane. The PA algorithm utilizes the margin tomodify the current
classifier. The update of the classifier is performed by solving a constrained optimization problem:
we would like the new classifier to remain as close as possible to the current one while achieving
at least a unit margin on the most recent example. Forcing a unit margin might turn out to be too
aggressive in the presence of noise. Therefore, we also describe two versions of our algorithm which
cast a tradeoff between the desired margin and the proximity to the current classifier.

The above formalism is motivated by the work of Warmuth and colleagues for deriving online
algorithms (see for instance (Kivinen and Warmuth, 1997) and the references therein). Furthermore,
an analogous optimization problem arises in support vector machines (SVM)for classification (Vap-
nik, 1998). Indeed, the core of our construction can be viewed as finding a support vector machine
based on a single example while replacing the norm constraint of SVM with a proximity constraint
to the current classifier. The benefit of this approach is two fold. First, we get a closed form solution
for the next classifier. Second, we are able to provide a unified analysisof the cumulative loss for
various online algorithms used to solve different decision problems. Specifically, we derive and
analyze versions for regression problems, uniclass prediction, multiclassproblems, and sequence
prediction tasks.

Our analysis is in the realm of relative loss bounds. In this framework, the cumulative loss
suffered by an online algorithm is compared to the loss suffered by a fixedhypothesis that may be
chosen in hindsight. Our proof techniques are surprisingly simple and the proofs are fairly short
and easy to follow. We build on numerous previous results and views. The mere idea of deriving an
update as a result of a constrained optimization problem compromising of two opposing terms, has
been largely advocated by Littlestone, Warmuth, Kivinen and colleagues (Littlestone, 1989; Kivi-
nen and Warmuth, 1997). Online margin-based prediction algorithms are alsoquite prevalent. The
roots of many of the papers date back to the Perceptron algorithm (Agmon, 1954; Rosenblatt, 1958;
Novikoff, 1962). More modern examples include the ROMMA algorithm of Liand Long (2002),
Gentile’s ALMA algorithm (Gentile, 2001), the MIRA algorithm (Crammer and Singer, 2003b), and
the NORMA algorithm (Kivinen et al., 2002). The MIRA algorithm is closely related to the work
presented in this paper, and specifically, the MIRA algorithm for binary classification is identical to
our basic PA algorithm. However, MIRA was designed forseparablebinary and multiclass prob-
lems whereas our algorithms also apply to nonseparable problems. Furthermore, the loss bounds
derived in Crammer and Singer (2003b) are inferior and less general than the bounds derived in this
paper. The NORMA algorithm also shares a similar view of classification problems. Rather than
projecting the current hypothesis onto the set of constraints induced by the most recent example,
NORMA’s update rule is based on a stochastic gradient approach (Kivinen et al., 2002). Of all the
work on online learning algorithms, the work by Herbster (2001) is probably the closest to the work

552

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

presented here. Herbster describes and analyzes a projection algorithm that, like MIRA, is essen-
tially the same as the basic PA algorithm for the separable case. We surpass MIRA and Herbster’s
algorithm by providing bounds for both the separable and the nonseparable settings using a unified
analysis. As mentioned above we also extend the algorithmic framework and theanalysis to more
complex decision problems.

The paper is organized as follows. In Sec. 2 we formally introduce the binary classification
problem and in the next section we derive three variants of an online learning algorithm for this
setting. The three variants of our algorithm are then analyzed in Sec. 4. Wenext show how to
modify these algorithms to solve regression problems (Sec. 5) and uniclass prediction problems
(Sec. 6). We then shift gears to discuss and analyze more complex decision problems. Specifically,
in Sec. 7 we describe a generalization of the algorithms to multiclass problems andfurther extend
the algorithms to cope with sequence prediction problems (Sec. 9). We describe experimental results
with binary and multiclass problems in Sec. 10 and conclude with a discussion offuture directions
in Sec. 11.

2. Problem Setting

As mentioned above, the paper describes and analyzes several online learning tasks through the
same algorithmic prism. We begin with binary classification which serves as the mainbuilding block
for the remainder of the paper. Online binary classification takes place in a sequence of rounds. On
each round the algorithm observes an instance and predicts its label to be either+1 or−1. After the
prediction is made, the true label is revealed and the algorithm suffers aninstantaneous losswhich
reflects the degree to which its prediction was wrong. At the end of each round, the algorithm uses
the newly obtained instance-label pair to improve its prediction rule for the rounds to come.

We denote the instance presented to the algorithm on roundt by xt , and for concreteness we
assume that it is a vector inRn. We assume thatxt is associated with a unique labelyt ∈ {+1,−1}.
We refer to each instance-label pair(xt ,yt) as anexample. The algorithms discussed in this paper
make predictions using a classification function which they maintain in their internal memory and
update from round to round. We restrict our discussion to classification functions based on a vector
of weightsw ∈ R

n, which take the form sign(w · x). The magnitude|w · x| is interpreted as the
degree of confidence in this prediction. The task of the algorithm is therefore to incrementally learn
the weight vectorw. We denote bywt the weight vector used by the algorithm on roundt, and refer
to the termyt(wt ·xt) as the (signed)marginattained on roundt. Whenever the margin is a positive
number then sign(wt ·xt) = yt and the algorithm has made a correct prediction. However, we are not
satisfied by a positive margin value and would additionally like the algorithm to predict with high
confidence. Therefore, the algorithm’s goal is to achieve a margin of at least 1 as often as possible.
On rounds where the algorithm attains a margin less than 1 it suffers an instantaneous loss. This
loss is defined by the followinghinge-lossfunction,

ℓ
(

w;(x,y)
)

=

{

0 y(w ·x) ≥ 1
1−y(w ·x) otherwise

. (1)

Whenever the margin exceeds 1, the loss equals zero. Otherwise, it equals the difference between
the margin value and 1. We note in passing that the choice of 1 as the margin threshold below which
a loss is suffered is rather arbitrary. In Sec. 5 we generalize the hinge-loss function in the context
of regression problems, by letting the threshold be a user-defined parameter. We abbreviate the loss

553

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

suffered on roundt by ℓt , that is,ℓt = ℓ
(

wt ;(xt ,yt)
)

. The algorithms presented in this paper will
be shown to attain a smallcumulative squared lossover a given sequence of examples. In other
words, we will prove different bounds on∑T

t=1ℓ2
t , whereT is the length of the sequence. Notice that

whenever a prediction mistake is made thenℓ2
t ≥ 1 and therefore a bound on the cumulative squared

loss also bounds the number of prediction mistakes made over the sequence of examples.

3. Binary Classification Algorithms

In the previous section we described a general setting for binary classification. To obtain a concrete
algorithm we must determine how to initialize the weight vectorw1 and we must define the update
rule used to modify the weight vector at the end of each round. In this section we present three
variants of an online learning algorithm for binary classification. The pseudo-code for the three
variants is given in Fig. 1. The vectorw1 is initialized to(0, . . . ,0) for all three variants, however
each variant employs a different update rule. We focus first on the simplest of the three, which on
roundt sets the new weight vectorwt+1 to be the solution to the following constrained optimization
problem,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. ℓ(w;(xt ,yt)) = 0. (2)

Geometrically,wt+1 is set to be the projection ofwt onto the half-space of vectors which attain a
hinge-loss of zero on the current example. The resulting algorithm ispassivewhenever the hinge-
loss is zero, that is,wt+1 = wt wheneverℓt = 0. In contrast, on those rounds where the loss is
positive, the algorithmaggressivelyforceswt+1 to satisfy the constraintℓ(wt+1;(xt ,yt)) = 0 re-
gardless of the step-size required. We therefore name the algorithmPassive-Aggressiveor PA for
short.

The motivation for this update stems from the work of Helmbold et al. (Helmbold etal., 1999)
who formalized the trade-off between the amount of progress made on each round and the amount
of information retained from previous rounds. On one hand, our updaterequireswt+1 to correctly
classify the current example with a sufficiently high margin and thus progress is made. On the other
hand,wt+1 must stay as close as possible towt , thus retaining the information learned on previous
rounds.

The solution to the optimization problem in Eq. (2) has a simple closed form solution,

wt+1 = wt + τtytxt where τt =
ℓt

‖xt‖2 . (3)

We now show how this update is derived using standard tools from convexanalysis (see for instance
(Boyd and Vandenberghe, 2004)). Ifℓt = 0 thenwt itself satisfies the constraint in Eq. (2) and is
clearly the optimal solution. We therefore concentrate on the case whereℓt > 0. First, we define the
Lagrangian of the optimization problem in Eq. (2) to be,

L (w,τ) =
1
2
‖w−wt‖2 + τ

(

1−yt(w ·xt)
)

, (4)

whereτ ≥ 0 is a Lagrange multiplier. The optimization problem in Eq. (2) has a convex objective
function and a single feasible affine constraint. These are sufficient conditions for Slater’s condition
to hold therefore finding the problem’s optimum is equivalent to satisfying the Karush-Khun-Tucker

554

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

INPUT: aggressiveness parameterC > 0
INITIALIZE : w1 = (0, . . . ,0)
For t = 1,2, . . .

• receive instance:xt ∈ R
n

• predict: ŷt = sign(wt ·xt)
• receive correct label:yt ∈ {−1,+1}
• suffer loss:ℓt = max{0 , 1−yt(wt ·xt)}
• update:

1. set:
τt = ℓt

‖xt‖2 (PA)

τt = min
{

C , ℓt
‖xt‖2

}

(PA-I)

τt = ℓt

‖xt‖2+ 1
2C

(PA-II)

2. update: wt+1 = wt + τtytxt

Figure 1: Three variants of the Passive-Aggressive algorithm for binary classification.

conditions (Boyd and Vandenberghe, 2004). Setting the partial derivatives ofL with respect to the
elements ofw to zero gives,

0 = ∇wL (w,τ) = w−wt − τytxt =⇒ w = wt + τytxt . (5)

Plugging the above back into Eq. (4) we get,

L (τ) = − 1
2

τ2‖xt‖2 + τ
(

1−yt(wt ·xt)
)

.

Taking the derivative ofL (τ) with respect toτ and setting it to zero, we get,

0 =
∂L (τ)

∂τ
= − τ‖xt‖2 +

(

1−yt(wt ·xt)
)

=⇒ τ =
1−yt(wt ·xt)

‖xt‖2 .

Since we assumed thatℓt > 0 thenℓt = 1−yt(w ·xt). In summary, we can state a unified update for
the case whereℓt = 0 and the case whereℓt > 0 by settingτt = ℓt/‖xt‖2.

As discussed above, the PA algorithm employs an aggressive update strategy by modifying the
weight vector by as much as needed to satisfy the constraint imposed by the current example. In
certain real-life situations this strategy may also result in undesirable consequences. Consider for
instance the common phenomenon of label noise. A mislabeled example may causethe PA algo-
rithm to drastically change its weight vector in the wrong direction. A single mislabeled example
can lead to several prediction mistakes on subsequent rounds. To copewith such problems, we
present two variations on the PA update that employ gentler update strategies. We adopt the tech-
nique previously used to derive soft-margin classifiers (Vapnik, 1998)and introduce a non-negative
slack variableξ into the optimization problem defined in Eq. (2). This variable can be introduced in
two different ways. First, we consider the update where the objective function scales linearly with

555

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

ξ, namely,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 + Cξ s.t. ℓ(w;(xt ,yt)) ≤ ξ and ξ ≥ 0. (6)

HereC is a positive parameter which controls the influence of the slack term on the objective func-
tion. Specifically, we will show that larger values ofC imply a more aggressive update step and we
therefore refer toC as theaggressiveness parameterof the algorithm. We term the algorithm which
results from this updatePA-I .

Alternatively, we can have the objective function scale quadratically withξ, resulting in the
following constrained optimization problem,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 + Cξ2 s.t. ℓ(w;(xt ,yt)) ≤ ξ. (7)

Note that the constraintξ ≥ 0 which appears in Eq. (6) is no longer necessary sinceξ2 is always
non-negative. We term the algorithm which results from this updatePA-II . As with PA-I , C is a
positive parameter which governs the degree to which the update of PA-IIis aggressive. The updates
of PA-I and PA-II also share the simple closed formwt+1 = wt + τtytxt , where

τt = min

{

C ,
ℓt

‖xt‖2

}

(PA-I) or τt =
ℓt

‖xt‖2 + 1
2C

(PA-II). (8)

A detailed derivation of the PA-I and PA-II updates is provided in Appendix A. It is worth noting
that the PA-II update is equivalent to increasing the dimension of eachxt from n to n+ T, setting
xn+t =

√

1/2C, setting the remainingT − 1 new coordinates to zero, and then using the simple
PA update. This technique was previously used to derive noise-tolerantonline algorithms in (Klas-
ner and Simon, 1995; Freund and Schapire, 1999). We do not use this observation explicitly in this
paper, since it does not lead to a tighter analysis.

Up until now, we have restricted our discussion to linear predictors of the form sign(w ·x). We
can easily generalize any of the algorithms presented in this section using Mercer kernels. Simply
note that for all three PA variants,

wt =
t−1

∑
i=1

τtytxt ,

and therefore,

wt ·xt =
t−1

∑
i=1

τtyt(xi ·xt).

The inner product on the right hand side of the above can be replaced with a general Mercer kernel
K(xi ,xt) without otherwise changing our derivation. Additionally, the formal analysis presented in
the next section also holds for any kernel operator.

4. Analysis

In this section we proverelative loss bounds for the three variants of the PA algorithm presented in
the previous section. Specifically, most of the theorems in this section relate thecumulative squared
loss attained by our algorithms on any sequence of examples with the loss attained by an arbitrary

556

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

fixed classification function of the form sign(u ·x) on the same sequence. As previously mentioned,
the cumulative squared hinge loss upper bounds the number of prediction mistakes. Our bounds
essentially prove that, for any sequence of examples, our algorithms cannot do much worse than the
best fixed predictor chosen in hindsight.

To simplify the presentation we use two abbreviations throughout this paper.As before we
denote byℓt the instantaneous loss suffered by our algorithm on roundt. In addition, we denote
by ℓ⋆

t the loss suffered by the arbitrary fixed predictor to which we are comparing our performance.
Formally, letu be an arbitrary vector inRn, and define

ℓt = ℓ
(

wt ;(xt ,yt)
)

and ℓ⋆
t = ℓ

(

u;(xt ,yt)
)

. (9)

We begin with a technical lemma which facilitates the proofs in this section. With this lemma
handy, we then derive loss and mistake bounds for the variants of the PA algorithm presented in the
previous section.

Lemma 1 Let(x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈R
n and yt ∈ {+1,−1} for

all t. Let τt be as defined by either of the three PA variants given in Fig. 1. Then using the notation
given in Eq. (9), the following bound holds for anyu ∈ R

n,

T

∑
t=1

τt
(

2ℓt − τt‖xt‖2−2ℓ⋆
t

)

≤ ‖u‖2.

Proof Define∆t to be‖wt −u‖2−‖wt+1−u‖2. We prove the lemma by summing∆t over all t
in 1, . . . ,T and bounding this sum from above and below. First note that∑t ∆t is a telescopic sum
which collapses to,

T

∑
t=1

∆t =
T

∑
t=1

(

‖wt −u‖2−‖wt+1−u‖2)

= ‖w1−u‖2−‖wT+1−u‖2.

Using the facts thatw1 is defined to be the zero vector and that‖wT+1−u‖2 is non-negative, we
can upper bound the right-hand side of the above by‖u‖2 and conclude that,

T

∑
t=1

∆t ≤ ‖u‖2. (10)

We now turn to bounding∆t from below. If the minimum margin requirement is not violated on
roundt, i.e. ℓt = 0, thenτt = 0 and therefore∆t = 0. We can therefore focus only on rounds for
which ℓt > 0. Using the definitionwt+1 = wt +ytτtxt , we can write∆t as,

∆t = ‖wt −u‖2−‖wt+1−u‖2

= ‖wt −u‖2−‖wt −u+ytτtxt‖2

= ‖wt −u‖2−
(

‖wt −u‖2 +2τtyt(wt −u) ·xt + τ2
t ‖xt‖2)

= −2τtyt(wt −u) ·xt − τ2
t ‖xt‖2. (11)

557

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

Since we assumed thatℓt > 0 thenℓt = 1−yt(wt ·xt) or alternativelyyt(wt ·xt) = 1−ℓt . In addition,
the definition of the hinge loss implies thatℓ⋆

t ≥ 1−yt(u ·xt), henceyt(u ·xt) ≥ 1− ℓ⋆
t . Using these

two facts back in Eq. (11) gives,

∆t ≥ 2τt ((1− ℓ⋆
t)− (1− ℓt))− τ2

t ‖xt‖2

= τt
(

2ℓt − τt‖xt‖2−2ℓ⋆
t

)

. (12)

Summing∆t over allt and comparing the lower bound of Eq. (12) with the upper bound in Eq. (10)
proves the lemma.

We first prove a loss bound for the PA algorithm in the separable case. This bound was previ-
ously presented by Herbster (2001) and is analogous to the classic mistakebound for the Perceptron
algorithm due to Novikoff (1962). We assume that there exists someu ∈ R

n such thatyt(u ·xt) > 0
for all t ∈ {1, . . . ,T}. Without loss of generality we can assume thatu is scaled such that that
yt(u · xt) ≥ 1 and thereforeu attains a loss of zero on allT examples in the sequence. With the
vectoru at our disposal, we prove the following bound on the cumulative squared loss of PA .

Theorem 2 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈ R
n, yt ∈ {+1,−1} and

‖xt‖ ≤R for all t. Assume that there exists a vectoru such thatℓ⋆
t = 0 for all t. Then, the cumulative

squared loss of PA on this sequence of examples is bounded by,

T

∑
t=1

ℓ2
t ≤ ‖u‖2R2.

Proof Sinceℓ⋆
t = 0 for all t, Lemma 1 implies that,

T

∑
t=1

τt
(

2ℓt − τt‖xt‖2) ≤ ‖u‖2. (13)

Using the definition ofτt for the PA algorithm in the left-hand side of the above gives,

T

∑
t=1

ℓ2
t /‖xt‖2 ≤ ‖u‖2.

Now using the fact that‖xt‖2 ≤ R2 for all t, we get,

T

∑
t=1

ℓ2
t /R2 ≤ ‖u‖2.

Multiplying both sides of this inequality byR2 gives the desired bound.

The remaining bounds we prove in this section do not depend on a separability assumption.
In contrast to the assumptions of Thm. 2, the vectoru which appears in the theorems below is an
arbitrary vector inRn and not necessarily a perfect separator. The first of the following theorems
bounds the cumulative squared loss attained by the PA algorithm in the specialcase where all of

558

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

the instances in the input sequence are normalized so that‖xt‖2 = 1. Although this assumption
is somewhat restrictive, it is often the case in many practical applications of classification that the
instances are normalized. For instance, certain kernel operators, such as the Gaussian kernel, imply
that all input instances have a unit norm. See for example (Cristianini and Shawe-Taylor, 2000).

Theorem 3 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈ R
n, yt ∈ {+1,−1} and

‖xt‖ = 1 for all t. Then for any vectoru ∈ R
n the cumulative squared loss of PA on this sequence

of examples is bounded from above by,

T

∑
t=1

ℓ2
t ≤

(

‖u‖+2
√

∑T
t=1(ℓ

⋆
t)2

)2

.

Proof In the special case where‖xt‖2 = 1, τt andℓt are equal. Therefore, Lemma 1 gives us that,

T

∑
t=1

ℓ2
t ≤ ‖u‖2 +2

T

∑
t=1

ℓtℓ
⋆
t .

Using the Cauchy-Schwartz inequality to upper bound the right-hand side of the above inequality,
and denoting

LT =
√

∑T
t=1ℓ2

t and UT =
√

∑T
t=1(ℓ

⋆
t)2, (14)

we get thatL2
T ≤ ‖u‖2 +2LTUT . The largest value ofLT for which this inequality is satisfied is the

larger of the two values for which this inequality holds with equality. That is, to obtain an upper
bound onLT we need to find the largest root of the second degree polynomialL2

T −2UTLT −‖u‖2,
which is,

UT +
√

U2
T +‖u‖2.

Using the fact that
√

α+β ≤√
α+

√

β, we conclude that

LT ≤ ‖u‖+2UT . (15)

Taking the square of both sides of this inequality and plugging in the definitionsof LT andUT from
Eq. (14) gives the desired bound.

Next we turn to the analysis of PA-I . The following theorem does not provide a loss bound but
rather a mistake bound for the PA-I algorithm. That is, we prove a direct bound on the number of
timesyt 6= sign(wt ·xt) without using∑ℓ2

t as a proxy.

Theorem 4 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈ R
n, yt ∈ {+1,−1} and

‖xt‖ ≤ R for all t. Then, for any vectoru ∈ R
n, the number of prediction mistakes made by PA-I on

this sequence of examples is bounded from above by,

max
{

R2,1/C
}

(

‖u‖2 +2C
T

∑
t=1

ℓ⋆
t

)

,

where C is the aggressiveness parameter provided to PA-I (Fig. 1) .

559

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

Proof If PA-I makes a prediction mistake on roundt then ℓt ≥ 1. Using our assumption that
‖xt‖2 ≤R2 and the definitionτt = min{ℓt/‖xt‖2,C}, we conclude that if a prediction mistake occurs
then it holds that,

min{1/R2,C} ≤ τtℓt .

Let M denote the number of prediction mistakes made on the entire sequence. Sinceτtℓt is always
non-negative, it holds that,

min{1/R2,C} M ≤
T

∑
t=1

τtℓt . (16)

Again using the definition ofτt , we know thatτtℓ
⋆
t ≤Cℓ⋆

t and thatτt‖xt‖2 ≤ ℓt . Plugging these two
inequalities into Lemma 1 gives,

T

∑
t=1

τtℓt ≤ ‖u‖2 +2C
T

∑
t=1

ℓ⋆
t . (17)

Combining Eq. (16) with Eq. (17), we conclude that,

min{1/R2,C} M ≤ ‖u‖2 +2C
T

∑
t=1

ℓ⋆
t .

The theorem follows from multiplying both sides of the above by max{R2,1/C}.

Finally, we turn to the analysis of PA-II . As before, the proof of the following theorem is based on
Lemma 1.

Theorem 5 Let (x1,y1), . . . ,(xT ,yt) be a sequence of examples wherext ∈ R
n, yt ∈ {+1,−1} and

‖xt‖2 ≤R2 for all t. Then for any vectoru∈R
n it holds that the cumulative squared loss of PA-II on

this sequence of examples is bounded by,

T

∑
t=1

ℓ2
t ≤

(

R2 +
1

2C

)

(

‖u‖2 + 2C
T

∑
t=1

(ℓ⋆
t)

2

)

,

where C is the aggressiveness parameter provided to PA-II (Fig. 1) .

Proof Recall that Lemma 1 states that,

‖u‖2 ≥
T

∑
t=1

(

2τtℓt − τ2
t ‖xt‖2−2τtℓ

⋆
t

)

.

Definingα = 1/
√

2C, we subtract the non-negative term(ατt − ℓ⋆
t /α)2 from each summand on the

right-hand side of the above inequality, to get

‖u‖2 ≥
T

∑
t=1

(

2τtℓt − τ2
t ‖xt‖2−2τtℓ

⋆
t − (ατt − ℓ⋆

t /α)2)

=
T

∑
t=1

(

2τtℓt − τ2
t ‖xt‖2−2τtℓ

⋆
t −α2τ2

t +2τtℓ
⋆
t − (ℓ⋆

t)
2/α2)

=
T

∑
t=1

(

2τtℓt − τ2
t (‖xt‖2 +α2)− (ℓ⋆

t)
2/α2) .

560

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

Plugging in the definition ofα, we obtain the following lower bound,

‖u‖2 ≥
T

∑
t=1

(

2τtℓt − τ2
t

(

‖xt‖2 +
1

2C

)

−2C(ℓ⋆
t)

2
)

.

Using the definitionτt = ℓt/(‖xt‖2 +1/(2C)), we can rewrite the above as,

‖u‖2 ≥
T

∑
t=1

(

ℓ2
t

‖xt‖2 + 1
2C

−2C(ℓ⋆
t)

2

)

.

Replacing‖xt‖2 with its upper bound ofR2 and rearranging terms gives the desired bound.

We conclude this section with a brief comparison of our bounds to previouslypublished bounds
for the Perceptron algorithm. As mentioned above, the bound in Thm. 2 is equal to the bound of
Novikoff (1962) for the Perceptron in the separable case. However,Thm. 2 bounds the cumulative
squared hinge loss of PA , whereas Novikoff’s bound is on the number of prediction mistakes.
Gentile (2002) proved a mistake bound for the Perceptron in the nonseparable case which can be
compared to our mistake bound for PA-I in Thm. 4. Using our notation from Thm. 4, Gentile bounds
the number of mistakes made by the Perceptron by,

R2‖u‖2

2 + ∑T
t=1ℓ⋆

t +

√

R2‖u‖2 ∑T
t=1ℓ⋆

t +
(

R2‖u‖2

2

)2
.

At the price of a slightly loosening this bound, we can use the inequality
√

a+b≤√
a+

√
b to get

the simpler bound,

R2‖u‖2 + ∑T
t=1ℓ⋆

t + R‖u‖
√

∑T
t=1ℓ⋆

t .

With C = 1/R2, our bound in Thm. 4 becomes,

R2‖u‖2 + 2
T

∑
t=1

ℓ⋆
t .

Thus, our bound is inferior to Gentile’s whenR‖u‖ <
√

∑T
t=1ℓ⋆

t , and even then by a factor of at
most 2.

The loss bound for PA-II in Thm. 5 can be compared with the bound of Freund and Schapire
(1999) for the Perceptron algorithm. Using the notation defined in Thm. 5, Freund and Schapire
bound the number of incorrect predictions made by the Perceptron by,

(

R‖u‖+
√

∑T
t=1(ℓ

⋆
t)2

)2

.

It can be easily verified that the bound for the PA-II algorithm given in Thm. 5 exactly equals the
above bound of Freund and Schapire whenC is set to‖u‖/(2R

√

∑t(ℓ
⋆
t)2). Moreover, this is the

optimal choice ofC. However, we bound the cumulative squared hinge-loss of PA-II whereas the
bound of Freund and Schapire is on the number of mistakes.

561

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

5. Regression

In this section we show that the algorithms described in Sec. 3 can be modified to deal with online
regression problems. In the regression setting, every instancext is associated with a real target
valueyt ∈ R, which the online algorithm tries to predict. On every round, the algorithm receives
an instancext ∈ R

n and predicts a target value ˆyt ∈ R using its internal regression function. We
focus on the class of linear regression functions, that is, ˆyt = wt · xt wherewt is the incrementally
learned vector. After making a prediction, the algorithm is given the true target valueyt and suffers
an instantaneous loss. We use theε-insensitive hinge loss function:

ℓε
(

w;(x,y)
)

=

{

0 |w ·x−y| ≤ ε
|w ·x−y|− ε otherwise

, (18)

whereε is a positive parameter which controls the sensitivity to prediction mistakes. Thisloss is
zero when the predicted target deviates from the true target by less thanε and otherwise grows
linearly with |ŷt −yt |. At the end of every round, the algorithm useswt and the example(xt ,yt) to
generate a new weight vectorwt+1, which will be used to extend the prediction on the next round.

We now describe how the various PA algorithms from Sec. 3 can be adaptedto learn regression
problems. As in the case of classification, we initializew1 to (0, . . . ,0). On each round, the PA
regression algorithm sets the new weight vector to be,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. ℓε

(

w;(xt ,yt)
)

= 0, (19)

In the binary classification setting, we gave the PA update the geometric interpretation of projecting
wt onto the linear half-space defined by the constraintℓ

(

w;(xt ,yt)
)

= 0. For regression problems,
the set{w ∈ R

n : ℓε(w,zt) = 0} is not a half-space but rather a hyper-slab of width 2ε. Geomet-
rically, the PA algorithm for regression projectswt onto this hyper-slab at the end of every round.
Using the shorthandℓt = ℓε(wt ;(xt ,yt)), the update given in Eq. (19) has a closed form solution
similar to that of the classification PA algorithm of the previous section, namely,

wt+1 = wt +sign(yt − ŷt)τtxt where τt = ℓt/‖xt‖2.

We can also obtain the PA-I and PA-II variants for online regression by introducing a slack
variable into the optimization problem in Eq. (19), as we did for classification in Eq. (6) and Eq. (7).
The closed form solution for these updates also comes out to bewt+1 = wt +sign(yt − ŷt)τtxt where
τt is defined as in Eq. (8). The derivations of these closed-form updatesare almost identical to that
of the classification problem in Sec. 3.

We now turn to the analysis of the three PA regression algorithms described above. We would
like to show that the analysis given in Sec. 4 for the classification algorithms also holds for their
regression counterparts. To do so, it suffices to show that Lemma 1 still holds for regression prob-
lems. After obtaining a regression version of Lemma 1, regression versions of Thm. 2 through
Thm. 5 follow as immediate corollaries.

Lemma 6 Let(x1,y1), . . . ,(xT ,yT) be an arbitrary sequence of examples, wherext ∈R
n and yt ∈R

for all t. Let τt be as defined in either of the three PA variants for regression problems. Then using
the notation given in Eq. (9), the following bound holds for anyu ∈ R

n,

T

∑
t=1

τt
(

2ℓt − τt‖xt‖2−2ℓ⋆
t

)

≤ ‖u‖2.

562

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

Proof The proof of this lemma follows that of Lemma 1 and therefore subtleties which were dis-
cussed in detail in that proof are omitted here. Again, we use the definition

∆t = ‖wt −u‖2−‖wt+1−u‖2

and the same argument used in Lemma 1 implies that,

T

∑
t=1

∆t ≤ ‖u‖2,

We focus our attention on bounding∆t from below on those rounds where∆t 6= 0. Using the
recursive definition ofwt+1, we rewrite∆t as,

∆t = ‖wt −u‖2−‖wt −u+sign(yt − ŷt)τtxt‖2

= −sign(yt − ŷt)2τt(wt −u) ·xt − τ2
t ‖xt‖2

We now add and subtract the term sign(yt − ŷt)2τtyt from the right-hand side above to get the bound,

∆t ≥ −sign(yt − ŷt)2τt(wt ·xt −yt) + sign(yt − ŷt)2τt(u ·xt −yt) − τ2
t ‖xt‖2. (20)

Sincewt ·xt = ŷt , we have that−sign(yt − ŷt)(wt ·xt −yt) = |wt ·xt −yt |. We only need to consider
the case where∆t 6= 0, soℓt = |wt ·xt −yt |− ε and we can rewrite the bound in Eq. (20) as,

∆t ≥ 2τt(ℓt + ε) + sign(yt − ŷt)2τt(u ·xt −yt) − τ2
t ‖xt‖2.

We also know that sign(yt − ŷt)(u ·xt −yt) ≥−|u ·xt −yt | and that−|u ·xt −yt | ≥ −(ℓ⋆
t + ε). This

enables us to further bound,

∆t ≥ 2τt(ℓt + ε) − 2τt(ℓ
⋆
t + ε) − τ2

t ‖xt‖2 = τt(2ℓt − τt‖xt‖2−2ℓ⋆
t).

Summing the above over allt and comparing to the upper bound discussed in the beginning of this
proof proves the lemma.

6. Uniclass Prediction

In this section we present PA algorithms for the uniclass prediction problem. This task involves
predicting a sequence of vectorsy1,y2, · · · whereyt ∈ R

n. Uniclass prediction is fundamentally dif-
ferent than classification and regression as the algorithm makes predictions without first observing
any external input (such as the instancext). Specifically, the algorithm maintains in its memory a
vectorwt ∈ R

n and simply predicts the next element of the sequence to bewt . After extending this
prediction, the next element in the sequence is revealed and an instantaneous loss is suffered. We
measure loss using the followingε-insensitive loss function:

ℓε(w;y) =

{

0 ‖w−y‖ ≤ ε
‖w−y‖− ε otherwise

. (21)

As in the regression setting,ε is a positive user-defined parameter. If the prediction is withinε of the
true sequence element then no loss is suffered. Otherwise the loss is proportional to the Euclidean

563

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

distance between the prediction and the true vector. At the end of each roundwt is updated in order
to have a potentially more accurate prediction on where the next element in the sequence will fall.
Equivalently, we can think of uniclass prediction as the task of finding a center-pointw such that as
many vectors in the sequence fall within a radius ofε from w. At the end of this section we discuss
a generalization of this problem, where the radiusε is also determined by the algorithm.

As before, we initializew1 = (0, . . . ,0). Beginning with the PA algorithm, we define the update
for the uniclass prediction algorithm to be,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. ℓε(w;yt) = 0, (22)

Geometrically,wt+1 is set to be the projection ofwt onto a ball of radiusε aboutyt . We now show
that the closed form solution of this optimization problem turns out to be,

wt+1 =

(

1− ℓt

‖wt −yt‖

)

wt +

(

ℓt

‖wt −yt‖

)

yt . (23)

First, we rewrite the above equation and expresswt+1 by,

wt+1 = wt + τt
yt −wt

‖yt −wt‖
, (24)

whereτt = ℓt . In the Uniclass problem the KKT conditions are both sufficient and necessary for
optimality. Therefore, we prove that Eq. (24) is the minimizer of Eq. (22) by verifying that the KKT
conditions indeed hold. The Lagrangian of Eq. (22) is,

L (w,τ) =
1
2
‖w−wt‖2 + τ(‖w−yt‖− ε) , (25)

whereτ ≥ 0 is a Lagrange multiplier. Differentiating with respect to the elements ofw and setting
these partial derivatives to zero, we get the first KKT condition, stating that at the optimum(w,τ)
must satisfy the equality,

0 = ∇wL (w,τ) = w−wt + τ
w−yt

‖w−yt‖
. (26)

In addition, an optimal solution must satisfy the conditionsτ ≥ 0 and,

τ(‖w−yt‖− ε) = 0. (27)

Clearly, τt ≥ 0. Therefore, to show thatwt+1 is the optimum of Eq. (22) it suffices to prove that
(wt+1,τt) satisfies Eq. (26) and Eq. (27). These equalities trivially hold ifℓt = 0 and therefore from
now on we assume thatℓt > 0. Plugging the valuesw = wt+1 andτ = τt in the right-hand side of
Eq. (26) gives,

wt+1−wt + τt
wt+1−yt

‖wt+1−yt‖
= τt

(

yt −wt

‖yt −wt‖
+

wt+1−yt

‖wt+1−yt‖

)

. (28)

Note that,

wt+1−yt = wt + τt
yt −wt

‖yt −wt‖
−yt = (wt −yt)

(

1− τt
1

‖yt −wt‖

)

=
wt −yt

‖wt −yt‖
(‖wt −yt‖− τt) =

ε
‖wt −yt‖

(wt −yt). (29)

564

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

Combining Eq. (29) with Eq. (28) we get that,

wt+1−wt + τt
wt+1−yt

‖wt+1−yt‖
= 0,

and thus Eq. (26) holds for(wt+1,τt). Similarly,

‖wt+1−yt‖− ε = ε− ε = 0,

and thus Eq. (27) also holds. In summary, we have shown that the KKT optimality conditions hold
for (wt+1,τt) and therefore Eq. (24) gives the desired closed-form update.

To obtain uniclass versions of PA-I and PA-II , we add a slack variable tothe optimization
problem in Eq. (22) in the same way as we did in Eq. (6) and Eq. (7) for the classification algorithms.
Namely, the update for PA-I is defined by,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 +Cξ s.t. ‖w−yt‖ ≤ ε+ξ, ξ ≥ 0, (30)

and the update for PA-II is,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 +Cξ2 s.t. ‖w−yt‖ ≤ ε+ξ.

The closed form for these updates can be derived using the same technique as we used for
deriving the PA update. The final outcome is that both PA-I and PA-II share the form of update
given in Eq. (24), withτt set to be,

τt = min{ C , ℓt } (PA-I) or τt =
ℓt

1+ 1
2C

(PA-II).

We can extend the analysis of the three PA variants from Sec. 4 to the case of uniclass prediction.
We do so by proving a uniclass version of Lemma 1. After proving this lemma, wediscuss an
additional technical difficulty which needs to be addressed so that Thm. 2 through Thm. 5 carry
over smoothly to the uniclass case.

Lemma 7 Let y1, . . . ,yT be an arbitrary sequence of vectors, whereyt ∈ R
n for all t. Let τt be as

defined in either of the three PA variants for uniclass prediction. Then usingthe notation given in
Eq. (9), the following bound holds for anyu ∈ R

n,

T

∑
t=1

τt (2ℓt − τt −2ℓ⋆
t) ≤ ‖u‖2.

Proof We prove this lemma in much the same way as we did Lemma 1. We again use the definition,
∆t = ‖wt −u‖2−‖wt+1−u‖2, along with the fact stated in Eq. (10) that

T

∑
t=1

∆t ≤ ‖u‖2.

565

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

We now focus our attention on bounding∆t from below on those rounds where∆t 6= 0. Using the
recursive definition ofwt+1, we rewrite∆t as,

∆t = ‖wt −u‖2−
∥

∥

∥

∥

(

1− τt

‖wt −yt‖

)

wt +

(

τt

‖wt −yt‖

)

yt −u

∥

∥

∥

∥

2

= ‖wt −u‖2−
∥

∥

∥

∥

(wt −u)+

(

τt

‖wt −yt‖

)

(yt −wt)

∥

∥

∥

∥

2

= −2

(

τt

‖wt −yt‖

)

(wt −u) · (yt −wt) − τ2
t .

We now add and subtractyt from the term(wt −u) above to get,

∆t = −2

(

τt

‖wt −yt‖

)

(wt −yt +yt −u) · (yt −wt) − τ2
t

= 2τt‖wt −yt‖ − 2

(

τt

‖wt −yt‖

)

(yt −u) · (yt −wt) − τ2
t .

Now, using the Cauchy-Schwartz inequality on the term(yt −u) · (yt −wt), we can bound,

∆t ≥ 2τt‖wt −yt‖ − 2τt‖yt −u‖ − τ2
t .

We now add and subtract 2τtε from the right-hand side of the above, to get,

∆t ≥ 2τt (‖wt −yt‖− ε) − 2τt (‖yt −u‖− ε) − τ2
t .

Since we are dealing with the case whereℓt > 0, it holds thatℓt = ‖wt − yt‖− ε. By definition,
ℓ⋆
t ≥ ‖u−yt‖− ε. Using these two facts, we get,

∆t ≥ 2τtℓt −2τtℓ
⋆
t − τ2

t .

Summing the above inequality over allt and comparing the result to the upper bound in Eq. (10)
gives the bound stated in the lemma.

As mentioned above, there remains one more technical obstacle which standsin the way of
applying Thm. 2 through Thm. 5 to the uniclass case. This difficulty stems from the factxt is not
defined in the uniclass whereas the term‖x‖2 appears in the theorems. This issue is easily resolved
by settingxt in the uniclass case to be an arbitrary vector of a unit length, namely‖xt‖2 = 1. This
technical modification enables us to writeτt as ℓt/‖xt‖2 in the uniclass PA algorithm, as in the
classification case. Similarly,τt can be defined as in the classification case for PA-I and PA-II .
Now Thm. 2 through Thm. 5 can be applied verbatim to the uniclass PA algorithms.

Learning the Radius of the Uniclass Predictor In the derivation above we made the simplifying
assumption thatε, the radius of our uniclass predictor, is fixed beforehand and that the online algo-
rithm can only move its center,w. We now show that learningε andw in parallel is no harder than
learningw alone. We do so by using a simple reduction argument. For technical reasons, we still
require an upper bound onε, which we denote byB. AlthoughB is specified ahead of time, it can

566

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

be arbitrarily large and does not appear in our analysis. Typically, we willthink of B as being far
greater than any conceivable value ofε. Our goal is now to incrementally findwt andεt such that,

‖wt −yt‖ ≤ εt , (31)

as often as possible. Additionally, we would likeεt to stay relatively small, since an extremely
large value ofεt would solve the problem in a trivial way. We do so by reducing this problem toa
different uniclass problem where the radius is fixed and whereyt is in R

n+1. That is, by adding an
additional dimension to the problem, we can learnε using the same machinery developed for fixed-
radius uniclass problems. The reduction stems from the observation that Eq. (31) can be written
equivalently as,

‖wt −yt‖2 +(B2− ε2
t) ≤ B2. (32)

If we were to concatenate a 0 to the end of everyyt (thus increasing its dimension ton+ 1) and
if we considered then+ 1’th coordinate ofwt to be equivalent to

√

B2− ε2
t , then Eq. (32) simply

becomes‖wt −yt‖2 ≤ B2. Our problem has reduced to a fixed-radius uniclass problem where the
radius is set toB. w1,n+1 should be initialized toB, which is equivalent to initializingε1 = 0. On
each round,εt can be extracted fromwt by,

εt =
√

B2−w2
t,n+1.

Sincewt+1,n+1 is defined to be a convex combination ofwt,n+1 andyt,n+1 (where the latter equals
zero), thenwt,n+1 is bounded in(0,B] for all t and can only decrease from round to round. This
means that the radiusεt is always well defined and can only increase witht. Since the radius is
initialized to zero and is now one of the learned parameters, the algorithm has anatural tendency
to favor small radii. Letu denote the center of a fixed uniclass predictor and letε denote its radius.
Then the reduction described above enables us to prove loss bounds similar to those presented in
Sec. 4, with‖u‖2 replaced by‖u‖2 + ε2.

7. Multiclass Problems

We now address more complex decision problems. We first adapt the binaryclassification algo-
rithms described in Sec. 3 to the task ofmulticlass multilabelclassification. In this setting, every
instance is associated with a set of labelsYt . For concreteness we assume that there arek different
possible labels and denote the set of all possible labels byY = {1, . . . ,k}. For every instancext , the
set of relevant labelsYt is therefore a subset ofY . We say that labely is relevantto the instancext if
y∈Yt . This setting is often discussed in text categorization applications (see for instance (Schapire
and Singer, 2000)) wherext represents a document andYt is the set of topics which are relevant to
the document and is chosen from a predefined collection of topics. The special case where there
is only asingle relevant topic for each instance is typically referred to asmulticlass single-label
classification or multiclass categorization for short. As discussed below, our adaptation of the PA
variants to multiclass multilabel settings encompasses the single-label setting as a special case.

As in the previous sections, the algorithm receives instancesx1,x2, . . . in a sequential manner
where eachxt belongs to an instance spaceX . Upon receiving an instance, the algorithm outputs
a score for each of thek labels inY . That is, the algorithm’s prediction is a vector inR

k where
each element in the vector corresponds to the score assigned to the respective label. This form
of prediction is often referred to as label ranking. Predicting a label ranking is more general and

567

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

flexible than predicting the set of relevant labelsYt . Special purpose learning algorithms such as
AdaBoost.MR (Schapire and Singer, 1998) and adaptations of supportvector machines (Crammer
and Singer, 2003a) have been devised for the task of label ranking. Here we describe a reduction
from online label ranking to online binary classification that deems label ranking as simple as binary
prediction. We note that in the case of multiclass single-label classification, theprediction of the
algorithm is simply set to be the label with the highest score.

For a pair of labelsr,s∈ Y , if the score assigned by the algorithm to labelr is greater than the
score assigned to labels, we say that labelr is rankedhigher than labels. The goal of the algorithm
is to rank every relevant label above every irrelevant label. Assume that we are provided with a set
of d featuresφ1, . . . ,φd where each featureφ j is a mapping fromX × Y to the reals. We denote
by Φ(x,y) = (φ1(x,y), . . . ,φd(x,y)) the vector formed by concatenating the outputs of the features,
when each feature is applied to the pair(x,y). The label ranking function discussed in this section
is parameterized by a weight vector,w ∈ R

d. On roundt, the prediction of the algorithm is the
k-dimensional vector,

(

(wt ·Φ(xt ,1)) , . . . , (wt ·Φ(xt ,k))
)

.

We motivate our construction with an example from the domain of text categorization. We describe
a variant of theTerm Frequency - Inverse Document Frequency(TF-IDF) representation of docu-
ments (Rocchio, 1971; Salton and Buckley, 1988). Each featureφ j corresponds to a different word,
denotedµj . Given a corpus of documentsS, for everyx ∈ S and for every potential topicy, the
featureφ j(x,y) is defined to be,

φ j(x,y) = TF(µj ,x) · log

(|S|
DF(µj ,y)

)

,

where TF(µj ,x) is the number of timesµj appears inx and DF(µj ,y) is the number of timesµj

appears in all of the documents inSwhich arenot labeled byy. The valueφ j grows in proportion to
the frequency ofµj in the documentx but is dampened ifµj is a frequent word for topics other than
y. In the context of this paper, the important point is that each feature is label-dependent.

After making its prediction (a ranking of the labels), the algorithm receives the correct set of
relevant labelsYt . We define themarginattained by the algorithm on roundt for the example(xt ,Yt)
as,

γ
(

wt ;(xt ,Yt)
)

= min
r∈Yt

wt ·Φ(xt , r) − max
s6∈Yt

wt ·Φ(xt ,s).

This definition generalizes the definition of margin for binary classification and was employed by
both single-label and multilabel learning algorithms for support vector machines (Vapnik, 1998;
Weston and Watkins, 1999; Elisseeff and Weston, 2001; Crammer and Singer, 2003a). In words,
the margin is the difference between the score of the lowest ranked relevant label and the score
of the highest ranked irrelevant label. The margin is positive only if all of the relevant labels are
ranked higher than all of the irrelevant labels. However, in the spirit of binary classification, we are
not satisfied by a mere positive margin as we require the margin of every prediction to be at least 1.
After receivingYt , we suffer an instantaneous loss defined by the following hinge-loss function,

ℓMC

(

w;(x,Y)
)

=

{

0 γ
(

w;(x,Y)
)

≥ 1
1− γ

(

w;(x,Y)
)

otherwise
. (33)

568

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

As in the previous sections, we useℓt as an abbreviation forℓMC

(

wt ;(xt ,Yt)
)

. If an irrelevant label is
ranked higher than a relevant label, thenℓ2

t attains a value greater than 1. Therefore,∑T
t=1ℓ2

t upper
bounds the number of multiclass prediction mistakes made on rounds 1 throughT.

One way of updating the weight vectorwt is to mimic the derivation of the PA algorithm for
binary classification defined in Sec. 3 and to set

wt+1 = argmin
w∈Rd

1
2
‖w−wt‖2 s.t. ℓMC(w;(xt ,Yt)) = 0. (34)

Satisfying the single constraint in the optimization problem above is equivalentto satisfying the
following set of linear constraints,

∀r ∈Yt ∀s 6∈Yt w ·Φ(xt , r)−w ·Φ(xt ,s) ≥ 1. (35)

However, instead of attempting to satisfy all of the|Y t |× (k−|Y t |) constraints above we focus only
on the single constraint which is violated the most bywt . We show in the sequel that we can still
prove a cumulative loss bound for this simplified version of the update. We note that satisfying all
of these constraints simultaneously leads to the online algorithm presented in (Crammer and Singer,
2003a). Their online update is more involved and computationally expensive, and moreover, their
analysis only covers the realizable case.

Formally, let rt denote the lowest ranked relevant label and letst denote the highest ranked
irrelevant label on roundt. That is,

rt = argmin
r∈Yt

wt ·Φ(xt , r) and st = argmax
s6∈Yt

wt ·Φ(xt ,s). (36)

The single constraint that we choose to satisfy isw ·Φ(xt , rt)−w ·Φ(xt ,st) ≥ 1 and thuswt+1 is set
to be the solution of the following simplified constrained optimization problem,

wt+1 = argmin
w

1
2
‖w−wt‖2 s.t. w · (Φ(xt , rt)−Φ(xt ,st)) ≥ 1. (37)

The apparent benefit of this simplification lies in the fact that Eq. (37) has aclosed form solution.
To draw the connection between the multilabel setting and binary classification,we can think of the
vectorΦ(xt , rt)−Φ(xt ,st) as a virtual instance of a binary classification problem with a label of
+1. With this reduction in mind, Eq. (37) becomes equivalent to Eq. (2). Therefore, the closed form
solution of Eq. (37) is

wt+1 = wt + τt(Φ(xt , rt)−Φ(xt ,st)). (38)

with,

τt =
ℓt

‖Φ(xt , rt)−Φ(xt ,st)‖2 .

Although we are essentially neglecting all but two labels on each step of the multiclass update, we
can still obtain multiclass cumulative loss bounds. The key observation in our analysis it that,

ℓMC

(

wt ;(xt ,Yt)
)

= ℓ
(

wt ;(Φ(xt , rt)−Φ(xt ,st),+1)
)

.

To remind the reader,ℓ on the right-hand side of the above equation is the binary classification loss
defined in Eq. (1). Using this equivalence of definitions, we can convert Thm. 2 into a bound for

569

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

the multiclass PA algorithm. To do so we need to cast the assumption that for allt it holds that
‖Φ(xt , rt)−Φ(xt ,st)‖ ≤ R. This bound can immediately be converted into a bound on the norm
of the feature set since‖Φ(xt , rt)−Φ(xt ,st)‖ ≤ ‖Φ(xt , rt)‖+‖Φ(xt ,st)‖. Thus, if the norm of the
mappingΦ(xt , r) is bounded for allt and r then so is‖Φ(xt , rt)−Φ(xt ,st)‖. In particular, if we
assume that‖Φ(xt , r)‖ ≤ R/2 for all t andr we obtain the following corollary.

Corollary 8 Let (x1,Y1), . . . ,(xT ,YT) be a sequence of examples withxt ∈ R
n and YT ⊆ {1, . . . ,k}.

Let Φ be a mappingΦ : X ×Y → R
d such that‖Φ(xt , r)‖ ≤ R/2 for all t and r. Assume that there

exists a vectoru such thatℓ(u;(xt ,Yt)) = 0 for all t. Then, the cumulative squared loss attained by
the multiclass multilabel PA algorithm is bounded from above by,

T

∑
t=1

ℓ2
t ≤ R2‖u‖2.

Similarly, we can obtain multiclass versions of PA-I and PA-II by using the update rule in Eq. (38)
but settingτt to be either,

τt = min

{

C ,
ℓt

‖Φ(xt , rt)−Φ(xt ,st)‖2

}

or τt =
ℓt

‖Φ(xt , rt)−Φ(xt ,st)‖2 + 1
2C

,

respectively. The analysis of PA-I and PA-II in Thms. 4-5 also carriesover from the binary case to
the multilabel case in the same way.

Multi-prototype Classification In the above discussion we assumed that the feature vectorΦ(x,y)
is label-dependent and used a single weight vectorw to form the ranking function. However, in
many applications of multiclass classification this setup is somewhat unnatural. Many times, there
is a single natural representation for every instance rather than multiple feature representations for
each individual class. For example, in optical character recognition problems (OCR) an instance
can be a gray-scale image of the character and the goal is to output the content of this image. In this
example, it is difficult to find a good set of label-dependent features.

The common construction in such settings is to assume that each instance is a vector in R
n and to

associate a different weight vector (often referred to as prototype) with each of thek labels (Vapnik,
1998; Weston and Watkins, 1999; Crammer and Singer, 2001). That is, the multiclass predictor is
now parameterized byw1

t , . . . ,w
k
t , wherewr

t ∈ R
n. The output of the predictor is defined to be,

(

(w1
t ·xt), . . . ,(wk

t ·xt)
)

.

To distinguish this setting from the previous one we refer to this setting as the multi-prototype mul-
ticlass setting and to the previous one as the single-prototype multiclass setting. We now describe
a reduction from the multi-prototype setting to the single-prototype one which enables us to use all
of the multiclass algorithms discussed above in the multi-prototype setting as well. Toobtain the
desired reduction, we must define the feature vector representationΦ(x,y) induced by the instance
label pair(x,y). We defineΦ(x,y) to be ak·n dimensional vector which is composed ofk blocks of
sizen. All blocks but they’th block of Φ(x,y) are set to be the zero vector while they’th block is set
to bex. Applying a single prototype multiclass algorithm to this problem produces a weight vector
wt ∈R

kn on every online round. Analogous to the construction ofΦ(x,y), the vectorwt is composed

570

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

INPUT: cost functionρ(y,y′)
INITIALIZE : w1 = (0, . . . ,0)
For t = 1,2, . . .

• receive instance:xt ∈ R
n

• predict: ŷt = argmaxy∈Y (wt ·Φ(xt ,y))
• receive correct label:yt ∈ Y
• define:ỹt = argmaxr∈Y

(

wt ·Φ(xt , r)−wt ·Φ(xt ,yt)+
√

ρ(yt , r)
)

• define:

qt =

{

ŷt (PB)
ỹt (ML)

• suffer loss:ℓt = wt ·Φ(xt ,qt)−wt ·Φ(xt ,yt)+
√

ρ(yt ,qt)
• set:τt = ℓt

‖Φ(xt ,yt)−Φ(xt ,qt)‖2

• update:wt+1 = wt + τt (Φ(xt ,yt)−Φ(xt ,qt))

Figure 2: Theprediction-based(PB) and max-loss(ML) passive-aggressive updates for cost-
sensitive multiclass problems.

of k blocks of sizen and denote blockr by wr
t . By construction, we get thatwt ·Φ(xt , r) = wr

t ·xt .
Equipped with this construction we can use verbatim any single-prototype algorithm as a proxy for
the multi-prototype variant. Namely, on roundt we find the pair of indicesrt ,st which corresponds
to the largest violation of the margin constraints,

rt = argmin
r∈Yt

wt ·Φ(xt , r) = argmin
r∈Yt

wr
t ·xt ,

st = argmax
s6∈Yt

wt ·Φ(xt ,s) = argmax
s6∈Yt

ws
t ·xt . (39)

Unraveling the single-prototype notion of margin and casting it as a multi-prototype one we get that
the loss in the multi-prototype case amounts to,

ℓ
(

w1
t , . . . ,w

k
t ;(xt ,Yt)

)

=

{

0 wrt
t ·xt −wst

t ·xt ≥ 1
1−wrt

t ·xt +wst
t ·xt otherwise

. (40)

Furthermore, applying the same reduction to the update scheme we get that theresulting multi-
prototype update is,

wrt
t+1 = wrt

t+1 + τtxt and wst
t+1 = wst

t+1− τtxt . (41)

For the PA algorithm, the value ofτt is the ratio of the loss, as given by Eq. (40), and the squared
norm ofΦ(xt , rt)−Φ(xt ,st). By construction, this vector hask−2 blocks whose elements are zeros
and two blocks that are equal toxt and−xt . Since the two non-zero blocks are non-overlapping we
get that,

‖Φ(xt , rt)−Φ(xt ,st)‖2 = ‖xt‖2 + ‖−xt‖2 = 2‖xt‖2.

Finally, due to our reduction we also get multi-prototype versions of Thm. 4 and Thm. 5.

571

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

8. Cost-Sensitive Multiclass Classification

Cost-sensitive multiclass classification is a variant of the multiclass single-labelclassification setting
discussed in the previous section. Namely, each instancext is associated with a single correct label
yt ∈ Y and the prediction extended by the online algorithm is simply,

ŷt = argmax
y∈Y

(wt ·Φ(xt ,y)) . (42)

A prediction mistake occurs ifyt 6= ŷt , however in the cost-sensitive setting different mistakes incur
different levels of cost. Specifically, for every pair of labels(y,y′) there is a costρ(y,y′) associated
with predictingy′ when the correct label isy. The cost functionρ is defined by the user and takes
non-negative values. We assume thatρ(y,y) = 0 for all y∈ Y and thatρ(y,y′) ≥ 0 whenevery 6= y′.
The goal of the algorithm is to minimize thecumulative costsuffered on a sequence of examples,
namely to minimize∑ρ(yt , ŷt).

The multiclass PA algorithms discussed above can be adapted to this task by incorporating the
cost function into the online update. Recall that we began the derivation ofthe multiclass PA update
by defining a set of margin constraints in Eq. (35), and on every round we focused our attention
on satisfying only one of these constraints. We repeat this idea here while incorporating the cost
function into the margin constraints. Specifically, on every online round we would like for the
following constraints to hold,

∀r ∈ {Y \yt} wt ·Φ(xt ,yt)−wt ·Φ(xt , r) ≥
√

ρ(yt , r). (43)

The reason for using the square root function in the equation above will be justified shortly. As
mentioned above, the online update focuses on a single constraint out of the |Y |−1 constraints in
Eq. (43). We will describe and analyze two different ways to choose thissingle constraint, which
lead to two different online updates for cost-sensitive classification. Thetwo update techniques are
called theprediction-basedupdate and themax-lossupdate. Pseudo-code for these two updates is
presented in Fig. 2. They share an almost identical analysis and may seem very similar at first,
however each update possesses unique qualities. We discuss the significance of each update at the
end of this section.

The prediction-based update focuses on the single constraint in Eq. (43) which corresponds to
the predicted label ˆyt . Concretely, this update setswt+1 to be the solution to the following optimiza-
tion problem,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. wt ·Φ(xt ,yt)−wt ·Φ(xt , ŷt) ≥

√

ρ(yt , ŷt), (44)

where ŷt is defined in Eq. (42). This update closely resembles the multiclass update given in
Eq. (37). Define the cost sensitive loss for the prediction-based update to be,

ℓPB

(

w;(x,y)
)

= w ·Φ(x, ŷ)−w ·Φ(x,y)+
√

ρ(y, ŷ). (45)

Note that this loss equals zero if and only if a correct prediction was made, namely if ŷt = yt . On
the other hand, if a prediction mistake occurred it means thatwt ranked ˆyt higher thanyt , thus,

√

ρ(yt , ŷt) ≤ wt ·Φ(xt , ŷt)−wt ·Φ(xt ,yt)+
√

ρ(yt , ŷt) = ℓPB(wt ;(xt ,yt)). (46)

572

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

As in previous sections, we will prove an upper bound on the cumulative squared loss attained by
our algorithm,∑t ℓPB(wt ;(xt ,yt))

2. The cumulative squared loss in turn bounds∑t ρ(yt , ŷt) which is
the quantity we are trying to minimize. This explains the rationale behind our choiceof the margin
constraints in Eq. (43). The update in Eq. (44) has the closed form solution,

wt+1 = wt + τt (Φ(xt ,yt)−Φ(xt , ŷt)) , (47)

where,

τt =
ℓPB(wt ;(xt ,yt))

‖Φ(xt ,yt)−Φ(xt , ŷt)‖2 . (48)

As before, we obtain cost sensitive versions of PA-I and PA-II by setting,

τt = min

{

C ,
ℓPB(wt ;(xt ,yt))

‖Φ(xt ,yt)−Φ(xt , ŷt)‖2

}

(PA-I)

τt =
ℓPB(wt ;(xt ,yt))

‖Φ(xt ,yt)−Φ(xt , ŷt)‖2 + 1
2C

(PA-II), (49)

where in both casesC > 0 is a user-defined parameter.
The second cost sensitive update, the max-loss update, also focuses on satisfying a single con-

straint from Eq. (43). Let ˜yt be the label inY defined by,

ỹt = argmax
r∈Y

(

wt ·Φ(xt , r)−wt ·Φ(xt ,yt)+
√

ρ(yt , r)
)

. (50)

ỹt is the loss-maximizing label. That is, we would suffer the greatest loss on round t if we were to
predictỹt . The max-loss update focuses on the single constraint in Eq. (43) which corresponds to ˜yt .
Note that the online algorithm continues to predict the label ˆyt as before and that ˜yt only influences
the online update. Concretely, the max-loss update setswt+1 to be the solution to the following
optimization problem,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. wt ·Φ(xt ,yt)−wt ·Φ(xt , ỹt) ≥

√

ρ(yt , ỹt), (51)

The update in Eq. (51) has the same closed form solution given in Eq. (47)and Eq. (48) with ˆyt

replaced by ˜yt . Define the loss for the max-loss update to be,

ℓML

(

w;(x,y)
)

= w ·Φ(x, ỹ)−w ·Φ(x,y)+
√

ρ(y, ỹ), (52)

whereỹ is defined in Eq. (50). Note that since ˜y attains the maximal loss of all other labels, it follows
that,

ℓPB(wt ;(xt ,yt)) ≤ ℓML(wt ;(xt ,yt)).

From the above inequality and Eq. (46) we conclude thatℓML is also an upper bound on
√

ρ(yt , ŷt).
A note-worthy difference betweenℓPB andℓML is thatℓML(wt ;(xt ,yt)) = 0 if and only if Eq. (43)
holds for allr ∈ {Y \yt}, whereas this is not the case forℓPB.

The prediction-based and max-loss updates were previously discussedin Dekel et al. (2004a), in
the context of hierarchical classification. In that paper, a predefinedhierarchy over the label set was
used to induce the cost functionρ. The basic online algorithm presented there used the prediction-
based update, whereas the max-loss update was mentioned in the context ofa batch learning setting.

573

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

Dekel et al. (2004a) evaluated both techniques empirically and found themto be highly effective on
speech recognition and text classification tasks.

Turning to the analysis of our cost sensitive algorithms, we follow the same strategy used in the
analysis of the regression and uniclass algorithms. Namely, we begin by proving a cost sensitive
version of Lemma 1 for both the prediction-based and the max-loss updates.

Lemma 9 Let (x1,y1), . . . ,(xT ,yT) be an arbitrary sequence of examples, wherext ∈ R and yt ∈ Y
for all t. Let u be an arbitrary vector inRn. If τt is defined as in Eq. (48) or Eq. (49) then,

T

∑
t=1

τt
(

2ℓPB(wt ;(xt ,yt))− τt‖Φ(xt ,yt)−Φ(xt , ŷt)‖2−2ℓML(u;(xt ,yt))
)

≤ ‖u‖2.

If τt is defined as in Eq. (48) or Eq. (49) witĥyt replaced byỹt then,

T

∑
t=1

τt
(

2ℓML(wt ;(xt ,yt))− τt‖Φ(xt ,yt)−Φ(xt , ỹt)‖2−2ℓML(u;(xt ,yt))
)

≤ ‖u‖2.

Proof We prove the first statement of the lemma, which involves the prediction-basedupdate rule.
The proof of the second statement is identical, except that ˆyt is replaced by ˜yt andℓPB(wt ;(xt ,yt)) is
replaced byℓML(wt ;(xt ,yt)).

As in the proof of Lemma 1, we use the definition∆t = ‖wt −u‖2−‖wt+1−u‖2 and the fact
that,

T

∑
t=1

∆t ≤ ‖u‖2. (53)

We focus our attention on bounding∆t from below. Using the recursive definition ofwt+1, we
rewrite∆t as,

∆t = ‖wt −u‖2−‖wt −u+ τt(Φ(xt ,yt)−Φ(xt , ŷt))‖2

= −2τt(wt −u) · (Φ(xt ,yt)−Φ(xt , ŷt)) − τ2
t ‖Φ(xt ,yt)−Φ(xt , ŷt)‖2. (54)

By definition,ℓML(u;(xt ,yt)) equals,

max
r∈Y

(

u · (Φ(xt , r)−Φ(xt ,yt))+
√

ρ(yt , r)
)

.

SinceℓML(u;(xt ,yt)) is the maximum overY , it is clearly greater thanu · (Φ(xt , ŷt)−Φ(xt ,yt))+
√

ρ(yt , ŷt). This can be written as,

u · (Φ(xt ,yt)−Φ(xt , ŷt)) ≥
√

ρ(yt , ŷt)− ℓML(u;(xt ,yt)).

Plugging the above back into Eq. (54) we get,

∆t ≥ −2τtwt · (Φ(xt ,yt)−Φ(xt , ŷt)) + 2τt

(

√

ρ(yt , ŷt)− ℓML(u;(xt ,yt))
)

− τ2
t ‖Φ(xt ,yt)−Φ(xt , ŷt)‖2. (55)

574

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

Rearranging terms in the definition ofℓPB, we get thatwt · (Φ(xt ,yt)−Φ(xt , ŷt)) =
√

ρ(yt , ŷt)−
ℓPB(wt ;(xt ,yt)). This enables us to rewrite Eq. (55) as,

∆t ≥ −2τt

(

√

ρ(yt , ŷt)− ℓPB(wt ;(xt ,yt))
)

+

2τt

(

√

ρ(yt , ŷt)− ℓML(u;(xt ,yt))
)

− τ2
t ‖Φ(xt ,yt)−Φ(xt , ŷt)‖2

= τt
(

2ℓPB(wt ;(xt ,yt))− τt‖Φ(xt ,yt)−Φ(xt , ŷt)‖2−2ℓML(u;(xt ,yt))
)

.

Summing∆t over all t and comparing this lower bound with the upper bound provided in Eq. (53)
gives the desired bound.

This lemma can now be used to obtain cost sensitive versions of Thms. 2,3 and5 for both
prediction-based and max-loss updates. The proof of these theorems remains essentially the same as
before, however one cosmetic change is required:‖xt‖2 is replaced by either‖Φ(xt ,yt)−Φ(xt , ŷt)‖2

or ‖Φ(xt ,yt)−Φ(xt , ỹt)‖2 in each of the theorems and throughout their proofs. This provides cu-
mulative cost bounds for the PA and PA-II cost-sensitive algorithms.

Analyzing the cost-sensitive version of PA-I requires a slightly more delicateadaptation of
Thm. 4. For brevity, we prove the following theorem for the max-loss variant of the algorithm
and note that the proof for the prediction-based variant is essentially identical.

We make two simplifying assumptions: first assume that‖φ(xt ,yt)−φ(xt , ỹt)‖ is upper bounded
by 1. Second, assume thatC, the aggressiveness parameter given to the PA-I algorithm, is an upper
bound on the square root of the cost functionρ.

Theorem 10 Let(x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈R
n, yt ∈ Y and‖φ(xt ,yt)−

φ(xt , ỹt)‖ ≤ 1 for all t. Let ρ be a cost function fromY × Y to R+ and let C, the aggressiveness
parameter provided to the PA-I algorithm, be such that

√

ρ(yt , ŷt)≤C for all t. Then for any vector
u ∈ R

n, the cumulative cost obtained by the max-loss cost sensitive version of PA-I on the sequence
is bounded from above by,

T

∑
t=1

ρ(yt , ŷt) ≤ ‖u‖2 +2C
T

∑
t=1

ℓML(u;(xt ,yt)).

Proof We abbreviateρt = ρ(yt , ŷt) andℓt = ℓML(wt ;(xt ,yt)) throughout this proof.ℓt ≥
√ρt on

every roundt, as discussed in this section.τt is defined as,

τt = min

{

ℓt

‖φ(xt ,yt)−φ(xt , ỹt)‖2 , C

}

,

and due to our assumption on‖φ(xt ,yt)−φ(xt , ỹt)‖2 we get thatτt ≥ min{ℓt ,C}. Combining these
two facts gives,

min{ρt ,C
√

ρt} ≤ τtℓt .

Using our assumption onC, we know thatC
√ρt is at leastρt and thereforeρt ≤ τtℓt . Summing over

all t we get the bound,
T

∑
t=1

ρt ≤
T

∑
t=1

τtℓt . (56)

575

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

Again using the definition ofτt , we know thatτtℓML(u;(xt ,yt))≤CℓML(u;(xt ,yt)) and thatτt‖φ(xt ,yt)−
φ(xt , ỹt)‖2 ≤ ℓt . Plugging these two inequalities into the second statement of Lemma 9 gives,

T

∑
t=1

τtℓt ≤ ‖u‖2 +2C
T

∑
t=1

ℓML(u;(xt ,yt)). (57)

Combining Eq. (57) with Eq. (56) proves the theorem.

This concludes our analysis of the cost-sensitive PA algorithms. We wrap up this section with a
discussion on some significant differences between the prediction-based and the max-loss variants
of our cost-sensitive algorithms. Both variants utilize the same prediction function to output the
predicted label ˆyt however each variant follows a different update strategy and is evaluated with
respect to a different loss function. The loss function used to evaluate the prediction-based variant
is a function ofyt andŷt , whereas the loss function used to evaluate the max-loss update essentially
ignores ˆyt . In this respect, the prediction-based loss is more natural.

On the other hand, the analysis of the prediction-based variant lacks the aesthetics of the max-
loss analysis. The analysis of the max-loss algorithm usesℓML to evaluate both the performance of
the algorithm and the performance ofu, while the analysis of the prediction-based algorithm uses
ℓPB to evaluate the algorithm andℓML to evaluateu. The prediction-based relative bound is to some
extent like comparing apples and oranges, since the algorithm andu are not evaluated using the
same loss function. In summary, both algorithms suffer from some theoreticaldisadvantage and
neither of them is theoretically superior to the other.

Finally, we turn our attention to an important algorithmic difference between the two update
strategies. The prediction-based update has a great advantage over the max-loss update in that the
cost functionρ does not play a role in determining the single constraint which the update focuses on.
In some cases, this can significantly speed-up the running time required by the online update. For
example, in the following section we exploit this property when devising algorithms for the complex
problem of sequence prediction. When reading the following section, notethat the max-loss update
could not have been used for sequence prediction in place of the prediction-based update. This is
perhaps the most significant difference between the two cost sensitive updates.

9. Learning with Structured Output

A trendy and useful application of large margin methods is learning with structured output. In
this setting, the set of possible labels are endowed with a predefined structure. Typically, the set
of labels is very large and the structure plays a key role in constructing efficient learning and in-
ference procedures. Notable examples for structured label sets are graphs (in particular trees) and
sequences (Collins, 2000; Altun et al., 2003; Taskar et al., 2003; Tsochantaridis et al., 2004). We
now overview how the cost-sensitive learning algorithms described in the previous section can be
adapted to structured output settings. For concreteness, we focus on an adaptation for sequence pre-
diction. Our derivation however can be easily mapped to other settings of learning with structured
output. In sequence prediction problems we are provided with a predefined alphabetY = {1, . . . ,k}.
Each input instance is associated with a label which is a sequence overY . For simplicity we assume
that the output sequence is of a fixed lengthm. Thus, on roundt, the learning algorithm receives an
instancext and then predicts an output sequenceŷt ∈ Y m. Upon predicting, the algorithm receives

576

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

the correct sequenceyt that is associated withxt . As in the cost-sensitive case, the learning algo-
rithm is also provided with a cost functionρ : Y m× Y m → R+. The value ofρ(y,y′) represents
the cost associated with predictingy′ instead ofy. As before we assume thatρ(y,y′) equals zero if
y = y′. Apart from this requirement,ρ may be any computable function. Most sequence prediction
algorithms further assume thatρ is decomposable. Specifically, a common construction (Taskar
et al., 2003; Tsochantaridis et al., 2004) is achieved by defining,ρ(y,y′) = ∑m

i=1 ρ̃(yi ,y′i) whereρ̃
is any non-negative (local) cost overY ×Y . In contrast, we revert to a general cost function over
pairs of sequences.

As in the multiclass settings discussed above, we assume that there exists a setof features
φ1, . . . ,φd each of which takes as its input an instancex and a sequencey and outputs a real number.
We again denote byΦ(x,y) the vector of features evaluated onx andy. Equipped withΦ andρ, we
are left with the task of finding,

ŷt = argmax
y∈Y m

(wt ·Φ(xt ,y)) , (58)

on every online round. Witĥyt on hand, the PA update for string prediction is identical to the
prediction-based update described in the previous section. However, obtaining ŷt in the general
case may require as many askm evaluations ofwt ·Φ(xt ,y). This problem becomes intractable asm
becomes large. We must therefore impose some restrictions on the feature representationΦ which
will enable us to find̂yt efficiently. A possible restriction on the feature representation is to assume
that each featureφ j takes the form,

φ j(xt ,y) = ψ0
j (y1,xt)+

m

∑
i=2

ψ j(yi ,yi−1,xt), (59)

whereψ0
j andψ j are any computable functions. This construction is analogous to imposing a first

order Markovian structure on the output sequence. This form paves the way for an efficient infer-
ence, i.e. solving Eq. (58), using a dynamic programming procedure. Similaryet richer structures
such as dynamic Bayes nets can be imposed so long as the solution to Eq. (58)can be computed
efficiently. We note in passing that similar representation ofΦ using efficiently computable feature
sets were proposed in (Altun et al., 2003; Taskar et al., 2003; Tsochantaridis et al., 2004).

The analysis of the cost-sensitive PA updates carries over verbatim to thesequence prediction
setting. Our algorithm for learning with structured outputs was successfullyapplied to the task of
music to score alignment in (Shalev-Shwartz et al., 2004a).

10. Experiments

In this section we present experimental results that demonstrate differentaspects of our PA algo-
rithms and their accompanying analysis. In Sec. 10.1 we start with two experiments with synthetic
data which examine the robustness of our algorithms to noise. In Sec. 10.2 weinvestigate the effect
of the aggressiveness parameterC on the performance of the PA-I and PA-II algorithms. Finally,
in Sec. 10.3, we compare our multiclass versions of the PA algorithms to other online algorithms
for multiclass problems (Crammer and Singer, 2003a) on natural data sets.

The synthetic data set used in our experiments was generated as follows. First a label was chosen
uniformly at random from{−1,+1}. For positive labeled examples, instances were chosen by
randomly sampling a two-dimensional Gaussian with mean(1,1) and a diagonal covariance matrix

577

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Error of optimal linear classifier

E
rr

or

PA
PA−I
PA−II

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

Error of optimal linear classifier

Lo
ss

PA
PA−I
PA−II

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

Error of optimal linear classifier

E
rr

or

PA
PA−I
PA−II

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Error of optimal linear classifier

Lo
ss

PA
PA−I
PA−II

Figure 3: The average error (left) and the average loss (right) of PA,PA-I and PA-II as a function
of the error of the optimal fixed linear classifier, in the presence of instance noise (top)
and label noise (bottom).

with (0.2,2) on its diagonal. Similarly, for negative labeled examples, instances were sampled
from a Gaussian with a mean of(−1,−1) and the same covariance matrix as for positive labeled
examples. To validate our results, we repeated each experiment 10 times where in each repetition
we generated 4,000 random examples. The results reported are averaged over the 10 repetitions.

10.1 Robustness to Noise

Our first experiments examine the robustness of our algorithms to both instance noise and label
noise. To examine instance noise, we contaminated each instance with a random vector sampled
from a zero-mean Gaussian with a covariance matrixσI , whereσ varied from 0 to 2. We set
the parameterC of PA-I and PA-II to be 0.001. We then ran PA, PA-I and PA-II on the resulting
sequence of examples. To evaluate our results, we used a brute-forcenumerical method to find
the optimal fixed linear classifier, that is, the linear classifier that makes the fewest classification
mistakes on the entire sequence of examples. We define theaverage errorof an online learning
algorithm on a given input sequence to be the number of prediction mistakes the algorithm makes
on that sequence normalized by the length of the sequence. Similarly, we define the average loss of
an online learning algorithm on a given sequence.

In the plots at the top of Fig. 3 we depict the average error and average loss of the three PA
variants as a function of the average error of the optimal linear classifier.The plots underscore

578

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

−10 −8 −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

log(C)

E
rr

or

p=0.0
p=0.1
p=0.2

−10 −8 −6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

log(C)

Lo
ss

p=0.0
p=0.1
p=0.2

−10 −8 −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

log(C)

E
rr

or

p=0.0
p=0.1
p=0.2

−10 −8 −6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

log(C)

Lo
ss

p=0.0
p=0.1
p=0.2

Figure 4: The average error (left) and the average loss (right) of PA-I (top) and PA-II (bottom) as a
function of log(C) with different levels of label noise probabilityp.

several interesting phenomena. First note that for low levels of noise, allthree PA variants make a
similar number of errors. Our bounds from Sec. 4 suggest that as the noise level increases, PA-I and
PA-II should outperform the basic PA algorithm. It is clear from the graphs that our expectations
are met and that PA-I and PA-II outperform the basic PA algorithm when the noise level is high.
Finally, in this experiment PA-I and PA-II performed equally well for all levels of noise.

In our second experiment we left the instances intact and instead flipped each label with a
probability p, wherep was set to different values in[0,0.3]. As in the previous experiment, we set
C = 0.001 for both PA-I and PA-II . The results are depicted at the bottom of Fig. 3. It is apparent
from the graphs that the behavior observed in the previous experiment isrepeated here as well.

10.2 The Effect ofC

In our second set of experiments, we examine the effect of the aggressiveness parameterC on the
performance of PA-I and PA-II . Again we flipped the label of each instance in our synthetic data
set with probabilityp, this time with p set to 0, 0.1 and 0.2. We then ran PA-I and PA-II on the
resulting sequence of examples with different values of the parameterC. The average error and
average loss of the algorithms as a function of the parameterC are depicted in Fig. 4

579

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T

E
rr

or
C = 0.001
C = 100

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T

E
rr

or

C = 0.001
C = 100

Figure 5: The average error of PA-I (left) and PA-II (right) as a function of the number of online
rounds,T, for different values ofC.

As can be seen from the graphs, the value of the parameterC significantly effects the results
of the algorithms. The graphs can be explained using our loss bounds in Thm. 4 and Thm. 5. For
concreteness, let us focus on the loss bound of the PA-II algorithm, given in Thm. 5. The bound
on the cumulative loss of the algorithm is comprised of two terms, the first depends on the squared
norm of the competitor,(‖u‖2), while the second depends on the cumulative (squared) loss of
the competitor(∑t(ℓ

⋆
t)

2). The parameterC divides the first term and multiplies the second term.
Therefore, whenC is small the bound is dominated by the first term(‖u‖2) and whenC is large the
bound is dominated by the second term(∑t(ℓ

⋆
t)

2). Since the label noise applied to the data effects
only the second term, we expect that for very small values ofC the loss of PA-I and PA-II will be
high, regardless of the noise level. On the other hand, as we increase thevalue ofC, the difference
between different noise levels becomes apparent. As a general rule-of-thumb,C should be small
when the data is noisy.

So far, the length of the sequence of examples presented to the online algorithms was fixed.
In the following, we discuss the effect ofC on the performance of the algorithms as a function of
sequence length (T). We generated a synthetic data set consisting of 104 examples with label noise
probability p = 0.02. We ran the PA-I and PA-II algorithms on the data set, once withC = 100 and
once withC = 0.001. At the end of each online round we calculated the average error attained so
far. The results are given in Fig. 5. For both PA-I and PA-II , settingC to be a small number leads
to a slow progress rate, since each online update changes the online hypothesis by a small amount.
On the other hand, whenC is large, the error rate decreases much faster, but at the price of inferior
performance later on.

10.3 Multiclass Experiments

Our last experiment demonstrates the efficiency of the PA algorithms on multiclass problems. This
experiment was performed with standard multiclass data sets: the USPS and MNIST data sets
of handwritten digits. We compared the multiclass versions of PA, PA-I and PA-II to the online

580

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

1000 2000 3000 4000 5000 6000 7000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T

E
rr

or
Multiclass Perceptron
MIRA
PA−I

0 1 2 3 4 5 6

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

T

E
rr

or

Multiclass Percetron
MIRA
PA−I

Figure 6: The number of prediction mistakes made by different multiclass onlinealgorithms as a
function of the online round index, on the USPS (left) and MNIST (right) data sets.

multiclass algorithms described in (Crammer and Singer, 2003a). Specifically,Crammer and Singer
(2003a) present three multiclass versions of the Perceptron algorithm and a new margin based online
multiclass algorithm named MIRA. As a preprocessing step, we shifted and scaled the instances
of each data set so that its mean equals zero and its average squared Euclidean norm is 1. We
used Mercer kernels in all of the algorithms, namely, we replaced the standard dot product with
a polynomial kernelK(xi ,x j) = (a+ xi · x j)

d, wherea = 0 andd = 3 for the USPS data set and
a = 0.5 andd = 5 for the MNIST data set. These kernel parameters were set rather arbitrarily,
based on previous experience with these data sets using different algorithms. We set the parameter
C of PA-I and PA-II to 100 (we note that similar results hold for anyC > 100). The parameterβ of
MIRA was set to 0.01, following (Crammer and Singer, 2003a).

The plots in Fig. 6 depict the number of online prediction mistakes made on the two data sets by
three different algorithms: PA-I , the uniform-update version of multiclass Perceptron and MIRA.
The performance of PA and PA-II is not presented in this figure, since itis virtually indistinguish-
able from that of PA-I . For the same reason, only the uniform-update version of the multiclass
Perceptron is presented in the figure. It is apparent that both PA-I andMIRA outperform the Per-
ceptron. In addition, the performance of PA-I is comparable to that of MIRA with a slight advantage
to the latter. However, while each online update of MIRA requires solving a complex optimization
problem, each update of PA has a simple closed-form expression and is thus much faster and easier
to implement.

11. Discussion

We described an online algorithmic framework for solving numerous prediction problems rang-
ing from classification to sequence prediction. We derived several lossbounds for our algorithms
(Thms. 2-5). The proofs of all of the bounds are based on a single lemma (Lemma 1). There
are several possible extensions of the work presented in this paper. Wealready conducted fur-
ther research on applications of the PA algorithmic framework for learning margin-based suffix

581

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

trees (Dekel et al., 2004b), pseudo-metrics (Shalev-Shwartz et al., 2004b), hierarchical classifica-
tion (Dekel et al., 2004a), and segmentation of sequences (Shalev-Shwartz et al., 2004a). While
the focus of this paper is on online settings, online algorithms can also serve as building blocks in
the construction of well performing batch algorithms. Online to batch conversions of the proposed
algorithms are yet another important future research direction. The update taken by our algorithms
is aggressive in the sense that even a small loss forces an update of the hypothesis. When using
kernels, this property often results in the use of many examples for representing the learned predic-
tor. Thus, the memory requirements imposed when using kernels can be quite demanding. We are
currently pursuing extensions of the PA framework that operate in the realm of bounded memory
constraints.

Acknowledgments

This research was funded by the Israeli Science Foundation under grant number 522/04. Most of
this work was carried out at the Hebrew University of Jerusalem.

Appendix A. Derivation of the PA-I and PA-II Updates

As in Sec. 3, wheneverℓt = 0 no update occurs andτt equals zero. Ifℓt > 0 we derive these
updates by defining the Lagrangian of the respective optimization problem and satisfying the KKT
conditions. The Lagrangian of the PA-I optimization problem is,

L (w,ξ,τ,λ) =
1
2
‖w−wt‖2 + Cξ + τ(1−ξ−yt

(

w ·xt)
)

− λξ

=
1
2
‖w−wt‖2 + ξ(C− τ−λ) + τ(1−yt

(

w ·xt)
)

, (60)

whereτ ≥ 0 andλ ≥ 0 are Lagrange multipliers. We now find the minimum of the Lagrangian with
respect to the (unconstrained) primal variablesw andξ. As in the previously discussed PA update,
differentiating this Lagrangian with respect to the elements ofw and setting these partial derivatives
to zero gives Eq. (5) and we can writew = wt + τytxt . Next, note that the minimum of the term
ξ(C− τ− λ) with respect toξ is zero wheneverC− τ− λ = 0. If howeverC− τ− λ 6= 0 then
ξ(C−τ−λ) can be made to approach−∞. Since we need to maximize the dual we can rule out the
latter case and pose the following constraint on the dual variables,

C− τ−λ = 0. (61)

The KKT conditions confineλ to be non-negative so we conclude thatτ ≤C. We now discuss two
possible cases: ifℓt/‖xt‖2 ≤C then we can plugging Eq. (61) back into Eq. (60) and we return to
the Lagrangian of the original PA algorithm (see Eq. (4)). From this pointand on, we can repeat
the same derivation as in the original PA update and getτt = ℓt/‖xt‖2. The other case is when
ℓt/‖xt‖2 > C. This condition can be rewritten as

C‖xt‖2 < 1−yt(wt ·xt). (62)

We also know that the constraint in Eq. (6) must hold at the optimum, so 1−yt(w ·xt) ≤ ξ. Using
the explicit form ofw given in Eq. (5), we can rewrite this constraint as 1−yt(wt ·xt)−τ‖xt‖2 ≤ ξ.

582

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

Combining this inequality with the inequality in Eq. (62) gives,

C‖xt‖2− τ‖xt‖2 < ξ.

We now use our earlier conclusion thatτ ≤C to obtain 0< ξ. Turning to the KKT complementarity
condition, we know thatξλ = 0 at the optimum. Having concluded thatξ is strictly positive, we get
thatλ must equal zero. Pluggingλ = 0 into Eq. (61) givesτ = C. Summing up, we used the KKT
conditions to show that in the case whereℓt/‖xt‖2 > C, it is optimal to selectτ = C. Folding all of
the possible cases into a single equation, we defineτt to be,

τt = min
{

C , ℓt/‖xt‖2 } . (63)

The update of PA-I is like the update of PA clipped atC.
Turning to the update of PA-II , we again recall thatℓt = 0 leads toτt = 0, and deal with those

rounds whereℓt > 0. The Lagrangian of the optimization problem in Eq. (7) equals,

L (w,ξ,τ) =
1
2
‖w−wt‖2 + Cξ2 + τ

(

1−ξ−yt(w ·xt)
)

, (64)

whereτ ≥ 0 is a Lagrange multiplier. Again, differentiating this Lagrangian with respectto the
elements ofw and setting these partial derivatives to zero gives Eq. (5) and we can write w =
wt +τytxt . Differentiating the Lagrangian with respect toξ and setting that partial derivative to zero
results in,

0 =
∂L (w,ξ,τ)

∂ξ
= 2Cξ− τ =⇒ ξ =

τ
2C

.

Expressingξ as above and replacingw in Eq. (60) withwt + τytxt , we rewrite the Lagrangian as,

L (τ) = − τ2

2

(

‖xt‖2 +
1

2C

)

+ τ
(

1−yt(wt ·xt)
)

.

Setting the derivative of the above to zero gives,

0 =
∂L (τ)

∂τ
= − τ

(

‖xt‖2 +
1

2C

)

+
(

1−yt(wt ·xt)
)

=⇒ τ =
1−yt(wt ·xt)

‖xt‖2 + 1
2C

.

As in PA and PA-I , we can give a definition ofτt which holds in all cases,

τt =
ℓt

‖x‖2 + 1
2C

. (65)

References

S. Agmon. The relaxation method for linear inequalities.Canadian Journal of Mathematics, 6(3):
382–392, 1954.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector machines. InProceed-
ings of the Twentieth International Conference on Machine Learning, 2003.

S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

583

CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

M. Collins. Discriminative reranking for natural language parsing. InMachine Learning: Proceed-
ings of the Seventeenth International Conference, 2000.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines.Jornal of Machine Learning Research, 2:265–292, 2001.

K. Crammer and Y. Singer. A new family of online algorithms for category ranking. Jornal of
Machine Learning Research, 3:1025–1058, 2003a.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems.Jornal of
Machine Learning Research, 3:951–991, 2003b.

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines. Cambridge Uni-
versity Press, 2000.

O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. InProceedings of the
Twenty-First International Conference on Machine Learning, 2004a.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The power of selective memory: Self-bounded learning
of prediction suffix trees. InAdvances in Neural Information Processing Systems 17, 2004b.

A. Elisseeff and J. Weston. A kernel method for multi-labeled classification. In Advances in Neural
Information Processing Systems 14, 2001.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.Machine
Learning, 37(3):277–296, 1999.

C. Gentile. A new approximate maximal margin classification algorithm.Journal of Machine
Learning Research, 2:213–242, 2001.

C. Gentile. The robustness of the p-norm algorithms.Machine Learning, 53(3), 2002.

D.P Helmbold, J. Kivinen, and M. Warmuth. Relative loss bounds for single neurons.IEEE Trans-
actions on Neural Networks, 10(6):1291–1304, 1999.

M. Herbster. Learning additive models online with fast evaluating kernels.In Proceedings of the
Fourteenth Annual Conference on Computational Learning Theory, pages 444–460, 2001.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.IEEE Transactions on
Signal Processing, 52(8):2165–2176, 2002.

J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–64, January 1997.

N. Klasner and H.U. Simon. From noise-free to noise-tolerant and from on-line to batch learning.
In Proceedings of the Eighth Annual Conference on Computational Learning Theory, pages 250–
264, 1995.

Y. Li and P. M. Long. The relaxed online maximum margin algorithm.Machine Learning, 46(1–3):
361–387, 2002.

584

ONLINE PASSIVE-AGGRESSIVEALGORITHMS

N. Littlestone.Mistake bounds and logarithmic linear-threshold learning algorithms. PhD thesis,
U. C. Santa Cruz, March 1989.

A. B. J. Novikoff. On convergence proofs on perceptrons. InProceedings of the Symposium on the
Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

J. Rocchio. Relevance feedback information retrieval. In Gerard Salton, editor,The Smart retrieval
system—experiments in automatic document processing, pages 313–323. Prentice-Hall, Engle-
wood Cliffs, NJ, 1971.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain.Psychological Review, 65:386–407, 1958. (Reprinted inNeurocomputing(MIT Press,
1988).).

G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval. Information
Processing and Management, 24(5), 1988.

R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pages
80–91, 1998. To appear,Machine Learning.

R.E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization.Machine
Learning, 32(2/3), 2000.

B. Scḧolkopf and A. J. Smola.Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press, 2002.

S. Shalev-Shwartz, J. Keshet, and Y. Singer. Learning to align polyphonic music. In
Proceedings of the 5th International Conference on Music Information Retrieval, 2004a.
http://www.cs.huji.ac.il/∼shais/.

S. Shalev-Shwartz, Y. Singer, and A. Ng. Online and batch learning of pseudo-metrics. InProceed-
ings of the Twenty-First International Conference on Machine Learning, 2004b.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. InAdvances in Neural
Information Processing Systems 17, 2003.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. InProceedings of the Twenty-First International
Conference on Machine Learning, 2004.

V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. InProceed-
ings of the Seventh European Symposium on Artificial Neural Networks, April 1999.

585

Journal of Machine Learning Research 7 (2006) 587–602 Submitted 12/04; Revised 12/05; Published 4/06

Toward Attribute Efficient Learning of Decision Lists and Parities

Adam R. Klivans∗ KLIVANS @CS.UTEXAS.EDU

Department of Computer Science
University of Texas at Austin
Austin, TX 78712, USA

Rocco A. Servedio† ROCCO@CS.COLUMBIA .EDU

Department of Computer Science
Columbia University
New York, NY 10027, USA

Editor: Dana Ron

Abstract
We consider two well-studied problems regarding attributeefficient learning: learning decision

lists and learning parity functions. First, we give an algorithm for learning decision lists of length
k over n variables using 2Õ(k1/3) logn examples and timenÕ(k1/3). This is the first algorithm for
learning decision lists that has both subexponential sample complexity and subexponential running
time in the relevant parameters. Our approach establishes arelationship between attribute efficient
learning and polynomial threshold functions and is based ona new construction of low degree,
low weight polynomial threshold functions for decision lists. For a wide range of parameters our
construction matches a lower bound due to Beigel for decision lists and gives an essentially optimal
tradeoff between polynomial threshold function degree andweight.

Second, we give an algorithm for learning an unknown parity function onk out of n variables
usingO(n1−1/k) examples in poly(n) time. Fork= o(logn) this yields a polynomial time algorithm
with sample complexityo(n); this is the first polynomial time algorithm for learning parity on
a superconstant number of variables with sublinear sample complexity. We also give a simple
algorithm for learning an unknown length-k parity usingO(k logn) examples innk/2 time, which
improves on the naivenk time bound of exhaustive search.
Keywords: PAC learning, attribute efficiency, learning parity, decision lists, Winnow

1. Introduction

An important goal in machine learning theory is to designattribute efficientalgorithms for learning
various classes of Boolean functions. A classC of Boolean functions overn variablesx1, . . . ,xn is
said to beattribute efficiently learnableif there is a poly(n) time algorithm which can learn any
function f ∈C using a number of examples which is polynomial in the “size” (description length)
of the function f to be learned, rather than inn, the number of features in the domain over which
learning takes place. (Note that the running time of the learning algorithm must ingeneral be at least
n since each example is ann-bit vector.) Thus an attribute efficient learning algorithm for e.g. the
class of Boolean conjunctions must be able to learn any Boolean conjunctionof k literals over
x1, . . . ,xn using poly(k, logn) examples, sincek logn bits are required to specify such a conjunction.

∗. Work done at Harvard University and supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.
†. Supported in part by NSF CAREER award CCF-0347282.

c©2006 Adam Klivans and Rocco Servedio.

KLIVANS AND SERVEDIO

A longstanding open problem in machine learning, posed first by Blum (1990) and subsequently
by various authors (Blum, 1996; Blum et al., 1995; Blum and Langley, 1997; Valiant, 1999), is
whether or not there exist attribute efficient algorithms for learningdecision lists, which are essen-
tially nested “if-then-else” statements (we give a precise definition in Section 2). One motivation
for considering the problem comes from theinfinite attribute modelintroduced in Blum (1990).
Blum et al. (1995) showed that for many concept classes (including decision lists) attribute efficient
learnability in the standardn-attribute model is equivalent to learnability in the infinite attribute
model. Since simple classes such as disjunctions and conjunctions are attributeefficiently learnable
(and hence learnable in the infinite attribute model), this motivated Blum (1990) toask whether the
richer class of decision lists is thus learnable as well. Several researchers (Blum, 1996; Blum and
Langley, 1997; Dhagat and Hellerstein, 1994; Nevo and El-Yaniv, 2002; Servedio, 2000) have since
considered this problem; we summarize this previous work in Section 1.2. Morerecently, Valiant
(1999) relates the problem of learning decision lists attribute efficiently to questions about human
learning abilities.

Another outstanding challenge in machine learning is to determine whether thereexist attribute
efficient algorithms for learningparity functions. The parity function on a set of 0/1-valued variables
xi1, . . . ,xik takes value+1 or−1 depending on whetherxi1 + · · ·+xik is even or odd. As with decision
lists, a simple PAC learning algorithm is known for the class of parity functions but no attribute
efficient algorithm is known.

1.1 Our Results

We give the first learning algorithm for decision lists that is subexponentialin both sample com-
plexity (in the relevant parametersk and logn) and running time (in the relevant parameterk). Our
results demonstrate for the first time that it is possible to simultaneously avoid the “worst case” in
both sample complexity and running time, and thus suggest that it may perhaps be possible to learn
decision lists attribute efficiently. Our main learning result for decision lists is:

Theorem 1 There is an algorithm which learns length-k decision lists over{0,1}n with mistake

bound 2Õ(k1/3) logn and time nÕ(k1/3).

This bound improves on the sample complexity of Littlestone’s well-known Winnowalgorithm
(Littlestone, 1988) for allk and improves on its running time as well fork= Ω(log3/2n); see Section
1.2.

We prove Theorem 1 in two parts; first we generalize the Winnow algorithm for learning lin-
ear threshold functions to learnpolynomial threshold functions(PTFs). In recent work on learning
DNF formulas (Klivans and Servedio, 2004), intersections of halfspaces (Klivans et al., 2004), and
Boolean formulas of superconstant depth (O’Donnell and Servedio, 2003), PTFs of degreed have
been learned in timenO(d) by using polynomial time linear programming algorithms such as the
Ellipsoid algorithm (see Klivans and Servedio, 2004). In contrast, sincewe want to achieve low
sample complexity as well as annO(d) running time, we use a generalization of the Winnow algo-
rithm to learn PTFs. This generalization has sample complexity and running time bounds which
depend on the degree and the total magnitude of the integer coefficients (which we call the weight)
of the PTF:

588

TOWARD ATTRIBUTE EFFICIENT LEARNING

Theorem 2 Let C be a class of Boolean functions over{0,1}n with the property that each f∈ C
has a PTF of degree at most d and weight at most W. Then there is an online learning algorithm for
C which runs in nd time per example and has mistake bound O(W2 ·d · logn).

This reduces the decision list learning problem to a problem of representing decision lists with
PTFs of low weight and low degree. To this end we prove:

Theorem 3 Let L be a decision list of length k. Then L is computed by a polynomial threshold
function of degreẽO(k1/3) and weight2Õ(k1/3).

Theorem 1 follows directly from Theorems 2 and 3. We emphasize that Theorem 3 doesnot
follow from previous results (Klivans and Servedio, 2004) on representing DNF formulas as PTFs;
the PTF construction from Klivans and Servedio (2004) in fact has exponentially larger weight

(22Õ(k1/3)
rather than 2Õ(k1/3)) than the construction in this paper.

Our PTF construction is essentially optimal in the tradeoff between degree and weight that it
achieves. In 1994 Beigel (1994) gave a lower bound showing that anydegreed PTF for a certain
decision list must have weight 2Ω(n/d2). 1 For d = n1/3, Beigel’s lower bound implies that our
construction in Theorem 3 is essentially the best possible.

For parity functions, we give anO(n4) time algorithm which can PAC learn an unknown parity
on k variables out ofn usingÕ(n1−1/k) examples. To our knowledge this is the first algorithm
for learning parity on a superconstant number of variables with sublinearsample complexity. Our
algorithm works by finding a “low weight” solution to a system ofm linear equations (corresponding
to a set ofm examples). We prove that with high probability we can find a solution of weight
O(n1−1/k) irrespective ofm. Thus by takingm to be only slightly larger thann1−1/k, standard
arguments show that our solution is a good hypothesis.

We also describe a simple algorithm, due to Dan Spielman, for learning an unknown parity
on k variables usingO(k logn) examples and̃O(nk/2) time. This gives a square root running time
improvement over a naiveO(nk) exhaustive search.

1.2 Previous Results

In previous work several algorithms with different performance bounds (running time and sample
complexity) have been given for learning length-k decision lists.

• Rivest (1987) gave the first algorithm for learning decision lists in Valiant’s PAC model of
learning from random examples. Littlestone (Blum, 1996) later gave an analogue of Rivest’s
algorithm in the online learning model. The algorithm can learn any decision list of lengthk
in O(kn2) time usingO(kn) examples.

• A brute-force approach is to maintain the set of all length-k decision lists which are consistent
with the examples seen so far, and to predict at each stage using majority voteover the sur-
viving hypotheses. This “halving algorithm,” proposed in various forms inAngluin (1988);
Barzdin and Freivald (1972); Mitchell (1982), can learn decision lists of lengthk using only
O(k logn) examples, but the running time isnΘ(k).

1. Krause (2002) claims a lower bound of degreed and weight 2Ω(n/d) for a particular decision list; this claim, however,
is in error.

589

KLIVANS AND SERVEDIO

• Several researchers (Blum, 1996; Valiant, 1999) have observed that Winnow can learn length-
k decision lists from 2O(k) logn examples in time 2O(k)nlogn. This follows from the fact that
any decision list of lengthk can be expressed as a linear threshold function with integer
coefficients of magnitude 2Θ(k).

• Finally, several researchers have considered the special case of learning a length-k decision
list in which the output bits of the list have at mostD alternations. Valiant (1999) and Nevo
and El-Yaniv (2002) have given refined analyses of Winnow’s performance for this case (see
Dhagat and Hellerstein, 1994). However, for the general case where D can be as large ask,
these results do not improve on the standard Winnow analysis described above.

Note that all of these earlier algorithms have an exponential dependence on at least one of the
relevant parameters (k and logn for sample complexity,k for running time).

Little previous work has been published on learning parity functions attributeefficiently in the
PAC model. The standard PAC learning algorithm for parity (based on solving a system of linear
equations) is due to Helmbold et al. (1992); however this algorithm is not attribute efficient since
it usesΩ(n) examples regardless ofk. Several authors have considered learning parity attribute
efficiently in a model where the learner is allowed to make membership queries. Attribute efficient
learning is easier in this framework since membership queries can help identifyrelevant variables.
Blum et al. (1995) give a randomized polynomial time membership-query algorithm for learning
parity onk variables using onlyO(k logn) examples, and these results were later refined Uehara
et al. (2000).

1.3 Organization

In Section 2 we give necessary background. In Section 3 we show howto reduce the decision list
learning problem to a problem of finding suitable PTF representations of decision lists (Theorem 2).
In Section 4 we give our PTF construction for decision lists (Theorem 3).In Section 5 we discuss
the connection between Theorem 3 and Beigel’s ODDMAXBIT lower bound. In Section 6 we give
our results on learning parity functions, and we conclude in Section 7.

2. Preliminaries

Attribute efficient learning has been chiefly studied in theonline mistake-boundmodel of concept
learning which was introduced in Littlestone (1988, 1989a). In this model learning proceeds in a
series of trials, where in each trial the learner is given an unlabeled boolean examplex ∈ {0,1}n

and must predict the valuef (x) of the unknown target functionf . After each prediction the learner
is given the true value off (x) and can update its hypothesis before the next trial begins. The
mistake boundof a learning algorithm on a target conceptc is the worst-case number of mistakes
that the algorithm makes over all (possibly infinite) sequences of examples,and the mistake bound
of a learning algorithm on a concept class (class of Boolean functions)C is the worst-case mistake
bound across all functionsf ∈C. The running time of a learning algorithmA for a concept classC
is defined as the product of the mistake bound ofA onC times the maximum running time required
by A to evaluate its hypothesis and update its hypothesis in any trial.

Our main interests are the classes ofdecision listsandparity functions. A decision listL of
lengthk over the Boolean variablesx1, . . . ,xn is represented by a list ofk pairs and a bit(ℓ1,b1),
(ℓ2,b2), . . . ,(ℓk,bk),bk+1 where eachℓi is a literal and eachbi is either−1 or 1. Given anyx ∈

590

TOWARD ATTRIBUTE EFFICIENT LEARNING

{0,1}n, the value ofL(x) is bi if i is the smallest index such thatℓi is made true byx; if no ℓi is true
thenL(x) = bk+1. A parity function of lengthk is defined by a set of variablesS⊂ {x1, . . . ,xn} such
that|S|= k. The parity functionχS(x) takes value 1 (−1) on inputs which set an even (odd) number
of variables inS to 1.

Given a concept classC over {0,1}n and a Boolean functionf ∈ C, let size(f) denote the
description length off under some reasonable encoding scheme. We say that a learning algorithm
A for C in the mistake-bound model isattribute efficientif the mistake bound ofA on any concept
f ∈C is polynomial in size(f). In particular, the description length of a lengthk decision list (parity)
is O(k logn), and thus we would ideally like to have poly(n)-time algorithms which learn decision
lists (parities) of lengthk with a mistake bound of poly(k, logn).

We note here that attribute efficiency has also been studied in other learningmodels, including
Valiant’s Probably Approximately Correct (PAC) model of learning from random examples. Stan-
dard conversion techniques are known (Angluin, 1988; Haussler, 1988; Littlestone, 1989b) which
can be used to transform any mistake bound algorithm into a PAC learning algorithm. These trans-
formations essentially preserve the running time of the mistake bound algorithm, and the sample size
required by the PAC algorithm is essentially the mistake bound. Thus, positiveresults for mistake
bound learning, such as those we give for decision lists in this paper, directly yield corresponding
positive results for the PAC model.

Finally, our results for decision lists are achieved by a careful analysis of polynomial threshold
functions. Let f be a Boolean functionf : {0,1}n →{−1,1} and letp be a polynomial inn variables
with integer coefficients. Letd denote the degree ofp and letW denote the sum of the absolute
values ofp’s integer coefficients. If the sign ofp(x) equalsf (x) for everyx∈ {0,1}n, then we say
that p is apolynomial threshold function (PTF) of degree d and weight Wfor f .

3. Expanded-Winnow: Learning Polynomial Threshold Functions

Littlestone (1988) introduced the online Winnow algorithm and showed that it can attribute effi-
ciently learn Boolean conjunctions, disjunctions, and low weight linear threshold functions. Through-
out its execution Winnow maintains a linear threshold function as its hypothesis;at the heart of the
algorithm is an update rule which makes a multiplicative update to each coefficient of the hypothesis
each time a mistake is made. Since its introduction Winnow has been intensively studied from both
applied and theoretical standpoints (see Blum, 1997; Golding and Roth, 1999; Kivinen et al., 1997;
Servedio, 2002).

The following theorem due to Littlestone (1988) gives a mistake bound for Winnow for linear
threshold functions:

Theorem 4 Let f(x) be the linear threshold function sign(∑n
i=1wixi − θ) over inputs x∈ {0,1}n

whereθ and w1, . . . ,wn are integers. Let W= ∑n
i=1 |wi |. Then Winnow learns f(x) with mistake

bound O(W2 logn) and uses O(n) time steps per example.

We will use a generalization of the Winnow algorithm, which we call Expanded-Winnow, to
learnpolynomialthreshold functions of degree at mostd. Our generalization introduces∑d

i=1

(n
i

)

new variables (one for each monomial of degree up tod) and runs Winnow to learn a linear thresh-
old function over these new variables. More precisely, in each trial we convert then-bit received
examplex= (x1, . . . ,xn) into a∑d

i=1

(n
i

)

bit expanded example (where the bits in the expanded exam-
ple correspond to monomials overx1, . . . ,xn), and we give the expanded example to Winnow. Thus

591

KLIVANS AND SERVEDIO

the hypothesis which Winnow maintains – a linear threshold function over the space of expanded
features – is a polynomial threshold function of degreed over the originaln variablesx1, . . . ,xn.
Theorem 2, which follows directly from Theorem 4, summarizes the performance of Expanded-
Winnow:

Theorem 2LetC be a class of Boolean functions over{0,1}n with the property that each f∈ C has
a polynomial threshold function of degree at most d and weight at most W. Then Expanded-Winnow
algorithm runs in nO(d) time per example and has mistake bound O(W2 ·d · logn) for C .

Theorem 2 shows that the degree of a polynomial threshold function strongly affects Expanded-
Winnow’s running time, and the weight of a polynomial threshold function strongly affects its sam-
ple complexity.

4. Constructing PTFs for Decision Lists

In previous constructions of polynomial threshold functions for computational learning theory ap-
plications (Klivans and Servedio, 2004; Klivans et al., 2004; O’Donnell and Servedio, 2003) the
sole goal has been to minimize the degree of the polynomials regardless of the size of the coeffi-
cients. As one example, the construction of Klivans and Servedio (2004)of Õ(n1/3) degree PTFs
for DNF formulae yields polynomials whose coefficients can be doubly exponential in the degree.
In contrast, we must now construct PTFs that have low degree and low weight.

We give two constructions of PTFs for decision lists, each of which has relatively low degree
and relatively low weight. We then combine these to achieve an optimal construction with improved
bounds on both degree and weight.

4.1 Outer Construction

Let L be a decision list of lengthk over variablesx1, . . . ,xk. We first give a simple construction of
a degreeh, weight 2O(k/h+h) PTF forL which is based on breaking the listL into sublists. We call
this construction the “outer construction” since we will ultimately combine this construction with a
different construction for the “inner” sublists.

We begin by showing thatL can be expressed as a threshold ofmodified decision lists, which
we now define. The setBh of modified decision lists is defined as follows: each function inBh is
a decision list(ℓ1,b1),(ℓ2,b2), . . . ,(ℓh,bh),0 where eachℓi is some literal overx1, . . . ,xn and each
bi ∈{−1,1}. Thus the only difference between a modified decision listf ∈ Bh and a normal decision
list of lengthh is that the final output value is 0 rather thanbh+1 ∈ {−1,+1}.

Now assume we have a listL = (ℓ1,b1), . . . ,(ℓk,bk),bk+1. We breakL sequentially intok/h
blocks each of lengthh (assumek/h is an integer, otherwise we can use⌈k/h⌉ everywhere). Let
fi ∈ Bh be the modified decision list which corresponds to theith block of L, i.e. fi is the list
(ℓ(i−1)h+1,b(i−1)h+1), . . . , (ℓ(i+1)h,b(i+1)h),0. Intuitively fi computes theith block ofL and equals 0
only if we “fall of the edge” of theith block. We then have the following straightforward claim:

Claim 5 The decision list L is eqivalent to

sign

(

k/h

∑
i=1

2k/h−i+1 fi(x) + bk+1

)

. (1)

592

TOWARD ATTRIBUTE EFFICIENT LEARNING

Proof Given an inputx let r = (i −1)h+ c be the first index such thatℓr is satisfied. It is easy to

see thatf j(x) = 0 for j < i and hence the value in (1) is 2k/h−i+1br +∑k/h
j=i+12k/h− j+1 f j(x) + bk+1,

the sign of which is easily seen to bebr . Finally, if no literal is satisfied then the argument to (1) is
bk+1.

Note: It is easily seen that we can replace the 2 in formula (1) by a 3; this will proveuseful later.
As an aside, note that Claim 5 can already be used to obtain a tradeoff between running time

and sample complexity for learning decision lists. The classBh contains at most(4n)h functions.
Thus as in Section 3 it is possible to run the Winnow algorithm using the functionsin Bh as the base
features for Winnow. (So for each examplex which it receives, the algorithm would first compute
the value off (x) for eachf ∈ Bh, and would then use this vector of(f (x)) f∈Bh values as the example
point for Winnow.) A direct analogue of Theorem 2 now implies that Expanded-Winnow (run over
this expanded feature space of functions fromBh) can be used to learnLk in time nO(h)2O(k/h) with
mistake bound 2O(k/h)hlogn.

However, it will be more useful for us to obtain a PTF forL. We can do this from Claim 5 as
follows:

Theorem 6 Let L be a decision list of length k. For any h< k we have that L is computed by a
polynomial threshold function of degree h and weight2O(k/h+h).

Proof Consider the first modified decision listf1 = (ℓ1,b1),(ℓ2,b2), . . . ,(ℓh,bh),0 in the expression
(1). Forℓ a literal let ℓ̃ denotexi if ℓ is an unnegated variablexi and letℓ̃ denote 1− xi if if ℓ is a
negated variablexi . We have that for allx∈ {0,1}h, f1(x) is computed exactly by the polynomial

f1(x) = ℓ̃1b1 +(1− ℓ̃1)ℓ̃2b2 +(1− ℓ̃1)(1− ℓ̃2)ℓ̃3b3 + · · ·+(1− ℓ̃1) · · ·(1− ℓ̃h−1)ℓ̃hbh.

This polynomial has degreeh and has weight at most 2h+1. Summing these polynomial representa-
tions for f1, . . . , fk/h as in (1) we see that the resulting PTF given by (1) has degreeh and weight at
most 2k/h+1 ·2h+1 = 2O(k/h+h).

Specializing to the caseh =
√

k we obtain:

Corollary 7 Let L be a decision list of length k. Then L is computed by a polynomial threshold
function of degree k1/2 and weight2O(k1/2).

We close this section by observing that an intermediate result of Klivans andServedio (2004)
can be used to give an alternate proof of Corollary 7 with slightly weaker parameters; however our
later proofs require the construction given in this section.

4.2 Inner Approximator

In this section we construct low degree, low weight polynomials which approximate (in theL∞
norm) the modified decision lists from the previous subsection. Moreover, the polynomials we
construct are exactly correct on inputs which “fall off the end”:

593

KLIVANS AND SERVEDIO

Theorem 8 Let f ∈ Bh be a modified decision list of length h. Then there is a degree O(
√

hlogh)
polynomial p such that

• for every input x∈ {0,1}h we have|p(x)− f (x)| ≤ 1/h.

• f (x) = 0 implies p(x) = 0.

Proof
We construct a PTF satisfying the above requirements for a decision listf of the form(x1,b1),

. . . ,(xh,bh),0. The proof for a general modified decision list is similar. As in the proof ofTheorem
6 we have that

f (x) = b1x1 +b2(1−x1)x2 + · · ·+bh(1−x1) · · ·(1−xh−1)xh.

We will construct a lower (roughly
√

h) degree polynomial which closely approximatesf . Essen-
tially this construction has been done several times before (see Klivans and Servedio, 2004; Klivans
et al., 2004).

Let Ti denote(1−x1) . . .(1−xi−1)xi , so we can rewritef as

f (x) = b1T1 +b2T2 + · · ·+bhTh.

We approximate eachTi separately as follows: setAi(x) = h− i + xi + ∑i−1
j=1(1− x j). Note that for

x∈ {0,1}h, we haveTi(x) = 1 iff Ai(x) = h andTi(x) = 0 iff 0 ≤ Ai(x)≤ h−1. Let d = ⌈
√

h⌉. Now
define the polynomial

Qi(x) = q(Ai(x)/h) where q(y) = Cd(y(1+1/h)).

As in Klivans and Servedio (2004), hereCd(x) is thedth Chebyshev polynomial of the first kind (a
univariate polynomial of degreed). We will need the following facts about Chebyshev polynomials
(Cheney, 1966):

• |Cd(x)| ≤ 1 for |x| ≤ 1 with Cd(1) = 1;

• C′
d(x) ≥ d2 for x > 1 with C′

d(1) = d2;

• The coefficients ofCd are integers each of whose magnitude is at most 2d.

The first two facts imply thatq(1) ≥ 2 but |q(y)| ≤ 1 for y∈ [0,1− 1
h]. We thus have thatQi(x) =

q(1)≥ 2 if Ti(x) = 1 and|Qi(x)| ≤ 1 if Ti(x) = 0. Now definePi(x) =
(

Qi(x)
q(1)

)2logh
. This polynomial

is easily seen to be a good approximator forTi : if x∈ {0,1}h is such thatTi(x) = 1 thenPi(x) = 1,

and ifx∈ {0,1}h is such thatTi(x) = 0 then|Pi(x)| <
(

1
2

)2logh
< 1

h2 .

Now defineR(x) = ∑ℓ
i=1biPi(x) and p(x) = R(x)−R(0h). It is clear thatp(0h) = 0. We will

show that for every input 0h 6= x∈ {0,1}h we have|p(x)− f (x)| ≤ 1/h. Fix such anx; let i be the
first index such thatxi = 1. As shown above we havePi(x) = 1. Moreover, by inspection ofTj(x)
we have thatTj(x) = 0 for all j 6= i, and hence|Pj(x)| < 1

h2 . Consequently the value ofR(x) must
lie in [bi − h−1

h2 ,bi +
h−1
h2]. Since|R(0h)| is at mostℓ/h2 and f (x) = bi , we have thatp(x) is anL∞

approximator forf (x) as desired.

594

TOWARD ATTRIBUTE EFFICIENT LEARNING

Finally, it is straightforward to verify thatp(x) has the claimed degree.

Strictly speaking we cannot discuss the weight of the polynomialp since its coefficients are
rational numbers but not integers. However, by multiplyingp by a suitable integer (clearing de-
nominators) we obtain an integer polynomial with essentially the same properties.Using the third
fact about Chebyshev polynomials from our proof above, we have that q(1) is a rational number
N1/N2 whereN1 andN2 are both integers of magnitudehO(

√
h). EachQi(x) for i = 1, . . . ,h can be

written as an integer polynomial (of weighthO(
√

h)) divided byh
√

h. Thus eachPi(x) can be written
as P̃i(x)/(h

√
hN1)

2logh whereP̃i(x) is an integer polynomial of weighthO(
√

hlogh). It follows that
p(x) equals ˜p(x)/C, whereC is an integer which is at most 2O(h1/2 log2 h) and p̃ is a polynomial with
integer coefficients and weight 2O(h1/2 log2 h). We thus have

Corollary 9 Let f ∈ Bh be a modified decision list of length h. Then there is an integer polynomial
p(x) of degree2

√
hlogh and weight2O(h1/2 log2 h) and an integer C= 2O(h1/2 log2 h) such that

• for every input x∈ {0,1}h we have|p(x)−C f(x)| ≤C/h.

• f (x) = 0 implies p(x) = 0.

The fact thatp(x) is exactly 0 whenf (x) is 0 will be important in the next subsection when we
combine the inner approximator with the outer construction.

4.3 Composing the Constructions

In this section we combine the two constructions from the previous subsections to obtain our main
polynomial threshold construction:

Theorem 10 Let L be a decision list of length k. Then for any h< k, L is computed by a polynomial
threshold function of degree O(h1/2 logh) and weight2O(k/h+h1/2 log2 h).

Proof Again assumeL is the decision list(x1,b1), . . . , (xk,bk), bk+1 (the case whenL contains
negated literals is entirely similar). We begin with the outer construction: from thenote following
Claim 5 we have that

L(x) = sign

(

C

[

k/h

∑
i=1

3k/h−i+1 fi(x) + bk+1

])

whereC is the value from Corollary 9 and eachfi is a modified decision list of lengthh computing
the restriction ofL to its ith block as defined in Subsection 4.1. Now we use the inner approximator
to replace eachC fi above bypi , the approximating polynomial from Corollary 9, i.e. consider
sign(H(x)) where

H(x) =
k/h

∑
i=1

(3k/h−i+1pi(x)) + Cbk+1.

We will show that sign(H(x)) is a PTF which computesL correctly and has the desired degree and
weight.

Fix anyx∈ {0,1}k. If x = 0k then by Corollary 9 eachpi(x) is 0 soH(x) = Cbk+1 has the right
sign. Now suppose thatr = (i −1)h+c is the first index such thatxr = 1. By Corollary 9, we have
that

595

KLIVANS AND SERVEDIO

• 3k/h− j+1p j(x) = 0 for j < i;

• 3k/h−i+1pi(x) differs from 3k/h−i+1Cbr by at mostC3k/h−i+1 · 1
h;

• The magnitude of each value 3k/h− j+1p j(x) is at mostC3k/h− j+1(1+ 1
h) for j > i.

Combining these bounds, the value ofH(x) differs from 3k/h−i+1Cbr by at most

C

(

3k/h−i+1

h
+

(

1+
1
h

)

[

3k/h−i +3k/h−i−1 + · · ·+3
]

+1

)

which is easily seen to be less thanC3k/h−i+1 in magnitude (forh> 1). Thus the sign ofH(x) equals
br , and consequently sign(H(x)) is a valid polynomial threshold representation forL(x). Finally, our
degree and weight bounds from Corollary 9 imply that the degree ofH(x) is O(h1/2 logh) and the
weight ofH(x) is 2O(k/h)+O(h1/2 log2 h), and the theorem is proved.

Takingh = k2/3/ log4/3k in the above theorem we obtain our main result on representing deci-
sion lists as polynomial threshold functions:

Theorem 3 Let L be a decision list of length k. Then L is computed by a polynomial threshold
function of degree k1/3 log1/3k and weight2O(k1/3 log4/3 k).

Theorem 3 immediately implies that Expanded-Winnow can learn decision lists of length k
using 2Õ(k1/3) logn examples and timenÕ(k1/3).

4.4 Application to Learning Decision Trees

Ehrenfeucht and Haussler (1989) gave an a timenO(logs) algorithm for learning decision trees with
s leaves overn variables. Their algorithm usesnO(logs) examples, and they asked if the sample
complexity could be reduced to poly(n,s). We can apply our techniques here to give an algorithm
using 2Õ(s1/3) logn examples, if we are willing to spendnÕ(s1/3) time.

First we need to generalize Theorem 10 for higher order decision lists. An r-decision list is like
a standard decision list but each pair is now of the form(Ci ,bi) whereCi is a conjunction of at most
r literals and as beforebi = ±1. The output of such anr-decision list on inputx is bi wherei is the
smallest index such thatCi(x) = 1.

We have the following:

Corollary 11 Let L be an r-decision list of length k. Then for any h< k, L is computed by a
polynomial threshold function of degree O(rh1/2 logh) and weight2r+O(k/h+h1/2 log2 h).

Proof Let L be ther-decision list(C1,b1), . . . ,(Ck,bk),bk+1. By Theorem 10 there is a polynomial
threshold function of degreeO(h1/2 logh) and weight 2O(k/h+h1/2 log2 h) over the variablesC1, . . . ,Ck.
Now replace each variableCi by the interpolating polynomial which computes it exactly as a func-
tion from{0,1}n to {0,1}. Each such interpolating polynomial has degreer and integer coefficients
of total magnitude at most 2r , and the corollary follows.

596

TOWARD ATTRIBUTE EFFICIENT LEARNING

Corollary 12 There is an algorithm for learning r-decision lists over{0,1}n which, when learning

an r-decision list of length k, has mistake bound2Õ(r+k1/3) logn and runs in time nÕ(rk1/3).

Now we can apply Corollary 12 to obtain a tradeoff between running time and sample complex-
ity for learning decision trees:

Theorem 13 Let D be a decision tree of size s over n variables. Then D can be learnedwith mistake
bound2Õ(s1/3) logn in time nÕ(s1/3).

Proof Blum (1992) has shown that any decision tree of sizes is computed by a(logs)-decision list
of lengths. Applying Corollary 12 we thus see that Expanded-Winnow can be used to learn decision
trees of sizes over{0,1}n with the claimed bounds on time and sample complexity.

5. Lower Bounds for Decision Lists

Here we observe that our construction from Theorem 10 is essentially optimal in terms of the trade-
off it achieves between polynomial threshold function degree and weight.

Beigel (1994) constructs an oracle separatingPP from P
NP. At the heart of his construction is

a proof that any low degree PTF for a particular decision list called the ODDMAXBIT n function
must have large weights:

Definition 14 TheODDMAXBIT n function on input x= x1, . . . ,xn ∈ {0,1}n equals(−1)i where i
is the index of the first nonzero bit in x.

It is clear that the ODDMAXBITn function is equivalent to a decision list(x1,−1), (x2,1),
(x3,−1), . . . ,(xn,(−1)n),(−1)n+1 of lengthn. The main technical theorem that Beigel proves is as
follows:

Theorem 15 Let p be a degree d PTF with integer coefficients which computesODDMAXBIT n.
Then w= 2Ω(n/d2) where w is the weight of p.

(As stated in Beigel (1994) the bound is actuallyw≥ 1
s2Ω(n/d2) wheres is the number of nonzero

coefficients inp. Sinces≤ w this implies the result as stated above.)
A lower bound of 2Ω(n) on the weight of any linear threshold function (d = 1) for ODDMAXBITn

has long been known (Myhill and Kautz, 1961); Beigel’s proof generalizes this lower bound to all
d = O(n1/2). A matching upper bound of 2O(n) on weight ford = 1 has also long been known (My-
hill and Kautz, 1961). Our Theorem 10 gives an upper bound which matches Beigel’s lower bound
(up to logarithmic factors) for alld = O(n1/3):

Observation 16 For any d= O(n1/3) there is a polynomial threshold function of degree d and
weight2Õ(n/d2) which computesODDMAXBIT n.

Proof Setd = h1/2 logh in Theorem 10. The weight bound given by Theorem 10 is 2O(nlog2d
d2 +d logd)

which is 2Õ(n/d2) for d = O(n1/3).

597

KLIVANS AND SERVEDIO

Note that since the ODDMAXBITn function has a polynomial size DNF, Beigel’s lower bound
gives a polynomial size DNFf such that any degreẽO(n1/3) polynomial threshold function forf
must have weight 2Ω̃(n1/3). This suggests that the Expanded-Winnow algorithm cannot learn polyno-
mial size DNF in 2Õ(n1/3) time from 2n1/3−ε

examples for anyε > 0, and thus suggests that improving
the sample complexity of the DNF learning algorithm from Klivans and Servedio(2004) while
maintaining its 2Õ(n1/3) running time may be difficult.

6. Learning Parity Functions

Recall that the standard algorithm for learning parity functions works by viewing a set ofm labelled
examples as a set ofm linear equations overGF(2). Gaussian elimination is used to solve the system
and thus find a consistent parity. Even though there exists a solution of weight at mostk (since the
target parity is of lengthk), Gaussian elimination applied to a system ofm equations inn variables
overGF(2) may yield a solution of weight as large as min(m,n). Thus this standard algorithm and
analysis give anO(n) sample complexity bound for learning a parity of length at mostk.

6.1 A Polynomial Time Algorithm

We now describe a simple poly(n)-time algorithm for PAC learning an unknown length-k parity
usingÕ(n1−1/k) examples (for a formal definition of the PAC model we refer the reader to thebook
by Kearns and Vazirani, 1994). As far as we know this is the first improvement on the standard
algorithm and analysis described above.

Theorem 17 The class of all parity functions on at most k variables is PAC learnable in O(n4) time
using O(n1−1/k logn) examples. The hypothesis output by the learning algorithm is a parity function
on O(n1−1/k) variables.

Proof If k = Ω(logn) then the standard algorithm suffices to prove the claimed bound. We thus
assume thatk = o(logn).

Let ℓ = n1−1/k. Let H be the set of all parity functions of length at mostℓ. Note that|H| ≤ nn1−1/k

so log|H| ≤ n1−1/k logn. Consider the following algorithm:

1. Choosem= 1
ε (log|H|+ log(1/δ)) examples. Express each example as a linear equation inn

variables overGF(2) as described above.

2. Randomly choose a set ofn− ℓ variables and assign them the value 0.

3. Use Gaussian elimination to attempt to solve the resulting system of equations onthe remain-
ing ℓ variables. If the system has a solution, output the corresponding parity (of length at most
ℓ = n1−1/k) as the hypothesis. If the system has no solution, output “FAIL.”

If the simplified system of equations has a solution, then by a standard Occam’s Razor argument
(see Kearns and Vazirani, 1994, for details), this solution is a good hypothesis. We will show that
the simplified system has a solution with probabilityΩ(1/n). The theorem follows by repeating
steps 2 and 3 of the above algorithm until a solution is found. An expectedO(n) repetitions will
suffice, and since Gaussian elimination runs in timeO(n3), the running time of our algorithm is
O(n4).

598

TOWARD ATTRIBUTE EFFICIENT LEARNING

LetV be the set ofk relevant variables on which the unknown parity function depends. It is easy
to see that as long as no variable inV is assigned a 0, the resulting simplified system of equations
will have a solution. The probability that in Step 2 then− ℓ variables chosen do not include any
variables inV is exactly

(n−k
n−ℓ

)

/
(n

ℓ

)

which equals
(n−k

ℓ−k

)

/
(n

ℓ

)

. Expanding binomial coefficients we
have

(n−k
ℓ−k

)

(n
ℓ

) =
k

∏
i=1

ℓ−k+ i
n−k+ i

>

(

ℓ−k
n−k

)k

=

(

ℓ

n

)k
(

1− k
ℓ

1− k
n

)k

>
1
n

(

1− k
ℓ

)k

>
1
n

(

1− k2

ℓ

)

>
1
2n

and the proof of the theorem is complete.

6.2 An Õ(nk/2) Time Attribute Efficient Algorithm

Spielman (2003) has observed that it is possible to improve on thenk time bound of a naive search
algorithm for learning parity usingk logn examples:

Theorem 18 (Spielman)The class of all parity functions on at most k variables is PAC learnable
in Õ(nk/2) time using O(k logn) examples. The hypothesis output by the learning algorithm is a
parity function on at most k variables.

Proof By Occam’s Razor we need only show that given a set ofm= O(k logn) labelled examples,
a consistent length-k parity can be found iñO(nk/2) time.

Given a labelled example(x1, . . . ,xn;y) we will view y as an(n+1)st attributexn+1. Thus our
task is to find a set of(k+1) attributesxi1, . . . ,xik+1, one of which must bexn+1, which sum to 0 in
every example in the sample.

Let (x1;y1), . . .(xm;ym) be the labelled examples in our sample. Given a subsetSof variables, let
vS denote the length-mbinary vector(χS(x1), . . . ,χS(xm)) obtained by computing the parity function
χS on each example in our sample.

We construct two lists, each containing
(n

k/2

)

vectors of lengthm. The first list contains all the
vectorsvS whereS ranges over allk/2-element subsets of{x1, . . . ,xn}. The second list contains all
the vectorsvS∪{xn+1} whereSagain ranges over allk/2-element subsets of{x1, . . . ,xn}.

After sorting these two lists of vectors, which takesÕ(nk/2) time, we scan through them in
parallel in time linear in the length of the lists and find a pair of vectorsvS1 from the first list and
vS2∪{xn+1} from the second list which are the same. (Note that any decomposition of the target parity
into two subsetsS1 andS2 of k/2 variables each will give such a pair). The setS1∪S2 is then a
consistent parity of lengthk.

7. Future Work

An obvious goal for future work is to improve our algorithmic results for learning decision lists.
As a first step, one might attempt to extend the tradeoffs we achieve: is it possible to learn decision
lists of lengthk in nk1/2

time from poly(k, logn) examples?

599

KLIVANS AND SERVEDIO

Another goal is to extend our results for decision lists to broader conceptclasses. In particular, it
would be interesting to obtain analogues of our algorithmic results for learninggeneral linear thresh-
old functions (independent of their weight). We note here that Goldmann etal. (1992) have given
a linear threshold function over{−1,1}n for which any polynomial threshold function must have
weight 2Ω(n1/2) regardless of its degree. Moreover Krause and Pudlak (1998) haveshown that any
Boolean function which has a polynomial threshold function over{0,1}n of weightw has a poly-
nomial threshold function over{−1,1}n of weightn2w4. These results imply thatrepresentational
results akin to Theorem 3 for general linear threshold functions must be quantitatively weaker than
Theorem 3; in particular, there is a linear threshold function over{0,1}n with k nonzero coefficients
for which any polynomial threshold function, regardless of degree, must have weight 2Ω(k1/2).

For parity functions many questions remain as well: can we learn parity functions onk =
Θ(logn) variables in polynomial time using a sublinear number of examples? Can we learnlength-k
parities in polynomial time using fewer thann1−1/k examples? Can we learn length-k parities from
O(k logn) examples in timeÕ(nk/3)? Progress on any of these fronts would be quite interesting.

8. Acknowledgements

We thank Les Valiant for his observation that Claim 5 can be reinterpreted interms of polynomial
threshold functions, and we thank Jean Kwon for suggesting the Chebychev polynomial. We thank
Dan Spielman for allowing us to include his proof of Theorem 18.

References

D. Angluin. Queries and concept learning.Machine Learning, 2:319–342, 1988.

J. Barzdin and R. Freivald. On the prediction of general recursive functions. Soviet Mathematics
Doklady, 13:1224–1228, 1972.

R. Beigel. Perceptrons, PP, and the Polynomial Hierarchy.Computational Complexity, 4:339–349,
1994.

A. Blum. Learning Boolean functions in an infinite attribute space. InProceedings of the 22nd
Annual Symposium on Theory of Computing, pages 64–72, 1990.

A. Blum. Rank-r decision trees are a subclass ofr-decision lists.Information Processing Letters,
42(4):183–185, 1992.

A. Blum. On-line algorithms in machine learning. available at
http://www.cs.cmu.edu/˜avrim/Papers/pubs.html , 1996.

A. Blum. Empirical support for Winnow and weighted-majority algorithms: results on a calendar
scheduling domain.Machine Learning, 26:5–23, 1997.

A. Blum and P. Langley. Selection of relevant features and examples in machine learning.Artificial
Intelligence, 97(1-2):245–271, 1997.

A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitelyor infinitely many
irrelevant attributes.Journal of Computer and System Sciences, 50:32–40, 1995.

600

TOWARD ATTRIBUTE EFFICIENT LEARNING

E. Cheney.Introduction to approximation theory. McGraw-Hill, New York, New York, 1966.

A. Dhagat and L. Hellerstein. PAC learning with irrelevant attributes. InProceedings of the 35th
Annual Symposium on Foundations of Computer Science, pages 64–74, 1994.

A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples.Information and
Computation, 82(3):231–246, 1989.

A.R. Golding and D. Roth. A Winnow-based approach to spelling correction. Machine Learning,
34:107–130, 1999.

M. Goldmann, J. H̊astad, and A. Razborov. Majority gates vs. general weighted thresholdgates.
Computational Complexity, 2:277–300, 1992.

D. Haussler. Space efficient learning algorithms. Technical Report UCSC-CRL-88-2, University of
California at Santa Cruz, 1988.

D. Helmbold, R. Sloan, and M. Warmuth. Learning integer lattices.SIAM Journal on Computing,
21(2):240–266, 1992.

M. Kearns and U. Vazirani.An Introduction to Computational Learning Theory. MIT Press, Cam-
bridge, MA, 1994.

J. Kivinen, M. Warmuth, and P. Auer. The Perceptron algorithm vs. Winnow: linear vs. logarithmic
mistake bounds when few input variables are relevant.Artificial Intelligence, 97(1-2):325–343,
1997.

A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). Journal of Computer & System Sciences,
68(2):303–318, 2004.

A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections andthresholds of halfspaces.
Journal of Computer & System Sciences, 68(4):808–840, 2004.

M. Krause. On the computational power of Boolean decision lists. In19th Annual Symposium on
Theoretical Aspects of Computer Science, pages 372–383, 2002.

M. Krause and P. Pudlak. Computing Boolean functions by polynomials and threshold circuits.
Computational Complexity, 7(4):346–370, 1998.

N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1988.

N. Littlestone.Mistake bounds and logarithmic linear-threshold learning algorithms. PhD thesis,
University of California at Santa Cruz, 1989a.

N. Littlestone. From online to batch learning. InProceedings of the Second Annual Workshop on
Computational Learning Theory, pages 269–284, 1989b.

T. Mitchell. Generalization as search.Artificial Intelligence, 18:203–226, 1982.

J. Myhill and W. Kautz. On the size of weights required for linear-input switching functions.IRE
Trans. on Electronic Computers, EC10(2):288–290, 1961.

601

KLIVANS AND SERVEDIO

Z. Nevo and R. El-Yaniv. On online learning of decision lists.Journal of Machine Learning Re-
search, 3:271–301, 2002.

R. O’Donnell and R. Servedio. New degree bounds for polynomial threshold functions. InProceed-
ings of the 35th ACM Symposium on Theory of Computing, pages 325–334, 2003.

R. Rivest. Learning decision lists.Machine Learning, 2(3):229–246, 1987.

R. Servedio. Computational sample complexity and attribute-efficient learning. Journal of Com-
puter and System Sciences, 60(1):161–178, 2000.

R. Servedio. Perceptron, Winnow and PAC learning.SIAM Journal on Computing, 31(5):1358–
1369, 2002.

D. Spielman. Personal communication, 2003.

R. Uehara, K. Tsuchida, and I. Wegener. Identification of partial disjunction, parity, and threshold
functions.Theoretical Computer Science, 230:131–147, 2000.

L. Valiant. Projection learning.Machine Learning, 37(2):115–130, 1999.

602

Journal of Machine Learning Research 7 (2006) 603–624 Submitted 10/05; Published 4/06

A Direct Method for Building Sparse Kernel Learning
Algorithms

Mingrui Wu mingrui.wu@tuebingen.mpg.de

Bernhard Schölkopf bernhard.schoelkopf@tuebingen.mpg.de

Gökhan Bakır goekhan.bakir@tuebingen.mpg.de

Max Planck Institute for Biological Cybernetics
Spemannstrasse 38
72076 Tübingen, Germany

Editor: Nello Cristianini

Abstract

Many kernel learning algorithms, including support vector machines, result in a kernel
machine, such as a kernel classifier, whose key component is a weight vector in a feature
space implicitly introduced by a positive definite kernel function. This weight vector is
usually obtained by solving a convex optimization problem. Based on this fact we present
a direct method to build sparse kernel learning algorithms by adding one more constraint
to the original convex optimization problem, such that the sparseness of the resulting ker-
nel machine is explicitly controlled while at the same time performance is kept as high as
possible. A gradient based approach is provided to solve this modified optimization prob-
lem. Applying this method to the support vectom machine results in a concrete algorithm
for building sparse large margin classifiers. These classifiers essentially find a discriminat-
ing subspace that can be spanned by a small number of vectors, and in this subspace,
the different classes of data are linearly well separated. Experimental results over several
classification benchmarks demonstrate the effectiveness of our approach.
Keywords: sparse learning, sparse large margin classifiers, kernel learning algorithms,
support vector machine, kernel Fisher discriminant

1. Introduction

Many kernel learning algorithms (KLA) have been proposed for solving different kinds of
problems. For example the support vector machine (SVM) (Vapnik, 1995) have been widely
used for classification and regression, the minimax probability machine (MPM) (Lanckriet
et al., 2002) is another competitive algorithm for classification, the one-class SVM (Schölkopf
and Smola, 2002) is a useful tool for novelty detection, while the kernel Fisher discriminant
(KFD) (Mika et al., 2003) and the kernel PCA (KPCA) (Schölkopf and Smola, 2002) are
powerful algorithms for feature extraction.

Many kernel learning algorithms result in a kernel machine (KM) (such as a kernel
classifier), whose output can be calculated as

τ(x) =
NXV∑
i=1

α̂iK(x̂i,x) + b, (1)

c©2006 Mingrui Wu, Bernhard Schölkopf and Gökhan Bakır.

Wu, Schölkopf and Bakır

where x ∈ X ⊂ Rd is the input data, X is the input space, x̂i ∈ X , 1 ≤ i ≤ NXV , are
called expansion vectors (XVs) in this paper,1 NXV is the number of XVs, α̂i ∈ R is the
expansion coefficient associated with x̂i, b ∈ R is the bias and K : X × X → R is a kernel
function.

Usually K is a positive definite kernel (Schölkopf and Smola, 2002), which implicitly
introduces a feature space F . Let φ(·) denote the map from X to F , then

K(x,x′) = 〈φ(x), φ(x′)〉, ∀x,x′ ∈ X .

Hence (1) can also be written as a linear function

τ(x) = 〈w, φ(x)〉+ b, (2)

where

w =
NXV∑
i=1

α̂iφ(x̂i) (3)

is the weight vector of the KM and it equals the linear expansion of XVs in the feature
space F .

For all the KLAs mentioned above, the vector w is obtained by solving a convex opti-
mization problem. For example, the SVM can be formulated as a quadratic programming
problem (Vapnik, 1995), in (Mika et al., 2003), a convex formulation is proposed for KFD
and a least squares SVM formulation is established for KPCA in (Suykens et al., 2002).

From the above description, we can see that although many KLAs are proposed for solv-
ing different kinds of problems and have various formulations, there are three widely known
common points among them. First, each of them results in a KM whose key component is a
weight vector w, which can be expressed as the linear expansion of XVs in the feature space
F . Second, the vector w is obtained by solving a convex optimization problem. Third, the
output of the resulting KM is calculated as (1) (or (2)).

When solving practical problems, we want the time for computing the output to be
as short as possible. For example in real-time image recognition, in addition to good
classification accuracy, high classification speed is also desirable. The time of calculating
(1) (or (2)) is proportional to NXV . Thus several sparse learning algorithms have been
proposed to build KMs with small NXV .

The reduced set (RS) method (Burges, 1996; Schölkopf and Smola, 2002) was pro-
posed to simplify (1) by determining Nz vectors z1, . . . , zNz and corresponding expansion
coefficients β1, . . . , βNz such that

‖ w −
Nz∑
j=1

βjφ(zj) ‖2 (4)

is minimized. RS methods approximate and replace w in (2) by
∑Nz

j=1 βjφ(zj), where
Nz < NXV . The objective of RS method does not directly relate to the performance of the

1. The x̂i, 1 ≤ i ≤ NXV have different names in different kernel learning algorithms. For example, they
are called support vectors in the SVM, and relevance vectors in the relevance vector machine (Tipping,
2001). In this paper we uniformly call them expansion vectors for the sake of simplicity.

604

A Direct Method for Building Sparse Kernel Learning Algorithms

KM it aims to simplify, and in order to apply RS methods, we need to build another KM
in advance.

In (Lee and Mangasarian, 2001), the reduced support vector machine (RSVM) algorithm
is proposed, which randomly selects Nz vectors from the training set as XVs, and then
computes the expansion coefficients. This algorithm can be applied to build sparse kernel
classifiers. But as the XVs are chosen randomly, and may not be good representatives of
the training data, good classification performance can not be guaranteed when Nz is small
(Lin and Lin, 2003).

The relevance vector machine (RVM) (Tipping, 2001) is another algorithm which leads
to sparse KMs. The basic idea of the RVM is to assume a prior of the expansion coefficients
which favors sparse solutions.

In this paper, based on the common points of KLAs mentioned before, we present a
direct method to build sparse kernel learning algorithms (SKLA). In particular, given a
KLA, we modify it by adding one more constraint to its corresponding convex optimization
problem. The added constraint explicitly controls the sparseness of the resulting KM and
a gradient based approach is proposed to solve the modified optimization problem. We
will also show that applying this method to the SVM will result in a specific algorithm for
building sparse large margin classifiers (SLMC).2

The remainder of this paper is organized as follows. In section 2, we describe a direct
method for building SKLAs. After this, we will focus on a particular application of this
method to the SVM algorithm, leading to a detailed algorithm for building SLMC. The
SLMC algorithm is presented in section 3, where we will also point out that it actually
finds a discriminating subspace of the feature space F . Some comparisons with related
approaches are given in section 4. Experimental results are provided in section 5 and we
conclude the paper in the last section.3

2. A Direct Method of Building SKLAs

In this section, we propose a direct method for building SKLAs.

2.1 Basic Idea

As mentioned before, many KLAs can be formulated as an optimization problem, which
can be written in a general form as follows:

min
w,b,ξ

f(w, b, ξ), (5)

subject to gi(w, b, ξ) ≤ 0, 1 ≤ i ≤ Ng, (6)
hj(w, b, ξ) = 0, 1 ≤ j ≤ Nh, (7)

where f(w, b, ξ) is the objective function to be minimized, w ∈ F and b ∈ R are respectively
the weight vector and the bias of the KM to be built, ξ = [ξ1, . . . , ξNξ

]> ∈ RNξ is a vector
of some auxiliary variables (such as the slack variables in the soft margin training problem),

2. Here we don’t use the phrase “sparse SVM” because the XVs of the resulting classifier are not necessarily
support vectors, i.e. they may not lie near the classification boundary.

3. This paper is an extension of our previous work (Wu et al., 2005).

605

Wu, Schölkopf and Bakır

Nξ is the number of auxiliary variables, Ng is the number of inequality constraints specified
by gi(w, b, ξ), while Nh is the number of equality constraints specified by hj(w, b, ξ).

Our objective is as follows: given a KLA and a positive integer Nz, we want to modify
the given KLA such that the number of XVs of the resulting KM equals Nz while at the
same time the performance of the KM should be kept as well as possible. To achieve this,
we propose to solve the following problem:

min
w,b,ξ,β,Z

f(w, b, ξ), (8)

subject to gi(w, b, ξ) ≤ 0, 1 ≤ i ≤ Ng, (9)
hj(w, b, ξ) = 0, 1 ≤ j ≤ Nh, (10)

w =
Nz∑
i=1

φ(zi)βi, (11)

where (8)–(10) are exactly the same as (5)–(7), while Z = [z1, . . . , zNz] ∈ Rd×Nz is the
matrix of XVs and β = [β1, . . . , βNz]> ∈ RNz is the vector of expansion coefficients.

It can be seen that the above problem is the problem (5)–(7) with one added constraint
(11) saying that the weight vector of the resulting KM equals the expansion of the φ(zi),
1 ≤ i ≤ Nz. Note that the zi are also variables, so they need to be computed when solving
the optimization problem.

Due to the constraint (11), solving the problem (8)–(11) will naturally lead to a sparse
KM. Further more, since the objective function of the problem (8)–(11) is exactly the same
as the original problem (5)–(7), so in principle the performance of the resulting KM can be
kept as well as possible.

Because of the non-convex constraint (11), it is difficult to obtain the global optimum
of the above problem, thus we propose a gradient based approach. However, our gradient
based minimization will be performed only on the expansion vectors Z but not on all the
variables. To this end, we define the following the marginal function W (Z) which is obtained
by keeping the expansion vectors in problem (8)–(11) fixed, i.e. :

W (Z) := min
w,b,ξ,β

f(w, b, ξ), (12)

subject to gi(w, b, ξ) ≤ 0, 1 ≤ i ≤ Ng, (13)
hj(w, b, ξ) = 0, 1 ≤ j ≤ Nh, (14)

and w =
Nz∑
i=1

φ(zi)βi. (15)

The above problem is the same as problem (8)–(11) except that Z is not variable but fixed.
Clearly any global (or local) minimum of W (Z) is also a global (or local) minimum of

problem (8)–(11), which means that the minima of the original problem (8)–(11) can be
found by computing the minima of function W (Z). Here we propose to minimize W (Z) by
the gradient based algorithm. To this end, at any given Z ∈ Rd×Nz , we need to calculate
both the function value W (Z) and the gradient ∇W (Z). These two problems are discussed
in the next subsection.

606

A Direct Method for Building Sparse Kernel Learning Algorithms

2.2 Computing W (Z) and its Gradient ∇W (Z)

To compute the function value of W (Z) at any given Z, we need to solve the optimization
problem (12)–(15). Obviously this is a problem dependent task. However as mentioned
before, the original optimization problem (5)–(7) of many current KLAs are convex, and
(15) is just a linear constraint once Z is fixed. Therefore the problem (12)–(15) is still
convex, which means its global optimum, and thus the function value of W (Z), can be
readily computed.

Next we turn to consider how to compute ∇W (Z), which requires more carefulness
since in general W (Z) is not necessarily differentiable. According to the constraint (11),
the weight vector w can be completely determined by β and Z, so the functions f , gi and
hj can be regarded as functions of b, ξ, β and Z. Without causing confusions, we write
them as f(x,Z), gi(x,Z) and hj(x,Z) in the following, where x := [b, ξ>,β>]>.

Substituting (15) into (12)–(14), we have

min
x

f(x,Z), (16)

subject to gi(x,Z) ≤ 0, 1 ≤ i ≤ Ng, (17)
hj(x,Z) = 0, 1 ≤ j ≤ Nh, (18)

and W (Z) is the optimal value of the above optimization problem.
To compute ∇W (Z), we can apply the following lemma which gives both the conditions

when W (Z) is differentiable and an explicit form of the derivative:

Lemma 1 (Gauvin and Dubeau, 1982): Assume that all the functions f , gi and hj in
problem (16)–(18) are continuously differentiable and suppose that problem (16)–(18) has a
unique optimal solution x̄ at Z = Z̄. Furthermore let ᾱi and β̄j be the unique corresponding
Lagrange multipliers associated with gi and hj respectively, 1 ≤ i ≤ Ng, 1 ≤ j ≤ Nh.
Assume further that the feasible set of problem (16)–(18) is uniformly compact at Z̄ and
that, the optimal solution x̄ is Mangasarian-Fromovitz regular, then the gradient of W (Z)
exists at Z̄ and equals

∇W (Z)|Z=Z̄ = ∇Zf(x̄,Z)|Z=Z̄ +
Ng∑
i=1

ᾱi ∇Zgi(x̄,Z)|Z=Z̄ +
Nh∑
j=1

β̄j ∇Zhj(x̄,Z)|Z=Z̄ , (19)

where ∇Zf(x̄,Z)|Z=Z̄ denotes the gradient of f(x,Z) with respect to Z at Z = Z̄ while fixing
x at x̄.

As can be seen that in addition to the uniqueness of the optimal solution and its cor-
responding Lagrange multipliers, lemma 1 also requires the feasible set to be uniformly
compact and the optimal solution to be Mangasarian-Fromovitz regular. The formal def-
initions of the last two conditions are given in appendix B. Since the properties of the
feasible set and the optimal solutions depend on the specific KLA, we will discuss all these
conditions for some particular KLAs in subsection 3.3 and appendix A. We will see that
the conditions of lemma 1 are very mild for many current KLAs.

607

Wu, Schölkopf and Bakır

3. Building an SLMC

Having described our direct method for building SKLAs, we will focus on a concrete ap-
plication of this method in the rest of this paper. In particular, we will apply this method
to SVMs in order to obtain an algorithm for building SLMCs. We will also analyze its
properties and compare it with other related approaches. In this section, we will present
the SLMC algorithm by closely following the discussions of section 2.

3.1 Objective

Now we begin to consider the binary classification problem, where we are given a set of
training data {(xi, yi)}N

i=1, where xi ∈ X is the input data, and yi ∈ {−1, 1} is the class
label.

Our objective is as follows: given a training data set and an positive integer Nz, we
want to build a classifier such that the number of XVs of the classifier equals Nz and the
margin of the classifier is as large as possible. This way we build a large margin classifier
whose sparseness is explicitly controlled.

Based on the direct method described in the last section, we need to solve the problem
(8)–(11) to achieve this goal. For the moment, (8)–(10) become the SVM training problem
and the constraint (11) controlls the sparseness of the resulting classifier. So we should
solve the following problem

min
w,ξ,b,β,Z

1
2
w>w + C

N∑
i=1

ξi, (20)

subject to yi(w>φ(xi) + b) ≥ 1− ξi, ∀i, (21)
ξi ≥ 0, ∀i, (22)

w =
Nz∑
i=1

φ(zi)βi, (23)

where C is a positive constant, w ∈ F is the weight vector of the decision hyperplane in
feature space, b ∈ R is the bias of the classifier, ξ = [ξ1, . . . , ξN]> ∈ RN is the vector of slack
variables, Z = [z1, . . . , zNz] ∈ Rd×Nz is the matrix of XVs and β = [β1, . . . , βNz]> ∈ RNz is
the vector of expansion coefficients.

Following our proposed method, to solve the above problem, we turn to minimize the
marginal function W (Z) defined in problem (12)–(15). For the current problem, the value
of W (Z) is the minimum of the following optimization problem,

min
w,ξ,b,β

1
2
w>w + C

N∑
i=1

ξi, (24)

subject to yi(w>φ(xi) + b) ≥ 1− ξi, ∀i, (25)
ξi ≥ 0, ∀i, (26)

w =
Nz∑
i=1

φ(zi)βi. (27)

608

A Direct Method for Building Sparse Kernel Learning Algorithms

The above problem is the same as problem (20)–(23) except that Z is not variable but fixed.

Following the discussion in section 2.1, the (local) minimum of the original problem
(20)–(23) can be found by computing the (local) minimum of function W (Z) and we will
use the gradient based algorithm to do this. In the following two subsections we will discuss
how to compute the function value W (Z) and the gradient ∇W (Z) respectively.

3.2 Computing W (Z) and β

To compute the function value of W (Z) at any given Z, we need to solve the convex
optimization problem (24)–(27), which is actually a problem of building an SVM with
given XVs z1, . . . , zNz . This problem has already been considered in the RSVM algorithm
(Lee and Mangasarian, 2001; Lin and Lin, 2003). But in the RSVM algorithm, only an
approximation of the problem (24)–(27) is solved. Here we will propose a different method
which exactly solves this problem. (See section 4.2 for a discussion and section 5.5 for a
comparison of the experimental results of these two methods.)

Substituting (27) into (24) and (25), we have

min
ξ,b,β

1
2
β>Kzβ + C

N∑
i=1

ξi, (28)

subject to yi(β>ψz(xi) + b) ≥ 1− ξi, ∀i, (29)
ξi ≥ 0, ∀i, (30)

where

ψz(xi) = [K(z1,xi), . . . ,K(zNz ,xi)]> (31)

is the empirical kernel map (Schölkopf and Smola, 2002) and Kz is the kernel matrix of zi,
i.e. Kz

ij = K(zi, zj).

Note that when Nz = N and zi = xi, 1 ≤ i ≤ N , this is the standard SVM training
problem. In contrast, the problem (28)–(30) is to train a linear SVM in a subspace spanned
by φ(zi), 1 ≤ i ≤ Nz, where zi are are not necessarily training examples.

Now we investigate its dual problem. To derive it, we introduce the Lagrangian,

L(ξ, b,β,α,γ) (32)

=
1
2
β>Kzβ + C

N∑
i=1

ξi −
N∑

i=1

γiξi

−
N∑

i=1

αi[yi(β>ψz(xi) + b)− 1 + ξi],

with Lagrange multipliers γi ≥ 0 and αi ≥ 0.

609

Wu, Schölkopf and Bakır

The derivatives of L(ξ, b,β,α,γ) with respect to the primal variables must vanish,

∂L

∂β
= Kzβ −

N∑
i=1

αiyiψz(xi) = 0, (33)

∂L

∂b
= −

N∑
i=1

αiyi = 0, ∀i, (34)

∂L

∂ξi
= C − αi − γi = 0, ∀i. (35)

Equation (33) leads to

β = (Kz)−1
N∑

i=1

αiyiψz(xi). (36)

Substituting (33)–(35) into (32) and using (36), we arrive at the dual form of the opti-
mization problem:

max
α∈RN

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK̂z(xi,xj), (37)

subject to
N∑

i=1

yiαi = 0, (38)

and 0 ≤ αi ≤ C, ∀i, (39)

where
K̂z(xi,xj) = ψz(xi)>(Kz)−1ψz(xj). (40)

The function K̂z(·, ·) defined by (40) is a positive definite kernel function (Schölkopf and
Smola, 2002). To see this, consider the following map,4

φz(xi) = Tψz(xi), (41)

where ψz(·) is defined by (31) and

T = Λ−
1
2 V>, (42)

where Λ is a diagonal matrix of eigenvalues of matrix Kz and V is a matrix whose columns
are eigenvectors of Kz. So

T>T = VΛ−1V = (Kz)−1. (43)

Combining equation (41)and (43) we have

〈φz(xi), φz(xj)〉 = ψz(xi)>(Kz)−1ψz(xj) = K̂z(xi,xj).

It can be seen that problem (37)–(39) has the same form as the dual of an SVM train-
ing problem. Therefore given Z, computing the expansion coefficients of SVM with kernel

4. The map defined in (41) is called the “whitened” empirical kernel map or “kernel PCA map”(Schölkopf
and Smola, 2002).

610

A Direct Method for Building Sparse Kernel Learning Algorithms

function K is equivalent to training an SVM with a modified kernel function K̂z defined by
(40).

Since problem (37)–(39) is the dual of problem (24)–(27), the optima of these two
problems are equal to each other. So given Z, assuming αz

i , 1 ≤ i ≤ N are the solution of
(37)–(39), then we can compute W (Z) as

W (Z) =
N∑

i=1

αz
i −

1
2

N∑
i

N∑
j=1

αz
iα

z
jyiyjK̂z(xi,xj). (44)

According to (36), the expansion coefficients β can be calculated as

β = (Kz)−1
N∑

i=1

αz
i yiψz(xi) = (Kz)−1(Kzx)Yαz, (45)

where ψz(·) is defined by (31), Kzx is the matrix defined by Kzx
ij = K(zi,xj), Y is a diagonal

matrix of class labels, i.e. Yii = yi, and αz = [αz
1, . . . , α

z
N]>.

3.3 Computing ∇W (Z) of SLMC

To compute ∇W (Z), we can apply lemma 1 to the soft margin SVM training problem
(37)–(39) and yield the following result.

Corollary 2 In the soft margin SVM training problem (37)–(39), assume that the kernel
function K̂z(·, ·) is strictly positive definite and the resulting support vectors come from
both positive and negative classes,5 then the derivatives of W (Z) with respect to zuv, which
denotes the v-th component of vector zu, 1 ≤ u ≤ Nz, 1 ≤ v ≤ d, exists and can be computed
as follows:

∂W

∂zuv
= −1

2

N∑
i,j=1

αz
iα

z
jyiyj

∂K̂z(xi,xj)
∂zuv

, (46)

where αz
i , 1 ≤ i ≤ N denote the solution of problem (37)–(39). In other words, ∇W (Z)

can be computed as if αz did not depend on Z.6

The proof of corollary 2 is given in appendix C.
As can be seen in corollary 2, to apply lemma 1 to calculate ∇W (Z), we only need to

make two assumptions on problem (37)–(39): The kernel function K̂z(·, ·) is strictly positive
definite and the resulting support vectors come from both classes. Certainly these are not
strict assumptions for most practical applications. Similarly one can verify that lemma 1
can also be applied to many other KLAs with mild assumptions, such as the one-class SVM.

5. Let αz
i , 1 ≤ i ≤ N denote the optimal solution of problem (37)–(39), support vectors are those input

data xi whose corresponding αz
i are larger than 0 (Vapnik, 1995).

6. In corollary 2, αz
i is bounded above by C as shown in (39). A similar conclusion is proposed in (Chapelle

et al., 2002) for the hard margin SVM training problem, where there is no upper bound on αz
i . This

implies that the feasible set is not compact, hence lemma 1 can not be applied any more. Actually
in (Chapelle et al., 2002), only the uniqueness of the optimal solution is emphasized, which, to our
knowledge, is not enough to guarantee the differentiability of the marginal function W (Z).

611

Wu, Schölkopf and Bakır

And we will show another example in appendix A on applying our direct method to sparsify
the KFD algorithm (Mika et al., 2003).

According to (40),

∂K̂z(xi,xj)
∂zuv

= (
∂ψz(xi)
∂zuv

)>(Kz)−1ψz(xj) + ψz(xi)>(Kz)−1∂ψz(xj)
∂zuv

+ ψz(xi)>
∂(Kz)−1

∂zuv
ψz(xj),

where ∂(Kz)−1

∂zuv
can be calculated as

∂(Kz)−1

∂zuv
= −(Kz)−1 ∂K

z

∂zuv
(Kz)−1.

So at any given Z, W (Z) and ∇W (Z) can be computed as (44) and (46) respectively.
In our implementation, we use the LBFGS algorithm (Liu and Nocedal, 1989) to minimize
W (Z), which is an efficient gradient based optimization algorithm.

3.4 The Kernel Function K̂z and Its Corresponding Feature Space Fz

The kernel function K̂z plays an important role in our approach. In this section, some
analysis of K̂z is provided, which will give us insights into how to build an SLMC.

It is well known that training an SVM with a nonlinear kernel function K in the input
space X is equivalent to building a linear SVM in a feature space F . The map φ(·) from
X to F is implicitly introduced by K. In section 2.2, we derived that for a given set of
XVs z1, . . . , zNz , training an SVM with kernel function K is equivalent to building an SVM
with another kernel function K̂z, which is in turn equivalent to constructing a linear SVM
in another feature space. Let Fz denote this feature space, then the map from the X to Fz

is φz(·), which is explicitly defined by (41).
According to (41), φz(x) = Tψz(x). To investigate the role of the matrix T, consider

Uz defined by
Uz = [φ(z1), . . . , φ(zNz)]T

>.

Then
(Uz)>Uz = TKzT> = I,

where I is the unit matrix, which means that T> orthonormalizes φ(zi) in the feature space
F . Thus the columns of Uz can be regarded as an orthonormal basis of a subspace of F .
For any x ∈ X , if we calculate the projection of φ(x) into this subspace, we have

(Uz)>φ(x) = T[φ(z1), . . . , φ(zNz)]
>φ(x)

= T[K(z1,x), . . . ,K(zNz ,x)]>

= Tψz(x) = φz(x).

This shows that the subspace spanned by the columns of Uz is identical to Fz. As Uz

are obtained by orthonormalizing φ(zi), Fz is a subspace of F and it is spanned by φ(zi),
1 ≤ i ≤ Nz.

612

A Direct Method for Building Sparse Kernel Learning Algorithms

Now that for a given set of XVs zi, building an SVM with a kernel function K is
equivalent to building a linear SVM in Fz, in order to get good classification performance,
we have to find a discriminating subspace Fz where two classes of data are linearly well
separated. Based on this point of view, we can see that our proposed approach essentially
finds a subspace Fz where the margin of the training data is maximized.

4. Comparison with Related Approaches

In this section we compare the SLMC algorithm with related approaches.

4.1 Modified RS Method

In the second step of the RS method, after the XVs z1, . . . , zNz are obtained, the expansion
coefficients β are computed by minimizing (4), which leads to (Schölkopf and Smola, 2002)

β = (Kz)−1(Kzx)Yα, (47)

where Kzx and Y are defined as in (45), and α is the solution of building an SVM with
kernel function K on the training data set {(xi, yi)}N

i=1.
We propose to modify the second step of RS method as (45). Clearly (47) and (45) are

of the same form. The only difference is that in (47), α is the solution of training an SVM
with kernel function K, while in (45), αz is the solution of training an SVM with the kernel
function K̂z, which takes the XVs zi into consideration. As β calculated by (45) maximizes
the margin of the resulting classifier, we can expect a better classification performance of
this modified RS method. We will see this in the experimental results.

4.2 Comparison with RSVM and a Modified RSVM Algorithm

One might argue that our approach appears to be similar to the RSVM, because the RSVM
algorithm also restricts the weight vector of the decision hyperplane to be a linear expansion
of Nz XVs.

However there are two important differences between the RSVM and our approach. The
first one (and probably the fundamental one) is that in the RSVM approach, Nz XVs are
randomly selected from the training data in advance, but are not computed by finding a
discriminating subspace Fz . The second difference lies in the method for computing the
expansion coefficients β. Our method exactly solves the problem (28)–(30) without any
simplifications. But in the RSVM approach, certain simplifications are performed, among
which the most significant one is changing the first term in the objective function (28) from
1
2β>Kzβ to 1

2β>β. This step immediately reduces the problem (28)–(30) to a standard
linear SVM training problem (Lin and Lin, 2003), where β becomes the weight vector of
the decision hyperplane and the training set becomes {ψz(xi), yi}N

i=1.
On the other hand, our method of computing β is to build a linear SVM in the subspace

Fz, which is to train a linear SVM for the training data set {φz(xi), yi}N
i=1.

Now let us compare the two training sets mentioned above, i.e. {φz(xi), yi}N
i=1 and

{ψz(xi), yi}N
i=1. As derived in section 3.4, φz(xi) are calculated by projecting φ(xi) onto a

set of vectors, which is obtained by orthonormalizing φ(zj) (1 ≤ j ≤ Nz), while ψz(xi) is

613

Wu, Schölkopf and Bakır

calculated by computing the dot production between φ(xi) and φ(zj) (1 ≤ j ≤ Nz) directly,
without the step of orthonormalization.

Analogous to the modified RS method, we propose a modified RSVM algorithm: Firstly,
Nz training data are randomly selected as XVs, then the expansion coefficients β are com-
puted by (45).

4.3 Comparison with the RVM

The RVM (Tipping, 2001) algorithm and many other sparse learning algorithms, such as
sparse greedy algorithms (Nair et al., 2002), or SVMs with l1-norm regularization (Bennett,
1999), result in a classifier whose XVs are a subset of the training data. In contrast, the
XVs of SLMC do not necessarily belong to the training set. This means that SLMC can in
principle locate better discriminating XVs. Consequently, with the same number of XVs,
SLMC can have better classification performance than the RVM and other sparse learning
algorithms which select the XVS only from the training data. This can be seen from the
experimental results provided in section 5.5.

4.4 SLMC vs Neural Networks

Since the XVs of the SLMC do not necessarily belong to the training set and training
an SLMC is a gradient based process,7 the SLMC can be thought of as a neural network
with weight regularization (Bishop, 1995). However, there are clear differences between
the SLMC algorithm and a feed forward neural network. First, analogous to an SVM,
the SLMC considers the geometric concept of margin, and aims to maximizes it. To this
end, the regularizer takes into account the kernel matrix Kz. Second, SLMC minimizes
the “hinge-loss”, which is different from the loss functions adopted by neural networks.8

Therefore, both the regularizer and the loss function of SLMC are different from those of
traditional perceptrons.

Furthermore, the SLMC algorithm is just an application of our ’direct sparse’ method. It
is straightforward to apply this method to build sparse one-class SVM algorithm (Schölkopf
and Smola, 2002), to which there is no obvious neural network counterpart.

On the other hand, analogous to neural networks, we also have an additional regular-
ization via the number Nz determining the number of XVs, which is an advantage in some
practical applications where runtime constraints exist and the maximum prediction time is
known a priori. Note that the prediction time (the number of kernel evaluations) of a soft
margin SVM scales linearly with the number of training patterns (Steinwart, 2003).

5. Experimental Results

Now we conduct some experiments to investigate the performance of the SLMC algorithm
and compare it with other related approaches.

7. This is also similar to the recent work of (Snelson and Ghahramani, 2006) on building sparse Gaussian
processes, which was done at almost the same time with our previous work (Wu et al., 2005).

8. Note that the shape of the hinge-loss is similar to that of the loss function adopted in logistic regression,
where the logarithm of the logistic sigmoid function (Bishop, 1995) is involved. Here the logistic sigmoid
function refers to y(x) = 1

1+e−x . So the shape of the hing-loss is different from that of the loss function
used by the perceptron.

614

A Direct Method for Building Sparse Kernel Learning Algorithms

5.1 Approaches to be Compared

The following approaches are compared in the experiments: Standard SVM, RS method,
modified RS method (MRS, cf. section 4.1), RSVM, modified RSVM (MRSVM, cf. section
4.2), relevance vector machine (RVM), and the proposed SLMC approach.

Note that in our experiments, RS and MRS use exactly the same XVs, but they compute
the expansion coefficients by (47) and (45) respectively. Similarly RSVM and MRSVM also
use the same set of XVs, the difference lies in the method for computing the expansion
coefficients.

5.2 Data Sets

Seven classification benchmarks are considered: USPS, Banana, Breast Cancer, Titanic,
Waveform, German and Image. The last six data sets are provided by Gunnar Rätsch and
can be downloaded from http://ida.first.fraunhofer.de/projects/bench. For the USPS data
set, 7291 examples are used for training and the remaining 2007 are for testing. For each
of the last six data sets, there are 100 training/test splits and we follow the same scheme
as (Tipping, 2001): our results show averages over the first 10 of those.

5.3 Parameter Selection

A Gaussian kernel is used in the experiments:

K(x,x′) = exp(−γ ‖ x− x′ ‖2). (48)

The parameters for different approaches are as follows:
Standard SVM: For the USPS data set, we use the same parameters as in (Schölkopf

and Smola, 2002): C = 10 and γ = 1/128. For the other data sets, we use the parameters
provided by Gunnar Rätsch, which are shown on the same website where these data sets
are downloaded.9

RSVM and MRSVM: We perform 5-fold cross validation on the training set to select
parameters for the RSVM. MRSVM uses the same parameters as the RSVM.

RS method: The RS method uses the same kernel parameter as the standard SVM,
since it aims to simplify the standard SVM solution.

SLMC and MRS: In our experiments, they use exactly the same parameters as the
standard SVM on all the data sets.

RVM: The results for the RVM are taken directly from (Tipping, 2001), where 5-fold
cross validation was performed for parameter selection.

5.4 Experimental Settings

For each data set, first a standard SVM is trained with the LIBSVM software.10 (For the
USPS, ten SVMs are built, each trained to separate one digit from all others). Then the
other approaches are applied. The ratio Nz/NSV varies from 5% to 10%.

For the RSVM, we use the implementation contained in the LIBSVM Tools.11

9. See http://ida.first.fraunhofer.de/projects/bench
10. From http://www.csie.ntu.edu.tw/˜cjlin/libsvm
11. From http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools

615

Wu, Schölkopf and Bakır

For the RS method, there is still no standard or widely accepted implementation, so we
try three different ones: a program written by ourselves, the code contained in the machine
learning toolbox SPIDER,12 and the code contained in the statistical pattern recognition
toolbox STPRTOOL.13 For each data set, we apply these three implementations and select
the best one corresponding to the minimal value of the objective function (4).

5.5 Numerical Results

Experimental results are shown in Table 1, where the initial XVs of the SLMC are randomly
selected from the training data. In Table 1, NSV stands for the number of support vectors
(SVs) of the standard SVM, Nz represents the number of XVs of other sparse learning
algorithms.

Data Set USPS Banana Breast Cancer Titanic Waveform German Image
SVM NSV 2683 86.7 112.8 70.6 158.9 408.2 172.1

Error(%) 4.3 11.8 28.6 22.1 9.9 22.5 2.8
RS 4.9 39.4 28.8 37.4 9.9 22.9 37.6

Nz/NSV MRS 4.9 27.6 28.8 23.9 10.0 22.5 19.4
= 5% RSVM 11.6 29.9 29.5 24.5 15.1 23.6 23.6

MRSVM 11.5 28.1 29.4 24.8 14.7 23.9 20.7
SLMC 4.9 16.5 27.9 26.4 9.9 22.3 5.2

RS 4.7 21.9 27.9 26.6 10.0 22.9 18.3
Nz/NSV MRS 4.8 17.5 29.0 22.6 9.9 22.6 6.9
= 10% RSVM 8.2 17.5 31.0 22.9 11.6 24.5 14.2

MRSVM 8.0 16.9 30.3 23.9 11.8 23.7 12.7
SLMC 4.7 11.0 27.9 22.4 9.9 22.9 3.6

RVM Nz/NSV (%) 11.8 13.2 5.6 92.5 9.2 3.1 20.1
Error(%) 5.1 10.8 29.9 23.0 10.9 22.2 3.9

Table 1: Results on seven classification benchmarks. The test error rates of each algorithm
are presented. The NSV for the last six data sets are the averages over 10 train-
ing/test splits. The best result in each group is shown in boldface. The number
of XVs of the RVM is not chosen a priori, but comes out as a result of training.
So for the RVM, the ratio Nz/NSV is given in order to compare it with other
algorithms. For each data set, the result of the RVM is shown in boldface if it is
the best compared to the other sparse learning algorithms.

From Table 1, it can be seen the classification accuracy of SLMC is comparable with
the full SVM when Nz/NSV = 0.1.

Table 1 also illustrates that SLMC outperforms the other sparse learning algorithms in
most cases. Also the SLMC usually improves the classification results of the RS method.
In some cases the improvement is large such as on Banana and Image data sets.

When comparing MRS with RS, and MRSVM with RSVM, the results in Table 1 demon-
strate that in most cases MRS beats RS, and similarly, MRSVM usually outperforms RSVM

12. From http://www.kyb.mpg.de/bs/people/spider
13. From http://cmp.felk.cvut.cz/˜xfrancv/stprtool

616

A Direct Method for Building Sparse Kernel Learning Algorithms

a little. This means that for a given set of XVs, computing the expansion coefficients ac-
cording to (45) is a good choice.

5.6 Some Implementation Details

In table 1, we report the results obtained by random initialization. The K-means algorithm
has also been tried to choose the initial XVs and resulting classification results are similar.
To illustrate this quantitatively, in table 2, we present the results obtained by using the
K-means algorithm for initialization.

Data Set USPS Banana Breast Cancer Titanic Waveform German Image
Nz/NSV random 4.9 16.5 27.9 26.4 9.9 22.3 5.2

= 5% k-means 4.9 16.2 26.8 24.4 9.9 22.7 6.0
Nz/NSV random 4.7 11.0 27.9 22.4 9.9 22.9 3.6
= 10% k-means 4.6 10.9 27.3 23.2 9.9 22.7 3.8

Table 2: Results of the SLMC algorithm, obtained by random initialization and k-means
initialization.

In our proposed approach, we need to compute the inverse of Kz (see for example (45)).
Theoretically if the Gaussian kernel is used and zi, 1 ≤ i ≤ Nz, are different from each
other, then Kz should be full rank, whose inverse can be computed without any problems.
However in experiments, we do observe the cases where Kz was ill conditioned. But we find
out the reason for this is that there are some duplicated data points in the data sets, which
are accidentally selected as the initial XVs. For example, in the first training set of the
Image data set, the first and the 521st data point are exactly the same. So in experiments,
we remove the duplicated points as a preprocessing step.

5.7 Some Results on XVs

It is known that the XVs of standard SVM are support vectors, which lie near the classi-
fication boundary. Here we give two examples to illustrate what the XVs of SLMC look
like.

Example 1. Building an SVM involves solving problem (20)–(22), while building an
SLMC is to solve the same problem plus one more constraint (23). If we want to build
an SLMC with the same number of XVs as a standard SVM, namely Nz = NSV , then
the optimal solution of problem (20)–(22) is also a global optimal solution of problem (20)–
(23), since it satisfies all the constraints. So in this special case, the support vectors of the
standard SVM are also an optimal choice of XVs for SLMC.

Example 2. On the USPS data set, we built an SVM on training data with γ = 1/128,
C = 10 to separate digit ’3’ from digit ’8’. The resulting SVM has 116 SVs and a test error
rate of 1.8%. Then we built an SLMC with the same γ and C, while Nz = 12 (i.e. about
10% of the number of SVs). The resulting SLMC also has a test error rate of 1.8%. As
shown in Figure 1, the images of the 12 XVs produced by SLMC approach look like digits.

617

Wu, Schölkopf and Bakır

Figure 1: Images of XVs for separating ’3’ and ’8’.

5.8 Training Time of SLMC

Building an SLMC is a gradient based process, where each iteration consists of computing
the φz(xi), 1 ≤ i ≤ N , training a linear SVM over {φz(xi), yi}N

i=1,
14 and then computing

the gradient ∇W (Z).
Let TSV M (N, d) denote the time complexity of training a linear SVM over a data set

containing N d-dimensional vectors, then the time complexity of training an SLMC is

O(n× (NNzd+ TSV M (N,Nz) +N3
z +N2

z d)),

where n is the number of iterations of the SLMC training process. In experiments, we find
that the SLMC algorithm requires 20–200 iterations to converge.

We cannot directly compare the training time of SLMC with RS methods and RVM
(relevance vector machine), because we used C++ to implement our approach, while the
publicly available code of RS methods and the RVM is written in Matlab. Using these
implementations and a personal computer with a Pentium 4 CPU of 3GHz, one gets the
following numbers: On the USPS data set, SLMC takes 6.9 hours to train, while the RS
method takes 2.3 hours. On the Banana data set, SLMC training is about 1.5 seconds, and
RVM training is about 5 seconds.

Training an SLMC is time consuming on large data sets. However in practice, once the
training is finished, the trained KM will be put into use processing large amount of test
data. For applications where processing speed is important, such as real time computer
vision, sparse KMs can be of great value. This is the reason why several SKLAs have been
developed although they are more expensive than the standard SVM algorithm.

Furthermore, some kernel learning algorithms are not sparse at all, such as kernel ridge
regression, KFD, KPCA, which means that all the training data need to be saved as the XVs
in the resulting KMs trained by these algorithms. Hence building sparse versions of these
algorithms can not only accelerate the evaluation of the test data, but also dramatically

14. Equivalently we can build an SVM with the kernel function K̂z over {xi, yi}N
i=1. But this is much slower

because it is time consuming to compute K̂z(·, ·) defined by (40).

618

A Direct Method for Building Sparse Kernel Learning Algorithms

reduce the space needed for storing the trained KM. An example of this will be given in
appendix A.

6. Conclusions

We present a direct method to build sparse kernel learning algorithms. There are mainly
two advantages of this method: First, it can be applied to sparsify many current kernel
learning algorithms. Second it simultaneously considers the sparseness and the performance
of the resulting KM. Based on this method we propose an approach to build sparse large
margin classifiers, which essentially finds a discriminating subspace Fz of the feature space
F . Experimental results indicate that this approach often exhibits a better classification
accuracy, at comparable sparsity, than the sparse learning algorithms to which we compared.

A by-product of this paper is a method for calculating the expansion coefficients of
SVMs for given XVs. Based on this method we proposed a modified version of the RS
method and the RSVM. Experimental results show that these two modified algorithms can
improve the classification accuracy of their counterparts. One could also try this method
on other algorithms such as the RVM.

Possible future work may include applying the proposed method to other kernel learning
algorithms and running the direct method greedily to find the XVs one after another in
order to accelerate the training procedure.

Acknowledgments

We would like to acknowledge the anonymous reviewers for their comments that significantly
improved the quality of the manuscript.

Appendix A. Sparse KFD

We have derived the SLMC algorithm as an example of our direct sparse learning approach.
Here we will show another example to build sparse KFD (Mika et al., 2003).

In the KFD algorithm, we need to consider the following Rayleigh quotient maximization
problem (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004).15

max
w∈F

w>Aw

w>Bw + µ ‖w‖2 . (49)

In (49), A and B are respectively the between-class and within-class variances of the training
data in the feature space F , while µ is a regularization parameter. It can be seen that both
A and B are positive definite.

15. As mentioned before, convex formulations have been proposed for the KFD (Mika et al., 2003; Suykens
et al., 2002). Here we only consider the traditional non-convex formulation whose solution can be easily
obtained via eigen decomposition. This also illustrates that our method can also be applied to non-convex
optimization problems in some special cases.

619

Wu, Schölkopf and Bakır

The following is an equivalent form of (49)

min
w∈F

−w>Aw, (50)

subject to w>B̂w = 1, (51)

where B̂ = B + µI, implying that B̂ is strictly positive definite.
Following our proposed approach, in order to build sparse KFD (SKFD), we have to

solve the following problem:

min
w∈F ,β∈RNz ,Z∈Rd×Nz

−w>Aw, (52)

subject to w>B̂w = 1, (53)

w =
Nz∑
i=1

φ(zi)βi. (54)

Substituting (54) into (52) and (53), we have

min
β∈RNz ,Z∈Rd×Nz

−β>Azβ, (55)

subject to β>Bzβ> = 1, (56)

where Az = (φ(Z))>A(φ(Z)) and Bz = (φ(Z))>B̂(φ(Z)), where with a little abuse of
symbols, we use φ(Z) to denote the matrix [φ(z1), . . . , φ(zNz)]. Note that in the problem
(55)–(56), Az ∈ RNz×Nz is positive definite, while Bz ∈ RNz×Nz is strictly positive definite.

As before, we define the marginal function W (Z) as the minimal value of the following
optimization problem:

min
β∈RNz

−β>Azβ, (57)

subject to β>Bzβ> = 1. (58)

Note the above problem is the same as the problem (55)–(56) except that in the above
problem, Z is fixed rather than variable.

Now we need to consider how to compute W (Z) and ∇W (Z). To compute the function
value W (Z), we need to solve the problem (57)–(58). By the Lagrange multiplier method,
this problem can be solved by solving the following unconstrained optimization problem:

min
β∈RNz ,λ∈R

J(β, λ) = −β>Azβ + λ(β>Bzβ> − 1), (59)

with Lagrange multiplier λ ∈ R.
The derivative of J(β, λ) with respect to β and λ must vanish, leading to

Azβ = λBzβ, (60)
β>Bzβ> = 1. (61)

Equation (60) shows that β should be an eigenvector of the matrix (Bz)−1Az and λ should
be the corresponding eigenvalue. Left multiplying both sides of equation (60) by β> and
using (61), we have

β>Azβ = λ. (62)

620

A Direct Method for Building Sparse Kernel Learning Algorithms

Since −β>Azβ is the objective function (57) we are minimizing, we can see that its mini-
mal value should equal the negative of the largest eigenvalue of (Bz)−1Az. Therefore the
function value W (Z) is obtained.

Let β̄ and λ̄ denote the optimal solution and the corresponding Lagrange multiplier of
problem (57)–(58), as derived above, λ̄ is the largest eigenvalue of (Bz)−1Az and β̄ is the
corresponding eigenvector multiplied by a constant such that equation (61) is satisfied.

As mentioned above, Bz is strictly positive definite. Here we assume that that there
is an unique eigenvector corresponding to λ̄. As equation (58) is the only constraint of
problem (57)–(58), the optimal solution β̄ is Mangasarian-Fromovitz regular. And it is
straightforward to verify that the set of feasible solutions S(Z) is uniformly compact if Bz

is strictly positive definite. Therefore according to lemma 1, the derivative of W (Z) with
respect to zuv, which denotes the v-th component of vector zu, 1 ≤ u ≤ Nz, 1 ≤ v ≤ d,
exists and can be computed as follows:

∂W (Z)
∂zuv

= −β̄
> ∂Az

∂zuv
β̄ + λ̄β̄

> ∂Bz

∂zuv
β̄. (63)

Now that both the function value W (Z) and the gradient ∇W (Z) can be computed, the
(local) optimum of the problem (52)–(54) can be computed by the gradient based algorithm.

After obtaining the XVs zi by solving the problem (52)–(54), we can take the solution
βi of this problem as the expansion coefficients. However we can not get the bias b for
the resulting KM in this way (c.f equation (1)). As mentioned before, having zi, we can
apply our proposed method that the expansion coefficients and the bias can be calculated
by solving the problem (37)–(39).

Experimental results on six classification benchmarks for the proposed SKFD algorithm
are provided in table 3.

Data Set Banana Breast Cancer Titanic Waveform German Image
SVM NSV 86.7 112.8 70.6 158.9 408.2 172.1

Error(%) 11.8 28.6 22.1 9.9 22.5 2.8
KFD Nz 400 200 150 400 700 1300

Error(%) 10.8 25.8 23.2 9.9 23.7 3.3
RS 21.9 27.9 26.6 10.0 22.9 18.3

Nz/NSV MRS 17.5 29.0 22.6 9.9 22.6 6.9
= 10% RSVM 17.5 31.0 22.9 11.6 24.5 14.2

MRSVM 16.9 30.3 23.9 11.8 23.7 12.7
SKFD 10.8 25.5 23.5 9.9 23.5 4.0

Table 3: Results on six classification benchmarks. The SKFD is initialized with the k-
means algorithm. The best results among the sparse learning algorithms are in
boldface. Similarly as before, the results reported here are the averages over the
first 10 training/test splits, except for the KFD algorithm, whose results are taken
directly from (Schölkopf and Smola, 2002), which are the averages over all the 100
training/test splits. For the KFD algorithm, the number of expansion vectors Nz

is the same as the number of training data since KFD is not sparse at all.

621

Wu, Schölkopf and Bakır

The results presented in table 3 validate the effectiveness of the proposed SKFD algo-
rithm. Furthermore, the original KFD algorithm is not sparse all all, i.e. all the training
data need to be stored as the XVs. Therefore the proposed SKFD algorithm not only accel-
erates the test phase, but also significantly reduces the space needed for storing the resulting
KM. For example, the Banana data set contains 400 training data, implying that on average
only 86.7×10% = 8.7 XVs need to stored in the resulting KM trained by the SKFD, saving
about 1− 8.7/400 = 97.8% storage compared with the orignial KFD algorithm.

Appendix B. Formal Definitions of the Two Conditions in Lemma 1

For each Z ∈ Rd×Nz , let S(Z) denote the feasible set of problem (16)–(18)

S(Z) = {x | gi(x,Z) ≤ 0, 1 ≤ i ≤ Ng} ∩ {x | hj(x,Z) = 0, 1 ≤ j ≤ Nh}.

Definition 3 (Gauvin and Dubeau, 1982) The feasible set S(Z) of problem (16)–(18) is
uniformly compact at Z̄ if there is a neighborhood N (Z̄) of Z̄ such that the closure of⋃

Z∈N (Z̄) S(Z) is compact.

Definition 4 (Mangasarian, 1969) For any Z, a feasible point x̄ ∈ S(Z) of problem (16)–
(18) is said to be Mangasarian-Fromovitz regular if it satisfies the following Mangasarian-
Fromovitz regularity condition:

1. There exists a vector v such that

v> ∇xgi(x,Z)|x=x̄ < 0, i ∈ {i | gi(x̄,Z) = 0}, (64)
v> ∇xhj(x,Z)|x=x̄ = 0, 1 ≤ j ≤ Nh, (65)

2. The gradients {∇xhj(x,Z)|x=x̄ , 1 ≤ j ≤ Nh} are linearly independent,

where ∇x denotes the gradient with respect to the variables x.

Appendix C. Proof of Corollary 2

Proof The proof is just to verify all the conditions in lemma 1.
First, for the soft margin SVM training problem (37)–(39), it is known that if the kernel

function K̂z(·, ·) is strictly positive definite then the problem has an unique solution and
the corresponding Lagrange multipliers are also unique.

Second, it can be seen that at any Z ∈ Rd×Nz , the set of feasible solutions S(Z) is
compact and does not depend on Z, therefore S(Z) is uniformly compact at any Z ∈ Rd×Nz .

Third, obviously the second part of the Mangasarian-Fromovitz regularity condition
holds since there is only one equality constraint. Now we prove that the first part of
the Mangasarian-Fromovitz regularity condition also holds by constructing a vector v =
[v1, . . . , vN]> ∈ RN that satisfies both (64) and (65). For ease of description, we partition
the index set {1, . . . , N} into the following three subsets according to αz

i (1 ≤ i ≤ N),
which are the solution of problem (37)–(39): S1 = {i | αz

i = 0}, S2 = {i | αz
i = C} and

S3 = {i | 0 < αz
i < C}. Furthermore, for any vector t = [t1, . . . , tN]> ∈ RN , we use tsk

(1 ≤ k ≤ 3) to denote the sub-vector of t that is composed of ti for i ∈ Sk, 1 ≤ k ≤ 3.

622

A Direct Method for Building Sparse Kernel Learning Algorithms

First, to make (64) hold, we can simply assign an arbitrary positive value to vi if i ∈ S1,
and an arbitrary negative value to vj if j ∈ S2. To make (65) true, we distinguish two cases:

Case 1, |S3| > 0. In this case, the vector vs3 can be easily computed as

vs3 = − ys3

‖ys3‖
2

∑
i∈S1∪S2

viyi,

where y = [y1, . . . yN]>. The above equation results in v>y = 0, which is the same as (65).
Case 2, |S3| = 0. In this case, all the resulting support vectors correspond to αz

i for
i ∈ S2, which come from both classes according to the assumptions in corollary 2. Therefore
the left side of equation (65) equals

v>y =
∑
i∈S1

viyi +
∑

i∈S2, yi>0

viyi +
∑

i∈S2, yi<0

viyi

=
∑
i∈S1

viyi +
∑

i∈S2, yi>0

vi −
∑

i∈S2, yi<0

vi. (66)

Recall that we construct v such that vi < 0 for i ∈ S2. So if v>y = 0, equation (65) already
holds. If v>y > 0, we can always decrease the values (or equivalently, increase the absolute
values) of vi in the second term of equation (66) to make v>y = 0, while at the same time
to keep vi < 0 for i ∈ S2 so that (64) still holds. Similarly, if v>y < 0, we can decrease the
values of vi in the third term of equation (66).

Thus the first part of the Mangasarian-Fromovitz regularity condition also holds. Hence
the optimal solution of problem (37)–(39) is Mangasarian-Fromovitz regular.

Therefore all the conditions in lemma 1 are satisfied and (46) follows from (19) since the
constraints of problem (37)–(39) do not depend on Z, which means both the second and
the third terms in (19) are 0.

References

K. P. Bennett. Combining support vector and mathematical programming methods for
classification. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in
Kernel Methods, pages 307–326. The MIT Press, Cambridge MA, 1999.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford,
UK, 1995.

C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, editor, Proc. 13th
International Conference on Machine Learning, pages 71–77. Morgan Kaufmann, 1996.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 46(1-3):131–159, 2002.

J. Gauvin and F. Dubeau. Differential properties of the marginal function in mathematical
programming. Mathematical Programming Study, 19:101–119, 1982.

623

Wu, Schölkopf and Bakır

G. R. G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan. A robust minimax
approach to classification. Journal of Machine Learning Research, 3:555–582, 2002.

Y. Lee and O. L. Mangasarian. RSVM: reduced support vector machines. In CD Proceedings
of the First SIAM International Conference on Data Mining, Chicago, 2001.

K. Lin and C. Lin. A study on reduced support vector machines. IEEE Transactions on
Neural Networks, 14:1449–1459, 2003.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Math. Programming, 45(3, (Ser. B)):503–528, 1989.

O. L. Mangasarian. Nonlinear Programming. McGraw-Hill, New York, 1969.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. J. Smola, and K.-R. Mueller. Constructing
descriptive and discriminative non-linear features: Rayleigh coefficients in kernel feature
spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623–628,
2003.

P. B. Nair, A. Choudhury, and A. J. Keane. Some greedy learning algorithms for sparse
regression and classification with Mercer kernels. Journal of Machine Learning Research,
3:781–801, 2002.

B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press, Cambridge, MA,
2002.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, UK, 2004.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing
Systems 18, pages 1259–1266. MIT Press, Cambridge, MA, 2006.

I. Steinwart. Sparseness of support vector machine. Journal of Machine Learning Research,
4:1071–1105, 2003.

J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Vandewalle. Least
Squares Support Vector Machines. World Scientific, Singapore, 2002.

M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211–244, 2001.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

M. Wu, B. Schölkopf, and G. Bakir. Building sparse large margin classifiers. In L. D. Raedt
and S. Wrobel, editors, Proc. 22th International Conference on Machine Learning, pages
1001–1008. ACM, 2005.

624

Journal of Machine Learning Research 7 (2006) 625–644 Submitted 1/05; Revised 9/05; Published 4/06

Stochastic Complexities of Gaussian Mixtures
in Variational Bayesian Approximation

Kazuho Watanabe KAZUHO23@PI.TITECH.AC.JP

Department of Computational Intelligence and Systems Science
Tokyo Institute of Technology
MailBox R2-5, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan

Sumio Watanabe SWATANAB@PI.TITECH.AC.JP

P & I Lab.
Tokyo Institute of Technology
MailBox R2-5, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan

Editor: Tommi Jaakkola

Abstract
Bayesian learning has been widely used and proved to be effective in many data modeling prob-
lems. However, computations involved in it require huge costs and generally cannot be performed
exactly. The variational Bayesian approach, proposed as anapproximation of Bayesian learning,
has provided computational tractability and good generalization performance in many applications.

The properties and capabilities of variational Bayesian learning itself have not been clarified
yet. It is still unknown how good approximation the variational Bayesian approach can achieve.
In this paper, we discuss variational Bayesian learning of Gaussian mixture models and derive up-
per and lower bounds of variational stochastic complexities. The variational stochastic complexity,
which corresponds to the minimum variational free energy and a lower bound of the Bayesian evi-
dence, not only becomes important in addressing the model selection problem, but also enables us
to discuss the accuracy of the variational Bayesian approach as an approximation of true Bayesian
learning.
Keywords: Gaussian mixture model, variational Bayesian learning, stochastic complexity

1. Introduction

A Gaussian mixture model is a learning machine which estimates the target probability density
by the sum of normal distributions. This learning machine is widely used especially in statistical
pattern recognition and data clustering. In spite of wide range of its applications, its properties
have not yet been made clear enough. This is because the Gaussian mixture model is a non-regular
statistical model. A statistical model is regular if and only if a set of conditions (referred to as
“regularity conditions”) that ensure the asymptotic normality of the maximum likelihood estimator
is satisfied. The regularity conditions are not satisfied for mixture models because the parameters
are not identifiable, in other words, the mapping from parameters to probability distributions is not
one-to-one. Other than mixture models, statistical models with hidden variables such as hidden
Markov models and Bayesian networks fall into the class of non-regular models.

Recently, a lot of attentions has been paid to the non-regular models. In Bayesian learning,
mathematical foundation for analyzing non-regular models was established with an algebraic ge-
ometrical method (Watanabe, 2001). The Bayesian stochastic complexities orthe marginal like-

c©2006 Kazuho Watanabe and Sumio Watanabe.

WATANABE AND WATANABE

lihoods of several non-regular models have been clarified in some recent studies (Yamazaki and
Watanabe, 2003a,b). The Bayesian framework provides better generalization performance in non-
regular models than the maximum likelihood (ML) method that tends to overfit the data.

In the Bayesian framework, rather than learning a single model, one computes the distribu-
tion over all possible parameter values and considers an ensemble with respect to the posterior
distribution. However, computing the Bayesian posterior can seldom be performed exactly and re-
quires some approximations. Well-known approximate methods include Markovchain Monte Carlo
(MCMC) methods and the Laplace approximation. The former attempts to find the exact posterior
distribution but typically requires huge computational resources. The latterapproximates the poste-
rior distribution by a Gaussian distribution, which can be insufficient for models containing hidden
variables.

The variational Bayesian (VB) framework was proposed as another approximation for com-
putations in the models with hidden variables (Attias, 1999; Ghahramani and Beal, 2000). This
framework provides computationally tractable posterior distributions over thehidden variables and
the parameters with an iterative algorithm. The variational Bayesian framework has been applied
to various real-world data modeling problems and empirically proved to be both computational
tractable and generalize well.

The properties of variational Bayesian learning remain unclear from a theoretical stand point.
Although the variational Bayesian framework is an approximation, questionslike how accurately it
approximates the true distribution have yet to be answered.

In this paper, we focus on variational Bayesian learning of Gaussian mixture models. As the
main contribution, we derive asymptotic upper and lower bounds on the variational stochastic com-
plexity. It is shown that the variational stochastic complexity is smaller than in regular statistical
models, so the advantage of Bayesian learning still remains in variational Bayesian learning. The
variational stochastic complexity, which corresponds to the minimum variationalfree energy and
a lower bound of the Bayesian evidence, is an important quantity for model selection. Giving the
asymptotic bounds on it also contributes to the following two issues. One is the accuracy of vari-
ational Bayesian learning as an approximation method since the variational stochastic complexity
shows the distance from the variational posterior distribution to the true Bayesian posterior distri-
bution in terms of Kullback information. Another is the influence of the hyperparameters on the
learning process. Since the variational Bayesian algorithm minimizes the variational free energy,
the derived bounds indicate how the hyperparameters influence the learning process. Our results
indicate how to determine the hyperparameter values before the learning process.

We consider the case in which the true distribution is contained in the learned model, in other
words, the model has redundant components to attain the true distribution. Analyzing the variational
stochastic complexity in this case is most valuable for comparing variational Bayesian learning with
true Bayesian learning. This is because the advantage of Bayesian learning is typical in this case
(Watanabe, 2001). Furthermore, this analysis is necessary and essential for addressing the model
selection and hypothesis testing problems.

This paper is organized as follows. In Section 2, the Gaussian mixture modelis briefly intro-
duced. In Section 3, we describe Bayesian learning. In Section 4, the variational Bayesian frame-
work is outlined and the variational stochastic complexity is defined. In Section5, we state the main
theorem of this paper. The main theorem is proved in Section 6. In Section 7,we experimentally
examine the quality of the bounds given in the main theorem. Discussion and conclusions follow in
Section 8 and Section 9.

626

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

2. Gaussian Mixture Models

Denote byg(x|µ,Σ) a density function of anM-dimensional normal distribution whose mean is
µ ∈ RM and variance-covariance matrix isΣ ∈ RM×M. A Gaussian mixture modelp(x|θ) of an
M-dimensional inputx∈ RM with a parameter vectorθ is defined by

p(x|θ) =
K

∑
k=1

akg(x|µk,Σk),

where integerK is the number of components and{ak|ak ≥ 0,∑K
k=1ak = 1} is the set of mixing

proportions. The parameterθ of the model isθ = {ak,µk,Σk}K
k=1.

In some applications, the parameter is restricted to the means of each component and it is as-
sumed that there is no correlation between each input dimension. In this case, the model is written
by

p(x|θ) =
K

∑
k=1

ak
√

2πσ2
k

M exp(−‖x−µk‖2

2σ2
k

), (1)

whereσk > 0 is a constant.
In this paper, we consider this type eq.(1) of Gaussian mixture models in the variational Bayesian

framework and show upper and lower bounds of the variational stochastic complexity in Theorem
3.

The Gaussian mixture model can be rewritten as follows using a hidden variabley= (y1, · · · ,yK)∈
{(1,0, · · · ,0),(0,1, · · · ,0), · · · ,(0,0, · · · ,1)},

p(x,y|θ) =
K

∏
k=1

[ak
√

2πσ2
k

M exp{−‖x−µk‖2

2σ2
k

}
]yk

.

The hidden variabley is not observed and is representing the component from which the datumx is
generated. If the datumx is from thekth component, thenyk = 1, if otherwise,yk = 0. And

∑
y

p(x,y|θ) = p(x|θ)

holds where the sum overy ranges over all possible values of the hidden variable.
The Gaussian mixture model is a non-regular statistical model, since the parameters are non-

identifiable. More specifically, if the true distribution can be realized by a model with the smaller
number of components, the true parameter is not a point but an analytic set with singularities. If
the parameters are non-identifiable, the usual asymptotic theory of regularstatistical models cannot
be applied. Some studies have revealed that Gaussian mixture models have quite different prop-
erties from those of regular statistical models. In particular, the Gaussian mixture model given by
eq.(1) has been studied as a prototype of non-regular models in the case of the maximum likelihood
estimation(Hartigan, 1985; Dacunha-Castelle and Gassiat, 1997).

3. Bayesian Learning

Supposen training samplesXn = {x1, · · · ,xn} are independently and identically taken from the true
distribution p0(x). In Bayesian learning of a modelp(x|θ) whose parameter isθ, first, the prior

627

WATANABE AND WATANABE

distributionϕ(θ) on the parameterθ is set. Then the posterior distributionp(θ|Xn) is computed
from the given data set and the prior by

p(θ|Xn) =
1

Z(Xn)
ϕ(θ)

n

∏
i=1

p(xi |θ),

whereZ(Xn) is the normalization constant that is also known as the marginal likelihood or the
Bayesian evidence of the data setXn (Mackay, 1992).

The Bayesian predictive distributionp(x|Xn) is given by averaging the model over the posterior
distribution as follows,

p(x|Xn) =
Z

p(x|θ)p(θ|Xn)dθ,

and its generalization error can be measured by the Kullback information from the true distribution,1

K(p0(x)||p(x|Xn)) =
Z

p0(x) log
p0(x)

p(x|Xn)
dx.

The Bayesian stochastic complexityF(Xn) is defined by

F(Xn) = − logZ(Xn), (2)

which is also called the free energy and is important in most data modeling problems. Practically, it
is used as a criterion by which the learning model is selected and the hyperparameters in the prior
are optimized (Akaike, 1980; Schwarz, 1978).

The Bayesian posterior can be rewritten as

p(θ|Xn) =
1

Z0(Xn)
exp(−nHn(θ))ϕ(θ),

whereHn(θ) is the empirical Kullback information,

Hn(θ) =
1
n

n

∑
i=1

log
p0(xi)

p(xi |θ)
, (3)

andZ0(Xn) is the normalization constant. Let

S(Xn) = −
n

∑
i=1

logp0(x),

and define the normalized Bayesian stochastic complexityF0(Xn) by

F0(X
n) = − logZ0(X

n)

= F(Xn)−S(Xn). (4)

1. Throughout this paper, we use the notationK(q(x)||p(x)) for the Kullback information from a distributionq(x) to a
distributionp(x), that is,

K(q(x)||p(x)) =
Z

q(x) log
q(x)
p(x)

dx.

628

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

It is noted that the empirical entropyS(Xn) does not depend on the modelp(x|θ). Therefore
minimization ofF(Xn) is equivalent to that ofF0(Xn).

Let EXn[·] denote the expectation over all sets of training samples. Then it follows fromeq.(4)
that

EXn[F(Xn)−F0(X
n)] = nS,

whereS= −R

p0(x) logp0(x)dx is the entropy. There is the following relationship between the
average Bayesian stochastic complexity and the average generalization error(Levin et al., 1990),

EXn[K(p0(x)||p(x|Xn))] = EXn+1[F(Xn+1)]−EXn[F(Xn)]−S

= EXn+1[F0(X
n+1)]−EXn[F0(X

n)]. (5)

Recently, in Bayesian learning, an advanced mathematical method for analyzing non-regular
models was established(Watanabe, 2001), which enabled us to clarify the asymptotic behavior of
the Bayesian stochastic complexity of non-regular models. More specifically, by using concepts
in algebraic analysis, it was proved that the average normalized Bayesianstochastic complexity
defined byEXn[F0(Xn)] has the following asymptotic form,

EXn[F0(X
n)] ≃ λ logn− (m−1) log logn+O(1), (6)

whereλ andm are the rational number and the natural number respectively which are determined
by the singularities of the true parameter. In regular statistical models, 2λ is equal to the number
of parameters andm = 1, whereas in non-regular models such as Gaussian mixture models, 2λ
is not larger than the number of parameters andm≥ 1. This means non-regular models have an
advantage in Bayesian learning. From eq.(5), if the asymptotic form of the average normalized
Bayesian stochastic complexity is given by eq.(6), the average generalization error is given by

EXn[K(p0(x)||p(x|Xn))] ≃ λ
n

+o(
1
n
). (7)

Since the coefficientλ is proportional to the average generalization error, Bayesian learning ismore
suitable for non-regular models than the maximum likelihood (ML) method.

However, in order to carry out Bayesian learning practically, one computes the Bayesian stochas-
tic complexity or the predictive distribution by integrating over the posterior distribution, which
typically cannot be performed analytically.

Hence, approximations must be made. The Laplace approximation is a well-known and simple
method that approximates the posterior distribution by a Gaussian distribution. This approach gives
reasonable approximation in the case of regular statistical models whose posteriors converge to
normal distributions as the sample sizen tends to infinity. In contrast, posterior distributions of
non-regular models do not converge to normal distributions in general, even asn tends to infinity.
Therefore, the Laplace approximation can be insufficient for non-regular models. Markov chain
Monte Carlo (MCMC) method can provide a better approximation. It attempts to sample from the
exact posterior distribution but typically requires vast computational resources.

As another approximation, the variational Bayesian framework was proposed (Attias, 1999;
Beal, 2003; Ghahramani and Beal, 2000).

4. Variational Bayesian Learning

In this section, we outline the variational Bayesian framework and define thevariational stochastic
complexity.

629

WATANABE AND WATANABE

4.1 The Variational Bayesian Framework

Using the complete likelihood of the data{Xn,Yn}, with the corresponding hidden variablesYn =
{y1, · · · ,yn}, we can rewrite the Bayesian stochastic complexity eq.(2) as

F(Xn) = − log
Z

∑
Yn

ϕ(θ)
n

∏
i=1

p(xi ,yi |θ)dθ

= − log
Z

∑
Yn

p(Xn,Yn,θ)dθ,

where the sum overYn ranges over all possible values of all hidden variables.
The variational Bayesian framework starts by upper bounding the Bayesian stochastic complex-

ity. For an arbitrary conditional distributionq(Yn,θ|Xn) on the hidden variables and the parameters,
the Bayesian stochastic complexity can be upper bounded by applying Jensen’s inequality,

F(Xn) ≤ ∑
Yn

Z

q(Yn,θ|Xn) log
q(Yn,θ|Xn)

p(Xn,Yn,θ)
dθ

≡ F [q].

This inequality becomes an equality if and only ifq(Yn,θ|Xn) = p(Yn,θ|Xn), that is,q(Yn,θ|Xn)
equals the Bayesian posterior distribution. This means that the smaller the functional F [q] is, the
closer the distributionq(Yn,θ|Xn) is to the true Bayesian posterior distribution. The functionalF [q]
is called the variational free energy.

The variational Bayesian approach makes an approximation to ensure a computationally tractable
posterior. More specifically, assuming the parameters and the hidden variables are conditionally
independent of each other, the variational Bayesian approach restricts the set ofq(Yn,θ|Xn) to dis-
tributions that have the form

q(Yn,θ|Xn) = Q(Yn|Xn)r(θ|Xn), (8)

whereQ(Yn|Xn) andr(θ|Xn) are probability distributions over the hidden variables and the param-
eters respectively. The distributionq(Yn,θ|Xn) that minimizes the functionalF [q] is termed the
optimal variational posterior and generally differs from the true Bayesianposterior.

Minimization of the functionalF [q] with respect to the distributionsQ(Yn|Xn) andr(θ|Xn) can
be performed by using variational methods. Solving the minimization problem under the constraints
R

r(θ|Xn)dθ = 1 and∑Yn Q(Yn|Xn) = 1 gives the following theorem. The proof is well-known(Beal,
2003; Sato, 2001), thus it is omitted in this paper.

Theorem 1 If the functionalF [q] is minimized under the constraint eq.(8) then the variational
posteriors, r(θ|Xn) and Q(Yn|Xn), satisfy

r(θ|Xn) =
1
Cr

ϕ(θ)exp〈logp(Xn,Yn|θ)〉Q(Yn|Xn), (9)

and

Q(Yn|Xn) =
1

CQ
exp〈logp(Xn,Yn|θ)〉r(θ|Xn), (10)

where Cr and CQ are the normalization constants.2

2. Hereafter for an arbitrary distributionp(x), we use the notation〈·〉p(x) for the expected value overp(x).

630

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

Note that eq.(9) and eq.(10) give only the necessary condition forr(θ|Xn) andQ(Yn|Xn) mini-
mize the functionalF [q]. The variational posteriors that satisfy eq.(9) and eq.(10) are searched by
an iterative algorithm. It is known that this algorithm is a natural gradient method when the model
is in the general exponential family of models with hidden variables (Sato, 2001).

4.2 Stochastic Complexity of Variational Bayes

We define the variational stochastic complexityF(Xn) by the minimum value of the functionalF [q]
attained by the above optimal variational posteriors, that is ,

F(Xn) = min
r,Q

F [q].

The variational stochastic complexityF(Xn) gives an estimate (upper bound) for the true Bayesian
stochastic complexityF(Xn), which is the minus log evidence. Therefore,F(Xn) is used for the
model selection in variational Bayesian learning(Beal, 2003). Moreover, the difference between
F(Xn) and the Bayesian stochastic complexityF(Xn) is the Kullback information from the optimal
variational posterior to the true posterior. That is

F(Xn)−F(Xn) = min
r,Q

K(q(Yn,θ|Xn)||p(Yn,θ|Xn)).

Hence, comparison betweenF(Xn) andF(Xn) shows the accuracy of the variational Bayesian ap-
proach as an approximation of true Bayesian learning.

We define the normalized variational stochastic complexityF0(Xn) by

F0(X
n) = F(Xn)−S(Xn). (11)

From Theorem 1, the following lemma is obtained. The proof is given in Appendix.

Lemma 2
F0(X

n) = min
r(θ|Xn)

{K(r(θ|Xn)||ϕ(θ))− (logCQ +S(Xn))}, (12)

where
CQ = ∑

Yn

exp〈logp(Xn,Yn|θ)〉r(θ|Xn).

The variational posteriorsr(θ|Xn) andQ(Yn|Xn) that satisfy eq.(9) and eq.(10) are parameter-
ized by the variational parameterθ defined by

θ = 〈θ〉r(θ|Xn),

if the modelp(x,y|θ) is included in the exponential family(Beal, 2003; Ghahramani and Beal, 2000).
Then it is noted thatCQ in eq.(12) is also parameterized byθ. Therefore, henceforth we denote
r(θ|Xn) andCQ asr(θ|θ) andCQ(θ) when they are regarded as functions of the variational parameter
θ.

We define the variational estimatorθvb of θ by the variational parameterθ that attains the mini-
mum value of the normalized variational stochastic complexityF0(Xn). By this definition, Lemma
2 claims that

θvb = argmin
θ

{K(r(θ|θ)||ϕ(θ))− (logCQ(θ)+S(Xn))}. (13)

In variational Bayesian learning, the variational parameterθ is updated iteratively to find the
optimal solutionθvb. Therefore, our aim is to evaluate the minimum value of the right hand side of
eq.(13) as a function of the variational parameterθ.

631

WATANABE AND WATANABE

5. Main Results

In this section, we describe two conditions and give the upper and lower bounds of the normalized
variational stochastic complexity in Theorem 3.

We assume the following conditions.

(i) The true distributionp0(x) is anM-dimensional Gaussian mixture modelp(x|θ0) which has
K0 components and the parameterθ0 = {a∗k,µ

∗
k}

K0
k=1,

p(x|θ0) =
K0

∑
k=1

a∗k√
2πM exp(−‖x−µ∗k‖2

2
),

wherex,µ∗k ∈ RM. And suppose that the true distribution can be realized by the model, that is,
the modelp(x|θ) hasK components,

p(x|θ) =
K

∑
k=1

ak√
2πM exp(−‖x−µk‖2

2
), (14)

andK ≥ K0 holds.

(ii) The prior of the parameters is the product of the following two distributionson a = {ak}K
k=1

andµ= {µk}K
k=1

ϕ(a) =
Γ(Kφ0)

Γ(φ0)K

K

∏
k=1

aφ0−1
k , (15)

ϕ(µ) =
K

∏
k=1

√

ξ0

2π

M

exp(−ξ0‖µk−ν0‖2

2
), (16)

whereξ0 > 0, ν0 ∈ RM andφ0 > 0 are constants called hyperparameters. These are Dirichlet
and normal distributions respectively. They are the conjugate prior distributions and are often
used in variational Bayesian learning of Gaussian mixture models.

Under these conditions, we prove the following theorem. The proof will appear in the next section.

Theorem 3 (Main Result) Assume the conditions (i) and (ii). Then the normalized variational
stochastic complexityF0(Xn) defined by eq.(11) satisfies

λ logn+nHn(θvb)+C1 ≤ F0(X
n) ≤ λ logn+C2, (17)

with probability 1 for an arbitrary natural number n where C1,C2 are constants independent of n
and the coefficientsλ, λ are given by

λ =

{

(K−1)φ0 + M
2 (φ0 ≤ M+1

2),
MK+K−1

2 (φ0 > M+1
2),

λ =

{

(K−K0)φ0 + MK0+K0−1
2 (φ0 ≤ M+1

2),
MK+K−1

2 (φ0 > M+1
2).

(18)

Taking expectation over all sets of training samples, we obtain the following corollary.

632

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

Corollary 4 Assume the conditions (i) and (ii). Then the average of the normalized variational
stochastic complexityF0(Xn) satisfies

λ logn+EXn[nHn(θvb)]+C1 ≤ EXn[F0(X
n)] ≤ λ logn+C2.

Remark. The following bounds for the variational stochastic complexityF(Xn) = F0(Xn)+S(Xn)
are immediately obtained from Theorem 3 and Corollary 4,

S(Xn)+λ logn+nHn(θvb)+C1 ≤ F(Xn) ≤ S(Xn)+λ logn+C2,

and
nS+λ logn+EXn[nHn(θvb)]+C1 ≤ EXn[F(Xn)] ≤ nS+λ logn+C2,

whereS(Xn) = −∑n
i=1 logp(xi |θ0) is the empirical entropy andS= −R

p(x|θ0) logp(x|θ0)dx is the
entropy.

Since the dimension of the parameterθ is MK +K −1, the penalty term in the Bayesian infor-
mation criterion (BIC) (Schwarz, 1978) is given byλBIC logn where

λBIC =
MK +K−1

2
. (19)

Note that, unlike for regular statistical models, the advantage of Bayesian learning for non-regular
models is demonstrated by the asymptotic analysis as seen in eq.(6) and eq.(7).Theorem 3 claims
that the coefficientλ of logn is smaller thanλBIC whenφ0 ≤ (M + 1)/2. This means the normal-
ized variational stochastic complexityF0(Xn) becomes smaller than the BIC and implies that the
advantage of non-regular models in Bayesian learning still remains in variational Bayesian learning.

Theorem 3 also shows how the hyperparameters affect the learning process and implies that the
hyperparameterφ0 is the only hyperparameter that the leading term of the normalized variational
stochastic complexityF0(Xn) depends on. The effects of the hyperparameters are discussed in
Section 8.

In the condition (i), we assume that the true distribution is contained in the learner model (K0 ≤
K). This assumption is necessary for assessing model selection or hypothesis testing methods and
for developing a new method for these tasks. In real-world applications, the true distribution might
not be represented by any model with finite components. Also if the model is complex enough to
almost contain the true distribution with finite training samples, we need to considerthe case when
the model is redundant.

6. Proof of Theorem 3

In this section, we prove Theorem 3. First of all, we derive the variational posterior r(θ|Xn),
Q(Yn|Xn) and the variational parameterθ for the Gaussian mixture model given by eq.(14).

6.1 Variational Posterior for Gaussian Mixture Model

For the complete-data set{Xn,Yn} = {(x1,y1), · · · ,(xn,yn)}, let

yk
i = 〈yk

i 〉Q(Yn|Xn), nk =
n

∑
i=1

yk
i and νk =

1
nk

n

∑
i=1

yk
i xi ,

633

WATANABE AND WATANABE

whereyk
i = 1 if ith datumxi is from thekth component, if otherwise,yk

i = 0. The variablenk is
the expected number of times data come from thekth component andνk is the mean of them. Note
that the variablesnk andνk satisfy the constraints∑K

k=1nk = n and∑K
k=1nkνk = ∑n

i=1xi . From eq.(9)
and the respective prior eq.(15) and eq.(16), the variational posteriorr(θ|Xn) = r(a|Xn)r(µ|Xn) is
obtained as the product of the following two distributions,

r(a|Xn) =
Γ(n+Kφ0)

∏K
k=1 Γ(ak(n+Kφ0))

K

∏
k=1

aak(n+Kφ0)−1
k ,

and

r(µ|Xn) =
K

∏
k=1

1
√

2πσ2
k

M exp(
−‖µk−µk‖2

2σ2
k

),

where

ak =
nk +φ0

n+Kφ0
, σ2

k =
1

nk +ξ0
, and µk =

nkνk +ξ0ν0

nk +ξ0
.

From eq.(10), the variational posteriorQ(Yn|Xn) is given by

Q(Yn|Xn) =
1

CQ

n

∏
i=1

exp
[

yk
i {Ψ(nk +φ0)−Ψ(n+Kφ0)−

‖xi −µk‖2

2
− M

2
(log2π+

1
nk +ξ0

)}
]

,

whereΨ(x) = Γ′(x)/Γ(x) is the di-gamma(psi) function and we used

〈logak〉r(a|Xn) = Ψ(nk +φ0)−Ψ(n+Kφ0).

The variational parameterθ is given byθ = 〈θ〉r(θ|Xn) = {ak,µk}K
k=1. It is noted thatr(θ|Xn) and

Q(Yn|Xn) are parameterized byθ sincenk can be replaced by usingak = nk+φ0
n+Kφ0

. Henceforth, we

denoter(θ|Xn) andCQ asr(θ|θ) andCQ(θ).

6.2 Lemmas

Before proving Theorem 3, we show two lemmas where the two termsK(r(θ|θ)||ϕ(θ)) and(logCQ(θ)+
S(Xn)) in Lemma 2 are respectively evaluated. In the proofs (put in Appendix) ofthe two lemmas,
we use inequalities on the di-gamma functionΨ(x) and the log-gamma function logΓ(x), for x > 0
(Alzer, 1997),

1
2x

< logx−Ψ(x) <
1
x
, (20)

and

0≤ logΓ(x)−{(x− 1
2
) logx−x+

1
2

log2π} ≤ 1
12x

. (21)

The inequalities (20) ensure that substituting logx for Ψ(x) only contributes additive constant terms
to the normalized variational stochastic complexity. The substitution for logΓ(x) is given by eq.(21)
as well.

Lemma 5

∣

∣

∣
K(r(θ|θ)||ϕ(θ))−{G(a)+

ξ0

2

K

∑
k=1

‖µk−ν0‖2}
∣

∣

∣
≤C,

634

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

holds where C is a constant and the function G(a) of a = {ak}K
k=1 is defined by

G(a) =
MK +K−1

2
logn+{M

2
− (φ0−

1
2
)}

K

∑
k=1

logak.

Lemma 6

logCQ(θ) =
n

∑
i=1

log
[K

∑
k=1

1
√

2πM exp{Ψ(nk +φ0)−Ψ(n+Kφ0)−
‖xi −µk‖2

2
− M

2
1

nk +ξ0
}
]

, (22)

and
nHn(θ)− n

n+Kφ0
≤−(logCQ(θ)+S(Xn)) ≤ nHn(θ)− n

2(n+Kφ0)
, (23)

where Hn(θ) is given by eq.(3) andHn(θ) is defined by

Hn(θ) =
1
n

n

∑
i=1

log
p(xi |θ0)

∑K
k=1

ak√
2πM exp{− ‖xi−µk‖2

2 − M+2
2(nk+min{φ0,ξ0})}

.

6.3 Upper and Lower Bounds

Now from the above lemmas, we prove Theorem 3 by showing the upper bound and the lower bound
respectively.
(Proof of Theorem 3)
Proof First we show the upper bound in eq.(17).

From Lemma 2, Lemma 5 and Lemma 6, it follows that

F0(X
n) ≤ min

θ
Tn(θ)+C, (24)

where

Tn(θ) = G(a)+
ξ0

2

K

∑
k=1

‖µk−ν0‖2 +nHn(θ).

From eq.(24), it is noted that the function values ofTn(θ) at specific points of the variational
parameterθ give the upper bounds of the normalized variational stochastic complexityF0(Xn).
Hence, let us consider following two cases.

(I) :
ak = a∗k (1≤ k≤ K0−1), ak = a∗K0

/(K−K0 +1) (K0 ≤ k≤ K),

µk = µ∗k (1≤ k≤ K0−1), µk = µ∗K0
(K0 ≤ k≤ K),

thennHn(θ) < K−K0+1
mink{a∗k}

holds and

Tn(θ) <
MK +K−1

2
logn+C′ +O(

1
n
),

whereC′ is a constant.

635

WATANABE AND WATANABE

(II) :

ak = a∗k
n+K0φ0

n+Kφ0
(1≤ k≤ K0), ak =

φ0

n+Kφ0
(K0 +1≤ k≤ K),

µk = µ∗k (1≤ k≤ K0), µk = ν0 (K0 +1≤ k≤ K),

thennHn(θ) < (K−K0)φ0 + 1
mink{a∗k}

+O(1/n) holds and

Tn(θ) < {(K−K0)φ0 +
MK0 +K0−1

2
} logn+C′′ +O(

1
n
),

whereC′′ is a constant.

From eq.(24), we obtain the upper bound in eq.(17).
Next we show the lower bound in eq.(17). It follows from Lemma 2, Lemma 5 and Lemma 6,

F0(X
n) ≥ min

a
{G(a)}+nHn(θvb)−C−1. (25)

If φ0 > M+1
2 , then

G(a) ≥ MK +K−1
2

logn− (
M +1

2
−φ0)K logK, (26)

since Jensen’s inequality yields that∑K
k=1 logak ≤ K log(1

K ∑K
k=1ak) = K log(1

K).
If φ0 ≤ M+1

2 , then

G(a) ≥ {(K−1)φ0 +
M
2
} logn+(

M +1
2

−φ0)(K−1) logφ0 +O(
1
n
), (27)

sinceak ≥ φ0
n+Kφ0

holds for everyk and the constraint∑K
k=1ak = 1 ensures that| logak| is bounded

by a constant independent ofn for at least one indexk. From eqs.(25),(26) and (27), we obtain the
lower bound in eq.(17).

7. Experiments

In order to examine the quality of the theoretical bounds given in Theorem 3, we conducted ex-
periments of variational Bayesian learning for Gaussian mixture models usingM = 1 andM = 10
dimensional synthetic data. A set of models with different number of components (K = 1,2,3,4,5)
was prepared. We applied the variational Bayesian algorithm to each modelusing the data set gener-
ated from the true distribution withK0 = 2 components. The true distribution was set to a Gaussian
mixture model with the parametera∗1 = a∗2 = 1/2,µ∗1 =−2/

√
M ·1 andµ∗2 = 2/

√
M ·1 where1 is the

M-dimensional vector whose all entries are 1. The hyperparameters wereset atφ0 = 1.0, ν0 = 0 and
ξ0 = 1.0. In order to achieve the minimum in eq.(13), the initial value of the variational parameter
θ was set around the true parameter, that is, arounda1 = a2 = 1/2, ak = 0 (k≥ 3), µ1 = µ∗1, µ2 = µ∗2
andµk = 0 (k≥ 3). Two sample sets with the sizen = 1000 andn = 100 were prepared. For each
data set, the normalized variational stochastic complexity (the inside of the braces in eq.(13)) was

636

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

calculated when the variational Bayesian algorithm converged. Denoting the results for respective
data sets byF0(X1000) andF0(X100), we calculated

λVB = (F0(X
1000)−F0(X

100))/ log10 (28)

to estimate the coefficient of the leading term of the normalized variational stochastic complexity
F0(Xn). We averaged the values ofλVB over 100 draws of sample sets. The results of the averages
of λVB and the coefficientλ given by eq.(18) are presented in Figure 1 against the numberK of
components for the case of (a)M = 1 and (b)M = 10. In Figure 1, an upper bound of the coefficient
of the Bayesian stochastic complexity andλBIC given by eq.(19) are also plotted for the comparison
of variational Bayesian learning with true Bayesian learning in the next section. The variational
Bayesian algorithm gaveλVB that coincide with the coefficientλ. This implies the upper bound in
eq.(17) is tight.

We also calculated the generalization error defined byK(p(x|θ0)||〈p(x|θ)〉r(θ|Xn)), where〈p(x|θ)〉r(θ|Xn)

is the predictive distribution in variational Bayesian learning. In the case ofthe Gaussian mixture

model, it is given by〈p(x|θ)〉r(θ|Xn) = ∑K
k=1

ak√
2π(1+σ2

k)
M exp(−‖x−µk‖2

2(1+σ2
k)

). The generalization error,

multiplied byn for scaling purposes, was approximated by

λG =
n
n′

n′

∑
i=1

log
p(x′i |θ0)

〈p(x′i |θ)〉r(θ|Xn)
, (29)

with n′ = 10000 test data{x′i}n′
i=1 generated from the true distribution. The results of the averages

of λG over 100 draws of the data sets with the sizen = 1000 are also plotted in Figure 1. The
results of the averages ofλVB andλG showed different behavior. More specifically,λG increased
little while λVB grew proportionally to the numberK of components. From eq.(6) and eq.(7),λVB

andλG should have shown similar behavior if there were the same relation between theaverage
normalized variational stochastic complexity and the average generalization error as in Bayesian
learning. These results imply that in variational Bayesian learning, unlike in Bayesian learning, the
coefficient of the average generalization error differs from that of the average variational stochastic
complexityEXn[F(Xn)].

8. Discussion

In this paper, we showed upper and lower bounds of the variational stochastic complexity of the
Gaussian mixture models. We discuss five topics.

8.1 Lower Bound

Let us discuss the lower bound. The lower bound in eq.(17) can be improved to give

F0(X
n) ≥ λ logn+nHn(θvb)+C1, (30)

if the consistency of the variational estimatorθvb is proven. Note that the coefficientλ is the same
as that of the upper bound given in Theorem 3. The consistency means that the mixing coefficient
ak does not tend to zero for at leastK0 components and they are always used to learn theK0 true
components when the sample sizen is sufficiently large. We conjecture that the variational estimator

637

WATANABE AND WATANABE

(a). M=1 (b). M=10

0

1

2

3

4

5

6

7

8

1 1.5 2 2.5 3 3.5 4 4.5 5

co
ef

fic
ie

nt
 o

f t
he

 le
ad

in
g

te
rm

number of components K

VB(Theoretical)
Bayes

BIC
VB(Experimental)

n*(generalization error)

10

15

20

25

30

1 1.5 2 2.5 3 3.5 4 4.5 5

co
ef

fic
ie

nt
 o

f t
he

 le
ad

in
g

te
rm

number of components K

VB(Theoretical)
Bayes

BIC
VB(Experimental)

n*(generalization error)

Figure 1: The coefficients of the stochastic complexities for the numberK of components with
K0 = 2, φ0 = 1 and (a)M = 1, (b) M = 10. The solid line isλ of the variational Bayes
eq.(18), the dashed line is the upper bound ofλ in true Bayesian learning eq.(32) and the
dotted line isλBIC of the BIC eq.(19). The open squares with error bars are the results
of the averages ofλVB eq.(28) and the full squares with error bars are the results of the
averages ofλG eq.(29). The error bars show 95% confidence intervals.

is consistent and the inequality (30) holds for the Gaussian mixture model. However, little has
been known so far about the behavior of the variational estimator. Analyzing its behavior and
investigating the consistency are important undertakings.

Furthermore, on the left hand side of eq.(17),nHn(θvb) is a kind of training error. If the maxi-
mum likelihood estimator exists, it is lower bounded by

min
θ

nHn(θ) = min
θ

n

∑
i=1

log
p(xi |θ0)

p(xi |θ)
,

which is the (maximum) likelihood ratio statistic with sign inversion. It is known that thelikelihood
ratio statistics of some non-regular models diverge to infinity asn grows and that the divergence
of the likelihood ratio makes the generalization performance worse in the maximumlikelihood
estimation. In the case of the Gaussian mixture model, it is conjectured that the likelihood ratio
diverges in the order of log logn (Hartigan, 1985). Although this has not been proved, it suggests that
the upper bound in eq.(17) is tight. More specifically, if eq.(30) holds and the order of divergence of
the likelihood ratio is smaller than logn, that is,EXn[minθ nHn(θ)] = o(logn), then it immediately
follows from Corollary 4 that

EXn[F0(X
n)]/ logn→ λ (n→ ∞). (31)

This was suggested also by the experimental results presented in the previous section.

8.2 Comparison to Bayesian Learning

We compare the normalized variational stochastic complexity shown in Theorem3 with the one
in true Bayesian learning assuming eq.(31) holds. The Bayesian stochasticcomplexities of several

638

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

non-regular models have been clarified in some recent studies. For the Gaussian mixture model
in particular, the following upper bound on the coefficient of the averagenormalized Bayesian
stochastic complexityEXn[F0(Xn)] described as eq.(6) is known (Watanabe et al., 2004),

λ ≤ (MK0 +K−1)/2, (32)

under the same condition about the true distribution and the model as the condition (i) described in
Section 5 and certain conditions about the prior distribution. Since these conditions about the prior
are satisfied by puttingφ0 = 1 in the condition (ii) of Theorem 3, we can compare the stochastic
complexities in this case. Puttingφ0 = 1 in eq.(18), we have

λ = K−K0 +(MK0 +K0−1)/2. (33)

Let us compare thisλ of variational Bayesian learning toλ in eq.(32) of true Bayesian learning.
For anyM,

λ−λ ≥ (K−K0)/2

holds. This implies that the more redundant components the model has, the morevariational
Bayesian learning differs from true Bayesian learning. However the difference(K−K0)/2 is rather
small since it is independent of the dimensionM of the input space. This implies the variational
posterior is close to the true Bayesian posterior. Moreover, it is noted thatwhenM = 1, that is, the
input is one-dimensional, 2λ is equal to 2K −1 that is the number of the parameters of the model.
Hence the Bayesian information criterion (BIC) (Schwarz, 1978) and theminimum description
length (MDL) (Rissanen, 1986) correspond toλ logn whenM = 1.

Figure 1 shows the coefficientsλ, λBIC and the upper bound of the coefficientλ of the Bayesian
stochastic complexity with respect to the numberK of components for the case whenK0 = 2, φ0 = 1
and (a)M = 1 and (b)M = 10. In (a) of Figure 1,λ (solid line) andλBIC (dotted line) coincide.
It is noted thatλ of variational Bayesian learning eq.(33) relatively approaches the upper bound in
Bayesian learning eq.(32) and becomes far smaller than that of BIC eq.(19) as the dimensionM
becomes larger.

8.3 Stochastic Complexity and Generalization

We have discussed how much the variational posterior differs from the true Bayesian posterior
by comparing the stochastic complexities. In variational Bayesian learning, there is no apparent
relationship between the average variational stochastic complexity and the average generalization
error unlike in Bayesian learning where their leading terms are given by thesame coefficientλ as in
eq.(6) and eq.(7). This was also observed experimentally by the different behavior ofλVB andλG

in the previous section. Hence, assessing the generalization performance of the Gaussian mixture
model in variational Bayesian learning is an important issue to be addressed. The term(logCQ(θ)+
S(Xn)) in Lemma 6 may diverge to infinity as the likelihood ratio statistic in the maximum likelihood
method as mentioned above. It would be important to clarify how this term affects the generalization
performance in variational Bayesian learning.

8.4 Effect of Hyperparameters

Let us discuss the effects of the hyperparameters. From Theorem 3, only the hyperparameterφ0

affects the leading term of the normalized variational stochastic complexityF0(Xn) and the other

639

WATANABE AND WATANABE

hyperparametersξ0 andν0 affect only the lower order terms. This is due to the influence of the
hyperparameters on the prior probability density around the true parameters. Consider the case
whenK0 < K. In this case, for a parameter that gives the true distribution, either of the followings
holds, ak = 0 for somek or µi = µj for some pair(i, j). The prior distributionϕ(a) given by
eq.(15) can drastically change the probability density around the points where ak = 0 for somek
by changing the hyperparameterφ0 while the prior distributionϕ(µ) given by eq.(16) always takes
positive values for any values of the hyperparametersξ0 andν0.

We also point out that Theorem 3 shows how the hyperparameterφ0 influence variational
Bayesian learning. The coefficientsλ and λ in eq.(18) are divided into two cases. These cases
correspond to whetherφ0 ≤ (M + 1)/2 holds, indicating that the influence of the hyperparameter
φ0 in the priorϕ(a) appears depending on the dimensionM of the input space. More specifically,
only whenφ0 ≤ (M +1)/2, the prior distribution reduces redundant components; otherwise it uses
all the components.

8.5 Applications of the Bounds

Finally, let us give examples of how to use the theoretical bounds given in Theorem 3 and discuss
issues to be addressed.

Comparing the theoretical bounds in eq.(17) with experimental results, one can investigate the
properties of the actual iterative algorithm in variational Bayesian learning. Although the actual
iterative algorithm gives the variational posterior that satisfies eq.(9) andeq.(10), it may converge to
local minima of the functionalF [q]. Remember that eq.(9) and eq.(10) are just a necessary condition
for F [q] to be minimized. One can examine experimentally whether the algorithm convergesto the
optimal variational posterior that minimizes the functional instead of local minima bycomparing
the experimental results with the theoretical bounds. Moreover, the theoretical bounds would enable
us to compare the accuracy of variational Bayesian learning with that of theLaplace approximation
or the MCMC method. However, in order to make such comparisons more accurately, one will need
not only the leading term but also the lower order terms of the asymptotic form of the variational
stochastic complexity. Giving the more accurate asymptotic form is important forsuch comparisons.

The Gaussian mixture model is included in general exponential family models withhidden vari-
ables (Sato, 2001) and furthermore, in general graphical models to which the variational Bayesian
framework can be applied (Attias, 1999). Analyzing the variational stochastic complexities in the
more general cases would be an important undertaking.

Furthermore, as mentioned in Section 4, the variational stochastic complexityF(Xn) is used as a
criterion for model selection in variational Bayesian learning. Theorem 3 shows how accurately one
can estimate the Bayesian stochastic complexityF(Xn), the negative log of the Bayesian evidence,
by its upper boundF(Xn). By the above comparison to Bayesian learning, it is expected thatF(Xn)
provides a rather good approximation toF(Xn). This gives a theoretical justification for its use in
model selection. Our result is important for developing effective model selection methods using
F(Xn).

9. Conclusion

In this paper, we derived upper and lower bounds of the variational stochastic complexity of the
Gaussian mixture models. Using the derived bounds, we discussed the influence of the hyperpa-
rameters and the accuracy of variational Bayesian learning as an approximation of true Bayesian

640

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

learning. These bounds can be used for evaluation and optimization of learning algorithms based
on the variational Bayesian approximation.

Acknowledgments

The authors would like to thank Dr.Masa-aki Sato, Dr.Shin Ishii and Dr.Kenji Fukumizu for their
helpful comments. This work was partially supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for JSPS Fellows 16-4637 and for Scientific Research 15500130, 2005.
An early version of this paper has been presented at IEEE conference on Cybernetics and Intelligent
Systems (Watanabe and Watanabe, 2004).

Appendix A.

Proof of Lemma 2

Proof From the restriction of the variational Bayesian approximation eq.(8),F(Xn) can be divided
into two terms,

F(Xn) = min
r,Q

[

〈log
r(θ|Xn)

ϕ(θ)
〉r(θ|Xn) + 〈log

Q(Yn|Xn)

p(Xn,Yn|θ)
〉r(θ|Xn)Q(Yn|Xn)

]

.

Since the optimal variational posteriors satisfy eq.(9) and eq.(10), if the variational posteriorQ(Yn|Xn)
is optimized, then

〈log
Q(Yn|Xn)

p(Xn,Yn|θ)
〉r(θ|Xn)Q(Yn|Xn) = − logCQ

holds. Thus we obtain eq.(12).

Proof of Lemma 5

Proof Calculating the Kullback information between the posterior and the prior, we obtain

K(r(a|a)||ϕ(a)) =
K

∑
k=1

h(nk)−nΨ(n+Kφ0)+ logΓ(n+Kφ0)+ log
Γ(φ0)

K

Γ(Kφ0)
, (34)

where we use the notationh(x) = xΨ(x+φ0)− logΓ(x+φ0). Similarly,

K(r(µ|µ)||ϕ(µ)) =
K

∑
k=1

M
2

log
nk +ξ0

ξ0
− KM

2
+

1
2

ξ0

K

∑
k=1

{ M
nk +ξ0

+‖µk−ν0‖2}. (35)

By using inequalities (20) and (21), we obtain

h(x) = −(φ0−
1
2
) log(x+φ0)+x+O(1).

Thus we have, from eqs.(34),(35) andK(r(θ|θ)||ϕ(θ)) = K(r(a|a)||ϕ(a))+K(r(µ|µ)||ϕ(µ)),

∣

∣

∣
K(r(θ|θ)||ϕ(θ))−

{

G(a)+
ξ0

2

K

∑
k=1

‖µk−ν0‖2
}∣

∣

∣
≤C,

641

WATANABE AND WATANABE

whereC is a constant since1
n+ξ0

< 1
nk+ξ0

< 1
ξ0

.

Proof of Lemma 6

Proof

CQ(θ) =
n

∏
i=1

∑
yi

exp〈logp(xi ,yi |θ)〉r(θ|θ)

=
n

∏
i=1

K

∑
k=1

1
√

2πM exp{Ψ(nk +φ0)−Ψ(n+Kφ0)−
‖xi −µk‖2

2
− M

2
1

nk +ξ0
}.

(36)

Thus we have eq.(22).
Using again the inequalities (20), we obtain

− logCQ(θ) ≤−
n

∑
i=1

log
[K

∑
k=1

ak√
2πM exp{−‖xi −µk‖2

2
− M +2

2(nk +min{φ0,ξ0})
}
]

− n
2(n+Kφ0)

,

and

− logCQ(θ) ≥−
n

∑
i=1

log
[K

∑
k=1

ak√
2πM exp{−‖xi −µk‖2

2
}
]

− n
n+Kφ0

,

which give the upper and lower bounds in eq.(23) respectively.

References

H. Akaike. Likelihood and bayes procedure. InBayesian Statistics, pages 143–166, Valencia, Spain,
1980. (Bernald J.M. eds.), University Press.

H. Alzer. On some inequalities for the Gamma and Psi functions.Mathematics of computation, 66
(217):373–389, 1997.

H. Attias. Inferring parameters and structure of latent variable models by variational bayes. In
Proceedings of Uncertainty in Artificial Intelligence(UAI’99), 1999.

M. J. Beal. Variational Algorithms for approximate Bayesian inference. PhD thesis, University
College London, 2003.

D. Dacunha-Castelle and E. Gassiat. Testing in locally conic models, and application to mixture
models.Probability and Statistics, 1:285–317, 1997.

Z. Ghahramani and M. J. Beal. Graphical models and variational methods.Advanced Mean Field
Methods – Theory and Practice, eds. D. Saad and M. Opper, MIT Press, 2000.

J. A. Hartigan. A failure of likelihood asymptotics for normal mixtures. InProceedings of the
Berkeley Conference in Honor of J.Neyman and J.Kiefer, pages 807–810, 1985.

642

STOCHASTIC COMPLEXITIES OFGAUSSIAN M IXTURES

E. Levin, N. Tishby, and S. A. Solla. A statistical approaches to learning and generalization in
layered neural networks.Proc. of IEEE, 78(10):1568–1674, 1990.

D. J. Mackay. Bayesian interpolation.Neural Computation, 4(2):415–447, 1992.

J. Rissanen. Stochastic complexity and modeling.Annals of Statistics, 14(3):1080–1100, 1986.

M. Sato. Online model selection based on the variational bayes.Neural Computation, 13(7):1649–
1681, 2001.

G. Schwarz. Estimating the dimension of a model.Annals of Statistics, 6(2):461–464, 1978.

K. Watanabe and S. Watanabe. Lower bounds of stochastic complexities in variational bayes learn-
ing of gaussian mixture models. InProceedings of IEEE conference on Cybernetics and Intelli-
gent Systems (CIS04), pages 99–104, Singapore, 2004.

S. Watanabe. Algebraic analysis for non-identifiable learning machines.Neural Computation, 13
(4):899–933, 2001.

S. Watanabe, K. Yamazaki, and M. Aoyagi. Kullback information of normal mixture is not an
analytic function.Technical Report of IEICE (in Japanese), NC2004-50:41–46, 2004.

K. Yamazaki and S. Watanabe. Singularities in mixture models and upper bounds of stochastic
complexity. International Journal of Neural Networks, 16:1023–1038, 2003a.

K. Yamazaki and S. Watanabe. Stochastic complexity of bayesian networks. In Proceedings of
Uncertainty in Artificial Intelligence(UAI’03), 2003b.

643

Journal of Machine Learning Research 7 (2006) 645–664 Submitted 7/05; Revised 12/05; Published 5/06

Pattern Recognition for Conditionally Independent Data

Daniil Ryabko DANIIL @RYABKO .NET

IDSIA
Galleria 2
6928 Manno-Lugano, Switzerland
and
Computer Learning Research Centre
Royal Holloway, University of London
Egham TW20 0EX, UK

Editor: Peter Bartlett

Abstract
In this work we consider the task of relaxing the i.i.d. assumption in pattern recognition (or classi-
fication), aiming to make existing learning algorithms applicable to a wider range of tasks. Pattern
recognition is guessing a discrete label of some object based on a set of given examples (pairs of
objects and labels). We consider the case of deterministically defined labels. Traditionally, this task
is studied under the assumption that examples are independent and identically distributed. How-
ever, it turns out that many results of pattern recognition theory carry over a weaker assumption.
Namely, under the assumption of conditional independence and identical distribution of objects,
while the only assumption on the distribution of labels is that the rate of occurrence of each label
should be above some positive threshold.

We find a broad class of learning algorithms for which estimations of the probability of the
classification error achieved under the classical i.i.d. assumption can be generalized to the similar
estimates for case of conditionally i.i.d. examples.

1. Introduction

Pattern recognition (or classification)is, informally, the following task. There is a finite number
of classes of some complex objects. A predictor is learning to classify the objects, based only on
examples of labelled objects. The formal model of the task used most widely is described, for
example, in (Vapnik, 1998), and can be briefly introduced as follows (wewill later refer to it as
“the i.i.d. model”). The objectsx ∈ X are drawn independently and identically distributed (i.i.d.)
according to some unknown (but fixed) probability distributionP(x). The labelsy∈ Y are given for
each object according to some (also unknown but fixed) function1 η(x). The spaceY of labels is
assumed to be finite (often binary). The task is to construct the best predictor for the labels, based
on the data observed, i.e. actually to “learn”η(x).

This task is usually considered in either of the following two settings. In the off-line setting
a (finite) set of examples is divided into two finite subsets, the training set andthe testing set. A
predictor is constructed based on the first set and then is used to classifythe objects from the second.
In the online setting a predictor starts by classifying the first object with zeroknowledge; then it is

1. Often (e.g. in (Vapnik, 1998)) a more general situation is considered, the labels are drawn according to some proba-
bility distributionP(y|x), i.e. each object can have more than one possible label.

c©2006 Daniil Ryabko.

RYABKO

given the correct label and (having “learned” this information) proceeds with classifying the second
object, the correct second label is given, and so on.

Weakness of the model: an example.Many algorithms were developed for solving pattern
recognition tasks (see Devroye, Györfi, Lugosi, 1996; Vapnik, 1998; Kearns, Vazirani, 1994, for
the most widely used methods). However, the i.i.d. assumption, which is centralin the model, is
too tight for many applications. It turns out that it is also too tight for a wide range of methods
developed under the assumptions of the model: they work nearly as well under weaker conditions.

First consider the following example, which provides intuition for the probabilistic model we
introduce. Suppose we are trying to recognise a printed or hand-written text. Obviously, letters in
the text are dependent (for instance, we strongly expect to meet “u” after “q”). Observe also that a
written text is not Markovian and, moreover, can exhibit arbitrarily long range dependencies. This
seemingly implies that pattern recognition methods can not be applied to this task, which is one of
their classical applications.

However, a sequence of images which forms a written text has several properties, which in fact
will be shown to be sufficient for learning. First, the object-label dependence does not change in
time. That is, an image of a letter which in the beginning of the text means, say, “a”, to the end
of the text will not be interpreted as, say, “e”. Moreover, if we extractfrom the original sequence
all letters labelled with (for instance) “a”, the resulting sequence (of imagesof “a”) will be i.i.d.
Finally, the rate of occurrence of each label keeps above some positivethreshold. In our example,
we expect the rate of occurrence of each letter to be, say, somewhere between 1% and 99% of all
letters, with some feasible probability (depending on the size of the text).

Thus, given labels, objects are independent. This holds exactly for a typewritten text. For a text
on a journal page this condition is sometimes violated because of such image-image dependencies
as ligatures (like “ ff ”). In a hand-written text different pairs of letters are connected differently and
so the condition does not hold, but still seems more adequate than the pure i.i.d.condition.

Conditional i.i.d. model. These intuitive ideas lead us to the following model (to which we re-
fer as “the conditional model”). The labelsy∈ Y are drawn according to some unknown (but fixed)
distribution over the set of all infinite sequences of labels. There can be any type of dependence be-
tween labels; moreover, we can assume that we are dealing with any (fixed)combinatorial sequence
of labels. However, in this sequence the rate of occurrence of each label should keep above some
positive threshold. For each labely the corresponding objectx∈ X is generated according to some
(unknown but fixed) probability distributionP(x|y). All the rest is as in the i.i.d. model.

The main difference from the i.i.d. model is that in the conditional model we made thedistribu-
tion of labels primal; having done that we can relax the requirement of independence of objects to
the conditional independence.

Results.The main result of the paper isnot in constructing an algorithm for the proposed model.
Rather, we show that any reasonable already known algorithm designedto work in the i.i.d. setting
also works under the strictly weaker conditionally i.i.d. assumption. An implication isthat the
i.i.d. assumption for pattern recognition is, to a considerable extent, redundant.

Moreover, we provide a tool for obtaining estimations of probability of error of a predictor in
the conditional model from estimations of the probability of error in the i.i.d. model.The general
theorems about extending results concerning performance of a predictor to the conditional model
are illustrated on two classes of predictors.

First, we extend weak consistency results concerning partitioning and nearest neighbour esti-
mates from the i.i.d. model to the conditional model.

646

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

Second, we use some results of Vapnik-Chervonenkis theory to estimate performance in the
conditional model (on finite amount of data) of predictors minimizing empirical risk, and also obtain
some strong consistency results.

These results are obtained as applications of the following general statement. The only assump-
tion on a predictor under which it works in the conditional model as well as in the i.i.d. model
is what we calltolerance to data: in any large data set there is no small subset which strongly
changes the probability of error. This property should also hold with respect to permutations. This
assumption on a predictor should be valid in the i.i.d. model. Thus, the results achieved in the
i.i.d. model can be extended to the conditional model; this concerns distribution–free results as well
as distribution–specific, results on the performance on finite samples as wellas asymptotic results.

Further examples.As another example of pattern recognition task which does not comply with
the i.i.d. (or Markov) assumption, but is more adequately modelled by the conditional i.i.d. assump-
tion, consider the problem of medical diagnostics. The problem is to diagnose a certain disease
based on the set of symptoms; for simplicity, consider binary labels (ill versus not ill). Since many
diseases have yearly or other dynamics (e.g. epidemics), the sequence of sets of symptoms of pa-
tients entering a clinic can not be considered i.i.d. However, the sequence of sets of symptoms of
ill patients does not reflect such dynamics, and can be considered closeto i.i.d. In other words, we
expect the distribution of symptoms to be determined only by the fact that the patient is ill or that
(s)he is not. Note however, that there are certain types of dependencies between sets of symptoms
which can violate our condition, for example, if a family comes for diagnostics together; yet the
conditional i.i.d. model seems to be more adequate here than just i.i.d. or than Markov condition,
since it allows for more dependencies present in the problem.

The same argument applies for any task which would be i.i.d. if it was not for the fluctuations
of the class probability, such as an example from (Duda, Hart, Stork, 2001) of classifying fish
species by a photographic image: one can imagine that at different times andin different areas the
proportion of species among the fish caught is different.

It should also be mentioned that in such popular practical tasks as speechrecognition the label-
label dependencies, which we show to be tolerated by pattern recognition methods, can be and
actually are exploited. Thus, pattern recognition methods are used in conjunction with sequence
prediction algorithms, and here our results can be considered a further theoretical justification of
the use of the pattern recognition component.

Related work. Various approaches to relaxing the i.i.d. assumption in learning tasks have been
proposed in the literature. Thus, in (Kulkarni, Posner , Sandilya, 2002;Kulkarni, Posner, 1995)
the authors study the nearest neighbour and kernel estimators for the task of regression estimation
with continuous regression function, under the assumption that labels are conditionally independent
given their objects, while objects form any individual sequence. The probabilistic assumption is
weaker than ours but continuity of regression function holds only in trivial cases of the classifica-
tion task we consider. A similar approach is taken in (Morvai, Kulkarni, Nobel, 1999), where a
regression estimation scheme is proposed which is consistent for any individual stable sequence of
object-label pairs (no probabilistic assumptions), assuming that there is a known upper bound on
the variation of regression function.

There are also several approaches in which different types of assumptions on the joint distribu-
tion of objects and labels are made; then the authors construct a predictor or a class of predictors, to
work well under the assumptions made. Thus, in (Gamarnik, 2003) and (Aldous, Vazirani, 1990) a
generalisation of PAC approach to Markov chains with finite or countable state space is presented.

647

RYABKO

The estimates of probability of error are constructed for this cases, under the assumption that the
optimal rule generating examples belongs to a pre-specified class of decision rules. There is also
a track of research on prediction under the assumption that the distribution generating examples is
stationary or stationary and ergodic. The basic difference from our learning task, apart from differ-
ent probabilistic assumption, is in that we are only concerned with object-label dependence, while
in predicting ergodic sequences it is label-label (time series) dependencethat is of primary interest.
On this task see (Ryabko, 1988; Algoet, 1999; Morvai, Yakowitz, Algoet,1997; Nobel, 1999) and
references therein. Observe also that none of these probabilistic concepts (Markov assumption, sta-
tionarity, ergodicity) is comparable with our conditional i.i.d. assumption, in the sense that none of
them is either weaker nor stronger than the conditional i.i.d. assumption.

Another approach is taken in (Helmbold, Long, 1991; Bartlett, Ben-David, Kulkarni, 1996)
where the PAC model is generalised to allow concepts changing over time. Here the methodology
is proposed to track time series dependencies, that is, the authors find someclasses of dependencies
which can be exploited for learning. Again the difference with our approach is that we try to find
a (broad) class of problems where the time series dependence can be ignored by any reasonable
pattern recognition method rather than constructing methods to use some specific dependencies of
this kind.

2. Definitions and General Results

Consider a sequence ofexamples(x1,y1),(x2,y2), . . . ; each examplezi := (xi ,yi) consists of an
object xi ∈ X and alabel yi := η(xi) ∈ Y, whereX is a measurable space called anobject space,
Y := {0,1} is called alabel spaceandη : X → Y is some deterministic function. For simplicity
we made the assumption that the spaceY is binary, but all results easily extend to the case of any
finite spaceY. The notationZ := X ×Y is used for the measurable space of examples. Objects are
drawn according to some probability distributionP on X∞ (and labels are defined byη). Thus we
consider only the case of deterministically defined labels (that is, the noise-free model); in section 5
we discuss possible generalisations.

The notationP is used for distributions onX∞ while the symbolP is reserved for distributions
onX. In the latter caseP∞ denotes the i.i.d. distribution onX∞ generated byP. Correspondingly we
will use symbolsE, E andE∞ for expectations over spacesX∞ andX. Lettersx,y,z (with indices)
will be used for elements of spacesX,Y,Z correspondingly, while lettersX,Y,Z are reserved for
random variables on these spaces.

The traditional assumption about the distributionP generating objects is that examples are in-
dependently and identically distributed (i.i.d.) according to some distributionP onX (i.e. P = P∞).

Here we replace this assumption with the following two conditions.
First, for anyn∈ N and for any measurable setA⊂ X

P(Xn ∈ A |Yn,X1,Y1, . . . ,Xn−1,Yn−1) = P(Xn ∈ A |Yn) (1)

(i.e. some versions of conditional probabilities coincide). This condition looks very much like
Markov condition which requires that each object depends on the past only through its immediate
predecessor. The condition (1) says that each object depends on thepast only through its label.

Second, for anyy∈ Y, for anyn1,n2 ∈ N and for any measurable setA⊂ X

P(Xn1 ∈ A |Yn1 = y) = P(Xn2 ∈ A |Yn2 = y) (2)

648

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

(i.e. the process is uniform in time; (1) allows dependence inn).
Note that the first condition means that objects are conditionally independentgiven labels (on

conditional independence see Dawid, 1979). Under the conditions (1) and (2) we say thatobjects
are conditionally independent and identically distributed(conditionally i.i.d.).

For eachy ∈ Y denote the distributionP(Xn | Yn = y) by Py (it does not depend onn by (2)).
Clearly, the distributionsP0 andP1 define some distributionsP on X up to a parameterp ∈ [0,1].
That is, Pp(A) = pP1(A) + (1− p)P0(A) for any measurable setA ⊂ X and for eachp ∈ [0,1].
Thus with each distributionP satisfying the assumptions (1) and (2) we will associate a family of
distributionsPp, p∈ [0,1].

The assumptions of the conditional model can be also interpreted as follows.Assume that we
have some individual sequence(yn)n∈N of labels and two probability distributionsP0 andP1 on X,
such that there exists setsX0 andX1 in X such thatP1(X1) = P0(X0) = 1 andP0(X1) = P1(X0) = 0
(i.e. X0 andX1 define some functionη). Each examplexn ∈ X is drawn according to the distribution
Pyn; examples are drawn independently of each other.

A predictor is a measurable functionΓn := Γ(x1,y1, . . . ,xn,yn,xn+1) taking values inY (more
formally, a family of functions indexed byn).

The probability of error of a predictorΓ on each stepn is defined as

errn(Γ,P,z1, . . . ,zn) := P
{
(x,y) ∈ Z : y 6= Γn(z1, . . . ,zn,x)

}

(zi , 1≤ i ≤ n are fixed and the probability is taken overzn+1). We will sometimes omit some of the
arguments of errn when it can cause no confusion; in particular, we will often use a short notation
P(errn(Γ,Z1, . . . ,Zn) > ε) and an even shorter oneP(errn(Γ) > ε) in place of

P
{

z1, . . . ,zn : errn(Γ,P,z1, . . . ,zn) > ε
}
.

For a pair of distributionsP0 andP1 and anyδ ∈ (0,1/2) define

▽δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

P∞
p (errn(Γ) > ε), (3)

that is, we consider the supremum of the probability of error over all classlabel probabilities.
For a predictorΓ and a distributionP onX define

∆(P,n,z1, . . . ,zn) := max
j≤κn; π:{1,...,n}→{1,...,n}

|errn(Γ,P∞,z1, . . . ,zn)−

errn− j(Γ,P∞,zπ(1), . . . ,zπ(n− j))|.

Define thetolerance to dataof Γ as

∆(P,n,ε) := Pn(∆(P,n,Z1, . . . ,Zn) > ε
)

(4)

for anyn∈N, anyε > 0 andκn :=
√

nlogn (see the end of Section 5 for the discussion of the choice
of the constantsκn). Furthermore, for a pair of distributionsP0 andP1 and anyδ ∈ (0,1/2) define

∆δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

∆(Pp,n,ε). (5)

Tolerance to data means, in effect, that in any typical large portion of data there is no small
portion that changes strongly the probability of error. This property should also hold with respect
to permutations.

649

RYABKO

We will also use another version of tolerance to data, in which instead of removing some exam-
ples we replace them with an arbitrary samplez′j , . . . ,z

′
n consistent withη:

∆̄(P,z1, . . . ,zn) := sup
j<κn;π:{1,...,n}→{1,...,n};z′n− j ,...,z

′
n

|errn(Γ,P∞,z1, . . . ,zn)−errn(Γ,P∞,ζ1, . . . ,ζn)|,

whereζπ(i) := zπ(i) if i < n− j andζπ(i) := z′i otherwise; the maximum is taken over allz′i , n− j <
i ≤ n consistent withη. Define

∆̄(P,n,ε) := Pn(∆̄(P,n,Z1, . . . ,Zn) > ε
)

and
∆̄δ(P0,P1,n,ε) := sup

p∈[δ,1−δ]

∆̄(Pp,n,ε).

The same notational convention will be applied to∆ and∆̄ as to errn.
Various notions similar to tolerance to data have been studied in literature. Perhaps first they

appeared in connection with deleted or condensed estimates (see e.g. Rogers, Wagner, 1988), and
were later called stability (see Bousquet, Elisseeff, 2002; Kearns, Ron,1999, for present studies of
different kinds of stability, and for extensive overviews). Naturally, such notions arise when there
is a need to study the behaviour of a predictor when some of the training examples are removed.
These notions are much similar to what we call tolerance to data, only we are interested in the
maximal deviation of probability of error while usually it is the average or minimal deviations that
are estimated.

A predictor developed to work in the off-line setting should be, loosely speaking, tolerant to
small changes in a training sample. The next theorem shows under which conditions this property
of a predictor can be utilized.

Theorem 1 Suppose that a distributionP generating examples is such that the objects are condi-
tionally i.i.d., i.e. P satisfies (1) and (2). Fix someδ ∈ (0,1/2], let p(n) := 1

n#{i ≤ n : Yi = 1} and
Cn := P(δ ≤ p(n) ≤ 1− δ) for each n∈ N. Let alsoαn := 1

1−1/
√

n. For any predictorΓ and any
ε > 0 we have

P(errn(Γ) > ε) ≤C−1
n αn

(
▽δ(P0,P1,n+κn,δε/2)

+∆δ(P0,P1,n+κn,δε/2)
)
+(1−Cn), (6)

and
P(errn(Γ) > ε) ≤C−1

n αn
(
▽δ(P0,P1,n,δε/2)+ ∆̄δ(P0,P1,n,δε/2)

)
+(1−Cn). (7)

The theorem says that if we know with some confidenceCn that the rate of occurrence of each
label is not less than some (small)δ, and have some bounds on the error rate and tolerance to data of
a predictor in the i.i.d. model, then we can obtain bounds on its error rate in the conditional model.

The proofs for this section can be found in Appendix A. The intuition behindthe proof of the
theorem is as follows. First we fix some individual sample ofn labels (without objects) and consider
the behaviour of the predictor conditional on this sample. Fixing the labels allows us to pass from
the conditional i.i.d. case to i.i.d. and to use error estimates for this case. Then,using tolerance

650

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

to data, we compare the behaviour of the predictor on any two different, but typical for a certain
i.i.d. distribution, samples of labels. This allows us to estimate the probability of error on any
(typical) sample and so to pass back to the conditional i.i.d. case.

Thus we have a tool for estimating the performance of a predictor on each finite stepn. In Sec-
tion 4 we will show how this result can be applied to predictors minimizing empirical risk. However,
if we are only interested in asymptotic results the formulations can be somewhat simplified.

Consider the following asymptotic condition on the frequencies of labels. Definep(n) := 1
n#{i ≤

n : Yi = 1}. We say that therates of occurrence of labels are bounded from belowif there exist such
δ, 0< δ < 1/2 that

lim
n→∞

P(p(n) ∈ [δ,1−δ]) = 1. (8)

As the condition (8) meansCn → 1 we can derive from Theorem 1 the following corollary.

Corollary 2 Suppose that a distributionP satisfies (1), (2), and (8) for someδ ∈ (0,1/2]. LetΓ be
such a predictor that

lim
n→∞

▽δ(P0,P1,n,ε) = 0 (9)

and either
lim
n→∞

∆δ(P0,P1,n,ε) = 0 (10)

or
lim
n→∞

∆̄δ(P0,P1,n,ε) = 0 (11)

for anyε > 0. Then
E(errn(Γ,P,Z1, . . . ,Zn)) → 0.

In Section 3 we show how this statement can be applied to prove weak consistence of some
classical nonparametric predictors in the conditional model.

3. Application to Classical Nonparametric Predictors

In this section we will consider two types of classical nonparametric predictors: partitioning and
nearest neighbour classifiers.

The nearest neighbour predictor assigns to a new objectxn+1 the label of its nearest neighbour
amongx1, . . . ,xn:

Γn(x1,y1, . . . ,xn,yn,xn+1) := y j ,

where j := argmini=1,...,n‖x−xi‖.
For i.i.d. distributions this predictor is also consistent, i.e.

E∞(errn(Γ,P∞)) → 0,

for any distributionP onX (see Devroye, 1981).
We generalise this result as follows.

Theorem 3 Let Γ be the nearest neighbour classifier. LetP be some distribution onX∞ satisfy-
ing (1), (2) and (8). Then

E(errn(Γ,P)) → 0.

651

RYABKO

The proofs for this section can be found in Appendix B.
A partitioning predictor on each stepn partitions the object spaceX = R

d, d ∈ N into disjoint
cellsAn

1,A
n
2, . . . and classifies in each cell according to the majority vote:

Γ(z1, . . . ,zn,x) :=

{
0 if ∑n

i=1 Iyi=1Ixi∈A(x) ≤ ∑n
i=1 Iyi=0Ixi∈A(x)

1 otherwise,

whereA(x) denotes the cell containingx. Define

diam(A) := sup
x,y∈A

‖x−y‖

and

N(x) :=
n

∑
i=1

Ixi∈A(x).

It is a well known result (see, e.g. (Devroye, Györfi, Lugosi, 1996)) that a partitioning predictor
is weakly consistent, provided certain regulatory conditions on the size of cells. More precisely, let
Γ be a partitioning predictor such that diam(A(X))→ 0 in probability andN(X)→ ∞ in probability.
Then for any distributionP onX

E∞(errn(Γ,P∞)) → 0.

We generalise this result to the case of conditionally i.i.d. examples as follows.

Theorem 4 LetΓ be a partitioning predictor such thatdiam(A(X))→ 0 in probability and N(X)→
∞ in probability, for any distribution generating i.i.d. examples. Then

E(errn(Γ,P)) → 0

for any distributionP onX∞ satisfying (1), (2) and (8).

Observe that we only generalise results concerning weak consistency of (one) nearest neighbour
and non-data-dependent partitioning rules. More general results exist (see e.g. Devroye et. al.,
1994),(Lugosi, Nobel, 1996), in particular for data-dependent rules. However, we do not aim to
generalise state-of-the-art results in nonparametric classification, but rather to illustrate that weak
consistency results can be extended to the conditional model.

4. Application to Empirical Risk Minimisation

In this section we show how to estimate the performance of a predictor minimising empirical risk
(over certain class of functions) using Theorem 1. To do this we estimate thetolerance to data of
such predictors, using some results from Vapnik-Chervonenkis theory. For overviews of Vapnik-
Chervonenkis theory see (Vapnik, Chervonenkis, 1974; Vapnik, 1998; Devroye, Gÿorfi, Lugosi,
1996).

Let X = R
d for somed∈N and letC be a class of measurable functions of the formϕ : X →Y =

{0,1}, calleddecision functions. For a probability distributionP onX define err(ϕ,P) := P(ϕ(Xi) 6=
Yi). If the examples are generated i.i.d. according to some distributionP, the aim is to find a function
ϕ from C for which err(ϕ,P) is minimal:

ϕP = argminϕ∈C err(ϕ,P).

652

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

In the theory of empirical risk minimisation this function is approximated by the function

ϕ∗
n := argmin

ϕ∈C
errn(ϕ)

whereerrn(ϕ) := ∑n
i=1 Iϕ(Xi)6=Yi

is the empirical error functional, based on a sample(Xi ,Yi), i =
1, . . . ,n. Thus,Γn(z1, . . . ,zn,xn+1) := ϕ∗

n(xn+1) is a predictor minimising empirical risk over the
class of functionsC .

One of the basic results of Vapnik-Chervonenkis theory is the estimation of the difference of
probabilities of error between the best possible function in the class (ϕP) and the function which
minimises empirical error:

P
(

errn(Γ,P∞)−err(ϕP,P) > ε
)
≤ 8S (C ,n)e−nε2/128,

where the symbolS (C ,n) is used for then-th shatter coefficient of the classC :

S (C ,n) := max
A:={x1,...,xn}⊂X

#{C∩A : C∈ C }.

Thus,
P(errn(Γ) > ε) ≤ Ierr(ϕP,P)>ε/2 +8S (C ,n)e−nε2/512.

A particularly interesting case is when the optimal rule belongs toC , i.e. whenη ∈ C . This situation
was investigated in e.g. (Valiant, 1984; Blumer et. al., 1989). Obviously, in thiscaseϕP ∈ C and
err(ϕP,P) = 0 for anyP. Moreover, a better bound exists (see Vapnik, 1998; Blumer et. al., 1989;
Devroye, Gÿorfi, Lugosi, 1996)

P(errn(Γ,P) > ε) ≤ 2S (C ,n)e−nε/2.

Theorem 5 Let C be a class of decision functions and letΓ be a predictor which for each n∈ N

minimiseserrn over C on the observed examples(z1, . . . ,zn). Fix someδ ∈ (0,1/2], let p(n) :=
1
n#{i ≤ n : Yi = 0} and Cn := P(δ ≤ p(n) ≤ 1− δ) for each n∈ N. Assume n> 4/ε2 and let
αn := 1

1−1/
√

n. We have

∆δ(P0,P1,n,ε) ≤ 16S (C ,n)e−nε2/512. (12)

(which does not depend on the distributions P0, P1 andδ) and

P(errn(Γ,P) > ε) ≤ I2err(ϕP1/2
,P1/2)>ε/2 +16αnC

−1
n S (C ,n)e−nδ2ε2/2048+(1−Cn). (13)

If in addition η ∈ C then
∆(n,ε) ≤ 4S (C ,2n)2−nε/8 (14)

and

P(errn(Γ,P) > ε) ≤ 4αnC
−1
n S (C ,n)e−nδε/16+(1−Cn). (15)

Thus, if we have bounds on the VC dimension of some class of classifiers, we can obtain bounds
on the performance of predictors minimising empirical error for the conditional model.

Next we show how strong consistency results can be achieved in the conditional model. For gen-
eral strong universal consistency results (with examples) see (Lugosi, Zeger, 1995; Vapnik, 1998;
Vapnik, Chervonenkis, 1974).

653

RYABKO

Denote the VC dimension ofC by V(C):

V(C) := max{n∈ N : S (C ,n) = 2n}.

Using Theorem 5 and Borel-Cantelli lemma, we obtain the following corollary.

Corollary 6 Let C k, k∈ N be a sequence of classes of decision functions with finite VC dimension

such thatlimk→0 infϕ∈C k err(ϕ,P) = 0 for any distribution P onX. If kn → ∞ and V(C kn) logn
n → 0 as

n→ ∞ then
err(Γ,P) → 0 P–a.s.

whereΓ is a predictor which in each trial n minimises empirical risk overC kn andP is any distri-
bution satisfying (1), (2) and∑∞

n=1(1−Cn) < ∞.

In particular, if we use bound on the VC dimension on classes of neural networks provided in
(Baum, Haussler, 1989) then we obtain the following corollary.

Corollary 7 LetΓ be a classifier that minimises the empirical error over the classC (k), whereC (k)

is the class of neural net classifiers with k nodes in the hidden layer and thethreshold sigmoid, and
k→ ∞ so that klogn/n→ 0 as n→ ∞. LetP be any distribution onX∞ satisfying (1) and (2) such
that ∑∞

n=1(1−Cn) < ∞. Then
lim
n→∞

errn(Γ) = 0 P–a.s.

5. Discussion

We have introduced “conditionally i.i.d.” model for pattern recognition which generalises the com-
monly used i.i.d. model. Naturally, a question arises whether our conditions on the distributions
and on predictors are necessary, or they can be yet more generalisedin the same direction. In this
section we discuss the conditions of the new model from this point of view.

The first question is, can the same results be obtained without assumptions ontolerance to data?
The following negative example shows that somebounds on tolerance to data are necessary.

Remark 8 There exists a distributionP on X∞ satisfying (1) and (2) such thatP(|pn − 1/2| >
3/n) = 0 for any n (i.e. Cn = 1 for any δ ∈ (0,1/2) and n> 3

(1/2−δ)) and a predictorΓ such that

Pn
p(errn > 0) ≤ 21−n for any p∈ [δ,1−δ] andP(errn = 1) = 1 for n > 1.

Proof Let X = Y = {0,1}. We define the distributionsPy asPy(X = y) = 1, for eachy ∈ Y (i.e.
η(x) = x for eachx). The distributionP|Y∞ is defined as a Markov distribution with transition

probability matrix

(
0 1
1 0

)
, i.e. it always generates sequences of labels. . .01010101. . . .

We define the predictorΓ as follows

Γn :=

{
1−xn if |#{i < n : yi = 0}−n/2| ≤ 1,
xn otherwise.

So, in the case when the distributionP is used to generate the examples,Γ is always seeing either
n−1 zeros andn ones, orn zeros andn ones which, consequently, will lead it to always predict the

654

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

wrong label. It remains to note that this is very improbable in the case of an i.i.d. distribution.

Another point isthe requirement on the frequencies of labels. In particular, the assumption
(8) might appear redundant: if the rate of occurrence of some label tends to zero, can we just ignore
this label without affecting the asymptotic? It appears that this is not the case, as the following
example illustrates.

Remark 9 There exist a distributionP on X∞ which satisfies (1) and (2) but for which the nearest
neighbour predictor is not consistent, i.e. the probability of error does not tend to zero.

Proof Let X = [0,1], let η(x) = 0 if x is rational andη(x) = 1 otherwise. The distributionP1 is
uniform on the set of irrational numbers, whileP0 is any distribution such thatP(x) 6= 0 for any
rationalx. (This construction is due to T. Cover.) The nearest neighbour predictor is consistent for
any i.i.d. distribution which agrees with the definition, i.e. for anyp = P(Y = 1) ∈ [0,1].

Next we construct the distributionP|Y∞ . Fix someε, 0< ε < 1. Assume that according toP the
first label is always 1, (i.e.P(y1 = 1) = 1; the object is an irrational number). Nextk1 labels are
always 0 (rationals), then follows 1, thenk2 zeros, and so on. It is easy to check that there exists
such sequencek1,k2, . . . that with probability at leastε we have

max
i<n: Xi is irrational

P1{x : Xi is the nearest neighbour ofx} ≤ 1− ε
m(n)

,

wherem(n) is the total number of irrational objects up to the trialn. On each stepn such that
n = t +∑t

j=1kt for somet ∈ N (i.e. on each irrational object) we have

E(errn(Γ,P)) ≥ ε

1− ∑

j<n: Xj is irrational
P(Xj is the nearest neighbour ofX)

 ≥ ε2

As irrational objects are generated infinitely often (that is, with intervalski), the probability of error
does not tend to zero.

Another question is whether the results can be generalised to the case ofnon-deterministi-
cally defined labels, which is often considered in literature. It should be noted that we consider
the task of learning object-label dependence, ignoring the label-label dependence (and prohibiting
any dependence apart from these). On one hand, it allows us to consider any sort of label-label
dependence. On the other hand, the best bound on the probability of error we can obtain is the
maximum of the class-conditional probabilities of error (as nothing is known about the probability
of the next label), and not the so-called Bayes error, which is the best achievable bound in the
i.i.d. case. Thus, if we want to consider stochastically defined labels, we should restrict our attention
to class-conditional probabilities of error. On this way also some obstacles can be met. In particular,
the functionη, which in this case is defined asη(x) := P(Yn = 1|Xn = x) should not depend onn,
which will require more restrictive definition of constantsCn and the condition (8). We leave this
question for further investigation.

As it was mentioned in Section 2, for the sake of simplicity of notations, all resultsare formu-
lated for the case of binary labelsY = {0,1}; however, they can be easily extended tothe case of

655

RYABKO

any finite label space. Indeed, to pass to the general case only the following changes should be
made. With each distribution satisfying the conditions of the model (1) and (2) we associate (not
two but) |Y| distributionsPa, a∈ Y, defined byP(Xn|Yn = a) (which does not depend onn). Anal-
ogously to the binary case, these distributions are used to define (in the natural way) the family of
distributionsPq (cf. Pp of Section 2), whereq stands for any probability distribution over the setY.
The definitions (3) and (4) take the form

▽δ(P0,P1,n,ε) := sup
q

P∞
q (errn(Γ) > ε) (16)

and
∆δ(P0,P1,n,ε) := sup

q
∆(Pq,n,ε), (17)

where the supremums are with respect to all distributionsq such that mina∈Y q(a) ≥ δ. All the-
orems retain their form withp(n,a) (instead ofp(n))defined as1

n#{i ≤ n : yi = a} andCn as
P(mina∈Y p(n,a) ≥ δ). It is easy to alter the proofs according to these changes. However, asit
can be seen, the notation becomes significantly more cumbersome.

Finally, the choice of the constantsκn requires clarification. We have fixed these constants for
the sake of simplicity of notations, however, they can be made variable, as long asκn obeys the
following condition.

lim
n→∞

{n|pn− p| ≤ κn} = 0

almost surely for anyp ∈ (0,1) and any probability distributionP on X such thatP(y = 1) = p,
wherepn := 1

n#{i ≤ n : Yi = 0}.

Acknowledgements

Parts of the results were reported on International Conference on Machine Learning, 2004, (Ryabko,
2004a), and on 15th International Conference on Algorithmic Learning Theory, 2004, (Ryabko,
2004b). The main results were obtained while the author was a Ph.D. studentat Royal Holloway,
University of London. The research was partially supported by the Swiss NSF grant 200020-
107616.

Appendix A: Proofs for Section 2

Before proceeding with the proof of Theorem 1 we give some definitions and supplementary facts.
Define the conditional probabilities of error ofΓ as follows

err0n(Γ,P,z0, . . . ,zn) := P(Yn+1 6= Γ(z1, . . . ,zn,Xn+1)|Yn+1 = 0),

err1n(Γ,P,z0, . . . ,zn) := P(Yn+1 6= Γ(z1, . . . ,zn,Xn+1)|Yn+1 = 1),

(with the same notational convention as used with the definition of errn(Γ)). In words, for each
y∈ Y = {0,1} we define erryn as the probability of allx∈ X, such thatΓ makes an error onn’th trial,
given thatYn+1 = y and fixedz1, . . . ,zn.

For anyy := (y1,y2, . . .) ∈ Y∞, defineyn := (y1, . . . ,yn) and pn(y) := 1
n#{i ≤ n : yi = 0}, for

n > 1.

656

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

Clearly (from the assumption (1)) the random variablesX1, . . . ,Xn are mutually conditionally
independent givenY1, . . . ,Yn, and by (2) they are distributed according toPYi , 1≤ i ≤ n. Hence, the
following statement is valid.

Lemma 10 Fix some n> 1 and somey ∈ Y∞ such thatP((Y1,Yn+1) = yn+1) 6= 0. Then

P
(

erryn+1
n (Γ) > ε

∣∣(Y1, . . . ,Yn) = yn
)

= Pn
p

(
erryn+1

n (Γ) > ε
∣∣(Y1, . . . ,Yn) = yn

)

for any p∈ (0,1).

Where, accordingly to the notational conventions made above,

P
(

erryn+1
n (Γ) > ε

∣∣(Y1, . . . ,Yn) = yn
)

= P
{

x1, . . . ,xn : errn(Γ,P,x1,y1, . . . ,xn,yn) > ε
}

;

that is, having fixed the labels, we consider probability over objects only.
Proof of Theorem 1.Fix somen > 1, somey∈ Y and suchy1 ∈ Y∞ thatδ ≤ pn(y1) ≤ 1−δ and

P((Y1, . . . ,Yn) = y1
n) 6= 0. Letp := pn(y1). We will find bounds onP

(
errn(Γ) > ε | (Y1, . . . ,Yn) = y1

n

)
,

first in terms of∆ and then in terms of̄∆.
Lemma 10 allows us to pass to the i.i.d. case:

P
(

erryn(Γ,X1,y
1
1, . . . ,Xn,y

1
n,Xn+1) > ε

)
= Pn

p

(
erryn(Γ,X1,y

1
1, . . . ,Xn,y

1
n,Xn+1) > ε

)

for any y such thatP(Y1 = y1
1, . . . ,Yn = y1

n,Yn+1 = y) 6= 0 (recall that we use upper-case letters for
random variables and lower-case for fixed variables, so that the probabilities in the above formula
are labels-conditional).

Clearly, forδ ≤ p≤ 1−δ we have errn(Γ,Pp)≤maxy∈Y(erryn(Γ,Pp)), and if errn(Γ,Pp) < ε then
erryn(Γ,Pp) < ε/δ for eachy∈ Y.

Let m be such number thatm−κm = n. For anyy2 ∈ Y∞ such that|mpm(y2)−mp| ≤ κm/2
there exist such mappingπ : {1, . . . ,n} → {1, . . . ,m} thaty2

π(i) = y1
i for any i ≤ n. Define random

variablesX′
1 . . .X′

m as follows:X′
π(i) := Xi for i ≤ n, while the restκm of X′

i are some random variables
independent fromX1, . . . ,Xn and from each other, and distributed according toPp (a “ghost sample”).
We have

Pn
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n) > ε

)

= Pm
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n)−erryn(X

′
1,y

2
1, . . . ,X

′
m,y2

m)+erryn(X
′
1,y

2
1, . . . ,X

′
m,y2

m) > ε
)

≤ Pm
p

(∣∣erryn(X
′
1,y

2
1, . . . ,X

′
n,y

2
n)−erryn(X1,y

1
1, . . . ,Xn,y

1
n)

∣∣ > ε/2
)

+Pn
p

(
erryn(X

′
1,y

2
1, . . . ,X

′
n,y

2
n) > ε/2

)
.

Observe thaty2 was chosen arbitrarily (among sequences for which|mpm(y2)−mp| ≤ κm/2) and
(X1,y1

1, . . . ,Xny1
n) can be obtained from(X′

1,y
2
1, . . . ,X

′
my2

m) by removing at mostκm elements and
applying some permutation. Thus the first term is bounded by

Pm
p

(
max

j≤κm; π:{1,...,m}→{1,...,m}
|errym(Γ,Z1, . . . ,Zm)−

errym− j(Γ,Zπ(1), . . . ,Zπ(m− j))| > ε/2
∣∣ |mp(m)−mp| ≤ κm/2

)

≤ ∆(Pp,m,δε/2)

Pn
p(|mp(m)−mp| ≤ κm)

≤ 1
1−1/

√
m

∆(Pp,m,δε/2),

657

RYABKO

and the second term is bounded by1
1−1/

√
mPm

p (errm(Γ) > δε/2). Hence

Pn
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n) > ε

)
≤ αn

(
∆(Pp,m,δε/2) + Pm

p (errm(Γ) > δε/2)
)
. (18)

Next we establish a similar bound in terms of∆̄. For anyy2
n ∈ Yn such that|npn(y2)−np| ≤

κn/2 there exist such permutationsπ1,π2 of the set{1, . . . ,n} thaty1
π1(i)

= y2
π2(i)

for anyi ≤ n−δκn.
Denoten− δκn by n′ and define random variablesX′

1 . . .X′
n as follows: X′

π2(i)
:= Xπ1(i) for i ≤ n′,

while for n′ < i ≤ n X′
i are some “ghost” random variables independent fromX1, . . . ,Xn and from

each other, and distributed according toPp. We have

Pn
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n) > ε

)

≤ Pn+κn
p

(∣∣erryn(X
′
1,y

2
1, . . . ,X

′
n,y

2
n)−erryn(X1,y

1
1, . . . ,Xn,y

1
n)

∣∣ > ε/2
)

+Pn
p

(
erryn(X

′
1,y

2
1, . . . ,X

′
n,y

2
n) > ε/2

)
,

Again,y2 was chosen arbitrarily (among sequences for which|npn(y2)−np| ≤ κn/2) and

(X1,y
1
1, . . . ,Xny1

n)

differs from
(X′

1,y
2
1, . . . ,X

′
ny2

n)

in at mostκn elements, up to some permutation. Thus the first term is bounded by

Pn
p

(
sup

j<κn;π:{1,...,n}→{1,...,n};z′n− j ,...,z
′
n

|erryn(Z1, . . . ,Zn)

−erryn(ζ1, . . . ,ζn)| > ε/2
∣∣ |np(n)−np| ≤ κn/2

)
≤ αn∆̄(Pp,n,δε/2),

and the second term is bounded byαnPn
p(errn(Γ) > δε/2). Hence

Pn
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n) > ε

)
≤ αn

(
∆̄(Pp,n,δε/2) + Pn

p(errn(Γ) > δε/2)
)
. (19)

Finally, asy1 was chosen arbitrarily among sequencesy ∈ Y∞ such thatnδ ≤ pn(y1) ≤ n(1−δ)
from (18) and (19), we obtain (6) and (7). �

Appendix B: Proofs for Section 3

The first part of the proof is common for theorems 3 and 4. Let us fix some distributionP satisfying
conditions of the theorems. It is enough to show that

sup
p∈[δ,1−δ]

E∞(errn(Γ,Pp,Z1, . . . ,Zn)) → 0

and
sup

p∈[δ,1−δ]

E∞(∆̄(Pp,n,Z1, . . . ,Zn)) → 0

for nearest neighbour and partitioning predictor, and apply Corollary 2.

658

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

Observe that both predictors are symmetric, i.e. do not depend on the order of Z1, . . . ,Zn.
Thus, for anyz1, . . . ,zn

∆̄(Pp,n,z1, . . . ,zn) = sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

|errn(Γ,Pp,z1, . . . ,zn)−errn(Γ,Pp,zπ(1), . . . ,zπ(n− j),z
′
n− j , . . . ,z

′
n)|,

where the maximum is taken over allz′i consistent withη, n− j ≤ i ≤ n. Define also the class-
conditional versions of̄∆:

∆̄y(Pp,n,z1, . . . ,zn) := sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

|erryn(Γ,Pp,z1, . . . ,zn)−erryn(Γ,Pp,zπ(1), . . . ,zπ(n− j),z
′
n− j , . . . ,z

′
n)|.

Note that (omittingz1, . . . ,zn from the notation) errn(Γ,Pp) ≤ err0n(Γ,Pp)+err1n(Γ,Pp) and
∆̄(Pp,n) ≤ ∆̄0(Pp,n)+ ∆̄1(Pp,n). Thus, it is enough to show that

sup
p∈[δ,1−δ]

E∞(err1n(Γ,Pp)) → 0 (20)

and
sup

p∈[δ,1−δ]

E∞(∆̄1(Pp,n)) → 0. (21)

Observe that for each of the predictors in question the probability of error given that the true
label is 1 will not decrease if an arbitrary (possibly large) portion of training examples labelled
with ones is replaced with an arbitrary (but consistent withη) portion of the same size of examples
labelled with zeros. Thus, for anyn and anyp∈ [δ,1− δ] we can decrease the number of ones in
our sample (by replacing the corresponding examples with examples from theother class) down to
(say)δ/2, not decreasing the probability of error on examples labelled with 1. So,

E∞(err1n(Γ,Pp)) ≤ E∞(err1n(Γ,Pδ/2|pn = δ/2))+Pp(pn ≤ δ/2), (22)

where as usualpn := 1
n#{i ≤ n : yi = 1}. Obviously, the last term (quickly) tends to zero. Moreover,

it is easy to see that

E∞(err1n(Γ,Pδ/2)|pn = n(δ/2))

≤ E∞(
err1n(Γ,Pδ/2)

∣∣|n(δ/2)− pn| ≤ κn/2
)
+E∞(∆̄1(Pδ/2,n))

≤ 1
1−1/

√
n

E∞(err1n(Γ,Pδ/2))+E∞(∆̄1(Pδ/2,n)). (23)

The first term tends to zero, as it is known from the results for i.i.d. processes; thus, to establish (20)
we have to show that

E(∆̄1(Pp,n,Z1, . . . ,Zn)) → 0 (24)

for any p∈ (0,1).

659

RYABKO

We will also show that (24) is sufficient to prove (21). Indeed,

∆̄1(Pp,n,z1, . . . ,zn) ≤ err1n(Γ,Pp,z1, . . . ,zn)+

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

err1n(Γ,Pp,zπ(1), . . . ,zπ(n− j),z
′
n− j , . . . ,z

′
n)

Denote the last summand byD. Again, we observe thatD will not decrease if an arbitrary (possibly
large) portion of training examples labelled with ones is replaced with an arbitrary (but consistent
with η) portion of the same size of examples labelled with zeros. Introduce∆̃1(Pp,n,z1, . . . ,zn) as
∆̄1(Pp,n,z1, . . . ,zn) with κn in the definition replaced by2δκn. Using the same argument as in (22)
and (23) we have

E∞(D) ≤ 1
1−1/

√
n

(
E∞(∆̃1(Pδ/2,n)) + E∞(errn(Γ,Pδ/2)

)
+ Pp(pn ≤ δ/2).

Thus, (21) holds true if (24) and

E∞(∆̃1(Pp,n,Z1, . . . ,Zn)) → 0. (25)

Finally, we will prove (24); it will be seen that the proof of (25) is analogous (i.e. replacingκn

by 2
δκn does not affect the proof). Note that

E∞(∆̄(Pp,n,Z1, . . . ,Zn)) ≤ Pp

(
sup

j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z
′
n

∣∣errn(Γ,Pp,Z1, . . . ,Zn) 6= errn(Γ,Pp,Zπ(1), . . . ,Zπ(n− j),z
′
n− j , . . . ,z

′)
∣∣
)
,

where the maximum is taken over allz′i consistent withη, n− j ≤ i ≤ n. The last expression should
be shown to tend to zero. This we will prove for each of the predictors separately.

Nearest Neighbour predictor. Fix some distributionPp, 0 < p < 1 and someε > 0. Fix also
somen∈ N and define (leavingx1, . . . ,xn implicit)

Bn(x) := Pn+1
p {t ∈ X : t andx have the same nearest neighbour amongx1, . . . ,xn}

andBn := E(Bn(X)) Note thatE∞(Bn) = 1/n, where the expectation is taken overX1, . . . ,Xn. Define
B := {(x1, . . . ,xn) ∈ Xn : Bn ≤ 1/nε} andA (x1, . . . ,xn) := {x : Bn(x)≤ 1/nε2}. Applying Markov’s
inequality twice, we obtain

E∞(∆̄(Pp,n)) ≤ E∞(∆̄(Pp,n)|(X1, . . . ,Xn) ∈ B)+ ε

≤ E∞
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

Pp
{

x : errn(Γ,Pp,Z1, . . . ,Zn) 6= errn(Γ,Pp,Zπ(1), . . . ,Zπ(n− j),z
′
n− j , . . . ,z

′
n)

∣∣x∈ A (X1, . . . ,Xn)
}∣∣(X1, . . . ,Xn) ∈ B

)
+2ε.

(26)

Removing one pointxi from a samplex1, . . . ,xn we can only change the value ofΓ in the area

{x∈ X : xi is the nearest neighbour of x} = Bn(xi),

660

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

while adding one pointx0 to the sample we can change the value ofΓ in the area

Dn(x0) := {x∈ X : x0 is the nearest neighbour of x}.
It can be shown that the number of examples (amongx1, . . . ,xn) for which a pointx0 is the nearest
neighbour is not greater than a constantγ which depends only the spaceX (see Devroye, Gÿorfi,
Lugosi, 1996, Corollary 11.1). Thus,

Dn(x0) ⊂ ∪i= j1,..., jγBn(xi)

for somej1, . . . , jγ, and so

E∞(∆̄(Pp,n)) ≤ 2ε+2(γ+1)κnE∞(max
x∈A (X1,...,Xn)

Bn(x)|(X1, . . . ,Xn) ∈ B)

≤ 2κn
γ+1
nε2 +2ε,

which, increasingn, can be made less than 3ε. �

Partitioning predictor. For any measurable setsB ⊂ Xn andA ⊂ X define

D(B ,A) := E∞
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

Pp
{

x : errn(Γ,Pp,Z1, . . . ,Zn) 6= errn(Γ,Pp,Zπ(1), . . . ,Zπ(n− j),z
′
n− j , . . . ,z

′
n)

∣∣x∈ A
}∣∣(X1, . . . ,Xn) ∈ B

)
+2ε.

andD := D(Xn,X).
Fix some distributionPp, 0< p < 1 and someε > 0. Introduce

η̂(x,X1, . . . ,Xn) :=
1

N(x)

n

∑
i=1

IYi=1IXi∈A(x)

(X1, . . .Xn will usually be omitted). From the consistency results for i.i.d. model (see, e.g.Devroye,
Györfi, Lugosi, 1996, Theorem 6.1) we know thatEn+1|η̂n(X)−η(X)| → 0 (the upper index in
En+1 indicating the number of examples it is taken over).

Thus, E|η̂n(X)− η(X)| ≤ ε4 from somen on. Fix any suchn and letB := {(x1, . . . ,xn) :
E|η̂n(X)−η(X)| ≤ ε2}. By Markov inequality we obtainPp(B) ≥ 1− ε2. For any(x1, . . . ,xn) ∈ B
let A (x1, . . . ,xn) be the union of all cellsAn

i for whichE(|η̂n(X)−η(X)||X ∈ An
i) ≤ ε. Clearly, with

x1, . . . ,xn fixed,Pp(X ∈ A (x1, . . . ,xn)) ≥ 1− ε. Moreover,D ≤ D(B ,A)+ ε+ ε2.
Fix A := (x1, . . . ,xn) for some(x1, . . . ,xn) ∈ B . Sinceη(x) is always either 0 or 1, to change

a decision in any cellA ⊂ A we need to add or remove at least(1− ε)N(A) examples, where
N(A) := N(x) for anyx∈ A. Let N(n) := E(N(X)) andA(n) := E(Pp(A(X)). Clearly, N(n)

nA(n) = 1 for

anyn, asE N(X)
n = A(n).

As before, using Markov inequality and shrinkingA if necessary we can have

Pp

(ε2nA(X)

N(n)
≤ ε|X ∈ A

)
= 1, Pp

(ε2nA(n)

N(X)
≤ ε|X ∈ A

)
= 1,

andD≤D(B ,A)+3ε+ε2. Thus, for all cellsA⊂ A we haveN(A)≥ εnA(n), so that the probability
of error can be changed in at most 2 κn

(1−ε)εnA(n) cells; but the probability of each cell is not greater

than N(n)
εn . HenceE∞(∆̄(Pp,n)) ≤ 2 κn

n(1−ε)ε2 +3ε+ ε2. �

661

RYABKO

Appendix C: Proofs for Section 4

Proof of Theorem 5.Fix some probability distributionPp and somen∈ N. Let ϕ× be any decision
rule ϕ ∈ C picked byΓn−κn on which (along with the corresponding permutation) the maximum

max
j≤κn; π:{1,...,n}→{1,...,n}

|errn(Γ,z1, . . . ,zn)−errn− j(Γ,zπ(1), . . . ,zπ(n− j))|

is reached. We need to estimatePn(|err(ϕ∗)−err(ϕ×)| > ε).
Clearly,|errn(ϕ×)−errn(ϕ∗)| ≤ κn, asκn is the maximal number of errors which can be made

on the difference of the two samples.
Moreover,

Pn(|err(ϕ∗
n)−err(ϕ×)| > ε

)

≤ Pn(|err(ϕ∗
n)−

1
n

errn(ϕ∗)| > ε/2
)
+Pn(|1

n
errn(ϕ×)−err(ϕ×)| > ε/2−κn/n

)

Observe that

Pn(sup
ϕ∈C

|1
n

errn(ϕ)−err(ϕ)| > ε) ≤ 8S (C ,n)e−nε2/32, (27)

see (Devroye, Gÿorfi, Lugosi, 1996, Theorem 12.6). Thus,

∆(Pp,n,ε) ≤ 16S (C ,n)e−n(ε/2−κn/n)2/32 ≤ 16S (C ,n)e−nε2/512

for n > 4/ε2. So,

P(errn(Γ,P) > ε) ≤ Isupp∈[δ,1−δ] err(ϕPp,Pp)>ε/2 +16αC−1
n S (C ,n)e−nδ2ε2/2048+(1−Cn).

It remains to notice that

err(ϕPp,Pp) = inf
ϕ∈C

(perr1(ϕ,Pp)+(1− p)err0(ϕ,Pp))

≤ inf
ϕ∈C

(err1(ϕ,P1/2)+err0(ϕ,P1/2)) = 2err(ϕP1/2,P1/2)

for any p∈ [0,1].
So far we have proven (12) and (13); (14) and (15) can be provenanalogously, only for the case

η ∈ C we have

Pn(sup
ϕ∈C

|1
n

errn(ϕ)−err(ϕ)| > ε) ≤ S (C ,n)e−nε

instead of (27), and err(ϕPp,Pp) = 0. �

References

D. Aldous and U. Vazirani,A Markovian Extension of Valiant’s Learning Model.In Proceedings of
the 31st Symposium on Foundations of Computer Science, pp. 392–396, 1990.

P. Algoet,Universal Schemes for Learning the Best Nonlinear Predictor Given the Infinite Past and
Side Information.IEEE Transactions on Information Theory, Vol. 45, No. 4, 1999.

662

PATTERN RECOGNITION FORCONDITIONALLY INDEPENDENTDATA

P. Bartlett, S. Ben-David, S. Kulkarni,Learning Changing Concepts by Exploiting the Structure
of Change.In Proceedings of the Workshop on Computational Learning Theory, pp. 131–139,
Morgan Kaufmann Publishers, 1996.

E. Baum and D. Haussler,What Size Net Gives Valid Generalisation?Neural Computation, 1:151-
160, 1989.

A. Blumer, A. Ehrenfeucht, D. Haussler M and WarmuthLearnability and the Vapnik-Chervonenkis
Dimension.Journal of the ACM, 36, pp. 929–965, 1989.

O. Bousquet, A. Elisseeff.Stability and Generalization.Journal of Machine Learning Research, 2:
499-526, 2002.

A.P. DawidConditional Independence in Statistical Theory.Journal of the Royal Statistical Society,
Series B (Methodological), Vol. 41 No 1, pp. 1–31, 1979.

L. Devroye,On Asymptotic Probability of Error in Nonparametric Discrimination.Annals of Statis-
tics, Vol. 9, No. 6, pp. 1320–1327, 1981.

L. Devroye, L. Gÿorfi, A. Krzyzȧk, G. Lugosi,On the Strong Universal Consistency of Nearest
Neighbor Regression Function Estimates.Annals of Statistics, Vol. 22, pp. 1371–1385, 1994.

L. Devroye, L. Gÿorfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition. New York:
Springer, 1996.

R. Duda, P. Hart, D. Stork. Pattern Classification, Second edition, Wiley-Interscience, 2001.

L. Györfi, G. Lugosi, G. Morvai,A Simple Randomized Algorithm for Sequential Prediction of
Ergodic Time Series.IEEE Transactions on Information Theory, Vol. 45, pp. 2642–2650, 1999.

D. Helmbold and P. Long,Tracking Drifting Concepts by Minimizing Disagreements.Proceedings
of the Fourth Annual Workshop on Computational Learning Theory, Santa Cruz, USA, pp. 13–23,
1991.

D. Gamarnik,Extension of the PAC Framework to Finite and Countable Markov Chains.IEEE
Transactions on Information Theory, 49(1):338-345, 2003.

M. Kearns and D. Ron,Algorithmic Stability and Sanity-Check Bounds on Leave-One-Out Cross-
Validation. Neural Computation, Vol. 11, No. 6, pp. 1427–1453, 1999.

M. Kearns M. and U. Vazirani, An Introduction to Computational Learning Theory. The MIT Press,
Cambridge, Massachusetts, 1994.

S. Kulkarni, S. Posner.Rates of Convergence of Nearest Neighbour Estimation Under Arbitrary
Sampling. IEEE Transactions on Information Theory, Vol. 41, No. 10, pp. 1028–1039, 1995.

S. Kulkarni, S. Posner, S. Sandilya.Data-Dependent kn-NN and Kernel Estimators Consistent for
Arbitrary Processess. IEEE Transactions on Information Theory, Vol. 48, No. 10, pp. 2785–2788,
2002.

663

RYABKO

G. Lugosi, A. Nobel,Consistency of Data-Driven Histogram Methods for Density Estimation and
Classification.Annals of Statistics Vol. 24, No.2, pp. 687–706, 1996.

G. Lugosi and K. Zeger,Nonparametric Estimation via Empirical Risk Minimization.IEEE Trans-
actions on Information Theory, Vol. 41 No. 3 pp. 677–687, 1995.

G. Morvai, S. Kulkarni, and A.B. Nobel,Regression Estimation from an Individual Stable Sequence.
Statistics, vol. 33, pp.99–118, 1999.

G. Morvai, S. Yakowitz, P. Algoet,Weakly Convergent Nonparametric Forecasting of Stationary
Time Series.IEEE Transactions on Information Theory, Vol. 43, No. 2, 1997.

A.B. Nobel, Limits to Classification and Regression Estimation from Ergodic Process.Annals of
Statistics, vol. 27, pp. 262–273, 1999.

W. Rogers and T. Wagner.A finite Sample Distribution-Free Performance Bound for Local Discrim-
ination Rules.Annals of Statistics, Vol. 6 No. 3 pp. 506–514, 1978.

B. Ryabko,Prediction of random sequences and universal coding.Problems of Information Trans-
mission, Vol. 24, pp. 87–96, 1988.

D. Ryabko,Online Learning of Conditionally I.I.D. Data.In: C. E. Brodley (Ed.), Proceedings of
the21st International Conference on Machine Learning, Banff, Canada, pp. 727–734, 2004.

D. Ryabko, Application of Classical Nonparametric Predictors to Learning Conditionally
I.I.D. Data. In: S. Ben-David, J. Case, A. Maruoka (Eds.), Proceedings of 15thInternational
Conference on Algorithmic Learning Theory, Padova, Italy, pp. 171–180, 2004.

L. Valiant,A Theory of the Learnable.Communications of the ACM, 27, pp. 1134–1142. 1984.

V. Vapnik, Statistical Learning Theory, New York etc.: John Wiley , Sons,Inc. 1998.

V. Vapnik, and A. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974 (in Rus-
sian).

664

Journal of Machine Learning Research 7 (2006) 665–704 Submitted 9/05; Published 4/06

Learning Minimum Volume Sets

Clayton D. Scott CSCOTT@RICE.EDU

Department of Statistics
Rice University
Houston, TX 77005, USA

Robert D. Nowak NOWAK@ECE.WISC.EDU

Department of Electrical and Computer Engineering
University of Wisconsin at Madison
Madison, WI 53706, USA

Editor: John Lafferty

Abstract
Given a probability measureP and a reference measureµ, one is often interested in the minimum
µ-measure set withP-measure at leastα. Minimum volume sets of this type summarize the regions
of greatest probability mass ofP, and are useful for detecting anomalies and constructing confi-
dence regions. This paper addresses the problem of estimating minimum volume sets based on
independent samples distributed according toP. Other than these samples, no other information is
available regardingP, but the reference measureµ is assumed to be known. We introduce rules for
estimating minimum volume sets that parallel the empiricalrisk minimization and structural risk
minimization principles in classification. As in classification, we show that the performances of
our estimators are controlled by the rate of uniform convergence of empirical to true probabilities
over the class from which the estimator is drawn. Thus we obtain finite sample size performance
bounds in terms of VC dimension and related quantities. We also demonstrate strong universal
consistency, an oracle inequality, and rates of convergence. The proposed estimators are illustrated
with histogram and decision tree set estimation rules.
Keywords: minimum volume sets, anomaly detection, statistical learning theory, uniform devia-
tion bounds, sample complexity, universal consistency

1. Introduction

Given a probability measureP and a reference measureµ, the minimum volume set (MV-set) with
mass at least 0< α < 1 is

G∗
α = arg min{µ(G) : P(G) ≥ α,G measurable}.

MV-sets summarize regions where the mass ofP is most concentrated. For example, ifP is a mul-
tivariate Gaussian distribution andµ is the Lebesgue measure, then the MV-sets are ellipsoids. An
MV-set for a two-component Gaussian mixture is illustrated in Figure 1. Applications of minimum
volume sets include outlier/anomaly detection, determining highest posterior density or multivari-
ate confidence regions, tests for multimodality, and clustering. See Polonik (1997); Walther (1997);
Scḧolkopf et al. (2001) and references therein for additional applications.

This paper considers the problem of MV-set estimation using a training sampledrawn from
P, which in most practical settings is the only information one has aboutP. The specifications to

c©2006 Clayton Scott and Robert Nowak.

SCOTT AND NOWAK

Figure 1: Minimum volume set (gray region) of a two-component Gaussian mixture. Also shown
are 500 points drawn independently from this distribution.

the estimation process are the significance levelα, the reference measureµ, and a collection of
candidate setsG .

A major theme of this work is the strong parallel between MV-set estimation and binary classi-
fication. In particular, we find that uniform convergence (of true probability to empirical probability
over the class of setsG) plays a central role in controlling the performance of MV-set estimators.
Thus, we derive distribution free finite sample performance bounds in termsof familiar quantities
such as VC dimension. In fact, as we will see, any uniform convergencebound can be directly
converted to a rule for MV-set estimation.

In Section 2 we introduce a rule for MV-set estimation analogous to empirical risk minimization
in classification, and shows that this rule obeys similar finite sample size performance guarantees.
Section 3 extends the results of the previous section to allowG to grow in a controlled way with
sample size, leading to MV-set estimators that are strongly universally consistent. Section 4 intro-
duces an MV-set estimation rule similar in spirit to structural risk minimization in classification,
and develops an oracle-type inequality for this estimator. The oracle inequality guarantees that
the estimator automatically adapts its complexity to the problem at hand. Section 5 introduces a
tuning parameter to the proposed rules that allows the user to affect the tradeoff between volume
error and mass error without sacrificing theoretical properties. Section6 provides a “case study” of
tree-structured set estimators to illustrate the power of the oracle inequality for deriving rates of con-
vergence. Section 7 includes a set of numerical experiments that explores the proposed theory (and
algorithmic issues) using histogram and decision tree rules in two dimensions. Section 8 includes
concluding remarks and avenues for potential future investigations. Detailed proofs of the main
results of the paper are relegated to the appendices. Throughout the paper, the theoretical results are
illustrated in detail through several examples, including VC classes, histograms, and decision trees.

666

LEARNING M INIMUM VOLUME SETS

1.1 Previous Work

All previous theoretical work on MV-set estimation has been asymptotic in nature, to our knowl-
edge. Our work here is the first to provide explicit finite sample bounds. Most closely related to this
paper is the pioneering work of Polonik (1997). Using empirical processtheory, he establishes con-
sistency results and rates of convergence for minimum volume sets which depend on the entropy
of the class of candidate sets. This places restrictions on the MV-setG∗

α (e.g, µ(G∗
α) is continu-

ous inα), whereas our consistency result holds universally, i.e., for all distributionsP. Also, the
convergence rates obtained by Polonik apply under smoothness assumptions on the density. In con-
trast, our rate of convergence results in Section 6 depend on the smoothness of the boundary ofG∗

α.
Walther (1997) studies an approach based on “granulometric smoothing,”which involves applying
certain morphological smoothing operations to theα-mass level set of a kernel density estimate. His
rates also apply under smoothness assumptions on the density, rather than more direct assumptions
regarding the smoothness of the MV-set as in our approach.

Algorithms for MV-set estimation have been developed for convex sets (Sager, 1979) and el-
lipsoidal sets (Hartigan, 1987) in two dimensions. Unfortunately, for more complicated problems
(dimension> 2 and non-convex sets), there has been a disparity between practical MV-set estima-
tors and theoretical results. Polonik (1997) makes no comment on the practicality of his estimators.
The smoothing estimators of Walther (1997) in practice must approximate the theoretical estima-
tor via iterative level set estimation. On the other hand, computationally efficient procedures like
those in Scḧolkopf et al. (2001) and Huo and Lu (2004) are motivated by the minimum volume
set paradigm, but their performance relative toG∗

α is not known. Recently, however, Muñoz and
Moguerza (2006) have proposed the so-called one-class neighbor machine and demonstrated its
consistency under certain assumptions. Our proposed algorithms for histograms and decision trees
are practical in low dimensional settings, but appear to be constrained by the same computational
limitations as empirical risk minimization in binary classification.

More broadly, MV-set estimation theory has similarities (in terms of the nature ofresults and
technical devices) to other set estimation problems, such as classification, discrimination analysis,
density support estimation (which corresponds to the caseα = 1), and density level set estimation,
to which we now turn.

1.2 Connection to Density Level Sets

The MV-set estimation problem is closely related to density level set estimation (Tsybakov, 1997;
Ben-David and Lindenbaum, 1997; Cuevas and Rodriguez-Casal, 2003; Steinwart et al., 2005; Vert
and Vert, 2005) and excess mass estimation problems (Nolan, 1991; Müller and Sawitzki, 1991;
Polonik, 1995). Indeed, it is well known that density level sets are minimum volume sets (Nunez-
Garcia et al., 2003). The main difference between density level sets and MV-sets is that the former
require the specification of a density level of interest, rather than the specification of the massα
to be enclosed. Since the density is in general unknown, it seems that specifying α is much more
reasonable and intuitive than setting a density level for problems like anomaly detection. Suppose
for example that one is interested in a reference measure of the formcµ, whereµ is Lebesgue
measure andc > 0. The choice ofc does not change the minimum volume set, but it does affect
the γ level set. Since there is no way a priori to choose the bestc, the invariance of the minimum
volume set seems highly desirable. To frame the same issue in a different way, supposeµ is uniform
on some set containing the support ofP. Then MV-sets are invariant to how the support ofµ is

667

SCOTT AND NOWAK

specified, while density level sets are not. Further advantages of MV-sets over level sets are given
in the concluding section.

Algorithms for density level set estimation can be split into two categories, implicit plug-in
methods and explicit set estimation methods. Plug-in strategies entail full densityestimation and
are the more popular practical approach. For example, Baillo et al. (2001) considers plug-in rules for
density level set estimation problems and establishes upper bounds on the rate of convergence for
such estimators in certain cases. The problem of estimating a density supportset, the zero level set,
is a special minimum volume set (i.e., the minimum volume set that contains the total probability
mass). Cuevas and Fraiman (1997) study density support estimation and show that a certain (density
estimator) plug-in scheme provides universally consistent support estimation.

While consistency and rate of convergence results for plug-in methods typically make global
smoothness assumptions on the density, explicit methods make assumptions on thedensity at or
near the level of interest. This fact, together with the intuitive appeal of nothaving to solve a
problem harder than one is interested in, make explicit methods attractive. Steinwart et al. (2005)
reduce level set estimation to a cost-sensitive classification problem by sampling from the reference
measure. The idea of sampling fromµ in the minimum volume context is discussed further in the
concluding section. Vert and Vert (2005) study the one-class support vector machine (SVM) and
show that it produces a consistent density level set estimator, based on the fact that consistent density
estimators produce consistent plug-in level set estimators. Willett and Nowak(2005, 2006) propose
a level set estimator based on decision trees, which is applicable to density level set estimation as
well as regression level set estimation, and related dyadic partitioning schemes are developed by
Klemel̈a (2004) to estimate the support set of a density.

The connections between MV-sets and density level sets will be important laterin this paper.
To make the connection precise the following assumption on the data-generating distribution and
reference measure is needed. We emphasize that this assumption is not necessary for the results in
Sections 2 and 3, where distribution free error bounds and universalconsistency are established.

A1 P has a densityf with respect toµ.

A key result relating density level and MV-sets is the following, stated withoutproof (see, e.g.,
Nunez-Garcia et al. (2003)).

Lemma 1 Under assumptionA1 there existsγα such that for any MV-set G∗α,

{x : f (x) > γα} ⊂ G∗
α ⊂ {x : f (x) ≥ γα}.

Note that every density level set is an MV-set, but not conversely. If,however,µ({x : f (x) = γα}) =
0, then the three sets in the Lemma coincide.

1.3 Notation

Let (X ,B) be a measure space withX ⊂ R
d. Let X be a random variable taking values inX with

distribution P. Let S= (X1, . . . ,Xn) be an independent and identically distributed (IID) sample
drawn according toP. Let G denote a subset ofX , and letG be a collection of such subsets. LetP̂
denote the empirical measure based onS:

P̂(G) =
1
n

n

∑
i=1

I(Xi ∈ G) .

668

LEARNING M INIMUM VOLUME SETS

Here I(·) is the indicator function. The notationµ will denote a measure1 on X . Denote by f
the density ofP with respect toµ (when it exists),γ > 0 a level of the density, andα ∈ (0,1) a
user-specified mass constraint. Define

µ∗α = inf
G

{µ(G) : P(G) ≥ α}, (1)

where the inf is over all measurable sets. A minimum volume set,G∗
α, is a minimizer of (1) when it

exists.

2. Minimum Volume Sets and Empirical Risk Minimization

We introduce a procedure inspired by the empirical risk minimization (ERM) principle for classifi-
cation. In classification, ERM selects a classifier from a fixed set of classifiers by minimizing the
empirical error (risk) of a training sample. Vapnik and Chervonenkis established the basic theoret-
ical properties of ERM (see Vapnik, 1998; Devroye et al., 1996), andwe find similar properties in
the minimum volume setting.

Let G be a class of sets. Givenα ∈ (0,1), denote

Gα = {G∈ G : P(G) ≥ α},

the collection of all sets inG with mass at leastα. Define

µG ,α = inf{µ(G) : G∈ Gα} (2)

and
GG ,α = arg min{µ(G) : G∈ Gα} (3)

when it exists. ThusGG ,α is the best approximation to the minimum volume setG∗
α from G .

Empirical versions ofGα andGG ,α are defined as follows. Letφ(G,S,δ) be a function ofG∈ G ,
the training sampleS, and a confidence parameterδ ∈ (0,1). Set

Ĝα = {G∈ G : P̂(G) ≥ α−φ(G,S,δ)}

and
ĜG ,α = arg min{µ(G) : G∈ Ĝα}. (4)

We refer to the rule in (4) as MV-ERM because of the analogy with empirical risk minimization in
classification. A discussion of the existence and uniqueness of the abovequantities is deferred to
Section 2.5.

The quantityφ acts as a kind of “tolerance” by which the empirical mass may deviate from the
targeted valueα. Throughout this paper we assume thatφ satisfies the following.

Definition 2 We sayφ is a (distribution free)complexity penaltyfor G if and only if for all distri-
butions P and allδ ∈ (0,1),

Pn

({
S: sup

G∈G

(∣∣∣P(G)− P̂(G)
∣∣∣−φ(G,S,δ)

)
> 0

})
≤ δ.

1. Although we do not emphasize it, the results of Sections 2 and 3 only require µ to be a real-valued function onB .

669

SCOTT AND NOWAK

Thus,φ controls the rate of uniform convergence ofP̂(G) to P(G) for G∈ G . It is well known that
the performance of ERM (for binary classification) relative to the performance of the best classifier
in the given class is controlled by the uniform convergence of true to empirical probabilities. A
similar result holds for MV-ERM.

Theorem 3 If φ is a complexity penalty forG , then

Pn
((

P(ĜG ,α) < α−2φ(ĜG ,α,S,δ)
)

or
(

µ(ĜG ,α) > µG ,α

))
≤ δ.

Proof Consider the sets

ΘP = {S: P(ĜG ,α) < α−2φ(ĜG ,α,S,δ)},
Θµ = {S: µ(ĜG ,α) > µ(GG ,α)},

ΩP =

{
S: sup

G∈G

(∣∣∣P(G)− P̂(G)
∣∣∣−φ(G,S,δ)

)
> 0

}
.

Lemma 4 With ΘP,Θµ, andΩP as defined above we have

ΘP∪Θµ ⊂ ΩP.

The proof is given in Appendix A, and follows closely the proof of Lemma 1 inCannon et al.
(2002). The theorem statement follows directly from this observation.

Lemma 4 may be understood by analogy with the result from classification that says R (f̂)−
inf f∈F R (f) ≤ 2supf∈F |R (f)− R̂ (f)| (see Devroye et al. (1996), Ch. 8). HereR and R̂ are

the true and empirical risks,̂f is the empirical risk minimizer, andF is a set of classifiers. Just
as this result relates uniform convergence to empirical risk minimization in classification, so does
Lemma 4 relate uniform convergence to the performance of MV-ERM.

The theorem above allows direct translation of uniform convergence results into performance
guarantees on MV-ERM. Fortunately, many penalties (uniform convergence results) are known. In
the next two subsections we take a closer look at penalties for VC classes and countable classes,
and a Rademacher penalty.

2.1 Example: VC Classes

Let G be a class of sets with VC dimensionV, and define

φ(G,S,δ) =

√
32

V logn+ log(8/δ)

n
. (5)

By a version of the VC inequality (Devroye et al., 1996), we know thatφ is a complexity penalty
for G , and therefore Theorem 3 applies.

To view this result in perhaps a more recognizable way, letε > 0 and chooseδ such that
φ(G,S,δ) = ε for all G ∈ G and all S. By inverting the relationship betweenδ and ε, we have
the following.

670

LEARNING M INIMUM VOLUME SETS

Corollary 5 With the notation defined above,

Pn
((

P(ĜG ,α) < α−2ε
)

or
(

µ(ĜG ,α) > µG ,α

))
≤ 8nVe−nε2/128.

Thus, for any fixedε > 0, the probability of being within 2ε of the target massα and being less than
the target volumeµG ,α approaches one exponentially fast as the sample size increases. This result
may also be used to calculate a distribution free upper bound on the sample sizeneeded to be within
a given toleranceε of α and with a given confidence 1−δ. In particular, the sample size will grow
no faster than a polynomial in 1/ε and 1/δ, paralleling results for classification.

2.2 Example: Countable Classes

SupposeG is a countable class of sets. Assume that to everyG∈ G a numberJGK is assigned such
that

∑
G∈G

2−JGK ≤ 1. (6)

In light of the Kraft inequality for prefix2 codes (Cover and Thomas, 1991),JGK may be defined as
the codelength of a codeword forG in a prefix code forG . Let δ > 0 and define

φ(G,S,δ) =

√
JGK log2+ log(2/δ)

2n
. (7)

By Chernoff’s bound together with the union bound,φ is a penalty forG . Therefore Theorem 3
applies and we have a result analogous to the Occam’s Razor bound for classification (see Langford,
2005).

As a special case, supposeG is finite and takeJGK = log2 |G |. Settingε = φ(G,S,δ) and invert-
ing the relationship betweenδ andε, we have the following.

Corollary 6 For the MV-ERM estimatêGG ,α from a finite classG

Pn
((

P(ĜG ,α) < α−2ε
)

or
(

µ(ĜG ,α) > µG ,α

))
≤ 2|G |e−nε2/2.

As with VC classes, these inequalities may be used for sample size calculations.

2.3 The Rademacher Penalty for Sets

The Rademacher penalty was originally studied in the context of classificationby Koltchinskii
(2001) and Bartlett et al. (2002). For a succinct exposition of its basic properties, see Bousquet
et al. (2004). An analogous penalty exists for sets. Letσ1, . . . ,σn be Rademacher random variables,
i.e., independent random variables taking on the values 1 and -1 with equalprobability. Denote
P̂(σi)(G) = 1

n ∑n
i=1 σiI(Xi ∈ G). We define the Rademacher average

ρ(G) = E

[
sup
G∈G

P̂(σi)(G)

]

2. A prefix code is a collection of codewords (strings of 0s and 1s) suchthat no codeword is a prefix of another.

671

SCOTT AND NOWAK

and the conditional Rademacher average

ρ̂(G ,S) = E(σi)

[
sup
G∈G

P̂(σi)(G)

]
,

where the second expectation is with respect the Rademacher random variables only, and condi-
tioned on the sampleS.

Proposition 7 With probability at least1−δ over the draw of S,

P(G)− P̂(G) ≤ 2ρ(G)+

√
log(1/δ)

2n

for all G ∈ G . With probability at least1−δ over the draw of S,

P(G)− P̂(G) ≤ 2ρ̂(G ,S)+

√
2log(2/δ)

n

for all G ∈ G .

The proof of this result follows exactly the same lines as the proof of Theorem 5 in Bousquet et al.
(2004), and is omitted.

AssumeG satisfies the property thatG ∈ G ⇒ G ∈ G , whereG denotes the compliment of
G. Then P̂(G)−P(G) = P(G)− P̂(G), and so the upper bounds of Proposition 7 also apply to
|P(G)− P̂(G)|. Thus we are able to define the conditional Rademacher penalty

φ(G,S,δ) = 2ρ̂(G ,S)+

√
2log(2/δ)

n
.

By the above Proposition, this is a complexity penalty according to Definition 2. The conditional
Rademacher penalty is studied further in Section 7 and in Appendix E, whereit is shown that̂ρ(G ,S)
can be computed efficiently for sets based on a fixed partition ofX (such as histograms and trees).

2.4 Comparison to Generalized Quantile Processes

Polonik (1997) studies theempirical quantile function

V̂α = inf{µ(G) : P̂(G) ≥ α},

and the MV-set estimate that achieves the minimum (when it exists). The only difference compared
with MV-ERM is the absence of the termφ(G,S,δ) in the constraint. Thus, MV-ERM will tend to
produce estimates with smaller volume and smaller mass. While Polonik proves only asymptotic
properties of his estimator, we have demonstrated finite sample bounds for MV-ERM. Moreover,
in Section 5, we show that the results of this section extend to a generalization of MV-ERM where
φ is replaced byνφ, whereν is any number−1≤ ν ≤ 1. Thus finite sample bounds also exist for
Polonik’s estimator (ν = 0).

672

LEARNING M INIMUM VOLUME SETS

2.5 Existence and Uniqueness

In this section we discuss the existence and uniqueness of the setsGG ,α andĜG ,α. Regarding the
former, it is really not necessary that a minimizer exist. All of our results arestated in terms ofµG ,α,
which certainly exists. When a minimizer exists, its uniqueness is not an issue for the same reason.
Our results above involve onlyµG ,α, which is the same regardless of which minimizer is chosen.
Yet one may wonder whether convergence of the volume and mass to their optimal values implies
convergence to the MV-set (when it is unique) in any sense. A result in this direction is presented in
Theorem 10 below.

For the MV-ERM estimatêGG ,α, uniqueness is again not an issue because all results hold even
if the minimizer is chosen arbitrarily. As for existence, we must be more careful. We cannot make
the same argument as forGG ,α because we are ultimately interested in a concrete set estimate, not

just its volume and mass. Clearly, ifG is finite, ĜG ,α exists. For more general sets, existence must
be examined on a case-by-case basis. For example, ifX ⊂ R

d, µ is the Lebesgue measure, andG is
the VC class of spherical or ellipsoidal sets, thenĜG ,α can be seen to exist.

In the event that̂GG ,α does not exist, it suffices to let̂GG ,α be a set whose volume comes within

ε of the infimum, whereε is arbitrarily small. Then our results still hold withµ(ĜG ,α) replaced by

µ(ĜG ,α)−ε. The consistency and rate of convergence results below are unchanged, as we may take
ε → 0 arbitrarily fast as a function ofn.

3. Consistency

A minimum volume set estimator is consistent if its volume and mass tend to the optimal valuesµ∗α
andα asn→ ∞. Formally, define the error quantity

E (G) := (µ(G)−µ∗α)+ +(α−P(G))+ ,

where(x)+ = max(x,0). We are interested in MV-set estimators such thatE (ĜG ,α) tends to zero as
n→ ∞.

Definition 8 A learning ruleĜG ,α is strongly consistentif

lim
n→∞
E (ĜG ,α) = 0 with probability 1.

If ĜG ,α is strongly consistent for every possible distribution of X, thenĜG ,α is stronglyuniversally
consistent.

In this section we show that if the approximating power ofG increases in a certain way as a function
of n, then MV-ERM leads to a universally consistent learning rule.

To see how consistency might result from MV-ERM, it helps to rewrite Theorem 3 as follows.
Let G be fixed and letφ(G,S,δ) be a penalty forG . Then with probability at least 1−δ, both

µ(ĜG ,α)−µ∗α ≤ µ(GG ,α)−µ∗α (8)

and
α−P(ĜG ,α) ≤ 2φ(ĜG ,α,S,δ) (9)

673

SCOTT AND NOWAK

hold. We refer to the left-hand side of (8) as theexcess volumeof the classG and the left-hand side
of (9) as themissing massof ĜG ,α. The upper bounds on the right-hand sides are an approximation
error and a stochastic error, respectively.

The idea is to letG grow with n so that both errors tend to zero asn → ∞. If G does not
change withn, universal consistency is impossible. Either the approximation error will benonzero
for most distributions (whenG is too small) or the bound on the stochastic error will be too large
(otherwise). For example, if a class has universal approximation capabilities, its VC dimension is
necessarily infinite (Devroye et al., 1996, Ch. 18).

To have both stochastic and approximation errors tend to zero, we apply MV-ERM to a class
G k from a sequence of classesG 1,G 2, . . ., wherek = k(n) grows with the sample size. Given such
a sequence, define

ĜG k,α = arg min{µ(G) : G∈ Ĝ k
α}, (10)

where
Ĝ k

α = {G∈ G k : P̂(G) ≥ α−φk(G,S,δ)}
andφk is a penalty forG k.

Theorem 9 Choose k= k(n) andδ = δ(n) such that

1. k(n) → ∞ as n→ ∞

2. ∑∞
n=1 δ(n) < ∞

Assume the sequence of setsG k and penaltiesφk satisfy

lim
k→∞

inf
G∈G k

α

µ(G) = µ∗α (11)

and
lim
n→∞

sup
G∈G k

φk(G,S,δ(n)) = 0. (12)

ThenĜG k,α is strongly universally consistent.

The proof is given in Appendix B. We now give some examples that satisfy these conditions.

3.1 Example: Hierarchy of VC Classes

AssumeG 1,G 2, . . . , is a family of VC classes with VC dimensionsV1 <V2 < ForG∈ G k define

φk(G,S,δ) =

√
32

Vk logn+ log(8/δ)

n
. (13)

By taking δ(n) ≍ n−β for someβ > 1 andk such thatVk = o(n/ logn) the assumption in (12) is
satisfied. Examples of families of VC classes satisfying (11) include generalized linear discriminant
rules with appropriately chosen basis functions and neural networks (Lugosi and Zeger, 1995).

674

LEARNING M INIMUM VOLUME SETS

3.2 Example: Histograms

AssumeX = [0,1]d, and letG k be the class of all sets formed by taking unions of cells in a regular
partition ofX into hypercubes of sidelength 1/k. EachG k has 2k

d
members and we may therefore

apply the penalty for finite sets discussed in Section 2.2. To satisfy the Kraftinequality (6) it suffices
to takeJGK = kd. The penalty forG∈ G k is then

φk(G,S,δ) =

√
kd log2+ log(2/δ)

2n
. (14)

By taking δ(n) ≍ n−β for someβ > 1 andk such thatkd = o(n) the assumption in (12) is satis-
fied. The assumption in (11) is satisfied by the well-known universal approximation capabilities of
histograms. Thus the conditions for consistency of histograms for minimum volume set estimation
are exactly parallel to the conditions for consistency of histogram rules for classification (Devroye
et al., 1996, Ch. 9). Dyadic decision trees, discussed below in Section 6,are another countable
family for which consistency results are possible.

3.3 The Symmetric Difference Performance Metric

An alternative measure of performance for an MV-set estimator is theµ-measure of the symmetric
difference,µ(ĜG ,α∆G∗

α), whereA∆B = (A\B)∪ (B\A). Although this performance metric has been
commonly adopted in the study of density level sets, it is less desirable for ourpurposes. First, unlike
with density level sets, there may not be a unique MV-set (imagine the case where the density ofP
has a plateau). Second, as pointed out by Steinwart et al. (2005), there is no known way to estimate
the accuracy of this measure using only samples fromP. Nonetheless, the symmetric difference
metric coincides asymptotically with our error metricE in the sense of the following result. The
theorem uses the notationγα to denote the density level corresponding to the MV-set, as discussed
in Section 1.2.

Theorem 10 Assume µ is a probability measure and P has a density f with respect to µ. Let
Gn denote a sequence of sets. If G∗

α is a minimum volume set and µ(Gn∆G∗
α) → 0 with n, then

E (Gn) → 0. Conversely, assume µ({x : f (x) = γα}) = 0. If E (Gn) → 0, then µ(Gn∆G∗
α) → 0.

The proof is given in Appendix C. The assumption of the second part of the theorem ensures
that G∗

α is unique, otherwise the converse statement need not be true. The proofof the converse
reveals yet another connection between MV-set estimation and classification. In particular, we
show thatE (Gn) bounds the excess classification risk for a certain classification problem. The
converse statement then follows from a result of Steinwart et al. (2005)who show that this excess
classification risk and theµ-measure of the symmetric difference tend to zero simultaneously.

4. Structural Risk Minimization and an Oracle Inequality

In the previous section on consistency the rate of convergence of the twoerrors to zero is determined
by the choice ofk= k(n), which must be chosen a priori. Hence it is possible that the excess volume
decays much more quickly than the missing mass, or vice versa. In this section we introduce a new
rule called MV-SRM, inspired by the principle of structural risk minimization (SRM) from the
theory of classification (Vapnik, 1982; Lugosi and Zeger, 1996), that automatically balances the
two errors.

675

SCOTT AND NOWAK

The results of this and subsequent sections are no longer distribution free. In particular, we
assume

A1 P has a densityf with respect toµ.

A2 for all α′ ∈ (0,1), G∗
α′ exists andP(G∗

α′) = α′.

Note thatA2 holds if f has no plateaus, i.e.,µ({x : f (x) = γ}) = 0 for all γ > 0. This is a commonly
made assumption in the study of density level sets. However,A2 is somewhat more general. It still
holds, for example, ifµ is absolutely continuous with respect to Lebesgue measure, even iff has
plateaus.

Recall from Section 1.2 that under assumptionA1, there existsγα > 0 such for any MV-setG∗
α,

{x : f (x) > γα} ⊂ G∗
α ⊂ {x : f (x) ≥ γα}.

Let G be a class of sets. Intuitively, viewG as a collection of sets of varying capacities, such
as a union of VC classes or a union of finite classes (examples are given below). Letφ(G,S,δ) be a
penalty forG . The MV-SRM principle selects the set

ĜG ,α = arg min
G∈G

{
µ(G)+2φ(G,S,δ) : P̂(G) ≥ α−φ(G,S,δ)

}
. (15)

Note that MV-SRM is different from MV-ERM because it minimizes a complexity penalized vol-
ume instead of simply the volume. We have the following oracle inequality for MV-SRM. Recall
E (G) := (µ(G)−µ∗α)+ +(α−P(G))+.

Theorem 11 Let ĜG ,α be the MV-set estimator in (15) and assumeA1 andA2 hold. With proba-
bility at least1−δ over the training sample S,

E (ĜG ,α) ≤
(

1+
1
γα

)
inf

G∈Gα

{
µ(G)−µ∗α +2φ(G,S,δ)

}
. (16)

Although the value of 1/γα is in practice unknown, it can be bounded by

1
γα

≤ µ(X)−µ∗α
1−α

≤ µ(X)

1−α
.

This follows from the bound 1−α ≤ γα · (µ(X)−µ∗α) on the mass outside the minimum volume set.
If µ is a probability measure, then 1/γα ≤ 1/(1−α).

The oracle inequality says that MV-SRM performs about as well as the setchosen by an oracle
to optimize the tradeoff between excess volume and missing mass.

4.1 Example: Union of VC Classes

ConsiderG = ∪K
k=1G

k, whereG k has VC dimensionVk, V1 < V2 < · · · , andK is possibly infinite.
A penalty forG can be obtained by defining, forG∈ G k,

φ(G,S,δ) = φk(G,S,δ2−k),

whereφk is the penalty from Equation (13). Thenφ is a penalty forG becauseφk is a penalty for
G k, and by applying the union bound and the fact∑k≥12−k ≤ 1. In this case, MV-SRM adaptively

676

LEARNING M INIMUM VOLUME SETS

selects an MV-set estimate from a VC class that balances approximation and stochastic errors. Note
that instead of settingδk = δ2−k one could also chooseδk ∝ k−β,β > 1.

To be more concrete, supposeG k is the collection of sets whose boundaries are defined by poly-
nomials of degreek. It may happen that for certain distributions, the MV-set is well-approximated
by a quadratic region (such as an ellipse), while for other distributions a higher degree polynomial
is required. If the appropriate polynomial degree for the MV-set is not known in advance, as would
be the case in practice, then MV-SRM adaptively chooses an estimator of a certain degree that does
about as well as if the best degree was known in advance.

4.2 Example: Union of Histograms

Let G = ∪K
k=1G

k, whereG k is as in Section 3.2. As with VC classes, we obtain a penalty forG by
defining, forG∈ G k,

φ(G,S,δ) = φk(G,S,δ2−k),

whereφk is the penalty from Equation (14). Then MV-SRM adaptively chooses a partition resolution
k that approximates the MV-set about as well as possible without overfitting the training data. This
example is studied experimentally in Section 7.

5. Damping the Penalty

In Theorem 3, the reader may have noticed that MV-ERM does not equitably balance the excess
volume (µ(ĜG ,α) relative to its optimal value) with the missing mass (P(ĜG ,α) relative toα). Indeed,

with high probability,µ(ĜG ,α) is less than µ(GG ,α), while P(ĜG ,α) is only guaranteed to be within

2φ(ĜG ,α) of α. The net effect is that MV-ERM (and MV-SRM) underestimates the MV-set. Our
experiments in Section 7 demonstrate this to be the case.

In this section we introduce variants of MV-ERM and MV-SRM that allow the total error to
be shared between the volume and mass, instead of all of the error residingin the mass term. Our
approach is to introduce a damping factor−1≤ ν ≤ 1 that scales the penalty. We will see that the
resulting MV-set estimators obey performance guarantees like those we have already seen, but with
the total error redistributed between the volume and mass. The reason for not introducing this more
general framework initially is that the results are slightly less general, more involved to state, and to
some extent follow as corollaries to the original (ν = 1) framework.

The extensions of this section encompass the generalized quantile estimate of Polonik (1997),
which corresponds toν = 0. Thus we have finite sample size guarantees for that estimator to match
Polonik’s asymptotic analysis. The caseν = −1 is also of interest. If it is crucial that the estimate
satisfies the mass constraintP(ĜG ,α) ≥ α (note that this involves thetrue probability measureP),
settingν = −1 ensures this to be the case with probability at least 1−δ.

First we consider damping the penalty in MV-ERM. Assume that the penalty is independent of
G ∈ G and of the sampleS, although it can depend onn andδ. That is,φ(G,S,δ) = φ(n,δ). For
example,φ may be the penalty in (5) for VC classes or (7) for finite classes. Letν ≤ 1 and define

Ĝν
G ,α = arg min

G∈G

{
µ(G) : P̂(G) ≥ α−νφ(n,δ)

}
.

677

SCOTT AND NOWAK

Sinceφ is independent ofG∈ G , Ĝν
G ,α coincides with the MV-ERM estimate (as originally formu-

lated)ĜG ,α′ but at the adjusted mass constraintα′ = α +(1−ν)φ(n,δ). Therefore, we may apply
Theorem 3 to obtain the following.

Corollary 12 Let α′ = α+(1−ν)φ(n,δ). Then

Pn
((

P(Ĝν
G ,α) < α− (1+ν)φ(n,δ)

)
or
(

µ(ĜG ,α) > µG ,α′)
))

≤ δ.

Relative to the original formulation of MV-ERM, the bound on the missing mass is decreased
by a factor(1+ν). On the other hand, the volume is now bounded byµG ,α′ = µG ,α +(µG ,α′ −µG ,α).
Thus the bound on the excess volume is increased from 0 toµG ,α′ −µG ,α. This may be interpreted

as a stochastic component of the excess volume. Relative to the MV-set,µ(ĜG ,α) has only an

approximation error, whereasµ(Ĝν
G ,α) has both approximation and stochastic errors. The advantage

is that now the stochastic error of the mass is decreased.
A similar construction applies to MV-SRM. Now assumeG =∪K

k=1G
k. Given a scale parameter

ν, define
Ĝν
G ,α = arg min

G∈G

{
µ(G)+(1+ν)φ(G,S,δ) : P̂(G) ≥ α−νφ(G,S,δ)

}
.

As above, assumeφ is independent of the sample and constant on eachG k. Denoteεk(n,δ) =
φ(G,S,δ) for G ∈ G k. Observe that computinĝGν

G ,α is equivalent to computing the MV-ERM

estimate on eachG k at the levelα(k,ν) = α +(1− ν)εk(n,δ), and then minimizing the penalized
volume over these MV-ERM estimates.

Like the original MV-SRM, this modified procedure also obeys an oracle inequality. Recall the
notationG k

α(k,ν) = {G∈ G k : P(G) ≥ α(k,ν)} = {G∈ G k : P(G) ≥ α+(1−ν)εk(n,δ)}.

Theorem 13 Let −1 ≤ ν ≤ 1. Setα(k,ν) = α +(1− ν)εk(n,δ). AssumeA1 and A2 hold. With
probability at least1−δ,

E (Ĝν
G ,α) ≤

(
1+

1
γα

)
min

1≤k≤K

[
inf

G∈G k
α(k,ν)

{
µ(G)−µ∗α(k,ν)

}
+Ckεk(n,δ)

]
, (17)

where Ck =
(
(1+ν)+ 1

γα(k,ν)
(1−ν)

)
.

Hereγα(k,ν) is the density level corresponding to the MV-set with massα(k,ν). It may be bounded
above in terms of known quantities, as discussed in the previous section. The proof of the theorem
is very similar to the proof of the earlier oracle inequality and is omitted, although itmay be found
in Scott and Nowak (2005a). Notice that in the caseν = 1 we recover Theorem 11 (under the stated
assumptions onG andφ). Also note thatG k

α(k,ν) will be empty if α(k,ν) > 1, in which case thosek
should be excluded from the min.

To understand the result, assume that the rate at whichG k
α approximatesG∗

α is independent ofα.
In other words, the rate at which infG∈G k

α
µ(G)−µ∗α tends to zero ask increases is the same for allα.

Then in the theorem we may replace the expression infG∈G k
α(k,ν)

µ(G)−µ∗α(k,ν) with infG∈G k
α
µ(G)−µ∗α.

Thus, theν-damped MV-SRM error decays at the same rate is the original MV-SRM, and adaptively
selects the appropriate model classG k from which to draw the estimate. Furthermore, damping the

678

LEARNING M INIMUM VOLUME SETS

penalty byν has the effect of decreasing the stochastic mass error and adding a stochastic error
to the volume. This follows from the above discussion of MV-ERM and the observation that the
MV-SRM coincides with an MV-SRM estimate overG k for somek. The improved balancing of
volume and mass error is confirmed by our experiments in Section 7.

6. Rates of Convergence for Tree-Structured Set Estimators

In this section we illustrate the application of MV-SRM, when combined with an appropriate anal-
ysis of the approximation error, to the study of rates of convergence. Topreview the main result of
this section (Theorem 16), we will consider the class of distributions such that the decision bound-
ary has Lipschitz smoothness (loosely speaking) andd′ of thed features are relevant. The best rate
of convergence for this class isn−1/d′

. We will show that MV-SRM can achieve this rate (within a
log factor) without knowingd′ or which features are relevant. This demonstrates the strength of the
oracle inequality, from which the result is derived.

To obtain these rates we apply MV-SRM to sets based on a special family of decision trees
called dyadic decision trees (DDTs) (Scott and Nowak, 2006). Beforeintroducing DDTs, however,
we first introduce the class of distributionsD with which our study is concerned. Throughout this
section we assumeX = [0,1]d andµ is the Lebesgue (equivalently, uniform) measure.

Somewhat related to the approach considered here is the work of Klemelä (2004) who consid-
ers the problem of estimating the support of a uniform density. The estimatorsproposed therein
are based on dyadic partitioning schemes similar in spirit to the DDTs studied here. However,
it is important to point out that in the support set estimation problem studied by Klemel̈a (2004)
the boundary of the set corresponds to discontinuity of the density, and therefore more standard
complexity-regularization and tree pruning methods commonly employed in regression settings suf-
fice to achieve near minimax rates. In contrast, DDT methods are capable of attaining near minimax
rates for all density level sets whose boundaries belong to certain Hölder smoothness classes, regard-
less of whether or not there is a discontinuity at the given level. Significantlydifferent risk bounding
and pruning techniques are required for this additional capability (Scott and Nowak, 2006).

6.1 The Box-Counting Class

Before introducingD we need some additional notation. Letmdenote a positive integer, and define
Pm to be the collection ofmd cells formed by the regular partition of[0,1]d into hypercubes of
sidelength 1/m. Letc1,c2 > 0 be positive real numbers. LetG∗

α be a minimum volume set, assumed
to exist, and let∂G∗

α be the topological boundary ofG∗
α. Finally, letNm(∂G∗

α) denote the number of
cells inPm that intersect∂G∗

α.
We define thebox-countingclass to be the setD BOX =D BOX(c1,c2) of all distributions satisfying

A1’ : X has a densityf with respect toµ and f is essentially bounded byc1.

A3 : ∃G∗
α such thatNm(∂G∗

α) ≤ c2md−1 for all m.

Note that sinceµ is the Lebesgue measure, assumptionA2 from above follows fromA1, so we do
not need to assume it explicitly here. AssumptionA1’ is a slight strengthening ofA1 and implies
P(A) ≤ c1µ(A) for all measurable setsA. AssumptionA3 essentially requires the boundary of the
minimum volume setG∗

α to have Lipschitz smoothness, and thus one would expect the optimal rate

679

SCOTT AND NOWAK

Figure 2: A dyadic decision tree (right) with the associated recursive dyadic partition (left) ind = 2
dimensions. Each internal node of the tree is labeled with an integer from 1 tod indicating
the coordinate being split at that node. The leaf nodes are decorated withclass labels.

of convergence to ben−1/d (the typical rate for set estimation problems characterized by Lipschitz
smoothness). See Scott and Nowak (2006) for further discussion of the box-counting assumption.

6.2 Dyadic Decision Trees

Let T denote a tree structured classifierT : [0,1]d → {0,1}. Each suchT gives rise to a setGT =
{x∈ [0,1]d : T(x) = 1}. In this subsection we introduce a certain class of trees, and later consider
MV-SRM over the induced class of sets.

Scott and Nowak (2006) demonstrate thatdyadic decision trees(DDTs) offer a computationally
feasible classifier that also achieves optimal rates of convergence (forstandard classification) under
a wide range of conditions. DDTs are especially well suited for rate of convergence studies. Indeed,
bounding the approximation error is handled by the restriction to dyadic splits,which allows us
to take advantage of recent insights from multiresolution analysis and nonlinear approximations
(DeVore, 1998; Cohen et al., 2001; Donoho, 1999). An analysis similarto that of Scott and Nowak
(2006) applies to MV-SRM for DDTs, leading to similar results: optimal rates ofconvergence for a
computationally efficient learning algorithm.

A dyadic decision tree is a decision tree that divides the input space by means of axis-orthogonal
dyadic splits. More precisely, a DDTT is a binary tree (with a distinguished root node) specified
by assigning (1) an integerc(v) ∈ {1, . . . ,d} to each internal nodev of T (corresponding to the
coordinate that gets split at that node); (2) a binary label 0 or 1 to each leaf node ofT. The nodes
of DDTs correspond to hyperrectangles (cells) in[0,1]d. Given a hyperrectangleA = ∏d

c=1[ac,bc],
let Ac,1 andAc,2 denote the hyperrectangles formed by splittingA at its midpoint along coordinate
c. Specifically, defineAc,1 = {x∈ A | xc ≤ (ac +bc)/2} andAc,2 = A\Ac,1.

Each node ofT is associated with a cell according to the following rules: (1) The root nodeis
associated with[0,1]d; (2) If v is an internal node associated with the cellA, then the children ofv are
associated withAc(v),1 andAc(v),2. See Figure 2. Note that everyT corresponds to a setGT ∈ [0,1]d

(the regions labeled 1), and we think of DDTs as both classifiers and sets interchangeably.

680

LEARNING M INIMUM VOLUME SETS

Let L = L(n) be a natural number and defineT L to be the collection of all DDTs such that (1) no
leaf cell has a sidelength smaller than 2−L, and (2) any two leaf nodes that are siblings have different
labels. Condition (1) says that when traversing a path from the root to a leaf no coordinate is split
more thanL times. Condition (2) means that it is impossible to “prune” at any internal node and
still have the same set/classifier. Also defineA L to be the collection of all cellsA that correspond
to nodes of DDTs inT L. Defineπ(T) to be the collection of “leaf” cells ofT. For a cellA∈ A L,
let j(A) denote the depth ofA when viewed as a node in some DDT. Observe that whenµ is the
Lebesgue measure,µ(A) = 2− j(A).

6.3 MV-SRM with Dyadic Decision Trees

We study MV-SRM over the familyG L = {GT : T ∈ T L}, whereL is set by the user. To simplify
the notation, at times we will suppress the dependence ofφ on the training sampleSand confidence
parameterδ. Thus our MV set estimator has the form

Ĝα = arg min
G∈G L

{
µ(G)+2φ(G) | P̂(G)+φ(G) ≥ α

}
. (18)

It remains to specify the penaltyφ. There are a number of ways to produceφ satisfying

Pn

({
S: sup

G∈G L

(∣∣∣P(G)− P̂(G)
∣∣∣−φ(G,S,δ)

)
> 0

})
≤ δ.

SinceG L is countable (in fact, finite), one approach is to devise a prefix code forG L and apply the
penalty in Section 2.2. Instead, we employ a different penalty which has the advantage that it leads
to minimax optimal rates of convergence. Introduce the notationJAK = (3+ log2d) j(A), which may
be thought of as the codelength ofA in a prefix code forA L, and define theminimaxpenalty

φ(GT) := ∑
A∈π(T)

√

8max

(
P̂(A),

JAK log2+ log(2/δ)

n

)
JAK log2+ log(2/δ)

n
. (19)

For eachA∈ π(T), setℓ(A) = 1 if A⊂ GT and 0 otherwise. The bound originates from writing

P(GT)− P̂(GT) = ∑
A∈π(T):ℓ(A)=1

P(A)− P̂(A)

and

P̂(GT)−P(GT) = P(GT)− P̂(GT)

= ∑
A∈π(T):ℓ(A)=0

P(A)− P̂(A)

from which it follows that

|P(GT)− P̂(GT)| ≤ ∑
A∈π(T)

P(A)− P̂(A). (20)

The eventX ∈ A is a Bernoulli trial with probability of successP(A), and so bounding the right
hand side of (20) simply involves applying a concentration inequality for binomials to eachA∈ A L.

681

SCOTT AND NOWAK

There are many ways to do this (additive Chernoff, relative Chernoff,exact tail inversion, etc.),
but the one we have chosen is particularly convenient for rate of convergence analysis. For further
discussion, see Scott and Nowak (2006). Proof of the following resultis nearly identical to a similar
result in Scott and Nowak (2006), and is omitted.

Proposition 14 Let φ be as in (19) and letδ ∈ (0,1). With probability at least1−δ over the draw
of S,

|P(G)− P̂(G)| ≤ φ(G)

for all G ∈ G L. Thusφ is a complexity penalty forG L.

The MV-SRM procedure overG L with the above penalty leads to an optimal rate of convergence
for the box-counting class.

Theorem 15 Choose L= L(n) andδ = δ(n) such that

1. 2L(n) < (n/ logn)1/d

2. δ(n) = O(
√

logn/n) and log(1/δ(n)) = O(logn)

DefineĜα as in (18) withφ as in (19). For d≥ 2 we have

sup
DBOX

EnE (Ĝα) 4

(
logn

n

) 1
d

. (21)

We omit the proof, since this theorem is a special case of Theorem 16 below. Note that the condition
on δ is satisfied ifδ(n) ≍ n−β for someβ > 1/2.

6.4 Adapting to Relevant Features

The previous result could have been obtained without using MV-SRM. Instead, we could have
applied MV-ERM to a fixed hierarchyG L(1),G L(2), . . . whereL(n) ≍ (n/ logn)1/d. The strength of
MV-SRM and the associated oracle inequality is in its ability to adapt to favorableconditions on the
data generating distribution which may not be known in advance. Here we illustrate this idea when
the number of relevant features is not known in advance.

We define therelevant data dimensionto be the numberd′ ≤ d of relevant features. A feature
Xi , i = 1, . . . ,d, is said to be relevant providedf (X) is not constant whenXi is varied from 0 to 1.
For example, ifd = 2 andd′ = 1, then∂G∗

α is a horizontal or vertical line segment (or union of such
line segments). Ifd = 3 andd′ = 1, then∂G∗

α is a plane (or union of planes) orthogonal to one of
the axes. Ifd = 3 and the third coordinate is irrelevant (d′ = 2), then∂G∗

α is a “vertical sheet” over
a curve in the(X1,X2) plane (see Figure 3).

Let D ′
BOX = D ′

BOX(c1,c2,d′) be the set of all product measuresPn such thatA1’ andA3 hold
for the underlying distributionP, andX has relevant data dimensiond′ ≥ 2. An argument of Scott
and Nowak (2006) implies that the expected minimax rate ford′ relevant features isn−1/d′

. By the
following result, MV-SRM can achieve this rate to within a log factor.

Theorem 16 Choose L= L(n) andδ = δ(n) such that

1. 2L(n) < n/ logn

682

LEARNING M INIMUM VOLUME SETS

Figure 3: Cartoon illustrating relevant data dimension. If theX3 axis is irrelevant, then the boundary
of the MV-set is a “vertical sheet” over a curve in the(X1,X2) plane.

2. δ(n) = O(
√

logn/n) and log(1/δ(n)) = O(logn)

DefineĜα as in (18) withφ as in (19). If d′ ≥ 2 then

sup
D ′

BOX

EnE (Ĝα) 4

(
logn

n

) 1
d′

. (22)

The proof hinges on the oracle inequality. The details of the proof are very similar to the proof of a
result in Scott and Nowak (2006) and are therefore omitted. Here we justgive a sketch of how the
oracle inequality comes into play.

Let K ≤ L and letG∗
K ∈ G K

α be such that (i)µ(G∗
K) = arg minG∈G K

α
µ(G)−µ∗α; and (ii) G∗

K is
based on the smallest possible partition among all sets satisfying (i). Setm= 2K . It can be shown
that

µ(G∗
K)−µ∗α +φ(G∗

K ,S,δ) 4 m−1 +md′/2−1

√
logn

n

in expectation. This upper bound is minimized whenm≍ (n/ logn)1/d′
, in which case we obtain

the stated rate. Here the oracle inequality is crucial becausem depends ond′, which is not known
in advance. The oracle inequality tells us that MV-SRM performs as if it knewthe optimalK.

Note that the set estimation rule does not require knowledge of the constantsc1 andc2, nord′,
nor which features are relevant. Thus the rule is completely automatic and adaptive.

7. Experiments

In this section we conduct some simple numerical experiments to illustrate the rulesfor MV-set
estimation proposed in this work. Our objective is not an extensive comparison with competing
methods, but rather to demonstrate that our estimators behave in a way that agrees with the the-
ory, to gain insight into the behavior of various penalties, and to examine basic algorithmic issues.
Throughout this section we takeX = [0,1]d andµ to be the Lebesgue (equivalently, uniform) mea-
sure.

683

SCOTT AND NOWAK

7.1 Histograms

We devised a simple numerical experiment to illustrate MV-SRM in the case of histograms (see
Sections 3.2 and 4.2). In this case, MV-SRM can be implemented exactly with a simple procedure.
First, compute the MV-ERM estimate for eachG k, k = 1, . . . ,K, where 1/k is the bin-width. To do
this, for eachk, sort the cells of the partition according to the number of samples in the cell. Then,
begin incorporating cells into the estimate one cell at a time, starting with the most populated, until
the empirical mass constraint is satisfied. Finally, once all MV-ERM estimates have been computed,
choose the one that minimizes the penalized volume.

We consider two penalties. Both penalties are defined viaφ(G,S,δ) = φk(G,S,δ2−k) for G∈ G k,
whereφk is a penalty forG k. The first is based on the simple Occam-style bound of Section 3.2.
ForG∈ G k, set

φOcc
k (G,S,δ) =

√
kd log2+ log(2/δ)

2n
.

The second is the (conditional) Rademacher penalty. ForG∈ G k, set

φRad
k (G,S,δ) =

2
n

E(σi)

[
sup

G′∈G k

n

∑
i=1

σiI
(
Xi ∈ G′)

]
+

√
2log(2/δ)

n
.

Hereσ1, . . . ,σn are Rademacher random variables, i.e., independent random variablestaking on the
values 1 and -1 with equal probability. Fortunately, the conditional expectation with respect to these
variables can be evaluated exactly in the case of partition-based rules such as the histogram. See
Appendix E for details.

As a data set we considerX = [0,1]d, the unit square, and data generated by a two-dimensional
truncated Gaussian distribution, centered at the point(1/2,1/2) and having spherical variance with
parameterσ = 0.15. Other parameter settings areα = 0.8, K = 40, andδ = 0.05. All experiments
were conducted at nine different sample sizes, logarithmically spaced from 100 to 1000000, and
repeated 100 times. Figure 4 shows a representative training sample and MV-ERM estimates with
ν = 1,0, and−1. These examples clearly demonstrate that the largerν, the smaller the estimate.

Figure 5 depicts the errorE (Ĝ) of the MV-SRM estimate withν = 1. The Occam’s Razor
penalty consistently outperforms the Rademacher penalty. For comparison,a damped version (ν =
0) was also evaluated. It is clear from the graphs thatν = 0 outperformsν = 1. This happens because
the damped version distributes the error more evenly between mass and volume, as discussed in
Section 5.

Figure 6 depicts the penalized volume of the MV-ERM estimates (ν = 1) as a function of the
resolutionk, where 1/k is the sidelength of the histogram cell. MV-SRM selects the resolution
where this curve is minimized. Clearly the Occam’s Razor bound is tighter than the Rademacher
bound (look at the right side of the graph), which explains why Occam outperforms Rademacher.
Figure 7 depicts the average resolution of the estimate (top) and the averagesymmetric difference
with respect to the true MV-set, for various sample sizes. These graphs are for ν = 1. The graphs
for ν = 0 do not change considerably. Thus, while damping seems to have a noticeable effect on the
error quantityE , the effect on the symmetric difference is much less pronounced.

7.2 Dyadic Decision Trees

Implementing MV-SRM for dyadic decision trees is much more challenging than for histograms.
Although an exact algorithm is possible (see Scott and Nowak, 2005a), we suggest an approximate

684

LEARNING M INIMUM VOLUME SETS

n = 10000, k = 15, ν = 1

(a) (b)
n = 10000, k = 15, ν = 0 n = 10000, k = 15, ν = −1

(c) (d)

Figure 4: Data and three representative MV-ERM histogram estimates for the data in Section 7.1.
The shaded region is the MV-set estimate, and the solid circle indicates the trueMV-set.
All estimates are based on the Occam bound. (a) 10000 realizations used for training. (b)
MV-ERM estimate with a bin-width of 1/15 andν = 1. (c) ν = 0. (d) ν = −1. Clearly,
the largerν, the smaller the estimate.

685

SCOTT AND NOWAK

100 1000 10000 100000 1000000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
net error as a function of sample size

occam
rademacher

100 1000 10000 100000 1000000
0

0.02

0.04

0.06

0.08

0.1

0.12
net error as a function of sample size

occam
rademacher

Figure 5: The errorE (ĜG ,α) as a function of sample size for the histogram experiments in Section
7.1. All results are averaged over 100 repetitions for each training samplesize. (Top)
Results for the original MV-SRM algorithm (ν = 1). (Bottom) Results forν = 0. In this
case the error is more evenly distributed between mass and volume, whereasin the former
case all the error is in the mass term.

686

LEARNING M INIMUM VOLUME SETS

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

resolution parameter k

av
er

ag
e

pe
na

liz
ed

 v
ol

um
e

of
 M

V
−

E
R

M
 s

ol
ut

io
n

10000 samples

occam
rademacher

Figure 6: The penalized volume of the MV-ERM estimatesGk
G ,α, as a function ofk, where 1/k is

the sidelength of the histogram cell. The results are for a sample size of 10000. Results
represent an average over 100 repetitions. Clearly, the Occam’s razor bound is smaller
than the Rademacher penalty (look at the right side of the plot), to which we mayattribute
its improved performance (see Figure 5).

687

SCOTT AND NOWAK

100 1000 10000 100000 1000000
2

4

6

8

10

12

14

sample size

av
er

ag
e

re
so

lu
tio

n
(1

/b
in

w
id

th
)

of
 m

v−
sr

m
 e

st
im

at
e

occam
rademacher

100 1000 10000 100000 1000000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
symmetric difference as a function of sample size

occam
rademacher

Figure 7: Results from the histogram experiments in Section 7.1. All results are averaged over 100
repetitions for each training sample size, and are for the non-damped version of MV-
SRM (ν = 1). (Top) Average value of the resolution parameterk (1/k = sidelength of
histogram cells) as a function of sample size. (Bottom) Average value of the symmetric
difference between the estimated and true MV-sets. Neither graph changes significantly
if ν is varied.

688

LEARNING M INIMUM VOLUME SETS

algorithm based on a reformulation of the constrained optimization problem defining MV-SRM in
terms of its Lagrangian, coupled with a bisection search to find the appropriate Lagrange multiplier.
If the penalty is additive, then the unconstrained Lagrangian can be minimizedefficiently using
existing algorithmic approaches.

A penalty for a DDT is said to beadditiveif it can be written in the form

φ(GT) = ∑
A∈π(T)

ψ(A)

for someψ. If φ is additive the optimization in (18) can be re-written as

min
T∈T L

∑
A∈π(T)

[µ(A)ℓ(A)+(1+ν)ψ(A)] subject to ∑
A∈π(T)

[
P̂(A)ℓ(A)+νψ(A)

]
≥ α

whereℓ(A) is the binary label of leafA (ℓ(A) = 1 if A is in the candidate set and 0 otherwise). In-
troducing the Lagrange multiplierλ > 0, the unconstrained Lagrangian formulation of the problem
is

min
T

∑
A∈T

[
µ(A)ℓ(A)+(1+ν)ψ(A)−λ

(
P̂(A)ℓ(A)+νψ(A)

)]
.

Inspection of the Lagrangian reveals that the optimal choice ofℓ(A) is

ℓ(A) =

1 if λP̂(A) ≥ µ(A),

0 otherwise

Thus, we have a “per-leaf” cost function

cost(A) := min(µ(A)−λP̂(A),0)+(1+ν(1−λ))ψ(A)

For a given value ofλ, the optimal tree can be efficiently obtained using the algorithm of Blanchard
et al. (2004).

We also note that the above strategy works for tree structures besides theone studied in Section
6. For example, suppose an overfitted tree (with arbitrary, non-dyadic splits) has been constructed
by some greedy heuristic (perhaps using an independent data set). Or,suppose that instead of binary
dyadic splits with arbitrary orientation, one only considers “quadsplits” whereby every parent node
has 2d children (in fact, this is the tree structure used for our experiments below).In such cases,
optimizing the Lagrangian reduces to a classical pruning problem, and the optimal tree can be found
by a simpleO(n) dynamic program that has been used since at least the days of CART (Breiman
et al., 1984).

Let T̂λ denote the tree resulting from the Lagrangian optimization above. From standard opti-
mization theory, we know that for each value ofλ, T̂λ will coincide with Ĝα, for a certain value of
α. For each value ofλ there is a correspondingα, but the converse is not necessarily true. There-
fore, the Lagrangian solutions correspond to many, but not all possiblesolutions of the original
MV-SRM optimization with different values ofα. Despite this potential limitation, the simplicity of
the Lagrangian optimization makes this a very attractive approach to MV-SRM inthis case. We can
determine the best value ofλ for a given targetα by repeatedly solving the Lagrangian optimization
and finding the setting forλ that meets or comes closest to the original constraint. The search over
λ can be conducted efficiently using a bisection search.

689

SCOTT AND NOWAK

In our experiments we do not consider the “free-split” tree structure described in Section 6, in
which each parent has two children defined by one ofd = 2 possible splits. Instead, we assume a
quadsplit tree structure, whereby every cell is a square, and every parent has four square children.
The total optimization time isO(mn), wherem is the number of steps in the bisection search. In our
experiments presented below we found that ten steps (i.e., ten Lagrangian tree pruning optimiza-
tions) were sufficient to meet the constraint almost exactly (whenever possible).

We consider three complexity penalties. We refer to the first penalty as theminimaxpenalty,
since it is inspired by the minimax optimal penalty in (19):

ψmm(A) := (0.01)

√

8max

(
P̂(A),

JAK log2+ log(2/δ)

n

)
JAK log2+ log(2/δ)

n
. (23)

Note that the penalty is down-weighted by a constant factor of 0.01, since otherwise it is too large
to yield meaningful results:3

The second penalty is based on the Rademacher penalty (see Section 2.3).Let ΠL denote the
set of all partitionsπ of trees inT L. Given π0 ∈ ΠL, setGπ0 = {GT ∈ G L : π(T) = π0}. Recall
π(T) denotes the partition associated with the treeT. Combining Proposition 7 with the results of
Appendix E, we know that for any fixedπ,

∑
A∈π

√
P̂(A)

n
+

√
2log(2/δ)

n

is a complexity penalty forGπ. To obtain a penalty for allG L = ∪π∈ΠLGπ, we apply the union
bound over allπ ∈ ΠL and replaceδ by δ|ΠL|−1. Although distributing the “delta” uniformly across
all partitions is perhaps not intuitive (one might expect smaller partitions to be more likely and
hence they should receive a larger chunk of the delta), it has the important property that the delta
term is the same for all trees, and thus can be dropped for the purposes of minimization. Hence,
the effective penalty is additive. In summary, our second penalty, referred to as the Rademacher
penalty,4 is given by

ψRad(A) =

√
P̂(A)

n
. (24)

The third penalty is referred to as the modified Rademacher penalty and is given by

ψmRad(A) =

√
P̂(A)+µ(A)

n
. (25)

The modified Rademacher penalty is still a valid penalty, since it strictly dominates the basic
Rademacher penalty. The basic Rademacher is proportional to the square-root of the empirical
P mass and the modified Rademacher is proportional to the square-root of thetotal mass (empirical

3. Note that here down-weighting is distinct from damping byν as discussed earlier. With down-weighting, both
occurrences of the penalty, in the constraint and in the objective function, are scaled by the same factor. The oracle
inequality (and hence minimax optimality) still holds for the downweighted penalty, albeit with larger constants.

4. Technically, this is an upper bound on the Rademacher penalty, but asdiscussed in Appendix E, this bound is tight to
within a factor of

√
2. Using the exact Rademacher yields essentially the same results. Thus,we refer to this upper

bound simply as the Rademacher penalty.

690

LEARNING M INIMUM VOLUME SETS

P mass plusµ mass). In our experiments we have found that the modified Rademacher penalty
typically performs better than the basic Rademacher penalty, since it discourages the inclusion of
very small isolated leafs containing a single data point (as seen in the experimental results below).
Note that, unlike the minimax penalty, the two Rademacher-based penalties are not down-weighted;
the true penalties are used.

We illustrate the performance of the dyadic quadtree approach with a two-dimensional Gaus-
sian mixture distribution, takingν = 0. Figure 1 depicts 500 samples from the Gaussian mixture
distribution, along with the true minimum volume set forα = 0.90. Figures 8, 9, and 10 depict the
minimum volume set estimates based on each of the three penalties, and for samplesizes of 100,
1000, and 10000. Here we use MM, Rad, and mRad to designate the three penalties.

In addition to the minimum volume set estimates based on a single tree, we also show the
estimates based on voting over shifted partitions. This amounts to constructing 2L × 2L different
trees, each based on a partition offset by an integer multiple of the base sidelength 2−L, and taking
a majority vote over all the resulting set estimates to form the final estimate. Theseestimates are
indicated by MM’, Rad’, and mRad’, respectively. Similar methods based onaveraging or voting
over shifted partitions have been tremendously successful in image processing, and they tend to
mitigate the “blockiness” associated with estimates based on a single tree, as is clearly seen in the
results depicted. Moreover, because of the significant amount of redundancy in the shifted partitions,
the MM’, Rad’, and mRad’ estimates can be computed in justO(mnlogn) operations.

Visual inspection of the resulting minimum volume set estimates (which were “typical” results
selected at random) reveals some of the characteristics of the different penalties and their behav-
iors as a function of the sample size. Notably, the basic Rademacher penalty tends to allow very
small and isolated leafs into the final set estimate, which is somewhat unappealing. The modified
Rademacher penalty clearly eliminates this problem and provides very reasonable estimates. The
(down-weighted) minimax penalty results in set estimates quite similar to those resulting from the
modified Rademacher. However, the somewhat arbitrary choice of scalingfactor (0.01 in this case)
is undesirable. Finally, let us remark on the significant improvement provided by voting over multi-
ple shifted trees. The voting procedure quite dramatically reduces the “blocky” partition associated
with estimates based on single trees. Overall, the modified Rademacher penalty coupled with voting
over multiple shifted trees appears to perform best in our experiments. In fact, in the casen= 10000,
this set estimate is almost identical to the true minimum volume set depicted in Figure 1.

8. Conclusions

In this paper we propose two rules, MV-ERM and MV-SRM, for estimation ofminimum volume
sets. Our theoretical analysis is made possible by relating the performance of these rules to the
uniform convergence properties of the class of sets from which the estimate is taken. This in turn
lets us apply distribution free uniform convergence results such as the VCinequality to obtain
distribution free, finite sample performance guarantees. It also leads to strong universal consistency
when the class of candidate sets is allowed to grow in a controlled way. MV-SRM obeys an oracle
inequality and thereby automatically selects the appropriate complexity of the setestimator. These
theoretical results are illustrated with histograms and dyadic decision trees.

Our estimators, results, and proof techniques for minimum volume sets bear a strong resem-
blance to existing estimators, results, and proof techniques for supervised classification. This is no
coincidence. Minimum volume set estimation is closely linked with hypothesis testing.Assume

691

SCOTT AND NOWAK

(MM) (Rad) (mRad)

(MM’) (Rad’) (mRad’)

Figure 8: Minimum volume set estimates based on dyadic quadtrees forα = 0.90 with n = 100
samples. Reconstructions based on MM = minimax penalty (23), Rad = Rademacher
penalty (24), and mRad = modified Rademacher penalty (25), and MM’, Rad’, and mRad’
denote the analogous estimates based on voting over multiple trees at different shifts.

692

LEARNING M INIMUM VOLUME SETS

(MM) (Rad) (mRad)

(MM’) (Rad’) (mRad’)

Figure 9: Minimum volume set estimates based on dyadic quadtrees forα = 0.90 with n = 1000
samples. Reconstructions based on MM = minimax penalty (23), Rad = Rademacher
penalty (24), and mRad = modified Rademacher penalty (25), and MM’, Rad’, and mRad’
denote the analogous estimates based on voting over multiple trees at different shifts.

693

SCOTT AND NOWAK

(MM) (Rad) (mRad)

(MM’) (Rad’) (mRad’)

Figure 10: Minimum volume set estimates based on dyadic quadtrees forα = 0.90 withn = 10000
samples. Reconstructions based on MM = minimax penalty (23), Rad = Rademacher
penalty (24), and mRad = modified Rademacher penalty (25), and MM’, Rad’, and
mRad’ denote the analogous estimates based on voting over multiple trees at different
shifts.

694

LEARNING M INIMUM VOLUME SETS

P has a density with respect toµ, and thatµ is a probability measure. Then the minimum vol-
ume set with massα is the acceptance region of the most powerful test of size 1−α for testing
H0 : X ∼ P versus H1 : X ∼ µ. But classification and hypothesis testing have the same goals; the
difference lies in what knowledge is used to design a classifier/test (training data versus knowledge
of the true densities). The problem of learning minimum volume sets stands halfway between these
two: For one class the true distribution is known (the reference measure),but for the other only
training samples are available.

This observation provides not only intuition for the similarity between MV-set estimation and
classification, but it also suggests an alternative approach to MV-set estimation. In particular, sup-
pose it is possible to sample at will from the reference measure. Consider these samples, together
with the original training data, to be a labeled training set. Then the MV-set may be estimated by
learning a classifier with respect to the Neyman-Pearson criterion (Cannon et al., 2002; Scott and
Nowak, 2005b). Briefly, the Neyman-Pearson classification paradigm involves learning a classi-
fier from training data that minimizes the “miss” generalization error while constraining the “false
alarm” generalization error to be less than or equal to a specified size, in our case 1−α.

Minimum volume set estimation based on Neyman-Pearson classification offersa distinct ad-
vantage over the rules studied in this paper. Indeed, our algorithms for histograms and dyadic
decision trees take advantage of the fact that the reference measureµ is easily evaluated for these
special types of sets. For more general sets or non-uniform reference measures, direct evaluation
of the reference measure may be impractical. Neyman-Pearson classification, in contrast, involves
computing the empirical volume based on the training sample, a much easier task. Moreover, in
principle one may take an arbitrarily large sample fromµ to mitigate finite sample effects. A similar
idea has been employed by Steinwart et al. (2005), who sample fromµ so as to reduce density level
set estimation to cost-sensitive classification. In this setting the advantage of MV-sets over density
level sets is further magnified. For example, to sample from a uniform distribution, one must specify
its support, which is a priori unknown. Fortunately, MV-sets are invariant to the choice of support,
whereas theγ-level set changes with the support ofµ.

Acknowledgments

The authors thank Ercan Yildiz and Rebecca Willett for their assistance with the experiments in-
volving dyadic trees, Gilles Blanchard for his insights into the Rademacher penalty for partition-
based estimators, and an anonymous referee for suggesting a simplificationin the proof of Theorem
10.

The first author was supported by an NSF VIGRE postdoctoral training grant. The second
author was supported by NSF Grants CCR-0310889 and CCF-0353079.

Appendix A. Proof of Lemma 4

The proof follows closely the proof of Lemma 1 in Cannon et al. (2002). DefineΞ = {S: P̂(GG ,α) <

α−φ(GG ,α,S,δ)}. It is true thatΘµ ⊂ Ξ. To see this, ifS/∈ Ξ thenGG ,α ∈ Ĝα, and henceµ(ĜG ,α)≤
µ(GG ,α) by definition ofĜG ,α. ThusS /∈ Θµ. It follows that

ΘP∪Θµ ⊂ ΘP∪Ξ

695

SCOTT AND NOWAK

and hence it suffices to showΘP ⊂ ΩP andΞ ⊂ ΩP.
First, we show thatΘP ⊂ ΩP. If S∈ ΘP then

P(ĜG ,α) < α−2φ(ĜG ,α,S,δ).

This implies

P(ĜG ,α)− P̂(ĜG ,α) < α−2φ(ĜG ,α,S,δ)− P̂(ĜG ,α)

≤ −φ(ĜG ,α,S,δ),

where the last inequality is true becauseP̂(ĜG ,α) ≥ α−φ(ĜG ,α,S,δ). ThereforeS∈ ΩP.
Second, we show thatΞ ⊂ ΩP. If S∈ Ξ, then

P̂(GG ,α)−P(GG ,α) < α−φ(GG ,α,S,δ)−P(GG ,α)

≤ −φ(GG ,α,S,δ),

where the last inequality holds becauseP(GG ,α) ≥ α. Thus,S∈ ΩP, and the proof is complete.

Appendix B. Proof of Theorem 9

By the Borel-Cantelli Lemma (Durrett, 1991), it suffices to show that for any ε > 0,

∞

∑
n=1

Pn(E (ĜG ,α) > ε) < ∞.

We will show this by establishing

∞

∑
n=1

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)
< ∞ (26)

and
∞

∑
n=1

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2
.
)

< ∞ (27)

First consider (26). By assumption (11), there existsK such thatµ(Gk
G ,α)−µ∗α ≤ ε/2 for all

k≥ K. Let N be such thatk(n) ≥ K for n≥ N. For any fixedn≥ N, consider a sampleSof sizen.
By Theorem 3, it follows that with probability at least 1−δ(n), µ(ĜG ,α)−µ∗α ≤ µ(Gk

G ,α)−µ∗α ≤ ε/2.
Therefore

∞

∑
n=1

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)

=
N−1

∑
n=1

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)
+

∞

∑
n=N

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)

≤
N−1

∑
n=1

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)
+

∞

∑
n=N

δ(n)

< ∞.

696

LEARNING M INIMUM VOLUME SETS

The second inequality follows from the assumed summability ofδ(n).
To establish (27), letN be large enough so that

sup
G∈G k(n)

φk(G,S,δ(n)) ≤ ε
4

for all n≥ N. For any fixedn≥ N, consider a sampleSof sizen. By Theorem 3, it follows that with
probability at least 1−δ(n), α−P(ĜG ,α) ≤ 2φk(ĜG ,α,S,δ(n)) ≤ ε/2. Therefore

∞

∑
n=1

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2

)

=
N−1

∑
n=1

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2

)
+

∞

∑
n=N

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2

)

≤
N−1

∑
n=1

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2

)
+

∞

∑
n=N

δ(n)

< ∞.

This completes the proof.

Appendix C. Proof of Theorem 10

The first part of the theorem is straightforward. First, we claim that(µ(Gn)−µ∗α)+ ≤ µ(Gn\G∗
α). To

see this, assumeµ(Gn)−µ∗α ≥ 0, otherwise the statement is trivial. Then

(µ(Gn)−µ∗α)+ = µ(Gn)−µ∗α
= µ(Gn)−µ(G∗

α)

≤ µ(Gn)−µ(G∗
α ∩Gn)

= µ(Gn\G∗
α).

Similarly, one can show(α−P(Gn))+ ≤ P(G∗
α\Gn). Let Dγ = {x : f (x) ≥ γ} andEn = G∗

α\Gn.
Then for anyγ > 0,

P(En) = P(En∩Dγ)+P(En∩Dγ) ≤ P(Dγ)+ γµ(En).

By the dominated convergence theorem,P(Dγ) → 0 asγ → ∞. Thus, for anyε > 0, we can choose
γ such thatP(Dγ) ≤ ε and thenn large enough so thatγµ(En) ≤ ε. The result follows.

Now the second part of the theorem. From Section 1.2, we knowG∗
α = {x : f (x) = γα} where

γα is the unique number such that
R

f (x)≥γα
f (x)dµ(x) = α.

Consider the distributionQ of (X,Y) ∈ X ×{0,1} given by the class-conditional distributions
X|Y = 0∼ P andX|Y = 1∼ µ, and a priori class probabilitiesQ(Y = 0) = p= 1−Q(Y = 1), where
p will be specified below. ThenQ defines a classification problem. Leth∗ denote a Bayes classifier
with respect toQ (i.e., a classifier with minimum probability of error), and leth : X → {0,1} be an
arbitrary classifier. The classification risk ofh is defined asR (h) = Q(h(X) 6= Y), and the excess
classification risk isR (h)−R (h∗). From Bayes decision theory we know thath∗ is the rule that
compares the likelihood ratio top/(1− p). But, as discussed in Section 1.2, the likelihood ratio is
1/ f . Therefore, ifp is such thatp/(1− p) = 1/γα, thenh∗(x) = 1−I(x∈ G∗

α) µalmost everywhere.

697

SCOTT AND NOWAK

Settinghn(x) = 1− I(x∈ Gn), we have

R (hn)−R (h∗)

= Q(hn(X) 6= Y)−Q(h∗(X) 6= Y)

= (1− p)(µ(hn(X) = 0)−µ(h∗(X) = 0)))+ p(P(hn(X) = 1)−P(h∗(X) = 0))

= (1− p)(µ(Gn)−µ(G∗
α))+ p(1−P(Gn)− (1−P(G∗

α)))

= (1− p)(µ(Gn)−µ∗α)+ p(α−P(Gn))

≤ (µ(Gn)−µ∗α)+(α−P(Gn))

≤ E (Gn).

ThereforeR (hn) → R (h∗). We now invoke a result of Steinwart et al. (2005) that says, in our
notation, thatR (hn) → R (h∗) if and only if µ(Gn∆G∗

α) → 0, and the proof is complete.

Appendix D. Proof of Theorem 11

Let ΩP be as in the proof of Theorem 3, and assumeS∈ ΩP. This holds with probability at least
1−δ. We consider three separate cases: (1)µ(ĜG ,α) ≥ µ∗α andP(ĜG ,α) < α, (2) µ(ĜG ,α) ≥ µ∗α and

P(ĜG ,α)≥α, and (3)µ(ĜG ,α) < µ∗α andP(ĜG ,α) < α. Note that the case in which bothα≤P(ĜG ,α)

andµ(ĜG ,α) < µ∗α is impossible by definition of minimum volume sets. We will use the following
fact:

Lemma 17 If S∈ ΩP, thenα−P(ĜG ,α) ≤ 2φ(ĜG ,α,S,δ).

The proof is a repetition of the proof thatΘP ⊂ ΩP in Lemma 4.
For the first case we have

E (ĜG ,α) = µ(ĜG ,α)−µ∗α +α−P(ĜG ,α)

≤ µ(ĜG ,α)−µ∗α +2φ(ĜG ,α,S,δ)

= inf
G∈Ĝα

{
µ(G)−µ∗α +2φ(G,S,δ)

}

≤ inf
G∈Gα

{
µ(G)−µ∗α +2φ(G,S,δ)

}

≤
(

1+
1
γα

)
inf

G∈Gα

{
µ(G)−µ∗α +2φ(G,S,δ)

}
.

The first inequality follows fromS∈ ΘP. The next line comes from the definition of̂GG ,α. The

second inequality follows fromS∈ ΩP, from which it follows thatGα ⊂ Ĝα. The final step is trivial
(this constant is needed for case 3).

For the second case,µ(ĜG ,α) ≥ µ∗α andP(ĜG ,α) ≥ α, note

E (ĜG ,α) = µ(ĜG ,α)−µ∗α

≤ µ(ĜG ,α)−µ∗α +2φ(ĜG ,α,S,δ)

698

LEARNING M INIMUM VOLUME SETS

and proceed as in the first case.
For the third case,µ(ĜG ,α) < µ∗α andP(ĜG ,α) < α, we rely on the following lemmas.

Lemma 18 Let ε > 0. Then
µ∗α −µ∗α−ε ≤

ε
γα

.

Proof By assumptionsA1 andA2, there exist MV-setsG∗
α−ε andG∗

α such that

Z

G∗
α

f (x)dµ(x) = α

and
Z

G∗
α−ε

f (x)dµ(x) = α− ε.

Furthermore, we may chooseG∗
α−ε andG∗

α such thatG∗
α−ε ⊂ G∗

α. Thus

ε =
Z

G∗
α

f (x)dµ(x)−
Z

G∗
α−ε

f (x)dµ(x)

=
Z

G∗
α\G∗

α−ε

f (x)dµ(x)

≥ γαµ(G∗
α\G∗

α−ε)

= γα(µ∗α −µ∗α−ε)

and the result follows.

Lemma 19 If S∈ ΩP and G∈ Ĝα, then

µ∗α −µ(G) ≤ 2
γα

·φ(G,S,δ).

Proof Denoteε = 2φ(G,S,δ). SinceS∈ ΩP andG∈ Ĝα, we know

P(G) ≥ P̂(G)− 1
2

ε ≥ α− ε.

In other words,G∈ Gα−ε. Therefore,µ(G) ≥ µ∗α−ε and it suffices to boundµ∗α −µ∗α−ε. Now apply
the preceding lemma.

699

SCOTT AND NOWAK

It now follows that

E (ĜG ,α) = α−P(ĜG ,α)

≤ 2φ(ĜG ,α,S,δ)

= µ(ĜG ,α)−µ∗α +µ∗α −µ(ĜG ,α)+2φ(ĜG ,α,S,δ)

≤ µ(ĜG ,α)−µ∗α +

(
1+

1
γα

)
2φ(ĜG ,α,S,δ)

≤
(

1+
1
γα

)(
µ(ĜG ,α)−µ∗α +2φ(ĜG ,α,S,δ)

)

=

(
1+

1
γα

)
inf

G∈Ĝα

{
µ(G)−µ∗α +2φ(G,S,δ)

}

≤
(

1+
1
γα

)
inf

G∈Gα

{
µ(G)−µ∗α +2φ(G,S,δ)

}

The first inequality follows from Lemma 17. The second inequality is by Lemma 19. The next to
last line follows from the definition of̂GG ,α, and the final step is implied byS∈ ΩP as in case 1.
This completes the proof.

Appendix E. The Rademacher Penalty for Partition-Based Sets

In this appendix we show how the conditional Rademacher penalty introducedin Section 2.3 can be
evaluated for a classG based on a fixed partition. The authors thank Gilles Blanchard for pointing
out the properties that follow. Letπ = {A1, . . . ,Ak} be a fixed, finite partition ofX , and letG be the
set of all sets formed by taking the union of cells inπ. Thus|G | = 2k and everyG∈ G is specified
by ak-length string of binary digitsℓ(A1), . . . , ℓ(Ak), with ℓ(A) = 1 if and only ifA⊂ G.

The conditional Rademacher penalty may be rewritten as follows:

2
n

E(σi)

[
sup
G∈G

n

∑
i=1

σiI(Xi ∈ G)

]
=

2
n

E(σi)

[
sup

ℓ(A) :A∈π

n

∑
i=1

σiℓ(A)

]

=
2
n ∑

A∈π
E(σi)

[
sup
ℓ(A)

∑
i:Xi∈A

σiℓ(A)

]

=: ∑
A∈π

ψ(A).

700

LEARNING M INIMUM VOLUME SETS

Thus the penalty is additive (modulo the delta term). Now consider a fixed cellA:

ψ(A) =
2
n

E(σi)

[
sup
ℓ(A)

∑
i:Xi∈A

σiℓ(A)

]

=
1
n

E(σi)

[
sup
ℓ(A)

∑
i:Xi∈A

σi(2ℓ(A)−1)

]

=
1
n

E(σi)

[
sup
ℓ(A)

(2ℓ(A)−1) ∑
i:Xi∈A

σi

]

=
1
n

E(σi)

[∣∣∣∣∣ ∑
i:Xi∈A

σi

∣∣∣∣∣

]
.

Now let bin(M, p,m) =
(M

m

)
pm(1− p)M−m be the probability of observingmsuccesses in a sequence

of M Bernoulli trials having success probabilityp. Then this last expression can be computed
explicitly as

ψ(A) =
1
n

nA

∑
i=0

bin(nA,1/2, i)|nA−2i|,

wherenA = |{i : Xi ∈ A}|. This is the penalty used in the histogram experiments (after the delta term
is included).

A more convenient and intuitive penalty may be obtained by bounding

ψ(A) =
1
n

E(σi)

[∣∣∣∣∣ ∑
i:Xi∈A

σi

∣∣∣∣∣

]

≤ 1
n

E(σi)

(

∑
i:Xi∈A

σi

)2

1
2

=
1
n

E(σi)

[

∑
i:Xi∈A

σ2
i

] 1
2

=

√
P̂(A)

n
,

where the inequality is Jensen’s. Moreover, by the Khinchin-Kahane inequality (see, e.g., Ledoux
and Talagrand, 1991, Lemma 4.1), the converse inequality holds with a factor

√
2, so the bound

is tight up to this factor. This is the “Rademacher” penalty employed in the dyadicdecision tree
experiments.

References

A. Baillo, J. A. Cuesta-Albertos, and A. A. Cuevas. Convergence rates in nonparametric estimation
of level sets.Stat. Prob. Letters, 53:27–35, 2001.

P. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. Machine Learning,
48:85–113, 2002.

701

SCOTT AND NOWAK

S. Ben-David and M. Lindenbaum. Learning distributions by their density levels: a paradigm for
learning without a teacher.J. Comp. Sys. Sci., 55:171–182, 1997.

G. Blanchard, C. Scḧafer, and Y. Rozenholc. Oracle bounds and exact algorithm for dyadic classifi-
cation trees. In J. Shawe-Taylor and Y. Singer, editors,Learning Theory: 17th Annual Conference
on Learning Theory, COLT 2004, pages 378–392. Springer-Verlag, Heidelberg, 2004.

O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. In O. Bous-
quet, U.v. Luxburg, and G. Rtsch, editors,Advanced Lectures in Machine Learning, pages 169–
207. Springer, 2004.

L. Breiman, J. Friedman, R. Olshen, and C. Stone.Classification and Regression Trees. Wadsworth,
Belmont, CA, 1984.

A. Cannon, J. Howse, D. Hush, and C. Scovel. Learning with the Neyman-Pearson and min-max
criteria. Technical Report LA-UR 02-2951, Los Alamos National Laboratory, 2002. URLhttp:
//www.c3.lanl.gov/∼kelly/ml/pubs/2002 minmax/paper.pdf.

A. Cohen, W. Dahmen, I. Daubechies, and R. A. DeVore. Tree approximation and optimal encoding.
Applied and Computational Harmonic Analysis, 11(2):192–226, 2001.

T. Cover and J. Thomas.Elements of Information Theory. John Wiley and Sons, New York, 1991.

A. Cuevas and R. Fraiman. A plug-in approach to support estimation.Ann. Stat., 25:2300–2312,
1997.

A. Cuevas and A. Rodriguez-Casal. Set estimation: An overview and somerecent developments.
Recent advances and trends in nonparametric statistics, pages 251–264, 2003.

R. A. DeVore. Nonlinear approximation.Acta Numerica, 7:51–150, 1998.

L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Springer,
New York, 1996.

D. Donoho. Wedgelets: Nearly minimax estimation of edges.Ann. Stat., 27:859–897, 1999.

R. Durrett. Probability: Theory and Examples. Wadsworth & Brooks/Cole, Pacific Grove, CA,
1991.

J. Hartigan. Estimation of a convex density contour in two dimensions.J. Amer. Statist. Assoc., 82
(397):267–270, 1987.

X. Huo and J. Lu. A network flow approach in finding maximum likelihood estimateof high
concentration regions.Computational Statistics and Data Analysis, 46(1):33–56, 2004.

J. Klemel̈a. Complexity penalized support estimation.J. Multivariate Anal., 88:274–297, 2004.

V. Koltchinskii. Rademacher penalties and structural risk minimization.IEEE Trans. Inform. The-
ory, 47:1902–1914, 2001.

J. Langford. Tutorial on practical prediction theory for classification.J. Machine Learning Research,
6:273–306, 2005.

702

LEARNING M INIMUM VOLUME SETS

M. Ledoux and M. Talagrand.Probability in Banach spaces. Springer-Verlag, Berlin, 1991.

G. Lugosi and K. Zeger. Concept learning using complexity regularization. IEEE Trans. Inform.
Theory, 42(1):48–54, 1996.

G. Lugosi and K. Zeger. Nonparametric estimation using empirical risk minimization. IEEE Trans.
Inform. Theory, 41(3):677–687, 1995.

D. Müller and G Sawitzki. Excess mass estimates and tests for multimodality.J. Amer. Statist.
Assoc., 86(415):738–746, 1991.

A. Muñoz and J. M. Moguerza. Estimation of high-density regions using one-class neighbor ma-
chines.IEEE Trans. Patt. Anal. Mach. Intell., 28:476–480, 2006.

D. Nolan. The excess mass ellipsoid.J. Multivariate Analysis, 39:348–371, 1991.

J. Nunez-Garcia, Z. Kutalik, K.-H.Cho, and O. Wolkenhauer. Level sets and minimum volume sets
of probability density functions.Approximate Reasoning, 34:25–47, Sept. 2003.

W. Polonik. Measuring mass concentrations and estimating density contour cluster–an excess mass
approach.Ann. Stat., 23(3):855–881, 1995.

W. Polonik. Minimum volume sets and generalized quantile processes.Stochastic Processes and
their Applications, 69:1–24, 1997.

T. W. Sager. An iterative method for estimating a multivariate mode and isopleth.J. Am. Stat. Asso.,
74:329–339, 1979.

B. Scḧolkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson. Estimating the support of a
high-dimensional distribution.Neural Computation, 13(7):1443–1472, 2001.

C. Scott and R. Nowak. Learning minimum volume sets. Technical Report ECE-05-2, UW-
Madison, 2005a. URLhttp://www.stat.rice.edu/∼cscott.

C. Scott and R. Nowak. A Neyman-Pearson approach to statistical learning. IEEE Trans. Inform.
Theory, 51(8):3806–3819, 2005b.

C. Scott and R. Nowak. Minimax-optimal classification with dyadic decision trees. IEEE Trans.
Inform. Theory, pages 1335–1353, April 2006.

I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection.J. Machine
Learning Research, 6:211–232, 2005.

A. B. Tsybakov. On nonparametric estimation of density level sets.Ann. Stat., 25:948–969, 1997.

V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, New York,
1982.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

R. Vert and J.-P. Vert. Consistency and convergence rates of one-class SVM and related algorithms.
Technical Report 1414, Universit Paris-Sud, 2005.

703

SCOTT AND NOWAK

G. Walther. Granulometric smoothing.Ann. Stat., 25:2273–2299, 1997.

R. Willett and R. Nowak. Minimax optimal level set estimation. submitted toIEEE Trans. Image
Proc., 2006. URLhttp://www.ee.duke.edu/∼willett/.

R. Willett and R. Nowak. Minimax optimal level set estimation. InProc. SPIE, Wavelets XI, 31
July - 4 August, San Diego, CA, USA, 2005.

704

Journal of Machine Learning Research 7 (2006) 705–732 Submitted 7/05; Revised 12/05; Published 5/06

Some Theory for Generalized Boosting Algorithms

Peter J. Bickel BICKEL@STAT.BERKELEY.EDU

Department of Statistics
University of California at Berkeley
Berkeley, CA 94720, USA

Ya’acov Ritov (corresponding author) YAACOV.RITOV@HUJI.AC.IL
Department of Statistics and The Interdisciplinary Centerfor Neural Computation
The Hebrew University of Jerusalem
91905 Jerusalem, Israel

Alon Zakai ALONZAKA @POB.HUJI.AC.IL
The Interdisciplinary Center for Neural Computation
The Hebrew University of Jerusalem
91904 Jerusalem, Israel

Editor: Bin Yu

Abstract
We give a review of various aspects of boosting, clarifying the issues through a few simple results,
and relate our work and that of others to the minimax paradigmof statistics. We consider the
population version of the boosting algorithm and prove its convergence to the Bayes classifier
as a corollary of a general result about Gauss-Southwell optimization in Hilbert space. We then
investigate the algorithmic convergence of the sample version, and give bounds to the time until
perfect separation of the sample. We conclude by some results on the statistical optimality of the
L2 boosting.
Keywords: classification, Gauss-Southwell algorithm, AdaBoost, cross-validation, non-parametric
convergence rate

1. Introduction

We consider a standard classification problem: Let(X,Y),(X1,Y1), . . . , (Xn,Yn) be an i.i.d. sample,
whereYi ∈ {−1,1} andXi ∈ X . The goal is to find a good classification rule,X →{−1,1}.

The AdaBoost algorithm was originally defined, Schapire (1990), Freund (1995), and Freund
and Schapire (1996) as an algorithm to construct a good classifier by a “weighted majority vote” of
simple classifiers. To be more exact, letH be a set of simple classifiers. The AdaBoost classifier
is given by sgn

(
∑M

m=1 λmhm(x)
)
, whereλm ∈ R, hm ∈ H , are found sequentially by the following

algorithm:

0. Letc1 = c2 = · · ·= cn = 1, and setm= 1.

1. Findhm = argminh∈H ∑n
i=1cih(Xi)Yi . Set

λm =
1
2

log
(∑n

i=1ci +∑n
i=1cihm(Xi)Yi

∑n
i=1ci−∑n

i=1cihm(Xi)Yi

)
=

1
2

log
(∑hm(Xi)=Yi

ci

∑hm(Xi)6=Yi
ci

)
.

c©2006 Peter J. Bickel, Ya’acov Ritov and Alon Zakai.

BICKEL , RITOV AND ZAKAI

2. Setci ← ci exp
(
−λmhm(Xi)Yi

)
, andm←m+1, If m≤M, return to step 1.

M is unspecified and can be arbitrarily large.
The success of these methods on many data sets and their “resistance to overfitting”—the test

set error continues to decrease even after all the training set observations were classified correctly,
has led to intensive investigation to which this paper contributes.

Let F∞ be the linear span ofH . That is,

F∞ =
∞

[

k=1

Fk, whereFk =
{ k

∑
j=1

λ jh j : λ j ∈ R, h j ∈ H , 1≤ j ≤ k
}

.

A number of workers have noted, Breiman (1998,1999), Friedman, Hastieand Tibshirani (2000),
Mason, Bartlett, Baxter and Frean (2000), and Schapire and Singer (1999), that the AdaBoost clas-
sifier can be viewed as sgn

(
F(X)

)
, whereF is found by a greedy algorithm minimizing

n−1
n

∑
i=1

exp
(
−YiF(Xi)

)

overF∞.
¿From this point of view, the algorithm appeared to be justifiable, since as was noted in Breiman

(1999) and Friedman, Hastie, and Tibshirani (2000), the corresponding expressionEexp
(
−YF(X)

)
,

obtained by replacing the sum by expectation, is minimized by

F(X) =
1
2

log
(

P(Y = 1|X)/P(Y =−1|X)
)
,

provided the linear spanF∞ is dense in the spaceF of all functions in a suitable way. However, it
was also noted that the empirical optimization problem necessarily led to rules which would classify
every training set observation correctly and hence not approach the Bayes rule whatever ben, except
in very special cases. Jiang (2003) established that, for observation centered stumps, the algorithm
converged to nearest neighbor classification, a good but rarely optimalrule.

In another direction, the class of objective functionsW(·) that can be considered was extended
by Friedman, Hastie, and Tibshirani (2000) to otherW, in particular,W(t) = log(1+e−2t), whose
empirical version they identified with logistic regression in statistics, andW(t) = −2t + t2, which
they referred to as “L2 Boosting” and has been studied, under the name “matching pursuit”, in
the signal processing community. For all these objective functions, the population optimization of
EW

(
YF(X)

)
overF leads to a solution such that sgnF(X) is the Bayes rule. Friedman et al. also

introduced consideration of other algorithms for the empirical optimization problem. Lugosi and
Vayatis (2004) added regularization, changing the function whose expectation (both empirically and
in the population) is to be minimized fromW

(
YF(X)

)
to Wn

(
YF(X)

)
whereWn→W asn→ ∞.

Bühlmann and Yu (2003) consideredL2 boosting starting from very smooth functions. We shall
elaborate on this later.

We consider the behavior of the algorithm as applied to the sample(Y1,X1), . . . ,(Yn,Xn), as well
to the “population”, that is when means are replaced by expectations and sums by probabilities. The
structure of, and the differences between, the population and sample versions of the optimization
problem has been explored in various ways by Jiang (2003), Zhang and Yu (2003), B̈uhlmann
(2003), Bartlett, Jordan, and McAuliffe (2003), Bickel and Ritov (2003).

Our goal in this paper is

706

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

1. To clarify the issues through a few simple results.

2. To relate our work and that of B̈uhlmann (2003), B̈uhlmann and Yu (2003), Lugosi and Vay-
atis (2004), Zhang (2004), Zhang and Yu (2003) and Bartlett, Jordan, and McAuliffe (2003) to
the minimax results of Mammen and Tsybakov (1999), Baraud (2001) and Tsybakov (2001).

In Section 2 we will discuss the population version of the basic boosting algorithms and show
how their convergence and that of more general greedy algorithms can be derived from a general-
ization of Theorem 3 of Mallat and Zhang (1993) with a simple proof. The result can, we believe,
also be derived from the even more general theorem of Zhang and Yu (2003), but our method is
simpler and the results are transparent.

In Section 3 we show how Bayes consistency of various sample algorithms when suitably
stopped or of sample algorithms based on minimization of a regularizedW follow readily from
population convergence of the algorithms and indicate how test bed validationcan be used to do
this in a way leading to optimal rates (in Section 4).

In Section 5 we address the issue of bounding the time to perfect separationof the different
boosting algorithm (including the standard AdaBoost).

Finally in Section 6 we show how minimax rate results for estimatingE(Y|X) may be attained
for a “sieve” version of theL2 boosting algorithm, and relate these to results of Baraud (2001),
Lugosi and Vayatis (2004), B̈uhlmann and Yu (2003), Barron, Birgé, Massart(1999) and Bartlett,
Jordan and McAuliffe (2003). We also discuss the relation of these results to classification theory.

2. Boosting “Population” Theorem

We begin with a general theorem on Gauss-Southwell optimization in vector space. It is, in part,
a generalization of Theorem 1 of Mallat and Zhang (1993) with a simpler proof. A second part
relates to procedures in which the step size is regularized cf. Zhang and Yu (2003) and Bartlett et
al. (2003). We make the boosting connection after its statement.

Let w be a real, bounded from below, convex function on a vector spaceH. Let H = H ′ ∪
(−H ′), whereH ′ is a subset ofH whose members are linearly independent, with linear spanF∞ =
{∑k

m=1 λmhm : λ j ∈R, h j ∈ H , 1≤ j ≤ k, 1≤ k < ∞}. We assume thatF∞ is dense inH, at least in
the sense that{w(f) : f ∈ F∞} is dense in the image ofw. We define two relaxed Gauss-Southwell
“algorithms”.

Algorithm I: Forα ∈ (0,1], and givenf1 ∈H, find inductively f2, f3, . . . , . . . by, fm+1 = fm+λmhm,
λm∈ R, hm∈ H and

w(fm+λmhm)≤ α min
λ∈R, h∈H

w(fm+λh)+(1−α)w(fm) . (1)

Generalize Algorithm I to :

Algorithm II: Like Algorithm I, but replace (1) by

w(fm+λmh)+ γλ2
m≤ α min

λ∈R, h∈H
(w(fm+λh)+ γλ2)+(1−α)w(fm) .

There are not algorithms in the usual sense since they do not specify a unique sequence of iter-
ations but our theorems will apply to any sequence generated in this way. Technically, this scheme

707

BICKEL , RITOV AND ZAKAI

is used in the proof of Theorem 3. The standard boosting algorithms theoretically correspond to
α = 1, although in practice, since numerical minimization is used,α may equal 1 only approxi-
mately. Our generalization makes for a simple proof and covers the possibility that the minimum
of w(fm + λh) over H and R is not assumed, or multiply assumed. Letω0 = inf f∈F∞ w(f) >
−∞. Let w′(f ;h) the linear operator of the Gataux derivative atf ∈ F∞ in the directionh ∈ F∞:
w′(f ;h) = ∂w(f +λh)/∂λ

∣∣
λ=0, and letw′′(f ;h) be the second derivative ofw at f in the directionh:

w′′(f ,h)≡ ∂2w(f +λh)/∂λ2
∣∣
λ=0 (both derivative are assumed to exist). We consider the following

conditions.

GS1. For anyc1 andc2 such thatω0 < c1 < c2 < ∞,

0 < inf {w′′(f ,h) : c1 < w(f) < c2, h∈ H }
≤ sup{w′′(f ,h) : w(f) < c2, h∈ H }< ∞.

GS2. For anyc2 < ∞,

sup{w′′(f ,h) : w(f) < c2, h∈ H }< ∞ .

Theorem 1 Under AssumptionGS1, any sequence of functions generated according to Algorithm
I satisfies:

w(fm)≤ ω0 +cm

and if cm > 0:

w(fm)−w(fm+1)≥ ξ(w(fm)) > 0

where the sequence cm→ 0 and the functionξ(·) depend only onα, the initial points of the iterates,
andH . The same conclusion holds under ConditionGS2for any sequence fm generated according
to algorithm II.

The proof can be found in Appendix A.
Remark:

1. Condition GS2 of Theorem 1 guarantees that∑∞
m=1 λ2

m < ∞. It can be replaced by any other
condition that guarantees the same, for example, limiting the step size, replacingthe penalty
by other penalties, etc.

2. It will be clear from the proof in Appendix A that ifw′′ is bounded away from 0 and∞ then
cm is of order(logm)−

1
2 so that we, in fact, have an approximation rate – but it is so slow as

to be essentially useless. On the other hand, with strong conditions such as orthonormality of
the elements ofH , andH a classical approximation class such as trigonometric functions we
expect, withL2 boosting, to obtain rates such asm−1/2 or better.

Let (X,Y)∼P, X ∈ X ,Y∈ {−1,1}. LetH ⊂{h : X → [−1,1]} be a symmetric set of functions.
In particular,H can, but need not, be a set of classifiers such as trees with

H =−H . (2)

708

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

Given a loss functionW : R→R
+, we consider a greedy sequential procedure for finding a function

F that minimizesEW
(
YF(X)

)
. That is, givenF0 ∈ H fixed, we define form≥ 0:

λm(h) = argmin
λ∈R

EW
(
Y

(
Fm(X)+λh(X)

))

hm = argmin
h∈H

EW
(
Y

(
Fm(X)+λm(h)h(X)

))

Fm+1 = Fm+λm(hm)hm.

Assume, wlog (without loss of generality), by shifting and rescaling, thatW(0) =−W′(0) = 1.
Note that by Bartlett et al. (2003),W′(0) < 0 is necessary and sufficient for population consistency
defined below. We can suppose again wlog in view of (2), thatλm≥ 0. DefineFk andF∞ as in
Section 1 and letF ≡ F̄∞ be the closure ofF∞ in convergence in probability:

F ≡
{

F : ∃Fm∈ Fm, Fm(X)
p−→F(X)

}

F∞ ≡ argmin
F∈F

EW
(
YF(X)

)

If sgnF∞ is the Bayes rule for 0-1 loss, we say thatF∞ is population consistent for classification,
“calibrated” in the Bartlett et al. terminology. Let

p(X) ≡ P(Y = 1|X)

W̃(x,d) ≡ p(x)W
(
d
)
+

(
1− p(x)

)
W

(
−d

)
.

W̃(F) ≡ W̃(X,F(X))

By the assumptions belowF∞ is the unique function such that̃W′(F∞) = 0 with probability 1, where
W̃′(F) = W̃′(X,F(X)) andW̃′(x,d) = ∂W(x,d)/∂d. DefineW̃′′ similarly.

Here are some conditions.

P1. P[p(X) = 0 or 1] = 0.

P2. W is twice differentiable and convex onR.

P3. H is closed and compact in the weak topology.F is the set of all measurable functions onX .

P4. W̃′′(F) is bounded above and below on{F : c1 < W̃(F) < c2} for all c1,c2 such that

inf
F∈F

EW̃(F) < c1 < c2 < EW̃(F0).

P5. F∞ ∈ L2(P).

Note that P1 and P2 imply that̃W(x,d)→ ∞ as |d| → ∞, which ensures thatF∞ is finite almost
anywhere. Condition P1, which says that no point can be classified with absolute certainty, is only
needed technically to ensure thatW̃(x,d)→ ∞ as|d| → ∞, even ifW itself is monotone. It is not
needed forL2 boosting.

Conditions P2 and P4 ensure that along the optimizing pathW behaves locally likeW0(t) =
−2t+t2 corresponding toL2 boosting. They are more stringent than we would like and, in particular,

709

BICKEL , RITOV AND ZAKAI

rule outW such as the “hinge” appearing in SVM. More elaborate arguments such as those of Zhang
and Yu (2003) and Bartlett et al. (2003) can give somewhat better results.

The functions commonly appearing in boosting such as,W1(t) = e−t , W2(t) =−2t + t2, W3(t) =
− log(1+ e−2t) satisfy condition P4 if P1 also holds. This is obvious forW2. ForW1 andW3, it is
clear that P4 holds, if P1 does, since otherwiseEW̃

(
YFm(X)

)
→ ∞. The conclusions of Theorem

2 continue to hold ifh ∈ H =⇒ |h| ≥ δ > 0 since then beloww′′(F ;h) = Eh2(X)W̃
(
F(X)

)
≥

δ2EW̃(F(X)) and P4 follows. Note that if|h| 6≡ 1 theλ optimization step requires multiplyingλ2

by Eh2(x).
We have,

Theorem 2 If H is a set of classifiers,(h2≡ 1) and AssumptionsP2– P5hold, then

Fm(X)
P−→F∞(X) ,

and the misclassification error, P
(
YFm(X)≤ 0

)
→ P[YF∞(X)≤ 0], the Bayes risk.

Proof Identify w(F) = EW
(
YF(X)

)
= EW̃

(
F(X)

)
. Then,

w′′(F,h) = Eh2(X)W̃′′
(
F(X)

)
= EW̃′′

(
F(X)

)

and (P4) can be identified with condition GS1 of Theorem 1. Thus,

EW̃
(
Fm(X)

)
→ EW̃(F∞(X)) .

Since,

EW̃
(
Fm(X)

)
−EW̃

(
F∞(X)

)
= E

(
(F∞−Fm)2

Z 1

0
W̃′′

(
(1−λ)(X)F∞(X)+λFm(X)

)
λdλ

)
→ 0 ,

the conclusion of Theorem 2 follows from (P4). The second assertion isimmediate.

3. Consistency of the Boosting Algorithm

In this section we study the Bayes consistency properties of the sample versions of the boosting
algorithms we considered in Section 2. In particular, we shall

(i) Show that under mild additional conditions, there will exist a random sequencemn→∞ such

thatF̂mn

P−→F∞, whereF̂m is defined below as themth sample iterate, and moreover, that such
a sequence can be determined using the data.

(ii) Comment on the relationship of this result to optimization for penalized versions ofW. The
difference is that the penalty forcesm< ∞ to be optimal while with us, cross-validation (or a
test bed sample) determines the stopping point. We shall see that the same dichotomy applies
later, when we “boost” using the method of sieves for nonparametric regression studied by
Barron, Birge and Massart (1999) and Baraud (2001).

710

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

3.1 The Golden Chain Argument

Here is a very general framework. This section is largely based on Bickel and Ritov (2003).
Let Θ1⊂Θ2⊂ . . . be a sequence of sets contained in a separable metric space,Θ = ∪Θm where

denotes closure. LetΠm : Θm→ 2Θm+1 be a sequence of point to set mappings. LetK be a target
function, andϑ∞ = argminϑ∈Θ K(ϑ). Finally, let K̂n be a sample based approximation ofK. We
assume:

G1. K : Θ→ R is strictly convex, with a unique minimizerϑ∞.

Our result is applicable to loosely defined algorithms. In particular we want tobe able to con-
sider the result of the algorithm applied to the data as if it were generated by arandom algorithm
applied to the population. We need therefore, the following definitions. LetS (ϑ0,α) be the set of
all sequences̄ϑm∈Θm, m= 0,1, . . . with ϑ̄0 = ϑ0 and satisfying:

ϑ̄m+1 ∈Πm(ϑ̄m)

K(ϑ̄m+1)≤ α inf
ϑ∈Πm(ϑ̄m)

K(ϑ)+(1−α)K(ϑ̄m).

The resemblance to Gauss-Southwell Algorithm I and the boosting procedures is not accidental.
Suppose the following uniform convergence criterion is satisifed:

G2. If {ϑ̄m} ∈ S (ϑ0,α) with any initial ϑ0, thenK(ϑ̄m)−K(ϑ̄m+1) ≥ ξ
(
K(ϑ̄m)−K(ϑ∞)

)
, for

ξ(·) > 0 strictly increasing, andK(ϑ̄m)−K(ϑ∞)≤ cm wherecm→ 0 uniformly overS (ϑ0,α).

In boosting, givenP, Θ = {F(X),F ∈ F̃ } with a metric of convergence in probability,Θm =
{∑m

j=1 λ jh j ,h j ∈ H }, Πm(F) = Π(F) = {F +λh,λ ∈ R,h∈ H }, andK(F) = EW
(
YF(X)

)
. Con-

dition G2, follows from the conclusion of Theorem 1.
Now supposêKn(·) is a sequence of random functions onΘ, empirical entities that resemble the

populationK. Let Ŝn(ϑ0,α′) be the set of all sequencesϑ̂0,n, ϑ̂1,n . . . , such that̂ϑ0,n = ϑ0, and

ϑ̂m+1,n ∈Πm(ϑ̂m,n)

K̂n(ϑ̂m+1,n)≤ α′min{K̂n(ϑ) : ϑ ∈Πm(ϑ̂m,n)}+(1−α′)K̂n(ϑ̂m,n).

We assume

G3. K̂n is convex, and for all integerm, sup{|K̂n(ϑ)−K(ϑ)| : ϑ ∈ Am} a.s.−→ 0 asn→ ∞, for a
sequenceAm⊂Θm such thatP(ϑ̂m,n ∈ Am)→ 1.

In boosting,K̂n(F) = n−1 ∑n
i=1W

(
YiF(Xi)

)
, K(F) = Ep

(
YF(X)

)

The sequence{ϑ̄m} is the golden chain we try to follow using the obscure information in the
sample.

We now state and prove,

Theorem 3 If assumptionsG1– G3hold, andα′ ∈ (0,1], then for any sequence{ϑ̂m,n} ∈ Ŝ (ϑ0,α′),
there exists a subsequence{m̂n} such that K(ϑ̂m̂n,n)

p−→ K(ϑ∞).

711

BICKEL , RITOV AND ZAKAI

Proof
Fix ϑ0 andα, α < α′. Let Mn→ ∞ be some sequence, and let ˆmn = argminm≤Mn

K(ϑ̂m,n). We

need to prove thatK(ϑ̂m̂n,n)
p−→ K(ϑ∞). We will prove this by contradiction. Suppose otherwise:

inf
m≤Mn

K(ϑ̂m,n)−K(ϑ∞)≥ c1 > 0, n∈ N (3)

whereN is unbounded with positive probability. Letεm,n≡ supϑ∈Am
|K(ϑ)− K̂n(ϑ)|. For any fixed

m, εm,n
a.s.−→ 0 by G3. Let

mn = argmax
{

m′ ≤Mn : ∀m≤m′, εm−1,n +2εm,n < (α′−α)ξ(c1) & ϑ̂m,n ∈ Am

}
.

Clearly,mn
p−→ ∞, and for anym≤mn, assuming (3):

K(ϑ̂m,n)≤ K̂n(ϑ̂m,n)+ εm,n

≤ α′ inf
ϑ∈Πm−1ϑ̂m−1

K̂n(ϑ)+(1−α′)K̂n(ϑ̂m−1,n)+ εm,n

≤ α′ inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α′)K(ϑ̂m−1,n)+ εm−1,n +2εm,n

= α inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α)K(ϑ̂m−1,n)

− (α′−α)
(
K(ϑ̂m−1,n)− inf

ϑ∈Πm−1ϑ̂m−1

K(ϑ)
)
+ εm−1,n +2εm,n

≤ α inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α)K(ϑ̂m−1,n)

− (α′−α)ξ
(

K(ϑ̂m,n)−K(ϑ∞)
)

+ εm−1,n +2εm,n

≤ α inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α)K(ϑ̂m−1,n)

− (α′−α)ξ
(

c1

)
+ εm−1,n +2εm,n

≤ α inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α)K(ϑ̂m−1,n) for all m≤mn .

Thus, there is a sequence{ϑ̄(n)
1 , ϑ̄(n)

2 , . . .} ∈ S (ϑ0,α), such that̄ϑ(n)
m = ϑ̂m,n, m≤mn. Hence, by

Assumption G2,K(ϑmn,n)≤ K(ϑ∞)+cmn, where{cm} is independent ofn, andcm→ 0. Therefore,
sincemn→ ∞, K(ϑ̂mn,n)→ K(ϑ∞), contradicting (3).

In fact we have proved that sequencesmn can be chosen in the following way involvingK.

Corollary 4 Let Mn be any sequence tending to∞. Let m̃n = argmin{K(ϑ̂m,n) : 1≤ m≤ Mn}.
Then, underG1– G3, ϑ̂m̃n

P−→ϑ∞.

To find ϑ̂m̂n,n which are totally determined by the data determiningK̂n, we need to add some in-
formation about the speed of convergence ofK̂n to K on the “sample” iterates. Specifically, suppose
we can determine, in advance,M∗n→ ∞, εn→ 0 such that,

P[sup{|K̂n(ϑ̂m,n)−K(ϑ̂m,n)| : 1≤m≤M∗n} ≥ εn]≤ εn .

712

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

Thenm̂n = argmin{K̂n(ϑ̂m,n) : 1≤m≤M∗n} yields an appropriatêϑm̂n sequence. We consider this
in Section 4. Before that we return to the application of the result of this section to boosting.

3.2 Back to Boosting

We return to boosting, where we considerΘm = {∑m
j=1 λ jh j : λ j ∈ R,h j ∈ H }, and thereforeΠm≡

Π, Π(ϑ) = {ϑ+λh,λ ∈R,h∈ H }. To simplify notation, for any functiona(X,Y), let Pna(X,Y) =
n−1 ∑n

i=1a(Xi ,Yi) andPa(X,Y) = Ea(X,Y). Finally, we identifyϑ̂m,n = ∑m
j=1 λ̂ j ĥ j = ∑m

j=1 λ̂ j,nĥ j,n.
We assume further

GA1. W(·) is of bounded variation on finite intervals.

GA2. H has finiteL1 bracketing entropy.

GA3. There are finitea1,a2, . . . such that supn ∑m
j=1 |λ̂ j,n| ≤ am with probability 1.

Theorem 5 Suppose the conclusion of Theorem 1 and ConditionsGA1–GA3 are satisfied, then
conditionsG2, G3are satisfied.

Proof Condition G2 follows from Theorem 1. It remains to prove the uniform convergence in
Condition G3. However, GA2 and GA3 imply thatF ≡ {F : F = ∑m

j=1 λ jh j ,h j ∈ H , |λ j | ≤M} has
finite L1 bracketing entropy. SinceW can be written as the difference of two monotone functions
{W(YF) : F ∈ F } inherits this property. The result follows from Bickel and Millar (1991), Propo-
sition 2.1.

4. Test Bed Stopping

Again we face the issue of data dependent and in some way optimal selection of m̂n. We claim
that this can be achieved over a wide range of possible rates of convergence ofEW

(
F̂m̂n(YX)

)
to

EW
(
F∞(YX)

)
by using a test bed sample to pick the estimator. The following general result plays a

key role.
Let B = Bn→ ∞, and let(X,Y),(X1,Y1), . . . ,(Xn+B,Yn+B) be i.i.d. P, X ∈ X , |Y| ≤ 1. Let

ϑ̂m : X → R, 1≤m≤mn be data dependent functions which depend only on(X1,Y1), . . . ,(Xn,Yn)
which are predictors ofY. Forg,g1,g2 : X ×R→ R, givenP, define

〈g1,g2〉∗ ≡
1
Bn

Bn

∑
b=1

g1(Xb+n,Yb+n)g2(Xb+n,Yb+n)

〈g1,g2〉P ≡ P
(
g1(X,Y)g2(X,Y)

)
=

Z

g1(x,y)g2(x,y)dP(x,y)

‖g‖2∗ ≡ 〈g1,g2〉∗
‖g‖2P ≡ 〈g1,g2〉P

Let,
τ = argmin{‖Y− ϑ̂m(X)‖2∗ : 1≤m≤Mn}

713

BICKEL , RITOV AND ZAKAI

andϑ̂τ be the selected predictor. Similarly, let

O = argmin{‖Y− ϑ̂m(X)‖2P : 1≤m≤Mn}

andϑ̂O be the corresponding predictor.
That is,ϑ̂O (X,Y) is the predictor an “oracle” knowingP and(Xi ,Yi), 1≤ i ≤ n would pick from

ϑ̂1, . . . , ϑ̂Mn to minimize squared error loss. LetϑO (X)≡ EP(Y|X), the Bayes predictor. LetP be a
set of probabilities andrn≡ sup{EP‖ϑ̂O −ϑO ‖2P : P∈ P }.

The following result is due to Gÿorfi et al. (2002) (Theorem 7.1), although there it is stated in
the form of an oracle inequality. We need the following condition:

C. Bnrn/ logMn→ ∞.

Theorem 6 (Györfi et al.) Suppose conditionC is satisfied, and|Y| ≤ 1, ‖ϑ̂m‖∞ ≤ 1. Then,

sup{
∣∣EP(Y− ϑ̂τ)

2−EP(Y− ϑ̂O)2
∣∣ : P∈ P }= o(rn).

ConditionC very simply asks that the test sample sizeBn be large only: (i) In terms ofrn, the
minimax rate of convergence; (ii) In terms of the logarithm of the number of procedures being
studied. If |Y| ≤ 1, there is no loss in requiring‖ϑ̂m‖∞ ≤ 1, since we could also replacêϑm by
its truncation at±1, minimizing theL2 cross validated test set risk. Along similar lines, using
sgn(ϑ̂m) is equivalent to cross validating the probability of misclassification for these rules, since if
ϑ̂m,Y ∈ {−1,1}, E(Y− ϑ̂m)2 = 4P(ϑ̂m 6= Y).

As we shall see in Section 6, typicallyrn = n−1+δ, andMn is at most polynomial inn. If n/Bn

is slowly varying, we can check that the conditions hold. Essentially we can only not deal withrn

of ordern−1 logn.

5. Algorithmic Speed of Convergence

We consider now the time it takes the sample algorithm to convergence. The fact that the algorithm
converges follows from Theorem 1. We show in this section that in fact thealgorithm perfectly
separates the data (perfect separationis achieved whenYiFm(xi) > 0 for all i = 1, . . . ,n) after no
more thanc1n2 steps. Perfect separation is equivalent to empirical misclassification error 0.

The randomness considered in this section comes only from theYi , while the design points are
considered fixed. We denote them, therefore, by lower casex1, . . . ,xn. We consider the following
assumptions:

O1. W has regular growth in the sense thatW′′ < κ(W +1) for someκ < ∞. Assume, wlog, that
W(0) =−W′(0) = 1.

O2. Supposex1, . . . ,xn are all different Then the points can be finitely isolated byH in the sense
that there isk and positiveα1, . . . ,αk such that for everyi there areh1, . . . ,hk ∈ H such that
∑k

j=1 α jh j(xs) = 1 if s = i, and 0 otherwise. Assume further, as usual, that ifh ∈ H then
h2≡ 1 and−h∈ H .

Condition O1 is satisfied by all the loss functions mentioned in the introduction. Condition O2
is satisfied, for example by stumps, trees, and anyH whose span includes indicators of small sets
with arbitrary location. In particular, ifxi ∈R, x1 < x2 < · · ·< xn, andH = {sgn(·−x),x∈R}, we
can then takeα1 = α2 = 1, h1(·) = sgn

(
·− (xi−1 +xi)/2

)
, andh2(·) =−sgn

(
·− (xi +xi+1)/2

)

714

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

Theorem 7 Suppose assumptionsO1andO2are satisfied and the algorithm starts with F0(0) = 0.
If YiFm(xi) < 0 for at least one i, then

1
n

n

∑
i=1

W
(
YiFm(xi)

)
− 1

n

n

∑
i=1

W
(
YiFm+1(xi)

)
≥ 1

2κ
(
n∑k

j=1 α j
)2 .

Hence, the boosting algorithm perfectly separates the data after at most2κ(n∑k
j=1 |α j |)2 steps.

Proof Let, for i such thatYiFm(xi) < 0,

fm(λ;h) = n−1
n

∑
s=1

W
(
Yi

(
Fm(xs)+λh(xs)

))
,

and f ′m(0;h) = d fm(λ;h)/dλ
∣∣
λ=0. Considerh1, . . . ,hk as in assumption O2. Replaceh j by −h j if

necessary to ensure thatYi ∑k
j=1 α jh j(xs) = δsi. Then

k

∑
j=1

α j f ′m(0;h j) = n−1
k

∑
j=1

α j

n

∑
s=1

W′
(
YiFm(xs)

)
Yih j(xs)

= n−1W′
(
YiFm(xi)

)
.

Hence

inf
h∈H

f ′m(0;h)≤ 1

n∑k
j=1 α j

min
i

W′(YiFm(xi))≤
W′(0)

n∑k
j=1 α j

=
−1

n∑k
j=1 α j

, (4)

sinceYiFm(xi) < 0 for at least onei.
Let h̄ be the minimizer off ′m(0,h). Note that in particularf ′m(0;h̄) < 0. The functionfm(·; h̄) is

convex, hence it is decreasing in some neighborhood of 0. Denote byλ̄ its minimizer. Consider the
Taylor expansion:

fm(λ̄; h̄) = fm(0;h̄)+ λ̄ f ′m(0;h̄)+
λ̄2

2n

n

∑
s=1

W′′
(
Yi

(
Fm(xs)+ λ̃(λ)h̄(xs)

))

= fm(0;h̄)+ inf
λ

{
λ f ′m(0;h̄)+

λ2

2n

n

∑
s=1

W′′
(
Yi

(
Fm(xs)+ λ̃(λ)h̄(xs)

))}

wherẽλ(λ) lies between 0 and̄λ. By condition 01,

inf
λ

{
λ f ′m(0;h̄)+

λ2

2n

n

∑
s=1

W′′
(
Yi

(
Fm(xs)+ λ̃(λ)h̄(xs)

))}

≤ inf
λ
{λ f ′m(0;h̄)+

λ2κ
4n

n

∑
s=1

W
(
Yi

(
Fm(xs)+ λ̃(λ)h̄(xs)

))
+

λ2κ
4

}

≤ inf
λ
{λ f ′m(0;h̄)+

λ2κ
2
}

(5)

715

BICKEL , RITOV AND ZAKAI

because1
n ∑n

s=1W(Yi(Fm(xs) + λ̃(λ)h̄(xs)) ≤ 1
n ∑n

s=1W(YiFm(xs)) ≤W(0) = 1 sinceλ̄ minimizes

fm(λ; h̄) on [0, λ̄], λ̃ is an intermediate point, andF0 ≡ 0. Combining (4) and (5) and the mini-
mizing property of̄h,

fm(λ̄; h̄)≤ fm(0;h̄)−
(

f ′m(0;h̄)
)2

2κ

≤ fm(0;h̄)− 1

2κ(n∑k
j=1 α j)2

.

The second statement of the theorem follows because the initial value ofn−1 ∑n
i=1W

(
YiF0(xi)

)
is

1, and the value would fall below 0 after at mostm = 2κ(n∑k
j=1 α j)

2 steps in which at least one
observation is not classified correctly. Since the value is necessarily positive, we conclude that all
observations would be classified correctly before themth step.

6. Achieving Rates with Sieve Boosting

We propose a regularization ofL2 boosting which we view as being in the spirit of the original
proposal, but, unlike it, can be shown for, suitableH , to achieve minimax rates for estimation
of E(Y|X) under quadratic loss forP for which E(Y|X) is assumed to belong to a compact set
of functions such as a ball in Besov space ifX ∈ R or to appropriate such subsets of spaces of
smooth functions inX ∈ R

d—see, for example, the classesF of Györfi et al. (2003). In fact,
they are adaptive in the sense of Donoho et al (1995) for scales of such spaces. We note that
Bühlmann and Yu (2003) have introduced a version ofL2 boosting which achieves minimax rates
for Sobolev classes onR adaptively already. However, their construction is in a different spirit
than that of most boosting papers. They start out withH consisting of one extremely smooth and
complex function and show that boosting reduces bias (roughness of thefunction) while necessarily
increasing variance. Early stopping is still necessary and they show it can achieve minimax rates.

It follows, using a result of Yang (1999) that our rule is adaptive minimax for classification loss
for some of the classes we have mentioned as well. Unfortunately, as pointedout by Tsybakov
(2001), the sets{x : |FB(x)| ≤ ε} can behave very badly asε ↓ 0, no matter how smoothFB, the
misclassification Bayes rule, is, so that these results are not as indicative as we would like them
to be. In a recent paper, Bartlett, Jordan, and McAuliffe (2003) considered minimization of the
W empirical riskn−1 ∑n

i=1W(YiF(Xi)), for fairly general convexW, over sets of the formF =
{F = ∑m

j=1 α jh j , h j ∈ H , ∑m
j=1 |α j | ≤ αn, (for some representation ofF)}. They obtained oracle

inequalities relatingEW(YF̂(X)) for F̂j the empirical minimizer overF j to the empiricalW risk
minimum. They then proceeded to show using conditions related to Tsybakov’s(A1) above how to
relate the misclassification regret ofF̂ j , given by〈P[YF̂j(X) < 0]−P[YFB(X) < 0]〉 to 〈EpW(YF̂j)−
EpW(YF∗B)〉, theW regret whereF∗B is the Bayes rule forW. Using these results (Theorems 3 and
10) they were able to establish oracle inequalities forF̂j under misclassification loss. Manor, Meir,
and Zhang (2004) considered the same problem, but focused their analysis mainly onL2 boosting.
They obtained an oracle inequality similar to that of Bartlett et al. regularizing by permitting step
sizes which are only a fractionβ < 1 of the step size declared optimal by Gauss-Southwell. They
went further by obtaining near minimax results on suitable sets.

716

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

We also limit our results toL2 boosting, although we believe this limitation is primarily due to
the lack of minimax theorems for prediction when other losses thanL2 are considered. We use yet a
different regularization method in what follows. We show in Theorem 8 ourvariant ofL2 boosting
achieves minimax rates for estimatingE(Y|X) in a wide class of situations. Boosting up to a simple
data-determined cutoff in each sieve level of a model, and then cross-validating to choose between
sieve levels, we can obtain results equivalent to those in which full optimizationusing penalties are
used, such as Theorem 2.1 of Baraud (2000) and results of Baron, Birgé, Massart (1999). Then,
in Theorem 9, we show, using inequalities related to ones of Tsybakov (2001), Zhang (2004) and
Bartlett et al. (2003), that the rules we propose are also minimax for 0–1 loss in suitable spaces.

6.1 The Rule

Our regularization requires thatH ≡ H (∞) = ∪m≥1H (m) whereH (m) are finite sets with certain
properties. For instance, ifH consists of the stumps in[0,1],H = {Fy(·) : Fy(x) = sgn(x−y), x,y∈
[0,1]} we can takeH (m) = {Fy(·) : y a dyadic number of orderk, y = j

2k , 0≤ j ≤ 2k}. Essentially,

we construct a sieve approximatingH . Let F (m) be the linear span ofH (m). Evidently F =

∪m≥1F (m). Let |H (m)| ≡Dm. Then, dim(F (m)) = Dm. We now describe our proposed regularization
of L2 boosting.

We use the following notation of Section 4, and begin with a glossary and conditions. Let
(X1,Y1), . . . ,(Xn,Yn),(X,Y) i.i.d. with

(X,Y) ∼ P << µ, P∈ P , X ≡ (X1, . . . ,Xn), Y ≡ (Y1, . . . ,Yn) .

Y ∈ {−1,1}
‖ f‖2µ ≡

Z

f 2 dµ

‖ f‖2n ≡ 1
n

n

∑
i=1

f 2(Xi ,Yi)

‖ f‖∞ = sup
x,y
| f (x,y)|

FP(X) ≡ EP(Y|X)

F̂m(X) = argmin{‖t(X)−Y‖2n : t ∈ F (m)}
Fm(X) = argmin{‖t(X)−Y‖2P : t ∈ F (m)}

EX ≡ Conditional expectation givenX1, . . . ,Xn

Note that we will often suppressX,Y in v(X,Y,X,Y) and drop subscript toP.
Let F̂m,k, thekth iterate inFm, be defined as follows

F̂1,0 ≡ F0

F̂m+1,0 = F̂m,k̂(m)

F̂m,k+1 = F̂m,k + λ̂m,kĥm,km

where

(λ̂m,k, ĥm,k) ≡ argmin
λ∈R,h∈H (m)

{−2λPn(Y− F̂m,k)h+λ2Pn(h
2)}

k̂(m) = First k such that̂λ2
m,k ≤ ∆m,n,

717

BICKEL , RITOV AND ZAKAI

where∆m,n are constants. Let
F̃m = H(F̂m,k̂(m))

where

H(x) =

{
x if |x| ≤ 1

sgn(x) if |x|> 1
(6)

Note that we have suppressed dependence onn here, indicating it only by the “hats”. Let,

m̂= argmin{‖Y− F̃m(x)‖∗ : m≤Mn}

where

‖ f‖2∗ =
1
B

n+B

∑
i=n+1

f 2(Xi ,Yi), and we takeB = Bn =
n

logn
.

The rule we propose is:̂δ = sgn(ˆ̂F), where

ˆ̂F ≡ H(Fm̂,k̂(m̂)) . (7)

Note: We show at the end of the Appendix (Proof of Lemma 10) that for waveletH we take at most
Cnlogn steps total in this algorithm.

6.2 Conditions and Results

We useC as a generic constant throughout, possibly changing from line to line but not depending
on m, n, or P. Lemma 6.3 and the condition we give are essentially due to Baraud (2001). Let µ be
a sigma finite measure onH and‖ f‖µ be theL2(µ) norm.

R1. If H (m) = {hm,1, . . . ,hm,Dm} and fm, j ≡ hm, j/‖hm, j‖µ, then{ fm, j}, j ≥ 1 is an orthonormal
basis ofF (m) in L2(µ) such that:

(i) ‖ fm, j‖∞ ≤C∞D
1
2
m for all j, where‖ f‖∞ = sup

x
| f (x)| .

(ii) There exists anL such that for allm, j, j ′,
fm, j fm, j ′ = 0 if | j− j ′| ≥ L.

R2. There existsε = ε(P) > 0 such that,ε≤ dP
dµ ≤ ε−1 for all P∈ P .

R3. supP∈P ‖FP−Fm‖2P≤CD−β
m for all m, β > 1.

R4. Mn≤ DMn ≤ n
(logn))p for somep > 1.

Condition R1 is needed to conclude that we can bound the behavior of theL∞ norm onF (m) by
that of theL2 norm forµ. Condition R2 simply ensures that we can do so forP∈ P as well. The
membersfm, j of the basis ofF (m) must have compact support. It is well known that ifHm consists
of scaled wavelets (in any dimension) then R1 holds. Clearly, if sayµ is Lebesgue measure on an
hypercube then to satisfy R2P can consist only of densities bounded from above and away from
0. Condition R3 gives the minimum approximation error incurred by using an estimateF based

718

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

onF (m), and thus limits our choice ofH . Finally, R4 links the oracle error for these sequences of
procedures to the number of candidate procedures.

Let
rn(P) = inf{EP‖F̂m−FP‖2P : 1≤m≤Mn}, rn≡ sup

P∈P
rn(P).

Thus,rn is the minimax regret for an oracle knowingP but restricted toF̂m. We use the notation
an≍ bn for a shortcut foran = O(bn) andbn = O(an), We have

Theorem 8 Suppose thatP andF satisfyR1–R4 and thatH is a VC class. If∆m,n = O(Dm/n),
then,

sup
P

EP‖ ˆ̂F(X)−FP(X)‖2P≍ rn . (8)

Thus, ˆ̂F given by (7) is rate minimax.

Theorem 9 Suppose the assumptions of Theorem 8 hold andP0 = P ∩{P : P
(
|FP(X)| ≤ t

)
≤ ctα},

α≥ 0. Let∆n(F,P) be the Bayes classification regret for P,

∆n(F,P)≡ P
(
YF(X) < 0

)
−P

(
YFP(X) < 0

)
. (9)

Then,

sup
P0

∆n(
ˆ̂F,P)≍ r

α+1
α+2
n . (10)

The conditionP[|FP(x)| ≤ t]≤ ctα, someα≥ 0, t sufficiently small appears in Proposition 1 of
Tsybakov (2001) as sufficient for his condition (A1) which is studied byboth Bartlett et al. (2003)
and Mammen and Tsybakov (1999).

The proof of Theorem 9 uses 2 lemmas of interest which we now state. Theirproofs are in the
Appendix.

We study the algorithm onFm. For any positive definite matrixΣ define the condition num-
ber γ(Σ) ≡ λmax(Σ)

λmin(Σ) , whereλmax, λmin are the largest and smallest eigenvalues ofΣ. Let Gm(P) =

‖Ep fm,i(X) fm, j(X)‖ be theDm×Dm Gram matrix of the basis{ fm,1, . . . , fm,Dm}.

Lemma 10 UnderR1 andR2,

a) γ(Gm(P))≤ ε−2, whereε is as inR2.

b) Let Gm(Pn) be the empirical Gram matrix̂γm≡ γ(Gm(Pn)). Then, if in addition toR1 and
R2, H is a VC class, P[γ(Ĝm) ≥ C1] ≤ C2exp{−C3n/L2Dm} for all m≤ Mn for such that
Dm≤ n/(logn)p for p > 1.

c) If H is a VC class, P[‖F̂m,k̂(m)− F̂m‖k ≤CDm
n] = 1−O(1

n) The C and 0 terms are determed
solely by the constants appearing in the R conditions.

Lemma 11 SupposeR1, R2, andR4hold. Then,

EP(F̃m−FP)2≤C{EP(Fm−FP)2 +
Dm

n
+EP(F̃m− F̂m)2}.

This “oracle inequality” is key for what follows.

719

BICKEL , RITOV AND ZAKAI

Proof of Theorem 9

P
(
YF(x) < 0

)
=

1
2

EP

(
1(F(X) > 0)

(
1−FP(X)

))
+

1
2

EP

(
1(F(X) < 0)

(
1+FP(X)

))
.

Hence for allε > 0,

∆n(F,P) = EP

(
1
(
F(X) < 0,FP(X) > 0

)
FP(X)−1

(
F(X) > 0,FP(X) < 0

)
FP(X)

)

= EP

(
|FP(X)|1(FP(X)F(X) < 0)

)

≤ EP

(∣∣F(X)−FP(X)
∣∣1(FPF(X) < 0, |FP(X)|> ε)

)
+ εP

(
|FP(X)| ≤ ε

)

≤ 1
ε

EP
(
F(X)−FP(X)

)2
+cεα+1

by assumption. The theorem follows.

6.3 Discussion

1) If X ∈ R andH (m) consists of stumps with the discontinuity at a dyadic rationalj/2m, then
F (m) is the linear space of Haar wavelets of orderm. This is also true ifHm is the space
of differences of two such dyadic stumps. More generally, ifH consists of suitably scaled
wavelets, so that|h| ≤ 1, based on the dyadic rationals of orderm, themF (m) is the linear
space spanned by the first 2m elements of the wavelet series. A slight extension of results
of Baraud (2001) yields that if we run the algorithm to the limitk = ∞ for eachm rather
than stopping as we indicate, the resultingF̂m obey the oracle inequality of Lemma 11 with
∆m,n = 0.

Suppose thatX ∈ R andF∞ ranges over a ball in an approximation space such as Sobolev
or, more generally, Besov. Then, ifF (m) has the appropriate approximation properties, e.g.,
wavelets as smooth as the functions in the specified space, it follows from Baraud (2001) that
we can use penalties not dependent on the data to pickF̂m̂ such that,

max
F̂

EP

(
F̂m̂(X)−EP(Y|X)

)2
≍min

F̂
max

{
EP

(
F̂(X)−EP(Y|X)

)2
: EP(Y|X) ∈ F

}

≍ n−1+εΩ(n)

whereΩ(n) is slowly varying and 0< ε < 1. HereF̂ ranges over all estimators based only
on the data and not onP. The same type of result has been established for more specialized
models withX ∈ R

d by Baron, Birǵe, Massart (1999), and others, see Györfi et al. (2003).

The resulting minimax risk,

min
F̂

max{EP
(
F̂(X)−EP(Y|X)

)2
: EP(Y|X) ∈ F }

is always of ordern−1+εΩ(n) whereΩ(n) is typically constant and 0< ε < 1.

What we show in Theorem 8 is that if, rather than optimizing all the way for each m, we stop
in a natural fashion and cross validate as we have indicated, then we can achieve the optimal
order as well.

720

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

2) “Stumps” unfortunately do not satisfy condition R1 withµ Lebesgue measure. Their Gram
matrices are too close to being singular. But differences of stumps work.

3) It follows from the results of Yang (1999) that the rate of Theorem 9 for α = 0, that is, if
P0 = P , is best possible for Sobolev balls and the other spaces we have mentioned.

Tsybakov implicitly defines a class ofFP for which he is able to specify classification minimax
rates. Specifically letX ∈ [0,1]d and letb(x1, . . . ,xd−1) be a function having continuous
partial derivatives up to orderℓ. Let pb,x(·) be the Taylor polynomial or orderℓ obtained
from expandingb at x. Then, he definesΣ(l ,L) to be the class of all suchb for which,
|b(y)−pb,x(y)| ≤ L|y−x|ℓ for all x,y∈ [0,1]d−1. Evidently ifb has bounded partial derivatives
of orderℓ+1, b∈ Σ(ℓ,L), for someL. Now let

P ℓ = {P : FP(x) = xd−b(x1, . . . ,xd−1),

P[|FP(x)| ≤ t]≤Ct, for all 0≤ t ≤ 1,b∈ Σ(ℓ,L)}

Tsybakov following Mammen and Tsybakov (1999) shows that the classification minimax
regret forP (Theorem 2 of Tsybakov (2001) forK = 2) is 2ℓ

3ℓ+(d−1) . On the other hand, if we
assume thatY = FP(x)+ ε whereε is independent ofX, bounded andE(ε) = 0, then theL2

minimax regret rate is 2ℓ/(2ℓ+(d−1)) – see Birǵe and Massart (1999) Sections 4.1.1 and
Theorem 9. Our theorem 9 now yields a classification minimax regret rate of

2
3
· 2ℓ

2ℓ+(d−1)
=

2ℓ

3ℓ+ 3
2(d−1)

which is slightly worse than what can be achieved using Tsybakov’s not as readily computable
procedures. However, note that asℓ→ ∞ so thatFP and the boundary become arbitrarily
smooth,L2 boosting approaches the best possible rate forP ℓ of 2

3. Similar remarks can be
made about 0< α≤ 1.

7. Conclusions

In this paper we presented different mathematical aspects of boosting. Weconsider the obser-
vations as an i.i.d. sample from a population (i.e., a distribution). The boosting algorithm is a
Gauss-Southwell minimization of a classification loss function (which typically dominates the 0-1
misclassification loss). We show that the output of the boosting algorithm follows the theoretical
path as if it were applied to the true distribution of the population. Since early stopping is possible
as argued, the algorithm, supplied with an appropriate stopping rule, is consistent.

However, there are no simple rate results other than those of Bühlmann and Yu (2003), which
we discuss, for the convergence of the boosting classifier to the Bayes classifier. We showed that
rate results can be obtained when the boosting algorithm is modified to a cautiousversion, in which
at each step the boosting is done only over a small set of permitted directions.

Acknowledgments

We would like to acknowledge support for this project from the National Science Foundation (NSF
grant DMS-0104075), and the Israel Science Foundation (ISF grant 793/03).

721

BICKEL , RITOV AND ZAKAI

Appendix A. Proof of Theorem 1:

Let w0 = inf f∈F∞ w(f). Let f ∗k = ∑mαkmhkm, hk,m∈H , ∑m|αkm|< ∞, k= 0,1,2, . . . be any member
of F∞ such that (i) f ∗0 = f0; (ii) w(f ∗k)ց w0 is strictly decreasing sequence; (iii) The following
condition is satisfied:

w(f ∗k)≥ αw0 +(1−α)w(f ∗k−1)+(1−α)(νk−1−νk), (11)

whereνk ց 0 is a strictly decreasing real sequence. The construction of the sequence { f ∗k } is
possible since, by assumption,F∞ is dense in the image ofw(·). That is, we can start with the
sequence{w(f ∗k)}, and then look for suitable{ f ∗k }. Here is a possible construction. Letc andη
be suitable small number. Letγ = (1−α)(1+2η)/(1−η), νk = cηγk/(1− γ). Select nowf ∗k such
w0+c(1−η)γk≤w(f ∗k)≤w0+c(1+η)γk. (η should be small enough such thatγ < 1 andc should
selected such thatw(f ∗1) < w(f0).) Our argument rests on the following,

Lemma 12 There is a sequence mk→ ∞ such that w(fm) ≤ w(f ∗k)+ νk for m≥ mk, k = 1,2, . . . ,
and mk ≤ ζk(mk−1) < ∞, whereζk(·) is a monotone non-decreasing functions which depends only
on the sequences{νk} and{ f ∗k }.

Proof of Lemma 12:
We will use the following notation. Forf ∈ F∞ let ‖ f‖∗ = inf{∑ |γi |, f = ∑γihi , hi ∈ H }.
Recall that by definitionw(f0) = w(f ∗0). Our argument proceeds as follows, We will inductively

definemk satisfying the conclusion of the lemma, and make, ifεk,m≡ w(fm)−w(f ∗k),

εk,m≤ ck,m≡max
{

νk,

√
512B

α2βk

w(f ∗k−1)−w0
(

log
(

1+
8(w(f ∗k−1)−w0)

αβk(τk+ρkmk−1)
(m−mk−1 +1)

))1/2

}
,

(12)

where

βk = inf {w′′(f ;h) : w0 +νk ≤ w(f)≤ w(f0), h∈ H }

B = sup{w′′(f ;h) : w(f)≤ w(fo), h∈ H }< ∞.

(13)

and

τk = 2‖ f0− f ∗k ‖2∗
ρk =

16
αβk

(
w(f0)−w0

)
.

(14)

Having definedmk we establish (12) as part of our induction hypothesis formk−1 < m≤ mk. We
begin by choosingm= m1 = 1 so that (12) holds form= M−1 = 1. We do do this by choosing
ν0 > 0, sufficiently small. Having established the induction form≤mk−1 we definemk as follows.
Write now the RHS of (12) asg(mk−1), where

g(ν)≡max
{

νk,

√
512B

α2βk

w(f ∗k−1)−w0
(

log
(

1+
8(w(f ∗k−1)−w0)

αβk(τk+ρkν (m−ν+1)
))1/2

}
,

722

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

We can now pickζk(ν)≡max
{

ν+1,min{m : g(ν)≤ νk}
}

, and definemk = ζk(νk−1).
Note that{βk}, {τk}, {ρk}, andB depend only the sequences{ f ∗k } and{νk}. We now proceed

to establish (12). formk−1 < m≤mk. Note first that sinceεk,m as a function ofm is non-increasing,
(12) holds trivially form′ > m if εk,m≤ 0. By induction (12) holds form≤mk−1, and my hold for
somem> mk−1. Recall that the definition of the algorithm relates the actual gain at themth to the
maximal gain achieved in this step given the previous steps, see its definition (1). Suppose

inf
λ

w(fm+λhm)≤ w0 +νk. (15)

Then

w(fm+1)≤ α inf
λ

w(fm+λhm)+(1−α)w(fm), by (1)

≤ α(w0 +νk)+(1−α)w(fm), by (15)

≤ α(w0 +νk)+(1−α)
(
w(f ∗k−1)+νk−1

)
, by the outer induction, sincem≥mk−1

≤ α(w0 +νk)+
(
w(f ∗k)−αw0 +(1−α)νk

)
, by (11)

= w(f ∗k)+νk,

so thatεk,m+1 ≤ νk. Therefore,m′k is not larger thanm+ 1, that isεk,m′ ≤ νk for m′ > m then (12)
holds trivially for m′ > m, and hence, by the second induction assumption for allm. We have
established (12) save formsuch that,

inf
λ

w(fm+λhm) > w0 +νk andεk,m≥ 0. (16)

We now deal with this case.
Note first that by convexity,

|w′(fm; fm− f ∗k)| ≥ w(fm)−w(f ∗k)≡ εk,m. (17)

We obtain from (17) and the linearity of the derivative that, iffm− f ∗k = ∑γi h̃i ∈ F∞,

εk,m≤
∣∣∣∣∑−γiw

′(fm; h̃i)

∣∣∣∣≤ sup
h∈H
|w′(fm;h)|∑ |γi | .

Hence

sup
h∈H
|w′(fm;h)| ≥ εk,m

‖ fm− f ∗k ‖∗
. (18)

Now, if fm+1 = fm+λmhm then,

w(fm+λmhm) = w(fm)+λmw′(fm;hm)+
1
2

λ2
mw′′(f̃m;hm), λ ∈ [0,λm]. (19)

where f̃m = fm+ λ̃mhm and 0≤ λ̃m≤ λm. By convexity, for 0≤ λ≤ λm,

w(fm+λhm) = w(fm(1− λ
λm

)+
λ

λm
fm+1)≤max{w(fm),w(fm+1)}= w(fm)≤ w(f1).

723

BICKEL , RITOV AND ZAKAI

We obtain from Assumption GS1 thatw′′(f̃m;h) ∈ (βk,B) given in (13). But then we conclude from
(19) that,

w(fm+λmhm)≥ w(fm)+ inf
λ∈R

(
λw′(fm;hm)+

1
2

λ2βk
)

= w(fm)− |w
′(fm;hm)|2

2βk
.

(20)

Note thatw(fm+λh) = w(fm)+λw′(fm,h)+λ2w′′(fm+λ′h,h)/2 for someλ′ ∈ [0,λ], and ifw(fm+
λh) is close to infλ,hw(fm+λ,h) then by convexity,w(fm+λ′h)≤w(fm)≤w(f0). We obtain from
the upper bound onw′′ we obtain:

w(fm+λmhm)≤ α inf
λ∈R,h∈H

w(fm+λh)+(1−α)w(fm), by definition,

≤ α inf
λ∈R,h∈H

(w(fm)+λw′(fm;h)+
1
2

λ2B)+(1−α)w(fm)

= w(fm)− αsuph∈H |w′(fm;h)|2
2B

,

(21)

by minimizing overλ. Hence combining (20) and (21) we obtain,

|w′(fm;hm)| ≥ α sup
h∈H
|w′(fm;h)|

√
βk

B
(22)

By (21) for the LHS and convexity for the RHS:

αsuph∈H |w′(fm;h)|2
2B

≤ w(fm)−w(fm+1)≤−λmw′(fm;hm)

Hence

|λm| ≥
αsuph∈H |w′(fm;h)|

2B
.

Applying (18) we obtain:

|λm| ≥
α
2B

εk,m

lk,m
, (23)

wherelk.m≡ ‖ fm− f ∗k ‖∗.
Let λ0

m be the minimal point ofw(fm+λhm). Taylor expansion around that point and using the
lower bound on the curvature:

w(fm+λhm)≥ w(fm+λ0
mhm)+

1
2

βk(λ−λ0
m)2 (24)

Hence

λ0
m

2≤ 2
βk

(
w(fm)−w(fm+λ0

mhm)
)

≤ 2
αβk

(
w(fm)−w(fm+1)

)
,

(25)

724

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

where the RHS follows (1). Similarly

(λm−λ0
m)2≤ 2

βk

(
w(fm+1)−w(fm+λ0

mhm)
)

≤ 2(1−α)

αβk

(
w(fm)−w(fm+1)

) (26)

Combining (25) and (26):

λ2
m≤

8
αβk

(
w(fm)−w(fm+1)

)
. (27)

Sinceεk,m≥ 0 by assumption (16), we conclude from (27) that,

m

∑
i=mk−1

λ2
i ≤

8
αβk

(w(f ∗k−1)−w0). (28)

However, by definition,

lk,m+1≤ lk,m+ |λm|

≤ lk +
m

∑
i=mk−1

|λi |

≤ lk +(m+1−mk−1)
1/2

(m

∑
i=mk−1

λ2
i

)1/2

(29)

by Cauchy-Schwarz, where, similarly,

lk = lk,mk−1 = ‖ fmk−1− f ∗k ‖∗
≤ ‖ f0− f ∗k ‖∗+‖ fmk−1− f0‖∗

≤ ‖ f0− f ∗k ‖∗+
mk−1−1

∑
m=0

|λm|

≤ ‖ f0− f ∗k ‖∗+m1/2
k−1

√√√√
mk−1−1

∑
m=0

λ2
m

≤ ‖ f0− f ∗k ‖∗+
√

8mk−1

αβk

√
w(f0)−w(fmk−1), by (27)

≤ ‖ f0− f ∗k ‖∗+
√

8mk−1

αβk

√
w(f0)−w0

≤
√

τk +ρkmk−1, as defined in (14).

(30)

725

BICKEL , RITOV AND ZAKAI

Together, (23), (28), and (29) yield:

8
αβk

(w(f ∗k−1)−w0)≥
m

∑
i=mk−1

λ2
i

≥ α2

4B2

m

∑
i=mk−1

ε2
k,i

l2
k,i

≥ α2

4B2

m

∑
i=mk−1

ε2
k,i

(lk +(8(w(f ∗k−1)−w0)/αβk)1/2(i−mk−1)1/2)2

(31)

Further, sinceεk,m are decreasing by construction and positive by assumption (16), we cansimplify
the sum on the RHS of (31):

m

∑
i=mk−1

ε2
k,i

(lk +(8(w(f ∗k−1)−w0)/αβk)1/2(i−mk−1)1/2)2

≥
ε2

k,m

2

m−mk−1

∑
i=0

1

l2
k +8i(w(f ∗k−1)−w0)/αβk

.

(32)

Using the inequality,

m−mk−1

∑
i=0

1
a+bi

≥
Z m−mk−1+1

0

1
a+bt

dt =
1
b

log
(

1+
b
a
(m−mk−1 +1)

)

on the RHS of (32), we obtain from (31) and (32) that (12) holds, for the case (16). This establishes
(16) for allk andm.

Proof of Theorem 1: Since the lemma established the existence of monotoneζk’s, it followed
from the definition of these function thatw(fm)≤w(f ∗k(m)) wherek(m) = sup{k : ζ(k)(f ∗0)≤m} and

ζ(k) = ζk ◦ · · · ◦ ζ1 is thekth iterate of theζs. Sinceζ(k)(f ∗0) < ∞ for all k, we have established the
uniform rate of convergence and can define the sequence{cm}, wherecm = w(f ∗k(m))−w0.

We now prove the uniform step improvement claim of the theorem and identify asuitable func-
tion ξ(·). From (26) and (23) ifεk,m≥ 0

w(fm)−w(fm+1)≥
αβk

2
λ2

m≥
αβk

2

(
α
2B

εk,m

lk,m

)2

, (33)

Boundlk,m similarly to (30) by

lk,m≤ lk,1 +m1/2
(m

∑
i=1

λ2
i

)2
≤ lk,1 +

√
8m
αβk

(w(f0)−w0). (34)

Let m∗(v) = inf{m′ : cm′ ≤ v−w0}, which is well defined sincecm→ 0. Thus, any realization of the
algorithm will cross thev line on or before step numberm∗(v). In particular,m≤ m∗

(
w(fm)

)
for

726

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

anym and any realization of the algorithm. We obtain therefore by plugging-in (34) in(33), using
them∗ as a bound onmand the identity(a+b)2≤ 2a2 +2b2 that:

w(fm)−w(fm+1)≥
α3βk

16B2

w(fm)−w(f ∗k)

l2
k,1 +8m∗

(
w(fm)

)(
w(f0)−wo

)
/αβk

,

as long asεk,m≥ 0. Taking the maximum of the RHS over the permitted range, yields a candidate
for theξ function:

ξ(w)≡ sup
k: w(f ∗k)≤w

{α3βk

16B2

w−w(f ∗k)

l2
k,1 +m∗

(
w

)(
w(f0)−wo

)
/αβk

}
.

This proves the theorem under GS1. Under GS2, the only inequality which we need to replace
is (20) since nowβk = 0 is possible. However the definition of Algorithm 2 ensures that we have a
coefficient of at leastγ on λ2 in (20). The theorem is proved.

Appendix B. Proof of Lemmas 10 and 11 and Theorem 8

Proof of Lemma 10Since by (R2)

λmax(Gm(P)) = sup
‖x‖=1

x′Gm(P)x

= sup
‖x‖=1

∑∑xix j

Z

fm,i fm,ddP

= sup
‖x‖=1

Z

(∑xi fm,i)
2dP

≤ ε−1 sup
‖x‖=1

Z

(∑xi fm,i)
2dµ= ε−1

λmax(Gm(P))≥ ε, similarly.

(35)

Part a) follows.
For any symmetric matrixM define its operator norm‖ · ‖T by λmax(M). For simplicity let

Gm = Gm(P) andĜm = Gm(Pn). Recall that for any symmetric matricesA and andM:

|λmax(A)−λmax(M)| ≤ ‖A−M‖T
|λmin(A)−λmin(M)| ≤ ‖A−M‖T .

Now,

P

[∣∣∣∣∣
λmax

(
Ĝm

)

λmin
(
Ĝm

) − λmax
(
Gm

)

λmin
(
Gm

)
∣∣∣∣∣≥ t

)

≤ P
(
‖Ĝm−Gm‖T >

ε
2

)
+P

(
‖Ĝm−Gm‖T ≥ t/(

1
ε

+
2
ε3)

) (36)

727

BICKEL , RITOV AND ZAKAI

Recall that for a banded matrixM of with band of width 2L,

‖M‖2T = sup
‖x‖=1

‖Mx‖2

= sup
‖x‖=1

∑
a

(
∑
b

Mabxb
)2

≤ sup
‖x‖=1

∑
a

∑
|b−a|<L

x2
bM2

∞

≤ 2LM2
∞ sup
‖x‖=1

∑
a

x2
a = 2LM2

∞,

where‖M‖∞ ≡maxa,b |Mab|. Since bothĜm andGm(P) are banded of widthd, say,

‖Ĝm−Gm‖T ≤ 2Lmax
{∣∣∣1

n

n

∑
i=1

(
fm,a fm,b)(Xi)−EP fm,a fm,b(Xi)

)∣∣∣ : |a−b|< L
}

. (37)

If H is a VC class, we can conclude from (35)–(37) that,

P[γ(Ĝm)≥C1]≤C2exp{−C3n/L2Dm} (38)

since by R1 (i),‖ fm‖∞ ≤C∞D
1
2
m. The constantsε, C1, C2 andC3 depend on the constants of the R

conditions only. This is a consequence of Theorem 2.14.16 p. 246 of vander Vaart and Wellner
(1996). This complete the proof of part b).

By a standard result for the Gauss-Southwell method, Luenberger (1984), page 229:

‖F̂m,k+1− F̂m‖2n≤
(

1− 1
γ̂mDm

)
‖F̂m,k− F̂m‖2n (39)

Hence

‖F̂m,k− F̂m‖2n−‖F̂m,k+1− F̂m‖2n≥
1

γ̂mDm
‖F̂m,k− F̂m‖2n

Thus, if
1
n
≥ ‖F̂m,k− F̂m‖2n−‖F̂m,k+1− F̂m‖2n

we obtain
‖F̂m,k− F̂m‖2n≤ Dmγ̂m/n. (40)

¿From (40) part (c) follows.

Note: Since

‖F̂m,k−1− F̂m‖2n−‖F̂m,k− F̂m‖2n ≥ C
n

(39) implies that
(

1− 1
γ̂mDm

)k̂(m)

≥ 1
n
.

Therefore:
k̂(m)≤ lognγ̂mDm .

If, for instance, as with waveletsDm = 2m,m≤ log2n we take at mostCnlogn steps total.

728

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

Lemma 13 :
If Ex denotes conditional expectation give n X1, . . . ,Xn, underR1and F≡ Fp,

Ex‖F̂m−Fm‖2n≤C(
Dm

n
+‖Fm−F‖2P) (41)

This is a standard type of result – see Barron, Birgé, Massart (1999). We include the proof for
completeness. Note that,

‖F̂m(X)−Y‖2n =
1
n

YT(I −P)Y

whereY ≡ (Y1, . . . ,Yn)
T and P is the projection matrix of dimension Dm onto the L space spanned

by
(
h j(X1), . . . ,h j(Xn)

)
, 1≤ j ≤ Dm. Then,(I −P)v = 0 for all v ∈ L. Hence,

EX‖F̂m(X)−Y‖2n =
1
n

EX
(
Y−Fm(X)

)T
(I −P)

(
Y−Fm(X)

)

whereFm(X) =
(
Fm(X1), . . . ,Fm(Xn)

)T
is the projection of(F(X1), . . . ,F(Xn))

T onto L. Note also
that,

‖F̂m−Fm‖2n = ‖Y−Fm(X)‖2n−‖Y− F̂m(X)‖2n
whereF̂(X) = (F̂m(X1), . . . , F̂m(Xn))

T . Hence,

EX‖F̂m−Fm‖2n = 1
nEX(Y−Fm(X))TP(Y−Fm(X))

= 1
nEX(Y−F(X))TP(Y−F(X))+ 2

nEX(Fm−F)TP(Y−Fm(X))

= 1
nEX trace[P(Y−F(X))(Y−F(X))]

+2
nEX(Fm−F)TP(Fm−F)(X)

But

EX trace[P(Y−F(X)))(Y−F(X))T] =
1
n

n

∑
i=1

Var(Yi |Xi)pii (X)≤max
i

Var(Yi |Xi)
Dm

n

since
n

∑
i=1

pii (X) = traceP = Dm

Also, since P is a projection matrix

(Fm−F)TP(Fm−F)(X)≤ ‖Fm−F‖2n

and (41) follows.

Proof of Lemma 11:
Take∆m,n = 0. Letρ̃m = sup

{
‖t(X)‖P
‖t(X)‖n : t ∈ Fm

}
. By Proposition 5.2 of Baraud (2001), ifρ0 > h−1

0 ,

P[ρ̃m > ρ0]≤ D2
mexp{−(h0−ρ−1

0)2

4h1
cn logn}

729

BICKEL , RITOV AND ZAKAI

wherecn = n
CDm logn. Hereh0,h1C are generic constants. Baraud gives a proof for the caseVar(Y|X)=

constant, but this is immaterial since only functions ofX
˜

are involved inρ̃m. Therefore,

EP(F̂m−FP)21(ρm≤ ρ0)

≤ 2ρ2
0EP{En(F̂m−Fm)2 +En(Fm−FP)2}

≤ C(
Dm

n
+‖Fm−FP‖2) (42)

On the other hand,
EP(F̂m−FP)21(ρm > ρ0)≤ 2P[ρm > ρ0]

= CD2
mexp{−ACn logn} (43)

Combining (42) and (43) we obtain Lemma 11 for∆m,n = 0, F̂m = F̃m. Putting inF̃m we add a term
CEP(F̂m− F̃m)2. We now apply Lemma 10 c) and the argument we used to obtain (42) and (43).

Proof of Theorem 8: Note that we are limited to rates of convergence which are slower thann−
1
2 .

This comes from the combination of R1(i) and bounding the operator by thel∞ norm of the Gram
matrix. It is not clear how either of these conditions can be relaxed.

We need only check that if the{F̃m} are theθm of Theorem 6 then the conditions of that theorem
are satisfied. By construction,‖F̃m‖∞ ≤ 1, Bn = n

logn. By Lemma 11 and (R3),

rn≤C1
Dm

n
+C2D−B

m (44)

and the right hand side of (44) is bounded byn−(β
β+1).

References

P. K. Andersen and R. D. Gill. Cox’s regression model for counting processes: A large sample study.
Ann. Stat.10:1100–1120, 1982.

Y. Baraud. Model selection for regression on a random design.Tech. Report, U. Paris Sud, 2001.

A. Barron, L. Birǵe, and P. Massart. Risk bounds for model selection under penalization.Prob.
Theory and Related Fields, 113:301–413, 1999.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds.Tech.
Report638, Department of Statistics, University of California at Berkeley, 2003.

P. J. Bickel and P. W. Millar. Uniform convergence of probability measures on classes of functions.
Statistica Sinica 2:1-15, 1992.

P. J. Bickel and Y. Ritov. The golden chain. A comment.Ann. Statist., 32:91–96, 2003.

L. Breiman. Arcing classifiers (with discussion).Ann. Statist.26:801–849, 1998.

L. Breiman. Prediction games and arcing algorithms.Neural Computation11:1493-1517, 1999.

730

SOME THEORY FORGENERALIZED BOOSTINGALGORITHMS

L. Breiman. Some infinity theory for predictor ensemblesTechnical ReportU.C. Berkeley, 2000.

P. Bühlmann. Consistency forL2 boosting and matching pursuit with trees and tree type base func-
tions.Technical ReportETH Zürich, 2002.

P. Bühlmann and B. Yu. Boosting theL2 loss: regression and classification.J. of Amer. Statist.
Assoc., 98:324–339, 2003

D. Donoho, I.M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: asymptopia (with
discussion).J. Roy. Statist. Soc. Ser. B57:371–394, 1995.

J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:a statistical view of
boosting (with discussion).Ann. Statist.28:337–407, 2000.

Y. Freund. Boosting a weak learning algorithm by majority.Information and Computation121:256–
285, 1995.

Y, Freund and R. E. Schapire. Experiments with a new boosting algorithm.Machine Learning:
Proc. 13th International Conference, 148–156. Morgan Kauffman, San Francisco, 1996.

G. Györfi, M. Kohler, A. Krzyżak, and H. Walk.A Distribution Free Theory of Nonparametric
Regression. Springer, New York, 2002.

W. Jiang. Process consistency for ADABOOST. Technical Report 00-05, Dept. of Statistics, North-
western University, 2002.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines, theory, and application to the
classification of microarray data and satellite radiance data .J. of Amer. Statist. Assoc., 99:67–81,
2002.

D. G. Luenberger.Linear and Nonlinear Programming. Addison-Wesley Publishing Company,
Reading, 1984.

G. Lugosi and N. Vayatis. On the Bayes-risk consistency of boosting methods.Ann. Statist.32:30–
55, 2004.

S. Mallat and Z. Zhang. Matching pursuit with time frequency dictionaries.IEEE Transactions on
Signal Processing41:3397–3415, 1993.

E. Mammen and A. Tsybakov. Smooth discrimination analysis.Ann. Statist.27:1808–1829, 1999.

S. Mannor, R. Meir, and T. Zhang. Greedy algorithms for classification—consistency, convergence
rates and adaptivity. J. of Machine Learning Research 4:713–742, 2004.

L. Mason, P. Bartlett, J. Baxter, and M. Frean. Functional gradient techniques for combining hy-
potheses. In Scḧolkopg, Smola, A., Bartlett, P., and Schurmans, D. (edts.)Advances in Large
Margin Classifiers, MIT Press, Boston, 2000.

R. E. Schapire. The strength of weak learnability.Machine Learning5:197–227, 1990.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence related predictions.
Machine Learning, 37:297–336, 1999.

731

BICKEL , RITOV AND ZAKAI

A, Tsybakov. Optimal aggregation of classifiers in statistical learning.Technical Report, U. of Paris
IV, 2001.

A. van der Vaart and J. A. Wellner.Weak Convergence and Empirical Processes. Springer, New
York, 1996.

Y. Yang. Minimax nonparametric classification – Part I Rates of convergence, Part II Model selec-
tion, IEEE Trans. Inf. Theory45:2271–2292, 1999.

T. Zhang and B. Yu. Boosting with early stopping: convergence and consistency. Tech Report 635,
Stat Dept, UCB, 2003.

T. Zhang. Statistical behaviour and consistency of classification methods based on convex risk min-
imization.Ann. Statist., 32:56–134, 2004.

732

Journal of Machine Learning Research 7 (2006) 733–769 Submitted 12/05; Revised 4/06; Published 5/06

QP Algorithms with Guaranteed Accuracy and Run Time
for Support Vector Machines

Don Hush DHUSH@LANL .GOV

Patrick Kelly KELLY @LANL .GOV

Clint Scovel JCS@LANL .GOV

Ingo Steinwart INGO@LANL .GOV

Modeling, Algorithms and Informatics Group, CCS-3, MS B265
Los Alamos National Laboratory
Los Alamos, NM 87545 USA

Editor: Bernhard Scḧolkopf

Abstract

We describe polynomial–time algorithms that produce approximate solutions with guaranteed ac-
curacy for a class of QP problems that are used in the design ofsupport vector machine classifiers.
These algorithms employ a two–stage process where the first stage produces an approximate so-
lution to a dual QP problem and the second stage maps this approximate dual solution to an ap-
proximate primal solution. For the second stage we describeanO(nlogn) algorithm that maps an
approximate dual solution with accuracy(2

√
2Kn +8

√
λ)−2λε2

p to an approximate primal solution
with accuracyεp wheren is the number of data samples,Kn is the maximum kernel value over
the data andλ > 0 is the SVM regularization parameter. For the first stage we present new results
for decompositionalgorithms and describe new decomposition algorithms withguaranteed accu-
racy and run time. In particular, forτ–rate certifyingdecomposition algorithms we establish the
optimality of τ = 1/(n−1). In addition we extend the recentτ = 1/(n−1) algorithm of Simon
(2004) to form two newcompositealgorithms that also achieve theτ = 1/(n−1) iteration bound of
List and Simon (2005), but yield faster run times in practice. We also exploit theτ–rate certifying
property of these algorithms to produce new stopping rules that are computationally efficient and
that guarantee a specified accuracy for the approximate dualsolution. Furthermore, for the dual QP
problem corresponding to the standard classification problem we describe operational conditions
for which the Simon and composite algorithms possess an upper bound ofO(n) on the number of
iterations. For this same problem we also describe general conditions for which a matching lower
bound exists foranydecomposition algorithm that uses working sets of size 2. For the Simon and
composite algorithms we also establish anO(n2) bound on the overall run time for the first stage.
Combining the first and second stages gives an overall run time of O(n2(ck + 1)) whereck is an
upper bound on the computation to perform a kernel evaluation. Pseudocode is presented for a
complete algorithm that inputs an accuracyεp and produces an approximate solution that satisfies
this accuracy in low order polynomial time. Experiments areincluded to illustrate the new stopping
rules and to compare the Simon and composite decomposition algorithms.

Keywords: quadratic programming, decomposition algorithms, approximation algorithms, sup-
port vector machines

c©2006 Don Hush, Patrick Kelly, Clint Scovel and Ingo Steinwart.

HUSH, KELLY, SCOVEL AND STEINWART

1. Introduction

Solving a quadratic programming (QP) problem is a major component of the support vector machine
(SVM) training process. In practice it is common to employ algorithms that produceapproximate
solutions. This introduces a trade-off between computation and accuracythat has not been thor-
oughly explored. The accuracy, as measured by the difference between the criterion value of the
approximate solution and the optimal criterion value, is important for learning because it has a di-
rect influence on the generalization error. For example, since the optimal criterion value plays a
key role in establishing the SVM performance bounds in (Steinwart and Scovel, 2004, 2005; Scovel
et al., 2005b) the influence of the accuracy can be seen directly throughthe proofs of these bounds.
Since the primal QP problem can be prohibitively large and its Wolfe dual QP problem is consider-
ably smaller it is common to employ a two–stage training process where the first stage produces an
approximate solution to the dual QP problem and the second stage maps this approximate dual so-
lution to an approximate primal solution. Existing algorithms for the first stage often allow the user
to trade accuracy and computation for the dual QP problem through the choice of a tolerance value
that determines when to stop the algorithm, but it is not known how to choose thisvalue to achieve
a desired accuracy or run time. Furthermore existing algorithms for the second stage have been
developed largely without concern for accuracy and therefore little is known about the accuracy of
the approximate primal solutions they produce. In this paper we describe algorithms that accept the
accuracyεp of the primal QP problem as an input and are guaranteed to produce an approximate
solution that satisfies this accuracy in low order polynomial time. To our knowledge these are the
first algorithms of this type for SVMs. In addition our run time analysis revealsthe effect of the
accuracy on the run time, thereby allowing the user to make an informed decision regarding the
trade–off between computation and accuracy.

Algorithmic strategies for the dual QP problem must address the fact that when the number of
data samplesn is large the storage requirements for the kernel matrix can be excessive.This bar-
rier can be overcome by invoking algorithmic strategies that solve a large QP problem by solving
a sequence of smaller QP problems where each of the smaller QP problems is obtained by fixing a
subset of the variables and optimizing with respect to the remaining variables.Algorithmic strate-
gies that solve a QP problem in this way are calleddecompositionalgorithms and a number have
been developed for dual QP problems: (Balcazar et al., 2001; Chen etal., 2005, 2006; Cristian-
ini and Shawe-Taylor, 2000; Hsu and Lin, 2002; Hush and Scovel, 2003; Joachims, 1998; Keerthi
et al., 2000, 2001; Laskov, 2002; Liao et al., 2002; List and Simon, 2004, 2005; Mangasarian and
Musicant, 1999, 2001; Osuna et al., 1997; Platt, 1998; Simon, 2004; Vapnik, 1998).

The key to developing a successful decomposition algorithm is in the method used to determine
the working sets, which are the subsets of variables to be optimized at each iteration. To guaran-
tee stepwise improvement each working set must contain acertifying pair (Definition 3 below).
Stronger conditions are required to guarantee convergence: (Changet al., 2000; Chen et al., 2006;
Hush and Scovel, 2003; Lin, 2001a,b; List and Simon, 2004) and even stronger conditions appear
necessary to guarantee rates of convergence: (Balcazar et al., 2001; Hush and Scovel, 2003; Lin,
2001a). Indeed, although numerous decomposition algorithms have been proposed few are known
to possess polynomial run time bounds. Empirical studies have estimated the runtime of some
common decomposition algorithms to be proportional tonp wherep varies from approximately 1.7
to approximately 3.0 depending on the problem instance: (Joachims, 1998; Laskov, 2002; Platt,
1998). Although these types of studies can provide useful insights they have limited utility in pre-

734

QP ALGORITHMS

dicting the run time for future problem instances. In addition these particular studies do not appear
to be calibrated with respect to the accuracy of the final criterion value andso their relevance to
the framework considered here is not clear. Lin (2001a) performs a convergence rate analysis that
may eventually be used to establish run time bounds for a popular decompositionalgorithm, but
these results hold under rather restrictive assumptions and more work is needed before the tightness
and utility of these bounds is known (a more recent version of this analysis can be found in (Chen
et al., 2006)). Balcazar et al. (2001) present a randomized decomposition algorithm whose expected
run time isO

(

(n+ r(k2d2)) kd logn
)

wheren is the number of samples,d is the dimension of the
input space, 1≤ k ≤ n is a data dependent parameter andr(k2d2) is the run time required to solve
the dual QP problem overk2d2 samples. This algorithm is very attractive whenk2d2≪ n, but in
practice the value ofk is unknown and it may be large when the Bayes error is not close to zero.
Hush and Scovel (2003) define a class ofrate certifying algorithmsand describe an example al-

gorithm that usesO
(

Knn5 logn
ε

)

computation to reach an approximate dual solution with accuracy

ε, whereKn is the maximum value of the kernel matrix. Recently Simon (2004) introduced a new
rate certifying algorithm which can be shown, using the results in (List and Simon, 2005), to use

O
(

nKn
λε +n2 log

(

λn
Kn

))

computation to reach an approximate dual solution with accuracyε, where

λ > 0 is the SVM regularization parameter. In this paper we combine Simon’s algorithm with the
popularGeneralized SMOalgorithm of Keerthi et al. (2001) to obtain acompositealgorithm that
possesses the same computation bound as Simon’s algorithm, but appears to use far less computa-
tion in practice (as illustrated in our experiments). We also extend this approach to form a second
compositealgorithm with similar properties. In addition we introduce operational assumptions on
Kn and the choice ofλ andε that yield a simpler computation bound ofO(n2) for these algorithms.
Finally to guarantee that actual implementations of these algorithms produce approximate solutions
with accuracyε we introduce two new stopping rules that terminate the algorithms when an adap-
tively computed upper bound on the accuracy falls belowε.

The second stage of the design process maps an approximate dual solutionto an approximate
primal solution. In particular this stage determines how the approximate dual solution is used to
form the normal vector and offset parameter for the SVM classifier. It iscommon practice to use
the approximate dual solution as coefficients in the linear expansion of the data that forms the nor-
mal vector, and then use a heuristic based on approximate satisfaction of theKarush-Kuhn-Tucker
(KKT) optimality conditions to choose the offset parameter. This approach issimple and compu-
tationally efficient, but it produces an approximate primal solution whose accuracy is unknown.
In this paper we take a different approach based on the work of Hush et al. (2005). This work
studies the accuracy of the approximate primal solution as a function of the accuracy of the ap-
proximate dual solution and the map from approximate dual to approximate primal.In particular
for the SVM problem it appears that choosing this map involves a trade–offbetween computation
and accuracy. Here we employ a map described and analyzed in (Hush etal., 2005) that guarantees
an accuracy ofεp for the primal QP problem when the dual QP problem is solved with accuracy
(2
√

2Kn +8
√

λ)−2λε2
p. This map resembles current practice in that it performs a direct substitution

of the approximate dual solution into a linear expansion for the normal vector, but differs in the way
that it determines the offset parameter. We develop anO(nlogn) algorithm that computes the offset
parameter according to this map.

The main results of this paper are presented in Sections 2 and 3. Proofs for all the theorems,
lemmas, and corollaries in these sections can be found in Section 6, except for Theorem 2 which is

735

HUSH, KELLY, SCOVEL AND STEINWART

established in (Hush et al., 2005). Section 2 describes the SVM formulation,presents algorithms for
the first and second stages, and provides theorems that characterize the accuracy and run time for
these algorithms. Section 3 then determines specific run time bounds for decomposition algorithms
applied to the standard classification problem and the density level detection problem. Section 4
describes experiments that illustrate the new stopping rules and compare the run time of different
decomposition algorithms. Section 5 provides a summary of results and establishes an overall run
time bound. A complete algorithm that computes anεp–optimal solution to the primal QP problem
is provided by (Procedure 1, Section 2) and Procedures 3–8 in the appendix.

2. Definitions, Algorithms, and Main Theorems

Let X be a pattern space andk : X×X→ R be a kernel function with Hilbert spaceH and feature
mapφ : X→ H so thatk(x1,x2) = φ(x1) ·φ(x2),∀x1,x2 ∈ X. DefineY := {−1,1}. Given a data set
((x1,y1), ...,(xn,yn)) ∈ (X×Y)n theprimal QP problem that we consider takes the form

minψ,b,ξ λ‖ψ‖2 +∑n
i=1uiξi

s.t. yi(φ(xi) ·ψ+b)≥ 1−ξi

ξi ≥ 0, i = 1,2, ...,n
(1)

whereλ > 0, ui > 0 and∑i ui = 1. This form allows a different weightui for each data sample.
Specific cases of interest include:

1. the L1–SVMfor the standard supervised classification problem which setsui = 1/n, i =
1, ...,n,

2. theDLD–SVMfor the density level detection problem described in (Steinwart et al., 2005)
which sets

ui =

{

1
(1+ρ)n1

, yi = 1
ρ

(1+ρ)n−1
, yi =−1

wheren1 is the number of samples distributed according toP1 and assigned labely= 1, n−1 is
the number of samples distributed according toP−1 and assigned labely=−1, h= dP1/dP−1

is the density function, andρ > 0 defines theρ–level set{h > ρ} that we want to detect.

ThedualQP problem is
maxa −1

2a·Qa+a·1
s.t. y·a = 0

0≤ ai ≤ ui i = 1,2, ...,n.
(2)

where
Qi j = yiy jk(xi ,x j)/2λ.

The change of variables defined by

αi := yiai + l i , l i =

{

0 yi = 1
ui yi =−1

(3)

gives thecanonical dualQP problem

maxα −1
2α ·Qα+α ·w+w0

s.t. 1·α = c
0≤ αi ≤ ui i = 1,2, ...,n

(4)

736

QP ALGORITHMS

where

Qi j = k(xi ,x j)/2λ, c = l ·1, w = Ql +y, w0 =−l ·y− 1
2

l ·Ql. (5)

We denote the canonical dual criterion by

R(α) :=−1
2

α ·Qα+α ·w+w0.

Note that this change of variables preserves the criterion value. Also notethat the relation between
a and α is one–to–one. Most of our work is with the canonical dual because it simplifies the
algorithms and their analysis.

We define the set ofε–optimal solutions of a constrained optimization problem as follows.

Definition 1 Let P be a constrained optimization problem with parameter spaceΘ, criterion func-
tion G : Θ→ R, feasible set̃Θ ⊆ Θ of parameter values that satisfy the constraints, and optimal
criterion value G∗ (i.e. G∗ = supθ∈Θ̃ G(θ) for a maximization problem and G∗ = infθ∈Θ̃ G(θ) for a
minimization problem). Then for anyε≥ 0 we define

O ε(P) := {θ ∈ Θ̃ : |G(θ)−G∗| ≤ ε}

to be the set ofε–optimal solutions for P.

We express upper and lower computation bounds usingO(·) andΩ(·) notations defined by

O(g(n)) = { f (n) : ∃ positive constantsc andn0 such that 0≤ f (n)≤ cg(n) for all n≥ n0},
Ω(g(n)) = { f (n) : ∃ positive constantsc andn0 such that 0≤ cg(n)≤ f (n) for all n≥ n0}.

We now describe our algorithm for the primal QP problem. It computes an approximate canon-
ical dual solutionα̂ and then maps to an approximate primal solution(ψ̂, b̂, ξ̂) using the map de-
scribed in the following theorem. This theorem is derived from (Hush et al.,2005, Theorem 2 and
Corollary 1) which is proved using the result in (Scovel et al., 2005a).

Theorem 2 Consider the primal QP problem PSVM in (1) with λ > 0 and |φ(xi)|2 ≤ K, i = 1, ..,n,
and its corresponding canonical dual QP problem DSVM in (4) with criterion R. Letεp > 0, ε =

(2
√

2K +8
√

λ)−2λε2
p and suppose that̂α ∈ O ε(DSVM) and R(α̂)≥ 0. If

ψ̂ =
1
2λ

n

∑
i=1

(α̂i− l i)φ(xi)

ξ̂i(b) = max(0,1−yi(ψ̂ ·φ(xi)+b)), i = 1, ..,n

and

b̂∈ argmin
n

∑
i=1

ui ξ̂i(b)

then(ψ̂, b̂, ξ̂(b̂)) ∈ O εp(PSVM).

737

HUSH, KELLY, SCOVEL AND STEINWART

This theorem gives an expression forψ̂ that coincides with the standard practice of replacing an
optimal dual solutionα∗ by an approximate dual solution̂α in the expansion for the optimal nor-
mal vector determined by the KKT conditions. The remaining variablesξ̂ and b̂ are obtained by
substitutingψ̂ into the primal optimization problem, optimizing with respect to the slack variableξ,
and then minimizing with respect tob 1. To guarantee an accuracyεp for the primal problem this
theorem stipulates that the value of the dual criterion at the approximate solution be non–negative
and that the accuracy for the dual solution satisfyε = (2

√
2K + 8

√
λ)−2λε2

p. The first condition
is easily achieved by algorithms that start withα = l (so that the initial criterion value is 0) and
continually improve the criterion value at each iteration. We will guarantee the second condition by
employing an appropriate stopping rule for the decomposition algorithm.

Procedure 1 shows the primal QP algorithm that produces anεp–optimal solution(α̂, b̂) that
defines the SVM classifier

sign

(

n

∑
i=1

(

α̂i− l
2λ

)

k(xi ,x)+ b̂

)

.

This algorithm inputs a data setTn = ((x1,y1), ...,(xn,yn)), a kernel functionk, and parameter values
λ, u andεp. Lines 3–6 produce an exact solution for the degenerate case where all the data samples
have the same label. The rest of the routine forms an instance of the canonical dual QP according to
(5), setsε according to Theorem 2, setsα0 = l so thatR(α0) = 0, uses the routineDecomposition
to compute anε–approximate canonical dual solutionα̂, and uses the routineOffset to compute the
offset parameter̂b according to Theorem 2. The parameterg, which is defined in the next section,
is a temporary value computed byDecomposition that allows a more efficient computation ofb̂
by Offset. The next three sections provide algorithms and computational bounds forthe routines
Decomposition andOffset.

Procedure 1The algorithm for the primal QP problem.
1: PrimalQP (Tn,k,λ,u,εp)
2:

3: if (yi = y1,∀i) then
4: α̂← l , b̂← y1

5: Return(̂α, b̂)
6: end if
7: Form canonical dual:Qi j ← k(xi ,x j)

2λ , l i ← (1−yi)ui
2 , w←Ql +y, c← l ·1

8: Compute Desired Accuracy of Dual:ε← λε2
p

(2
√

2K+8
√

λ)2

9: Initialize canonical dual variable:α0← l
10: (α̂,g)← Decomposition(Q,w,c,u,ε,α0)
11: b̂← Offset(g,y,u)
12: Return(̂α, b̂)

2.1 Decomposition Algorithms

We begin with some background material that describes: optimality conditions for the canonical
dual, a model decomposition algorithm, necessary and sufficient conditionsfor convergence to a

1. This method for choosing the offset was investigated briefly in (Keerthi et al., 2001, Section 4).

738

QP ALGORITHMS

solution, and sufficient conditions for rates of convergence. In many cases this background material
extends a well known result to the slightly more general case considered here where each component
of u may have a different value.

Consider an instance of the canonical dual QP problem given by(Q,w,w0,c,u). Define the set
of feasible values

A := {α : (0≤ αi ≤ ui) and(α ·1 = c)},
and the set of optimal solutions

A ∗ := argmax
α∈A

R(α).

Also define the optimal criterion valueR∗ := supα∈A R(α) and the gradient atα

g(α) := ∇R(α) =−Qα+w. (6)

The optimality conditions established by Keerthi et al. (2001) take the form,

α ∈ A ∗ ⇔ g j(α)≤ gk(α) for all j : α j < u j , k : αk > 0. (7)

These conditions motivate the following definition from (Keerthi et al., 2001;Hush and Scovel,
2003).

Definition 3 A certifying pair(also called aviolating pair) for α∈A is a pair of indices that witness
the non–optimality ofα, i.e. it is a pair of indices j: α j < u j and k: αk > 0 such that gj(α) > gk(α).

Using the approach in (Hush and Scovel, 2003, Section 3) it can be shown that the requirement
that working sets contain a certifying pair is both necessary and sufficient to obtain a stepwise
improvement in the criterion value. Thus, since certifying pairs are definedin terms of the gradient
component values it appears that the gradient plays an essential role in determining members of
the working sets. To compute the gradient at each iteration using (6) requiresO(n2) operations.
However since decomposition algorithms compute a sequence of feasible points (αm)m≥0 using
working sets of sizep, the sparsity of(αm+1−αm) means that the update

g(αm+1) = g(αm)−Q(αm+1−αm) (8)

requires onlyO(pn) operations. A model decomposition algorithm that uses this update is shown
in Procedure 2. After computing an initial gradient vector this algorithm iterates the process of
determining a working set, solving a QP problem restricted to this working set, updating the gradient
vector, and testing a stopping condition.

The requirement that working sets contain a certifying pair is necessary but not sufficient to
guarantee convergence to a solution (e.g. see the examples in Chen et al., 2006; Keerthi and Ong,
2000). However Lin (2002b) has shown that including amax–violating pairdefined by

(j∗,k∗) : j∗ ∈ arg max
i:αi<ui

gi(α), k∗ ∈ arg min
i:αi>0

gi(α) (9)

in each working set does guarantee convergence to a solution. Once thegradient has been computed
a max–violating pair can be determined in one pass through the gradient components and therefore
requiresO(n) computation. The class ofmax–violating pair algorithmsthat include a max–violating

739

HUSH, KELLY, SCOVEL AND STEINWART

Procedure 2A model decomposition algorithm for the canonical dual QP problem.

1: ModelDecomposition(Q,w,c,u,ε,α0)
2:

3: Compute initial gradientg0←−Qα0 +w
4: m← 0
5: repeat
6: Compute a working setWm

7: Computeαm+1 by solving the restricted QP determined byαm andWm

8: Update the gradient:gm+1← gm−Q(αm+1−αm)
9: m←m+1

10: until (stopping condition is satisfied)
11: Return(αm,gm)

pair in each working set includes many popular algorithms (e.g. Chang and Lin, 2001; Joachims,
1998; Keerthi et al., 2001). Although asymptotic convergence to a solutionis guaranteed for these
algorithms, their convergence rate is unknown. In contrast we now describe algorithms based on
alternative pair selection strategies that have the sameO(n) computational requirements (once the
gradient has been computed) but possess known rates of convergence to a solution.

Consider the model decomposition algorithm in Procedure 2. The run time of themain loop
is the product of the number of iterations and the computation per iteration, andboth of these
depend heavily on the size of the working sets and how they are chosen. The smallest size that
admits a convergent algorithm is 2 and many popular algorithms adopt this size.We refer to these
asW2decomposition algorithms. A potential disadvantage of this approach is that thenumber of
iterations may be larger than it would be otherwise. On the other hand adoptingworking sets of
size 2 allows us to solve each 2–variable QP problem in constant time (e.g. seePlatt, 1998). In
additionW2 decomposition algorithms require onlyO(n) computation to update the gradient and
have the advantage that the overall algorithm can be quite simple (as demonstrated by theW2max–
violating pair algorithm). Furthermore adopting size 2 working sets will allow us toimplement our
new stopping rules in constant time. Thus, while most of the algorithms we describe below allow
the working sets to be larger than 2, our experiments will be performed with their W2variants.

In addition to their size, the content of the working sets has a significant impact on the run time
through its influence on the convergence rate of the algorithm. Hush and Scovel (2003) prove that
convergence rates can be guaranteed simply by including arate certifying pair in each working
set. Roughly speaking arate certifying pair is a certifying pair that, when used as the working
set, provides a sufficient stepwise improvement. To be more precise we start with the following
definitions. Define a working set to be a subset of the index set of the components ofα, and let
W denote a working set of unspecified size andWp denote a working set of sizep. In particular
Wn = {1,2, ...,n} denotes the entire index set. The set of feasible solutions for the canonical dual
QP sub–problem defined by a feasible valueα and a working setW is defined

A (α,W) := {ά ∈ A : άi = αi ∀i /∈W}.

Define
σ(α|W) := sup

ά∈A (α,W)

g(α) · (ά−α)

740

QP ALGORITHMS

to be the optimal value of the linear programming (LP) problem atα. The following definition is
adapted from (Hush and Scovel, 2003).

Definition 4 For τ > 0 an index pair W2 is called aτ–rate certifying pairfor α if σ(α|W2) ≥
τσ(α|Wn). A decomposition algorithm that includes aτ–rate certifying pair in the working set
at every iteration is called aτ–rate certifying algorithm.

For aτ–rate certifying algorithm Hush and Scovel (2003) provide an upper bound on the number
of iterations as a function ofτ. An improved bound can be obtained as a special case of (List
and Simon, 2005, Theorem 1). The next theorem provides a slightly different bound that does not
depend on the size of the working sets and therefore slightly improves the bound obtained from
(List and Simon, 2005, Theorem 1) when the size of the working sets is larger than 2.

Theorem 5 Consider the canonical dual QP problem in (4) with criterion function R and Gram
matrix Q. Let L≥ maxi Qii and S≥ maxi ui . A τ–rate certifying algorithm that starts withα0

achieves R∗−R(αm)≤ ε after ⌈ḿ⌉ iterations of the main loop where

ḿ=

[

2
τ

ln

(

R∗−R(α0)

ε

)]

+

, ε≥ 4LS2

τ

2
τ

(

4LS2

τε
−1+

[

ln

(

τ(R∗−R(α0))

4LS2

)]

+

)

, ε <
4LS2

τ
,

⌈θ⌉ denotes the smallest integer greater than or equal toθ, and[θ]+ = max(0,θ).

Chang et al. (2000) have shown that for everyα ∈ A there exists aτ–rate certifying pair with
τ ≥ 1/n2. This result can be used to establish the existence of decomposition algorithmswith
polynomial run times. The first such algorithm was provided by Hush and Scovel (2003) where the
rate certifying pairs satisfiedτ≥ 1/n2. However the valueτ can be improved and the bound on the
number of iterations reduced if the rate certifying pairs are determined differently. Indeed List and
Simon (2005) prove thatτ≥ 1/n for amax–lp2pair

W∗2 ∈ arg max
W2⊆Wn

σ(α|W2)

which is a pair with the maximum linear program value. The next theorem provides a slightly better
result ofτ≥ 1/(n−1) for this pair and establishes the optimality of this bound2.

Theorem 6 For α ∈ A
max

W2⊆Wn

σ(α|W2)≥
σ(α|Wn)

n−1
.

Furthermore, there exist problem instances for which there existα ∈ A such that

max
W2⊆Wn

σ(α|W2) =
σ(α|Wn)

n−1
.

2. This result provides a negligible improvement over theτ≥ 1/n result of List and Simon but is included here because it
establishes optimality and because its proof, which is quite different from that of List and Simon, provides additional
insight into the construction of certifying pairs that achieveτ≥ 1/(n−1).

741

HUSH, KELLY, SCOVEL AND STEINWART

Since a max–lp2 pair gives the largest value ofσ(α|W2) it follows from Definition 4 and The-
orem 6 that the largest single value ofτ that can be valid for all iterations of all problem instances
is 1/(n− 1). Thus a max–lp2 pair is optimal in that it achieves the minimum iteration bound in
Theorem 5 with respect toτ. Furthermore Simon (2004) has introduced an algorithm for computing
a max–lp2 pair that requires onlyO(n) computation and therefore coincides with theO(n) computa-
tion required to perform the other steps in the main loop. However, in spite of the promise suggested
by this analysis experimental results suggest that there is much room to improve the convergence
rates achieved with max–lp2 pairs (e.g. see Section 4). The result below provides a simple way to
determine pair selection methods whose convergence rates are at least asgood as those guaranteed
by the max–lp2 pair method and possibly much better. This result is stated as a corollary since it
follows trivially from the proof of Theorem 5.

Corollary 7 Let DECOMP be a realization of the model decomposition algorithm for the canonical
dual QP in Procedure 2 and let(αm) represent a sequence of feasible points produced by this
algorithm. At each iteration m let́Wm

2 be a τ–rate certifying pair and letάm+1 be the feasible
point determined by solving the restricted QP determined byαm andẂm

2 . If for every m≥ 0 the
stepwise improvement satisfies R(αm+1)−R(αm) ≥ R(άm+1)−R(αm) then DECOMP will achieve
R∗−R(αm)≤ ε after ⌈ḿ⌉ iterations of the main loop wherém is given by Theorem 5.

This theorem implies that any pair whose stepwise improvement is at least as good as that
produced by a max–lp2 pair yields a decomposition algorithm that inherits the iteration bound in
Theorem 5 withτ = 1/(n−1). An obvious example is amax–qp2pair, which is a pair with the
largest stepwise improvement. However since determining such a pair may require substantial
computation we seek alternatives. In particular Simon’s algorithm visits several good candidate
pairs in its search for a max–lp2 pair and can therefore be easily extendedto form an alternative
pair selection algorithm that is computationally efficient and satisfies this stepwise improvement
property. To see this we start with a description of Simon’s algorithm.

First note that when searching for a max–lp2 pair it is sufficient to consider only pairs(j,k)
whereg j(α) > gk(α). For such a pair it is easy to show that (e.g. see the proof of Theorem 6)

σ(α|{ j,k}) = min(u j −α j ,αk)(g j(α)−gk(α)) = ∆ jk (g j(α)−gk(α)) (10)

whereu j is the upper bound onα j specified in (4) and∆ jk := min(u j −α j ,αk). The key to Simon’s
algorithm is the recognition that among theO(n2) index pairs there are at most 2n distinct values
for ∆:

u1−α1, α1, u1−α2, α2, ..., un−αn, αn. (11)

Consider searching this list of values for one that corresponds to a maximum value ofσ. For an
entry of the formu j −α j for somej, an indexk that maximizesσ(α|{ j,k}) satisfies

k ∈ arg max
l :αl≥u j−α j

(g j(α)−gl (α)) = arg min
l :αl≥u j−α j

gl (α) .

Similarly for an entry of the formαk for somek, an indexj that maximizesσ(α|{ j,k}) satisfies

j ∈ arg max
l :ul−αl≥αk

(gl (α)−gk(α)) = arg max
l :ul−αl≥αk

gl (α) .

Now suppose we search the list of values from largest to smallest and keep track of the maximum
gradient component value for entries of the formu j −α j and the minimum gradient component

742

QP ALGORITHMS

value for entries of the formαk as we go. Then as we visit each entry in the list the index pair that
maximizesσ can be computed in constant time. Thus a max–lp2 pair can be determined in one pass
through the list. A closer examination reveals that only the nonzero values atthe front of the list
need to be scanned, since entries with zero values cannot form a certifying pair (i.e. they correspond
to pairs for which there is no feasible direction for improvement). In addition,since nonzero entries
of the formu j −α j correspond to componentsj whereα j < u j , and nonzero entries of the formαk

correspond to componentsk whereαk > 0, once the scan reaches the last nonzero entry in the list the
indices of the maximum and minimum gradient component values correspond to amax–violating
pair. Pseudocode for this algorithm is shown in Procedure 4 in Appendix 6. This algorithm requires
that the ordered list of values be updated at each iteration. If the entries are stored in a linear array
this can be accomplished inO(pn) time by a simplesearch and insertalgorithm, wherep is the size
of the working set. However, with the appropriate data structure (e.g. a red–black tree) this list can
be updated inO(plogn) time. In this case the size of the working sets must satisfyp = O(n/ logn)
to guarantee anO(n) run time for the main loop.

Simon’s algorithm computes both a max–lp2 pair and a max–violating pair at essentially the
same cost. In addition the stepwise improvement for an individual pair can becomputed in constant
time. Indeed withWm

2 = { j,k} andg(αm
j)≥ g(αm

k) the stepwise improvementδm
R takes the form

δm
R =

{

∆δg−∆2q/2, δg > q∆
δ2

g

2q, otherwise
(12)

whereδg = g(αm
j)−g(αm

k), q = Q j j + Qkk−2Q jk and∆ = min
(

u j −αm
j ,αm

k

)

. Thus we can effi-
ciently compute and compare the stepwise improvements of the max–violating and max–lp2 pairs
and choose the one with the largest improvement. We call this theComposite–Ipair selection
method. It adds a negligible amount of computation to the main loop and its stepwise improvement
cannot be worse than either the max–violating pair or max–lp2 algorithm alone.We can extend
this idea further by computing the stepwise improvement for all certifying pairsvisited by Simon’s
algorithm and then choosing the best. We call this theComposite–IIpair selection method. This
methods adds anon–negligibleamount of computation to the main loop, but may provide even bet-
ter stepwise updates. It is worth mentioning that other methods have been recently introduced which
examine a subset of pairs and choose the one with the largest stepwise improvement (e.g. see Fan
et al., 2005; Lai et al., 2003). The methods described here are different in that they are designed
specifically to satisfy the condition in Corollary 7.

We have described four pair selection methods; max–lp2, Composite–I (best of max–violating
and max–lp2), Composite–II (best of certifying pairs visited by Simon’s algorithm), and max–qp2
(largest stepwise improvement) which all yield decomposition algorithms that satisfy the iteration
bound in Theorem 5 withτ = 1/(n−1), but whoseactualcomputational requirements on a specific
problem may be quite different. In Section 4 we perform experiments to investigate the actual
computational requirements for these methods.

2.2 Stopping Rules

Algorithms derived from the model in Procedure 2 require a stopping rule.Indeed to achieve the run
time guarantees described in the previous section the algorithms must be terminated properly. The
most common stopping rule is based on the observation that, prior to convergence, a max–violating
pair (j∗,k∗) represents the most extreme violator of the optimality conditions in (7). This suggests

743

HUSH, KELLY, SCOVEL AND STEINWART

the stopping rule:stop at the first iteratiońm where

g j∗(αḿ)−gk∗(αḿ)≤ tol (13)

wheretol > 0 is a user defined parameter. This stopping rule is employed by many existing de-
composition algorithms (e.g. see Chang and Lin, 2001; Chen et al., 2006; Keerthi et al., 2001; Lin,
2002a) and is especially attractive for max–violating pair algorithms since the rule can be computed
in constant time once a max–violating pair has been computed. Lin (2002a) justifies this rule by
proving that the gapg j∗(αm)−gk∗(αm) converges to zero asymptotically for the sequence of fea-
sible points generated by a particular class of decomposition algorithms. In addition Keerthi and
Gilbert (2002) prove that (13) is satisfied in a finite number of steps for a specific decomposition
algorithm. However the efficacy of this stopping rule is not yet fully understood. In particular we
do not know the relation between this rule and the accuracy of the approximate solution it produces,
and we do not know the convergence rate properties of the sequence(g j∗(αm)−gk∗(αm)) on which
the rule is based. In contrast we now introduce new stopping rules which guarantee a specified ac-
curacy for the approximate solutions they produce, and whose convergence rate properties are well
understood. In addition we will show that these new stopping rules can be computed in constant
time when coupled with the pair selection strategies in the previous section.

The simplest stopping rule that guarantees anε–optimal solution for aτ–rate certifying algo-
rithm is to stop after ´m iterations where ´m is given by Theorem 5 withR∗−R(α0) replaced by a
suitable upper bound (e.g. 1). We call thisStopping Rule 0. However the bound in Theorem 5 is
conservative. For a typical problem instance the algorithm may reach the accuracyε in far fewer
iterations. We introduce stopping rules that are tailored to the problem instance and therefore may
terminate the algorithm much earlier. These rules compute an upper bound onR∗−R(α) adaptively
and then stop the algorithm when this upper bound falls belowε. There are many ways to determine
an upper bound onR∗−R(α). For example the primal-dual gap, which is the difference between
the primal criterion value and the dual criterion value, provides such a bound and therefore could
be used to terminate the algorithm. However, computing the primal-dual gap wouldadd significant
computation to the main loop and so we do not pursue it here. Instead we develop stopping rules
that, when coupled with one of the pair selection methods in the previous section, are simple to com-
pute. These rules use the boundR∗−R(α) ≤ σ(α|W2)/τ which was first established by Hush and
Scovel (2003) and is reestablished as part of the theorem below. The theorem and corollary below
establish the viability of these rules by proving that this bound converges to zero asR(αm)→ R∗,
and that ifR(αm)→ R∗ at a certain rate then the bound converges to zero at a similar rate.

Theorem 8 Consider the canonical dual QP problem in (4) with Gram matrix Q, constraint vector
u, feasible setA , criterion function R, and optimal criterion value R∗. Let α ∈ A and let Wp be a
size p working set. Then the gap R∗−R(α) is bounded below and above as follows:

1. Let L≥maxiQii and
sup

{Vp:Vp⊆Wn}
∑
i∈Vp

u2
i ≤ Up

where the supremum is over all size p subsets of Wn. Then

σ(α|Wp)

2
min

(

1,
σ(α|Wp)

pLUp

)

≤ R∗−R(α). (14)

744

QP ALGORITHMS

2. If Wp includes aτ–rate certifying pair forα then

R∗−R(α) ≤ σ(α|Wp)

τ
. (15)

The next corollary follows trivially from Theorem 8.

Corollary 9 Consider the canonical dual QP problem in (4) with criterion function R. Forany
sequence of feasible points(αm) and corresponding sequence of working sets(Wm) that include
τ–rate certifying pairs the following holds:

R(αm)→ R∗ ⇔ σ(αm|Wm)→ 0.

In addition, rates for R(αm)→ R∗ imply rates forσ(αm|Wm)→ 0.

This corollary guarantees that the following stopping rule will eventually terminate aτ–rate certi-
fying algorithm, and that when terminated at iteration ´m it will produce a solutionαḿ that satisfies
R(αḿ)−R∗ ≤ ε.

Definition 10 (Stopping Rule 1) For a τ–rate certifying algorithm withτ–rate certifying pair se-
quence(Wm

2), stop at the first iteratiońm whereσ(αḿ|Wḿ
2)≤ τε.

This rule can be implemented in constant time using (10). The effectiveness of this rule will depend
on the tightness of the upper bound in (15) for values ofα near the optimum. We can improve this
stopping rule as follows. Define

δm
R := R(αm+1)−R(αm)

and suppose we have the following bound at iterationm

R∗−R(αm)≤ s.

Then at iterationm+1 we have

R∗−R(αm+1)≤min

(

σ(αm+1|Wm+1
2)

τ
, s−δm

R

)

.

Thus an initial bounds0 (e.g.s0 = σ0/τ) can be improved using the recursion

sm+1 = min

(

σ(αm+1|Wm+1
2)

τ
,sm−δm

R

)

which leads to the following stopping rule:

Definition 11 (Stopping Rule 2) For a τ–rate certifying algorithm withτ–rate certifying pair se-
quence(Wm

2), stop at the first iteratiońm where śm≤ ε.

This rule is at least as good as Stopping Rule 1 and possibly better. However it requires that we
additionally compute the stepwise improvementδm

R = R(αm+1)−R(αm) at each iteration. In the
worst case, since the criterion can be writtenR(α) = 1

2α ·(g(α)+w)+w0, the stepwise improvement
δm

R can be computed inO(n) time (assumingg(αm) has already been computed). However for
W2 variants this value can be computed in constant time using (12). In Section 4 wedescribe
experimental results that compare all three stopping rules.

745

HUSH, KELLY, SCOVEL AND STEINWART

2.3 Computing the Offset

We have concluded our description of algorithms for theDecomposition routine in Procedure 1 and
now proceed to describe an algorithm for theOffset routine. According to Theorem 2 this routine
must solve

b̂∈ argmin
b

n

∑
i=1

ui max(0,1−yi(ψ̂ ·φ(xi)+b)) .

An efficient algorithm for determininĝb is enabled by using (5) and (6) to write

1−yiψ̂ ·φ(xi) = 1−yi

(

1
2λ

n

∑
j=1

(α̂ j − l j)k(x j ,xi)

)

= 1−yi(Q(α̂− l))i = yi
(

wi− (Qα̂)i
)

= yigi(α̂) .

This simplifies the problem to

b̂∈ argmin
b

n

∑
i=1

ui max
(

0, yi
(

gi(α̂)−b
))

.

The criterion∑n
i=1ui max

(

0, yi
(

gi(α̂)−b
))

is the sum of hinge functions with slopes−uiyi and
b–interceptsgi(α̂). It is easy to verify that the finite set{gi(α̂), i = 1, ...,n} contains an optimal
solutionb̂. To see this note that the sum of hinge functions creates a piecewise linear surface where
minima occur at corners, and also possibly along flat spots that have a corner at each end. Since the
corners coincide with the pointsgi(α̂) the set{gi(α̂), i = 1, ...,n} contains an optimal solution. The
run time of the algorithm that performs a brute force computation of the criterionfor every member
of this set isO(n2). However this can be reduced toO(nlogn) by first sorting the valuesgi(α̂) and
then visiting them in order, using constant time operations to update the criterionvalue at each step.
The details are shown in Procedure 8 in Appendix 6.

2.4 A Complete Algorithm

We have now described a complete algorithm for computing anεp–optimal solution to the primal
QP problem. A specific realization is provided by (Procedure 1,Section 2) and Procedures 3–8 in
Appendix 6. Multiple options exist for theDecomposition routine depending on the choice of work-
ing set size, pair selection method, and stopping rule. The realization in the appendix implements a
W2variant of the Composite–I decomposition algorithm with Stopping Rule 2 (and is easily modi-
fied to implement the Composite–II algorithm). In the next two sections we complete our run time
analysis of decomposition algorithms.

3. Operational Analysis of Decomposition Algorithms

In this section we use Theorem 5 and Corollary 7 to determine run time bounds for rate certifying
decomposition algorithms that are applied to the L1–SVM and DLD–SVM canonical dual QP prob-
lems. It is clear from Theorem 5 that these bounds will depend on the parametersτ, S, L, R∗ and
ε. Let us consider each of these in turn. In the algorithms below each working set contains either
a max–lp2 pair or a pair whose stepwise improvement is at least as good as that of a max–lp2 pair.
Thus by Corollary 7 we can setτ = 1/(n− 1). Instead however we setτ = 1/n since this value

746

QP ALGORITHMS

is also valid and it greatly simplifies the iteration bounds without changing their basic nature. The
parameterSwill take on a different, but known, value for the L1–SVM and DLD–SVM problems
as described below. Using the definition ofL in Theorem 5 and the definition ofQ in (5) we set
L = K

2λ whereK ≥max1≤i≤nk(xi ,xi). We consider two possibilities forK. The first is the value

Kn = max
1≤i≤n

k(xi ,xi)

which is used to bound the run time for a specific problem instance and the second is the constant

K̄ = sup
x∈X

k(x,x)

which is used to bound the run time for classes of problem instances that usethe same kernel, e.g.
SVM learning problems where the kernel is fixed. In the second case we are interested in problems
whereK̄ is finite. For example for the Gaussian RBF kernelk(x,x′) = e−σ‖x−x′‖2 we obtainK̄ = 1.
The optimal criterion valueR∗ is unknown but restricted to[0,1]. To see this we use (5) to obtain

R(α) = − 1
2

α ·Qα+α ·w+w0 = − 1
2
(α− l) ·Q(α− l)+(α− l) ·y.

Then sincel ∈ A it follows that R∗ ≥ R(l) = 0. Furthermore, using the positivity ofQ and the
definition of l in (3) we obtain that for anyα ∈ A the bound

R(α) = − 1
2
(α− l) ·Q(α− l)+(α− l) ·y ≤ (α− l) ·y ≤ u·1 = 1

holds. We have now considered all the parameters that determine the iterationbound exceptλ and
ε which are chosen by the user.

Recent theoretical results by Steinwart and Scovel (2004, 2005); Scovel et al. (2005b) indicate
that with a suitable choice of kernel and mild assumptions on the distribution the trained classifier’s
generalization error will approach the Bayes error at a fast rate if we chooseλ ∝ n−β, where the rate
is determined (in part) by the choice of 0< β < 1. Although these results hold for exact solutions
to the primal QP problem it is likely that similar results will hold for approximate solutions as long
as εp→ 0 at a sufficiently fast rate inn. However in practice there is little utility in improving
the performance once it is sufficiently close to the Bayes error. This suggests that once we reach
a suitably large value ofn there may be no need to decreaseλ andεp below some fixed values̄λ
andε̄p. Thus, for fixed values̄λ > 0 andε̄p > 0 we call any(λ,εp) that satisfiesλ≥ λ̄ andεp ≥ ε̄p

an operationalchoice of these parameters. When̄K is finite Theorem 2 gives a corresponding

fixed valueε̄ = (2
√

2K̄ +8
√

λ̄)−2λ̄ε̄p
2 > 0 that we use to define an operational choice of the dual

accuracyε.
We begin our analysis by considering decomposition algorithms for the L1–SVM problem.

Although our emphasis is on rate certifying decomposition algorithms, our firsttheorem establishes
a lower bound on the number of iterations forany W2decomposition algorithm.

Theorem 12 Consider the L1–SVM canonical dual with optimal criterion value R∗. Any W2 vari-
ant of Procedure 2 that starts withα0 = l will achieve R∗−R(αm)≤ ε in no less than⌈m̄⌉ iterations
where

m̄ = max

(

0,
n(R∗− ε)

2

)

.

747

HUSH, KELLY, SCOVEL AND STEINWART

Remark 13 When R∗ > ε the minimum number of iterations is proportional to n and increases
linearly with R∗. Thus it is important to understand the conditions where R∗ is significantly larger
than ε. Under very general conditions it can be shown that, with high probability,R∗ ≥ e∗− εn

where e∗ is the Bayes classification error andεn is a term that tends to0 for large n. Thus, for large
n, R∗ will be significantly larger thanε when e∗ is significantly larger thanε, which we might expect
to be common in practice.

We briefly outline a path that can be used to establish a formal proof of theseclaims. Since the
duality gap for the L1–SVM primal and dual QP problems is zero, R∗ is the optimal value of the
primal QP problem (e.g. for finite and infinite dimensional problems respectively see Cristianini
and Shawe-Taylor, 2000; Hush et al., 2005). Furthermore it is easy toshow that R∗ is greater
than or equal to the corresponding empirical classification error (i.e. thetraining error). Therefore
the error deviance result in (Hush et al., 2003) can be used to establish general conditions on the
data set Tn = ((x1,y1), ...,(xn,yn)), the kernel k, and the regularization parameterλ such that the

bound R∗ ≥ e∗− εn holds with probability1− δ, whereεn = O
(

√

ln(
√

n/δ)/n
)

. Since e∗ is a

constant it can be further shown that with a suitably chosen constant c> 0 and a sufficiently large

value n0, then Pr
(

number of iterations≥ n(e∗−ε)
2+c ,∀n≥ n0)

)

≥ 1− δn0 whereδn0 → 0 at a rate

that is exponential in n0. Thus when e∗ > ε we can prove that the number of iterations isΩ(n) with
probability 1.

We now continue our analysis by establishing upper bounds on the computation required for
rate certifying decomposition algorithms applied to the L1–SVM and the DLD–SVMproblems. In
the examples below we establish two types of computation bounds:generic boundswhich hold
for any value ofn, any choice ofλ > 0, and either value ofK; andoperational boundsthat hold
whenK = K̄ is finite and operational choices are made forε andλ. In the latter case we obtain
bounds that are uniform inλ andε and whose constants depend on the operational limitsε̄ andλ̄.
These bounds are expressed usingO(·) notation which suppresses their dependence onK̄, ε̄ and
λ̄ but reveals their dependence onn. In both examples we first consider a general class of rate
certifying decomposition algorithms whose working sets may be larger than 2. For these algorithms
we establish generic and operational bounds on the number of iterations. Then we consider theW2
variants of these algorithms and establish operational bounds on their overall run time.

Example 1 Consider solving the L1–SVM canonical dual using a decomposition algorithm where
each working set includes a certifying pair whose stepwise improvement isat least as good as that
produced by a max–lp2 pair. This includes algorithms where each working set includes a max–
lp2, Composite–I, Composite–II or max–qp2 pair. Applying Theorem 5 with S= 1/n, L = K/2λ,
R∗−R(α0)≤ 1, τ = 1/n andε < 1 gives the generic bound

ḿ≤

2nln

(

1
ε

)

, ε≥ 2K
λn

2n

(

2K
λεn
−1+ ln

(

λn
2K

))

, ε <
2K
λn

(16)

on the number of iterations. With K= Kn this expression gives a bound on the number of iterations
for a specific problem instance. When K= K̄ is finite, operational choices are made forε and λ,

748

QP ALGORITHMS

and n is large the number of iterations is determined by the first case and is O(n). This matches
the lower bound in Remark 13 and is therefore optimal in this sense. For a W2variant that uses
an algorithm from Section 2.1 to compute a max–lp2, Composite–I or Composite–II pair at each
iteration the main loop requires O(n) computation to determine the pair, O(logn) computation to
update the ordered list M, O(1) computation to updateα, and O(n) computation to update the
gradient. Thus the main loop requires a total of O(n) computation. Combining the bounds on
the number of iterations and the computation per iteration we obtain an overallcomputational
requirement of O(n2). In contrast, for a W2 variant that computes a max–qp2 pair at each iteration
the main loop computation will increase. Indeed the current best algorithmfor computing a max–
qp2 pair is a brute force search which requires O(n2) computation and we strongly suspect that
this cannot be reduced to the O(n) efficiency of Simon’s algorithm. Combining this with the lower
bound on the number of iterations in Remark 13 demonstrates that there are cases where the overall
run time of the max–qp2 variant is inferior.

Example 2 Consider solving the DLD–SVM canonical dual using a decomposition algorithm where
each working set includes a certifying pair whose stepwise improvement isat least as good as that
produced by a max–lp2 pair. In this case we can determine a value for S asfollows,

max
i

ui = max

(

1
(1+ρ)n1

,
ρ

(1+ρ)n−1

)

≤max

(

1
n1

,
1

n−1

)

=
1

min(n1,n−1)
:= S

where n1 and n−1 are the number of samples with labels y= 1 and y=−1 respectively as described
in Section 2. Suppose that n1≤ n−1 (results for the opposite case are similar). Applying Theorem 5
with L = K/2λ, R∗−R(α0)≤ 1, andτ = 1/n gives the generic bound

ḿ≤

2nln

(

1
ε

)

, ε≥ 2Kn

λn2
1

2n

(

2Kn

ελn2
1

−1+ ln

(

λn2
1

2Kn

))

, ε <
2Kn

λn2
1

(17)

on the number of iterations. The dependence on n1 distinguishes this bound from the bound in (16).
With K= Kn (17) gives a bound on the number of iterations for a specific problem instance. Suppose
that n1 = Ω(n). Then when K= K̄ is finite, operational choices are made forε andλ, and n is large
the number of iterations is determined by the first case and is O(n). For a W2 variant that uses
an algorithm from Section 2.1 to compute a max–lp2, Composite–I or Composite–II pair at each
iteration the main loop requires O(n) computation. Thus the overall computational requirement is
O(n2).

4. Experiments

The experiments in this section are designed to accomplish three goals: to investigate the utility
of Stopping Rules 1 and 2 by comparing them with Stopping Rule 0, to compare actual versus
worst case computational requirements, and to investigate the computational requirements ofW2
decomposition algorithms that use different pair selection methods. Our focus is on the computa-
tional requirements of the main loop of the decomposition algorithm since this loop contributes a

749

HUSH, KELLY, SCOVEL AND STEINWART

dominating term to our run time analysis, and since the computational requirementsof the other
algorithmic components can be determined very accurately without experimentation. We compare
the four rate certifying pair selection methods (max–qp2, max–lp2, Composite–I, Composite–II)
described in Section 2.1, and a max–violating pair method that we callmax–vps. This max–vps
algorithm is identical to the Composite–I algorithm, except that when choosing between a max–lp2
and max–violating pair we always choose the max–violating pair. To provide objective compar-
isons all algorithms use the same stopping rule. This means that the max–vps algorithm uses a
different stopping rule than existing max–violating algorithms. Nevertheless including the max–
vps algorithm in our experiments helps provide insight into how the algorithms developed here
might compare with existing algorithms.

Our experiments are based on two different problems: a DLD–SVM problem formed from the
Cyber–Security data set described in (Steinwart et al., 2005) and an L1–SVM problem formed
from theSpambasedata set from the UCI repository (Blake and Merz, 1998). All experiments
employ SVMs with a Gaussian RBF kernelk(x,x′) = e−σ‖x−x′‖2. Since a value of the regularization
parameter(λ,σ) that optimizes performance is usually not known ahead of time, the value that
is ultimately used to design the classifier is usually determined through some type ofsearch that
requires running the algorithm with different values of(λ,σ). Thus it is important to understand
how different values, optimal and otherwise, affect the run time. To explore this effect we present
results for two different values,(λ∗,σ∗) and(λ̄, σ̄), obtained as follows. We train the SVM at a set
of grid values and choose(λ∗,σ∗) to be a value that gives the best performance on an independent
validation data set3. Then(λ̄, σ̄) is chosen to be some other grid value encountered during the
search that yielded non–optimal but nontrivial performance (i.e. it achieves some separation of the
training data). For the DLD–SVM the performance is defined by the risk functionR in (Steinwart
et al., 2005) and for the L1–SVM it is the average classification error.

TheCyber–Securitydata set was derived from network traffic collected from a single computer
over a 16-month period. The goal is to build a detector that will recognize anomalous behavior from
the machine. Each data sample is a 12–dimensional feature vector whose components represent real
valued measurements of network activity over a one-hour window (e.g. “average number of bytes
per session”). Anomalies are defined by choosing a uniform reference distribution and a density
level ρ = 1. The parameter values(λ∗,σ∗) = (10−7,10−1) and(λ̄, σ̄) = (.05, .05) were obtained by
employing a grid search withn1:n−1 = 4000:10,000 training samples and 2000:100,000 validation
samples. The solution obtained with parameter values(λ∗,σ∗) separated the training data and gave
a validation risk ofR = 0.00025. The correspondingalarm rate(i.e. the rate at which anomalies
are predicted by the classifier once it is placed in operation) is 0.0005.

TheSpambasedata set contains 4601 samples fromR
d
+×{−1,1} whered = 57. This data set

contains 1813 samples with labely =−1 and 2788 samples with labely = 1. The parameter values
(λ∗,σ∗) = (10−6,10−3) and (λ̄, σ̄) = (10−2,10−3) are obtained by employing a grid search with
3601 training samples and 1000 validation samples. The solution obtained with parameter values
(λ∗,σ∗) did not separate the training data and gave a classification error of 0.093 on the validation
set.

We present results for three experiments.

3. More specifically, for each value ofλ ∈ {1, .5, .1, .05, ..., .000005, .0000001} we search a grid ofσ values that starts
with the set{0.001,0.01,0.05,0.1,0.5,1,5,10,100} and is refined using a golden search as described in (Steinwart
et al., 2005, Section 4).

750

QP ALGORITHMS

Experiment 1 This experiment investigates the utility of Stopping Rules 1 and 2 by comparingthem
with Stopping Rule 0. More specifically we compare the actual criterion gap R∗−R(αm) to the
bounds used by these three stopping rules. We refer to the bounds for Stopping Rules 0, 1, and 2 as
Bounds 0, 1, and 2 respectively. To obtain an estimateR̂∗ of R∗ we run the decomposition algorithm
in Procedure 3 withε = 10−10 and compute the resulting criterion value. Then to obtain results for
comparison we run this algorithm again and compute: the criterion gapR̂∗−R(αm), Bound 1 given
by nσ(αm|Wm

2), Bound 2 obtained from the recursive rule sm = min(nσ(αm|Wm
2),sm−1−δm−1

R), and
Bound 0 given by equation (23) in the proof of Theorem 5.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

Bound 0
Bound 1
Bound 2

R̂∗−Rm

number of iterations

Figure 1: The criterion gap̂R∗−Rm and bounds on this gap employed by Stopping Rules 0, 1 and
2 for theCyber–Securitydata. Bound 0 and 2 are indistinguishable up to about iteration
25, at which point they separate and Bound 2 becomes a monotonically decreasing lower
envelope of Bound 1.

A plot of these values when the algorithm is applied to theCyber–Securitydata with(λ∗,σ∗) =
(10−7,10−1) and n1:n−1 = 4000:10000 is shown in Figure 1. While Bound 1 is a bit erratic Bound
2 is monotonic and relatively smooth. Nevertheless both will stop the algorithm atnearly the same
iteration (unlessε is very close to 1). In addition while Bounds 1 and 2 may be loose, i.e. they are
often several orders of magnitude larger than the actual criterion gap, their behavior tracks that of
the criterion gap relatively well and therefore the corresponding stopping rules are very effective
relative to Rule 0. For example suppose we chooseε = 10−5. Because the initial criterion gap is so
small it takes only about25 iterations for the algorithm to reach this accuracy. Both Stopping Rules
1 and 2 terminate the algorithm after approximately1000iterations, but Stopping Rule 0 terminates
after approximately1.225×1013 iterations (approximately10orders of magnitude more).

Results obtained by applying the algorithm to theSpambasedata with(λ∗,σ∗) = (10−6,10−3)
and n= 4601are shown in Figure 2. In this case the initial criterion gap is larger so the separation
between the criterion gap and the bounds is smaller. Once again Bound 1 is abit erratic, and this
time there are several regions (beyond the initial region) where Bounds1 and 2 are well separated.
This suggests that the monotonic behavior of Bound 2 provides a more robust stopping rule. As be-
fore Bounds 1 and 2 are loose, but their behavior tracks that of the criterion gap relatively well and

751

HUSH, KELLY, SCOVEL AND STEINWART

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06

Bound 0
Bound 1
Bound 2

R̂∗−Rm

number of iterations

Figure 2: The criterion gap̂R∗−Rm and bounds on this gap employed by Stopping Rules 0, 1 and
2 for theSpambasedata. Bound 0 and 2 are close up to about iteration 20,000, at which
point they separate and Bound 2 becomes a monotonically decreasing lowerenvelope of
Bound 1.

therefore the corresponding stopping rules are very effective. For example it takes about200,000
iterations for the algorithm to reach an accuracyε = 10−5, while both Stopping Rules 1 and 2 ter-
minate the algorithm after approximately2,000,000iterations and Stopping Rule 0 terminates after
approximately4×1011 iterations (approximately5 orders of magnitude more). More generally the
number of the excess iterations for Stopping Rule 2 appears to be less than an order of magnitude
for a large range of values ofε.

In both cases above it is clear that Stopping Rules 1 and 2 are far superiorto Stopping Rule 0.

Experiment 2 This experiment compares actual computational requirements for the main loop of
various decomposition algorithms applied to theCyber–Security data. With density levelρ =
1, accuracyε = 10−6, parameter values(λ∗,σ∗) = (10−7,10−1) and (λ̄, σ̄) = (.05, .05), and five
different problem sizes n1:n−1 = 2000:4000, 2500:5000, 3000:6000, 3500:7000, and 4000:8000
we employed the decomposition algorithm with Stopping Rule 2 and pair selectionmethods max–
lp2, Composite–I, Composite–II, max–vps and max–qp2. For each problem size we generated ten
different training sets by randomly sampling (without replacement) the original data set. Then we
ran the decomposition algorithm on each training set and recorded the number of iterations and the
wallclock time of the main loop. The minimum, maximum and average values ofthese quantities
for parameter values(λ∗,σ∗) = (10−7,10−1) are shown in Figure 34. There is much to discern
from the plot on the left. It is easy to verify that for all pair selection methods the numbers of
iterations are several orders of magnitude smaller than the worst case bound given in Example 2.
On average the convergence rate of the max–lp2 method is much worse than the other methods. This
may be partly due to the fact that this method uses only first order informationto determine its pair.

4. In Figures 3–6 the x–axis values of some points are slightly offset so that their y–axis values can be more easily
visualized.

752

QP ALGORITHMS

However, this is also true of the max–vps method whose convergence rate is much faster. Indeed,
it is curious that the max–lp2 method, which chooses a stepwise direction based on a combination
of steepnessand room to move, has a worse convergence rate than the max–vps method, which
chooses a stepwise direction based onsteepnessalone. By slightly modifying the max–lp2 method
to obtain the Composite–I method a much faster convergence rate is observed. The Composite–I

 100

 1000

 10000

 100000

 12000 10500 9000 7500 6000

max–lp2
CompositeI
CompositeII

max–qp2
max–vps

nu
m

be
r

of
ite

ra
tio

ns

number of samples,n

 0

 1

 2

 3

 4

 5

 12000 10500 9000 7500 6000

max–vps

max–lp2
CompositeI
CompositeII

w
al

lc
lo

ck
tim

e
(s

ec
on

ds
)

number of samples,n

Figure 3: Main loop computation forCyber–Securitydata with(λ∗,σ∗) = (10−7,10−1).

 10000

 12000 10500 9000 7500 6000

max–lp2
CompositeI
CompositeII

max–qp2
max–vps

nu
m

be
r

of
ite

ra
tio

ns

number of samples,n

 0

 5

 10

 15

 20

 25

 30

 12000 10500 9000 7500 6000

max–vps

max–lp2
CompositeI
CompositeII

w
al

lc
lo

ck
tim

e
(s

ec
on

ds
)

number of samples,n

Figure 4: Main loop computation forCyber–Securitydata with(λ̄, σ̄) = (.05, .05). The number of
iterations in the left plot is identical for all five methods for all values ofn. The wallclock
time in the right plot is indistinguishable for the Composite–I, max–vps and max–lp2
methods.

and max–vps methods have roughly the same convergence rate. This suggests that Composite–I may
be achieving its improved rate by choosing a max–violating pair a large fraction of the time. Indeed,
on a typical run of the Composite–I method we found that, among the 53% of the iterations where
the max–lp2 and max–violating pairs were different, a max–violating pair waschosen 4.3 times as

753

HUSH, KELLY, SCOVEL AND STEINWART

often. Although a larger stepwise improvement does not guarantee a faster convergence rate the
max–qp2 method, which gives the largest stepwise improvement, also gave the fastest convergence
rate. However the Composite–II method, which requires far less computation than the max–qp2
method, gave nearly the same convergence rate. Quantitatively the average number of iterations for
the max–lp2 method is roughly 9 times that of Composite–II, while the average number of iterations
for Composite–I is roughly 2 times that of Composite–II. The variation in the number of iterations
is smallest for Composite–II and max–qp2, followed by Composite–I and max–vps, and then max–
lp2. This variation ranges from 2x to 8x across the different sample sizes and methods. The plot on
the right shows the wallclock times. The times for the max–qp2 method are omitted because they
are much larger than the rest. Indeed they are roughly n times larger thanthe wallclock times for
Composite–II. The Composite–II method achieved the fastest average wallclock times which were
roughly 6.8 times faster than the max–lp2 method and 1.6 times faster than the Composite–I and
max–vps methods.

Results for parameter value(λ̄, σ̄) = (.05, .05) are shown in Figure 4. The computational re-
quirements here are greater than with the previous parameter value. We attribute this primarily to
the fact that R∗ is larger so that the initial criterion gap is larger. The larger value ofλ corresponds
to a strong regularization term that produces a solution where all components ofα are forced from
their initial values at one bound to their final values at the opposite bound. To move all n1 + n−1

components ofα to their opposite bound using working sets that contain one sample from each
class requires n−1 iterations (since n−1 > n1) and this is exactly what the algorithms did for all five
pair selection methods on every training set. This is a quintessential exampleof a problem where
the number of iterations must be (at least) a significant fraction of the number of training samples
regardless of which algorithm is used. The resulting solution has the simple interpretation that its
normal vector is the difference in class means. The wallclock times of the max–lp2, Composite–I
and max–vps algorithms are roughly 5 times faster than the Composite–II algorithm because of the
extra computation per iteration employed by Composite–II. The relationshipbetween the number
of iterations and the training set size is demonstrably linear, and the relationship between the wall-
clock times and the training set size is demonstrably quadratic. These relations coincide with the
linear and quadratic forms predicted by the analysis in Section 3.

Experiment 3 This experiment is similar to the previous experiment except that the algorithms are
applied to theSpambasedata. With accuracyε = 10−6, parameter values(λ∗,σ∗) = (10−6,10−3)
and(λ̄, σ̄)= (10−2,10−3), and seven different problem sizes n= 1000,1500,2000,2500,3000,3500,
4000we employed the decomposition algorithm with Stopping Rule 2 and pair selectionmethods
max–lp2, Composite–I, Composite–II, max–vps and max–qp2. We ranthe decomposition algorithm
on ten different training sets for each problem size and recorded the number of iterations and the
wallclock time of the main loop. The minimum, maximum and average values ofthese quantities for
runs with parameter values(λ∗,σ∗) = (10−6,10−3) are shown in Figure 5. Once again it is easy to
verify that for all pair selection methods the numbers of iterations in the left plotare several orders
of magnitude smaller than the worst case bound given in Example 1. In addition the convergence
rate is fastest for the Composite–II and max–qp2 methods, followed by the Composite–I and max–
vps methods, and then the max–qp2 method. In this case it appears that the max–vps method has
a slight edge on the Composite–I method. On a typical run of the Composite–I method we found
that, among the 64% of the iterations where the max–lp2 and max–violating pairs were different, a
max–violating pair was chosen 3.9 times as often. The variation in the number of iterations, which

754

QP ALGORITHMS

ranges from 2x to 4x across the different sample sizes and methods, is smallest for Composite–II
and max–qp2, followed by Composite–I and max–vps, and then max–lp2. Quantitatively the aver-
age number of iterations for max–lp2, Composite–I and max–vps is roughly 92, 13 and 11 times that
of Composite–II respectively. In addition the average wallclock times of themax–lp2, Composite–I
and max–vps are roughly 23.6, 3.8 and 2.5 times that of Composite–II respectively. Once again the
plot on the right does not show the wallclock times for the max–qp2 method, but they are roughly
n/4 times that of the Composite–II method.

 10000

 100000

 1e+06

 1e+07

 1e+08

 4000 3500 3000 2500 2000 1500 1000

max–lp2
CompositeI
CompositeII

max–qp2
max–vps

nu
m

be
r

of
ite

ra
tio

ns

number of samples,n

 0

 5

 10

 15

 20

 25

 30

 35

 4000 3500 3000 2500 2000 1500 1000

max–lp2
CompositeI
CompositeII

max–vps

w
al

lc
lo

ck
tim

e
(m

in
ut

es
)

number of samples,n

Figure 5: Main loop computation forSpambasedata:(λ∗,σ∗) = (10−6,10−3).

 100

 1000

 10000

 4000 3500 3000 2500 2000 1500 1000

max–lp2
CompositeI
CompositeII

max–vps
max–qp2

nu
m

be
r

of
ite

ra
tio

ns

number of samples,n

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 4000 3500 3000 2500 2000 1500 1000

max–lp2
CompositeI
CompositeII

max–vps

w
al

lc
lo

ck
tim

e
(m

in
ut

es
)

number of samples,n

Figure 6: Main loop computation forSpambasedata:(λ̄, σ̄) = (10−2,10−3). The number of itera-
tions in the left plot is similar for all three methods. The wallclock time in the right plot
is nearly indistinguishable for the Composite–I and max–lp2 methods.

The results for parameter values(λ̄, σ̄) = (10−2,10−3) are shown in Figure 6 and indicate a
significant decrease in the computational requirements. This decreasein computation as a result
of a larger λ is opposite to what we observed in Experiment 2. We attribute this to the fact that

755

HUSH, KELLY, SCOVEL AND STEINWART

the switch from(λ∗,σ∗) to (λ̄, σ̄) did not yield a big change in the initial criterion gap as it did
in Experiment 2. However most other characteristics of the solutions produced here are similar to
those in Experiment 2. Indeed the number of iterations is roughly the samefor all five pair selec-
tion methods and the wallclock times for the max–lp2, Composite–I and max–vps algorithms are
approximately 5 times faster than Composite–II. In addition the relationships between the number
of iterations, the wallclock times, and the training set size coincide with the linearand quadratic
forms predicted by the analysis in the previous section.

For the L1–SVM the gap between the lower and upper iteration bounds is smaller whenλ is
larger. Indeed, for largeλ and largen the lower bound isn2(R∗− ε) and the upper bound is 2nln R∗

ε .
WhenR∗ is large these two values may differ by no more than a factor of 10. This partially explains
why the computational requirements for the strongly regularized problem instances in Experiments
2 and 3 exhibit such a low variance and coincide so well with the predicted linear and quadratic
forms. In these cases the max–lp2, Composite–I and max–vps algorithms are fastest because they
require less computation per iteration. On the other hand, in instances where(λ,σ) give near–
optimal performance the values ofλ are smaller and so the gaps between the lower and upper bounds
are often much larger. In these cases the actual computation is often not close to either bound,
the variance is higher, and the Composite–II algorithm is the fastest because it requires far fewer
iterations. In addition these near–optimal values ofλ can give a smaller value forR∗, especially
when they yield a solution that separates the training data. In such cases theinitial criterion gap is
smaller and the run times are often faster. This is the most likely explanation for the significantly
lower computational requirements for theCyber–Securityexperiments.

5. Summary

We have described SVM classifier design algorithms that allow a different weight for each training
sample. These algorithms accept an accuracyεp of a primal QP problem as input and are guaran-
teed to produce an approximate solution that satisfies this accuracy in low order polynomial time.
They employ a two–stage process where the first stage produces an approximate solution to a dual
QP problem and the second stage maps this approximate dual solution to an approximate primal
solution. For the second stage we have described a simpleO(nlogn) algorithm that maps an ap-
proximate dual solution with accuracy(2

√
2K +8

√
λ)−2λε2

p to an approximate primal solution with
accuracyεp. For the first stage we have presented new results for decomposition algorithms and we
have described decomposition algorithms that employ new pair selection methodsand new stopping
rules.

Forτ–rate certifyingdecomposition algorithms we have established the optimality ofτ = 1/(n−
1) and described several pair selection methods (max–qp2, max–lp2, Composite–I, Composite–II)
that achieve theτ = 1/(n−1) iteration bound. We have also introduced new stopping rules that are
computationally efficient and that guarantee a specified accuracy for theapproximate dual solution.
While these stopping rules can be used by any decomposition algorithm they are especially attractive
for the algorithms developed here because they add a negligible amount of computation to the main
loop.

Since the pair selection methods (max–lp2, Composite–I, Composite–II) requireO(n) computa-
tion they yieldW2decomposition algorithms that require onlyO(n) computation in the main loop.
In addition, for the L1–SVM dual QP problem we have described operational conditions for which
theseW2 decomposition algorithms possess an upper bound ofO(n) on the number of iterations.

756

QP ALGORITHMS

For this same problem we have presented a lower bound forany W2decomposition algorithm and
we have described general conditions for which this bound isΩ(n). Combining the bounds on main
loop computation with the bounds on number of iterations yields an overall run timeof O(n2). Our
experiments suggest that the pair selection algorithms with the most promise are the Composite–I
and Composite–II algorithms which were obtained through a simple extension ofSimon’s algo-
rithm.

Once the run time of the decomposition algorithm has been established it is straightforward to
determine the run time of the main routine in Procedure 1. Letck be an upper bound on the time it
takes to perform a kernel evaluation. For an instance of L1–SVM whereK̄ is finite and operational
choices are made forεp andλ Procedure 1 takesO(ckn2) time to compute the parameters for the
canonical dual on lines 7-8,O(n) time to setα0 on line 9,O

(

n2
)

time to compute an approximate
dual solution on line 10, andO(nlogn) time to compute the offsetb̂ on line 11. Thus, the overall run
time isO(n2(ck+1)). This run time analysis assumes that the matrixQ is computed once and stored
in main memory for fast (constant time) access. However the storage requirements for this matrix
may exceed the size of main memory. If this issue is resolved by computing a kernel evaluation
each time an element ofQ is accessed then the time to compute an approximate dual solution is
multiplied byck. On the other hand if the elements ofQ are cached in a block of main memory so
that the average access time for an element ofQ is βck, where 0< β ≤ 1 is determined by the size
and replacement strategy for the cache, then the multiplier is reduced toβck for the average case. It
is an interesting topic of future research to determine how the different pairselection methods affect
the efficiency of the cache.

We note that algorithmic enhancements such as the shrinking heuristic in (Joachims, 1998) can
easily be adapted to the algorithms presented here. In addition, the algorithms inthis paper have
been developed for the SVM formulation in (1), but similar algorithms with the samerun time
guarantees can be developed for the 1-CLASS formulation of Schölkopf et al. (2001) which has a
similar form for the dual.

6. Proofs

The following lemma is used in the proofs of Theorems 5 and 8. It provides upper and lower bounds
on the improvement in criterion value obtained by solving the restricted QP problem determined by
a feasible pointα and anarbitrary working setWq.

Lemma 14 Consider the canonical dual QP problem in (4) with Gram matrix Q, constraint vector
u, feasible setA , criterion function R, and optimal criterion value R∗. For α ∈ A and a size q
working set Wq let

αq ∈ arg max
γ∈A (α,Wq)

R(γ)

be a solution to the QP problem at(α,Wq). Then

R(αq)−R(α) ≤ σ(α|Wq). (18)

Furthermore, for(σ̄,L,Uq) satisfyingσ̄≤ σ(α|Wq), L≥maxiQii , and

sup
{Vq:Vq⊆Wn}

∑
i∈Vq

u2
i ≤ Uq

757

HUSH, KELLY, SCOVEL AND STEINWART

where the supremum is over all size p subsets of Wn, the following bound holds,

R(αq)−R(α) ≥
{

σ̄/2, σ̄≥ qLUq
σ̄2

2qLUq
, σ̄ < qLUq

. (19)

Proof First we prove the upper bound. From the positivity ofQ and the definition ofσ we obtain

R(αq)−R(α) = g(α) · (αq−α)− 1
2
(αq−α) ·Q(αq−α) ≤ g(α) · (αq−α) ≤ σ(α|Wq).

Now we prove the lower bound. Let

άq ∈ arg max
γ∈A (α,Wq)

g(α) · (γ−α)

be a solution to the LP problem at(α,Wq) and consider the directiondq := άq−α. The improvement
in criterion value for any feasible point in this direction cannot be larger than the improvement for
αq, i.e.

R(αq)−R(α)≥ R(α+ωdq)−R(α), 0≤ ω≤ 1. (20)

To obtain a lower bound for the right side we start by writing

R(α+ωdq)−R(α) = ωg(α) ·dq−
ω2

2
dq ·Qdq = ωσ(α|Wq)−

ω2

2
dq ·Qdq ≥ ωσ̄− ω2

2
dq ·Qdq.

Note thatdq has at mostq nonzero components determined by the members ofWq. Let Qq be the
q×q matrix formed from the elementsQi j : i, j ∈Wq, and letλmax(Qq) and trace(Qq) be the largest
eigenvalue and the trace ofQp. SinceQ≥ 0⇒Qp≥ 0 we haveλmax(Qq)≤ trace(Qq)≤ qL. Thus

dq ·Qdq ≤ λmax(Qq)(dq ·dq) ≤ qL ∑
i∈Wq

u2
i ≤ qLUq

and therefore

R(α+ωdq)−R(α) ≥ ωσ̄− ω2

2
qLUq.

Choosingω ∈ [0,1] to maximize the right side gives

ω∗ =

{

1, σ̄≥ qLUq
σ̄

qLUq
, σ̄ < qLUq

so that

R(α+ω∗dq)−R(α)≥
{

σ̄− qLUq

2 , σ̄≥ qLUq
σ̄2

2qLUq
, σ̄ < qLUq

. (21)

The first case satisfies

σ̄− qLUq

2
≥ σ̄/2

so that

R(α+ω∗dq)−R(α)≥
{

σ̄/2, σ̄≥ qLUq
σ̄2

2qLUq
, σ̄ < qLUq

.

758

QP ALGORITHMS

Combining this result with (20) gives the result in (19).

Proof [Proof of Theorem 5] This proof is a slight modification of the proof in (List and Simon,
2005, Section 3.3) so we describe only the main differences. The basic approach is to obtain an
upper bound on the number of iterations by deriving a lower bound on the stepwise improvement.
The first difference is based on an idea from the proof of Hush and Scovel (2003, Theorem 5). Let
Wm

2 ⊆Wm be aτ–rate certifying pair forαm. The stepwise improvement withWm is at least as good
as the stepwise improvement withWm

2 and therefore

R(αm+1)−R(αm)≥ R(άm+1)−R(αm) (22)

whereάm+1 is a solution to the two–variable QP problem at(αm,Wm
2). Define

∆m := R∗−R(αm).

Sinceσ(αm|Wm
2)≥ τ∆m (see Hush and Scovel, 2003; List and Simon, 2005) we can bound the right

side of (22) by applying the lower bound in (Lemma 14, Equation (19)) withq = 2, σ̄ = τ∆m, and
U2 = 2S to obtain

R(άm+1)−R(αm) ≥
{

τ∆m

2 , ∆m≥ 4LS2

τ
(τ∆m)2

8LS , ∆m < 4LS2

τ
.

Combining this result with (22) and usingR(αm+1)−R(αm) = ∆m−∆m+1 we obtain

∆m+1≤
(

1− τ
2

)

∆m, when∆m≥ 4LS2

τ

∆m+1≤ ∆m− γ(∆m)2, when∆m <
4LS2

τ

whereγ = τ2/8LS2. This is essentially the same result obtained in (List and Simon, 2005, p. 316)
except that here we have 4L in place of the termqLmax in (List and Simon, 2005) whereq is the
size of the working setWm andLmax is the largest among the eigenvalues of all the principleq×q
submatrices ofQ. To complete the proof we follow the steps in (List and Simon, 2005, Section 3.3)
until the bottom of page 317 where we retain the (slightly) tighter bound

δm≥ δm0 + γ(m−m0)

where, in our case,δm0 ≥ τ/4LS2. This gives a bound on the criterion gap

∆m≤ 1
δm0 + γ(m−m0)

(23)

which leads to the “-1” term in the second part of our expression for ´m and ensures that the expres-
sions in first and second parts match at the boundary whereε = 4LS2

τ .

Proof [Proof of Theorem 6:] We start by proving the first assertion. To simplifynotation we write
g as a shorthand forg(α). Since settinǵα = α givesg · (ά−α) = 0 it follows thatσ(α|Wn) ≥ 0.
Similarly σ(α|W2)≥ 0 for allW2⊆Wn. Thus whenσ(α|Wn) = 0 it follows that the assertion is true.
Therefore let us assumeσ(α|Wn) > 0.

759

HUSH, KELLY, SCOVEL AND STEINWART

Let
W∗2 ∈ arg max

W2⊆Wn

σ(α|W2).

We start by deriving an expression forσ(α|W∗2). A two–variable problem with working setW2 =
{ j,k} satisfies

σ(α|W2) = sup
ά∈A (α,W2)

g· (ά−α) = sup
α+d∈A (α,W2)

g·d

= sup
d j =−dk

−α j ≤ d j ≤ u j −α j

−αk ≤ dk ≤ uk−αk

d jg j +dkgk

= sup
−α j ≤ d j ≤ u j −α j

αk−uk ≤ d j ≤ αk

d j(g j −gk)

= ∆ jk(g j −gk)

where

∆ jk =

min(u j −α j ,αk), g j > gk

−min(α j ,uk−αk), g j < gk

0, g j = gk

.

The expression forσ(α|W∗2) is obtained by maximizing over all pairs,

σ(α|W∗2) = max
{ j,k}⊆Wn

∆ jk(g j −gk). (24)

Now write
σ(α|Wn) = sup

ά∈A
g· (ά−α) = sup

α+d∈A
g·d = sup

d∈D
g·d

where
D = {d : d ·1 = 0,−αi ≤ di ≤ ui−αi}.

Let d∗ be a solution so that
σ(α|Wn) = g·d∗.

The intuition for what follows is that we will (implicitly) decomposed∗ into

d∗ = d̄1 + . . .+ d̄p

such thatp≤ n−1, and for everyi ∈ {1, . . . , p} d̄i has only two non-zero components andα + d̄i

is feasible atα. Define the index sets

I+ = {i : d∗i > 0}, I− = {i : d∗i < 0}

760

QP ALGORITHMS

and write
σ(α|Wn) = ∑

i∈I+

d∗i gi + ∑
i∈I−

d∗i gi .

Note thatσ(α|Wn) 6= 0 andd∗ ·1 = 0 imply that bothI+ andI− are non–empty. We decompose the
right hand side into a sum of two–variable terms by applying the following recursion. Initialize with
m= 0, d0

i = d∗i , I0
+ = I+, I0

− = I−, and

h0 = ∑
i∈I0

+

d0
i gi + ∑

i∈I0
−

d0
i gi .

Then whilehm 6= 0 choose an index pair(jm,km) ∈ Im
+ × Im

−, defineδ jmkm = min(dm
jm,−dm

km
), and

define
hm+1 = ∑

i∈Im+1
+

dm+1
i gi + ∑

i∈Im+1
−

dm+1
i gi

where

dm+1
i =

dm
i −δ jmkm, i = jm

dm
i +δ jmkm, i = km

dm
i , i 6= jm or km

(25)

and
Im+1
+ = {i : dm+1

i > 0}, Im+1
− = {i : dm+1

i < 0}.
This gives the recursion

hm+1 = hm−δ jmkm(g jm−gkm).

From equation (25) it follows that

dm∈ D ⇒ dm+1 ∈ D.

Thus if hm+1 6= 0 then bothIm+1
+ andIm+1

− are non–empty verifying the existence of an index pair
for the next iteration. Furthermore, the definition ofδ jmkm implies that eitherdm+1

jm = 0 or dm+1
km

= 0
(or both) so that the size of the index sets decreases by at least one at each iteration, i.e.

|Im+1
+ ∪ Im+1

− | ≤ |Im
+ ∪ Im

−|−1.

Therefore at least one of the index sets becomes empty after at mostn−1 iterations. Furthermore
dm · 1 = 0 implies that both index sets become empty at the same iteration. Thus this recursion
decomposes the original sum as follows

σ(α|Wn) = h0 = δ j1k1(g j1−gk1) + δ j2k2(g j2−gk2) + ... + δ jpkp(g jp−gkp) (26)

where p≤ n− 1. Let q be the index corresponding to the largest of these terms and letσ jqkq =
δ jqkq(g jq−gkq) be its value. Then (26) implies

σ jqkq ≥
σ(α|Wn)

p
≥ σ(α|Wn)

n−1
. (27)

Furthermore if we combine the fact thatσ jqkq > 0 impliesg jq−gkq > 0 with the definitions ofdq

and∆ jqkq we obtain

δ jqkq = min(dq
jq,−dq

kq
)≤min(u jq−α jq,αkq) = ∆ jqkq.

761

HUSH, KELLY, SCOVEL AND STEINWART

Finally, combining this result with (27) and (24) gives

σ(α|Wn)

n−1
≤ σ jqkq = δ jqkq(g jq−gkq) ≤ ∆ jqkq(g jq−gkq) = σ(α|{ jq,kq})≤ σ(α|W∗2)

which completes the proof of the first assertion.
To prove the second assertion it suffices to give an example of a probleminstance and a valueα∈

A such that the equality holds. For the primal problem in (1) lety = (y+,y−) wherey+ = (1, ...,1)
andy− = (−1, ...,−1) are vectors whose lengths are not yet specified. Letu be decomposed into
corresponding components so thatu = (u+,u−). For the corresponding canonical dual problem
consider the feasible valueα = (0,u−) (which is the initial value ofα in Procedure 1). This gives
g = y. If u+ ·1 = u− ·1 then it is easy to verify that

σ(α|Wn) = sup
ά∈A (α,Wn)

g· (ά−α) = y·
((

u+,0
)

−
(

0,u−
))

=
(

y+,y−
)

·
(

u+,−u−
)

= 1·u = 1 ,

and
max

W2⊆Wn

σ(α|W2) = max
(j,k)

(

min(u j −α j ,αk)(g j −gk)
)

= 2min(u+
∗ ,u−∗)

whereu+
∗ is the largest component value ofu+, andu−∗ is the largest component value ofu−. Thus

any problem whereu+ ·1= u− ·1 and min(u+
∗ ,u−∗) = 1

2(n−1) yields the relationship we seek and fin-

ishes the proof. For example this condition is satisfied byu+ = (1/2) andu− =
(

1
2(n−1) , ...,

1
2(n−1)

)

.

Proof [Proof of Corollary 7:] This proof follows directly from the proof of Theorem 5 since by
assumption the stepwise improvement ofDECOMP satisfies (22) and the rest of the proof follows
without modification.

Proof [Proof of Theorem 8:] Letαp andαn be solutions to the QP problem at(α,Wp) and(α,Wn)
respectively. SinceR(αp)≤ R∗ andR(αn) = R∗ we obtain

R(αp)−R(α) ≤ R∗−R(α) = R(αn)−R(α).

Applying (Lemma 14, Equation (19)) withq = p and σ̄ = σ(α|Wp) on the left, and (Lemma 14,
Equation (18)) withq = n on the right gives

σ(α|Wp)

2
min

(

1,
σ(α|Wp)

pLUp

)

≤ R∗−R(α) ≤ σ(α|Wn).

If Wp contains aτ–rate certifying pair thenσ(α|Wn)≤ σ(α|Wp)
τ and the proof is finished.

Proof [Proof of Theorem 12:] Use (3) to determine the dual variables ˆa anda0 corresponding to
α̂ andα0 respectively. This givesa0 = 0. Lets be the number of nonzero components of ˆa. Since

762

QP ALGORITHMS

a0 = 0 and aW2 decomposition algorithm can change only two components at each iteration the
number of iterationsm required to reach ˆa satisfiesm≥ s/2. Furthermore since ˆai ≤ 1/n we obtain
s/n≥ â·1 and therefore

m ≥ nâ·1
2

.

Sinceâ is anε–optimal solution

−1
2

â·Qâ+ â·1 ≥ R∗− ε

and sinceQ is positive semi–definite this implies ˆa·1 ≥ R∗− ε and thereforem ≥ n(R∗−ε)
2 .

Appendix A. Algorithms

A complete algorithm that computes anεp–optimal solution to the primal QP problem is provided
by the (Procedure 1,Section 2) and Procedures 3–8 in this appendix. Procedure 3 implements aW2
variant of the Composite–I decomposition algorithm with Stopping Rule 2. Procedure 4 implements
Simon’s algorithm where the values in (11) are stored in a list of 3–tuples of the form(µ, i,ς) whereµ
is a value from (11),i is the index of the corresponding component ofα, andς∈ {+,−} is a symbol
indicating the entry type (in particularςl = + whenµl = ui l −αi l andςl = − whenµi l = αi l). The
algorithm scans the ordered list and saves the index pair that maximizesσ(α|{ j,k}) as described in
Section 2.1. Since this algorithm tracks the indices of the maximum and minimum gradient values it
also produces a max–violating pair when it exits the loop. Procedure 5 computes the initial gradient,
the initial list M, and an initial upper bounds0 = 1 on the criterion gapR∗−R(α0). The run time
of this procedure isO(n2) as determined by the gradient computation. Procedure 6 computes the
stepwise improvement for theWmlp2 andWmv pairs and then updatesα according to the pair with the
largest improvement. This routine runs inO(1) time. Procedure 7 shows the deletions and insertions
required to update theM–list. With the appropriate data structure each of these insert and delete
operations can be performed inO(logn) time. Procedure 8 implements theO(nlogn) algorithm
described in Section 2.3.

References

Jose L. Balcazar, Yang Dai, and Osamu Watanabe. Provably fast training algorithms for support
vector machines. InProceedings of the 1st International Conference on Data Mining ICDM,
pages 43–50, 2001. URLciteseer.ist.psu.edu/590348.html.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases,1998. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

C.C. Chang, C.W. Hsu, and C.J. Lin. The analysis of decomposition methods for support vector
machines.IEEE Transactions on Neural Networks, 11(4):1003–1008, 2000.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM : a library for support vector machines, 2001.

763

HUSH, KELLY, SCOVEL AND STEINWART

Procedure 3The Composite–I Decomposition Algorithm.

1: Decomposition(Q,w,c,u,ε,α0)
2:

3: (g0,M0,s0)← Initialize (Q,w,u,α0)
4: m← 0
5: repeat
6: (Wm

mlp2,W
m
mv,σm)← Simon(gm,Mm)

7: if (σm = 0) then
8: Return(αm,gm)
9: end if

10: (αm+1,δm
R,Wm)← CompositeUpdate(αm,gm,Q,Wm

mlp2,W
m
mv)

11: gm+1← gm−Q(αm+1−αm)
12: Mm+1← UpdateMlist(Mm,Wm,αm,αm+1)
13: sm+1←min((n−1)σm,sm)−δm

R
14: m←m+1
15: until

(

sm≤ ε
)

16: Return(αm,gm)

Procedure 4This routine uses Simon’s algorithm to compute a max–lp2 pairWmlp2. It also com-
putes and returns a max–violating pairWmv and the valueσ∗ = σ(α|Wmlp2). It assumes thatM is an
sorted list arranged in nonincreasing order by the value of first component.

1: Simon(g, M) { M =
[

(µ, i,ς)1,(µ, i,ς)2, ...,(µ, i,ς)2n
]

}
2:

3: imax← 0, imin← 0, gmax←−∞, gmin← ∞, σ∗← 0, Wmlp2← /0
4: k← 1
5: while (µk > 0) do
6: if ((ςk = +1) and(gik > gmax)) then
7: gmax← gik, imax← ik
8: if (µk(gmax−gmin) > σ∗) then
9: Wmlp2←{imax, imin}, σ∗← µk(gmax−gmin)

10: end if
11: else if((ςk =−1) and(gik < gmin)) then
12: gmin← gik, imin← ik
13: if (µk(gmax−gmin) > σ∗) then
14: Wmlp2←{imax, imin}, σ∗← µk(gmax−gmin)
15: end if
16: end if
17: k← k+1
18: end while
19: Wmv←{imax, imin}
20: Return(Wmlp2, Wmv, σ∗)

764

QP ALGORITHMS

Procedure 5This routine accepts a feasible valueα and computes the corresponding gradientg, a
list M of 3–tuples(µ, i,ς) sorted byµ, and a trivial bounds= 1 onR∗−R(α).

1: Initialize(Q,w,u,α)
2:

3: g←−Qα+w
4: M← /0
5: for (i = 1, ...,n) do
6: M← Insert(M,(αi , i,−))
7: M← Insert(M,(ui−αi , i,+))
8: end for
9: s← 1

10: Return(g,M,s)

Procedure 6This routine computes the stepwise improvements for a max–lp2 pairWmlp2 and a
max–violating pairWmv, and then updatesα using the pair with the largest stepwise improvement.
It returns the new value ofα, and the corresponding stepwise improvement value and index pair.

1: CompositeUpdate(αold, g, Q, Wmlp2, Wmv)
2:

3: {i1, i2}←Wmlp2

4: δg← gi1−gi2, q←Qi1i1 +Qi2i2−2Qi1i2, ∆mlp2 = min
(

ui1−αold
i1 ,αold

i2

)

5: if (δg > q∆mlp2) then

6: δmlp2← ∆mlp2

(

δg− q∆mlp2

2

)

7: else
8: δmlp2←

δ2
g

2q, ∆mlp2← δg

q
9: end if

10:

11: { j1, j2}←Wmv

12: δg← g j1−g j2, q←Q j1 j1 +Q j2 j2−2Q j1 j2, ∆mv = min
(

u j1−αold
j1 ,αold

j2

)

13: if (δg > q∆mv) then

14: δmv← ∆mv

(

δg− q∆mv
2

)

15: else
16: δmv←

δ2
g

2q, ∆mv← δg

q
17: end if
18:

19: if (δmlp2 > δmv) then
20: αnew

i1 ← αold
i1 +∆mlp2, αnew

i2 ← αold
i2 −∆mlp2

21: Return(αnew, δmlp2, Wmlp2)
22: else
23: αnew

j1 ← αold
j1 +∆mv, αnew

j2 ← αold
j2 −∆mv

24: Return(αnew, δmv, Wmv)
25: end if

765

HUSH, KELLY, SCOVEL AND STEINWART

Procedure 7This routine updates the sorted listM.

1: UpdateMlist (M,W,αold,αnew)
2:

3: {i1, i2}←W
4: M← Delete

(

M,(αold
i1 , i1,−)

)

5: M← Delete
(

M,(ui1−αold
i1 , i1,+)

)

6: M← Delete
(

M,(αold
i2 , i2,−)

)

7: M← Delete
(

M,(ui2−αold
i2 , i2,+)

)

8: M← Insert
(

M,(αnew
i1 , i1,−)

)

9: M← Insert
(

M,(ui1−αnew
i1 , i1,+)

)

10: M← Insert
(

M,(αnew
i2 , i2,−)

)

11: M← Insert
(

M,(ui2−αnew
i2 , i2,+)

)

12: Return(M)

Procedure 8This routine determines the offset parameter according to Theorem 2. Notethat the
inputg is the gradient vector from the canonical dual solution.

1: Offset(g,y,u)
2:

3: s+← ∑i:yi=1ui , s−← 0
4:
(

(ḡ1, ȳ1, ū1), ...,(ḡn, ȳn, ūn)
)

← SortIncreasing
(

(g1,y1,u1), ...,(gn,yn,un)
)

5: L← ∑i:ȳi=1 ūi(ḡi− ḡ1)
6: L∗← L, b← ḡ1

7: for (i = 1, ...,n−1) do
8: if (ȳi = 1) then
9: s+← s+− ūi

10: else
11: s−← s−+ ūi

12: end if
13: L← L− (ḡi+1− ḡi)(s+−s−)
14: if (L < L∗) then
15: L∗← L, b← ḡi+1

16: end if
17: end for
18: Return(b)

766

QP ALGORITHMS

P.-H. Chen, R.-E. Fan, and C.-J. Lin. Training support vector machinesvia SMO–type decompo-
sition methods. InProceedings of the 16th International Conference on Algorithmic Learning
Theory, pages 45–62, 2005.

P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study on SMO-type decomposi-
tion methods for support vector machines. Technical report, 2006. URL
http://www.csie.ntu.edu.tw/∼cjlin/papers.html. to appear in IEEE Transactions
on Neural Networks.

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-
based Learning Methods. Cambridge University Press, Canbridge ; United Kingdom, 1st edition,
2000.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information for
training support vector machines.Journal of Machine Learning Research, 6:1889–1918, 2005.

C.-W. Hsu and C.-J. Lin. A simple decomposition algorithm for support vectormachines.Machine
Learning, 46:291–314, 2002.

D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support vector machines.
Machine Learning, 51:51–71, 2003.

D. Hush, C. Scovel, and I. Steinwart. Stability of unstable learning algorithms.
Technical report, Los Alamos National Laboratory LA-UR-03-4845, 2003. URL
http://wwwc3.lanl.gov/ml/pubs ml.shtml. submitted for publication.

D. Hush, C. Scovel, and I. Steinwart. Polynomial time algorithms for computing approximate SVM
solutions with guaranteed accuracy. Technical report, Los Alamos National Laboratory LA-UR
05-7738, 2005. URLhttp://wwwc3.lanl.gov/ml/pubs ml.shtml.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C.J.C. Burges, and A.J.
Smola, editors,Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge,
MA, 1998.

S.S. Keerthi and E.G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier
design.Machine Learning, 46:351–360, 2002.

S.S. Keerthi and C.J. Ong. On the role of the threshold parameter in SVM training algorithms.
Control Division Technical Report CD-00-09, Dept. of Mechanical and Production Engineering,
National University of Singapore, 2000.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. A fast iterative nearest point
algorithm for support vector machine classifier design.IEEE Transactions on Neural Networks,
11:637–649, 2000.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements to Platt’s SMO
algorithm for SVM classifier design.Neural Computation, 13:637–649, 2001.

D. Lai, N. Mani, and M. Palaniswami. A new method to select working sets for faster training for
support vector machines. Technical Report MESCE–30–2003, Dept.Electrical and Computer
Systems Engineering, Monash University, Australia, 2003.

767

HUSH, KELLY, SCOVEL AND STEINWART

P. Laskov. Feasible direction decomposition algorithms for training supportvector machines.Ma-
chine Learning, 46(1–3):315–349, 2002.

S.-P. Liao, H.-T. Lin, and C.-J. Lin. A note on the decomposition methods for support vector
regression.Neural Computation, 14:1267–1281, 2002.

C.-J. Lin. Linear convergence of a decomposition method for support vector machines. Technical
Report, 2001a. URLhttp://www.csie.ntu.edu.tw/∼cjlin/papers.html.

C.-J. Lin. On the convergence of the decomposition method for support vector machines.IEEE
Transactions on Neural Networks, 12:1288–1298, 2001b.

C.-J. Lin. A formal analysis of stopping criteria of decomposition methods forsupport vector
machines.IEEE Transactions on Neural Networks, 13:1045–1052, 2002a.

C.-J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transac-
tions on Neural Networks, 13:248–250, 2002b.

N. List and H.U. Simon. A general convergence theorem for the desomposition method. In J. Shawe-
Taylor and Y. Singer, editors,17th Annual Conference on Learning Theory, COLT 2004, volume
3120 of Lecture Notes in Computer Science, pages 363–377, 2004.

N. List and H.U. Simon. General polynomial time decomposition algorithms. In P. Auer and
R. Meir, editors,18th Annual Conference on Learning Theory, COLT 2005, pages 308–322,
2005.

O.L. Mangasarian and D.R. Musicant. Lagrangian support vector machines. Journal of Machine
Learning Research, 1:161–177, 2001.

O.L. Mangasarian and D.R. Musicant. Successive overrelaxation for support vector machines.IEEE
Transactions on Neural Networks, 10:1032–1037, 1999.

E.E. Osuna, R. Freund, and F. Girosi. Support vector machines: training and applications. Technical
Report AIM-1602, MIT, 1997.

J.C. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Scḧolkopf, C.J.C. Burges, and A.J. Smola, editors,Advances in Kernel Methods - Support
Vector Learning, pages 41–64. MIT Press, Cambridge, MA, 1998.

B. Scḧolkopf, J.C. Platt, J. Shawe-Taylor, and A.J. Smola. Estimating the support of a high-
dimensional distribution.Neural Computation, 13:1443–1471, 2001.

C. Scovel, D. Hush, and I. Steinwart. Approximate duality. Technical report, Los Alamos National
Laboratory LA-UR 05-6766, 2005a. URLhttp://wwwc3.lanl.gov/ml/pubs ml.shtml. to
appear in Journal of Optimization Theory and Applications.

C. Scovel, D. Hush, and I. Steinwart. Learning rates for density level detection. Analysis and
Applications, 3(4):356–371, 2005b.

768

QP ALGORITHMS

H.U. Simon. On the complexity of working set selection. InProceedings of
the 15th International Conference on Algorithmic Learning Theory, 2004. URL
http://eprints.pascal-network.org/archive/00000125/.

I. Steinwart and C. Scovel. Fast rates for support vector machines. In P. Auer and R. Meir, editors,
18th Annual Conference on Learning Theory, COLT 2005, pages 279–294, 2005.

I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian ker-
nels. Technical report, Los Alamos National Laboratory LA-UR 04-8796, 2004. URL
http://www.c3.lanl.gov/∼ingo/publications/pubs.shtml. submitted to Annals of
Statistics (2004).

I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection.Journal of
Machine Learning Research, 6:211–232, 2005.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, Inc., New York, NY, 1998.

769

Journal of Machine Learning Research 7 (2006) 771–791 Submitted 5/05; Published 5/06

Policy Gradient in Continuous Time

Rémi Munos REMI.MUNOS@POLYTECHNIQUE.FR

Centre de Mathématiques Appliquées
Ecole Polytechnique
91128 Palaiseau, France

Editor: Michael Littman

Abstract
Policy search is a method for approximately solving an optimal control problem by performing

a parametric optimization search in a given class of parameterized policies. In order to process
a local optimization technique, such as a gradient method, we wish to evaluate the sensitivity of
the performance measure with respect to the policy parameters, the so-calledpolicy gradient. This
paper is concerned with the estimation of the policy gradient for continuous-time, deterministic
state dynamics, in areinforcement learningframework, that is, when the decision maker does not
have a model of the state dynamics.

We show that usual likelihood ratio methods used in discrete-time, fail to proceed the gradient
because they are subject to variance explosion when the discretization time-step decreases to 0.
We describe an alternative approach based on the approximation of the pathwise derivative, which
leads to a policy gradient estimate that converges almost surely to the true gradient when the time-
step tends to 0. The underlying idea starts with the derivation of an explicit representation of the
policy gradient using pathwise derivation. This derivation makes use of the knowledge of the state
dynamics. Then, in order to estimate the gradient from the observable data only, we use a stochastic
policy to discretize the continuous deterministic system into a stochastic discrete process, which
enables to replace the unknown coefficients by quantities that solely depend on known data. We
prove the almost sure convergence of this estimate to the true policy gradient when the discretization
time-step goes to zero.

The method is illustrated on two target problems, in discrete and continuous control spaces.

Keywords: optimal control, reinforcement learning, policy search, sensitivity analysis, para-
metric optimization, gradient estimate, likelihood ratio method, pathwise derivation

1. Introduction and Statement of the Problem

We consider an optimal control problem with continuous state(xt ∈ IRd)t≥0 whose state dynamics
is defined according to the controlled differential equation:

dxt

dt
= f (xt ,ut), (1)

where the control(ut)t≥0 is a Lebesgue measurable function with values in a control spaceU . Note
that the state-dynamicsf may also depend on time, but we omit this dependency in the notation,
for simplicity. We intend to maximize a functionalJ that depends on the trajectory(xt)0≤t≤T over
a finite-time horizonT > 0. For simplicity, in the paper, we illustrate the case of a terminal reward

c©2006 Rémi Munos.

MUNOS

only:
J(x;(ut)t≥0) := r(xT), (2)

wherer : IRd→ IR is the reward function. Extension to the case of general functional of thekind

J(x;(ut)t≥0) =
Z T

0
r(t,xt)dt+R(xT), (3)

with r and R being current and terminal reward functions, would easily follow, as indicated in
Remark 1.

The optimal control problem of finding a control(ut)t≥0 that maximizes the functional is re-
placed by a parametric optimization problem for which we search for a good feed-back control law
in a given class of parameterized policies{πα : [0,T]× IRd→U}α, whereα ∈ IRm is the parameter.
The controlut ∈ U (or action) at timet is ut = πα(t,xt), and we may write the dynamics of the
resulting feed-back system as

dxt

dt
= fα(xt), (4)

wherefα(xt) := f (x,πα(t,x)). In the paper, we will make the assumption thatfα isC 2, with bounded
derivatives. Let us define theperformance measure

V(α) := J(x;πα(t,xt)t≥0),

where its dependency with respect to (w.r.t.) the parameterα is emphasized. One may also consider
an average performance measure according to some distributionµ for the initial state:V(α) :=
E[J(x;πα(t,xt)t≥0)|x∼ µ].

In order to find a local maximum ofV(α), one may perform a local search, such as a gradient
ascent method

α← α+η∇αV(α), (5)

with an adequate stepη (see for example (Polyak, 1987; Kushner and Yin, 1997)). The computation
of the gradient∇αV(α) is the object of this paper.

A first method would be to approximate the gradient by a finite-difference quotient for each of
themcomponents of the parameter:

∂αiV(α)≃
V(α+ εei)−V(α)

ε
,

for some small value ofε (we use the notation∂α instead of∇α to indicate that it is a single-
dimensional derivative). This finite-difference method requires the simulation of m+1 trajectories
to compute an approximation of the true gradient. When the number of parameters is large, this
may be computationally expensive. However, this simple method may be efficientif the number of
parameters is relatively small.

In the rest of the paper we will not consider this approach, and will aim atcomputing the gradient
using one trajectory only.

772

POLICY GRADIENT IN CONTINUOUS TIME

Pathwise estimation of the gradient. We now illustrate that if the decision-maker has access to
a model of the state dynamics, then a pathwise derivation would directly lead to the policy gradient.
Indeed, let us define the gradient of the state with respect to the parameter: zt := ∇αxt (i.e. zt is
defined as ad×m-matrix whose(i, j)-component is the derivative of theith component ofxt w.r.t.
α j). Our smoothness assumption onfα allows to differentiate the state dynamics (4) w.r.t.α, which
provides the dynamics on(zt):

dzt
dt

= ∇α fα(xt)+∇x fα(xt)zt , (6)

where the coefficients∇α fα and∇x fα are, respectively, the derivatives off w.r.t. the parameter
(matrix of sized×m) and the state (matrix of sized× d). The initial condition forz is z0 = 0.
When the reward functionr is smooth (i.e. continuously differentiable), one may apply a pathwise
differentiation to derive a gradient formula (see e.g. (Bensoussan, 1988) or (Yang and Kushner,
1991) for an extension to the stochastic case):

∇αV(α) = ∇xr(xT)zT . (7)

Remark 1 In the more general setting of a functional (3), the gradient is deduced (by linearity)
from the above formula:

∇αV(α) =
Z T

0
∇xr(t,xt)zt dt+∇xR(xT)zT .

What is known from the agent? The decision maker (call it the agent) that intends to design a
good controller for the dynamical system may or may not know a model of the state dynamicsf .
In case the dynamics is known, the state gradientzt = ∇αxt may be computed from (6) along the
trajectory and the gradient of the performance measure w.r.t. the parameterα is deduced at timeT
from (7), which allows to perform the gradient ascent step (5).

However, in this paper we consider aReinforcement Learning(Sutton and Barto, 1998) setting
in which the state dynamics is unknown from the agent, but we still assume that the state is fully
observable. The agent knows only the response of the system to its control. To be more precise, the
available information to the agent at timet is its own control policyπα and the trajectory(xs)0≤s≤t

up to timet. At time T, the agent receives the rewardr(xT) and, in this paper, we assume that the
gradient∇r(xT) is available to the agent.

From this point of view, it seems impossible to derive the state gradientzt from (6), since∇α f
and∇x f are unknown. The term∇x f (xt) may be approximated by a least squares method from the
observation of past states(xs)s≤t , as this will be explained later on in subsection 3.2. However the
term∇α f (xt) cannot be calculated analogously.

In this paper, we introduce the idea of using stochastic policies to approximatethe state(xt)
and the state gradient(zt) by discrete-time stochastic processes(X∆

t) and(Z∆
t) (with ∆ being some

discretization time-step). We show howZ∆
t can be computed without the knowledge of∇α f , but

only from information available to the agent.
We prove the convergence (with probability one) of the gradient estimate∇xr(X∆

T)Z∆
T derived

from the stochastic processes to∇αV(α) when∆→ 0. Here, almost sure convergence is obtained
using theconcentration of measure phenomenon(Talagrand, 1996; Ledoux, 2001).

773

MUNOS

X
∆
t

X
∆
t

X
∆
t

0

1

2

X
∆
T

x

fα

y

Figure 1: A trajectory(X∆
tn)0≤n≤N and the state dynamics vectorfα of the continuous process

(xt)0≤t≤T .

Likelihood ratio method? It is worth mentioning that this strong convergence result contrasts
with the usuallikelihood ratio method(also calledscore method) in discrete time (see e.g. (Reiman
and Weiss, 1986; Glynn, 1987) or more recently in the reinforcement learning literature (Williams,
1992; Sutton et al., 2000; Baxter and Bartlett, 2001; Marbach and Tsitsiklis,2003)) for which the
policy gradient estimate is subject to variance explosion when the discretization time-step∆ tends
to 0. The intuitive reason for that problem lies in the fact that the number of decisions before getting
the reward grows to infinity when∆→ 0 (the variance of likelihood ratio estimates being usually
linear with the number of decisions).

Let us illustrate this problem on a simple 2 dimensional process. Consider the deterministic
continuous process(xt)0≤t≤1 defined by the state dynamics:

dxt

dt
= fα :=

(
α

1−α

)
, (8)

(0 < α < 1) with initial conditionx0 = (00)′ (where′ denotes the transpose operator). The per-
formance measureV(α) is the reward at the terminal state at timeT = 1, with the reward function
being the first coordinate of the stater((xy)′) := x. ThusV(α) = r(xT=1) = α and its derivative is
∇αV(α) = 1.

Let (X∆
tn)0≤n≤N ∈ IR2 be a discrete time stochastic process (the discrete times being{tn =

n∆}n=0...N with the discretization time-step∆ = 1/N) that starts from initial stateX∆
0 = x0 = (00)′

and makesN random moves of length∆ towards the right (actionu1) or the top (actionu2) (see
Figure 1) according to the stochastic policy (i.e., the probability of choosing the actions in each
statex) πα(u1|x) = α, πα(u2|x) = 1−α.

The process is thus defined according to the dynamics:

X∆
tn+1

= X∆
tn +

(
Un

1−Un

)
∆, (9)

where(Un)0≤n<N areN independent Bernoulli random variables that equal 1 with probabilityα and
0 with probability 1−α. The stochastic discrete process(X∆

t) is consistent with the deterministic
continuous one(xt) in the sense that the jump average direction of the former equals the state

774

POLICY GRADIENT IN CONTINUOUS TIME

dynamics vector of the latter:

E

[Xtn+1−Xtn

∆
|Xtn = x

]
= πα(u1,x)

(
1
0

)
+πα(u2,x)

(
0
1

)
=

(
α

1−α

)
.

Thus, when the discretization time-step∆ tends to 0, the process(X∆
t) converges almost surely

to (xt) (this statement will be proved in Section 2).
Now, writeV∆(α) the performance measure of the discrete process, taken as the expectedreward

at the terminal state:V∆(α) := E[r(X∆
1)] = 1

N ∑N−1
n=0 Un. The likelihood ratio estimateg(∆) of the

gradient∇αV∆(α) = E[g(∆)] is

g(∆) = r(X∆
1)

N−1

∑
n=0

∇απα(utn|X
∆
tn)

πα(utn|X
∆
tn)

=
(1

N

N−1

∑
n=0

Un
)N−1

∑
n=0

(Un

α
−

1−Un

1−α
)
. (10)

The expectation and variance of this estimate are given now (a proof is provided in Appendix
A).

Proposition 2 The expectation and variance of the estimate (10) are

E
[
g(∆)

]
= 1,

Var
[
g(∆)

]
=

1−5(1−α)+(2−3α)αN+α2N2

α(1−α)N
. (11)

Thusg(∆) is an unbiased estimated of the true gradient∇αV(α) = 1. However we notice that
the dominant term (whenN is large) of the variance isα

1−αN, with N being the number of decisions
before getting the reward, which grows to infinity when the discretization time-step∆ = 1/N tends
to 0. Therefore it is impossible to use this likelihood ratio estimate whenever the time discretization
is too fine. In contrast, the gradient estimate introduced in this paper has a variance that decreases
to 0 when∆ tends to 0 (this will be illustrated on this same example in subsection 3.4).

Outline of the paper. The paper is organized as follows: in Section 2, we state a general approx-
imation result of a continuous deterministic process by a consistent stochasticdiscrete process and
apply it to prove the convergence of the discretized state and state gradient processes when using
a stochastic policy. In Section 3, we establish the convergence of the policygradient estimate and
describe a reinforcement learning algorithm that replaces the unknown coefficients about the state
dynamics by information available to the agent. In the last Section, we illustrate themethod on two
(6 dimensional) target problems in both a discrete and a continuous control space cases. All proofs
are in the Appendices.

2. Discretized Stochastic Processes

In this section, we start with a general result for approximating a deterministiccontinuous process
by a stochastic discrete one. This is subsequently applied to the convergence analysis of processes
(the stateX∆

t and the state gradientZ∆
t) related to the introduction of stochastic policies.

775

MUNOS

2.1 A General Convergence Result

Let (xt)0≤t≤T be a deterministic continuous process defined by some dynamics

dxt

dt
= f (xt)

with some initial conditionx0. We assume thatf is of classC 2 with bounded derivatives. The
following result state the almost sure convergence of a consistent discrete stochastic process.

Theorem 3 Let ∆ = T/N be a discretization time-step (with N being the number of steps) and
write {tn = n∆}0≤n≤N the discrete times. Let(Utn)0≤n<N be a sequence of independent random
variables with values in a set U. We define a discrete stochastic process(X∆

tn)0≤n≤N, starting at
X∆

0 = x0, according to some discrete state dynamics f∆ : IRd×U → IRd, assumed to be bounded:
for t ∈ {tn}0≤n<N ,

X∆
t+∆ = X∆

t + f ∆(X∆
t ,Ut). (12)

If f ∆ satisfies theconsistency property:

E[f ∆(x,Ut)] = f (x)∆+o(∆), (13)

and the following bounding condition:
f ∆ = O(∆), (14)

(where the notation O(·) is to be understood in the sense uniformly w.r.t. the variable of f∆) then,
the random variable X∆T converges almost surely to (the deterministic) xT when∆→ 0. We write

lim
∆→0

X∆
T = xT , with probability1.

Appendix B gives a proof of this result. Note that a weaker convergence result (i.e. convergence
in probability) may be obtained from general results in approximation of diffusion processes by
Markov chains (Kloeden and Platen, 1995). Here, almost sure convergence is obtained using the
concentration of measure phenomenon(Talagrand, 1996; Ledoux, 2001), detailed in Appendix B.

Remark 4 If we assume a slightly better consistency error of O(∆2) instead of o(∆) in (13), then
we may prove (straightforwardly from the Appendix) thatE[X∆

T] = xT +O(∆) andE[||X∆
T −xT ||

2] =
O(∆).

2.2 Discretization of the State

Let us go back to our initial control problem (1). We consider the case ofa finite control spaceU
(extension to a continuous control space is straightforward and is detailedin subsection 3.5). Letπα
be astochastic policy, i.e. πα(u|t,x) denotes the probability of choosing actionu∈U at timet in
statex. We writeu∼ πα(·|t,x) a random choice of an actionu according to such a policy.

Now, we define thestochastic discrete state process(X∆
tn
)0≤n≤N (where we use the same no-

tations for the time-steps(tn) as in the previous subsection), starting at a stateX∆
0 = x, as follows:

At time t ∈ {(tn)0≤n<N}, we select an actionut ∼ πα(·|t,X∆
t). Then,X∆

t+∆ is the state at time
t +∆ resulting from keeping the actionut constant for a period of time∆. We write:

{
ut ∼ πα(·|t,X∆

t)
X∆

t+∆ := X∆
t + f ∆(X∆

t ,ut)
(15)

776

POLICY GRADIENT IN CONTINUOUS TIME

where f ∆(x,u) represents the jump in the state resulting from the state dynamics (1) with initial
conditionx0 = x, using a constant controlu for a period of time∆.

The next proposition states the convergence of the discrete stochastic process(X∆
t) to the con-

tinuous deterministic one(xt).

Proposition 5 Convergence of the discrete state process (X∆
t). When the discretization time-step

∆→ 0, the random variable X∆T converges almost surely to the state xT defined according to the
state dynamics (4) with

fα(x) := ∑
u∈U

πα(u|t,x) f (x,u).

and initial condition x0 = x.

Proof This is an immediate consequence of Theorem 3 with the discrete state dynamicsf ∆(x,u).
From Taylor’s formula,

f ∆(x,ut) = f (x,ut)∆+O(∆2),

to derive the property on the average jumps:

E[f ∆(x,ut)] = ∑
u∈U

πα(u|t,x) f (x,u)∆+O(∆2) = fα(x)∆+O(∆2),

and the consistency conditions (13) holds, as well as the bound on the jumps(14).

2.3 Discretization of the State Gradient

Now, we build an approximation of the state gradientzt = ∇αxt . We define thestochastic discrete
state gradient process(Z∆

tn
)0≤n≤N, starting withZ∆

0 = 0, as follows:
At time t ∈ {(tn)0≤n<N}, let (ut) and(X∆

t) be defined according to (15). Then define

Z∆
t+∆ := Z∆

t + f (X∆
t ,ut)

[
lα(t,X∆

t ,ut)
′+ lx(t,X

∆
t ,ut)

′Z∆
t

]
∆+∇x f (X∆

t ,ut)Z
∆
t ∆, (16)

where

lα(t,x,u) :=
∇απα(u|t,x)

πα(u|t,x)
andlx(t,x,u) :=

∇xπα(u|t,x)
πα(u|t,x)

are the likelihood ratios ofπα w.r.t. α andx (defined as vectors of sizemandd respectively).

Proposition 6 Convergence of the discrete state gradient process (Z∆
T):

The random variable Z∆T converges almost surely to zT when∆→ 0.

Proof The discrete state dynamics (12) for(Z∆
t) is defined by the right hand side of (16). Now,

from the property

E[Z∆
t+∆−Z∆

t |X
∆
t = x,Z∆

t = z] = ∑
u∈U

πα(u|t,x)
{

f (x,u)[lα(t,x,u)′+ lx(t,x,u)′z]

+∇x f (x,u)z
}

∆

=
[
∇α fα(x)+∇x fα(x)z

]
∆,

777

MUNOS

we deduce that the coupled process(X∆
t ,Z∆

t) is consistent with(xt ,zt) in the sense of (13):

E

[(
X∆

t+∆
Z∆

t+∆

)
−

(
X∆

t
Z∆

t

)∣∣∣
(

X∆
t

Z∆
t

)
=

(
x
z

)]
=

(
fα(x)

∇α fα(x)+∇x fα(x)z

)
∆+o(∆) (17)

andX∆
t+∆−X∆

t = O(∆) andZ∆
t+∆−Z∆

t = O(∆). Thus, as a consequence of Theorem 3, the random
variableZ∆

T converges almost surely tozT when∆→ 0.

3. Model-Free Reinforcement Learning Algorithm

We show how to use the approximation results of the previous section to designa model-free rein-
forcement learning algorithm for estimating the policy gradient∇αV(α) using one trajectory only.
First, we state the convergence of the policy gradient estimate computed fromthe discretized pro-
cess, then show how to approximate the unknown coefficient∇x f using least-squares regression
from the observed trajectory, and finally describe the reinforcement learning algorithm.

3.1 Convergence of the Policy Gradient Estimate

One may use formula (7) to define a gradient estimate of the performance measure w.r.t. the param-
eterα based on the discrete process(X∆

t ,Z∆
t):

g(∆) := ∇xr(X
∆
T)Z∆

T . (18)

This estimate converges almost surely to the true gradient, as stated now.

Proposition 7 Assume that r is continuously differentiable. Then

lim
∆→0

g(∆) = ∇αV(α) with probability1.

Proof This is a direct consequence of the almost sure convergence of(X∆
T ,Z∆

T) to (xT ,zT) and the
continuity of∇xr.

Now, let us illustrate howZ∆
t may be approximated with information available to the agent.

The definition (16) ofZ∆
t requires the term∇x f (X∆

t ,u). We now explain how to built a consistent
approximation̂∇x f (X∆

t ,u) of this term from the past of the trajectory(X∆
s)0≤s≤t .

3.2 Least-Squares Approximation of∇x f (X∆
t ,u)

For clarity, in this subsection, we omit reference to∆, for example writingXs instead ofX∆
s . Write

∆Xt = Xt+∆−Xt the jump of the state. Letc > 0 be a constant (independent of∆). DefineS(t) :=
{s∈ [t − c∆, t] |us = ut} the set of past discrete timest − c∆ ≤ s≤ t when actionut have been
chosen. Note that the cardinality ofS(t) is independent from∆, and solely depends onc and the
actual sequence of controls chosen according to the stochastic policyπα.

From Taylor’s formula, for all discrete times,

∆Xs = Xs+∆−Xs = f (Xs,ut)∆+∇x f (Xs,ut) f (Xs,ut)
∆2

2
+O(∆3). (19)

778

POLICY GRADIENT IN CONTINUOUS TIME

Now, for s∈ S(t) we haveXt −Xs = O(∆), thus

f (Xs,ut) = f (Xt ,ut)+∇x f (Xt ,ut)(Xs−Xt)+O(∆2),

from which we deduce (using the fact that∇x f (Xs,ut) = ∇x f (Xt ,ut)+O(∆)) that

∆Xs = ∆Xt +
[
∇x f (Xs,ut) f (Xs,ut)−∇x f (Xt ,ut) f (Xt ,ut)

]∆2

2
+∇x f (Xt ,ut)(Xs−Xt)∆+O(∆3)

= ∆Xt +∇x f (Xt ,ut)[Xs−Xt +
1
2
(∆Xs−∆Xt)]∆+O(∆3) (20)

= b+A(Xs+
1
2

∆Xs)∆+O(∆3)

with b := ∆Xt−∇x f (Xt ,ut)(Xt +
1
2∆Xt)∆ andA := ∇x f (Xt ,ut). Based on the observation of several

jumps{∆Xs}s∈S(t), one may derive an approximation of∇x f (Xt ,ut) by solving the least-squares
problem:

min
A,b

1
nt

∑
s∈S(t)

∥∥∥∥∆Xs−b−A
(
Xs+

1
2

∆Xs
)
∆
∥∥∥∥

2

, (21)

wherent is the cardinality ofS(t). Write X+
s := Xs+ 1

2∆Xs = 1
2(Xs+ Xs+∆) and use the simplified

notations:X, X X′, ∆X, and∆X X′, to denote the average values, whens∈ S(t), of X+
s , X+

s (X+
s)′,

∆Xs, and∆Xs(X+
s)′, respectively. For example,

X :=
1
nt

∑
s∈S(t)

X+
s .

The optimality condition for (21) holds when the matrixQt := X X′−X X
′
is invertible, and in

that case, the least squares solution provides the approximation∇̂x f (Xt ,ut) of ∇x f (Xt ,ut):

∇̂x f (Xt ,ut) =
1
∆

(
∆X X′−∆X X

′)(
X X′−X X

′)−1
. (22)

This optimality condition does not hold when the set of points(X+
s)s∈S(t) lies in a vector space

of dimension< d (then,Qt is degenerate). In order to circumvent this problem, we assume that
the eigenvalues of the matrixQt are bounded away from 0, in the sense given in the following
proposition (whose proof in provided in Appendix C).

Proposition 8 The matrix Qt = X X′−X X
′
is symmetric non-negative. Letν(∆)≥ 0 be the smallest

eigenvalue of Qt , for all 0≤ t ≤ T. Then, ifν(∆) > 0 andν(∆) satisfies

1
ν(∆)

= o(∆−4), (23)

then, for all0≤ t ≤ T, the least squares estimatê∇x f (Xt ,ut) defined by (22) is consistent with the
gradient∇x f (Xt ,ut), that is:

lim
∆→0

∇̂x f (Xt ,ut) = ∇x f (Xt ,ut).

779

MUNOS

The condition (23) is not easy to check since it depends on the state dynamics and the policy.
Note however that, when we use a strict stochastic policy (i.e.,πα > 0), a sufficient condition for the
set of points(X+

s)s∈S(t) to span a vector space of dimensiond is that the system be (at least locally)
controllable. In the case of linear systemsdx/dt = Ax+Bu, whereu∈U = IRq, andA andB being
d×d andd×q-matrices respectively, a necessary and sufficient condition for controllability is that
thed×(qd) controllability matrix[B : AB: A2B : · · · : Ad−1B] has rankd (this is the so-calledKalman
rank condition(Kalman et al., 1969)). In more general settings, for example whenf is a linear
combination of vector fieldshi(x) weighted by the control components, i.e.f (x,u) = ∑q

i=1hi(x)ui , a
sufficient condition for controllability is that the dimension of the Lie algebra generated by the fields
{hi} is d (see e.g. (LaValle, 2006)). Intuitively, this dimension represents the number of possible
independent directions of movement when following any sequence of controls.

In our numerical experiments, we observed the convergence of the∇x f estimate.

Remark 9 A simple on-line way for approximating∇x f is to consider a weighted least-squares
problem using an exponential weight (with some coefficientλ ∈ (0,1)) instead of the rectangular
window s∈ [t− c∆, t]. The piece of information related to a time s< t is weighted byλp, where p
is the number of times the control u has been chosen between s and t. It iseasy to adapt the proof
of Proposition 8 to derive that a such weighted least squares estimate for∇x f is consistent, for any
λ ∈ (0,1), under the same condition (23).

An on-line update rule would consider tables for the average valuesY(u) (whereY meansX,
XX′, ∆X, or ∆X X′) for all u ∈ U. The values are initialized (at the first time t each action u is
encountered) by Yt , where Yt means X+t , X+

t (X+
t)′, ∆Xt , and ∆Xt(X

+
t)′, respectively. Then, the

values are updated at time t, according to

Y(u)← λY(u)+(1−λ)Yt for u = ut ,
Y(u) stays unchanged for u6= ut .

The quantitiesX, X X′, ∆X, and∆X X′ are easily updated and the estimatê∇x f may advanta-
geously be computed from (22) by using an iterative matrix inversion, suchas with the Sherman-
Morrison formula (see for example (Golub and Loan, 1996)).

Note that for the first discrete timest, the matrixX X′−X X
′

may not be invertible, simply
because there is not enough points(Xs)s<t to form a subspace of dimensiond. We may simply set
∇̂x f to 0, which has no impact on the general convergence result.

3.3 The Reinforcement Learning Algorithm

Here, we derive a convergent policy gradient estimate in which all information required to build the
state gradientZ∆

t is the past trajectory(X∆
s)0≤s≤t .

Choose a time step∆. For a given stochastic policyπα, the algorithm proceeds as follows:

1. At time t = 0, initialiseX∆
0 = x andZ∆

0 = 0.

2. For each discrete timet ∈ {(tn)0≤n<N}, choose an actionut ∼ πα(t,X∆
t) according to the

stochastic policyπα and keep this action for a period of time∆, which moves the system from
X∆

t to X∆
t+∆ (summarized by the dynamics (15)).

780

POLICY GRADIENT IN CONTINUOUS TIME

3. Update the average valuesX, XX′, ∆X, or ∆X X′, for all u∈U , as described in subsection 3.2,
for example by using an exponential trace with parameterλ ∈ (0,1) as mentioned in Remark
9.

4. Compute the state dynamics gradient approximation̂∇x f (X∆
t ,ut) according to

∇̂x f (X∆
t ,ut) =

1
∆

(
∆X X′−∆X X

′)(
X X′−X X

′)−1
.

5. UpdateZ∆
t according to

Z∆
t+∆ = Z∆

t +∆X∆
t

[[
∇απα(ut |t,X∆

t)
]′

πα(ut |t,X∆
t)

+

[
∇xπα(ut |t,X∆

t)
]′

πα(ut |t,X∆
t)

Z∆
t

]

+∇̂x f (t,X∆
t ,ut)Z

∆
t ∆. (24)

6. Repeat steps 2-5 untilt = T. Then return the policy gradient estimate∇xr(X∆
T)Z∆

T .

This algorithm returns a consistent approximation of the policy gradient∇αV(α), as stated now.

Proposition 10 Assume that the property (23) of Proposition 8 holds, and that the reward function
is continuously differentiable. Then the estimate∇xr(X∆

T)Z∆
T returned by the RL algorithm is a

consistent approximation of the policy gradient∇αV(α), in the sense that∇xr(X∆
T)Z∆

T converges
almost surely to∇αV(α) when∆→ 0.

Proof From Proposition 8,̂∇x f is a consistent approximation of∇x f , thus the process(Z∆
t) built

from (24) also satisfies the consistency condition (17), and the proof follows like in Proposition 7.

3.4 Illustration on a Simple Example

Let us illustrate this algorithm on the simple example described in the introduction (for which we
observed the infinite variance of the likelihood ratio estimate in the continuous time limit).

The continuous process is defined by (8) and the discrete time stochastic process by (9). With
the notations used in the introduction, the state gradient dynamics (24) is:

Z∆
tn+1

= Z∆
tn +(X∆

tn+1
−X∆

tn)
∇απα(utn|t,X

∆
tn)

πα(utn|t,X
∆
tn)

= Z∆
t +

(
Un/α

(1−Un)/(α−1)

)
∆.

Thus the gradient estimate (18) is

g(∆) = ∇r(X∆
T=1)Z

∆
T=1,1 =

1
αN

(N−1

∑
n=0

Un
)
.

SinceE[g(∆)] = 1, this is an unbiased estimate of the true gradient∇αV(α) = ∇αr(x1) = 1.
Moreover, its variance Var[g(∆)] = 1

α2NVar[Un] =
1−α
αN decreases to 0 whenN goes to infinity, which

contrast with the variance of the likelihood ratio estimate (11).

781

MUNOS

ut

tε

∆
α

h
α

h (t, X)t
∆

tt, X

Figure 2: A stochastic policyut = hα(t,X∆
t)+ εt with εt ∼ N (0,v(∆)).

3.5 The Continuous Control Space Case

So far, we have used notations for a finite control spaceU . However, the same results hold in the case
of a continuous control spaceU ∈ IRq. Let us illustrate a simple way for defining a stochastic policy
based on a parameterized deterministic policy. Lethα : [0,T]× IRd→U = IRq be a deterministic
policy parameterized byα (which may be implemented by a neural network, or with any other
function approximator). We search for a value of the parameterα that maximizes the performance
of the corresponding policy.

We build a stochastic policy by perturbinghα with a centered Gaussian noise of covariance
matrix v(∆) (i.e. which depends on the discretization time-step∆). Thusut = hα(t,X∆

t)+ εt with
εt ∼ N (0,v(∆)). See Figure 2. We assume that lim∆→0v(∆) = 0.

This stochastic policy admits a probability density representationπα(u|t,x):

πα(u|t,x) =
1√

(2π)p|v(∆)|
exp

[
−

1
2
(u−hα(t,x))′v(∆)−1(u−hα(t,x))

]
.

The stochastic process(X∆
t) built according to (15) from this stochastic policyπα is consistent

with the continuous process(xt) defined by the parameterized deterministic policyhα:

dxt

dt
= f (x,hα(t,x)).

Indeed, from the continuity off , and the assumption thatv(∆)
∆→0
−→ 0, the average state dynamics

vector using the stochastic policyπα tends to the state dynamics vector using the deterministic policy
hα:

lim
∆→0

Z

IRq
f (x,u)πα(u|t,x)du= f (x,hα(t,x)),

and the consistency property (13) as well as the bound (14) hold (for the same reasons as those
invoked in subsection 2.2). Thus, the reinforcement learning algorithm ofsubsection 3.3 applies
directly.

Note that from the specific form of the policyπα(u|t,x), the likelihood ratios are easily com-

puted: for each parameterαi , 1≤ i ≤m,
∂αi πα(u|t,x)

πα(u|t,x) = ∂αi hα(t,x)v(∆)−1(u−hα(t,x)), and for each

coordinatexi , 1≤ i ≤ d,
∂xi πα(u|t,x)

πα(u|t,x) = ∂xi hα(t,x)v(∆)−1(u−hα(t,x)).

782

POLICY GRADIENT IN CONTINUOUS TIME

4. Numerical Experiments

We provide two experiments, a target problem and an inverted pendulum, that illustrate the rein-
forcement learning algorithm described in subsection 3.3 in the case of a finite and a continuous
control space, respectively.

4.1 A Target Problem

This is a 6 dimensional system(x0,y0,x,y,vx,vy) that represents a hand ((x0,y0) position) holding
a spring to which is attached a mass (defined by its position(x,y) and velocity(vx,vy)) subject to
gravitation. The control is the movement of the hand, in any 4 possible directions (up, down, left,
right). The goal is to reach a target(xG,yG) with the mass at a specific timeT (see Figure 3a), while
keeping the hand close to the origin. For that purpose, the terminal rewardfunction is defined by

r =−x2
0−y2

0− (x−xG)2− (y−yG)2.

Hand

Mass

Target

(a) The physical system (b) A trajectory (the mass and the hand) starting from
the origin

Figure 3: (a) the physical system. (b) A trajectory obtained after 1000 gradient steps. For that
specific trajectory, the performance (terminal reward) was−0.087.

The state dynamics is:

ẋ0 = ux, ẋ = vx, v̇x =− k
m(x−x0),

ẏ0 = uy, ẏ = vy, v̇y =− k
m(y−y0)−g,

with k being the spring constant,m the mass,g the gravitational constant, and(ux,uy) = u ∈
U := {(1,0),(0,1),(−1,0),(0,−1)} the control. We consider a Boltzmann-like stochastic policy

πα(u|t,x) =
expQα(t,x,u)

∑u′∈U expQα(t,x,u′)

783

MUNOS

0 100 200 300 400 500 600 700 800 900 1000

−14

−12

−10

−8

−6

−4

−2

0

P
er

fo
rm

an
ce

 m
ea

su
re

Number of gradient iterations

Figure 4: Performance of successive parameterized controllers.

with a linear parameterization of theQα values:Qα(t,x,u) = αu
0+αu

1t +αu
2x0+αu

3y0+αu
4x+αu

5y+
αu

6vx +αu
7vy, for each 4 possible actionsu∈U . Thus the parameterα ∈ IR32. We initializedα with

uniform random values in the range[−0.01,0.01]. In our experiments we chosek = 1, m= 1, g= 1,
xG = yG = 2, λ = 0.9, ∆ = 0.01,T = 10.

At each iteration, we run one trajectory(Xt)0≤t≤T using the stochastic policy, and calculate
the policy gradient estimate according to the RL algorithm described in subsection 3.3. We then
perform a gradient ascent step (5) (with a fixed stepη = 0.01). Figure 4 shows the performance of
the parameterized controller as a function of the number of gradient iterations.

For that problem, we chose initial states uniformly distributed over the domain[−0.1,0.1]6.
We found that the randomness introduced in the choice of the initial state helped in not getting
stuck in local minima. Here, convergence of the gradient method occurs to acontroller close to
optimality (for which r = 0). We illustrate in Figure 3b the trajectory (where only the hand and
the mass positions are shown) obtained after 1000 gradient steps, startingfrom the initial state
(x0,y0,x,y,vx,vy)t=0 = 0.

4.2 Double Inverted Pendulum

We illustrate the approach described in subsection 3.5 on this continuous control space problem.
This is an double inverted pendulum defined in the 6-dimensions: the position of the cart, its ve-
locity, the two angles, and their angular velocityx = (y,v,θ1,ω1,θ2,ω2)

′ ∈ IR6 (see Figure 5). The
controlu∈U = IR (continuous variable) is the force applied to the cart. The state dynamics arede-
scribed in (Bogdanov, 2004). The goal is to reach the unstable equilibrium (y,v,θ1,ω1,θ2,ω2) = 0
at timeT = 5. We consider the quadratic reward functionr(x) =−(y2 +v2 +θ2

1 +ω2
1 +θ2

2 +ω2
2).

Like in subsection 3.5, we build a stochastic policy by adding a Gaussian noiseof variance
v(∆) = ∆I (whereI is the identity matrix) to a linearly parameterized (time independent) determin-

784

POLICY GRADIENT IN CONTINUOUS TIME

θ

θ

1

2

y=0y

Figure 5: The double inverted pendulum. Current position and target position.

istic policy hα(t,x) = α1 + α2y+ α3v+ α4θ1 + α5ω1 + α6θ2 + α7ω2, i.e. the control at timet is
ut ∼ hα(t,xt)+N (0,v(∆)).

We wish to find a local maximum of the performance measureV(α) = r(xT) in the space of the
policy parametersα ∈ IR7. We initializedα with uniform random values in the range[−0.01,0.01],
and perform a stochastic gradient algorithm (5) where the gradient∇αV(α) is computed according
to the reinforcement learning algorithm defined in subsection 3.3.

A gradient step update (5) is performed (withη = 1) at the end of each sample trajectory
starting from an initial state, chosen uniformly randomly in the domain defined byy ∈ [−1,1],
θ1 ∈ [−0.3,0.3], θ2 ∈ [−0.3,0.3], andv = 0, ω1 = 0, ω2 = 0. We use a discretization time-step
∆ = 10−3 which is low enough to provide a very good approximation of the true gradient, that is the
gradient that would be obtained from the continuous (but unknown fromthe agent) state dynamics
by using the deterministic policyhα(t,x).

Figure 6 shows (in bold) the performance measure (terminal reward) at the end of each tra-
jectory as a function of the number of gradient iterations. The other curves give the values of the
(α1, . . . ,α7) during simulations.

After 1000 gradient iterations, the obtained policy ishα(t,x) = −0.0023− 5.31y− 1.74v+
11.16θ1+0.92ω1−7.77θ2−3.94ω2, and the resulting average performance is−0.097 for trajecto-
ries starting randomly from the same domain as during learning. In this problem,a linear controller
is sufficient to derive a controller close to optimality. However, we should mention that for initial
states in another domain (say, if the angles were not close to 0, and loops would be required to reach
the target position), the problem would not possibly be solved with such a simple class of policies.

5. Conclusion

We described a reinforcement learning method for approximating the gradient of the performance
measure of a continuous-time deterministic problem, with respect to the control parameters. This
was obtained by using a stochastic policy to approximate the continuous systemby a consistent
stochastic discrete process. We showed how using a perturbated parameterized deterministic policy
enables to process a consistent (when the perturbation goes to 0) gradient estimate only from the
observable data.

785

MUNOS

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

4

α

α

α

α

α

α

α

5

1

3

7

2

6

Figure 6: The bold curve shows the performance measureV(α), and the other curves the values of
(α1, . . . ,α7), as a function of the number of gradient iterations.

In future work, it would be interesting to extend this method to the case of stochastic dynamics,
and to non-smooth reward functions (or in case the reward gradient is unknown from the agent), by
using integration-by-part formula for the gradient estimate, such as thelikelihood ratio methodof
(Yang and Kushner, 1991) or themartingale approachof (Gobet and Munos, 2005).

Appendix A. Proof of Proposition 2

The likelihood ratio estimate (10) may be rewritten

g(∆) =
1

α(1−α)N

(N−1

∑
n=0

Un
)N−1

∑
n=0

(
Un−α

)

=
1

α(1−α)N

[(N−1

∑
n=0

Vn
)2

+αN
N−1

∑
n=0

Vn

]
,

with Vn := Un−α. From the fact thatE[V2
n] = α(1−α), the expectation of the estimate is

E[g(∆)] =
1

α(1−α)N
E

[(N−1

∑
n=0

Vn
)2]

= 1.

Now its variance Var[g(∆)] is

1
[α(1−α)N]2

Cov
[(N−1

∑
n=0

Vn
)(N−1

∑
p=0

Vp
)
+αN

N−1

∑
n=0

Vn,
(N−1

∑
n′=0

Vn′
)(N−1

∑
p′=0

Vp′
)
+αN

N−1

∑
n=0

Vn′

]
. (25)

786

POLICY GRADIENT IN CONTINUOUS TIME

Notice that from the independence of the Bernoulli random variables(Un), all terms Cov(Vn,Vn′)=
0 for n 6= n′, and Cov(Vn,Vn) = E[(Un−α)2] = α(1−α).

The terms Cov(Vn,Vn′Vp′) = E
[
Vn(Vn′Vp′ −E[Vn′Vp′])

]
= E[VnVn′Vp′] (becauseVn is centered)

equal 0 whenevern 6= n′ or n 6= p′. And Cov(Vn,V2
n) = E[V3

n] = α(1−α)(1−2α).
Now, Cov(VnVp,Vn′Vp′) = 0 whenn 6= n′, n 6= p′, p 6= n′, andp 6= p′ (because the variablesVnVp

andVn′Vp′ are independent). The terms Cov(VnVp,VnVp′)= E
[
(VnVp−E[VnVp])(VnVp′−E[VnVp′])

]
=

E[VnVpVnVp′] = 0 forn 6= p, n 6= p′, andp 6= p′ (independence ofVp andV2
n Vp′). Now, Cov(VnVp,VnVp)=

E[(VnVp)
2] = α2(1−α)2 whenn 6= p. Finally, Cov(V2

n ,V2
n) = E[V4

n]−
(
E[V2

n]
)2

= α(1−α)(1−
3α+3α2)−α2(1−α)2 = α(1−α)(1−4α+4α2).

Thus, the covariance term in (25) is

Nα(1−α)(1−4α+4α2)+N(N−1)α2(1−α)2 +αN2α(1−α)(1−2α)+α2N3α(1−α)

and the variance of the likelihood ratio estimate is

Var[g(∆)] =
1−5(1−α)+(2−3α)αN+α2N2

α(1−α)N
.

Appendix B. Proof of Theorem 3

For convenience, we writexn for xtn, Xn for X∆
tn , un for utn, andUn for Utn, 0≤ n≤N. Let us define the

average approximation errorsm∆
n = E[||Xn−xn||] and the squared errorsv∆

n = E[||Xn−xn||
2]. Here,

we prove the convergence at the terminal timeT, i.e. thatXT → xT almost surely when∆→ 0.

B.1 Convergence of the Squared ErrorE[||X∆
T −xT ||

2]:

We use the decomposition:

v∆
n+1 = E[||Xn+1−Xn||

2]+E[||Xn−xn||
2]+E[||xn−xn+1||

2]

+2E[(Xn−xn)
′(Xn+1−Xn +xn−xn+1)] (26)

+2E[(Xn+1−Xn)
′(xn−xn+1)].

From the bounded jumps property (14),E[||Xn+1−Xn||
2] = O(∆2). From Taylor’s formula,

xn+1−xn = f (xn)∆+O(∆2), (27)

thusE[||xn− xn+1||
2] = O(∆2) (since f is Lipschitz, andxt and f (xt) are uniformly bounded on

[0,T]) and from Cauchy-Schwarz inequality,|E[(Xn+1−Xn)
′(xn−xn+1)]|= O(∆2). From (13) and

(27),
E[Xn+1−Xn +xn−xn+1|Xn] = [f (Xn)− f (xn)]∆+o(∆). (28)

Now, from (14) we deduced that||Xn−x0||= O(1) thusXn is bounded (for alln andN), as well as
xn. Let B a constant such that||Xn|| ≤ B and||xn|| ≤ B for all n≤ N, N ≥ 0. Since f is C 2, from
Taylor’s formula, there exists a constantk, such that, for alln≤ N,

|| f (Xn)− f (xn)−∇x f (xn)(Xn−xn)|| ≤ k||Xn−xn||
2. (29)

787

MUNOS

We deduce that

|E[(Xn−xn)
′(Xn+1−Xn +xn−xn+1)]|=

∣∣E
[
(Xn−xn)

′(f (Xn)− f (xn))
]∣∣∆+o(∆)

≤
∣∣E

[
(Xn−xn)

′∇x f (xn)(Xn−xn)
]∣∣∆+2kBvn∆+o(∆)

≤Mv∆
n∆+o(∆)

with M = sup||x||≤B ||∇x f (x)||+2kB. Thus, (26) leads to the recurrent bound

v∆
n+1≤ (1+M∆)v∆

n +o(∆).

This actually means that there exists a functione(∆)→ 0 when∆ → 0, such thatv∆
n+1 ≤ (1+

M∆)v∆
n +e(∆)∆. Thus,

v∆
N ≤

(1+M∆)N−1
(1+M∆)−1

e(∆)∆≤ (eNM∆−1)
1
M

e(∆)

thusv∆
N = o(1), that isE[||X∆

T −xT ||
2]

∆→0
−→ 0.

B.2 Convergence of the MeanE[||X∆
T −xT ||]:

From (28), we have

E[Xn+1−xn+1|Xn] = Xn−xn +[f (Xn)− f (xn)]∆+o(∆).

Thus from (29),

m∆
n+1 = E[||Xn+1−xn+1||] ≤ (1+ ||∇x f (xn)||∆)E[||Xn−xn||]+kv∆

n∆+o(∆)

≤ (1+M′∆)m∆
n +o(∆),

sincev∆
n = o(1) (with M′ = sup||x||≤B ||∇x f (x)||). Using the same deduction as above, we obtain that

m∆
N = o(1), that isE[||X∆

T −xT ||]
∆→0
−→ 0.

B.3 Almost Sure Convergence

Here, we use theconcentration-of-measure phenomenon(Talagrand, 1996; Ledoux, 2001), which
states that under mild conditions, a function (say Lipschitz or with bounded differences) of many
independent random variables concentrates around its mean, in the sense that the tail probability
decreases exponentially fast.

From the definition of the discrete state process (12), one may write the stateXN as a functionh
of the independent random variables(Un)0≤n<N, i.e.

XN−x0 = h(U0, . . . ,UN−1) :=
N−1

∑
n=0

(Xn+1−Xn). (30)

Observe thath−E[h] = ∑N−1
n=0 dn with dn = Xn+1−Xn−E[Xn+1−Xn] being a martingale differ-

ence sequence (that isE[dn|U0, . . . ,Un−1] = 0). Now, from (Ledoux, 2001, lemma 4.1), one has:

P(||h−E[h]|| ≥ ε)≤ 2e−ε2/(2D2) (31)

788

POLICY GRADIENT IN CONTINUOUS TIME

for any D2 ≥ ∑N−1
n=0 ||dn||

2
∞. Thus, from (14), and sincef ∆(Xn) is bounded (for alln < N and all

N > 0), there exists a constantC that does not depend onN such thatdn≤C/N. Thus we may take
D2 = C2/N.

Now, from the previous paragraph,||E[XN]− xN|| ≤ e(N), with e(N)→ 0 whenN→ ∞. This
means that||h−E[h]||+e(N)≥ ||XN−xN||, thus

P(||h−E[h]|| ≥ ε+e(N))≥ P(||XN−xN|| ≥ ε),

and we deduce from (31) that

P(||XN−xN|| ≥ ε)≤ 2e−N(ε+e(N))2/(2C2).

Thus, for allε > 0, the series∑N≥0P(||XN− xN|| ≥ ε) converges. Now, from Borel-Cantelli
lemma, we deduce that for allε > 0, there existsNε such that for allN≥Nε, ||XN−xN||< ε, which

proves the almost sure convergence ofXN to xN asN→ ∞ (i.e. XT
∆→0
−→ xT almost surely).

Appendix C. Proof of Proposition 8

First, note thatQt = X X′−X X
′
is a symmetric, non-negative matrix, since it may be rewritten as

1
nt

∑
s∈S(t)

(X+
s −X)(X+

s −X)′.

In solving the least squares problem (21), we deduceb = ∆X +AX∆, thus

min
A,b

1
nt

∑
s∈S(t)

∥∥∥∥∆Xs−b−A(Xs+
1
2

∆Xs)∆
∥∥∥∥

2

= min
A

1
nt

∑
s∈S(t)

∥∥∆Xs−∆X−A(X+
s −X)∆

∥∥2

≤
1
nt

∑
s∈S(t)

∥∥∆Xs−∆X−∇x f (X,ut)(X
+
s −X)∆

∥∥2
. (32)

Now, sinceXs = X +O(∆) one may obtain like in (19) and (20) (by replacingXt by X) that:

∆Xs−∆X−∇x f (X,ut)(X
+
s −X)∆ = O(∆3). (33)

We deduce from (32) and (33) that

1
nt

∑
s∈S(t)

∥∥∥
[
∇̂x f (Xt ,ut)−∇x f (X,ut)

]
(X+

s −X)∆
∥∥∥

2
= O(∆6).

By developing each component,

d

∑
i=1

[
∇̂x f (Xt ,ut)−∇x f (X,ut)

]
rowiQt

[
∇̂x f (Xt ,ut)−∇x f (X,ut)

]′
rowi = O(∆4).

Now, from the definition ofν(∆), for all vectoru∈ IRd, u′Qtu≥ ν(∆)||u||2, thus

ν(∆)||∇̂x f (Xt ,ut)−∇x f (X,ut)||
2 = O(∆4).

Condition (23) yieldŝ∇x f (Xt ,ut) = ∇x f (X,ut)+o(1), and since∇x f (Xt ,ut) = ∇x f (X,ut)+O(∆),
we deduce

lim
∆→0

∇̂x f (Xt ,ut) = ∇x f (Xt ,ut).

789

MUNOS

References

J. Baxter and P. L. Bartlett. Infinite-horizon gradient-based policy search. Journal of Artificial
Intelligence Research, 15:319–350, 2001.

A. Bensoussan.Perturbation methods in optimal control. Wiley/Gauthier-Villars Series in Modern
Applied Mathematics. John Wiley & Sons Ltd., Chichester, 1988. Translated from the French by
C. Tomson.

A. Bogdanov. Optimal control of a double inverted pendulum on a cart.Technical report CSE-04-
006, CSEE, OGI School of Science and Engineering, OHSU, 2004.

P. W. Glynn. Likelihood ratio gradient estimation: an overview. In A. Thesen, H. Grant, and W. D.
Kelton, editors,Proceedings of the 1987 Winter Simulation Conference, pages 366–375, 1987.

E. Gobet and R. Munos. Sensitivity analysis using Itô-Malliavin calculus and martingales. applica-
tion to stochastic optimal control.SIAM journal on Control and Optimization, 43(5):1676–1713,
2005.

G. H. Golub and C. F. Van Loan.Matrix Computations, 3rd ed.Baltimore, MD: Johns Hopkins,
1996.

R. E. Kalman, P. L. Falb, and M. A. Arbib.Topics in Mathematical System Theory. New York:
McGraw Hill, 1969.

P. E. Kloeden and E. Platen.Numerical Solutions of Stochastic Differential Equations. Springer-
Verlag, 1995.

H. J. Kushner and G. Yin.Stochastic Approximation Algorithms and Applications. Springer-Verlag,
Berlin and New York, 1997.

S. M. LaValle.Planning Algorithms. Cambridge University Press, 2006.

M. Ledoux. The concentration of measure phenomenon. American Mathematical Society, Provi-
dence, RI, 2001.

P. Marbach and J. N. Tsitsiklis. Approximate gradient methods in policy-space optimization of
Markov reward processes.Journal of Discrete Event Dynamical Systems, 13:111–148, 2003.

B. T. Polyak.Introduction to Optimization. Optimization Software Inc., New York, 1987.

M. I. Reiman and A. Weiss. Sensitivity analysis via likelihood ratios. In J. Wilson, J. Henriksen,
and S. Roberts, editors,Proceedings of the 1986 Winter Simulation Conference, pages 285–289,
1986.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.Bradford Book, 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation.Neural Information Processing Systems. MIT Press, pages
1057–1063, 2000.

790

POLICY GRADIENT IN CONTINUOUS TIME

M. Talagrand. A new look at independence.Annals of Probability, 24:1–34, 1996.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning.Machine Learning, 8:229–256, 1992.

J. Yang and H. J. Kushner. A Monte Carlo method for sensitivity analysis and parametric optimiza-
tion of nonlinear stochastic systems.SIAM J. Control Optim., 29(5):1216–1249, 1991.

791

Journal of Machine Learning Research 7 (2006) 793–815 Submitted 6/05; Revised 11/05; Published 5/06

Learning Image Components for Object Recognition

Michael W. Spratling MICHAEL .SPRATLING@KCL .AC.UK

Division of Engineering
King’s College London, UK, and

Centre for Brain and Cognitive Development
Birkbeck College, London, UK

Editor: Peter Dayan

Abstract

In order to perform object recognition it is necessary to learn representations of the underlying
components of images. Such components correspond to objects, object-parts, or features. Non-
negative matrix factorisation is a generative model that has been specifically proposed for finding
such meaningful representations of image data, through theuse of non-negativity constraints on
the factors. This article reports on an empirical investigation of the performance of non-negative
matrix factorisation algorithms. It is found that such algorithms need to impose additional con-
straints on the sparseness of the factors in order to successfully deal with occlusion. However,
these constraints can themselves result in these algorithms failing to identify image components
under certain conditions. In contrast, a recognition model(a competitive learning neural network
algorithm) reliably and accurately learns representations of elementary image features without such
constraints.

Keywords: non-negative matrix factorisation, competitive learning, dendritic inhibition, object
recognition

1. Introduction

An image usually contains a number of different objects, parts, or features and these components
can occur in different configurations to form many distinct images. Identifying the underlying com-
ponents which are combined to form images is thus essential for learning the perceptual represen-
tations necessary for performing object recognition. Non-negative matrix factorisation (NMF) has
been proposed as a method for finding such parts-based decompositionsof images (Lee and Seung,
1999; Feng et al., 2002; Liu et al., 2003; Liu and Zheng, 2004; Li et al.,2001; Hoyer, 2002, 2004).
However, the performance of this method has not been rigorously or quantitatively tested. Instead,
only a subjective assessment has been made of the quality of the components that are learnt when
this method is applied to processing images of, for example, faces (Lee and Seung, 1999; Hoyer,
2004; Li et al., 2001; Feng et al., 2002). This paper thus aims to quantitatively test, using several
variations of a simple standard test problem, the accuracy with which NMF identifies elementary
image features. Furthermore, non-negative matrix factorisation assumes that images are composed
of a linear combination of features. However, in reality the superposition ofobjects or object parts
does not always result in a linear combination of sources but, due to occlusion, results in a non-linear
combination. This paper thus also aims to investigate, empirically, how NMF performs when tested
in more realistic environments where occlusion takes place. Since competitive learning algorithms

c©2006 Michael W. Spratling.

SPRATLING

have previously been applied to this test problem, and neural networks are a standard technique for
learning object representations, the performance of NMF is compared to that of an unsupervised
neural network learning algorithm applied to the same set of tasks.

2. Method

This section describes the NMF algorithms, and the neural network algorithms, which are explored
in this paper. The performance of these algorithms is compared in the Results section.

2.1 Non-Negative Matrix Factorisation

Given anm by p matrix X = [~x1, . . . ,~xp], each column of which contains the pixel values of an
image (i.e., X is a set of training images), the aim is to find the factorsA andY such that

X ≈ AY,

whereA is anm by n matrix the columns of which contain basis vectors, or components, into which
the images can be decomposed, andY = [~y1, . . . ,~yp] is ann by p matrix containing the activations
of each component (i.e., the strength of each basis vector in the corresponding training image). A
training image (~xk) can therefore be reconstructed as a linear combination of the image components
contained inA, such that~xk ≈ A~yk.

A number of different learning algorithms can be defined depending on theconstraints that are
placed on the factorsA andY. For example, vector quantization (VQ) restricts each column ofY
to have only one non-zero element, principal components analysis (PCA) constrains the columns
of A to be orthonormal and the rows ofY to be mutually orthogonal, and independent components
analysis (ICA) constrains the rows ofY to be statistically independent. Non-negative matrix factori-
sation is a method that seeks to find factors (of a non-negative matrixX) under the constraint that
bothA andY contain only elements with non-negative values. It has been proposed that this method
is particularly suitable for finding the components of images, since from the physical properties of
image formation it is known that image components are non-negative and that these components are
combined additively (i.e., are not subtracted) in order to generate images. Several different algo-
rithms have been proposed for finding the factorsA andY under non-negativity constraints. Those
tested here are listed in Table 1.

Algorithms nmfdiv andnmfmse impose non-negativity constraints solely, and differ only in
the objective function that is minimised in order to find the factors. All the other algorithms ex-
tend non-negative matrix factorisation by imposing additional constraints on the factors. Algorithm
lnmf imposes constraints that require the columns ofA to contain as many non-zero elements as
possible, andY to contain as many zero elements as possible. This algorithm also requires thatbasis
vectors be orthogonal. Both algorithmssnmf andnnsc impose constraints on the sparseness ofY.
Algorithm nmfsc allows optional constraints to be imposed on the sparseness of either the basis
vectors, the activations, or both. This algorithm was used with three combinations of sparseness
constraints. Fornmfsc(A) a constraint on the sparseness of the basis vectors was applied. This
constraint required that each column ofA had a sparseness of 0.5. Valid values for the parame-
ter controlling sparseness could range from 0 (which would produce completely distributed basis
vectors) to a value of 1 (which would produce completely sparse basis vectors). Fornmfsc(Y) a
constraint on the sparseness of the activations was applied. This constraint required that each row

794

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

Acronym Description Reference
N

on
-n

eg
at

iv
e

M
at

rix
F

ac
to

ris
at

io
n

A
lg

or
ith

m
s

nmfdiv NMF with divergence objective (Lee and Seung, 2001)
nmfmse NMF with euclidean objective (Lee and Seung, 2001)
lnmf Local NMF (Li et al., 2001; Feng

et al., 2002)
snmf Sparse NMF (α = 1) (Liu et al., 2003)
nnsc Non-negative sparse coding (λ = 1) (Hoyer, 2002)
nmfsc(A) NMF with a sparseness constraint of 0.5 on

the basis vectors
(Hoyer, 2004)

nmfsc(Y) NMF with a sparseness constraint of 0.7 on
the activations

(Hoyer, 2004)

nmfsc(A&Y) NMF with sparseness constraints of 0.5 on
the basis vectors and 0.7 on the activations

(Hoyer, 2004)

N
eu

ra
l

N
et

w
or

k
A

lg
or

ith
m

s nndi Dendritic inhibition neural network with
non-negative weights

di Dendritic inhibition neural network (Spratling and Johnson,
2002, 2003)

Table 1: The algorithms tested in this article. These include a number of different algorithms for
finding matrix factorisations under non-negativity constraints and a neural network algo-
rithm for performing competitive learning through dendritic inhibition.

of Y had a sparseness of 0.7 (where sparseness is in the range[0,1], as for the constraint onA). For
nmfsc(A&Y) these same constraints were imposed on both the sparseness of basis vectors and the
activations. For thenmfsc algorithm, fixed values for the parameters controlling sparseness were
used in order to provide a fairer comparison with the other algorithms all of which used constant
parameter settings. Furthermore, since all the test cases studied are verysimilar, it is reasonable to
expect an algorithm to work across them all without having to be tuned specifically to each individ-
ual task. The particular parameter values used were selected so as to provide the best overall results
across all the tasks. The effect of changing the sparseness parameters is described in the discussion
section.

2.2 Dendritic Inhibition Neural Network

In terms of neural networks, the factoring ofX into A andY constitutes the formation of a generative
model (Hinton et al., 1995): neural activationsY reconstruct the input patternsX via a matrix of
feedback (or generative) synaptic weightsA (see Figure 1a). In contrast, traditional neural network
algorithms have attempted to learn a set of feedforward (recognition) weights W (see Figure 1b),

795

SPRATLING

W
ei

gh
ts

F
ee

db
ac

k

1k 2k

1k 2k 3k

11

X

Y Y

X X

A

(a)

F
ee

df
or

w
ar

d
W

ei
gh

ts

1k 2k

1k 2k 3k

11

X

Y Y

X X

W

(b)

Figure 1: (a) A generative neural network model: feedback connections enable neural activations
(~yk) to reconstruct an input pattern (~xk). (b) A recognition neural network model: feed-
forward connections cause neural activations (~yk) to be generated in response to an input
pattern (~xk). Nodes are shown as large circles and excitatory synapses as small open
circles.

such that
Y = f (W,X) ,

whereW is ann by m matrix of synaptic weight values,X = [~x1, . . . ,~xp] is anm by p matrix of
training images, andY = [~y1, . . . ,~yp] is ann by p matrix containing the activation of each node in
response to the corresponding image. Typically, the rows ofW form templates that match image
features, so that individual nodes become active in repose to the presence of specific components of
the image. Nodes thus act as ‘feature detectors’ (Barlow, 1990, 1995).

Many different functions are possible for calculating neural activations and many different learn-
ing rules can be defined for finding the values ofW. For example, algorithms have been proposed for
performing vector quantization (Kohonen, 1997; Ahalt et al., 1990), principal components analysis
(Oja, 1992; Fyfe, 1997b; F̈oldiák, 1989), and independent components analysis (Jutten and Herault,
1991; Charles and Fyfe, 1997; Fyfe, 1997a). Many of these algorithms impose non-negativity con-
straints on the elements ofY andW for reasons of biological plausibility, since neural firing rates
are positive and since synapses can not change between being excitatory and being inhibitory. In
general, such algorithms employ different forms of competitive learning, in which nodes compete to
be active in response to each input pattern. Such competition can be implemented using a number of
different forms of lateral inhibition. In this paper, a competitive learning algorithm in which nodes
can inhibit the inputs to other nodes is used. This form of inhibition has been termed dendritic
inhibition or pre-integration lateral inhibition. The full dendritic inhibition model (Spratling and
Johnson, 2002, 2003) allows negative synaptic weight values. However, in order to make a fairer
comparison with NMF, a version of the dendritic inhibition algorithm in which all synaptic weights
are restricted to be non-negative (by clipping the weights at zero) is also used in the experiments
described here. The full model will be referred to by the acronymdi while the non-negative version
will be referred to asnndi (see Table 1).

In a neural network model, an input image (~xk) generates activity (~yk) in the nodes of a neural
network such that~yk = f (W,~xk). In the dendritic inhibition model, the activation of each individual
node is calculated as:

y jk = W~x′k j

796

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

where~x′k j is an inhibited version of the input activations (~xk) that can differ for each node. The
values of~x′k j are calculated as:

x′ik j = xik

1−α

n
max
r=1

(r 6= j)

{

wri

maxm
q=1

{

wrq
}

yrk

maxn
q=1

{

yqk
}

}

+

,

whereα is a scale factor controlling the strength of lateral inhibition, and(v)+ is the positive half-
rectified value ofv. The steady-state values ofy jk were found by iteratively applying the above two
equations, increasing the value ofα from 0 to 6 in steps of 0.25, while keeping the input image
fixed.

The above activation function implements a form of lateral inhibition in which each neuron can
inhibit the inputs to other neurons. The strength with which a node inhibits an input to another
node is proportional to the strength of the afferent weight the inhibiting node receives from that
particular input. Hence, if a node is strongly activated by the overall stimulusand it has a strong
synaptic weight to a certain feature of that stimulus, then it will inhibit other nodes from responding
to that feature. On the other hand, if an active node receives a weak weight from a feature then it
will only weakly inhibit other nodes from responding to that feature. In thismanner, each node can
selectively ‘block’ its preferred inputs from activating other nodes, but does not inhibit other nodes
from responding to distinct stimuli.

All weight values were initialised to random values chosen from a Gaussiandistribution with
a mean of1m and a standard deviation of 0.001n

m . This small degree of noise on the initial weight
values was sufficient to cause bifurcation of the activity values, and thusto cause differentiation of
the receptive fields of different nodes through activity-dependent learning. Previous results with this
algorithm have been produced using noise (with a similarly small magnitude) applied to the node
activation values. Using noise applied to the node activations, rather than the weights, produces
similar results to those reported in this article. However, noise was only appliedto the initial weight
values, and not to the node activations, here to provide a fairer comparison to the deterministic NMF
algorithms. Note that a node which still has its initial weight values (i.e., a node which has not had
its weights modified by learning) is described as ‘uncommitted’.

Synaptic weights were adjusted using the following learning rule (applied to weights with values
greater than or equal to zero):

∆w ji =
(xik − x̄k)

∑m
p=1 xpk

(

y jk − ȳk
)+

. (1)

Herex̄k is the mean value of the pixels in the training image (i.e., x̄k = 1
m ∑m

i=1 xik), and ¯yk is the mean
of the output activations (i.e., ȳk = 1

n ∑n
j=1 y jk). Following learning, synaptic weights were clipped

at zero such thatw ji = (w ji)
+ and were normalised such that∑m

i=1(w ji)
+
≤ 1.

This learning rule encourages each node to learn weights selective for aset of coactive inputs.
This is achieved since when a node is more active than average it increases its synaptic weights
to active inputs and decreases its weights to inactive inputs. Hence, only sets of inputs which
are consistently coactive will generate strong afferent weights. In addition, the learning rule is
designed to ensure that different nodes can represent stimuli which share input features in common
(i.e., to allow the network to represent overlapping patterns). This is achievedby rectifying the

797

SPRATLING

post-synaptic term of the rule so that no weight changes occur when the node is less active than
average. If learning was not restricted in this way, whenever a pattern was presented all nodes
which represented patterns with overlapping features would reduce theirweights to these features.

For the algorithmdi, but not for algorithmnndi, the following learning rule was applied to
weights with values less than or equal to zero:

∆w ji =

(

x′ik j −0.5xik

)−

∑n
p=1 ypk

(

y jk − ȳk
)

. (2)

Here (v)− is the negative half-rectified value ofv. Negative weights were clipped at zero such
that w ji = (w ji)

− and were normalised such that∑m
i=1(w ji)

−
≥ −1. Note that for programming

convenience a single synapse is allowed to take either excitatory or inhibitoryweight values. In a
more biologically plausible implementation two separate sets of afferent connections could be used:
the excitatory ones being trained using equation 1 and the inhibitory ones being trained using a rule
similar to equation 2.

The negative weight learning rule has a different form from the positive weight learning rule as
it serves a different purpose. The negative weights are used to ensure that each image component is
represented by a distinct node rather than by the partial activation of multiplenodes each of which
represents an overlapping image component. A full explanation of this learning rule is provided
together with a concrete example of its function in section 3.3.

3. Results

In each of the experiments reported below, all the algorithms listed in Table 1 were applied to
learning the components in a set ofp training images. The average number of components that were
correctly identified over the course of 25 trials was recorded. A new setof p randomly generated
images were created for each trial. In each trial the NMF algorithms were trained until the total sum
of the absolute difference in the objective function, between successive epochs, had not changed
by more than 0.1% of its average value in 100 epochs, or until 2000 epochshad been completed.
One epoch is when the method has been trained on allp training patterns. Hence, an epoch equals
one update to the factors in an NMF algorithm, andp iterations of the neural network algorithm
during which each individual image in the training set is presented once as input to the network.
The neural network algorithms were trained for 10000 iterations. Hence,the NMF algorithms were
each trained for at least 100 epochs, while the neural network algorithmswere trained for at most
100 epochs (since the value ofp was 100 or greater).

3.1 Standard Bars Problem

The bars problem (and its variations) is a benchmark task for the learning of independent image
features (F̈oldiák, 1990; Saund, 1995; Dayan and Zemel, 1995; Hinton et al., 1995; Harpur and
Prager, 1996; Hinton and Ghahramani, 1997; Frey et al., 1997; Fyfe,1997b; Charles and Fyfe, 1998;
Hochreiter and Schmidhuber, 1999; Meila and Jordan, 2000; Plumbley, 2001; O’Reilly, 2001; Ge
and Iwata, 2002; L̈ucke and von der Malsburg, 2004). In the standard version of the bars problem,
as defined by F̈oldiák (1990), training data consists of 8 by 8 pixel images in which each of the 16
possible (one-pixel wide) horizontal and vertical bars can be present with a probability of18. Typical
examples of training images are shown in Figure 2.

798

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

Figure 2: Typical training patterns for the standard bars problem. Horizontal and vertical bars in
8x8 pixel images are independently selected to be present with a probability of 1

8. Dark
pixels indicate active inputs.

In the first experiment the algorithms were trained on the standard bars problem. Twenty-five
trials were performed withp = 100, and, withp = 400. The number of components that each
algorithm could learn (n) was set to 32. Typical examples of the (generative) weights learnt by each
NMF algorithm (i.e., the columns ofA reshaped as 8 by 8 pixel images) and of the (recognition)
weights learnt by the neural network algorithms (i.e., the rows ofW reshaped as 8 by 8 pixel
images) are shown in Figure 3. It can be seen that the NMF algorithms tend to learn a redundant
representation, since the same bar can be represented multiple times. In contrast, the neural network
algorithms learnt a much more compact code, with each bar being represented by a single node. It
can also be seen that many of the NMF algorithms learnt representations of bars in which pixels
were missing. Hence, these algorithms learnt random pieces of image components rather than the
image components themselves. In contrast, the neural network algorithms (and algorithmsnnsc,
nmfsc(A), andnmfsc(A&Y)) learnt to represent complete image components.

To quantify the results, the following procedure was used to determine the number of bars
represented by each algorithm in each trial. For each node, the sum of theweights corresponding
to each row and column of the input image was calculated. A node was considered to represent a
particular bar if the total weight corresponding to that bar was twice that ofthe sum of the weights
for any other row or column and if the minimum weight in the row or column corresponding to that
bar was greater than the mean of all the (positive) weights for that node. The number of unique bars
represented by at least one basis vector, or one node of the network,was calculated, and this value
was averaged over the 25 trials. The mean number of bars (i.e., image components) represented by
each algorithm is shown in Figure 4a. Good performance requires both accuracy (finding all the
image components) and reliability (doing so across all trials). Hence, the average number of bars
represented needs to be close to 16 for an algorithm to be considered to have performed well. It can
be seen that whenp = 100, most of the NMF algorithms performed poorly on this task. However,
algorithmsnmfsc(A) andnmfsc(A&Y) produced good results, representing an average of 15.7 and
16 components respectively. This compares favourably to the neural network algorithms, withnndi
representing 14.6 anddi representing 15.9 of the 16 bars. When the number of images in the
training set was increased to 400 this improved the performance of certain NMF algorithms, but
lead to worse performance in others. Forp = 400, every image component in every trial was found
by algorithmsnnsc, nmfsc(A), nmfsc(A&Y) anddi.

In the previous experiment there were significantly more nodes, or basis vectors, than was neces-
sary to represent the 16 underlying image components. The poor performance of certain algorithms
could thus potentially be due to over-fitting. The experiment was thus repeated using 16 nodes or

799

SPRATLING

(a) nmfdiv

(b) nmfmse

(c) lnmf

(d) snmf

(e) nnsc

(f) nmfsc (A)

(g) nmfsc (Y)

(h) nmfsc (A&Y)

(i) nndi

(j) di

Figure 3: Typical generative or recognition weights learnt by 32 basis vectors or nodes when each
algorithm was trained on the standard bars problem. Dark pixels indicate strong weights.

800

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

0

4

8

12

16

nu
m

be
r

of
 b

ar
s

re
pr

es
en

te
d

n
m
f
d
i
v

n
m
f
m
s
e

l
n
m
f

s
n
m
f

n
n
s
c

n
m
f
s
c
(
A
)

n
m
f
s
c
(
Y
)

n
m
f
s
c
(
A
&
Y
)

n
n
d
i

d
i

algorithm
(a)

0

4

8

12

16

nu
m

be
r

of
 b

ar
s

re
pr

es
en

te
d

n
m
f
d
i
v

n
m
f
m
s
e

l
n
m
f

s
n
m
f

n
n
s
c

n
m
f
s
c
(
A
)

n
m
f
s
c
(
Y
)

n
m
f
s
c
(
A
&
Y
)

n
n
d
i

d
i

algorithm
(b)

Figure 4: Performance of each algorithm when trained on the standard bars problem. For (a) 32,
and (b) 16 basis vectors or nodes. Each bar shows the mean number of components
correctly identified by each algorithm when tested over 25 trials. Results fordifferent
training set sizes are shown: the lighter, foreground, bars show results for p = 100, and
the darker, background, bars show results forp = 400. Error bars show best and worst
performance, across the 25 trials, whenp = 400.

basis vectors. The results of this experiment are shown in Figure 4b. It can be seen that while
the performance of some NMF algorithms is improved, the performance of others becomes slightly
worse. Only NMF algorithmsnmfsc(A) andnmfsc(A&Y) reliably find nearly all the bars with both
16 and 32 basis vectors. In contrast, the performance of the neural network algorithms is unaffected
by changing the number of nodes. Such behaviour is desirable since it is generally not known in
advance how many components there are. Hence, a robust algorithm needs to be able to correctly

801

SPRATLING

learn image components with an excess of nodes. Across both these experiment thedi version of
the neural network algorithm performs as well as or better than any of the NMF algorithms.

3.2 Bars Problems Without Occlusion

To determine the effect of occlusion on the performance of each algorithmfurther experiments were
performed using versions of the bars problem in which no occlusion occurs. Firstly, a linear version
of the standard bars problem was used. Similar tasks have been used by Plumbley (2001) and Hoyer
(2002). In this task, pixel values are combined additively at points of overlap between horizontal
and vertical bars. As with the standard bars problem, training data consisted of 8 by 8 pixel images
in which each of the 16 possible (one-pixel wide) horizontal and verticalbars could be present with
a probability of1

8. All the algorithms were trained withp = 100 and withp = 400 using 32 nodes
or basis vectors. The number of unique bars represented by at least one basis vector, or one node of
the network, was calculated, and this value was averaged over 25 trials. The mean number of bars
represented by each algorithm is shown in Figure 5a.

Another version of the bars problem in which occlusion is avoided is one in which horizontal
and vertical bars do not co-occur. Similar tasks have been used by Hinton et al. (1995); Dayan and
Zemel (1995); Frey et al. (1997); Hinton and Ghahramani (1997) andMeila and Jordan (2000). In
this task, an orientation (either horizontal or vertical) was chosen with equal probability for each
training image. The eight (one-pixel wide) bars of that orientation were then independently selected
to be present with a probability of1

8. All the algorithms were trained withp = 100 and withp = 400
using 32 nodes or basis vectors. The number of unique bars represented by at least one basis vector,
or one node of the network, was calculated, and this value was averagedover 25 trials. The mean
number of bars represented by each algorithm is shown in Figure 5b.

For both experiments using training images in which occlusion does not occur, the performance
of most of the NMF algorithms is improved considerably in comparison to the standard bars prob-
lem. The neural network algorithms also reliably learn the image components as withthe standard
bars problem.

3.3 Bars Problem with More Occlusion

To further explore the effects of occlusion on the learning of image components a version of the
bars problem with double-width bars was used. Training data consisted of9 by 9 pixel images
in which each of the 16 possible (two-pixel wide) horizontal and vertical bars could be present
with a probability 1

8. The image size was increased by one pixel to keep the number of image
components equal to 16 (as in the previous experiments). In this task, as in the standard bars
problem, perpendicular bars overlap; however, the proportion of overlap is increased. Furthermore,
neighbouring parallel bars also overlap (by 50%). Typical examples oftraining images are shown
in Figure 6.

Each algorithm was trained on this double-width bars problem withp = 400. The number of
components that each algorithm could learn (n) was set to 32. Typical examples of the (generative)
weights learnt by each NMF algorithm and of the (recognition) weights learnt by the neural network
algorithms are shown in Figure 7. It can be seen that the majority of the NMF algorithms learnt
redundant encodings in which the basis vectors represent parts of image components rather than
complete components. In contrast, the neural network algorithms (and thennsc algorithm) learnt
to represent complete image components.

802

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

0

4

8

12

16

nu
m

be
r

of
 b

ar
s

re
pr

es
en

te
d

n
m
f
d
i
v

n
m
f
m
s
e

l
n
m
f

s
n
m
f

n
n
s
c

n
m
f
s
c
(
A
)

n
m
f
s
c
(
Y
)

n
m
f
s
c
(
A
&
Y
)

n
n
d
i

d
i

algorithm
(a)

0

4

8

12

16

nu
m

be
r

of
 b

ar
s

re
pr

es
en

te
d

n
m
f
d
i
v

n
m
f
m
s
e

l
n
m
f

s
n
m
f

n
n
s
c

n
m
f
s
c
(
A
)

n
m
f
s
c
(
Y
)

n
m
f
s
c
(
A
&
Y
)

n
n
d
i

d
i

algorithm
(b)

Figure 5: Performance of each algorithm when trained on (a) the linear bars problem, and (b) the
one-orientation bars problem, with 32 basis vectors or nodes. Each bar shows the mean
number of components correctly identified by each algorithm when tested over 25 trials.
Results for different training set sizes are shown: the lighter, foreground, bars show results
for p = 100, and the darker, background, bars show results forp = 400. Error bars show
best and worst performance, across the 25 trials, whenp = 400.

The following procedure was used to determine the number of bars represented by each algo-
rithm in each trial. For each node, the sum of the weights corresponding to every double-width bar
was calculated. A node was considered to represent a particular bar if the total weight correspond-
ing to that bar was 1.5 times that of the sum of the weights for any other bar andif the minimum
weight of any pixel forming part of that bar was greater than the mean of all the (positive) weights

803

SPRATLING

Figure 6: Typical training patterns for the double-width bars problem. Twopixel wide horizontal
and vertical bars in a 9x9 pixel image are independently selected to be present with a
probability of 1

8. Dark pixels indicate active inputs.

for that node. The number of unique bars represented by at least onebasis vector, or one node of the
network, was calculated. The mean number of two-pixel-wide bars, over the 25 trials, represented
by each algorithm is shown in Figure 8a. This set of training images could be validly, but less ef-
ficiently, represented by18 one-pixel-wide bars. Hence, the mean number of one-pixel-wide bars,
represented by each algorithm was also calculated and this data is shown in Figure 8b. The number
of one-pixel-wide bars represented was calculated using the same procedure used to analyse the
previous results (as stated in section 3.1).

It can be seen that the majority of the NMF algorithms perform very poorly onthis task. Most
fail to reliably represent either double- or single-width bars. However,algorithmsnnsc, nmfsc(A)
andnmfsc(A&Y) do succeed in learning the image components. The dendritic inhibition algorithm,
with negative weights, also succeeds in identifying all the double-width barsin most trials. However,
the non-negative version of this algorithm performs less well. This result illustrates the need to allow
negative weight values in this algorithm in order to robustly learn image components. Negative
weights are needed to disambiguate a real image component from the simultaneous presentation of
partial components. For example, consider part of the neural network that is receiving input from
four pixels that are part of four separate, neighbouring, columns of the input image (as illustrated
in Figure 9). Assume that two nodes in the output layer (nodes 1 and 3) have learnt weights that
are selective to two neighbouring, but non-overlapping, double-width bars (bars 1 and 3). When the
double-width bar (bar 2) that overlaps these two represented bars is presented to the input, then the
network will respond by partially activating nodes 1 and 3. Such a representation is reasonable since
this input pattern could be the result of the co-activation of partially occluded versions of the two
represented bars. However, if bar 2 recurs frequently then it is unlikely to be caused by the chance
co-occurrence of multiple, partially occluded patterns, and is more likely to bean independent
image component that should be represented in a similar way to the other components (i.e., by
the activation of a specific node tuned to that feature). One way to ensurethat in such situations
the network learns all image components is to employ negative synaptic weights.These negative
weights are generated when a node is active and inputs, which are not part of the nodes’ preferred
input pattern, are inhibited. This can only occur when multiple nodes are co-active. If the pattern,
to which this set of co-active nodes are responding, re-occurs then the negative weights will grow.
When the negative weights are sufficiently large the response of these nodes to this particular pattern
will be inhibited, enabling an uncommitted node to successfully compete to represent this pattern.
On the other hand, if the pattern, to which this set of co-active nodes are responding, is just due to the

804

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

(a) nmfdiv

(b) nmfmse

(c) lnmf

(d) snmf

(e) nnsc

(f) nmfsc (A)

(g) nmfsc (Y)

(h) nmfsc (A&Y)

(i) nndi

(j) di

Figure 7: Typical generative or recognition weights learnt by 32 basis vectors or nodes when each
algorithm was trained on the double-width bars problem. Dark pixels indicate strong
weights.

805

SPRATLING

0

4

8

12

16

nu
m

be
r

of
 b

ar
s

re
pr

es
en

te
d

n
m
f
d
i
v

n
m
f
m
s
e

l
n
m
f

s
n
m
f

n
n
s
c

n
m
f
s
c
(
A
)

n
m
f
s
c
(
Y
)

n
m
f
s
c
(
A
&
Y
)

n
n
d
i

d
i

algorithm
(a)

0

3

6

9

12

15

18

nu
m

be
r

of
 b

ar
s

re
pr

es
en

te
d

n
m
f
d
i
v

n
m
f
m
s
e

l
n
m
f

s
n
m
f

n
m
f
s
c
(
Y
)

algorithm
(b)

Figure 8: Performance of each algorithm when trained on the double-widthbars problem, with 32
basis vectors or nodes, andp = 400. Each bar shows the mean number of components
correctly identified by each algorithm when tested over 25 trials. (a) Numberof double-
width bars learnt. (b) Number of single-width bars learnt. Error bars show best and worst
performance across the 25 trials. Note that algorithms that successfully learnt double-
width bars—see (a)—do not appear in (b), but space is left for these algorithms in order
to aid comparison between figures.

co-activation of independent input patterns then the weights will return toward zero on subsequent
presentations of these patterns in isolation.

3.4 Bars Problem with Unequal Components

In each individual experiment reported in the previous sections, everycomponent of the training
images has been exactly equal in size to every other component and has occurred with exactly the

806

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

1k

1k 2k 3kX

Y

X X

Y2k Y3k

X4k

bar 1
bar 2

bar 3

Figure 9: An illustration of a the role of negative weights in the dendritic inhibitionalgorithm.
Nodes are shown as large circles, excitatory synapses as small open circles and inhibitory
synapses as small filled circles. NodesY1k andY3k are selective for the double-width
bars 1 and 3 respectively. The occurrence in an image of the double-width bar ‘bar 2’
would be indicated by both nodesY1k andY3k being active at half-strength. However, if
bar 2 occurs sufficiently frequently, the negative afferent weights indicated will develop
which will suppress this response and enable the uncommitted node (Y2k) to compete to
respond to this pattern. Note that each bar would activate two columns each containing
eight input nodes, but only one input node per column is shown for clarity.

same probability. This is unlikely to be the case in real-world object recognition tasks. In the real-
world, different image features can be radically different in size and can be encountered with very
different frequency. For example, important features in face recognition include both the eyes and
the hair (Sinha and Poggio, 1996; Davies et al., 1979) which can vary significantly in relative size.
Furthermore, we effortlessly learn to recognise both immediate family members (who may be seen
many times a day) and distant relatives (who may be seen only a few times a year).

To provide a more realistic test, a new variation on the bars problem was used. In this version,
training data consisted of 16 by 16 pixel images. Image components consistedof seven one-pixel
wide bars and one nine-pixel wide bar in both the horizontal and vertical directions. Hence, as
in previous experiments, there were eight image components at each orientation and 16 in total.
Parallel bars did not overlap, however, the proportion of overlap between the nine-pixel wide bars
and all other perpendicular bars was large, while the proportion of overlap between perpendicular
one-pixel wide bars was less than in the standard bars problem. Each horizontal bar was selected to
be present in an image with a probability of1

8 while vertical bars occurred with a probability of1
32.

Hence, in this test case half the underlying image components occurred at adifferent frequency to
the other half and two of the components were a different size to the other 14.

Each algorithm was trained on this ‘unequal’ bars problem withp = 400. The number of com-
ponents that each algorithm could learn (n) was set to 32. The mean number of bars, over 25 trials,
represented by each algorithm is shown in Figure 10. It can be seen thatnone of the NMF algo-
rithms succeeded in reliably identifying all the image components in this task. Learning to represent

807

SPRATLING

0

4

8

12

16

nu
m

be
r

of
 b

ar
s

re
pr

es
en

te
d

n
m
f
d
i
v

n
m
f
m
s
e

l
n
m
f

s
n
m
f

n
n
s
c

n
m
f
s
c
(
A
)

n
m
f
s
c
(
Y
)

n
m
f
s
c
(
A
&
Y
)

n
n
d
i

d
i

algorithm

Figure 10: Performance of each algorithm when trained on the unequal bars problem, with 32 basis
vectors or nodes, andp = 400. Each bar shows the mean number of components cor-
rectly identified by each algorithm when tested over 25 trials. Error bars show best and
worst performance across the 25 trials.

the two large components appears to be a particular problem for all these algorithms, but the cause
for this may differ between algorithms. For most NMF algorithms, the underlyinglinear model
fails when occlusion is significant, as is the case for the two nine-pixel wide patterns. However, for
the NMF algorithms that find non-negative factors with an additional constraint on the sparseness
of the basis vectors (i.e., nmfsc(A) andnmfsc(A&Y)) an alternative cause may be the imposition
of a constraint that requires learnt image components to be a similar size, which is not the case
for the components used in this task. The neural network algorithm with positive weights (nndi)
produced results that are only marginally better than the NMF algorithms. This algorithm also fails
to reliably learn the two large components due to the large overlap between them.In contrast, the
dendritic inhibition neural network algorithm with negative weights (di), succeeded in identifying
all the bars in most trials. As for the previous experiment with double-width bars, this result illus-
trates the need to allow negative weight values in this algorithm in order to robustly learn image
components. Algorithmdi learnt every image component in 18 of the 25 trials. In contrast, only
one NMF algorithm (nnsc) managed to find all the image components, but it only did so in a single
trial.

3.5 Face Images

Previously, NMF algorithms have been tested using a training set that consists of images of faces
(Lee and Seung, 1999; Hoyer, 2004; Li et al., 2001; Feng et al., 2002). When these training images
are taken from the CBCL face database,1 algorithmnmfdiv learns basis vectors that correspond
to localised image parts (Lee and Seung, 1999; Hoyer, 2004; Feng et al.,2002). However, when

1. CBCL Face Database #1, MIT Center For Biological and Computation Learning,
http://www.ai.mit.edu/projects/cbcl.

808

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

(a) nndi

(b) di

Figure 11: (a) and (b) Typical recognition weights learnt by 32 nodes when both versions of the
dendritic inhibition algorithm were trained on the CBCL face database. Light pixels
indicate strong weights.

applied to the ORL face database,2 algorithmnmfmse learns global, rather than local, image fea-
tures (Li et al., 2001; Hoyer, 2004; Feng et al., 2002). In contrast, algorithm lnmf learns localised
representations of the ORL face database (Feng et al., 2002; Li et al., 2001). Algorithmnmfsc can
find either local or global representations of either set of face images withappropriate values for
the constraints on the sparseness of the basis vectors and activations. Specifically, nmfsc learns
localised image parts when constrained to produce highly sparse basis images, but learns global
image features when constrained to produce basis images with low sparseness or if constrained to
produce highly sparse activations (Hoyer, 2004). Hence, NMF algorithms can, in certain circum-
stances, learn localised image components, some of which appear to roughlycorrespond to parts of
the face, but others of which are arbitrary, but localised, blobs. Essentially the NMF algorithms se-
lect a subset of the pixels which are simultaneously active across multiple images to be represented
by a single basis vector. The same behaviour is observed in the bars problems, reported above,
where a basis vector often corresponds to a random subset of pixels along a row or column of the
image rather than representing an entire bar. Such arbitrary image components are not meaningful
representations of the image data.

In contrast when the dendritic inhibition neural network is trained on face images, it learns
global representations. Figure 11a and Figure 11b show the results of training nndi anddi, for
10000 iterations, on the 2429 images in the CBCL face database. Parameterswere identical to
those used for the bars problems, except the weights were initialised to random values chosen from
a Gaussian distribution with a larger standard deviation (0.005n

m) as this was found necessary to
cause bifurcation of activity values. In both cases, each node has learnt to represent an average (or
prototype) of a different subset of face images. When presented with highly overlapping training
images the neural network algorithm will learn a prototype consisting of the common features be-
tween the different images (Spratling and Johnson, 2006). When presented with objects that have
less overlap, the network will learn to represent the individual exemplars(Spratling and Johnson,
2006). These two forms of representation are believed to support perceptual categorisation and
object recognition (Palmeri and Gauthier, 2004).

2. The ORL Database of Faces, AT&T Laboratories Cambridge,
http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.

809

SPRATLING

4. Discussion

The NMF algorithmlnmf imposes the constraint that the basis vectors be orthogonal. This means
that image components may not overlap and, hence, results in this algorithm’s failure across all
versions of the bars task. In all these tasks the underlying image componentsare overlapping bars
patterns (even if they do not overlap in any single training image, as is the case with the one-
orientation bars problem).

NMF algorithms which find non-negative factors without other constraints (i.e., nmfdiv and
nmfmse) generally succeed in identifying the underlying components of images whentrained us-
ing images in which there is no occlusion (i.e., on the linear and one-orientation bars problems).
However, these algorithms fail when occlusion does occur between image components, and perfor-
mance gets worse as the degree of occlusion increases. Hence, these algorithms fail to learn many
image features in the standard bars problem and produce even worse performance when tested on
the double-width bars problem.

NMF algorithms that find non-negative factors with an additional constrainton the sparseness
of the activations (i.e., snmf, nnsc, andnmfsc(Y)) require that the rows ofY have a particular
sparseness. Such a constraint causes these algorithms to learn components that are present in a cer-
tain fraction of the training images (i.e., each factor is required to appear with a similar frequency).
Such a constraint can overcome the problems caused by occlusion and enable NMF to identify
components in training images where occlusion occurs. For example,nnsc produced good results
on the double-width bars problem. Given sufficient training data,nnsc also reliably finds nearly
all the image components in all experiments except for the standard bars testwhenn = 16 and the
unequal bars problem. However,nmfsc(Y) fails to produce consistently good results across exper-
iments. This algorithm only reliably found all the image components for the standard bars problem
whenn = 16 and for the linear bars problem. Despite constraining the sparseness of the activations,
algorithmsnmf produced poor results in all experiments except for the linear bars problem.

The NMF algorithm that finds non-negative factors with an additional constraint on the sparse-
ness of the basis vectors (i.e., nmfsc(A)) requires that the columns ofA have a particular sparseness.
Such a constraint causes this algorithm to learn components that have a certain fraction of pixels
with values greater than zero (i.e., all factors are required to be a similar size). This algorithm
produces good results across all the experiments except the unequal bars problem. Constraining
the sparseness of the basis vectors thus appears to overcome the problems caused by occlusion and
enable NMF to identify components in training images where occlusion occurs.However, this con-
straint may itself prevent the algorithm from identifying image components whichare a different
size from that specified by the sparseness parameter. The NMF algorithmthat imposes constraints
on both the sparseness of the activations and the sparseness of the basis vectors (i.e., nmfsc(A&Y))
produces results similar to those produced bynmfsc(A).

The performance of thenmfsc algorithm depends critically on the particular sparseness param-
eters that are chosen. As can be seen from figure 12, performance on a specific task can vary from
finding every component in every trial, to failure to find even a single component across all trials.
While appropriate values of sparseness constraint can enable the NMF algorithm to overcome in-
herent problems associated with the non-linear superposition of image components, inappropriate
values of sparseness constraint will prevent the identification of factors that occur at a different fre-
quency, or that are a different size, to that specified by the sparseness parameter chosen. This is
particularly a problem when the frequency and size of different image components varies within a

810

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

(a) (b) (c) (d)

Figure 12: Performance of thenmfsc algorithm across the range of possible combinations of
sparseness parameters. For (a) the standard bars problem, (b) the one-orientation bars
problem, (c) the double-width bars problem, and (d) the unequal bars problem. In each
case,n = 32 andp = 400. The sparseness ofY varies along the y-axis and the sparseness
of A varies along the x-axis of each plot. Since the sparseness constraints are optional,
’None’ indicates where no constraint was imposed. The length of the edgeof each filled
box is proportional to the mean number of bars learnt over 25 trials for thatcombination
of parameters. Perfect performance would be indicated by a box completely filling the
corresponding element of the array. ‘X’ marks combinations of parametervalues for
which the algorithm encountered a division-by-zero error and crashed.

single task. Hence, thenmfsc algorithm was unable to identify all the components in the unequal
bars problem with any combination of sparseness parameters (figure 12d). In fact, no NMF algo-
rithm succeeded in this task: either because the linear NMF model could not deal with occlusion
or because the algorithm imposed sparseness constraints that could not be satisfied for all image
components.

The parameter search shown in figure 12 was performed in order to select the parameter val-
ues that would produce the best overall results across all the tasks used in this paper for algorithms
nmfsc(A), nmfsc(Y), andnmfsc(A&Y). However, in many real-world tasks the user may not know
what the image components should look like, and hence, it would be impossible tosearch for the
appropriate parameter values. Thenmfsc algorithm is thus best suited to tasks in which all compo-
nents are either a similar size or occur at a similar frequency, and for whichthis size/frequency is
either knowna priori or the user knows what the components should look like and is prepared to
search for parameters that enable these components to be ‘discovered’by the algorithm.

Sparseness constraints are also often employed in neural network algorithms. However, in such
recognition models, sparseness constraints usually limit the number of nodesthat are simultane-
ously active in response to an input image (Földiák and Young, 1995; Olshausen and Field, 2004).
This is equivalent to constraining the sparseness in thecolumns of Y (rather than the rows ofY,
or the columns ofA, as has been constrained in the NMF algorithms). Any constraints that im-
pose restrictions on the number of active nodes will prevent a neural network from accurately and
completely representing stimuli (Spratling and Johnson, 2004). Hence, such sparseness constraints

811

SPRATLING

should be avoided. The dendritic inhibition model succeeds in learning representations of elemen-
tary image features without such constraints. However, to accurately represent image features that
overlap, it is necessary for negative weight values to be allowed. This algorithm (di) produced the
best overall performance across all the experiments performed here.This is achieved because this
algorithm does not falsely assume that image composition is a linear process, nor does it impose
constraints on the expected size or frequency of occurrence of image components. The dendritic
inhibition algorithm thus provides an efficient, on-line, algorithm for finding image components.

When trained on images that are composed of elementary features, such asthose used in the
bars problems, algorithmdi reliably and accurately learns representations of the underlying image
features. However, when trained on images of faces, algorithmdi learns holistic representations.
In this case, large subsets of the training images contain virtually identical patterns of pixel values.
These re-occurring, holistic patterns, are learnt by the dendritic inhibitionalgorithm. In contrast,
the NMF algorithms (in certain circumstances) form distinct basis vectors to represent pieces of
these recurring patterns. The separate representation of sub-patterns is due to constraints imposed
by the algorithms and is not based on evidence contained in the training images.Hence, while
these constraints make it appear that NMF algorithms have learnt face parts, these algorithms are
representing arbitrary parts of larger image features. This is demonstrated by the results generated
when the NMF algorithms are applied to the bars problems. In these cases, each basis vector
often corresponds to a random subset of pixels along a row or column ofthe image rather than
representing an entire bar. Such arbitrary image components are not meaningful representations of
the image data. Rather than relying on a subjective assessment of the quality of the components that
are learnt, the bars problems that are the main focus of this paper, providea quantitative test of the
accuracy and reliability with which elementary image features are discovered. Since the underlying
image components are known, it is possible to compare the components learnt withthe known
features from which the training images were created. These results demonstrate that when the
training images are actually composed of elementary features, NMF algorithms can fail to learn the
underlying image components, whereas, the dendritic inhibition algorithm reliably and accurately
does so.

Intuitively, the dendritic inhibition algorithm works because the learning rule causes nodes to
learn re-occurring patterns of pre-synaptic activity. As an afferentweight to a node increases, so
does the strength with which that node can inhibit the corresponding input activity received by all
other nodes. This provides strong competition for specific patterns of inputs and forces different
nodes to learn distinct image components. However, because the inhibition is specific to a partic-
ular set of inputs, nodes do not interfere with the learning of distinct image components by other
nodes. Unfortunately, the operation of this algorithm has not so far beenformulated in terms of the
optimisation of an objective function. It is hoped that the empirical performance of this algorithm
will prompt the development of such a mathematical analysis.

5. Conclusions

Non-negative matrix factorisation employs non-negativity constraints in order to model the physics
of image formation, and it has been claimed that this makes NMF particularly suitedto learning
meaningful representations of image data (Lee and Seung, 1999; Feng et al., 2002; Liu et al., 2003;
Liu and Zheng, 2004; Li et al., 2001). However, by employing a linear model, NMF fails to take into
account another important factor of image composition, namely the presenceof occlusion. Hence,

812

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

despite the claims, most NMF algorithms fail to reliably identify the underlying components of im-
ages, even in simple, artificial, tasks like those investigated here. These limitations can be overcome
by imposing additional constraints on the sparseness of the factors that are found. However, to
employ such constraints requiresa priori knowledge, or trial-and-error, to find appropriate param-
eter values and can result in failure to identify components that violate the imposed constraint. In
contrast, a neural network algorithm, employing a non-linear activation function, can reliably and
accurately learn image components. This neural network algorithm is thus more likely to provide a
robust method of learning image components suitable for object recognition.

Acknowledgments

This work was funded by the EPSRC through grant number GR/S81339/01. I would like to thank
Patrik Hoyer for making available the MATLAB code that implements the NMF algorithms and
which has been used to generate the results presented here.

References

S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton. Competitive learning algorithms for
vector quantization.Neural Networks, 3:277–90, 1990.

H. B. Barlow. Conditions for versatile learning, Helmholtz’s unconscious inference, and the task of
perception.Vision Research, 30:1561–71, 1990.

H. B. Barlow. The neuron doctrine in perception. In M. S. Gazzaniga, editor, The Cognitive Neuro-
sciences, chapter 26. MIT Press, Cambridge, MA, 1995.

D. Charles and C. Fyfe. Discovering independent sources with an adapted PCA neural network. In
D. W. Pearson, editor,Proceedings of the 2nd International ICSC Symposium on Soft Computing
(SOCO97). NAISO Academic Press, 1997.

D. Charles and C. Fyfe. Modelling multiple cause structure using rectificationconstraints.Network:
Computation in Neural Systems, 9(2):167–82, 1998.

G. M. Davies, J. W. Shepherd, and H. D. Ellis. Similarity effects in face recognition. American
Journal of Psychology, 92:507–23, 1979.

P. Dayan and R. S. Zemel. Competition and multiple cause models.Neural Computation, 7:565–79,
1995.

T. Feng, S. Z. Li, H.-Y. Shum, and H. Zhang. Local non-negative matrixfactorization as a vi-
sual representation. InProceedings of the 2nd International Conference on Development and
Learning (ICDL02), pages 178–86, 2002.

P. F̈oldiák. Adaptive network for optimal linear feature extraction. InProceedings of the IEEE/INNS
International Joint Conference on Neural Networks, volume 1, pages 401–5, New York, NY,
1989. IEEE Press.

813

SPRATLING

P. F̈oldiák. Forming sparse representations by local anti-Hebbian learning.Biological Cybernetics,
64:165–70, 1990.

P. F̈oldiák and M. P. Young. Sparse coding in the primate cortex. In M. A. Arbib, editor, The
Handbook of Brain Theory and Neural Networks, pages 895–8. MIT Press, Cambridge, MA,
1995.

B. J. Frey, P. Dayan, and G. E. Hinton. A simple algorithm that discovers efficient perceptual codes.
In M. Jenkin and L. R. Harris, editors,Computational and Psychophysical Mechanisms of Visual
Coding. Cambridge University Press, Cambridge, UK, 1997.

C. Fyfe. Independence seeking negative feedback networks. In D. W. Pearson, editor,Proceed-
ings of the 2nd International ICSC Symposium on Soft Computing (SOCO97). NAISO Academic
Press, 1997a.

C. Fyfe. A neural net for PCA and beyond.Neural Processing Letters, 6(1-2):33–41, 1997b.

X. Ge and S. Iwata. Learning the parts of objects by auto-association.Neural Networks, 15(2):
285–95, 2002.

G. Harpur and R. Prager. Development of low entropy coding in a recurrent network. Network:
Computation in Neural Systems, 7(2):277–84, 1996.

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for unsupervised
neural networks.Science, 268(5214):1158–61, 1995.

G. E. Hinton and Z. Ghahramani. Generative models for discovering sparse distributed representa-
tions. Philosophical Transactions of the Royal Society of London. Series B, 352(1358):1177–90,
1997.

S. Hochreiter and J. Schmidhuber. Feature extraction through LOCOCODE. Neural Computation,
11:679–714, 1999.

P. O. Hoyer. Non-negative sparse coding. InNeural Networks for Signal Processing XII: Proceed-
ings of the IEEE Workshop on Neural Networks for Signal Processing, pages 557–65, 2002.

P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine
Learning Research, 5:1457–69, 2004.

C. Jutten and J. Herault. Blind separation of sources, part I: an adaptive algorithm based on neu-
romimetic architecture.Signal Processing, 24:1–10, 1991.

T. Kohonen.Self-Organizing Maps. Springer-Verlag, Berlin, 1997.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401:788–91, 1999.

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors,Advances in Neural Information Processing Systems 13,
Cambridge, MA, 2001. MIT Press.

814

LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

S. Z. Li, X. Hou, H. Zhang, and Q. Cheng. Learning spatially localized, parts-based representations.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR01),
volume 1, pages 207–12, 2001.

W. Liu and N. Zheng. Non-negative matrix factorization based methods for object recognition.
Pattern Recognition Letters, 25(8):893–7, 2004.

W. Liu, N. Zheng, and X. Lu. Non-negative matrix factorization for visual coding. InProceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP03),
volume 3, pages 293–6, 2003.

J. Lücke and C. von der Malsburg. Rapid processing and unsupervised learning in a model of the
cortical macrocolumn.Neural Computation, 16(3):501–33, 2004.

M. Meila and M. I. Jordan. Learning with mixtures of trees.Journal of Machine Learning Research,
1:1–48, 2000.

E. Oja. Principal components, minor components, and linear neural networks. Neural Networks, 5:
927–35, 1992.

B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs.Current Opinion in Neurobiology,
14:481–7, 2004.

R. C. O’Reilly. Generalization in interactive networks: The benefits of inhibitory competition and
Hebbian learning.Neural Computation, 13(6):1199–1242, 2001.

T. J. Palmeri and I. Gauthier. Visual object understanding.Nature Reviews Neuroscience, 5(4):
291–303, 2004.

M. D. Plumbley. Adaptive lateral inhibition for non-negative ICA. InProceedings of the interna-
tional Conference on Independent Component Analysis and Blind Signal Separation (ICA2001),
pages 516–21, 2001.

E. Saund. A multiple cause mixture model for unsupervised learning.Neural Computation, 7(1):
51–71, 1995.

P. Sinha and T. Poggio. I think I know that face...,.Nature, 384(6608):404, 1996.

M. W. Spratling and M. H. Johnson. Pre-integration lateral inhibition enhances unsupervised learn-
ing. Neural Computation, 14(9):2157–79, 2002.

M. W. Spratling and M. H. Johnson. Exploring the functional significanceof dendritic inhibition in
cortical pyramidal cells.Neurocomputing, 52-54:389–95, 2003.

M. W. Spratling and M. H. Johnson. Neural coding strategies and mechanisms of competition.
Cognitive Systems Research, 5(2):93–117, 2004.

M. W. Spratling and M. H. Johnson. A feedback model of perceptual learning and categorisation.
Visual Cognition, 13(2):129–65, 2006.

815

Journal of Machine Learning Research 7 (2006) 817–854 Submitted 9/05; Revised 1/06; Published 5/06

Consistency and Convergence Rates of One-Class SVMs
and Related Algorithms

Régis Vert REGIS.VERT@LRI .FR

Laboratoire de Recherche en Informatique
Bâtiment 490, Université Paris-Sud
91405, Orsay Cedex, France, and

Masagroup
24 Boulevard de l’Ĥopital
75005 Paris, France

Jean-Philippe Vert JEAN-PHILIPPE.VERT@ENSMP.FR

Center for Computational Biology
Ecole des Mines de Paris
35 rue Saint Honoŕe
77300, Fontainebleau, France

Editor: Bernhard Scḧolkopf

Abstract

We determine the asymptotic behaviour of the function computed by support vector machines
(SVM) and related algorithms that minimize a regularized empirical convex loss function in the
reproducing kernel Hilbert space of the Gaussian RBF kernel, in the situation where the number
of examples tends to infinity, the bandwidth of the Gaussian kernel tends to 0, and the regular-
ization parameter is held fixed. Non-asymptotic convergence bounds to this limit in theL2 sense
are provided, together with upper bounds on the classification error that is shown to converge to
the Bayes risk, therefore proving the Bayes-consistency ofa variety of methods although the reg-
ularization term does not vanish. These results are particularly relevant to the one-class SVM, for
which the regularization can not vanish by construction, and which is shown for the first time to be
a consistent density level set estimator.

Keywords: regularization, Gaussian kernel RKHS, one-class SVM, convex loss functions, kernel
density estimation

1. Introduction

Givenn independent and identically distributed (i.i.d.) copies(X1,Y1), . . . ,(Xn,Yn) of a random vari-
able(X,Y) ∈ R

d ×{−1,1}, we study in this paper the limit and consistency of learning algorithms
that solve the following problem:

argmin
f∈Hσ

{
1
n

n

∑
i=1

φ(Yi f (Xi))+λ‖ f ‖2
Hσ

}
, (1)

c©2006 Ŕegis Vert and Jean-Philippe Vert.

VERT AND VERT

whereφ : R → R is a convex loss function andHσ is the reproducing kernel Hilbert space (RKHS)
of the normalized Gaussian radial basis function kernel (denoted simply Gaussian kernel below):

kσ(x,x′) :=
1

(√
2πσ

)d exp

(−‖x−x′ ‖2

2σ2

)
, σ > 0 . (2)

This framework encompasses in particular the classical support vector machine (SVM) (Boser et al.,
1992) whenφ(u) = max(1−u,0) (Theorem 6). Recent years have witnessed important theoretical
advances aimed at understanding the behavior of such regularized algorithms whenn tends to in-
finity and λ decreases to 0. In particular the consistency and convergence rates of the two-class
SVM (see, e.g., Steinwart, 2002; Zhang, 2004; Steinwart and Scovel, 2004, and references therein)
have been studied in detail, as well as the shape of the asymptotic decision function (Steinwart,
2003; Bartlett and Tewari, 2004). The case of more general convex loss functions has also attracted
a lot of attention recently (Zhang, 2004; Lugosi and Vayatis, 2004; Bartlett et al., 2006), and been
shown to provide under general assumptions consistent procedure for the classification error.

All results published so far, however, study the case whereλ decreases as the number of
points tends to infinity (or, equivalently, whereλσ−d converges to 0 if one uses the classical non-
normalized version of the Gaussian kernel instead of (2)). Although it seems natural to reduce
regularization as more and more training data are available — even more than natural, it is the spirit
of regularization (Tikhonov and Arsenin, 1977; Silverman, 1982) —, there is at least one important
situation whereλ is typically held fixed: the one-class SVM (Schölkopf et al., 2001). In that case,
the goal is to estimate anα-quantile, that is, a subset ofR

d of given probabilityα with minimum
volume. The estimation is performed by thresholding the function output by the one-class SVM,
that is, the SVM (1) with only positive examples; in that caseλ is supposed to determine the quan-
tile level.1 Although it is known that the fraction of examples in the selected region converges to
the desired quantile levelα (Scḧolkopf et al., 2001), it is still an open question whether the region
converges towards a quantile, that is, a region of minimum volume. Besides, most theoretical re-
sults about the consistency and convergence rates of two-class SVM withvanishing regularization
constant do not translate to the one-class case, as we are precisely in theseldom situation where the
SVM is used with a regularization term that does not vanish as the sample size increases.

The main contribution of this paper is to show that Bayes consistency for the classification error
can be obtained for algorithms that solve (1) without decreasingλ, if instead the bandwidthσ of
the Gaussian kernel decreases at a suitable rate. We prove upper bounds on the convergence rate
of the classification error towards the Bayes risk for a variety of functions φ and of distributionsP,
in particular for SVM (Theorem 6). Moreover, we provide an explicit description of the function
asymptotically output by the algorithms, and establish converge rates towardsthis limit for theL2

norm (Theorem 7). In particular, we show that the decision function output by the one-class SVM
converges towards the density to be estimated, truncated at the level 2λ (Theorem 8); we finally show
(Theorem 9) that this implies the consistency of one-class SVM as a density level set estimator for
the excess-mass functional (Hartigan, 1987).

This paper is organized as follows. In Section 2, we set the framework ofthis study and state
the main results. The rest of the paper is devoted to the proofs and some extensions of these results.
In Section 3, we provide a number of known and new properties of the Gaussian RKHS. Section 4

1. While the original formulation of the one-class SVM involves a parameterν, there is asymptotically a one-to-one
correspondence betweenλ andν.

818

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

is devoted to the proof of the main theorem that describes the speed of convergence of the regu-
larizedφ-risk of its empirical minimizer towards its minimum. This proof involves in particular a
control of the sample error in this particular setting that is dealt with in Section 5.Section 6 relates
the minimization of the regularizedφ-risk to more classical measures of performance, in particular
classification error andL2 distance to the limit. These results are discussed in more detail in Sec-
tion 7 for the case of the 1- and 2-SVM. Finally the proof of the consistencyof the one-class SVM
as a density level set estimator is postponed to Section 8.

2. Notation and Main Results

Let (X,Y) be a pair of random variables taking values inR
d ×{−1,1}, with distributionP. We

assume throughout this paper that the marginal distribution ofX has a densityρ : R
d → R with

respect to the Lebesgue measure, and that its support is included in a compact setX ⊂ R
d. Let η :

R
d → [0,1] denote a measurable version of the conditional distribution ofY = 1 given X. The

function 2η−1 then corresponds to the so-calledregression function.
The normalized Gaussian radial basis function (RBF) kernelkσ with bandwidth parameterσ > 0

is defined for any(x,x′) ∈ R
d ×R

d by:2

kσ(x,x′) :=
1

(√
2πσ

)d exp

(−‖x−x′ ‖2

2σ2

)
,

the corresponding reproducing kernel Hilbert space (RKHS) is denoted byHσ, with associated
norm‖ .‖Hσ . Moreover let

κσ := ‖kσ ‖L∞ = 1/
(√

2πσ
)d

. (3)

Several useful properties of this kernel and its RKHS are gathered in Section 3.
Denoting byM the set of measurable real-valued functions onR

d, we define several risks for
functions f ∈M :

• The classification error rate, usually ref

R(f) := P(sign(f (X)) 6= Y) ,

and the minimum achievable classification error rate overM is called the Bayes risk:

R∗ := inf
f∈M

R(f).

• For a scalarλ > 0 fixed throughout this paper and a convex functionφ : R → R, theφ-risk
regularized by the RKHS norm is defined, for anyσ > 0 and f ∈ Hσ, by

Rφ,σ (f) := EP [φ(Y f (X))]+λ‖ f ‖2
Hσ

,

and the minimum achievableRφ,σ-risk overHσ is denoted by

R∗
φ,σ := inf

f∈Hσ
Rφ,σ (f) .

2. We refer the reader to Section 3.2 for a brief discussion on the relationbetween normalized/unnormalized Gaussian
kernel.

819

VERT AND VERT

Furthermore, for any realr ≥ 0, we know thatφ is Lipschitz on[−r, r], and we denote byL(r)
the Lipschitz constant of the restriction ofφ to the interval[−r, r]. For example, for the
hinge lossφ(u) = max(0,1−u) one can takeL(r) = 1, and for the squared hinge lossφ(u) =
max(0,1−u)2 one can takeL(r) = 2(r +1).

• Finally, theL2-norm regularizedφ-risk is, for any f ∈M :

Rφ,0(f) := EP [φ(Y f (X))]+λ‖ f ‖2
L2

where,

‖ f ‖2
L2

:=
Z

Rd
f (x)2dx∈ [0,+∞],

and the minimum achievableRφ,0-risk overM is denoted by

R∗
φ,0 := inf

f∈M
Rφ,0(f) < ∞

As we shall see in the sequel, the above notation is consistent with the fact that Rφ,0 is the
pointwise limit ofRφ,σ asσ tends to zero.

Each of these risks has an empirical counterpart where the expectation with respect toP is replaced
by an average over an i.i.d. sampleT := {(X1,Y1) , . . . ,(Xn,Yn)}. In particular, the following empir-
ical version ofRφ,σ will be used

∀σ > 0, f ∈ Hσ, R̂φ,σ (f) :=
1
n

n

∑
i=1

φ(Yi f (Xi))+λ‖ f ‖2
Hσ

Furthermore,f̂φ,σ denotes the minimizer of̂Rφ,σ over Hσ (see Steinwart, 2005a, for a proof of
existence and uniqueness off̂φ,σ).

The main focus of this paper is the analysis of learning algorithms that minimize the empir-
ical φ-risk regularized by the RKHS norm̂Rφ,σ, and their limit as the number of points tends to
infinity and the kernel widthσ decreases to 0 at a suitable rate whenn tends to∞, λ being kept
fixed. Roughly speaking, our main result shows that in this situation, the minimization of R̂φ,σ
asymptotically amounts to minimizingRφ,0. This stems from the fact that the empirical average
term in the definition of̂Rφ,σ converges to its corresponding expectation, while the norm inHσ of a
function f decreases to itsL2 norm whenσ decreases to zero. To turn this intuition into a rigorous
statement, we need a few more assumptions about the minimizer ofRφ,0 and aboutP. First, we
observe that the minimizer ofRφ,0 is indeed well-defined and can often be explicitly computed (the
following lemma is part of Theorem 26 and is proved in Section 6.3):

Lemma 1 (Minimizer of Rφ,0) For any x∈ R
d, let

fφ,0(x) := argmin
α∈R

{
ρ(x) [η(x)φ(α)+(1−η(x))φ(−α)]+λα2} .

Then fφ,0 is measurable and satisfies:

Rφ,0
(

fφ,0
)

= inf
f∈M

Rφ,0(f)

820

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

Second, let us recall the notion of modulus of continuity (DeVore and Lorentz, 1993, p.44):

Definition 2 (Modulus of Continuity) Let f be a Lebesgue measurable function fromR
d to R.

Then its modulus of continuity in the L1-norm is defined for anyδ ≥ 0 as follows

ω(f ,δ) := sup
0≤‖ t ‖≤δ

‖ f (.+ t)− f (.)‖L1 , (4)

where‖ t ‖ is the Euclidean norm of t∈ R
d.

The main result of this paper, whose proof is postponed to Section 4, can now be stated as follows:

Theorem 3 (Main Result) Let σ1 > σ > 0, 0 < p < 2, δ > 0, and let f̂φ,σ denote the minimizer
of theR̂φ,σ risk overHσ, whereφ is assumed to be convex. Assume that the marginal densityρ
is bounded, and let M:= supx∈Rd ρ(x). Then there exist constants(Ki)i=1...4 (depending only
on p, δ, λ, d, and M) such that the following holds with probability greater than1− e−x over
the draw of the training data

Rφ,0(f̂φ,σ)−R∗
φ,0 ≤ K1L

(√
κσφ(0)

λ

) 4
2+p (1

σ

) [2+(2−p)(1+δ)]d
2+p

(
1
n

) 2
2+p

+K2L

(√
κσφ(0)

λ

)2(
1
σ

)d x
n

+K3
σ2

σ2
1

+K4ω(fφ,0,σ1) ,

(5)

where L(r) still denotes the Lipschitz constant ofφ on the interval[−r, r], for any r> 0.

The first two terms in r.h.s. of (5) bound the estimation error (also called sampleerror) asso-
ciated with the Gaussian RKHS, which naturally tends to be small when the numberof training
data increases and when the RKHS is ’small’, i.e., whenσ is large. As is usually the case in such
variance/bias splittings, the variance term here depends on the dimensiond of the input space. Note
that it is also parametrized by bothp andδ. These two parameters come from the bound (36) on
covering numbers that is used to derive the estimation error bound (31). Both constantsK1 andK2

depend on them, although we do not know the explicit dependency. The third term measures the
error due to penalizing theL2-norm of a fixed function inHσ1 by its‖ .‖Hσ-norm, with 0< σ < σ1.
This is a price to pay to get a small estimation error. As for the fourth term, it is a bound on the
approximation error of the Gaussian RKHS. Note that, onceλ andσ have been fixed,σ1 remains a
free variable parameterizing the bound itself.

From (5), we can deduce theRφ,0-consistency of̂fφ,σ for Lipschitz loss functions, as soon asfφ,0

is integrable,σ = o
(
n−1/(d+ε)) for someε > 0, andσ1 → 0 with σ/σ1 → 0. Now, in order to

highlight the type of convergence rates one can obtain from Theorem 3,let us assume that theφ loss
function is Lipschitz onR (e.g., take the hinge loss), and suppose that for some 0≤ β ≤ 1, c1 > 0,

821

VERT AND VERT

and for anyh≥ 0, fφ,0 satisfies the following inequality:3

ω(fφ,0,δ) ≤ c1δβ . (6)

Then the right-hand side of (5) can be optimized w.r.t.σ1, σ, p andδ by balancing the first, third
and fourth terms (the second term having always a better convergence rate than the first one). For
anyε > 0, by choosing:

δ = 1 ,

p = 2− ε
2d+dβ−β

,

σ =

(
1
n

) 2+β
4β+(2+β)d+ε

,

σ1 = σ
2

2+β =

(
1
n

) 2
4β+(2+β)d+ε

,

the following rate of convergence is obtained:

Rφ,0
(

f̂φ,σ
)
−R∗

φ,0 = OP

(

1
n

) 2β
4β+(2+β)d+ε

 .

This shows in particular that, whatever the values ofβ andd, the convergence rate that can be derived
from Theorem 3 is always slower than 1/

√
n, and it gets slower and slower as the dimensiond

increases.
Theorem 3 shows that, whenφ is convex, minimizing thêRφ,σ risk for well-chosen widthσ

is a an algorithm consistent for theRφ,0-risk. In order to relate this consistency with more tradi-
tional measures of performance of learning algorithms, the next theorem shows that under a simple
additional condition onφ, Rφ,0-risk-consistency implies Bayes consistency:

Theorem 4 (RelatingRφ,0-Consistency with Bayes Consistency)If φ is convex, differentiable at0,
with φ′(0) < 0, then for every sequence of functions(fi)i≥1 ∈M ,

lim
i→+∞

Rφ,0(fi) = R∗
φ,0 =⇒ lim

i→+∞
R(fi) = R∗

This theorem results from a more general quantitative analysis of the relationship between the ex-
cessRφ,0-risk and the excessR-risk (Theorem 28), and is proved in Section 6.5. In order to state a
refined version of it in the particular case of the support vector machine algorithm, we first need to
introduce the notion oflow density exponent:

Definition 5 We say that a distribution P with marginal densityρ w.r.t. Lebesgue measure has a
low density exponentγ ≥ 0 if there exists(c2,ε0) ∈ (0,∞)2 such that

∀ε ∈ [0,ε0], P
({

x∈ R
d : ρ(x) ≤ ε

})
≤ c2εγ.

3. For instance, it can be shown that the indicator function of the unit ball inR
d, albeit not continuous, satisfies (6)

with β = 1.

822

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

We are now in position to state a quantitative relationship between the excessRφ,0-risk and the
excessR-risk in the case of support vector machines :

Theorem 6 (Consistency of SVM)Let φ1(α) := max(1−α,0) be the hinge loss function and let
φ2(α) := max(1−α,0)2 be the squared hinge loss function. Then for any distribution P with low
density exponentγ, there exist constant(K1,K2, r1, r2) ∈ (0,∞)4 such that for any f∈ M with an
excess Rφ1,0-risk upper bounded by r1 the following holds:

R(f)−R∗ ≤ K1
(
Rφ1,0(f)−R∗

φ1,0

) γ
2γ+1 ,

and if the excess regularized Rφ2,0-risk upper bounded by r2 the following holds:

R(f)−R∗ ≤ K2
(
Rφ2,2(f)−R∗

φ2,2

) γ
2γ+1 ,

This theorem is proved in Section 7.3. In combination with Theorem 3, it states the consistency of
SVM, and gives upper bounds on the convergence rates, for the first time in a situation where the
effect of regularization does not vanish asymptotically. In fact, Theorem 6 is a particular case of
a more general result (Theorem 29) valid for a large class of convex loss functions. Section 6 is
devoted to the analysis of the general case through the introduction of variational arguments, in the
spirit of Bartlett et al. (2006).

Another consequence of theRφ,0-consistency of an algorithm is theL2 convergence of the func-
tion output by the algorithm to the minimizer of theRφ,0-risk :

Lemma 7 (RelatingRφ,0-Consistency withL2-Consistency) For any f∈M , the following holds:

‖ f − fφ,0‖2
L2
≤ 1

λ
(
Rφ,0(f)−R∗

φ,0

)
.

This result is the third statement of Theorem 26, proved in Section 6.3. It is particularly relevant
to study algorithms whose objective is not binary classification. Consider for example the one-
class SVM algorithm, which served as the initial motivation for this paper. Thenwe can state the
following result, proved in Section 8.1 :

Theorem 8 (L2-Consistency of One-Class SVM)Let ρλ denote the function obtained after trun-
cating the density:

ρλ(x) :=

{
ρ(x)
2λ if ρ(x) ≤ 2λ,

1 otherwise.
(7)

Let f̂σ denote the function output by the one-class SVM:

f̂σ := arg min
f∈Hσ

1
n

n

∑
i=1

φ(f (Xi))+λ‖ f ‖2
Hσ

.

Then, under the general conditions of Theorem 3, and assuming thatlimh→0 ω(ρλ,h) = 0,

lim
n→+∞

‖ f̂σ −ρλ ‖L2 = 0 , in probability,

for a well-calibrated bandwidthσ.

823

VERT AND VERT

In this and the next theorem,well-calibratedrefers to any choice of bandwidthσ that ensuresRφ,0-
consistency, as discussed after Theorem 3. A very interesting by-product of this theorem is the
consistency of the one-class SVM algorithm for density level set estimation,which to the best of
our knowledge has not been stated so far (the proof being postponed toSection 8.2) :

Theorem 9 (Consistency of One-Class SVM for Density Level Set Estimation) Let0< µ< 2λ <
M, let Cµ be the level set of the density functionρ at level µ:

Cµ :=
{

x∈ R
d : ρ(x) ≥ µ

}
,

andĈµ be the level set of2λ f̂σ at level µ:

Ĉµ :=
{

x∈ R
d : f̂σ (x) ≥ µ

2λ

}
,

where f̂σ is still the function output by the one-class SVM. For any distribution Q, for anysubset C
of R

d, define the excess-mass of C with respect to Q as follows:

HQ(C) := Q(C)−µLeb(C) .

Then, under the general assumptions of Theorem 3, and assuming that limh→0 ω(ρλ,h) = 0, we
have

lim
n→+∞

HP(Cµ)−HP

(
Ĉµ

)
= 0 , in probability,

for a well-calibrated bandwidthσ.

The excess-mass functional was first introduced by Hartigan (1987) toassess the quality of
density level set estimators. It is maximized by the true density level setCµ and acts as a risk
functional in the one-class framework. The proof of Theorem 9 is based on the following general
result: if ρ̂ is a density estimator converging to the true densityρ in the L2 sense, then for any
fixed 0< µ < sup

Rd {ρ}, the excess mass of the level set ofρ̂ at levelµ converges to the excess
mass ofCµ. In other words, as is the case in the classification framework, plug-in rules built onL2-
consistent density estimators are consistent with respect to the excess mass.

3. Some Properties of the Gaussian Kernel and its RKHS

This section presents known and new results about the Gaussian kernelkσ and its associated RKHSHσ,
that are useful for the proofs of our results. They concern the explicit description of the RKHS norm
in terms of Fourier transforms, its relation with theL2-norm, and some approximation properties
of convolutions with the Gaussian kernel. They make use of basic properties of Fourier transforms
which we now recall (and which can be found in e.g. Folland, 1992, Chap.7, p.205).
For any f in L1(R

d), its Fourier transformF [f] : R
d → R is defined by

F [f] (ω) :=
Z

Rd
e−i<x,ω> f (x)dx .

If in additionF [f] ∈ L1(R
d), f can be recovered fromF [f] by the inverse Fourier formula:

f (x) =
1

(2π)d

Z

Rd
F [f] (ω)ei<x,ω>dω .

824

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

Finally Parseval’s equality relates theL2-norm of a function and its Fourier transform iff ∈L1(R
d)∩

L2(R
d) andF [f] ∈ L2(R

d):

‖ f ‖2
L2

=
1

(2π)d ‖F [f] ‖2
L2

. (8)

3.1 Fourier Representation of the Gaussian RKHS

For anyu∈ R
d, the expressionkσ(u) denoteskσ(0,u), with Fourier transform known to be:

F [kσ] (ω) = e
−σ2‖ω‖2

2 . (9)

The general study of translation invariant kernels provides an accurate characterization of their
associated RKHS in terms of the their Fourier transform (see, e.g., Matacheand Matache, 2002). In
the case of the Gaussian kernel, the following holds :

Lemma 10 (Characterization ofHσ) LetC0(Rd) denote the set of continuous functions onR
d that

vanish at infinity. The set

Hσ :=

{
f ∈ C0(Rd) : f ∈ L1(R

d) and
Z

Rd
|F [f] (ω)|2e

σ2‖ω‖2

2 dω < ∞
}

(10)

is the RKHS associated with the Gaussian kernel kσ, and the associated dot product is given for
any f,g∈ Hσ by

〈 f ,g〉Hσ
=

1
(2π)d

Z

Rd
F [f] (ω)F [g] (ω)∗e

σ2‖ω‖2

2 dω , (11)

where a∗ denotes the conjugate of a complex number a. In particular the associatednorm is given
for any f ∈ Hσ by

‖ f ‖2
Hσ

=
1

(2π)d

Z

Rd
|F [f] (ω)|2e

σ2‖ω‖2

2 dω . (12)

This lemma readily implies several basic facts about Gaussian RKHS and their associated norms
summarized in the next lemma. In particular, it shows that the family(Hσ)σ>0 forms a nested
collection of models, and that for any fixed function, the RKHS norm decreases to theL2-norm as
the kernel bandwidth decreases to 0.

Lemma 11 The following statements hold:

1. For any0 < σ < τ,
H τ ⊂ Hσ ⊂ L2(R

d) . (13)

Moreover, for any f∈ H τ,
‖ f ‖H τ ≥ ‖ f ‖Hσ ≥ ‖ f ‖L2 (14)

and

0≤ ‖ f ‖2
Hσ

−‖ f ‖2
L2
≤ σ2

τ2

(
‖ f ‖2
H τ

−‖ f ‖2
L2

)
. (15)

2. For anyτ > 0 and f ∈ H τ,
lim
σ→0

‖ f ‖Hσ = ‖ f ‖L2 . (16)

825

VERT AND VERT

3. For anyσ > 0 and f ∈ Hσ,

‖ f ‖L∞ ≤√
κσ‖ f ‖Hσ . (17)

Proof Equations 13 and 14 are direct consequences of the characterization of the Gaussian RKHS (12)
and of the observation that

0 < σ < τ =⇒ e
τ2‖ω‖2

2 ≥ e
σ2‖ω‖2

2 ≥ 1.

In order to prove (15), we derive from (12) and Parseval’s equality(8):

‖ f ‖2
Hσ

−‖ f ‖2
L2

=
1

(2π)d

Z

Rd
|F [f] (ω)|2

[
e

σ2‖ω‖2

2 −1

]
dω . (18)

For any 0≤ u≤ v, we have(eu−1)/u≤ (ev−1)/v by convexity ofeu, and therefore:

‖ f ‖2
Hσ

−‖ f ‖2
L2
≤ 1

(2π)d

σ2

τ2

Z

Rd
|F [f] (ω)|2

[
e

τ2‖ω‖2

2 −1

]
dω, (19)

which leads to (15). Equation 16 is now a direct consequence of (15). Finally, (17) is a classical
bound derived from the observation that, for anyx∈ R

d,

| f (x) | =
∣∣〈 f ,kσ〉Hσ

∣∣≤ ‖ f ‖Hσ‖kσ ‖Hσ =
√

κσ‖ f ‖Hσ .

3.2 Links with the Non-Normalized Gaussian Kernel

It is common in the machine learning literature to work with a non-normalized version of the Gaus-
sian RBF kernel, namely the kernel:

k̃σ(x,x′) := exp

(−‖x−x′ ‖2

2σ2

)
. (20)

From the relationkσ = κσk̃σ (remember thatκσ is defined in Equation 3), we deduce from the
general theory of RKHS thatHσ = H̃σ and

∀ f ∈ Hσ, ‖ f ‖H̃σ
=
√

κσ‖ f ‖Hσ . (21)

As a result, all statements aboutkσ and its RKHS easily translate into statements aboutk̃σ and its
RKHS. For example, (14) shows that, for any 0< σ < τ and f ∈ H̃ τ,

‖ f ‖H̃ τ
≥
√

κτ

κσ
‖ f ‖H̃σ

=
(σ

τ

) d
2 ‖ f ‖H̃σ

,

a result that was shown recently (Steinwart et al., 2004, Corollary 3.12).

826

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

3.3 Convolution with the Gaussian Kernel

Besides its positive definiteness, the Gaussian kernel is commonly used as akernel for function
approximation through convolution. Recall (Folland, 1992) that the convolution between two func-
tions f ,g∈ L1

(
R

d
)

is the functionf ∗g∈ L1
(
R

d
)

defined by

f ∗g(x) :=
Z

Rd
f (x−u)g(u)du

and that it satisfies (see e.g. Folland, 1992, Chap. 7, p.207)

F [f ∗g] = F [f]F [g] . (22)

The convolution with a Gaussian RBF kernel is a technically convenient toolto map any square in-
tegrable function to a Gaussian RKHS. The following lemma (which can also be found in Steinwart
et al., 2004) gives several interesting properties on the RKHS andL2 norms of functions smoothed
by convolution:

Lemma 12 For anyσ > 0 and any f∈ L1
(
R

d
)
∩L2

(
R

d
)
,

kσ ∗ f ∈ H√2σ

and

‖kσ ∗ f ‖H√2σ
= ‖ f ‖L2 . (23)

For anyσ,τ > 0 that satisfy0 < σ ≤
√

2τ, and for any f∈ L1
(
R

d
)
∩L2

(
R

d
)
,

kτ ∗ f ∈ Hσ

and

‖kτ ∗ f ‖2
Hσ

−‖kτ ∗ f ‖2
L2
≤ σ2

2τ2‖ f ‖2
L2

. (24)

Proof Using (12), then (22) and (9), followed by Parseval’s equality (8), wecompute:

‖kσ ∗ f ‖2
H√2σ

=
1

(2π)d

Z

Rd
|F [kσ ∗ f] (ω)|2eσ2‖ω‖2

dω

=
1

(2π)d

Z

Rd
|F [f] (ω)|2e−σ2‖ω‖2

eσ2‖ω‖2
dω

=
1

(2π)d

Z

Rd
|F [f] (ω)|2dω

= ‖ f ‖2
L2

.

This proves the first two statements of the lemma.
Now, because 0< σ ≤

√
2τ, previous first statement and (13) imply

kτ ∗ f ∈ H√2τ ⊂ Hσ ,

827

VERT AND VERT

and, using (15) and (23),

‖kτ ∗ f ‖2
Hσ

−‖kτ ∗ f ‖2
L2
≤ σ2

2τ2

(
‖kτ ∗ f ‖2

H√2τ
−‖kτ ∗ f ‖2

L2

)

≤ σ2

2τ2‖kτ ∗ f ‖2
H√2τ

=
σ2

2τ2‖ f ‖2
L2

.

A final result we need is an estimate of the approximation properties of convolution with the
Gaussian kernel. Convolving a function with a Gaussian kernel with decreasing bandwidth is known
to provide an approximation of the original function under general conditions. For example, the as-
sumptionf ∈ L1(R

d) is sufficient to show that‖kσ ∗ f − f ‖L1 goes to zero whenσ goes to zero (see,
for example Devroye and Lugosi, 2000, page 79). We provide below a more quantitative estimate
for the rate of this convergence under some assumption on the modulus of continuity of f (see
Definition 2), using methods from DeVore and Lorentz (1993, Chap.7, par.2, p.202).

Lemma 13 Let f be a bounded function in L1(R
d). Then for allσ > 0, the following holds:

‖kσ ∗ f − f ‖L1 ≤ (1+
√

d)ω(f ,σ) ,

whereω(f , .) denotes the modulus of continuity of f in the L1 norm.

Proof Using the fact thatkσ is normalized, then Fubini’s theorem and then the definition ofω, the
following can be derived

‖kσ ∗ f − f ‖L1 =
Z

Rd

∣∣∣∣
Z

Rd
kσ(t)[f (x+ t)− f (x)]dt

∣∣∣∣dx

≤
Z

Rd

Z

Rd
kσ(t) | f (x+ t)− f (x)|dtdx

=
Z

Rd
kσ(t)

[
Z

Rd
| f (x+ t)− f (x)|dx

]
dt

≤
Z

Rd
kσ(t)‖ f (.+ t)− f (.)‖L1dt

≤
Z

Rd
kσ(t)ω(f ,‖ t ‖)dt .

Now, using the following subadditivity property ofω (DeVore and Lorentz, 1993, Chap.2, par.7,
p.44):

ω(f ,δ1 +δ2) ≤ ω(f ,δ1)+ω(f ,δ2) , δ1,δ2 > 0 ,

the following inequality can be derived for any positiveλ andδ:

ω(f ,λδ) ≤ (1+λ)ω(f ,δ) .

828

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

Applying this and also Cauchy-Schwarz inequality leads to

‖kσ ∗ f − f ‖L1 ≤
Z

Rd

(
1+

‖ t ‖
σ

)
ω(f ,σ)kσ(t)dt

= ω(f ,σ)

[
1+

1
σ

Z

Rd
‖ t ‖kσ(t)dt

]

≤ ω(f ,σ)

[
1+

1
σ

(
Z

Rd
‖ t ‖2 1

(
√

2πσ)d
e−

‖ t ‖2

2σ2 dt

) 1
2

]

= ω(f ,σ)

1+

1
σ

(
d

∑
i=1

Z

Rd
t2
i

1

(
√

2πσ)d
e−

‖ t ‖2

2σ2 dt

) 1
2

= ω(f ,σ)

1+

1
σ

(
d

∑
i=1

Z

Rd
t2
i

1√
2πσ

e−
t2i

2σ2 dti

) 1
2

= ω(f ,σ)

[
1+

1
σ
√

d

(
Z

Rd
u2 1√

2πσ
e−

u2

2σ2 du

) 1
2

]
.

The integral term is exactly the variance of a Gaussian random variable, namelyσ2. Hence we end
up with

‖kσ ∗ f − f ‖L1 ≤ (1+
√

d)ω(f ,σ) .

4. Proof of Theorem 3

The proof of Theorem 3 is based on the following decomposition of the excessRφ,0-risk for the
minimizer of theR̂φ,σ-risk:

Lemma 14 For any0 < σ <
√

2σ1 and any sample(Xi ,Yi)i=1,...,n, the minimizerf̂φ,σ of R̂φ,σ satis-
fies:

Rφ,0(f̂φ,σ)−R∗
φ,0 ≤

[
Rφ,σ(f̂φ,σ)−R∗

φ,σ
]

+
[
Rφ,σ(kσ1 ∗ fφ,0)−Rφ,0(kσ1 ∗ fφ,0)

]

+
[
Rφ,0(kσ1 ∗ fφ,0)−R∗

φ,0

]
(25)

Proof The excessRφ,0-risk decomposes as follows:

Rφ,0(f̂φ,σ)−R∗
φ,0 =

[
Rφ,0

(
f̂φ,σ
)
−Rφ,σ

(
f̂φ,σ
)]

+
[
Rφ,σ(f̂φ,σ)−R∗

φ,σ
]

+
[
R∗

φ,σ −Rφ,σ(kσ1 ∗ fφ,0)
]

+
[
Rφ,σ(kσ1 ∗ fφ,0)−Rφ,0(kσ1 ∗ fφ,0)

]

+
[
Rφ,0(kσ1 ∗ fφ,0)−R∗

φ,0

]
.

829

VERT AND VERT

Note that by Lemma 12,kσ1∗ fφ,0∈H√2σ1
⊂Hσ ⊂L2

(
R

d
)

which justifies the introduction ofRφ,σ(kσ1∗
fφ,0) andRφ,0(kσ1 ∗ fφ,0). Now, by definition of the different risks using (14), we have

Rφ,0
(

f̂φ,σ
)
−Rφ,σ

(
f̂φ,σ
)

= λ
(
‖ f̂φ,σ ‖2

L2
−‖ f̂φ,σ ‖2

Hσ

)
≤ 0,

and
R∗

φ,σ −Rφ,σ(kσ1 ∗ fφ,0) ≤ 0.

Hence, controllingRφ,0(f̂φ,σ)−R∗
φ,0 to prove Theorem 3 boils down to controlling each of the three

terms arising in (25), which can be done as follows:

• The first term in (25) is usually referred to as the sample error or estimation error. The
control of such quantities has been the topic of much research recently, including for exam-
ple Tsybakov (1997); Mammen and Tsybakov (1999); Massart (2000); Bartlett et al. (2005);
Koltchinskii (2003); Steinwart and Scovel (2004). Using estimates of local Rademacher com-
plexities through covering numbers for the Gaussian RKHS due to Steinwartand Scovel
(2004), we prove below the following result

Lemma 15 For anyσ > 0 small enough, let̂fφ,σ be the minimizer of thêRφ,σ-risk on a sample
of size n, whereφ is a convex loss function. For any0< p< 2, δ > 0, and x≥ 1, the following
holds with probability at least1−ex over the draw of the sample:

Rφ,σ
(

f̂φ,σ
)
−R∗

φ,σ ≤ K1L

(√
κσφ(0)

λ

) 4
2+p (1

σ

) [2+(2−p)(1+δ)]d
2+p

(
1
n

) 2
2+p

+K2L

(√
κσφ(0)

λ

)2(
1
σ

)d x
n

,

where K1 and K2 are positive constants depending neither onσ, nor on n.

• The second term in (25) can be upper bounded by

φ(0)σ2

2σ2
1

.

Indeed, using Lemma 12, and the fact thatσ <
√

2σ1, we have

Rφ,σ(kσ1 ∗ fφ,0)−Rφ,0(kσ1 ∗ fφ,0) = λ
[
‖kσ1 ∗ fφ,0‖2

Hσ
−‖kσ1 ∗ fφ,0‖2

L2

]

≤ λσ2

2σ2
1

‖ fφ,0‖2
L2

.

Since fφ,0 minimizesRφ,0, we haveRφ,0
(

fφ,0
)
≤ Rφ,0(0), which leads to‖ fφ,0‖2

L2
≤ φ(0)/λ.

Therefore, we have

Rφ,σ(kσ1 ∗ fφ,0)−Rφ,0(kσ1 ∗ fφ,0) ≤
φ(0)σ2

2σ2
1

.

830

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

• The third term in (25) can be upper bounded by

(2λ‖ fφ,0‖L∞ +L
(
‖ fφ,0‖L∞

)
M)
(

1+
√

d
)

ω
(

fφ,0,σ1
)

.

Indeed,

Rφ,0(kσ1 ∗ fφ,0)−Rφ,0(fφ,0)

= λ
[
‖kσ1 ∗ fφ,0‖2

L2
−‖ fφ,0‖2

L2

]
+
[
EP
[
φ
(
Y(kσ1 ∗ fφ,0)(X)

)]
−EP

[
φ
(
Y fφ,0(X)

)]]

= λ
〈
kσ1 ∗ fφ,0− fφ,0,kσ1 ∗ fφ,0 + fφ,0

〉
L2

+EP
[
φ
(
Y(kσ1 ∗ fφ,0)(X)

)
−φ
(
Y fφ,0(X)

)]
.

Now, since‖kσ1 ∗ fφ,0‖L∞ ≤ ‖ fφ,0‖L∞‖kσ1 ‖L1 = ‖ fφ,0‖L∞ , then using Lemma 13, we obtain:

Rφ,0(kσ1 ∗ fφ,0)−Rφ,0(fφ,0) ≤ 2λ‖ fφ,0‖L∞‖kσ1 ∗ fφ,0− fφ,0‖L1

+L
(
‖ fφ,0‖L∞

)
EP
[
|(kσ1 ∗ fφ,0)(X)− fφ,0(X)|

]

≤ (2λ‖ fφ,0‖L∞ +L
(
‖ fφ,0‖L∞

)
M)‖kσ1 ∗ fφ,0− fφ,0‖L1

≤ (2λ‖ fφ,0‖L∞ +L
(
‖ fφ,0‖L∞

)
M)
(

1+
√

d
)

ω
(

fφ,0,σ1
)

,

whereM := supx∈Rd ρ(x) is supposed to be finite.

Now, Theorem 3 is proved by plugging the last three bounds in (25).

5. Proof of Lemma 15 (Sample Error)

The present section is divided into two subsections: the first one presents the proof of Lemma 15,
and the auxiliary lemmas that are used in it are then proved in the second subsection.

5.1 Proof of Lemma 15

In order to upper bound the sample error, it is useful to work with a set offunctions as “small” as
possible, in a meaning made rigorous below. Although we study algorithms that work on the whole
RKHSHσ a priori, let us first show that we can drastically “downsize” it.

Indeed, recall that the marginal distribution ofP in X is assumed to have a support included
in a compactX ⊂ R

d. The restriction ofkσ to X , denoted bykXσ , is a positive definite kernel
onX (Aronszajn, 1950) with RKHS defined by:

H Xσ :=
{

f|X : f ∈ Hσ
}

, (26)

where f|X denotes the restriction off to X , and RKHS norm:

∀ f X ∈ H Xσ , ‖ f X ‖H Xσ := inf
{
‖ f ‖Hσ : f ∈ Hσ and f|X = f X

}
. (27)

For any f X ∈ H Xσ consider the following risks:

RXφ,σ(f X) := EP|X

[
φ
(
Y fX (X)

)]
+λ‖ f X ‖2

H Xσ
,

R̂Xφ,σ(f X) :=
1
n

n

∑
i=1

φ
(
Yi f X (Xi)

)
+λ‖ f X ‖2

H Xσ
.

We first show that the sample error is the same inHσ andH Xσ :

831

VERT AND VERT

Lemma 16 Let fXφ,σ and f̂ Xφ,σ be respectively the minimizers of RXφ,σ andR̂Xφ,σ. Then it holds almost
surely that

Rφ,σ
(

fφ,σ
)

= RXφ,σ
(

f Xφ,σ
)

,

Rφ,σ
(

f̂φ,σ
)

= RXφ,σ
(

f̂ Xφ,σ
)

.

From Lemma 16 we deduce that a.s.,

Rφ,σ
(

f̂φ,σ
)
−Rφ,σ

(
fφ,σ
)

= RXφ,σ
(

f̂ Xφ,σ
)
−RXφ,σ

(
f Xφ,σ
)

. (28)

In order to upper bound this term, we use concentration inequalities based on local Rademacher
complexities (Bartlett et al., 2006, 2005; Steinwart and Scovel, 2004). Inthis approach, a crucial role
is played by the covering number of a functional classF under the empiricalL2-norm. Remember
that for a given sampleT := {(X1,Y1) , . . . ,(Xn,Yn)} andε > 0, anε-cover for the empiricalL2 norm
is a family of function(fi)i∈I such that:

∀ f ∈ F ,∃i ∈ I ,

(
1
n

n

∑
j=1

(f (Xj)− fi (Xj))
2

) 1
2

≤ ε .

The covering numberN (F ,ε,L2(T)) is then defined as the smallest cardinal of anε-cover.
We can now mention the following result, adapted to our notation and setting, thatexactly fits

our need.

Theorem 17 (see Steinwart and Scovel, 2004, Theorem 5.8.)For σ > 0, let Fσ be a convex sub-
set ofH Xσ and letφ be a convex loss function. DefineGσ as follows:

Gσ :=
{

gf (x,y) = φ(y f(x))+λ‖ f ‖2
H Xσ

−φ(y fXφ,σ(x))−λ‖ f Xφ,σ ‖2
H Xσ

: f ∈ Fσ

}
. (29)

where fXφ,σ minimizes RXφ,σ overFσ. Suppose that there are constants c≥ 0 and B> 0 such that, for
all g ∈ Gσ,

EP
[
g2]≤ cEP [g] ,

and
‖g‖L∞ ≤ B .

Furthermore, assume that there are constants a≥ 1 and0 < p < 2 with

sup
T∈Zn

logN
(
B−1Gσ,ε,L2(T)

)
≤ aε−p (30)

for all ε > 0. Then there exists a constant cp > 0 depending only on p such that for all n≥ 1 and
all x ≥ 1 we have

Pr∗
(
T ∈ Zn : RXφ,σ(f̂ Xφ,σ) > RXφ,σ(f Xφ,σ)+cpε(n,a,B,c,x)

)
≤ e−x , (31)

where

ε(n,a,B,c, p,x) :=
(

B+B
2p

2+p c
2−p
2+p

)(a
n

) 2
2+p

+(B+c)
x
n

.

832

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

Note that we use the outer probability Pr∗ in (31) because the argument is not necessarily measur-
able. From the inequalities‖ f Xφ,σ ‖2

H Xσ
≤ φ(0)/λ and‖ f̂ Xφ,σ ‖2

H Xσ
≤ φ(0)/λ, we see that it is enough

to take

Fσ =

√
φ(0)

λ
B Xσ , (32)

whereB Xσ is the unit ball ofH Xσ , to derive a control of (28) from Theorem 17. In order to apply this
theorem we now provide uniform upper bounds overGσ for the variance ofg and its uniform norm,
as well as an upper bound on the covering number ofGσ.

Lemma 18 For all σ > 0, for all g∈ Gσ,

EP
[
g2]≤

(
L

(√
κσφ(0)

λ

)
√

κσ +2
√

λφ(0)

)2
2
λ

EP [g] . (33)

Let us fix

B = 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+φ(0) . (34)

Then, the following two lemmas can be derived:

Lemma 19 For all σ > 0, for all g∈ Gσ,

‖g‖L∞ ≤ B. (35)

Lemma 20 For all σ > 0, 0 < p≤ 2, δ > 0, ε > 0, the following holds:

logN (B−1Gσ,ε,L2(T)) ≤ c2σ−((1−p/2)(1+δ))dε−p , (36)

where c1 and c2 are constants that depend neither onσ, nor onε (but they depend on p,δ, d andλ).

Combining now the results of Lemmas 18, 19 and 20 allows to apply Theorem 17 with Fσ defined
by (32), anyp∈ [0,2], and the following parameters:

c =

(
L

(√
κσφ(0)

λ

)
√

κσ +2
√

λφ(0)

)2
2
λ

,

B = 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+φ(0) ,

a = c2σ−((1−p/2)(1+δ))d ,

from which we deduce Lemma 15.

833

VERT AND VERT

5.2 Proofs of Auxiliary Lemmas

Proof of Lemma 16Because the support ofP is included inX , the following trivial equality holds:

∀ f ∈ Hσ, EP [φ(Y f (X))] = EP|X

[
φ
(
Y f|X (X)

)]
. (37)

Using first the definition of the restricted RKHS (26), then (37) and (27),we obtain

RXφ,σ
(

f Xφ,σ
)

= inf
f X ∈H Xσ

EP|X

[
φ
(
Y fX (X)

)]
+λ‖ f X ‖H Xσ

= inf
f∈Hσ

EP|X

[
φ
(
Y f|X (X)

)]
+λ‖ f|X ‖H Xσ

= inf
f∈Hσ

EP [φ(Y f (X))]+λ‖ f ‖Hσ

= Rφ,σ
(

fφ,σ
)

,

(38)

which proves the first statement.
In order to prove the second statement, let us first observe that with probability 1, Xi ∈ X for i =

1, . . . ,n, and therefore:

∀ f ∈ Hσ,
1
n

n

∑
i=1

φ(Yi f (Xi)) =
1
n

n

∑
i=1

φ
(
Yi f|X (Xi)

)
, (39)

from which we can conclude, using the same line of proof as (38), that thefollowing holds a.s.:

R̂φ,σ
(

f̂φ,σ
)

= R̂Xφ,σ
(

f̂ Xφ,σ
)

.

Let us now show that this implies the following equality:

f̂ Xφ,σ = f̂φ,σ|X . (40)

Indeed, on the one hand,‖ f̂φ,σ|X ‖H Xσ ≤ ‖ f̂φ,σ ‖Hσ by (27). On the other hand, (39) implies that

1
n

n

∑
i=1

φ
(
Yi f̂φ,σ(Xi)

)
=

1
n

n

∑
i=1

φ
(
Yi f̂φ,σ|X (Xi)

)
.

As a result, we get̂RXφ,σ
(

f̂φ,σ|X
)
≤ R̂φ,σ

(
f̂φ,σ
)

= R̂Xφ,σ

(
f̂ Xφ,σ

)
, from which we deduce that̂fφ,σ|X

and f̂ Xφ,σ both minimize the strictly convex functional̂RXφ,σ on H Xσ , proving (40). We also deduce

from R̂Xφ,σ
(

f̂φ,σ|X
)

= R̂φ,σ
(

f̂φ,σ
)

and from (39) that

‖ f̂φ,σ|X ‖H Xσ = ‖ f̂φ,σ ‖Hσ . (41)

Now, using (40), (37), then (41), we can conclude the proof of the second statement as follows:

RXφ,σ
(

f̂ Xφ,σ
)

= RXφ,σ
(

f̂φ,σ|X
)

= EP|X

[
φ
(
Y f̂φ,σ|X (X)

)]
+λ‖ f̂φ,σ|X ‖H Xσ

= EP
[
φ
(
Y f̂φ,σ (X)

)]
+λ‖ f̂φ,σ ‖H Xσ

= Rφ,σ
(

f̂φ,σ
)

,

834

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

concluding the proof of Lemma 16.

Proof of Lemma 18We prove the uniform upper bound on the variances of the excess-lossfunctions
in terms of their expectation, using an approach similar to but slightly simpler than Bartlett et al.
(2006, Lemma 14) and Steinwart and Scovel (2004, Proposition 6.1). First we observe, using (17)
and the fact thatFσ ⊂

√
φ(0)/λBσ, that for anyf ∈ Fσ,

‖ f ‖L∞ ≤√
κσ‖ f ‖Hσ

≤
√

κσφ(0)

λ
.

As a result, for any(x,y) ∈ X ×{−1,+1},
∣∣gf (x,y)

∣∣≤
∣∣φ(y f(x))−φ

(
y fφ,σ(x)

)∣∣+λ
∣∣∣‖ f ‖2

Hσ
−‖ fφ,σ ‖2

Hσ

∣∣∣

≤ L

(√
κσφ(0)

λ

)
∣∣ f (x)− fφ,σ(x)

∣∣+λ‖ f − fφ,σ ‖Hσ‖ f + fφ,σ ‖Hσ

≤
(

L

(√
κσφ(0)

λ

)
√

κσ +2
√

λφ(0)

)
‖ f − fφ,σ ‖Hσ .

(42)

Taking the square on both sides of this inequality and averaging with respect to P leads to:

∀ f ∈ Fσ, EP
[
g2

f

]
≤
(

L

(√
κσφ(0)

λ

)
√

κσ +2
√

λφ(0)

)2

‖ f − fφ,σ ‖2
Hσ

. (43)

On the other hand, we deduce from the convexity ofφ that for any (x,y) ∈ X ×{−1,+1} and
any f ∈ Fσ:

φ(y f(x))+λ‖ f ‖2
Hσ

+φ(y fφ,σ(x))+λ‖ fφ,σ ‖2
Hσ

2

≥ φ
(

y f(x)+y fφ,σ(x)

2

)
+λ

‖ f ‖2
Hσ

+‖ fφ,σ ‖2
Hσ

2

= φ
(

y
f + fφ,σ

2
(x)

)
+λ‖ f + fφ,σ

2
‖2
Hσ

+λ‖ f − fφ,σ

2
‖2
Hσ

.

Averaging this inequality with respect toP rewrites:

Rφ,σ(f)+Rφ,σ
(

fφ,σ
)

2
≥ Rφ,σ

(
f + fφ,σ

2

)
+λ‖ f − fφ,σ

2
‖2
Hσ

≥ Rφ,σ
(

fφ,σ
)
+λ‖ f − fφ,σ

2
‖2
Hσ

,

where the second inequality is due to the definition offφ,σ as a minimizer ofRφ,σ. Therefore we get,
for any f ∈ Fσ,

EP [gf] = Rφ,σ(f)−Rφ,σ
(

fφ,σ
)

≥ λ
2
‖ f − fφ,σ ‖2

Hσ
.

(44)

835

VERT AND VERT

Combining (43) and (44) finishes the proof of Lemma 18

Proof of Lemma 19Following a path similar to (42), we can write for anyf ∈ Fσ and any(x,y) ∈
X ×{−1,+1}:

∣∣gf (x,y)
∣∣≤
∣∣φ(y f(x))−φ

(
y fφ,σ(x)

)∣∣+λ
∣∣∣‖ f ‖2

Hσ
−‖ fφ,σ ‖2

Hσ

∣∣∣

≤ L

(√
κσφ(0)

λ

)
∣∣ f (x)− fφ,σ(x)

∣∣+λ
φ(0)

λ

≤ 2L

(√
κσφ(0)

λ

)√
κσφ(0)

λ
+φ(0) .

Proof of Lemma 20Let us introduce the notationlφ ◦ f (x,y) := φ(y(f (x)) andLφ,σ ◦ f := lφ ◦ f +
λ‖ f ‖2

H Xσ
, for f ∈ H Xσ and(x,y) ∈ X ×{−1,1}. We can then rewrite (29) as:

Gσ =
{

Lφ,σ ◦ f −Lφ,σ ◦ f Xφ,σ : f ∈ Fσ
}

.

The covering number of a set does not change when the set is translatedby a single function,
therefore:

N
(
B−1Gσ,ε,L2(T)

)
= N

(
B−1Lφ,σ ◦Fσ,ε,L2(T)

)
.

Denoting now[a,b] the set of constant functions with values betweena andb, we deduce, from the
fact thatλ‖ f ‖2

H Xσ
≤ φ(0) for f ∈ Fσ, that

B−1Lφ,σ ◦Fσ ⊂ B−1lφ ◦Fσ +
[
0,B−1φ(0)

]
.

Using the sub-additivity of the entropy we therefore get:

logN
(
B−1Gσ,2ε,L2(T)

)
≤ logN

(
B−1lφ ◦Fσ,ε,L2(T)

)
+ logN

([
0,B−1φ(0)

]
,ε,L2(T)

)
. (45)

In order to upper bound the first term in the r.h.s. of (45), we observe,using (17), that for anyf ∈ Fσ
andx∈ X ,

| f (x) | ≤ √
κσ‖ f ‖H Xσ ≤

√
φ(0)κσ

λ
,

and therefore a simple computation shows that, ifu(x,y) := B−1φ(y f(x)) andu′(x,y) := B−1φ(y f ′(x))
are two elements ofB−1lφ ◦Fσ (with f , f ′ ∈ Fσ), then for any sampleT:

‖u−u′ ‖L2(T) ≤ B−1L

(√
φ(0)κσ

λ

)
‖ f − f ′ ‖L2(T) .

and therefore

logN
(
B−1lφ ◦Fσ,ε,L2(T)

)
≤ logN

Fσ,BεL

(√
φ(0)κσ

λ

)−1

,L2(T)

≤ logN

B Xσ ,BεL

(√
φ(0)κσ

λ

)−1√
λ

φ(0)
,L2(T)

 .

(46)

836

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

Recalling the definition ofB in (34), we obtain:

BεL

(√
φ(0)κσ

λ

)−1√
λ

φ(0)
≥ 2ε

√
κσ ,

and therefore
logN

(
B−1lφ ◦Fσ,ε,L2(T)

)
≤ logN

(
B Xσ ,2ε

√
κσ,L2(T)

)
.

The second term in the r.h.s. of (45) is easily upper bounded by:

logN
([

0,B−1φ(0)
]
,ε,L2(T)

)
≤ log

(
φ(0)

Bε

)
,

and we finally get:

logN
(
B−1Gσ,2ε,L2(T)

)
≤ logN

(
B Xσ ,2ε

√
κσ,L2(T)

)
+ log

(
φ(0)

Bε

)
. (47)

We now need to upper bound the covering number of the unit ball in the RKHS. We make use of
the following result, proved by Steinwart and Scovel (2004, Theorem 2.1, page 5): if ˜B Xσ denotes
the unit ball of the RKHS associated with the non-normalized Gaussian kernel (20) on a compact
set, then for all 0< p≤ 2 and allδ > 0 there exists a constantcp,δ,d independent ofσ such that for
all ε̃ > 0 we have:

logN
(

˜B Xσ , ε̃,L2(T)
)
≤ cp,δ,dσ(1−p/2)(1+δ)dε−p . (48)

Now, using (21), we observe that
B Xσ =

√
κσ

˜B Xσ ,

and therefore:

logN
(
B Xσ ,2ε

√
κσ,L2(T)

)
= logN

(√
κσ

˜B Xσ ,2ε
√

κσ,L2(T)
)

= logN
(

˜B Xσ ,2ε,L2(T)
)

.
(49)

Plugging (48) into (49), and (49) into (47) finally leads to the announced result, after observing that
the second term in the r.h.s. of (47) becomes negligible compared to the first one and can therefore
be hidden in the constant forε small enough.

6. Some Properties of theL2-Norm-Regularized φ-Risk

In this section we investigate the conditions on the loss functionφ under which the Bayes consis-
tency of the minimization of the regularizedφ-risk holds. In the spirit of Bartlett et al. (2006), we
introduce a notion of classification-calibration for regularized loss functionsφ, and upper bound the
excess risk of any classifierf in terms of its excess of regularizedφ-risk. We also upper-bound
theL2-distance betweenf and fφ,0 in terms of the excess of regularizedφ-risk of f , which is useful
to proove Bayes consistency in the one-class setting.

837

VERT AND VERT

6.1 Classification Calibration

In the classical setting, Bartlett et al. (2006, Definition 1, page 7) introduce the following notion of
classification-calibrated loss functions:

Definition 21 For any(η,α) ∈ [0,1]×R, let the generic conditionalφ-risk be defined by:

Cη(α) := ηφ(α)+(1−η)φ(−α).

The loss functionφ is said to be classification-calibrated if, for anyη ∈ [0,1]\{1/2}:

inf
α∈R:α(2η−1)≤0

Cη(α) > inf
α∈R

Cη(α)

The importance here is in thestrict inequality, which implies in particular that if the global infimum
of Cη is reached at some pointα, then α > 0 (resp.α < 0) if η > 1/2 (resp.η < 1/2). This
condition, that generalizes the requirement that the minimizer ofCη(α) has the correct sign, is a
minimal condition that can be viewed as a pointwise form of Fisher consistencyfor classification.
In our case, noting that for anyf ∈M , theL2-regularizedφ-risk can be rewritten as follows:

Rφ,0(f) =
Z

Rd

{
[η(x)φ(f (x))+(1−η(x))φ(− f (x))]ρ(x)+λ f (x)2}dx ,

we introduce the regularized generic conditionalφ-risk:

∀(η,ρ,α) ∈ [0,1]× (0,+∞)×R, Cη,ρ (α) := Cη (α)+
λα2

ρ
,

as well as the related weighted regularized generic conditionalφ-risk:

∀(η,ρ,α) ∈ [0,1]× [0,+∞)×R, Gη,ρ (α) := ρCη (α)+λα2 .

This leads to the following notion of classification-calibration:

Definition 22 We say thatφ is classification calibrated for the regularized risk, orR-classification-
calibrated, if for any(η,ρ) ∈ [0,1]\{1/2}× (0,+∞)

inf
α∈R:α(2η−1)≤0

Cη,ρ(α) > inf
α∈R

Cη,ρ(α)

The following result clarifies the relationship between the properties of classification-calibration
and R-classification-calibration.

Lemma 23 For any functionφ : R → [0,+∞), φ(x) is R-classification-calibrated if and only if for
any t> 0, φ(x)+ tx2 is classification-calibrated.

Proof For anyφ : R → [0,+∞) and ρ > 0, let φ̃(x) := φ(x) + λx2/ρ andC̃η the corresponding
generic conditional̃φ-risk. Then one easily gets, for anyα ∈ R

C̃η (α) = Cη,ρ (α) .

As a result,φ is R-classification-calibrated if and only if, for anyρ, φ̃ is classification-calibrated,
which proves the lemma.

Classification-calibration and R-classification-calibration are two different properties related to
each other by Lemma 23, but none of them implies the other one for general non-convex functions
φ, as illustrated by the following two examples.

838

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

Example 1 : A classification-calibrated, but not R-classification-calibrated function.Let φ(x) =
1 on (−∞,−2], φ(x) = 2 on [−1,1], φ(x) = 0 on [2,+∞), and φ continous linear on[−2,−1]
and [1,2]. Then Cη(α) is also continuous and piecewise linear on the intervals delimited by the
points−2,−1,1,2, with valuesη on (−∞,−2], 1− η on [2,+∞), and 2 on [−1,1]. As a re-
sult, infα∈RCη(α) = min(η,1−η) and infα∈R:α(2η−1)≤0Cη(α) = max(η,1−η). This shows thatφ
is classification-calibrated. However, as soon asρ < 2λ, the global minimum of Cη,ρ(α) is reached
for α = 0 and therefore:

inf
α∈R:α(2η−1)≤0

Cη,ρ(α) = inf
α∈R

Cη,ρ(α) = 2,

which shows thatφ is not R-classification-calibratedin this case.

Example 2 : A R-classification-calibrated, but not classification-calibrated function. Letφ : R→
[0,+∞) be any function with negative right-hand and positive left-hand derivatives at0, satisfying

lim
α→−∞

φ(α) = lim
α→∞

φ(α) = 0 , (50)

and
∀α > 0, φ(α) < φ(−α) . (51)

An example of a function that satisfies these conditions isφ(α) = eα for α ≤ 0, φ(α) = e−2α for α ≥
0. Because of (50), it is clear that such functions satisfy

inf
α≤0

Cη (α) = inf
α≥0

Cη (α) = inf
α∈R

Cη (α) = 0 ,

which shows that they are not classification-calibrated. In order to showthat they are R-classification-
calibrated, it suffices to show by Lemma 23 that for any t> 0, φ(x)+tx2 is classification-calibrated.φ
being nonnegative, the corresponding generic conditional risk

C̃η (α) = ηφ(α)+(1−η)φ(−α)+ tα2

satisfies:
lim

α→−∞
C̃η (α) = lim

α→∞
C̃η (α) = +∞ .

As a result, for anyη 6= 1/2, the infimum of̃Cη over{α ∈ R : α(2η−1) ≤ 0} is reached at some fi-
nite pointα̃η. Moreover,C̃η has negative right-hand and positive left-hand derivatives at0, ensuring
that the minimum is not reached at0: α̃η (2η−1) < 0. This implies by (51) that

(2η−1)(φ(α̃η)−φ(−α̃η)) > 0.

Combining this with the following equality holding for anyα ∈ R:

C̃η (α)−C̃η (−α) = (2η−1)(φ(α)−φ(−α)) ,

we obtain
C̃η (α̃η) > C̃η (−α̃η) .

As a result,
inf

α∈R:α(2η−1)≤0
Cη,ρ(α) = C̃η (α̃η) > C̃η (−α̃η) ≥ inf

α∈R

Cη,ρ(α) ,

showing thatφ(x)+tx2 is classification-calibrated, and therefore thatφ is R-classification-calibrated.

839

VERT AND VERT

6.2 Classification-Calibration of Convex Loss Functions

The following lemma states the equivalence between classification calibration and R-classification
calibration for convex loss functions, and it gives a simple characterization of this property.

Lemma 24 For a convex functionφ : R → [0,+∞), the following properties are equivalent:

1. φ is classification-calibrated,

2. φ is R-classification-calibrated,

3. φ is differentiable at0 andφ′(0) < 0.

Proof The equivalence of the first and the third properties is shown in Bartlett etal. (2006, The-
orem 4). From this and lemma 23, we deduce thatφ is R-classification-calibrated iffφ(x)+ tx2 is
classification-calibrated for anyt > 0, iff φ(x)+ tx2 is differentiable at 0 with negative derivative
(for any t > 0), iff φ(x) is differentiable at 0 with negative derivative. This proves the equivalence
between the second and third properties.

6.3 Some Properties of the Minimizer of theRφ,0-Risk

Whenφ is convex, the functionCη(α) is a convex function (as a convex combination of convex
functions), and thereforeGη,ρ(α) is strictly convex and diverges to+∞ in −∞ and+∞; as a result,
for any(η,ρ) ∈ [0,1]× [0,+∞), there exists a uniqueα(η,ρ) that minimizesGη,ρ onR. It satisfies
the following inequality:

Lemma 25 If φ : R→ [0,+∞) is a convex function, then for any(η,ρ)∈ [0,1]× [0,+∞) and anyα∈
R,

Gη,ρ (α)−Gη,ρ (α(η,ρ)) ≥ λ(α−α(η,ρ))2 . (52)

Proof For any (η,ρ) ∈ [0,1]× [0,+∞), the functionGη,ρ(α) is the sum of the convex func-
tion ρCη(α) and of the strictly convex functionλα2. Let us denote byC+

η (α) the right-hand deriva-
tive of Cη at the pointα (which is well defined for convex functions). The right-hand derivative of
a convex function being non-negative at a minimum, we have (denotingα∗ := α(η,ρ)):

ρC+
η (α∗)+2λα∗ ≥ 0 . (53)

Now, for anyα > α∗, we have by convexity ofCη:

Cη(α) ≥Cη (α∗)+(α−α∗)C+
η (α∗) . (54)

Moreover, by direct calculation we get:

λα2 = λα2
∗ +2λα∗ (α−α∗)+λ(α−α∗)

2 . (55)

Mutliplying (54) by ρ, adding (55) and plugging (53) into the result leads to:

Gη,ρ (α)−Gη,ρ (α∗) ≥ λ(α−α∗)
2 .

840

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

This inequality is also valid forα ≤ α∗: starting this time from

ρC−
η (α∗)+2λα∗ ≤ 0 ,

whereC−
η denotes the left-hand derivative ofCη, and from

Cη(α) ≥Cη (α∗)+(α−α∗)C−
η (α∗) ,

which holds for anyα < α∗ by convexity ofCη, we can draw exactly the same lines of reasoning as
for the caseα > α∗.

From this result we obtain the following characterization and properties of the minimizer of
theRφ,0-risk:

Theorem 26 If φ : R → [0,+∞) is a convex function, then the function fφ,0 : R
d → R defined for

any x∈ R
d by

fφ,0(x) := α(η(x),ρ(x))

satisfies:

1. fφ,0 is measurable.

2. fφ,0 minimizes the Rφ,0-risk:

Rφ,0
(

fφ,0
)

= inf
f∈M

Rφ,0(f) .

3. For any f∈M , the following holds:

‖ f − fφ,0‖2
L2
≤ 1

λ
(
Rφ,0(f)−R∗

φ,0

)
.

Proof To show that fφ,0 is measurable, it suffices to show that the mapping(η,ρ) ∈ [0,1]×
[0,+∞) 7→ α(η,ρ) is continuous. Indeed, if this is true, thenfφ,0 is measurable as a continuous
function of two measurable functionsη andρ.

In order to show the continuity of(η,ρ) 7→ α(η,ρ), fix (η0,ρ0) ∈ [0,1]× [0,+∞) and the corre-
spondingα0 := α(η0,ρ0). Then, for anyε > 0, there exists a neighborhoodBε of (η0,ρ0) such that
for any(η,ρ) ∈ Bε, for anyα ∈ [α0− ε,α0 + ε],

∣∣Gη,ρ (α)−Gη0,ρ0 (α)
∣∣< λε2

3
. (56)

To see that, first note that the functionφ is continuous and thus bounded by some constantA
on [α0− ε,α0 + ε], and therefore, for anyα in [α0− ε,α0 + ε], we have

∣∣Gη,ρ (α)−Gη0,ρ0 (α)
∣∣ = |(ηρ−η0ρ0)(φ(α)−φ(−α))+(ρ−ρ0)φ(−α) |

≤ 2A(|ηρ−η0ρ0 |+ |ρ−ρ0 |) .

Hence, (56) holds by taking, for instance,

Bε :=
{
(η,ρ) ∈ R

2 : |ηρ−η0ρ0 | < λε2/12A , |ρ−ρ0 | < λε2/12A
}

.

841

VERT AND VERT

Now, applying (56) successively toα0 + ε and toα0, then using (52), we easily obtain that for
any(η,ρ) ∈ Bε,

Gη,ρ (α0 + ε) > Gη,ρ (α0)+
λε2

3
.

In the same way, applying (56) successively toα0− ε and toα0, then using (52), we obtain that for
any(η,ρ) ∈ Bε,

Gη,ρ (α0− ε) > Gη,ρ (α0)+
λε2

3
.

This reveals the existence of two points aroundα0, namelyα0− ε andα0 + ε, at which the func-
tion Gη,ρ takes values larger thanGη,ρ (α0). By convexity ofGη,ρ, this implies that its minimizer,
namelyα(η,ρ), is in the interval[α0− ε,α0 + ε], as soon as(η,ρ) ∈ Bε, which concludes the proof
of the continuity of(η,ρ) → α(η,ρ), and therefore of the measurability offφ,0.

Now, we have by construction, for anyf ∈M :

∀x∈ R
d, Gη(x),ρ(x)

(
fφ,0(x)

)
≤ Gη(x),ρ(x) (f (x))

which after integration leads to:
Rφ,0(fφ,0) ≤ Rφ,0(f) ,

proving the second statement of the theorem.
Finally, for any f ∈M , rewriting (52) withα = f (x), ρ = ρ(x) andη = η(x) shows that:

∀x∈ R
d, Gη(x),ρ(x) (f (x))−Gη(x),ρ(x)

(
fφ,0(x)

)
≥ λ

(
f (x)− fφ,0(x)

)2
,

which proves the third statement of Theorem 26.

6.4 Relating theRφ,0-Risk with the Classification Error Rate

In the “classical” setting (with a regularization parameter converging to 0), the idea of relating the
convexified risk to the true risk (more simply called risk) has recently gained alot of interest. Zhang
(2004) and Lugosi and Vayatis (2004) upper bound the excess-riskby some function of the excessφ-
risk to prove consistency of various algorithms (and obtain upper boundsfor the rates of convergence
of the risk to the Bayes risk). These ideas were then generalized by Bartlett et al. (2006), which we
now adapt to our framework.

Let us define, for any(η,ρ) ∈ [0,1]× (0,+∞),

M (η,ρ) := min
α∈R

Cη,ρ(α) = Cη,ρ (α(η,ρ)) ,

and for anyρ > 0 the functionψρ defined for allθ in [0,1] by

ψρ (θ) := φ(0)−M

(
1+θ

2
,ρ
)

.

The following lemma summarizes a few properties ofM andψρ. Explicit computations for some
standard loss functions are performed in Section 7.

842

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

Lemma 27 If φ : R → [0,+∞) is a convex function, then for anyρ > 0, the following properties
hold:

1. the functionη 7→ M(η,ρ) is symmetric around1/2, concave, and continuous on[0,1];

2. ψρ is convex, continuous, nonnegative, and nondecreasing on[0,1], andψ(0) = 0;

3. if 0 < ρ < τ, thenψρ ≤ ψτ on [0,1];

4. φ is R-classification-calibrated if and only ifψρ(θ) > 0 for θ ∈ (0,1].

Proof For anyρ > 0, let

φρ(x) := φ(x)+
λx2

ρ
.

As already observed in the proof of Lemma 23, the corresponding generic conditionalφρ-risk C̃η
satisfies

C̃′
η (α) = Cη,ρ (α) .

φρ being convex, the first two points are direct consequences of Bartlett et al. (2006, Theorem 4 &
Lemma 6). In particular,the functionψρ is nondecreasing due to the fact that it is minimal at 0 and
convex on[0,1].

To prove the third point, it suffices to observe that for 0< ρ ≤ τ we have for any(η,α) ∈
[0,1]×R:

Cη,ρ(α)−Cη,τ(α) = λα2
(

1
ρ
− 1

τ

)
≥ 0,

which implies, by taking the minimum inα:

M (η,ρ) ≥ M (η,τ) ,

and therefore, forθ ∈ [0,1]

ψρ (θ) ≤ ψτ (θ) .

Finally, by lemma 24,φ is R-classification-calibrated iffφρ is classification-calibrated (because
both properties are equivalent to saying thatφ is differentiable at 0 andφ′(0) < 0), iff ψρ(θ) > 0
for θ ∈ (0,1] by Bartlett et al. (2006, Theorem 6).

We are now in position to state a first result to relate the excessRφ,0-risk to the excess-risk. The
dependence onρ(x) generates difficulties compared with the “classical” setting, which forces usto
separate the low density regions from the rest in the analysis.

Theorem 28 Supposeφ is a convex classification-calibrated function, and for anyε > 0, let

Aε :=
{

x∈ R
d : ρ(x) ≤ ε

}
.

For any f ∈M the following holds:

R(f)−R∗ ≤ inf
ε>0

{
P(Aε)+ψ−1

ε
(
Rφ,0(f)−R∗

φ,0

)}
(57)

843

VERT AND VERT

Proof First note that for convex classification-calibrated functions,ψε is strictly increasing on[0,1].
Indeed, by Lemma 27, it is convex and reaches its unique minimum at 0 in this case. Sinceψε is
also continuous on[0,1], it is therefore invertible, which justifies the use ofψ−1

ε in (57).

Fix now a function f ∈ M , and letU(x) := 1 if f (x)(2η(x)−1) < 0, 0 otherwise (U is the
indicator function of the set wheref and the optimal classifier disagree). For anyε > 0, if we
defineBε := R

d\Aε, we can compute:

Rφ,0(f)−R∗
φ,0 =

Z

Rd

[
Cη(x),ρ(x) (f (x))−M (η(x),ρ(x))

]
ρ(x)dx

≥
Z

Rd

[
Cη(x),ρ(x) (f (x))−M (η(x),ρ(x))

]
U(x)ρ(x)dx

≥
Z

Rd
[φ(0)−M (η(x),ρ(x))]U(x)ρ(x)dx

=
Z

Rd
ψρ(x) (|2η(x)−1|)U(x)ρ(x)dx

≥
Z

Bε

ψρ(x) (|2η(x)−1|)U(x)ρ(x)dx

≥
Z

Bε

ψε (|2η(x)−1|)U(x)ρ(x)dx

=
Z

Bε

ψε (U(x) |2η(x)−1|)ρ(x)dx

= P(Bε)
Z

Bε

ψε (U(x) |2η(x)−1|) ρ(x)
P(Bε)

dx

≥ P(Bε)ψε

(
1

P(Bε)

Z

Bε

|2η(x)−1|U(x)ρ(x)dx

)

≥ ψε

(
Z

Bε

|2η(x)−1|U(x)ρ(x)dx

)

= ψε

(
Z

Rd
|2η(x)−1|U(x)ρ(x)dx−

Z

Aε

|2η(x)−1|U(x)ρ(x)dx

)

≥ ψε

(
Z

Rd
|2η(x)−1|U(x)ρ(x)dx−P(Aε)

)

= ψε (R(f)−R∗−P(Aε)) ,

where the successive (in)equalities are respectively justified by: (i) thedefinition ofRφ,0 and the sec-
ond point of Theorem 26; (ii) the fact thatU ≤ 1; (iii) the fact that whenf and 2η−1 have different
signs, thenCη,ρ (f) ≥Cη,ρ (0) = φ(0); (iv) the definition ofψρ; (v) the obvious fact thatBε ⊂ R

d;
(vi) the observation that, by definition,ρ is larger thanε onBε, and the third point of Lemma 27; (vii)
the fact thatψε(0) = 0 andU(x) ∈ {0,1}; (viii) a simple division and multiplication byP(Bε) > 0;
(ix) Jensen’s inequality; (x) the convexity ofψε and the facts thatψ(0) = 0 andP(Bε) < 1; (xi) the
fact thatBε = R

d\Aε; (xii) the upper bound|2η(x)−1|U(x) ≤ 1 and the fact thatψε is increasing;
and (xiii) a classical inequality that can be found, e.g., in Devroye et al. (1996, Theorem 2.2, page
16). Composing each side by the strictly increasing functionψ−1

ε leads to the announced result.

844

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

6.5 Proof of Theorem 4

Theorem 4 is a direct corollary of Theorem 28.4 Indeed, keeping the notation of the previous
section, let us choose for anyδ > 0 anε small enough to ensureP(Aε) < δ/2, andN ∈ N such that
for anyn > N,

Rφ,0(fn)−R∗
φ,0 < ψε

(
δ
2

)
.

Then a direct application of Theorem 28 in this case shows that for anyn > N, R(fn)−R∗ < δ,
concluding the proof of Theorem 4.

This important result shows that any consistency result for the regularized φ-risk implies con-
sistency for the true risk, that is, convergence to the Bayes risk. Besides, convergence rates for
the regularizedφ-risk towards its minimum translate into convergence rates for the risk towardsthe
Bayes risk thanks to (57), as we will show in the next subsection.

6.6 Refinements under a Low Noise Assumption

When the distributionP satisfies a low noise assumption as defined in section 2, we have the fol-
lowing result:

Theorem 29 Let φ be a convex loss function such that there exist(κ,β,ν) ∈ (0,+∞)3 satisfying:

∀(ε,u) ∈ (0,+∞)×R, ψ−1
ε (u) ≤ κuβε−ν.

Then for any distribution P with low density exponentγ, there exist constant(K, r) ∈ (0,+∞) such
that for any f∈M with an excess regularizedφ-risk upper bounded by r the following holds:

R(f)−R∗ ≤ K
(
Rφ,0(f)−R∗

φ,0

) βγ
γ+ν .

Proof Let (c2,ε0) ∈ (0,+∞)2 such that

∀ε ∈ [0,ε0], P(Aε) ≤ c2εγ, (58)

and define

r := ε
γ+ν

β
0 κ− 1

β c
1
β
2 . (59)

Given any functionf ∈M such thatδ = Rφ,0(f)−R∗
φ,0 ≤ r, let

ε := κ
1

γ+ν c
− 1

γ+ν
2 δ

β
γ+ν . (60)

Becauseδ ≤ r, we can upper boundε by:

ε ≤ κ
1

γ+ν c
− 1

γ+ν
2 r

β
γ+ν

= ε0.
(61)

4. We note that after this work was submitted, a related analysis has been proposed in Steinwart (2005b). The latter
provides a very general framework, which in particular allows to derive Theorem 4 without the use of Theorem 28.

845

VERT AND VERT

Combining (61) and (58), we obtain:

P(Aε) ≤ c2εγ

≤ κ
γ

γ+ν c
ν

γ+ν
2 δ

βγ
γ+ν .

(62)

On the other hand,

ψ−1
ε (δ) ≤ κδβε−ν

= κ
γ

γ+ν c
ν

γ+ν
2 δ

βγ
γ+ν .

(63)

Combining Theorem 28 with (62) and (63) leads to the result claimed with the constantr defined
in (59) and

K := 2κ
γ

γ+ν c
ν

γ+ν
2 .

7. Consistency of SVMs

In this section we illustrate the results obtained throughout Section 6 for a general loss functionφ,
in particular the control of the excessR-risk by the excessRφ,0-risk of Theorem 29, to the specific
cases of the loss functions used in 1- and 2-SVM. This leads to the proof of Theorem 6 in Section
7.3.

7.1 The Case of 1-SVM

Let φ(α) = max(1−α,0). Then we easily obtain, for any(η,ρ) ∈ [−1,1]× (0,+∞):

Cη,ρ(α) =

η(1−α)+λα2/ρ if α ∈ (−∞,−1]

η(1−α)+(1−η)(1+α)+λα2/ρ if α ∈ [−1,1]

(1−η)(1+α)+λα2/ρ if α ∈ [1,+∞).

This shows thatCη,ρ is strictly decreasing on(−∞,−1] and strictly increasing on[1,+∞); as a result
it reaches its minimum on[−1,1]. Its derivative on this interval is equal to:

∀α ∈ (−1,1), C′
η,ρ(α) =

2λα
ρ

+1−2η.

This shows thatCη,ρ reaches its minimum at the point:

α(η,ρ) =

−1 if η ≤ 1/2−λ/ρ
(η−1/2)ρ/λ if η ∈ [1/2−λ/ρ,1/2+λ/ρ]

1 if η ≥ 1/2+λ/ρ
(64)

and that the value of this minimum is equal to:

M (η,ρ) =

2η+λ/ρ if η ≤ 1/2−λ/ρ
1−ρ(η−1/2)2/λ if η ∈ [1/2−λ/ρ,1/2+λ/ρ]

2(1−η)+λ/ρ if η ≥ 1/2+λ/ρ

846

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

From this we deduce that for all(ρ,θ) ∈ (0,+∞)× [−1,1]:

ψρ (θ) =

{
ρθ2/(4λ) if 0 ≤ θ ≤ 2λ/ρ,

θ−λ/ρ if 2λ/ρ ≤ θ ≤ 1

whose inverse function is

ψ−1
ρ (u) =

{√
4λu/ρ if 0 ≤ u≤ λ/ρ,

u+λ/ρ if u≥ λ/ρ.
(65)

7.2 The Case of 2-SVM

Let φ(α) = max(1−α,0)2. Then we obtain, for any(η,ρ) ∈ [−1,1]× (0,+∞):

Cη,ρ(α) =

η(1−α)2 +λα2/ρ if α ∈ (−∞,−1]

η(1−α)2 +(1−η)(1+α)2 +λα2/ρ if α ∈ [−1,1]

(1−η)(1+α)2 +λα2/ρ if α ∈ [1,+∞).

This shows thatCη,ρ is strictly decreasing on(−∞,−1] and strictly increasing on[1,+∞); as a result
it reaches its minimum on[−1,1]. Its derivative on this interval is equal to:

∀α ∈ (−1,1), C′
η,ρ(α) = 2

(
1+

λ
ρ

)
α+1−2η.

This shows thatCη,ρ reaches its minimum at the point:

α(η,ρ) = (2η−1)
ρ

λ+ρ
. (66)

and that the value of this minimum is equal to:

M (η,ρ) = 1− (2η−1)2 ρ
λ+ρ

.

From this we deduce that for all(ρ,θ) ∈ (0,+∞)× [−1,1]:

ψρ (θ) =
ρ

λ+ρ
θ2

whose inverse function is

ψ−1
ρ (u) =

√(
1+

λ
ρ

)
u. (67)

Remark 30 The minimum of Cη,ρ being reached on(−1,1) for any (η,ρ) ∈ [0,1]× (0,+∞), the
result would be identical for any convex loss functionφ0 that is equal to(1−α)2 on(−∞,1). Indeed,
the corresponding regularized generic conditionalφ0-risk would coincide with Cη,ρ on (−1,1) and
would be no smaller than Cη,ρ outside of this interval; it would therefore have the same minimal
value reached at the same point, and consequently the same function M andψ. This is for example
the case with the loss function used in LS-SVM,φ0(α) = (1−α)2.

847

VERT AND VERT

7.3 Proof of Theorem 6

Starting withφ1(α) = max(1−α,0), let us follow the proof of Theorem 29 by takingβ = ν = 1/2
andκ = 2

√
λ. For r defined as in (59), let us choose

r1 = min

(
r,

(
c2λγ+ν

κ2
γ+ν

β

) 1
β+γ+ν

)
.

For a functionf ∈M , choosingε as in (60),δ ≤ r1 implies

δ ≤
(

c2λγ+ν

κ2
γ+ν

β

) 1
β+γ+ν

=
(

ε−(γ+ν)2−
γ+ν

β λγ+νδβ
) 1

β+γ+ν

and therefore:

δ2−
1
β ≤ λ

ε
.

This ensures by (65) that foru = δ2−
1
β , one indeed has

ψ−1
ρ (u) = κuβε−ν,

which allows the rest of the proof, in particular (59), to be valid. This proves the result forφ1, with

K1 = 2×2
2γ

2γ+1 λ
γ

2γ+1 c
1

2γ+1

2 .

For φ2(α) = max(1−α,0)2 we can observe from (67) that, for anyε ∈ (0,ε0],

ψ−1
ε (u) ≤

√
(λ+ ε0)

u
ρ
.

and the proof of Theorem 29 leads to the claimed result withr2 = r defined in (59), and

K2 = 2× (λ+ ε0)
γ

2γ+1 c
1

2γ+1

2 .

Remark 31 We note here thatε can be chosen as small as possible in order to move the constant K2

as close as possible to its lower bound:

K̄2 = 2×λ
γ

2γ+1 c
1

2γ+1

2 .

but the counterpart of decreasing K2 is to decrease r2 too, by (59). We also notice the constant
corresponding to the 1-SVM loss function is larger than that of the 2-SVM loss function, by a factor

of up to2
2γ

2γ+1

848

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

8. Consistency of One-class SVMs for Density Level Set Estimation

In this section we focus on the one-class case:η is identically equal to 1, andP is just considered
as a distribution onRd, with densityρ with respect to the Lebesgue measure. The first subsection is
devoted to the proof of Theorem 8, and the second subsection to the proof of Theorem 9.

8.1 Proof of Theorem 8

Theorem 8 easily follows from combining some results given in this paper. First, it follows from
(64) that, in the one-class case whereη = 1 on its domain, the asymptotic functionfφ,0 equals the
truncated densityρλ. Then, using Lemma 7, we get the following bound:

‖ f̂σ −ρλ ‖2
L2
≤ 1

λ
(
Rφ,0(f̂σ)−R∗

φ,0

)
.

Finally, under the assumption limδ→0 ω(ρλ,δ) = 0, using Theorem 3 with, for instance,p = 1, δ =

1, σ = (1/n)1/4d, σ1 = (1/n)1/2d, andx = log(n), we deduce that for anyε > 0,

P
{
‖ f̂σ −ρλ ‖L2 ≥ ε

}
→ 0

asn→ ∞.

8.2 Proof of Theorem 9

Theorem 9 directly follows from combining Theorem 8 with Theorem 33, which is stated and
proved at the end of this section. To prove Theorem 33, it will be usefulto first state Lemma 32.

Before going to this point, let us recall some specific notation in the context ofdensity level set
estimation. The aim is to estimate a density level set of levelµ, for someµ> 0:

Cµ :=
{

x∈ R
d : ρ(x) ≥ µ

}
. (68)

The estimator that is considered here is the plug-in density level set estimator associated withf̂σ,
denoted bŷCµ:

Ĉµ :=
{

x∈ R
d : 2λ f̂σ (x) ≥ µ

}
. (69)

Recall that the asymptotic behaviour off̂σ in the one-class case is given in Theorem 8:f̂σ converge
to ρλ, which is proportional to the densityρ truncated at level 2λ. Taking into account the behaviour
of ρλ, we only consider the situation where 0< µ < 2λ < sup

Rd(ρ) = M. The densityρ is still
assumed to have a compact supportS⊂ X . To assess the quality of̂Cµ, we use the so-calledexcess
massfunctional, first introduced by Hartigan (1987), which is defined for any measurable subsetC
of R

d as follows:
HP(C) := P(C)−µLeb(C) , (70)

where Leb is the Lebesgue measure. Note thatHP is defined with respect to bothP andµ, and that
it is maximized byCµ. Hence, the quality of an estimatêC depends here on how its excess mass is
close to this ofCµ.
The following lemma relates theL2 convergence of a density estimator to the consistency of the
associated plug-in density level set estimator, with respect to the excess mass criterion:

849

VERT AND VERT

Lemma 32 Let P be a probability distribution onRd with compact support S⊂ X . Assume that P
is absolutely continuous with respect to the Lebesgue’s measure, and letρ denote its associated
density function. Assume furthermore thatρ is bounded on S. Consider a non-negative density
estimatêρ defined onRd. Then the following holds

HP(Cµ)−HP(Ĉ) ≤ K5‖ ρ̂−ρ‖L2 , (71)

whereĈ is the level set of̂ρ at level µ, and

K5 =
2
√

m‖ρ‖L∞ + 1−m
Leb(S)

mµ
.

Proof To prove the lemma, it is convenient to first build an artificial classification problem using the
density functionρ and the desired levelµ, then to relate the excess-risk involved in this classification
problem to the excess-mass involved in the original one-class problem. Notethat this technique has
already been used in Steinwart et al. (2005). Let us consider the following joint distributionQ
defined by its marginal density function

q(x) :=

{
mρ(x)+(1−m) 1

Leb(S) if x∈ S,

0 otherwise ,
(72)

and by its regression function

η0(x) :=
mρ(x)

mρ(x)+(1−m) 1
Leb(S)

, x∈ S, (73)

wherem is chosen such that

η0(x) =
ρ(x)

ρ(x)+µ
, (74)

that is

m :=
1

1+µLeb(S)
. (75)

In words, in the above artificial classification problem, the initial distributionP stands for the
marginal distribution of the positive class, and the negative class is generated by the uniform distri-
bution over the support ofP. The mixture coefficientm is determined by the initially desired density
levelµ. The corresponding Bayes classifier, which is the plug-in rule associated with η0, is denoted
by h∗.
Furthermore let us definêη0 := ρ̂/(ρ̂+µ), which stands for an estimate ofη0 in our artificial clas-
sification problem, and̂h as the plug-in classifier associated withη̂0: ĥ := sign(2η̂0−1). Then it
is straightforward thath∗ is the indicator function ofCµ, and thatĥ is the indicator function of̂C.
Moreover

R(ĥ)−R(h∗) = m
(

HP(C∗)−HP(Ĉ)
)

.

Indeed,

R(ĥ) = Q(ĥ(X) 6= Y)

= Q(Y = −1)Q(ĥ(X) = 1|Y = −1)+Q(Y = 1)Q(ĥ(X) = −1|Y = 1)

= (1−m)
Leb

(
Ĉ
)

Leb(S)
+m(1−P(Ĉ)) ,

850

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

and, similarly,

R(h∗) = (1−m)
Leb(Cµ)

Leb(S)
+m(1−P(Cµ)) , (76)

which proves the claim.
Now, the following can be derived, starting from an equality that can be found in Devroye et al.
(1996, page 16):

R(ĥ)−R(h∗) = 2EQ

[∣∣∣∣η0−
1
2

∣∣∣∣1ĥ6=h∗

]

≤ 2EQ

[
|η0− η̂0 |2

]1/2

= 2µ

(
Z

Rd

(|ρ̂(x)−ρ(x)|
(ρ̂(x)+µ)(ρ(x)+µ)

)2

q(x)dx

)1/2

≤ 2µ
√

A

(
Z

Rd

(|ρ̂(x)−ρ(x)|
(ρ̂(x)+µ)(ρ(x)+µ)

)2

dx

)1/2

≤ 2

√
A

µ
‖ ρ̂−ρ‖L2 ,

whereA is a positive uniform upper bound onq(x), for instanceA = m‖ρ‖L∞ +(1−m)/Leb(S).
Combining the previous equality with the last inequality concludes the proof.

We could just directly apply this lemma tôfσ, ρλ and the distributionPλ defined5 throughρλ, but
this would prove the consistency off̂σ with respect to the excess massHPλ , which is different from
the criterionHP of interest. The following lemma implies that the plug-in density level set estimator
at level 0< µ < 2λ based on the one-class SVM estimator is indeed consistent with respect to the
excess massHP.

Theorem 33 Let f̂ be a non-negative squared integrable function that estimatesρλ (as defined in
Equation 7). Let0 < µ< 2λ. LetĈ denote the level set of2λ f̂ at level µ. Then

HP(Cµ)−HP(Ĉ) ≤ K6‖ f̂ −ρλ ‖L2 (77)

where K6 > 0 depends neither onσ, nor on n.

Proof Let us introduce the following estimator:

ρ̃ := 2λ f̂ + ρ̃λ , (78)

where the functioñρλ is defined as follows:

ρ̃λ :=

{
ρ(x)−2λ if ρ(x) ≥ 2λ ,

0 otherwise,
(79)

5. Note thatPλ is not a probability distribution, since the functionρλ does not integrate to 1. Still, the excess-mass
remains well-defined.

851

VERT AND VERT

and letC̃ denote the level set of̃ρ at levelµ. It can be checked thatρ̃−ρ = 2λ
(

f̂ −ρλ
)
, implying

that
‖ ρ̃−ρ‖L2 = 2λ‖ f̂ −ρλ ‖L2 . (80)

Hence, using Lemma 32, we have

HP(Cµ)−HP
(
C̃
)
≤ K5‖ ρ̃−ρ‖L2 = 2λK5‖ f̂ −ρλ ‖L2 , (81)

leading to

HP(Cµ)−HP(Ĉ) ≤ 2λc‖ f̂ −ρλ ‖L2 +
∣∣∣HP(Ĉ)−HP(C̃)

∣∣∣ . (82)

The last thing to do is to bound
∣∣∣HP(Ĉ)−HP(C̃)

∣∣∣. SinceP has a bounded density w.r.t. the

Lebesgue’s measure, ∣∣∣HP(Ĉ)−HP(C̃)
∣∣∣≤ (µ+M)Leb

(
Ĉ∆C̃

)
. (83)

By construction of̃ρ, if C2λ denotes the level set ofρ at level 2λ, andC2λ its complementary inRd,
then we havêC∩C2λ = C̃∩C2λ and 2λ f̂ ≥ µ =⇒ ρ̃ ≥ µ. Hence

Leb
(
Ĉ∆C̃

)
=

Z

C2λ

1{2λ f̂<µ∧ ρ̃≥µ}

≤
Z

C2λ

1{2λ f̂<µ}

≤
Z

C2λ

2λ−2λ f̂
2λ−µ

1{2λ f̂<µ}

≤ 1
2λ−µ

(
Z

C2λ

(
2λρλ −2λ f̂

)2
)1/2

≤ 2λ
2λ−µ

‖ f̂ −ρλ ‖L2 .

This concludes the proof.

Acknowledgments

The authors are grateful to Stéphane Boucheron, Pascal Massart and Ingo Steinwart for fruitful
discussions and advices. JPV is supported by NHGRI NIH award R33 HG003070 and by the grant
ACI NIM 2003-72 of the French Ministry for Research and New Technologies. This work was
supported in part by the IST Programme of the European Community, under the PASCAL Network
of Excellence, IST-2002-506778. This publication only reflects the authors’ views.

References

N. Aronszajn. Theory of reproducing kernels.Trans. Am. Math. Soc., 68:337 – 404, 1950.

P. I. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification and risk bounds.J. Amer.
Statist. Assoc., 101(473):138–156, 2006.

852

CONSISTENCY ANDCONVERGENCERATES OFONE-CLASS SVMS AND RELATED ALGORITHMS

P. L. Bartlett and A. Tewari. Sparseness vs estimating conditional probabilities: Some asymptotic
results. InLecture Notes in Computer Science, volume 3120, pages 564–578. Springer, 2004.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Ann. Stat., 33(4):
1497–1537, 2005.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In
Proceedings of the 5th annual ACM workshop on Computational Learning Theory, pages 144–
152. ACM Press, 1992.

R. A. DeVore and G. G. Lorentz.Constructive Approximation. Springer Grundlehren der Mathe-
matischen Wissenschaften. Springer Verlag, 1993.

L. Devroye and G. Lugosi.Combinatorial Methods in Density Estimation. Springer Series in
Statistics. Springer, 2000.

L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition, volume 31 of
Applications of Mathematics. Springer, 1996.

G. B. Folland.Fourier analysis and its applications. The Wadsworth & Brooks/Cole Mathematics
Series. Wadsworth & Brooks/Cole Advanced Books & Software, PacificGrove, CA, 1992.

J. A. Hartigan. Estimation of a convex density contour in two dimensions.J. Amer. Statist. Assoc.,
82(397):267–270, 1987.

V. Koltchinskii. Localized Rademacher complexities. Manuscript, September 2003.

G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting methods.Ann.
Stat., 32:30–55, 2004.

E. Mammen and A. Tsybakov. Smooth discrimination analysis.Ann. Stat., 27(6):1808–1829, 1999.

P. Massart. Some applications of concentration inequalities to statistics.Ann. Fac. Sc. Toulouse, IX
(2):245–303, 2000.

M. T. Matache and V. Matache. Hilbert spaces induced by Toeplitz covariance kernels. InLecture
Notes in Control and Information Sciences, volume 280, pages 319–334. Springer, Jan 2002.

B. Scḧolkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution.Neural Comput., 13:1443–1471, 2001.

B. W. Silverman. On the estimation of a probability density function by the maximum penalized
likelihood method.Ann. Stat., 10:795–810, 1982.

I. Steinwart. Support vector machines are universally consistent.J. Complexity, 18:768–791, 2002.

I. Steinwart. Sparseness of support vector machines.J. Mach. Learn. Res., 4:1071–1105, 2003.

I. Steinwart. Consistency of support vector machines and other regularized kernel classifiers.IEEE
Trans. Inform. Theory, 51(1):128–142, 2005a.

853

VERT AND VERT

I. Steinwart. How to compare loss functions and their risks. Technical report, Los Alamos National
Laboratory, 2005b.

I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian kernels. Technical
Report LA-UR 04-8796, Los Alamos National Laboratory, 2004.

I. Steinwart, D. Hush, and C. Scovel. An explicit description of the reproducing kernel Hilbert
spaces of Gaussian RBF kernels. Technical Report LA-UR 04-8274, Los Alamos National Lab-
oratory, 2004.

I. Steinwart, D. Hush, and Scovel C. A classification framework for anomaly detection.J. Mach.
Learn. Res., 6:211–232, 2005.

A.N. Tikhonov and V.Y. Arsenin.Solutions of ill-posed problems. W.H. Winston, 1977.

A. B. Tsybakov. On nonparametric estimation of density level sets.Ann. Stat., 25:948–969, June
1997.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization.Ann. Stat., 32:56–134, 2004.

854

Journal of Machine Learning Research 7 (2006) 855–876 Submitted 11/05; Published 5/06

Infinite- σ Limits For Tikhonov Regularization

Ross A. Lippert LIPPERT@MATH .MIT.EDU

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307, USA

Ryan M. Rifkin RRIFKIN@HONDA-RI.COM

Honda Research Institute USA, Inc.
145 Tremont Street
Boston, MA 02111, USA

Editor: Gabor Lugosi

Abstract

We consider the problem of Tikhonov regularization with a general convex loss function: this for-
malism includes support vector machines and regularized least squares. For a family of kernels that
includes the Gaussian, parameterized by a “bandwidth” parameterσ, we characterize the limiting
solution asσ → ∞. In particular, we show that if we set the regularization parameterλ = λ̃σ−2p,
the regularization term of the Tikhonov problem tends to an indicator function on polynomials of
degree⌊p⌋ (with residual regularization in the case wherep∈Z). The proof rests on two key ideas:
epi-convergence, a notion of functional convergence under which limits of minimizers converge to
minimizers of limits, and avalue-based formulation of learning, where we work with regularization
on the function output values (y) as opposed to the function expansion coefficients in the RKHS.
Our result generalizes and unifies previous results in this area.

Keywords: Tikhonov regularization, Gaussian kernel, theory, kernelmachines

1. Introduction

Given a data set(x1, ŷ1), . . . ,(xn, ŷn)∈R
d×R, the supervised learning task is to construct a function

f (x) that, given a new point,x, will predict the associatedy value. A number of methods for
this problem have been studied. One popular family of techniques is Tikhonov regularization in a
Reproducing Kernel Hilbert Space (RKHS) (Evgeniou et al., 2000):

inf
f∈H

{

nλ|| f ||2κ +
n

∑
i=1

v(f (xi), ŷi)

}

.

Here,v : R×R → R is a loss functionindicating the price we pay when we seexi , predict f (xi),
and the true value is ˆyi . The squared norm,|| f ||2κ, in the RKHSH involves the kernel function
κ (Aronszajn, 1950). The regularization constant,λ > 0, controls the trade-off between fitting the
training set accurately (minimizing the penalties) and forcingf to be smooth inH . The Representer
Theorem (Wahba, 1990; Girosi et al., 1995; Schölkopf et al., 2001) guarantees that the solution to

c©2006 Ross A. Lippert and Ryan M. Rifkin.

L IPPERT ANDRIFKIN

the Tikhonov regularization can be written in the form

f (x) =
n

∑
i=1

ciκ(xi ,x).

In practice, solving a Tikhonov regularization problem is equivalent to finding the expansion coef-
ficientsci .

One popular choice forκ is theGaussiankernelκσ(x,x′) = e−
||x−x′||2

2σ2 , whereσ is the bandwidth
of the Gaussian. Common choices forv include thesquareloss,v(y, ŷ) = (y− ŷ)2, and thehinge
loss,v(y, ŷ) = max{0,1−yŷ}, which lead to regularized least squares and support vector machines,
respectively.

Our work was originally motivated by the empirical observation that on a range of tasks, reg-
ularized least squares achieved very good performance with very large σ. (For example, we could
often chooseσ so large that every kernel product between pairs of training points wasbetween
.99999 and 1.) To get good results with largeσ, it was necessary to makeλ small. We decided to
study this relationship.

Regularized least squares (RLS) is an especially simple Tikhonov regularization algorithm:
“training” RLS simply involves solving a system of linear equations. In particular, defining the
matrix K via Ki j = κ(xi ,x j), the RLS expansion coefficientsc are given by(K + nλI)c = ŷ, or
c= (K +nλI)−1ŷ. Given a test pointx0, we define then-vectork via ki = κ(x0,xi), and we have, for
RLS with a fixed bandwidth,

f (x0) = kt(K +nλI)−1ŷ.

In Lippert and Rifkin (2006), we studied the limit of this expression asσ → ∞, showing that
if we set λ = λ̃σ−2p−1 for p a positive integer, the infinite-σ limit converges (pointwise) to the
degreep polynomial with minimal empirical risk on the training set. The asymptotic predictions
are equivalent to those we would get if we simply fit an (unregularized) degreep polynomial to our
training data.

In Keerthi and Lin (2003), a similar phenomenon was also noticed for support vector machines
(SVM) with Gaussian kernels, where it was observed that the SVM function could be made to
converge (in the infinite-σ limit) to a linear function which minimized the hinge loss plus a residual
regularization (discussed further below). In that work, only a linear result was obtained; no results
were given for general polynomial approximation limits.

In the current work, we unify and generalize these results, showing that the occurrence of these
polynomial approximation limits is a general phenomenon, which holds across all convex loss func-
tions and a wide variety of kernels taking the formκσ(x,x′) = κ(x/σ,x′/σ). Our main result is that
for a convex loss function and a valid kernel, if we takeσ → ∞ andλ = λ̃σ−2p, the regularization
term of the Tikhonov problem tends to an indicator function on polynomials of degree⌊p⌋. In
the case wherep ∈ Z, there is residual regularization on the degree-p coefficients of the limiting
polynomial.

Our proof relies on two key ideas. The first is the notion ofepi-convergence, a functional
convergence under which limits of minimizers converge to minimizers of limits. This notion allows
us to characterize the limiting Tikhonov regularization problem in a mathematically precise way.
The second notion is avalue-based formulation of learning. The idea is that instead of working
with the expansion coefficients in the RKHS (ci), we can write the regularization problem directly
in terms of the predicted values (yi). This allows us to avoid combining and canceling terms whose
limits are individually undefined.

856

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

2. Notation

In this section, we describe the notation we use throughout the paper. Someof our choices are
non-standard, and we try to indicate these.

2.1 Data Sets and Regularization

We refer to a generald dimensional vector with the symbolx (plus superscripts or subscripts). We
assume a fixed set ofn training pointsxi ∈ R

d (1 ≤ i ≤ n) and refer to the totality of these data
points byX, such that for anyf : R

d → R, f (X) = (f (x1) · · · f (xn))
t is the vector of values

over the points and for anyg : R
d×R

d → R, g(X,X) is the matrix of values over pairs of points, i.e.
[g(X,X)]i j = g(xi ,x j). We letx0 represent an arbitrary “test point” not in the training set. We assume
we are given “true” ˆy values at the training points: ˆyi ∈ R,1≤ i ≤ n. While it is more common to
useŷ to refer to the “predicted” output values andy to refer to the “true” output values, we find
this choice much more notationally convenient, because our value-based formulation of learning (3)
requires us to work with the predicted values very frequently.

Tikhonov regularization is given by

inf
f∈H

{

nλ|| f ||2κ +
n

∑
i=1

v(f (xi), ŷi)

}

. (1)

Tikhonov regularization can be used for both classification and regression tasks, but we refer to the
function f as theregularized solutionin all cases. We call the left-hand portion theregularization
term, and the right-hand portion theloss term. We assume a loss functionv(y, ŷ) that is convex in
its first argument and minimized aty= ŷ (thereby ruling out, for example, the 0/1 “misclassification
rate”). We call such a loss functionvalid. Aside from convexity, we will be unconcerned with the
form of the loss function and often take the loss term in the optimization in (1) to besome convex
functionV : R

n → R which is minimized by the vector ˆy of ŷi ’s.
To avoid confusion, when subscripting overd dimensional indices, we use letters from the

beginning of the alphabet (a,b,c, . . .), while using letters from the middle (i, j, . . .) for n dimensional
indices.

When referring to optimization problems, we use an over-dot (e.g. ˙y) to denote optimizing
quantities. We are not time-differentiating anything in this work, so this should not cause confusion.

2.2 Polynomials

By a multi-indexwe refer toI ∈ Z
d such thatIa ≥ 0. Givenx ∈ R

d we write xI = ∏d
a=1xIa

a . We
also writeXI to denote(xI

1 · · · xI
n)t . Thedegreeof a multi-index is|I | = ∑d

a=1 Ia. We use the
“choose” notation

(

|I |
I

)

=
|I |!

∏d
a=1 Ia!

.

Let {Ii}∞
i=0 be an ordering of multi-indices which is non-decreasing by degree (in particular,

I0 = (0 · · · 0)). We consider this fixed for the remainder of the work. Definedc = |{I : |I | ≤ c}|
and note thatdc =

(

d+c+1
c

)

. Put differently,{I : |I | = c} = {Ii : dc−1 ≤ i < dc}.

Given a data set, while the monomialsxIi are linearly independent as functions, no more than
n of theXIi can be linearly independent. We say that a data set isgenericif the XIi , for i < n, are

857

L IPPERT ANDRIFKIN

linearly independent. This is equivalent to requiring that the data not reside on the zero-set of a low
degree system polynomials. This is not an unreasonable assumption for data which is presumed to
have been generated by distributions supported onR

n or some sphere inRn. Throughout this paper,
we assume that our data is generic. It is possible to carry out the subsequent derivations without it,
but the modifications which result are tedious. In particular, parts of Theorem 12, which treat the
first n monomialsXIi as linearly independent (e.g. assumingvα(X) is non-singular in the proof),
would need to be replaced with analogous statements about the firstn monomialsXIi j which are
linearly independent, and various power-series expansion coefficients would have to be adjusted
accordingly. Additionally, our main result requires not only genericity of the data, but also that
n > dp wherep is the degree of the asymptotic regularized solution.

2.3 Kernels

It is convenient to use infinite matrices and vectors to express certain infiniteseries. Where used, the
convergence of the underlying series implies the convergence of any infinite sums that arise from
the matrix products we form, and we will not attempt to define any inverses of non-diagonal infinite
matrices. This is merely a notational device to avoid excessive explicit indexing and summing in
the formulas ahead. Additionally, since many of our vectors come from power series expansions,
we adopt the convention of indexing such vectors and matrices starting from 0.

A Reproducing Kernel Hilbert Space (RKHS) is characterized by a kernel functionκ. If κ has a
power series expansion, we may write

κ(x,x′) = ∑
i, j≥0

Mi j x
Ii x′I j

= v(x)Mv(x′)t

whereM ∈ R
∞×∞ is an infinite matrix andv(x) = (1 xI1 xI2 · · ·) ∈ R

1×∞ is an infinite row-
vector valued function ofx. We emphasize thatM is an infinite matrix induced by the kernel function
κ and the ordering of multi-indices; it has nothing to do with our data set.

We say that a kernel isvalid if every finite upper-left submatrix ofM is symmetric and positive
definite; in this case, we also say that the infinite matrixM is symmetric positive definite. This con-
dition is the one we use in our main proof; however, it can be difficult to check. It is independent of
the Mercer property (which states that the kernel matrixκ(X,X) for a setX is positive semidefinite),
sinceκ(x,x′) = 1

1−xx′ is valid but not Mercer, and exp(−(x3− x′3)2) is Mercer but not valid. This
notion is, basically, that the feature space ofκ can approximate any polynomial function near the
origin to arbitrary accuracy. We are not aware of any mention of this property in the literature. The
following lemma gives a stronger condition that implies validity.

Lemma 1 If κ(x,x′) = ∑c≥0(x·x′)cgc(x)gc(x′) for some analytic functions gc(x) such that gc(0) 6= 0,
thenκ is a valid kernel.

Proof By the multinomial theorem,

(x ·x′)c =

(

d

∑
i=1

xix
′
i

)c

= ∑
|I |=c

(

|I |
I

)

xI x′I .

858

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

Let gc(x) = ∑I GcIxI , and notegc(0) = Gc0, thus

κ(x,x′) = ∑
I ,J,c≥0

∑
|E|=c

(

|E|
E

)

xI+EGcIGcJx
′J+E

= ∑
I ,J,E

(

|Ik|
Ik

)

xI+EG|E|I G|E|Jx′J+E

= ∑
I ,J≥E

xI G|E|(I−E)

(

|E|
E

)

G|E|(J−E)x
′J

= v(x)LLtv(x′)

whereLi j =

(

|I j |
I j

) 1
2

G|I j |(Ii−I j) whenIi ≥ I j and 0 otherwise. In other words,L is an infinite lower

triangular matrix with non-vanishing diagonal elements (sinceGc0 6= 0 for all c).
SinceM = LLt , the upper-left submatrices ofL are the Cholesky factors of the corresponding

upper-left submatrix ofM, and thusM is positive definite.
We note thatκ(x,x′) = exp(−1

2||x−x′||2) can be written in the form of Lemma 1:

κ(x,x′) = exp

(

−1
2
||x||2

)

exp(x ·x′)exp

(

−1
2
||x′||2

)

=
∞

∑
c=0

(x ·x′)c

c!
exp

(

−1
2
||x||2

)

exp

(

−1
2
||x′||2

)

=
∞

∑
c=0

(x ·x′)cgc(x)gc(x
′),

wheregc(x) = 1√
c!

exp(−1
2||x||2).

We will consider kernel functionsκσ which are parametrized by a bandwidth parameterσ (or
s= 1

σ). We will occasionally useKσ to refer to the matrix whosei, jth entryκσ(xi ,x j), for 1≤ i ≤
n,1≤ j ≤ n. We will also usekσ to denote then-vector whoseith entry isκσ(xi ,x0) — the kernel
product between theith training pointxi and the test pointx0.

3. Value-Based Learning Formulation

In this section, we discuss our value-based learning formulation. Using therepresenter theorem and
basic facts about RKHS, the standard Tikhonov regularization problem (1) can be written in terms
of the expansion coefficientsc and the kernel matrixK:

inf
c∈Rn

{

nλctKc+
n

∑
i=1

v([Kc]i , ŷi)

}

. (2)

The predicted values on the training set arey = f (X) = Kc. If the kernel matrixK is invertible
(which is the case for a Gaussian kernel and a generic data set), thenc = K−1y, and we can rewrite
the minimization as

inf
y∈Rn

{

nλytK−1y+V(y)
}

. (3)

859

L IPPERT ANDRIFKIN

whereV is convex (V(y) = ∑n
i=1vi(yi , ŷi)).

While problem 2 is explicit in the coefficients of the expansion of the regularized solution,
problem 3 is explicit in the predicted valuesyi . The purpose behind our choice of formulation is to
avoid the unnecessary complexities which result from replacingκ with κσ and taking limits as both
ci andκσ(x,xi) change separately withσ: note that in problem 3,only the regularization term is
varying withσ.

In this section, we will show how our formulation achieves this, by allowing us tostate a sin-
gle optimization problem which simultaneously solves the Tikhonov regularizationproblem on the
training data and evaluates the resulting function on the test data.

Theorem 2 Let y=

(

y0

y1

)

∈R
m+n be a block vector with y0 ∈R

m,y1 ∈R
n and K=

(

K00 K01

K10 K11

)

∈

R
(m+n)×(m+n) be a positive definite matrix. For any V: R

n → R, if ẏ minimizes

ytK−1y+V(y1) (4)

thenẏ1 minimizes

yt
1K−1

11 y1 +V(y1) (5)

andẏ0 = K01K
−1
11 ẏ1.

Proof

inf
y0,y1

{ytK−1y+V(y1)} = inf
y1
{inf

y0
{ytK−1y}+V(y1)}. (6)

Let K−1 = K̄ =

(

K̄00 K̄01

K̄10 K̄11

)

. Consider minimizingytK−1y = yt
0K̄00y0 +2yt

0K̄01y1 +yt
1K̄11y1. For

fixedy1, ẏ0 = −K̄−1
00 K̄01y1 = K01K

−1
11 y1 by (17) of Lemma 15. Thus,

inf
y0

{

ytK−1y
}

= yt
1(K̄11− K̄10K̄

−1
00 K̄01)y1 = yt

1K−1
11 y1

by (19) of Lemma 15.
We contextualize this result in terms of the Tikhonov learning problem with the following corol-

lary.

Corollary 3 Let X be a given set of data points x1, . . . ,xn with x0 a test point. Letκ be a valid
kernel function and V: R

n → R be arbitrary. If ẏ = (ẏ0 ẏ1 · · · ẏn)t is the minimizer of

nλytκ
((

x0

X

)

,

(

x0

X

))−1

y+V(y1, . . . ,yn)

then(ẏ1 · · · ẏn)t minimizes nλytκ(X,X)−1y+V(y) and
ẏ0 = ∑n

i=1ciκ(x0,xi), for c= κ(X,X)−1(ẏ1 · · · ẏn)t .

Thus, when solving fory instead ofc, we can evaluate the function at a test pointx0 by including
the additional point in a larger minimization problem where the test point contributes to the regular-
ization, but not the loss. When taking limits, we are going to work directly with theyi , and we are
going to avoid dealing with the (divergent) limits of theci .

860

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

4. Epi-limits, Convex Functions, and Quadratic Forms

The relationship between the limit of a function and the limit of its minimizer(s) is subtle,and
it is very easy to make incorrect statements. For convex functions there are substantial results
on this subject, which we review; we essentially follow the development of Rockafellar and Wets
(2004, chap. 7). Since the component of our objective which dependson the limiting parameter is a
quadratic form, we will eventually specialize the results to quadratic forms.

Definition 4 (epigraphs) Given a function f: R
n → (−∞,∞], its epigraph, epi f is the subset of

R×R
n given by

epi f = {(z,x) : z≥ f (x)}.

We call f closed, convex, or proper if those statements are true of epi f(proper referring to epi f
being neither/0 nor R

n+1).

The functions we will be interested in are closed, convex, and proper. We will therefore adopt
the abbreviationccp for these conditions. Additionally, since we will be studying parameterized
functions, fs, for 0 < s ass→ 0, we say that such a family of functions iseventuallyconvex (or
closed, or proper) when there exists somes0 > 0 such thatfs is convex (or closed, or proper) for all
0 < s< s0.

We review the definition of liminf and limsup for functions of a single variable.Given h :
(0,∞) → (−∞,∞], it is clear that the functions infs′∈(0,s){h(s′)} and sups′∈(0,s){h(s′)} are non-
increasing and non-decreasing functions of (increasing)s respectively.

Definition 5 For h : (0,∞) → (−∞,∞],

liminf
s→0

h(s) = sup
s>0

{

inf
s′∈(0,s)

{h(s′)}
}

limsup
s→0

h(s) = inf
s>0

{

sup
s′∈(0,s)

{h(s′)}
}

.

As defined, either of the limits may take the value∞. A useful alternate characterization, which is
immediate from the definition, is liminfs→0h(s) = h0 iff ∀ε > 0,∃s0,∀s∈ (0,s0) : h(s)≥ h0−ε, and
limsups→0h(s) = h0 iff ∀ε > 0,∃s0,∀s∈ (0,s0) : h(s) ≤ h0 +ε, where either inequality can be strict
if h0 < ∞.

Definition 6 (epi-limits) We saylims→0 fs = f if for all x0 ∈R
n, both the following properties hold:

Property 1:∀x : [0,∞) → R
n continuous at x(0) = x0 satisfies

liminf
s→0

fs(x(s)) ≥ f (x0) (7)

Property 2:∃x : [0,∞) → R
n continuous at x(0) = x0 satisfying

limsup
s→0

fs(x(s)) ≤ f (x0). (8)

861

L IPPERT ANDRIFKIN

doesn’t exist
exists

Figure 1: (property 1) of Definition 6 says that paths of points within epifs cannot end up below
epi f , while (property 2) says that at least one such path hits every point of epi f .

This notion of functional limit is called an epigraphical limit (or epi-limit). Less formally, (property
1) is the condition that paths of the form(x(s), fs(x(s))) are, asymptotically, inside epif , while
(property 2) asserts the existence of a path which hits the boundary of epi f , as depicted in figure
1. Considering (property 1) with the functionx(s) = x0, it is clear that the epigraphical limit mi-
norizes the pointwise limit (assuming both exist), but the two need not coincide.An example of this
distinction is given by the family of functions

fs(x) =
2
s
x(x−s)+1,

illustrated by Figure 2. The pointwise limit isf0(0) = 1, f0(x) = ∞ for x 6= 0. The epi-limit is 0 at 0.
We say that a quadratic form isfinite if f (x) < ∞ for all x. (We note in passing that if a quadratic

form is not finite, f (x) = ∞ almost everywhere.) The pointwise and epi-limits of quadratic forms
agree when the limiting quadratic form is finite, but the example in the figure is not of that sort. This
behavior is typical of the applications we consider. In what follows, we take all functional limits to
be epi-limits.

It is the epi-limit of functions which is appropriate for optimization theory, as thefollowing
theorem (a variation of one one from Rockafellar and Wets (2004)) shows.

Theorem 7 Let fs : R
n → (−∞,∞] be eventually ccp, withlims→0 fs = f . If fs, f have unique

minimizersẋ(s), ẋ then

lim
s→0

ẋ(s) = ẋ and lim
s→0

fs(ẋ(s)) = inf
x

f (x).

Proof Givenδ > 0, letBδ = {x∈ R
n : f (x) < f (ẋ)+2δ}. Since ˙x is the unique minimizer off and

f is ccp,Bδ is bounded and open, and for any open neighborhoodU of ẋ, ∃δ > 0 : Bδ ⊂ U . Note
thatx∈ ∂Bδ iff f (x) = f (ẋ)+2δ.

Let x̂ : [0,∞) → R satisfy property 2 of definition 6 with ˆx(0) = ẋ. Let s0 > 0 be such that
∀s∈ (0,s0) : fs(x̂(s)) < f (ẋ)+δ andx̂(s) ∈ Bδ. Thus,∀s∈ (0,s0) : infx∈Bδ fs(x) < f (ẋ)+δ.

862

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

 0.5

 1

 0

 0.125

 1

 0

 0

 1

 0.015625

Figure 2: The function above,fs(x) = 2
sx(x−s)+1, has different pointwise and epi-limits, having

values 1 and 0, respectively, atx = 0 and∞ for all otherx.

863

L IPPERT ANDRIFKIN

By property 1 of definition 6,∀x ∈ R
n, liminf s→0 fs(x) ≥ f (x), in particular,∀x ∈ ∂Bδ, ∃s1 ∈

(0,s0),∀s ∈ (0,s1) : fs(x) ≥ f (x)− δ = f (ẋ) + δ. Since∂Bδ is compact, we can chooses1 ∈
(0,s0),∀x∈ ∂Bδ,s∈ (0,s1) : fs(x) ≥ f (ẋ)+δ.

Thus∀x∈ ∂Bδ,s< s1 : fs(x)≥ f (ẋ)+δ > infx∈Bδ fs(x), and therefore ˙x(s)∈Bδ by the convexity
of fs.

Summarizing,∀δ > 0,∃s1 > 0,∀s∈ (0,s1) : ẋ(s) ∈ Bδ. Hence ˙x(s) → ẋ and we have the first
limit.

The second limit is a consequence of the first (lims→0 ẋ(s) = ẋ) and definition 6. In particular,
limsups→0 fs(x̂(s)) ≤ f (ẋ) and f (ẋ) ≤ liminf s→0 fs(ẋ(s)). Since∀s : fs(ẋ(s)) ≤ fs(x̂(s)), we have
limsups→0 fs(ẋ(s)) ≤ f (ẋ) and hencef (ẋ) ≤ liminf s→0 fs(ẋ(s)) ≤ limsups→0 fs(ẋ(s)) ≤ f (ẋ).

We now apply this theorem to characterize limits of quadratic forms (which are becoming infi-
nite in the limit). The following lemma is elementary.

Lemma 8 Let A(s) be a continuous matrix-valued function. If A(0) is non-singular, then A(s)−1

exists for a neighborhood of s= 0.

Lemma 9 Let Z(s) ∈ R
n×n be a continuous matrix valued function defined for s≥ 0 such that

Z(0) = 0 and Z(s) is non-singular for s> 0.

Let M(s) =

(

A(s) B(s)t

B(s) C(s)

)

∈ R
(m+n)×(m+n) be a continuous symmetric matrix valued function

of s such that M(s) is positive semi-definite and C(s) is positive definite for s≥ 0. If

fs(x,y) =

(

x
Z(s)−1y

)t(A(s) B(s)t

B(s) C(s)

)(

x
Z(s)−1y

)

thenlims→0 fs = f , where

f (x,y) =

{

∞ y 6= 0
xt(A(0)−B(0)tC(0)−1B(0))x y= 0

.

Proof Completing the square,

fs(x,y) = ||x||2Ã(s) + ||Z(s)−1y+C(s)−1B(s)x||2C(s)

where||v||2W = vtWv andÃ(s) = A(s)−B(s)tC(s)−1B(s). Note thatÃ(s) is positive semi-definite
and continuous ats= 0.

Let b,c,s0 > 0 be chosen such that∀s< s0

b|| · || > ||B(s) · ||, || · ||C(s) > c|| · ||

(Such quantities arise from the the singular values of the matrices involved, which are continuous
in s). Let z(s) = ||Z(s)|| (matrix 2-norm). Note:z is continuous withz(0) = 0.

Let x(s),y(s) be continuous ats= 0. If y(0) 6= 0, then fors< s0

√

fs(x(s),y(s)) ≥ ||Z(s)−1y(s)+C(s)−1B(s)x(s)||C(s)

≥ ||Z(s)−1y(s)||C(s)−||C(s)−1B(s)x(s)||C(s),

864

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

by the triangle inequality
√

fs(x(s),y(s)) ≥ ||Z(s)−1y(s)||C(s)−||B(s)x(s)||C(s)−1

> c
||y(s)||

z(s)
− b

c
||x(s)||

= c

(||y(s)||
z(s)

− b
c2 ||x(s)||

)

.

By continuity,∃s1 ∈ (0,s0) such that∀s∈ (0,s1),

||x(s)|| < 3
2
||x(0)||, ||y(s)|| > 1

2
||y(0)||, b

c2 ||x(0)|| < ||y(0)||
6z(s)

.

Thus, for alls< s1 :
√

fs(x(s),y(s)) > c||y(0)||
4z(s) , and hence liminfs→0 fs(x(s),y(s)) = ∞, which im-

plies property 1 of definition 6 (and property 2, since liminf≤ limsup). Otherwise (y(0) = 0),
fs(x(s),y(s)) ≥ ||x(s)||2

Ã(s)
and thus

lim
s→0

||x(s)||2Ã(s) ≤ liminf
s→0

f (x(s),y(s))

||x(0)||2Ã(0)
≤ liminf

s→0
f (x(s),y(s))

(property 1). fs(x(s),y(s)) = ||x(s)||2
Ã(s)

wheny(s) = −Z(s)C(s)−1B(s)x(s) (which is continuous
and vanishing ats= 0), and thus

limsup
s→0

f (x(s),y(s)) = lim
s→0

||x(s)||2Ã(s) = ||x(0)||2Ã(0)

(property 2).
The following application of the lemma allows us to deal with matrices which will be of specific

interest to us.

Corollary 10 Let Z1(s) ∈ R
l×l and Z2(s) ∈ R

n×n be continuous matrix valued functions defined for
s≥ 0 such that Zi(0) = 0 and Zi(s) is non-singular for s> 0.

Let M(s) =

A(s) B(s)t C(s)t

B(s) D(s) E(s)t

C(s) E(s) F(s)

∈R
(l+m+n)×(l+m+n) be a continuous symmetric matrix val-

ued function of s such that M(s) is positive semi-definite and F(s) is positive definite for s≥ 0. If

fs(qa,qb,qc) =

Z1(s)qa

qb

Z2(s)−1qc

t

A(s) B(s)t C(s)t

B(s) D(s) E(s)t

C(s) E(s) F(s)

Z1(s)qa

qb

Z2(s)−1qc

thenlims→0 fs = f , where

f (qa,qb,qc) =

{

∞ qc 6= 0
qt

b(D(0)−E(0)tF(0)−1E(0))qb z= 0
.

865

L IPPERT ANDRIFKIN

Proof We apply Lemma 9 to the quadratic form given by

(

qa

qb

)

Z−1
2 qc

t

(

Zt
1AZ1 Zt

1Bt

BZ1 D

) (

Zt
1C

t

Et

)

(CZ1 E) F

(

qa

qb

)

Z−1
2 qc

(sdependence suppressed).
We will have occasion to apply Corollary 10 when some ofqa, qb andqc are empty. In all cases,

the appropriate result can be re-derived under the convention that a quadratic form over a 0 variables
is identically 0.1

5. Kernel Expansions and Regularization Limits

In this section, we present our key result, characterizing the asymptotic behavior of the regulariza-
tion term of Tikhonov regularization. We define a family of quadratic forms onthe polynomials in
x; these forms will turn out to be the limits of the quadratic Tikhonov regularizer.

Definition 11 Let κ(x,x′) = ∑i, j≥0Mi j xIi x′I j , with M symmetric, positive definite. For any p> 0,
define RKp : f → [0,∞] by

Rκ
p(f) =

{

0 f (x) = ∑0≤i≤d⌊p⌋ qixIi

∞ else
, if p /∈ Z

Rκ
p(f) =

qdp−1+1
...

qdp

t

C

qdp−1+1
...

qdp

f (x) = ∑0≤i≤dp

qixIi

∞ else

, if p ∈ Z

where, for p∈ Z, C = (Mbb−MbaM−1
aa Mab)

−1 where Maa and

(

Maa Mab

Mba Mbb

)

are the dp−1×dp−1

and dp×dp upper-left submatrices of K.

The qi in the conditions forf above are arbitary, and hence the conditions are both equivalent to
f ∈ span{xI : |I | ≤ p}. We have written theqi explicitly merely to define the valueRκ

p whenp∈ Z.
Definev(X) = (1 XI1 XI2 · · ·) ∈ R

n×∞. Let v(X) = (vα(X) vβ(X)) be a block decompo-
sition into ann×n block (aVandermondematrix on the data) and ann×∞ block. Because our data
set is generic,vα(X) is non-singular, and the interpolating polynomial through the points(xi ,yi)
over the monomials{xIi : i < n} is given by f (x) = vα(x)vα(X)−1y.

We now state and prove our key result, showing the convergence of the regularization term of
Tikhonov regularization toRκ

p.

Theorem 12 Let X be generic andκ(x,x′) = ∑i, j≥0Mi j xIi x′I j be a valid kernel. Let p∈ [0, |In−1|).
Let fs(y) = s2pytκ(sX,sX)−1y. Then

lim
s→0

fs = f ,

where f(y) = Rκ
p(q), and q(x) = vα(x)q̃ = ∑0≤i<n q̃ixIi andq̃ = vα(X)−1y.

1. This is not a definition. We are merely stating (without proof) thatif we were to go through the proofs omitting some
of qa, qb, andqc, we would obtain the same result.

866

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

Proof Recalling thatvα(X) is non-singular by genericity, defineχ = vα(X)−1vβ(X). Let Σ(s) be the
infinite diagonal matrix valued function ofs whoseith diagonal element iss|Ii |. We define a block

decompositionΣ(s) =

(

Σα(s) 0
0 Σβ(s)

)

whereΣα(s) is n×n. We likewise partitionM into blocks

M =

(

Mαα Mαβ
Mβα Mββ

)

whereMαα is n×n.

Thus,

κ(sX,sX)

= v(X)Σ(s)MΣ(s)v(X)t

= vα(X)(I χ)Σ(s)MΣ(s)

(

I
χt

)

vα(X)t

= vα(X)Σα(s)(I Σα(s)−1χΣβ(s))M

(

I
(Σα(s)−1χΣβ(s))

t

)

Σα(s)vα(X)t

= vα(X)Σα(s)(I χ̃(s))M

(

I
χ̃(s)t

)

Σα(s)vα(X)t

= vα(X)Σα(s)M̃(s)Σα(s)vα(X)t ,

where we have implicitly defined

χ̃(s) ≡ Σα(s)−1χΣβ(s)

M̃(s) ≡ (I χ̃(s))M

(

I
χ̃(s)t

)

.

For 0≤ i < n, 0≤ j < ∞, the i, jth entry of χ̃(s) is s|I j+n|−|Ii |χi j , and |I j+n| − |Ii | ≥ 0. Thus,
lims→0 χ̃(s) exists and we denote itχ̃(0). We note that̃χi j (0) is non-zero if and only if|Ii | = |I j+n|.
In particular,

χ̃i j (0) =

{

χi j d|In|−1 ≤ i < n and 0≤ j < d|In|−n
0 otherwise

Therefore, lims→0M̃(s)= (I χ̃(0))M

(

I
χ̃(0)t

)

exists and is positive definite (since(I χ̃(0))t

is full rank); we denote it byM̃(0). Additionally, since the firstd|In|−1 rows of χ̃(0) (and therefore
the firstd|In|−1 columns ofχ̃(0)t) are identically zero, thed|In|−1×d|In|−1 upper-left submatrices of
M̃(0) andM are equal.

Summarizing,

fs(y) = s2pytκ(sX,sX)−1y

= (vα(X)−1y)t(spΣα(1/s))M̃(s)−1(spΣα(1/s))(vα(X)−1y)

= q̃t(spΣα(1/s))M̃(s)−1(spΣα(1/s))q̃,

whereq̃≡ vα(X)−1y. We will take the limit by applying Corollary 10.
Consider first the situation wherep ∈ Z. The firstdp−1 diagonal entries are of the formsk for

k > 0, the “middle”dp−1−dp entries are exactly 1, and the lastn−dp diagonal entries are of the

867

L IPPERT ANDRIFKIN

form s−k for k > 0, We define three subsets of{0, . . . ,n− 1} (with subvectors and submatrices
defined accordingly):lo = {0, . . . ,dp−1 − 1}, mi = {dp−1, . . . ,dp − 1}, andhi = {dp, . . . ,n− 1}.
(Note it is possible for one oflo or hi to be empty, in (respectively) the cases wherep = 0 or
dp = n.) By Corollary 10, withq1 = q̃lo, q2 = q̃mi, andq3 = q̃hi, Z1(s) = (spΣα(1/s))lo,lo, and
Z−1

2 (S) = (spΣα(1/s))hi,hi, and

A(s) B(s) C(s)
B(s)t D(s) E(s)
C(s)t E(s)t F(s)

=

M̃(s)−1
lo,lo M̃(s)−1

lo,mi M̃(s)−1
lo,hi

M̃(s)−1
mi,lo M̃(s)−1

mi,mi M̃(s)−1
mi,hi

M̃(s)−1
hi,lo M̃(s)−1

hi,mi M̃(s)−1
hi,hi

 .

By Lemma 16

D(0)−E(0)tF(0)−1E(0) = M̃(0)−1
mi,mi− (M̃(0)−1

hi,mi)
t(M̃(0)−1

hi,hi)
−1M̃(0)−1

hi,mi

= (M̃(0)mi,mi− M̃(0)mi,loM̃(0)−1
lo,loM̃(0)lo,mi)

−1

= (Mmi,mi−Mmi,loM−1
lo,loMlo,mi)

−1,

where the final equality is the result of thed|In|−1×d|In|−1 upper-left submatrices of̃M(0) andM are
equal, shown above.

By Corollary 10, we have that lims→0 q̃t(spΣα(1/s))M̃(s)−1(spΣα(1/s))q̃ is ∞ if (hi 6= /0 and)
q̃hi 6= 0. If (hi = /0 or) q̃hi = 0, the limit is:

q̃t
mi(Mmi,mi−Mmi,loM−1

lo,loMlo,mi)
−1q̃mi,

hencefs(y) → Rκ
p(q) for p∈ Z.

When p /∈ Z, the proof proceeds along very similar lines; we merely point out that in this
case, we will takelo = {0, . . . ,d⌊p⌋−1},mi = /0, andhi = {d⌊p⌋, . . . ,n−1}. Sincemi is empty, the
application of Corollary 10 yields 0 when ˜qhi = 0, and∞ otherwise.

The proof assumesp ∈ [0, |In−1|). In other words, we can get polynomial behavior of degree
⌊p⌋ for any p, but we must have at leastd⌊p⌋ = O(d⌊p⌋) generic data points in order to do so.

We have shown that ifλ(s) = s2p for a p in a suitable range, that the regularization term ap-
proaches the indicator function for polynomials of degreep in the data with (whenp∈Z) a residual
regularization on the degreep monomial coefficients which is a quadratic form given by some com-
bination of the coefficients of the power series expansion ofκ(x,x′). Obtaining these coefficients in
general may be awkward. However, for kernels which satisfy Lemma 1, this can be done easily.

Lemma 13 If κ satisfies the conditions of Lemma 1, then for p∈ Z and q(x) = ∑|I |≤p q̃I xI

Rκ
p(q) = (gp(0))−2 ∑

|I |=p

(

|I |
I

)−1

q2
I . (9)

Proof Let L be defined according to the proof of Lemma 1. Lemma 17 applies withG andJ being
the consecutivedp−1×dp−1 and(dp−dp−1)× (dp−dp−1) diagonal blocks ofL. Finally, we note
thatJ is itself a diagonal matrix and hence,(JJt)−1 is diagonal with elements equal to the inverse

squares ofJ’s, i.e. of the form

(

|I |
I

)−1

(g|I |(0))−2 where|I | = p.

Note, the Gaussian kernel is of this sort with(gp(0))2 = 1
p! .

868

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

It is also worth noting that for kernels admitting such a decompositionRκ
p(q) is invariant under

“rotations” of the formq→ q′ whereq(x) = q′(Ux) with U a rotation matrix. Since anyRκ
p(q) = 0

for q of degree< p it is clearly translation invariant. We speculate that any quadratic function ofthe
coefficients of a polynomial which is both translation and rotation invariant in this way must have
of the form (9).

6. The Asymptotic Regularized Solution

By Theorem 12, the regularization term (under certain conditions) becomes a penalty on degree
> p behavior of the regularized solution. Since the loss function is fixed asσ, 1

λ → ∞, the objective
function in (1) approaches a limiting constrained optimization problem.

Theorem 14 Let v: R×R → R be a valid loss function andκ(x,x′) be a valid kernel function. Let
κσ(x,x′) = κ(σ−1x,σ−1x′). Let p∈ [0, |In−1|) with λ(σ) = λ̃σ−2p for some fixed̃λ > 0.

Let ḟσ, ḟ∞ ∈ H be the unique minimizers of

nλ(σ)|| f ||2κσ +
n

∑
i=1

v(f (xi), ŷi) (10)

and

nλ̃Rκ
p(f)+

n

∑
i=1

v(f (xi), ŷi) (11)

respectively.

Then∀x0 ∈ R
d such that X0 =

(

x0

X

)

is generic,

lim
σ→∞

ḟσ(x0) = ḟ∞(x0).

Proof In the value-based learning formulation, problem 10 becomes

nλ(σ)ytK−1
σ y+

n

∑
i=1

v(yi , ŷi) (12)

wherey∈ R
n.

By Corollary 3, if we consider the expanded problem which includes the test point in the regu-
larization but not in the loss,

nλ(σ)zt
(

κ(x0,x0) kt
σ

kσ Kσ

)−1

z+
n

∑
i=1

v(zi , ŷi), (13)

then the minimizers of problems 12 and 13 are related via ˙zσi = ẏσi = ḟσ(xi),1≤ i ≤ n andżσ0 =
kσK−1

σ ẏσ = ḟσ(x0). BecauseX0 is generic, we can make the change of variableszi = q(xi) =

∑n
j=0 β jx

I j
i in (13), yielding

gσ(q) = nλ(σ)||q||2κσ
+

n

∑
i=1

v(q(xi), ŷi) (14)

869

L IPPERT ANDRIFKIN

with minimizerq̇σ satisfyingq̇σ(xi) = żσi (in particularq̇σ(x0) = żσ0 = ḟσ(x0)).
Let g∞(q) = nλ̃Rκ

p(q)+∑n
i=1v(q(xi), ŷi) with minimizerq̇∞. By Theorem 12,gσ → g∞, thus, by

Theorem 7, ˙qσ(x0) → q̇∞(x0) = ḟ∞(x0).
We note that in Theorem 14, we have assumed that problems 10 and 11 haveunique minimizers.

For any fixedσ, || f ||2κσ is strictly convex, so problem 10 will always have a unique minimizer. For
strictly convex loss functions, such as the square loss used in regularized least squares, problem 11
will have a unique minimizer as well. If we consider a non-strictly convex loss function, such as the
hinge loss used in SVMs, problem 11 may not have a unique minimizer; for example, it is easy to see
that in a classification task where the data isseparableby a degreep polynomial, any (appropriately
scaled) degreep polynomial that separates the data will yield an optimal solution to problem 11 with
cost 0. In these cases, Theorem 12 still determines thevalueof the limiting solution, but Theorem
14 does not completely determine the limiting minimizer. Theorem 7.33 of Rockafellarand Wets
(2004) provides a generalization of Theorem 14 which applies when the minimizers are non-unique
(and even when the objective functions are non-convex, as long as certain local convexityconditions
hold). It can be shown that the minimizer of problem 10 will converge to one of the minimizers of
problem 11, though not knowing which one, we cannot predict the limiting regularized solution. In
practice, we expect that when the data is not separable by a low-degreepolynomial (most real-world
data sets are not), problem 11 will have a unique minimizer.

Additionally, we note that our work has focused on “standard” Tikhonov regularization prob-
lems, in which the functionf is “completely” regularized. In practice, the SVM (for reasons that we
view as largely historical, although that is beyond the scope of this paper) isusually implemented
with an unregularized bias termb. We point out that our main result still applies. In this case,

inf
b∈R, f∈H

{

nλ|| f ||κσ +
n

∑
i=1

(1− (f (xi)+b)ŷi)+

}

= inf
b

{

inf
f

{

nλ|| f ||κσ +
n

∑
i=1

(1− (f (xi)+b)ŷi)+

}}

→ inf
b

{

inf
f

{

nλ̃Rκ
p(f)+

n

∑
i=1

(1− (f (xi)+b)ŷi)+

}}

,

with our results applying to the inner optimization problem (whereb is fixed). When an unregu-
larized bias term is used, problem 10 may not have a unique minimizer either. The conditions for
non-uniqueness of 10 for the case of support vector machines are explored in Burges and Crisp
(1999); the conditions are fairly pathological, and SVMs nearly always have unique solutions in
practice. Finally, we note that the limiting problem is one where all polynomials of degree< p are
free, and hence, the bias term is “absorbed” into what is already free inthe limiting problem.

7. Prior Work

We are now in a position to discuss in some detail the previous work on this topic.
In Keerthi and Lin (2003), it was observed that SVMs with Gaussian kernels produce classifiers

which approach those of linear SVMs asσ → ∞ (and 1
2λ = C = C̃σ2 → ∞). The proof is based on

an expansion of the kernel function (Equation 2.8 from Keerthi and Lin (2003)):

κσ(x,x′) = exp(−||x−x′||2/σ2)

870

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

= 1− ||x||2
2σ2 − ||x′||2

2σ2 +
x ·x′
σ2 +o(||x−x′||/σ2)

whereκσ is approximated by the four leading terms in this expansion. This approximation (κσ(x,x′)∼
1−σ−2(||x||2−||x′||2 + 2x · x′)/2) does not satisfy the Mercer condition, so the resulting dual ob-
jective function is not positive definite (remark 3 of Keerthi and Lin (2003)). However, by showing
that the domain of the dual optimization problem is bounded (because of the dual box constraints),
one avoids the unpleasant effects of the Mercer violation. The Keerthi and Lin (2003) result is a
special case of our result, where we choose the Gaussian loss functionandp = 1.

In Lippert and Rifkin (2006), a similar observation was made in the case of Gaussian regularized
least squares. In this case, for any degreep, an asymptotic regime was identified in which the
regularized solution approached the least squares degree-p polynomial. The result hinges upon the
simultaneous cancellation effects between the coefficientsc(σ,λ) and the kernel functionκσ in the
kernel expansion off (x), with f (x) andc(σ,λ) given by

f (x) = ∑
i

ci(σ,λ)κσ(x,xi)

c(σ,λ) = (κσ(X,X)+nλI)−1y

whenκσ(x,x′) = exp(−||x− x′||2/σ2). In that work, we considered onlynon-integer p, so there
was no residual regularization. The present work generalizes the result to arbitraryp and arbitrary
convex loss-functions. Note that in our previous work, we did not workwith the value-based for-
mulation of learning, and we were forced to take the limit of an expression combining training and
testing kernel products, exploiting the explicit nature of the regularized least squares equations. In
the present work, the value-based learning formulation allows us to avoid such issues, obtaining
much more general results.

8. Experimental Evidence

In this section, we present a simple experiment that illustrates our results. This example was first
presented in our earlier work (Lippert and Rifkin, 2006).

We consider the fifth-degree polynomial function

f (x) = .5(1−x)+150x(x− .25)(x− .3)(x− .75)(x− .95),

over the rangex∈ [0,1]. Figure 3 plotsf , along with a 150 point data set drawn by choosingxi

uniformly in [0,1], and choosingy = f (x)+εi , whereεi is a Gaussian random variable with mean 0
and standard deviation .05. Figure 3 also shows (in red) the best polynomial approximations to the
data (not to the idealf) of various orders. (We omit third order because it is nearly indistinguishable
from second order.)

According to Theorem 14, if we parametrize our system by a variables, and solve a Gaussian
regularized least-squares problem withσ2 = s2 andλ = λ̃s−(2p+1) for some integerp, then, ass→∞,
we expect the solution to the system to tend to thepth-order data-based polynomial approximation
to f . Asymptotically, the value of the constantλ̃ does not matter, so we (arbitrarily) set it to be 1.
Figure 4 demonstrates this result.

We note that these experiments frequently require settingλ much smaller than machine-ε. As
a consequence, we need more precision than IEEE double-precision floating-point, and our results

871

L IPPERT ANDRIFKIN

Figure 3: f (x) = .5(1−x)+150x(x− .25)(x− .3)(x− .75)(x− .95), a random data set drawn from
f (x) with added Gaussian noise, and data-based polynomial approximations tof .

cannot be obtained via many standard tools (e.g. MATLAB(TM)). We performed our experiments
using CLISP, an implementation of Common Lisp that includes arithmetic operations on arbitrary-
precision floating point numbers.

9. Discussion

We have shown, under mild technical conditions, that the minimizer of a Tikhonov regularization
problem with a Gaussian kernel with bandwidthσ behaves, asσ → ∞ and λ = λ̃σ−p, like the
degree-p polynomial that minimizes empirical risk (with some additional regularization on the de-
greep coefficients whenp is an integer). Our approach rested on two key ideas, epi-convergence,
which allowed us to make precise statements about when the limits of minimizers converges to the
minimizer of a limit, and value-based learning, which allowed us to work in terms of the predicted
functional values,yi , as opposed to the more common technique of working with the coefficients
ci in a functional expansion of the formf (x) = ∑i ciK(x,xi). This in turn allowed us to avoid dis-
cussing the limits of theci , which we do not know how to characterize.

We arenot suggesting that practicioners wishing to do polynomial approximation use Gaus-
sian kernels with extremeσ,λ values; there is no difficulty in using standard polynomial kernels
directly, and using extremeσ andλ values invites numerical difficulties. However, we think this
result highlights a phenomenon which may mislead automated parameter tuning methods (such as
selectingσ or λ to minimize some hold-out error). In fact, our earlier work (Lippert and Rifkin,
2006), was motivated by experiments in globally optimizing the LOO error in(λ,σ), where, for
some data sets we observed large ranges of decreasingλ and increasingσ which had similar, nearly
optimal performance. Wahba et al. (2001) observed the same phenomenon for the SVM, optimizing

872

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8
0th order solution and successive approximations.

Deg. 0 poly

σ=1.0e1

σ=1.0e2

σ=1.0e3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8
1st order solution and successive approximations.

Deg. 1 poly

σ=1.0e1

σ=1.0e2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8
4th order solution and successive approximations.

Deg. 4 poly

σ=1.0e1

σ=1.0e2

σ=1.0e3

σ=1.0e4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8
5th order solution and successive approximations.

Deg. 5 poly

σ=1.0e3

σ=1.0e4

σ=1.0e5

σ=1.0e6

Figure 4: Ass→ ∞, σ2 = s2 andλ = s−(2k+1), the solution to Gaussian RLS approaches thekth
order polynomial solution.

performance of a Bayesian weighted misclassification score. One can getsome intuition about this
tradeoff between smallerλ and largerσ by considering example 4 of Zhou (2002) where a tradeoff
betweenσ andR is seen for the covering numbers of balls in an RKHS induced by a Gaussian kernel
(Rcan be thought of as roughly1√

λ
).

We think it is interesting that some low-rank approximations to Gaussian kernelmatrix-vector
products (see Yang et al. (2005)) tend to work much better for large values ofσ. Our results raise
the possibility that these low-rank approximations are merely recovering low-order polynomial be-
havior; this will be a topic of future study.

We believe the value-based formulation is of quite general utility, and expectto work with it in
the future. Because of our choice of kernels, we were able to assume that the kernel matrixK was
invertible, and we worked directly withK−1 in the value-based formulation. This is not a strong

873

L IPPERT ANDRIFKIN

requirement; it is possible to work with the pseudoinverse ofK for finite-dimensional kernels (such
as the dot-product kernel).

Acknowledgments

The authors would like to acknowledge Roger Wets and Adrian Lewis for patiently answering
questions regarding epi-convergence. We would also like to thank our reviewers for their comments
and suggestions.

Appendix A

In this appendix, we state and prove several matrix identities that we use in themain body of the
paper.

Lemma 15 Let X,U ∈ R
m×m, Z,W ∈ R

n×n, and Y,V ∈ R
n×m with

(

X Yt

Y Z

)

symmetric, positive

definite. If
(

U Vt

V W

)(

X Yt

Y Z

)

=

(

Im 0
0 In

)

(15)

then

U = (X−YtZ−1Y)−1 (16)

W−1V = −YX−1 (17)

VU−1 = −Z−1Y (18)

W = (Z−YX−1Yt)−1 (19)

Proof Since

(

X Yt

Y Z

)

, is symmetric, positive definite,

(

U Vt

V W

)

is symmetric, positive definite,

as areX,Z,U,W.
Multiplying out (15) in block form,

UX +VtY = Im (20)

VX+WY = 0 (21)

UYt +VtZ = 0 (22)

VYt +WZ = In (23)

SinceU,W,X,Z are non-singular, (21) implies (17) and (22) implies (18). SubstitutingV =−Z−1YU
into (20) yieldsUX −UYtZ−1Y = U(X −YtZ−1Y) = Im and thus (16). Similarly,V = −WYX−1

and (23) give (19).

Lemma 16 Let

M =

A Bt Ct

B D Et

C E F

874

INFINITE-σ L IMITS FOR TIKHONOV REGULARIZATION

be symmetric positive definite. Let

M−1 =

Ā B̄t C̄t

B̄ D̄ Ēt

C̄ Ē F̄

 .

ThenD̄− Ēt F̄−1Ē = (D−BA−1Bt)−1.

Proof By (16) of Lemma 15, onM with U =

(

A Bt

B D

)

,

(

A Bt

B D

)−1

=

(

Ā B̄t

B̄ D̄

)

−
(

C̄t

Ēt

)

F̄−1(C̄ Ē) .

By (19) of Lemma 15, on

(

A Bt

B D

)

,

(

A Bt

B D

)−1

=

(

· · · · · ·
· · · (D−BA−1Bt)−1

)

.

Combining the lower-right blocks of the above two expansions yields the result.

Lemma 17 If

M =

A Bt Ct

B D Et

C E F

=

G 0 0
H J 0
K N P

G 0 0
H J 0
K N P

t

.

is symmetric positive definite, then JJt = D−BA−1Bt .

Proof Clearly

(

A Bt

B D

)

=

(

G 0
H J

)(

G 0
H J

)t

and thus

A = GGt , B = HGt , D = JJt +HHt

and henceJJt = D−HHt = D−BG−tG−1Bt = D−B(GGt)−1Bt = D−BA−1Bt .

References

N. Aronszajn. Theory of reproducing kernels.Trans. Amer. Math. Soc., 68:337–404, 1950.

C. J. C. Burges and D. J. Crisp. Uniqueness of the svm solution. InNeural Information Processing
Systems, 1999.

Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization networks and sup-
port vector machines.Adv. In Comp. Math., 13(1):1–50, 2000.

Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory and neural networks
architectures.Neural Computation, 7(2):219–269, 1995.

875

L IPPERT ANDRIFKIN

S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support vector machines with Gaus-
sian kernel.Neural Computation, 15(7):1667–1689, 2003.

Ross A. Lippert and Ryan M. Rifkin. Asymptotics of gaussian regularizedleast squares. In Y. Weiss,
B. Scḧolkopf, and J. Platt, editors,Adv. in Neural Info. Proc. Sys. 18. MIT Press, Cambridge, MA,
2006.

R. Tyrrell Rockafellar and Roger J. B. Wets.Variational Analysis. Springer, Berlin, 2004.

Bernhard Scḧolkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theorem. In14th
Annual Conference on Computational Learning Theory, pages 416–426, 2001.

Grace Wahba.Spline Models for Observational Data, volume 59 ofCBMS-NSF Regional Confer-
ence Series in Applied Mathematics. Soc. for Industrial & Appl. Math., 1990.

Grace Wahba, Yi Lin, Yoonkyung Lee, and Hao Zhang. On the relation between the GACV
and Joachims’ξα method for tuning support vector machines, with extensions to the non-
standard case. Technical Report 1039, U. Wisconsin department of Statistics, 2001. URL
citeseer.ist.psu.edu/wahba01relation.html.

Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines using the im-
proved fast gauss transform. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,Ad-
vances in Neural Information Processing Systems 17, pages 1561–1568, Cambridge, MA, 2005.
MIT Press.

D.-X. Zhou. The covering number in learning theory.J. of Complexity, 18:739–767, 2002.

876

Journal of Machine Learning Research 7 (2006) 877-917 Submitted 6/05; Revised 12/05; Published 5/06

Evolutionary Function Approximation
for Reinforcement Learning

Shimon Whiteson SHIMON@CS.UTEXAS.EDU

Peter Stone PSTONE@CS.UTEXAS.EDU

Department of Computer Sciences
University of Texas at Austin
1 University Station, C0500
Austin, TX 78712-0233

Editor: Georgios Theocharous

Abstract

Temporal difference methods are theoretically grounded and empirically effective methods for ad-
dressing reinforcement learning problems. In most real-world reinforcement learning tasks, TD
methods require a function approximator to represent the value function. However, using function
approximators requires manually making crucial representational decisions. This paper investi-
gatesevolutionary function approximation, a novel approach to automatically selecting function
approximator representations that enable efficient individual learning. This methodevolvesindi-
viduals that are better able tolearn. We present a fully implemented instantiation of evolutionary
function approximation which combines NEAT, a neuroevolutionary optimization technique, with
Q-learning, a popular TD method. The resulting NEAT+Q algorithm automatically discovers ef-
fective representations for neural network function approximators. This paper also presentson-line
evolutionary computation, which improves the on-line performance of evolutionary computation
by borrowing selection mechanisms used in TD methods to choose individual actions and using
them in evolutionary computation to select policies for evaluation. We evaluate these contributions
with extended empirical studies in two domains: 1) the mountain car task, a standard reinforcement
learning benchmark on which neural network function approximators have previously performed
poorly and 2) server job scheduling, a large probabilistic domain drawn from the field of autonomic
computing. The results demonstrate that evolutionary function approximation can significantly im-
prove the performance of TD methods and on-line evolutionary computation can significantly im-
prove evolutionary methods. This paper also presents additional tests that offer insight into what
factors can make neural network function approximation difficult in practice.

Keywords: reinforcement learning, temporal difference methods, evolutionary computation, neu-
roevolution, on-line learning

1. Introduction

In many machine learning problems, an agent must learn apolicy for selecting actions based on its
currentstate. Reinforcement learningproblems are the subset of these tasks in which the agent never
sees examples of correct behavior. Instead, it receives only positive and negative rewards for the
actions it tries. Since many practical, real world problems (such as robot control, game playing, and
system optimization) fall in this category, developing effective reinforcement learning algorithms is
critical to the progress of artificial intelligence.

c©2006 Shimon Whiteson and Peter Stone.

WHITESON AND STONE

The most common approach to reinforcement learning relies on the conceptof value functions,
which indicate, for a particular policy, the long-term value of a given state or state-action pair.Tem-
poral difference methods(TD) (Sutton, 1988), which combine principles of dynamic programming
with statistical sampling, use the immediate rewards received by the agent to incrementally improve
both the agent’s policy and the estimated value function for that policy. Hence, TD methods en-
able an agent to learn during its “lifetime” i.e. from its individual experience interacting with the
environment.

For small problems, the value function can be represented as a table. However, the large, proba-
bilistic domains which arise in the real-world usually require coupling TD methodswith a function
approximator, which represents the mapping from state-action pairs to values via a more concise,
parameterized function and uses supervised learning methods to set its parameters. Many different
methods of function approximation have been used successfully, including CMACs, radial basis
functions, and neural networks (Sutton and Barto, 1998). However,using function approxima-
tors requires making crucial representational decisions (e.g. the numberof hidden units and ini-
tial weights of a neural network). Poor design choices can result in estimates that diverge from
the optimal value function (Baird, 1995) and agents that perform poorly.Even for reinforcement
learning algorithms with guaranteed convergence (Baird and Moore, 1999; Lagoudakis and Parr,
2003), achieving high performance in practice requires finding an appropriate representation for the
function approximator. As Lagoudakis and Parr observe, “The crucial factor for a successful ap-
proximate algorithm is the choice of the parametric approximation architecture(s) and the choice of
the projection (parameter adjustment) method.” (Lagoudakis and Parr, 2003, p. 1111) Nonetheless,
representational choices are typically made manually, based only on the designer’s intuition.

Our goal is to automate the search for effective representations by employing sophisticated op-
timization techniques. In this paper, we focus on using evolutionary methods (Goldberg, 1989)
because of their demonstrated ability to discover effective representations (Gruau et al., 1996; Stan-
ley and Miikkulainen, 2002). Synthesizing evolutionary and TD methods results in a new approach
calledevolutionary function approximation, which automatically selects function approximator rep-
resentations that enable efficient individual learning. Thus, this methodevolvesindividuals that are
better able tolearn. This biologically intuitive combination has been applied to computational sys-
tems in the past (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Boers et al., 1995; French
and Messinger, 1994; Gruau and Whitley, 1993; Nolfi et al., 1994) but never, to our knowledge, to
aid the discovery of good TD function approximators.

Our approach requires only 1) an evolutionary algorithm capable of optimizing representations
from a class of functions and 2) a TD method that uses elements of that classfor function ap-
proximation. This paper focuses on performing evolutionary function approximation with neural
networks. There are several reasons for this choice. First, they have great experimental value. Non-
linear function approximators are often the most challenging to use; hence,success for evolutionary
function approximation with neural networks is good reason to hope for success with linear methods
too. Second, neural networks have great potential, since they can represent value functions linear
methods cannot (given the same basis functions). Finally, employing neural networks is feasible
because they have previously succeeded as TD function approximators(Crites and Barto, 1998;
Tesauro, 1994) and sophisticated methods for optimizing their representations (Gruau et al., 1996;
Stanley and Miikkulainen, 2002) already exist.

This paper uses NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen,
2002) to select neural network function approximators for Q-learning (Watkins, 1989), a popular

878

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

TD method. The resulting algorithm, called NEAT+Q, uses NEAT to evolve topologies and initial
weights of neural networks that are better able to learn, via backpropagation, to represent the value
estimates provided by Q-learning.

Evolutionary computation is typically applied tooff-line scenarios, where the only goal is to
discover a good policy as quickly as possible. By contrast, TD methods aretypically applied toon-
line scenarios, in which the agent tries to learn a good policy quicklyand to maximize the reward it
obtains while doing so. Hence, for evolutionary function approximation to achieve its full potential,
the underlying evolutionary method needs to work well on-line.

TD methods excel on-line because they are typically combined with action selection mecha-
nisms likeε-greedy and softmax selection (Sutton and Barto, 1998). These mechanisms improve
on-line performance by explicitly balancing two competing objectives: 1) searching for better poli-
cies (exploration) and 2) gathering as much reward as possible (exploitation). This paper investi-
gates a novel approach we callon-line evolutionary computation, in which selection mechanisms
commonly used by TD methods to choose individual actions are used in evolutionary computation
to choose policies for evaluation. We present two implementations, based onε-greedy and softmax
selection, that distribute evaluations within a generation so as to favor more promising individu-
als. Since on-line evolutionary computation can be used in conjunction with evolutionary function
approximation, the ability to optimize representations need not come at the expense of the on-line
aspects of TD methods. On the contrary, the value function and its representation can be optimized
simultaneously, all while the agent interacts with its environment.

We evaluate these contributions with extended empirical studies in two domains: 1) mountain
car and 2) server job scheduling. The mountain car task (Sutton and Barto, 1998) is a canonical
reinforcement learning benchmark domain that requires function approximation. Though the task
is simple, previous researchers have noted that manually designed neural network function approxi-
mators are often unable to master it (Boyan and Moore, 1995; Pyeatt and Howe, 2001). Hence, this
domain is ideal for a preliminary evaluation of NEAT+Q.

Server job scheduling (Whiteson and Stone, 2004), is a large, probabilistic reinforcement learn-
ing task from the field ofautonomic computing(Kephart and Chess, 2003). In server job scheduling,
a server, such as a website’s application server or database, must determine in what order to process
a queue of waiting jobs so as to maximize the system’s aggregate utility. This domain ischallenging
because it is large (the size of both the state and action spaces grow in direct proportion to the size of
the queue) and probabilistic (the server does not know what type of job will arrive next). Hence, it
is a typical example of a reinforcement learning task that requires effective function approximation.

Using these domains, our experiments test Q-learning with a series of manuallydesigned neu-
ral networks and compare the results to NEAT+Q and regular NEAT (whichtrains action selectors
in lieu of value functions). The results demonstrate that evolutionary function approximation can
significantly improve the performance of TD methods. Furthermore, we test NEAT and NEAT+Q
with and withoutε-greedy and softmax versions of evolutionary computation. These experiments
confirm that such techniques can significantly improve the on-line performance of evolutionary
computation. Finally, we present additional tests that measure the effect ofcontinual learning on
function approximators. The results offer insight into why certain methods outperform others in
these domains and what factors can make neural network function approximation difficult in prac-
tice.

We view the impact of this work as two-fold. First, it provides a much-neededpractical approach
to selecting TD function approximators, automating a critical design step that is typically performed

879

WHITESON AND STONE

manually. Second, it provides an objective analysis of the strengths and weaknesses of evolutionary
and TD methods, opportunistically combining the strengths into a single approach. Though the TD
and evolutionary communities are mostly disjoint and focus on somewhat different problems, we
find that each can benefit from the progress of the other. On the one hand, we show that methods for
evolving neural network topologies can find TD function approximators that perform better. On the
other hand, we show that established techniques from the TD community can make evolutionary
methods applicable to on-line learning problems.

The remainder of this paper is organized as follows. Section 2 provides background on Q-
learning and NEAT, the constituent learning methods used in this paper. Section 3 introduces the
novel methods and details the particular implementations we tested. Section 4 describes the moun-
tain car and server job scheduling domains and Section 5 presents and discusses empirical results.
Section 7 overviews related work, Section 8 outlines opportunities for future work, and Section 9
concludes.

2. Background

We begin by reviewing Q-learning and NEAT, the algorithms that form the building blocks of our
implementations of evolutionary function approximation.

2.1 Q-Learning

There are several different TD methods currently in use, including Q-learning (Watkins, 1989),
Sarsa (Sutton and Barto, 1998), and LSPI (Lagoudakis and Parr, 2003). The experiments presented
in this paper use Q-learning because it is a well-established, canonical method that has also enjoyed
empirical success, particularly when combined with neural network function approximators (Crites
and Barto, 1998). We present it as a representative method but do notclaim it is superior to other TD
approaches. In principle, evolutionary function approximation can be used with any of them. For
example, many of the experiments described in Section 5 have been replicatedwith Sarsa (Sutton
and Barto, 1998), another popular TD method, in place of Q-learning, yielding qualitatively similar
results.

Like many other TD methods, Q-learning attempts to learn a value functionQ(s,a) that maps
state-action pairs to values. In the tabular case, the algorithm is defined by the following update
rule, applied each time the agent transitions from states to states′:

Q(s,a)← (1−α)Q(s,a)+α(r + γmaxa′Q(s′,a′))

whereα ∈ [0,1] is a learning rate parameter,γ ∈ [0,1] is a discount factor, andr is the immediate
reward the agent receives upon taking actiona.

Algorithm 1 describes the Q-learning algorithm when a neural network is used to approximate
the value function. The inputs to the network describe the agent’s currentstate; the outputs, one
for each action, represent the agent’s current estimate of the value of the associated state-action
pairs. The initial weights of the network are drawn from a Gaussian distribution with mean 0.0 and
standard deviationσ (line 5). TheEVAL -NET function (line 9) returns the activation on the network’s
outputs after the given inputs are fed to the network and propagated forward. Since the network uses
a sigmoid activation function, these values will all be in[0,1] and hence are rescaled according to
a parameterk. At each step, the weights of the neural network are adjusted (line 13) such that its

880

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

output better matches the current value estimate for the state-action pair:r + γmaxa′Q(s′,a′). The
adjustments are made via theBACKPROPfunction, which implements the standard backpropagation
algorithm (Rumelhart et al., 1986) with the addition of accumulating eligibility tracescontrolled by
λ (Sutton and Barto, 1998). The agent usesε-greedy selection (Sutton and Barto, 1998) to ensure
it occasionally tests alternatives to its current policy (lines 10–11). The agent interacts with the
environment via theTAKE-ACTION function (line 15), which returns a reward and a new state.

Algorithm 1 Q-LEARN(S,A,σ,c,α,γ,λ,εtd,e)
1: // S: set of all states, A: set of all actions,σ: standard deviation of initial weights
2: // c: output scale,α: learning rate,γ: discount factor,λ: eligibility decay rate
3: // εtd: exploration rate, e: total number of episodes
4:

5: N← INIT-NET(S,A,σ) // make a new network N with random weights
6: for i← 1 toedo
7: s,s′← null, INIT-STATE(S) // environment picks episode’s initial state
8: repeat
9: Q[] ← c×EVAL -NET(N,s′) // compute value estimates for current state

10: with-prob (εtd) a′← RANDOM(A) // select random exploratory action
11: elsea′← argmaxjQ[j] // or select greedy action
12: if s 6= null then
13: BACKPROP(N,s,a,(r + γmaxjQ[j])/c,α,γ,λ) // adjust weights toward target
14: s,a← s′,a′

15: r,s′← TAKE-ACTION(a′) // take action and transition to new state
16: until TERMINAL -STATE?(s)

2.2 NEAT1

The implementation of evolutionary function approximation presented in this paper relies on Neu-
roEvolution of Augmenting Topologies (NEAT) to automate the search for appropriate topologies
and initial weights of neural network function approximators. NEAT is an appropriate choice be-
cause of its empirical successes on difficult reinforcement learning tasks like non-Markovian double
pole balancing (Stanley and Miikkulainen, 2002), game playing (Stanley andMiikkulainen, 2004b),
and robot control (Stanley and Miikkulainen, 2004a), and because ofits ability to automatically op-
timize network topologies.

In a typical neuroevolutionary system (Yao, 1999), the weights of a neural network are strung
together to form an individual genome. A population of such genomes is thenevolved by evaluating
each one and selectively reproducing the fittest individuals through crossover and mutation. Most
neuroevolutionary systems require the designer to manually determine the network’s topology (i.e.
how many hidden nodes there are and how they are connected). By contrast, NEAT automatically
evolves the topology to fit the complexity of the problem. It combines the usual search for network
weights with evolution of the network structure.

NEAT is an optimization technique that can be applied to a wide variety of problems. Section 3
below describes how we use NEAT to optimize the topology and initial weights of TD function

1. This section is adapted from the original NEAT paper (Stanley and Miikkulainen, 2002).

881

WHITESON AND STONE

approximators. Here, we describe how NEAT can be used to tackle reinforcement learning problems
without the aid of TD methods, an approach that serves as one baseline ofcomparison in Section 5.
For this method, NEAT does not attempt to learn a value function. Instead, it finds good policies
directly by trainingaction selectors, which map states to the action the agent should take in that
state. Hence it is an example ofpolicy searchreinforcement learning. Like other policy search
methods, e.g. (Sutton et al., 2000; Ng and Jordan, 2000; Mannor et al., 2003; Kohl and Stone,
2004), it uses global optimization techniques to directly search the space ofpotential policies.

Algorithm 2 NEAT(S,A, p,mn,ml ,g,e)
1: // S: set of all states, A: set of all actions, p: population size, mn: node mutation rate
2: // ml : link mutation rate, g: number of generations, e: episodes per generation
3:

4: P[]← INIT-POPULATION(S,A, p) // create new population P with random networks
5: for i← 1 tog do
6: for j ← 1 toedo
7: N,s,s′← RANDOM(P[]), null, INIT-STATE(S) // select a network randomly
8: repeat
9: Q[] ← EVAL -NET(N,s′) // evaluate selected network on current state

10: a′← argmaxiQ[i] // select action with highest activation
11: s,a← s′,a′

12: r,s′← TAKE-ACTION(a′) // take action and transition to new state
13: N. f itness← N. f itness+ r // update total reward accrued by N
14: until TERMINAL -STATE?(s)
15: N.episodes← N.episodes+1 // update total number of episodes for N
16: P′[]← new array of sizep // new array will store next generation
17: for j ← 1 to p do
18: P′[j]← BREED-NET(P[]) // make a new network based on fit parents in P
19: with-probability mn: ADD-NODE-MUTATION (P′[j]) // add a node to new network
20: with-probability ml : ADD-LINK -MUTATION (P′[j]) // add a link to new network
21: P[]← P′[]

Algorithm 2 contains a high-level description of the NEAT algorithm applied to an episodic
reinforcement learning problem. This implementation differs slightly from previous versions of
NEAT in that evaluations are conducted by randomly selecting individuals (line 7), instead of the
more typical approach of stepping through the population in a fixed order.This change does not
significantly alter NEAT’s behavior but facilitates the alterations we introduce inSection 3.2. During
each step, the agent takes whatever action corresponds to the output withthe highest activation (lines
10–12). NEAT maintains a running total of the reward accrued by the network during its evaluation
(line 13). Each generation ends aftere episodes, at which point each network’s average fitness is
N. f itness/N.episodes. In stochastic domains,e typically must be much larger than|P| to ensure
accurate fitness estimates for each network. NEAT creates a new population by repeatedly calling
the BREED-NET function (line 18), which performs crossover on two highly fit parents. The new
resulting network can then undergo mutations that add nodes or links to its structure. (lines 19–20).
The remainder of this section provides an overview of the reproductive process that occurs in lines
17–20. Stanley and Miikkulainen (2002) present a full description.

882

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

2.2.1 MINIMIZING DIMENSIONALITY

Unlike other systems that evolve network topologies and weights (Gruau et al., 1996; Yao, 1999)
NEAT begins with a uniform population of simple networks with no hidden nodes and inputs con-
nected directly to outputs. New structure is introduced incrementally via two special mutation
operators. Figure 1 depicts these operators, which add new hidden nodes and links to the network.
Only the structural mutations that yield performance advantages tend to survive evolution’s selec-
tive pressure. In this way, NEAT tends to search through a minimal number of weight dimensions
and find an appropriate complexity level for the problem.

Inputs

Nodes
Hidden

Outputs

����������������������������

Mutation

Add Node

Inputs

Nodes
Hidden

Outputs

Mutation

Add Link

(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Figure 1: Examples of NEAT’s mutation operators for adding structure to networks. In (a), a hidden
node is added by splitting a link in two. In (b), a link, shown with a thicker black line, is
added to connect two nodes.

2.2.2 GENETIC ENCODING WITH HISTORICAL MARKINGS

Evolving network structure requires a flexible genetic encoding. Each genome in NEAT includes
a list of connection genes, each of which refers to twonode genesbeing connected. Each con-
nection gene specifies the in-node, the out-node, the weight of the connection, whether or not the
connection gene is expressed (an enable bit), and aninnovation number, which allows NEAT to find
corresponding genes during crossover.

In order to perform crossover, the system must be able to tell which genes match up betweenany
individuals in the population. For this purpose, NEAT keeps track of the historical origin of every
gene. Whenever a new gene appears (through structural mutation), aglobal innovation numberis
incremented and assigned to that gene. The innovation numbers thus represent a chronology of
every gene in the system. Whenever these genomes crossover, innovation numbers on inherited
genes are preserved. Thus, the historical origin of every gene in the system is known throughout
evolution.

Through innovation numbers, the system knows exactly which genes match up with which.
Genes that do not match are eitherdisjoint or excess, depending on whether they occur within or
outside the range of the other parent’s innovation numbers. When crossing over, the genes in both
genomes with the same innovation numbers are lined up. Genes that do not matchare inherited
from the more fit parent, or if they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover without expensivetopological analysis.
Genomes of different organizations and sizes stay compatible throughoutevolution, and the problem
of matching different topologies (Radcliffe, 1993) is essentially avoided.

883

WHITESON AND STONE

2.2.3 SPECIATION

In most cases, adding new structure to a network initially reduces its fitness.However, NEAT
speciates the population, so that individuals compete primarily within their own niches rather than
with the population at large. Hence, topological innovations are protected and have time to optimize
their structure before competing with other niches in the population.

Historical markings make it possible for the system to divide the population into species based
on topological similarity. The distanceδ between two network encodings is a simple linear combi-
nation of the number of excess (E) and disjoint (D) genes, as well as the average weight differences
of matching genes (W):

δ =
c1E
N

+
c2D
N

+c3 ·W

The coefficientsc1, c2, andc3 adjust the importance of the three factors, and the factorN, the number
of genes in the larger genome, normalizes for genome size. Genomes are tested one at a time; if
a genome’s distance to a randomly chosen member of the species is less thanδt , a compatibility
threshold, it is placed into this species. Each genome is placed into the first species where this
condition is satisfied, so that no genome is in more than one species.

The reproduction mechanism for NEAT isexplicit fitness sharing(Goldberg and Richardson,
1987), where organisms in the same species must share the fitness of their niche, preventing any
one species from taking over the population.

3. Method

This section describes evolutionary function approximation and a complete implementation called
NEAT+Q. It also describes on-line evolutionary computation and details two ways of implementing
it in NEAT+Q.

3.1 Evolutionary Function Approximation

When evolutionary methods are applied to reinforcement learning problems,they typically evolve a
population of action selectors, each of which remains fixed during its fitnessevaluation. The central
insight behind evolutionary function approximation is that, if evolution is directed to evolve value
functions instead, then those value functions can be updated, using TD methods, during each fitness
evaluation. In this way, the system canevolvefunction approximators that are better able tolearn
via TD.

In addition to automating the search for effective representations, evolutionary function approx-
imation can enable synergistic effects between evolution and learning. How these effects occur
depends on which of two possible approaches is employed. The first possibility is a Lamarckian
approach, in which the changes made by TD during a given generation are written back into the
original genomes, which are then used to breed a new population. The second possibility is aDar-
winian implementation, in which the changes made by TD are discarded and the new population is
bred from the original genomes, as they were at birth.

It has long since been determined that biological systems are Darwinian, not Lamarckian. How-
ever, it remains unclear which approach is better computationally, despite substantial research (Pereira
and Costa, 2001; D. Whitley, 1994; Yamasaki and Sekiguchi, 2000). The potential advantage of
Lamarckian evolution is obvious: it prevents each generation from havingto repeat the same learn-

884

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

ing. However, Darwinian evolution can be advantageous because it enables each generation to
reproduce the genomes that led to success in the previous generation, rather than relying on altered
versions that may not thrive under continued alteration. Furthermore, in aDarwinian system, the
learning conducted by previous generations can be indirectly recordedin a population’s genomes
via a phenomenon called theBaldwin Effect(Baldwin, 1896), which has been demonstrated in evo-
lutionary computation (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Boers et al., 1995;
Arita and Suzuki, 2000). The Baldwin Effect occurs in two stages. In thefirst stage, the learning
performed by individuals during their lifetimes speeds evolution, because each individual does not
have to be exactly right at birth; it need only be in the right neighborhood and learning can adjust
it accordingly. In the second stage, those behaviors that were previously learned during individu-
als’ lifetimes become known at birth. This stage occurs because individuals that possess adaptive
behaviors at birth have higher overall fitness and are favored by evolution.

Hence, synergistic effects between evolution and learning are possible regardless of which im-
plementation is used. In Section 5, we compare the two approaches empirically.The remainder of
this section details NEAT+Q, the implementation of evolutionary function approximation used in
our experiments.

3.1.1 NEAT+Q

All that is required to make NEAT optimize value functions instead of action selectors is a rein-
terpretation of its output values. The structure of neural network action selectors (one input for
each state feature and one output for each action) is already identical to that of Q-learning function
approximators. Therefore, if the weights of the networks NEAT evolves are updated during their
fitness evaluations using Q-learning and backpropagation, they will effectively evolve value func-
tions instead of action selectors. Hence, the outputs are no longer arbitrary values; they represent
the long-term discounted values of the associated state-action pairs and are used, not just to select
the most desirable action, but to update the estimates of other state-action pairs.

Algorithm 3 summarizes the resulting NEAT+Q method. Note that this algorithm is identical to
Algorithm 2, except for the delineated section containing lines 13–16. Eachtime the agent takes an
action, the network is backpropagated towards Q-learning targets (line 16) andε-greedy selection
occurs just as in Algorithm 1 (lines 13–14). Ifα andεtd are set to zero, this method degenerates to
regular NEAT.

NEAT+Q combines the power of TD methods with the ability of NEAT to learn effective rep-
resentations. Traditional neural network function approximators put alltheir eggs in one basket by
relying on a single manually designed network to represent the value function. NEAT+Q, by con-
trast, explores the space of such networks to increase the chance of finding a representation that will
perform well.

In NEAT+Q, the weight changes caused by backpropagation accumulatein the current popula-
tion’s networks throughout each generation. When a network is selectedfor an episode, its weights
begin exactly as they were at the end of its last episode. In the Lamarckian approach, those changes
are copied back into the networks’ genomes and inherited by their offspring. In the Darwinian
approach, those changes are discarded at the end of each generation.

885

WHITESON AND STONE

Algorithm 3 NEAT+Q(S,A,c, p,mn,ml ,g,e,α,γ,λ,εtd)
1: // S: set of all states, A: set of all actions, c: output scale, p: populationsize
2: // mn: node mutation rate, ml : link mutation rate, g: number of generations
3: // e: number of episodes per generation,α: learning rate,γ: discount factor
4: // λ: eligibility decay rate,εtd: exploration rate
5:

6: P[]← INIT-POPULATION(S,A, p) // create new population P with random networks
7: for i← 1 tog do
8: for j ← 1 toedo
9: N,s,s′← RANDOM(P[]), null, INIT-STATE(S) // select a network randomly

10: repeat
11: Q[] ← c× EVAL -NET(N,s′) // compute value estimates for current state
12:

13: with-prob (εtd) a′← RANDOM(A) // select random exploratory action
14: elsea′← argmaxkQ[k] // or select greedy action
15: if s 6= null then
16: BACKPROP(N,s,a,(r + γmaxkQ[k])/c,α,γ,λ) // adjust weights toward target
17:

18: s,a← s′,a′

19: r,s′← TAKE-ACTION(a′) // take action and transition to new state
20: N. f itness← N. f itness+ r // update total reward accrued by N
21: until TERMINAL -STATE?(s)
22: N.episodes← N.episodes+1 // update total number of episodes for N
23: P′[]← new array of sizep // new array will store next generation
24: for j ← 1 to p do
25: P′[j]← BREED-NET(P[]) // make a new network based on fit parents in P
26: with-probability mn: ADD-NODE-MUTATION (P′[j]) // add a node to new network
27: with-probability ml : ADD-LINK -MUTATION (P′[j]) // add a link to new network
28: P[]← P′[]

886

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

3.2 On-Line Evolutionary Computation

To excel in on-line scenarios, a learning algorithm must effectively balance two competing objec-
tives. The first objective is exploration, in which the agent tries alternatives to its current best policy
in the hopes of improving it. The second objective is exploitation, in which the agent follows the
current best policy in order to maximize the reward it receives. TD methods excel at on-line tasks
because they are typically combined with action selection mechanisms that achieve this balance (e.g
ε-greedy and softmax selection).

Evolutionary methods, though lacking explicit selection mechanisms, do implicitly perform this
balance. In fact, in one of the earliest works on evolutionary computation,Holland (1975) argues
that the reproduction mechanism encourages exploration, since crossover and mutation result in
novel genomes, but also encourages exploitation, since each new generation is based on the fittest
members of the last one. However, reproduction allows evolutionary methodsto balance exploration
and exploitation onlyacrossgenerations, notwithin them. Once the members of each generation
have been determined, they all typically receive the same evaluation time, evenif some individuals
dramatically outperform others in early episodes. Hence, within a generation, a typical evolutionary
method is purely exploratory, as it makes no effort to favor those individuals that have performed
well so far.

Therefore, to excel on-line, evolutionary methods need a way to limit the exploration that occurs
within each generation and force more exploitation. In a sense, this problemis the opposite of that
faced by TD methods, which naturally exploit (by following the greedy policy) and thus need a way
to force more exploration. Nonetheless, the ultimate goal is the same: a properbalance between the
two extremes. Hence, we propose that the solution can be the same too. In thissection, we discuss
ways of borrowing the action selection mechanisms traditionally used in TD methods and applying
them in evolutionary computation.

To do so, we must modify the level at which selection is performed. Evolutionary algorithms
cannot perform selection at the level of individual actions because, lacking value functions, they
have no notion of the value of individual actions. However, they can perform selection at the level
of evaluations, in which entire policies are assessed holistically. The same selection mechanisms
used to choose individual actions in TD methods can be used to select policies for evaluation, an
approach we call on-line evolutionary computation. Using this technique, evolutionary algorithms
can excel on-line by balancing exploration and exploitation withinandacross generations.

The remainder of this section presents two implementations. The first, which relies onε-greedy
selection, switches probabilistically between searching for better policies and re-evaluating the best
known policy to garner maximal reward. The second, which relies on softmax selection, dis-
tributes evaluations in proportion to each individual’s estimated fitness, thereby focusing on the
most promising individuals and increasing the average reward accrued.

3.2.1 USING ε-GREEDY SELECTION IN EVOLUTIONARY COMPUTATION

Whenε-greedy selection is used in TD methods, a single parameter,εtd, is used to control what
fraction of the time the agent deviates from greedy behavior. Each time the agent selects an action, it
chooses probabilistically between exploration and exploitation. With probabilityεtd, it will explore
by selecting randomly from the available actions. With probability 1−εtd, it will exploit by selecting
the greedy action.

887

WHITESON AND STONE

In evolutionary computation, this same mechanism can be used to determine whichpolicies to
evaluate within each generation. With probabilityεec, the algorithm explores by behaving exactly
as it would normally: selecting a policy for evaluation, either randomly or by iterating through the
population. With probability 1− εec, the algorithm exploits by selecting the best policy discovered
so far in the current generation. The score of each policy is just the average reward per episode
it has received so far. Each time a policy is selected for evaluation, the totalreward it receives is
incorporated into that average, which can cause it to gain or lose the rankof best policy.

To applyε-greedy selection to NEAT and NEAT+Q, we need only alter the assignment of the
candidate policyN in lines 7 and 9 of Algorithms 2 and 3, respectively. Instead of a random
selection, we use the result of theε-greedy selection function described in Algorithm 4, where
N.average= N. f itness/N.episodes. In the case of NEAT+Q, two differentε parameters control
exploration throughout the system:εtd controls the exploration that helps Q-learning estimate the
value function andεec controls exploration that helps NEAT discover appropriate topologies and
initial weights for the neural network function approximators.

Algorithm 4 ε-GREEDY SELECTION(P,εec)
1: // P: population,εec: NEAT’s exploration rate
2:

3: with-prob (εec) returnRANDOM(P) // select random network
4: elsereturnN ∈ P | ∀(N′ ∈ P)N.average≥ N′.average // or select champion

Using ε-greedy selection in evolutionary computation allows it to thrive in on-line scenarios
by balancing exploration and exploitation. For the most part, this method does not alter evolu-
tion’s search but simply interleaves it with exploitative episodes that increase average reward during
learning. The next section describes how softmax selection can be appliedto evolutionary compu-
tation to intelligently focus search with each generation and create a more nuanced balance between
exploration and exploitation.

3.2.2 USING SOFTMAX SELECTION IN EVOLUTIONARY COMPUTATION

When softmax selection is used in TD methods, an action’s probability of selection is a function of
its estimated value. In addition to ensuring that the greedy action is chosen mostoften, this technique
focuses exploration on the most promising alternatives. There are many ways to implement softmax
selection but one popular method relies on a Boltzmann distribution (Sutton and Barto, 1998), in
which case an agent in states chooses an actiona with probability

eQ(s,a)/τ

∑b∈AeQ(s,b)/τ

whereA is the set of available actions,Q(s,a) is the agent’s value estimate for the given state-action
pair andτ is a positive parameter controlling the degree to which actions with higher values are
favored in selection. The higher the value ofτ, the more equiprobable the actions are.

As with ε-greedy selection, we use softmax selection in evolutionary computation to select
policies for evaluation. At the beginning of each generation, each individual is evaluated for one
episode, to initialize its fitness. Then, the remaininge− |P| episodes are allocated according to a
Boltzmann distribution. Before each episode, a policyp in a populationP is selected with probabil-

888

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

ity

eS(p)/τ

∑q∈PeS(q)/τ

whereS(p) is the average fitness of the policyp.

To apply softmax selection to NEAT and NEAT+Q, we need only alter the assignment of the
candidate policyN in lines 7 and 9 of Algorithms 2 and 3, respectively. Instead of a random se-
lection, we use the result of the softmax selection function shown in Algorithm 5. In the case of
NEAT+Q,εtd controls Q-learning’s exploration andτ controls NEAT’s exploration. Of course, soft-
max exploration could be used within Q-learning too. However, since comparing different selection
mechanisms for TD methods is not the subject of our research, in this paperwe use onlyε-greedy
selection with TD methods.

Algorithm 5 SOFTMAX SELECTION(P,τ)
1: // P: population,τ: softmax temperature
2:

3: if ∃N ∈ P | N.episodes= 0 then
4: returnN // give each network one episode before using softmax
5: else
6: total← ∑N∈PeN.average/τ // compute denominator of Boltzmann function
7: for all N ∈ P do
8: with-prob (eN.average/τ

total) return N // select N for evaluation
9: elsetotal← total−eN.average/τ // or skip N and reweight probabilities

In addition to providing a more nuanced balance between exploration and exploitation, soft-
max selection also allows evolutionary computation to more effectively focus its search within each
generation. Instead of spending the same number of evaluations on each member of the popula-
tion, softmax selection can quickly abandon poorly performing policies and spend more episodes
evaluating the most promising individuals.

In summary, on-line evolutionary computation enables the use of evolutionarycomputation dur-
ing an agent’s interaction with the world. Therefore, the ability of evolutionary function approxima-
tion to optimize representations need not come at the expense of the on-line aspects of TD methods.
On the contrary, the value function and its representation can be optimized simultaneously, all while
the agent interacts with its environment.

4. Experimental Setup

To empirically compare the methods described above, we used two differentreinforcement learning
domains. The first domain, mountain car, is a standard benchmark task requiring function approxi-
mation. We use this domain to establish preliminary, proof-of-concept resultsfor the novel methods
described in this paper. The second domain, server job scheduling, is a large, probabilistic domain
drawn from the field of autonomic computing. We use this domain to assess whether these new
methods can scale to a much more complex task. The remainder of this section details each of these
domains and describes our approach to solving them with reinforcement learning.

889

WHITESON AND STONE

Figure 2: The Mountain Car Task. This figure was taken from Sutton and Barto (1998).

4.1 Mountain Car

In the mountain car task (Boyan and Moore, 1995), depicted in Figure 2, an agent strives to drive a
car to the top of a steep mountain. The car cannot simply accelerate forwardbecause its engine is
not powerful enough to overcome gravity. Instead, the agent must learn to drive backwards up the
hill behind it, thus building up sufficient inertia to ascend to the goal before running out of speed.

The agent’s state at timestept consists of its current positionpt and its current velocityvt .
It receives a reward of -1 at each time step until reaching the goal, at which point the episode
terminates. The agent’s three available actions correspond to the throttle settings 1,0, and -1. The
following equations control the car’s movement:

pt+1 = boundp(pt +vt+1)

vt+1 = boundv(vt +0.001at −0.0025cos(3pt))

whereat is the action the agent takes at timestept, boundp enforces−1.2≤ pt+1≤ 0.5, andboundv
enforces−0.07≤ vt+1 ≤ 0.07. In each episode, the agent begins in a state chosen randomly from
these ranges. To prevent episodes from running indefinitely, each episode is terminated after 2,500
steps if the agent still has not reached the goal.

Though the agent’s state has only two features, they are continuous and hence learning the value
function requires a function approximator. Previous research has demonstrated that TD methods can
solve the mountain car task using several different function approximators, including CMACs (Sut-
ton, 1996; Kretchmar and Anderson, 1997), locally weighted regression (Boyan and Moore, 1995),
decision trees (Pyeatt and Howe, 2001), radial basis functions (Kretchmar and Anderson, 1997), and
instance-based methods (Boyan and Moore, 1995). By giving the learner a priori knowledge about
the goal state and using methods based on experience replay, the mountain car problem has been
solved with neural networks too (Reidmiller, 2005). However, the task remains notoriously difficult
for neural networks, as several researchers have noted that value estimates can easily diverge (Boyan
and Moore, 1995; Pyeatt and Howe, 2001).

We hypothesized that the difficulty of using neural networks in this task is due at least in part
to the problem of finding an appropriate representation. Hence, as a preliminary evaluation of
evolutionary function approximation, we applied NEAT+Q to the mountain car taskto see if it
could learn better than manually designed networks. The results are presented in Section 5.

To represent the agent’s current state to the network, we divided eachstate feature into ten
regions. One input was associated with each region (for a total of twenty inputs) and was set to one

890

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

if the agent’s current state fell in that region, and to zero otherwise. Hence, only two inputs were
activated for any given state. The networks have three outputs, each corresponding to one of the
actions available to the agent.

4.2 Server Job Scheduling

While the mountain car task is a useful benchmark, it is a very simple domain. To assess whether our
methods can scale to a much more complex problem, we use a challenging reinforcement learning
task called server job scheduling. This domain is drawn from the burgeoning field of autonomic
computing (Kephart and Chess, 2003). The goal of autonomic computing isto develop computer
systems that automatically configure themselves, optimize their own behavior, and diagnose and
repair their own failures. The demand for such features is growing rapidly, since computer systems
are becoming so complex that maintaining them with human support staff is increasingly infeasible.

The vision of autonomic computing poses new challenges to many areas of computer science,
including architecture, operating systems, security, and human-computer interfaces. However, the
burden on artificial intelligence is especially great, since intelligence is a prerequisite for self-
managing systems. In particular, we believe machine learning will play a primaryrole, since com-
puter systems must be adaptive if they are to perform well autonomously. There are many ways
to apply supervised methods to autonomic systems, e.g. for intrusion detection (Ertoz et al., 2004),
spam filtering (Dalvi et al., 2004), or system configuration (Wildstrom et al., 2005). However, there
are also many tasks where no human expert is available and reinforcementlearning is applicable,
e.g network routing (Boyan and Littman, 1994), job scheduling (Whiteson and Stone, 2004), and
cache allocation (Gomez et al., 2001).

One such task is server job scheduling, in which a server, such as a website’s application server
or database, must determine in what order to process the jobs currently waiting in its queue. Its
goal is to maximize the aggregate utility of all the jobs it processes. Autility function (not to be
confused with a TD value function) for each job type maps the job’s completiontime to the utility
derived by the user (Walsh et al., 2004). The problem of server job scheduling becomes challenging
when these utility functions are nonlinear and/or the server must process multiple types of jobs.
Since selecting a particular job for processing necessarily delays the completion of all other jobs
in the queue, the scheduler must weigh difficult trade-offs to maximize aggregate utility. Also, this
domain is challenging because it is large (the size of both the state and action spaces grow in direct
proportion to the size of the queue) and probabilistic (the server does notknow what type of job will
arrive next). Hence, it is a typical example of a reinforcement learning task that requires effective
function approximation.

The server job scheduling task is quite different from traditional scheduling tasks (Zhang and
Dietterich, 1995; Zweben and Fox, 1998). In the latter case, there are typically multiple resources
available and each job has a partially ordered list of resource requirements. Server job scheduling
is simpler because there is only one resource (the server) and all jobs are independent of each other.
However, it is more complex in that performance is measured via arbitrary utilityfunctions, whereas
traditional scheduling tasks aim solely to minimize completion times.

Our experiments were conducted in a Java-based simulator. The simulation begins with 100 jobs
preloaded into the server’s queue and ends when the queue becomes empty. During each timestep,
the server removes one job from its queue and completes it. During each of the first 100 timesteps,
a new job of a randomly selected type is added to the end of the queue. Hence, the agent must make

891

WHITESON AND STONE

-160

-140

-120

-100

-80

-60

-40

-20

0

0 50 100 150 200

U
til

ity

Completion Time

Utility Functions for All Four Job Types

Job Type #2

Job Type #3

Job Type #4

Job Type #1

Figure 3: The four utility functions used in our experiments.

decisions about which job to process next even as new jobs are arriving. Since one job is processed
at each timestep, each episode lasts 200 timesteps. For each job that completes, the scheduling agent
receives an immediate reward determined by that job’s utility function.

Four different job types were used in our experiments. Hence, the task can generate 4200 unique
episodes. Utility functions for the four job types are shown in Figure 3. Users who create jobs
of type #1 or #2 do not care about their jobs’ completion times so long as they are less than 100
timesteps. Beyond that, they get increasingly unhappy. The rate of this change differs between the
two types and switches at timestep 150. Users who create jobs of type #3 or #4 want their jobs
completed as quickly as possible. However, once the job becomes 100 timesteps old, it is too late to
be useful and they become indifferent to it. As with the first two job types, theslopes for job types
#3 and #4 differ from each other and switch, this time at timestep 50. Note that all these utilities
are negative functions of completion time. Hence, the scheduling agent strives to bring aggregate
utility as close to zero as possible.

A primary obstacle to applying reinforcement learning methods to this domain is thesize of
the state and action spaces. A complete state description includes the type and age of each job in
the queue. The scheduler’s actions consist of selecting jobs for processing; hence a complete action
space includes every job in the queue. To render these spaces more manageable, we discretize them.
The range of job ages from 0 to 200 is divided into four sections and the scheduler is told, at each
timestep, how many jobs in the queue of each type fall in each range, resultingin 16 state features.
The action space is similarly discretized. Instead of selecting a particular job for processing, the
scheduler specifies what type of job it wants to process and which of the four age ranges that job
should lie in, resulting in 16 distinct actions. The server processes the youngest job in the queue
that matches the type and age range specified by the action.

These discretizations mean the agent has less information about the contentsof the job queue.
However, its state is still sufficiently detailed to allow effective learning. Although the utility func-
tions can change dramatically within each age range, their slopes do not change. It is the slope

892

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

of the utility function, not the utility function itself, which determines how much utility is lost by
delaying a given job.

Even after discretization, the state space is quite large. If the queue holds at mostqmax jobs,
(qmax+1

16

)

is a loose upper bound on the number of states, since each job can be in oneof 16 buckets.
Some of these states will not occur (e.g. ones where all the jobs in the queueare in the youngest
age range). Nonetheless, with 16 actions per state, it is clearly infeasible torepresent the value
function in a table. Hence, success in this domain requires function approximation, as addressed in
the following section.

5. Results

We conducted a series of experiments in the mountain car and server job scheduling domains to
empirically evaluate the methods presented in this paper. Section 5.1 compares manual and evo-
lutionary function approximators. Section 5.2 compares off-line and on-lineevolutionary compu-
tation. Section 5.3 tests evolutionary function approximation combined with on-lineevolutionary
computation. Section 5.4 compares these novel approaches to previous learning and non-learning
methods. Section 5.5 compares Darwinian and Lamarckian versions of evolutionary function ap-
proximation. Finally, Section 5.6 presents some addition tests that measure the effect of continual
learning on function approximators. The results offer insight into why certain methods outperform
others in these domains and what factors can make neural network function approximation difficult
in practice.

Each of the graphs presented in these sections include error bars indicating 95% confidence
intervals. In addition, to assess statistical significance, we conducted Student’s t-tests on each pair
of methods evaluated. The results of these tests are summarized in Appendix A.

5.1 Comparing Manual and Evolutionary Function Approximation

As an initial baseline, we conducted, in each domain, 25 runs in which NEAT attempts to discover
a good policy using the setup described in Section 4. In these runs, the population sizep was 100,
the number of generationsg was 100, the node mutation ratemn was 0.02, the link mutation rate
ml was 0.1, and the number of episodes per generatione was 10,000. Hence, each individual was
evaluated for 100 episodes on average. See Appendix B for more detailson the NEAT parameters
used in our experiments.

Next, we performed 25 runs in each domain using NEAT+Q, with the same parameter settings.
The eligibility decay rateλ was 0.0. and the learning rateα was set to 0.1 and annealed linearly
for each member of the population until reaching zero after 100 episodes.2 In scheduling,γ was
0.95 andεtd was 0.05. Those values ofγ and εtd work well in mountain car too, though in the
experiments presented here they were set to 1.0 and 0.0 respectively, since Sutton (1996) found that
discounting and exploration are unnecessary in mountain car. The outputscalec was set to -100 in
mountain car and -1000 in scheduling.

We tested both Darwinian and Lamarckian NEAT+Q in this manner. Both perform well, though
which is preferable appears to be domain dependent. For simplicity, in this section and those that
follow, we present results only for Darwinian NEAT+Q. In Section 5.5 we present a comparison of
the two approaches.

2. Other values ofλ were tested in the context of NEAT+Q but had little effect on performance.

893

WHITESON AND STONE

To test Q-learning without NEAT, we tried 24 different configurations in each domain. These
configurations correspond to every possible combination of the following parameter settings. The
networks had feed-forward topologies with 0, 4, or 8 hidden nodes. The learning rateα was either
0.01 or 0.001. The annealing schedules forα were linear, decaying to zero after either 100,000 or
250,000 episodes. The eligibility decay rateλ was either 0.0 or 0.6. The other parameters,γ and
ε, were set just as with NEAT+Q, and the standard deviation of initial weightsσ was 0.1. Each
of these 24 configurations was evaluated for 5 runs. In addition, we experimented informally with
higher and lower values ofα, higher values ofγ, slower linear annealing, exponential annealing,
and no annealing at all, though none performed as well as the results presented here.

In these experiments, each run used a different set of initial weights. Hence, the resulting
performance of each configuration, by averaging over different initial weight settings, does not
account for the possibility that some weight settings perform consistently better than others. To
address this, for each domain, we took the best performing configuration3 and randomly selected
five fixed initial weight settings. For each setting, we conducted 5 additionalruns. Finally, we took
the setting with the highest performance and conducted an additional 20 runs, for a total of 25. For
simplicity, the graphs that follow show only this Q-learning result: the best configuration with the
best initial weight setting.

Figure 4 shows the results of these experiments. For each method, the corresponding line in
the graph represents a uniform moving average over the aggregate utility received in the past 1,000
episodes, averaged over all 25 runs. Using average performance,as we do throughout this paper, is
somewhat unorthodox for evolutionary methods, which are more commonly evaluated on the per-
formance of the generation champion. There are two reasons why we adopt average performance.
First, it creates a consistent metric for all the methods tested, including the TD methods that do not
use evolutionary computation and hence have no generation champions. Second, it is an on-line
metric because it incorporatesall the reward the learning system accrues. Plotting only generation
champions is an implicitly off-line metric because it does not penalize methods thatdiscover good
policies but fail to accrue much reward while learning. Hence, average reward is a better metric for
evaluating on-line evolutionary computation, as we do in Section 5.2.

To make a larger number of runs computationally feasible, both NEAT and NEAT+Q were run
for only 100 generations. In the scheduling domain, neither method has completely plateaued by
this point. However, a handful of trials conducted for 200 generations verified that only very small
additional improvements are made after 100 generation, without a qualitative effect on the results.

Note that the progress of NEAT+Q consists of a series of 10,000-episode intervals. Each of
these intervals corresponds to one generation and the changes within themare due to learning via
Q-learning and backpropagation. Although each individual learns foronly 100 episodes on average,
NEAT’s system of randomly selecting individuals for evaluation causes that learning to be spread
across the entire generation: each individual changes gradually during the generation as it is repeat-
edly evaluated. The result is a series of intra-generational learning curves within the larger learning
curve.

For the particular problems we tested and network configurations we tried, evolutionary func-
tion approximation significantly improves performance over manually designednetworks. In the
scheduling domain, Q-learning learns much more rapidly in the very early part of learning. In both
domains, however, Q-learning soon plateaus while NEAT and NEAT+Q continue to improve. Of

3. Mountain car parameters were: 4 hidden nodes,α = 0.001, annealed to zero at episode 100,000,λ = 0.0. Server job
scheduling parameters were: 4 hidden nodes,α = 0.01, annealed to zero at episode 100,000,λ = 0.6.

894

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

NEAT+Q

NEAT

Q−Learning

Q−Learning

NEAT

NEAT+Q

Figure 4: A comparison of the performance of manual and evolutionary function approximators in
the mountain car and server job scheduling domains.

course, after 100,000 episodes, Q-learning’s learning rateα has annealed to zero and no additional
learning is possible. However, its performance plateaus well beforeα reaches zero and, in our
experiments, running Q-learning with slower annealing or no annealing at all consistently led to
inferior and unstable performance.

Nonetheless, the possibility remains that additional engineering of the network structure, the
feature set, or the learning parameters would significantly improve Q-learning’s performance. In
particular, when Q-learning is started with one of the best networks discovered by NEAT+Q and
the learning rate is annealed aggressively, Q-learning matches NEAT+Q’s performance without
directly using evolutionary computation. However, it is unlikely that a manual search, no matter
how extensive, would discover these successful topologies, which contain irregular and partially
connected hidden layers. Figure 5 shows examples of typical networks evolved by NEAT+Q.

NEAT+Q also significantly outperforms regular NEAT in both domains. In the mountain car
domain, NEAT+Q learns faster, achieving better performance in earlier generations, though both
plateau at approximately the same level. In the server job scheduling domain, NEAT+Q learns more
rapidly and also converges to significantly higher performance. This result highlights the value of
TD methods on challenging reinforcement learning problems. Even when NEAT is employed to
find effective representations, the best performance is achieved onlywhen TD methods are used to
estimate a value function. Hence, the relatively poor performance of Q-learning is not due to some
weakness in the TD methodology but merely to the failure to find a good representation.

Furthermore, in the scheduling domain, the advantage of NEAT+Q over NEAT is not directly ex-
plained just by the learning that occurs via backpropagation within each generation. After 300,000
episodes, NEAT+Q clearly performs better even at the beginning of eachgeneration, before such
learning has occurred. Just as predicted by the Baldwin Effect, evolution proceeds more quickly in
NEAT+Q because the weight changes made by backpropagation, in addition to improving that in-
dividual’s performance, alter selective pressures and more rapidly guide evolution to useful regions
of the search space.

895

WHITESON AND STONE

Figure 5: Typical examples of the topologies of the best networks evolvedby NEAT+Q in both the
mountain car and scheduling domains. Input nodes are on the bottom, hiddennodes in
the middle, and output nodes on top. In addition to the links shown, each inputnode
is directly connected to each output node. Note that two output nodes can bedirectly
connected, in which case the activation of one node serves not only as an output of the
network, but as an input to the other node.

5.2 Comparing Off-Line and On-Line Evolutionary Computation

In this section, we present experiments evaluating on-line evolutionary computation. Since on-
line evolutionary computation does not depend on evolutionary function approximation, we first
test it using regular NEAT, by comparing an off-line version to on-line versions usingε-greedy
and softmax selection. In Section 5.3 we study the effect of combining NEAT+Q with on-line
evolutionary computation.

Figure 6 compares the performance of off-line NEAT to its on-line counterparts in both domains.
The results for off-line NEAT are the same as those presented in Figure 4.To test on-line NEAT
with ε-greedy selection, 25 runs were conducted withεec set to 0.25. This value is larger than is
typically used in TD methods but makes intuitive sense, since exploration in NEAT is safer than in
TD methods. After all, even when NEAT explores, the policies it selects are not drawn randomly
from policy space. On the contrary, they are the children of the previousgeneration’s fittest parents.
To test on-line NEAT with softmax selection, 25 runs were conducted withτ set to 50 in mountain
car and 500 in the scheduling domain. These values are different because a good value ofτ depends
on the range of possible values, which differ dramatically between the two domains.

These results demonstrate that both versions of on-line evolutionary computation can signifi-
cantly improve NEAT’s average performance. In addition, in mountain car,on-line evolutionary
computation with softmax selection boosts performance even more thanε-greedy selection.

Given the way these two methods work, the advantage of softmax overε-greedy in mountain
car is not surprising.ε-greedy selection is a rather naı̈ve approach because it treats all exploratory
actions equally, with no attempt to favor the most promising ones. For the most part, it conducts the
search for better policies in the same way as off-line evolutionary computation; it simply interleaves
that search with exploitative episodes that employ the best known policy. Softmax selection, by
contrast, concentrates exploration on the most promising alternatives and hence alters the way the

896

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

Epsilon−Greedy NEAT

Off−Line NEAT

Softmax NEAT

Off−Line NEAT

Softmax NEAT

Epsilon−Greedy NEAT

Figure 6: A comparison of the performance off-line and on-line evolutionary computation in the
mountain car and server job scheduling domains.

search for better policies is conducted. Unlikeε-greedy exploration, softmax selection spends fewer
episodes on poorly performing individuals and more on those with the most promise. In this way, it
achieves better performance.

More surprising is that this effect is not replicated in the scheduling domain.Both on-line meth-
ods perform significantly better than their off-line counterpart but softmax performs only as well as
ε-greedy. It is possible that softmax, though focusing exploration more intelligently, exploits less
aggressively thanε-greedy, which gives so many evaluations to the champion. It is also possible that
some other setting ofτ would make softmax outperformε-greedy, though our informal parameter
search did not uncover one. Even achieving the performance shown here required using different
values ofτ in the two domains, whereas the same value ofε worked in both cases. This highlights
one disadvantage of using softmax selection: the difficulty of choosingτ. As Sutton and Barto write
“Most people find it easier to set theε parameter with confidence; settingτ requires knowledge of
the likely action values and of powers ofe.” (Sutton and Barto, 1998, pages 27-30)

It is interesting that the intra-generational learning curves characteristicof NEAT+Q appear in
the on-line methods even though backpropagation is not used. The average performance increases
during each generation without the help of TD methods because the system becomes better informed
about which individuals to select on exploitative episodes. Hence, on-line evolutionary computation
can be thought of as another way of combining evolution and learning. In each generation, the
system learns which members of the population are strongest and uses thatknowledge to boost
average performance.

5.3 Combining Evolutionary Function Approximation with On-Line Evolutio nary
Computation

Sections 5.1 and 5.2 verify that both evolutionary function approximation andon-line evolutionary
computation can significantly boost performance in reinforcement learningtasks. In this section,
we present experiments that assess how well these two ideas work together.

897

WHITESON AND STONE

Figure 7 presents the results of combining NEAT+Q with softmax evolutionary computation,
averaged over 25 runs, and compares it to using each of these methods individually, i.e. using off-
line NEAT+Q (as done in Section 5.1) and using softmax evolutionary computation with regular
NEAT (as done in Section 5.2). For the sake of simplicity we do not present results forε-greedy
NEAT+Q though we tested it and found that it performed similarly to softmax NEAT+Q.

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

Off−Line NEAT

Off−Line NEAT+Q

Softmax NEAT Softmax NEAT+Q

Softmax NEAT+Q

Softmax NEAT

Off−Line NEAT

Off−Line NEAT+Q

Figure 7: The performance of combining evolutionary function approximation with on-line evolu-
tionary computation compared to using each individually in the mountain car and server
job scheduling domains.

In both domains, softmax NEAT+Q performs significantly better than off-line NEAT+Q. Hence,
just like regular evolutionary computation, evolutionary function approximation performs better
when supplemented with selection techniques traditionally used in TD methods. Surprisingly, in the
mountain car domain, softmax NEAT+Q performs only as well softmax NEAT. Weattribute these
results to a ceiling effect, i.e. the mountain car domain is easy enough that, given an appropriate
selection mechanism, NEAT is able to learn quite rapidly, even without the help ofQ-learning.
In the server job scheduling domain, softmax NEAT+Q does perform betterthan softmax NEAT,
though the difference is rather modest. Hence, in both domains, the most critical factor to boosting
the performance of evolutionary computation is the use of an appropriate selection mechanism.

5.4 Comparing to Previous Approaches

The experiments presented thus far verify that the novel methods presented in this paper can im-
prove performance over the constituent techniques upon which they arebuilt. In this section, we
present experiments that compare the performance of the highest performing novel method, softmax
NEAT+Q, to previous approaches. In the mountain car domain, we compareto previous results that
use TD methods with a linear function approximator (Sutton, 1996). In the server job scheduling do-
main, we compare to a random scheduler, two non-learning schedulers from previous research (van
Mieghem, 1995; Whiteson and Stone, 2004), and an analytical solution computed using integer
linear programming.

898

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

In the mountain car domain, the results presented above make clear that softmax NEAT+Q can
rapidly learn a good policy. However, since these results use an on-line metric, performance is
averaged over all members of the population. Hence, they do not revealhow close the best learned
policies are to optimal. To assess this, we selected the generation champion from the final generation
of each softmax NEAT+Q run and evaluated it for an additional 1,000 episodes. Then we compared
this to the performance of a learner using Sarsa, a TD method similar to Q-learning (Sutton and
Barto, 1998), with CMACs, a popular linear function approximator (Sutton and Barto, 1998), using
a setup that matches that of Sutton (1996) as closely as possible. We foundtheir performance to
be nearly identical: softmax NEAT+Q received an average score of -52.75 while the Sarsa CMAC
learner received -52.02. We believe this performance is approximately optimal, as it matches the
best results published by other researchers, e.g. (Smart and Kaelbling, 2000).

This does not imply that neural networks are the function approximator of choice for the moun-
tain car domain. On the contrary, Sutton’s CMACs converge in many fewer episodes. Nonetheless,
these results demonstrate that evolutionary function approximation and on-line evolution make it
feasible to find approximately optimal policies using neural networks, something that some previous
approaches (Boyan and Moore, 1995; Pyeatt and Howe, 2001), using manually designed networks,
were unable to do.

Since the mountain car domain has only two state features, it is possible to visualize the value
function. Figure 8 compares the value functions learned by softmax NEAT+Q to that of Sarsa with
CMACs. For clarity, the graphs plot estimated steps to the goal. Since the agent receives a reward
of -1 for each timestep until reaching the goal, this is equivalent to−maxa(Q(s,a)). Surprisingly,
the two value functions bear little resemblance to one another. While they sharesome very general
characteristics, they differ markedly in both shape and scale. Hence, these graphs highlight a fact
that has been noted before (Tesauro, 1994): that TD methods can learn excellent policies even if
they estimate the value function only very grossly. So long as the value function assigns the highest
value to the correct action, the agent will perform well.

Value Function

-1.2

-0.35

0.5Position -0.07

0.0

0.07

Velocity

 0

 20

 40

 60

 80

 100

 120

Steps to Goal

Value Function

-1.2

-0.35

0.5Position -0.07

0.0

0.07

Velocity

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

Steps to Goal

(a) NEAT+Q Network (b) CMAC

Figure 8: The value function, shown as estimated steps to the goal, of policieslearned by softmax
NEAT+Q and Sarsa using CMACs.

899

WHITESON AND STONE

In the server job scheduling domain, finding alternative approaches forcomparison is less
straightforward. Substantial research about job scheduling already exists but most of the methods
involved are not applicable here because they do not allow jobs to be associated with arbitrary utility
functions. For example, Liu and Layland (1973) present methods for jobscheduling in a real-time
environment, in which a hard deadline is associated with each job. McWherteret al. (2004) present
methods for scheduling jobs with different priority classes. However, unlike the utility functions
shown in Section 4.2, the relative importance of a job type does not change as a function of time.
McGovern et al. (2002) use reinforcement learning for CPU instructionscheduling but aim only to
minimize completion time.

One method that can be adapted to the server job scheduling task is the generalizedcµ rule (van
Mieghem, 1995), in which the server always processes at timet the oldest job of that typek which
maximizesC′k(ok)/pk, whereC′k is the derivative of the cost function for job typek, ok is the age
of the oldest job of typek and pk is the average processing time for jobs of typek. Since in our
simulation all jobs require unit time to process and the cost function is just the additive inverse
of the utility function, this is equivalent to processing the oldest job of that type k that maximizes
−U ′k(ok), whereU ′k is the derivative of the utility function for job typek. The generalizedcµ rule
has been proven approximately optimal given convex cost functions (van Mieghem, 1995). Since
the utility functions, and hence the cost functions, are both convex and concave in our simulation,
there is no theoretical guarantee about its performance in the server job scheduling domain. To see
how well it performs in practice, we implemented it in our simulator and ran it for 1,000 episodes,
obtaining an average score of -10,891.

Another scheduling algorithm applicable to this domain is the insertion scheduler, which per-
formed the best in a previous study of a very similar domain (Whiteson and Stone, 2004). The
insertion scheduler uses a simple, fast heuristic: it always selects for processing the job at the head
of the queue but it keeps the queue ordered in a way it hopes will maximize aggregate utility. For
any given ordering of a set ofJ jobs, the aggregate utility is:

∑
i∈J

Ui(ai + pi)

whereUi(·), ai , andpi are the utility function, current age, and position in the queue, respectively,
of job i. Since there are|J|! ways to order the queue, it is clearly infeasible to try them all. Instead,
the insertion scheduler uses the following simple, fast heuristic: every time a new job is created, the
insertion scheduler tries inserting it into each position in the queue, settling on whichever position
yields the highest aggregate utility. Hence, by bootstrapping off the previous ordering, the insertion
scheduler must consider only|J] orderings. We implemented the insertion scheduler in our simulator
and ran it for 1,000 episodes, obtaining an average score of -13,607.

Neither thecµrule nor the insertion scheduler perform as well as softmax NEAT+Q, whose final
generation champions received an average score of -9,723 over 1,000 episodes. Softmax NEAT+Q
performed better despite the fact that the alternatives rely on much greatera priori knowledge about
the dynamics of the system. Both alternatives require the scheduler to have apredictive model of
the system, since their calculations depend on knowledge of the utility functionsand the amount of
time each job takes to complete. By contrast, softmax NEAT+Q, like many reinforcement learning
algorithms, assumes such information is hidden and discovers a good policy from experience, just
by observing state transitions and rewards.

If, in addition to assuming the scheduler has a model of the system, we make the unrealistic
assumption that unlimited computation is available to the scheduler, then we can obtain an informa-

900

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

tive upper bound on performance. At each time step of the simulation, we cancompute the optimal
action analytically by treating the scheduling problem as an integer linear program. For each job
i ∈ J and for each positionj in which it could be placed, the linear program contains a variable
xi j ∈ {0,1}. Associated with each variable is a weightwi j =Ui(ai + j), which represents the reward
the scheduler will receive when jobi completes given that it currently resides in positionj. Since
the scheduler’s goal is to maximize aggregate utility, the linear program must maximize∑i ∑ j wi j xi j .
In addition to the constraint that∀i j : xi j ∈ {0,1}, the program is also constrained such that each job
is in exactly one position:∀i : ∑ j xi j = 1 and that each position holds exactly one job:∀ j : ∑i xi j = 1.

A solution to the resulting integer linear program is an ordering that will maximize the aggregate
utility of the jobs currently in the queue. If the scheduler always processes the job in the first
position of this ordering, it will behave optimallyassuming no more jobs arrive. Since new jobs
are constantly arriving, the linear program must be re-solved anew at each time step. The resulting
behavior may still be suboptimal since the decision about which job to processis made without
reasoning about what types of jobs are likely to arrive later. Nonetheless, this analytical solution
represents an approximate upper bound on performance in this domain.

Using the CPLEX software package, we implemented a scheduler based on the linear program
described above and tested in our simulator for 1,000 episodes, obtaining an average score of -
7,819. Not surprisingly, this performance is superior to that of softmax NEAT+Q, though it takes,
on average, 741 times as long to run. The computational requirements of this solution are not likely
to scale well either, since the number of variables in the linear program grows quadratically with
respect to the size of the queue.

Figure 9 summarizes the performance of the alternative scheduling methods described in this
section and compares them to softmax NEAT+Q. It also includes, as a lower bound on performance,
a random scheduler, which received an average score of -15,502 over 1,000 episodes. A Student’s
t-test verified that the difference in performance between each pair of methods is statistically signif-
icant with 95% confidence. Softmax NEAT+Q performs the best except for the linear programming
approach, which is computationally expensive and relies on a model of the system. Prior to learn-
ing, softmax NEAT+Q performs similarly to the random scheduler. The difference in performance
between the best learned policies and the linear programming upper bound is75% better than that
of the baseline random scheduler and 38% better than that of the next best method, thecµscheduler.

5.5 Comparing Darwinian and Lamarckian Evolutionary Computation

As described in Section 3.1, evolutionary function approximation can be implemented in either a
Darwinian or Lamarckian fashion. The results presented so far all use the Darwinian implementa-
tion of NEAT+Q. However, it is not clear that this approach is superior even though it more closely
matches biological systems. In this section, we compare the two approaches empirically in both
the mountain car and server job scheduling domains. Many other empirical comparisons of Dar-
winian and Lamarckian systems have been conducted previously (D. Whitley, 1994; Yamasaki and
Sekiguchi, 2000; Pereira and Costa, 2001) but ours is novel in that individual learning is based on a
TD function approximator. In other words, these experiments address thequestion: when trying to
approximate a TD value function, is a Darwinian or Lamarckian approach superior?

Figure 10 compares the performance of Darwinian and Lamarckian NEAT+Q in both the moun-
tain car and server job scheduling domains. In both cases, we use off-line NEAT+Q, as the on-line
versions tend to mute the differences between the two implementations. Though both implementa-

901

WHITESON AND STONE

Figure 9: A comparison of the performance of softmax NEAT+Q and several alternative methods
in the server job scheduling domain.

tions perform well in both domains, Lamarckian NEAT+Q does better in mountaincar but worse
in server job scheduling. Hence, the relative performance of these two approaches seems to depend
critically on the dynamics of the domain to which they are applied. In the following section, we
present some additional results that elucidate which factors affect their performance.

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

Darwinian NEAT+Q

Lamarckian NEAT+Q

Lamarckian NEAT+Q

Darwinian NEAT+Q

Figure 10: A comparison of Darwinian and Lamarckian NEAT+Q in the mountaincar and server
job scheduling domains.

902

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

5.6 Continual Learning Tests

In this section, we assess the performance of the best networks discovered by NEAT+Q when eval-
uated for many additional episodes. We compare two scenarios, one where the learning rate is
annealed to zero after 100 episodes, just as in training, and one where itis not annealed at all. Com-
paring performance in these two scenarios allows us to assess the effectof continual learning on the
evolved networks.

We hypothesized that NEAT+Q’s best networks would perform well under continual learning
in the mountain car domain but not in server job scheduling. This hypothesis was motivated by
the results of early experiments with NEAT+Q. Originally, we did not annealα at all. This setup
worked fine in the mountain car domain but in scheduling it worked only with off-line NEAT+Q;
on-line NEAT+Q actually performed worse than off-line NEAT+Q! Annealing NEAT+Q’s learning
rate eliminated the problem, as the experiments in Section 5.2 verify. If finding weights that remain
stable under continual learning is more difficult in scheduling than in mountain car, it could explain
this phenomenon, sinceε-greedy and softmax selection, by giving many more episodes of learning
to certain networks, could cause those networks to become unstable and perform poorly.

To test the best networks without continual learning, we selected the finalgeneration champion
from each run of off-line Darwinian NEAT+Q and evaluated it for an additional 5,000 episodes, i.e.
50 times as many episodes as it saw in training. During these additional episodes, the learning rate
was annealed to zero by episode 100, just as in training. To test the best networks with continual
learning, we repeated this experiment but did not anneal the learning rateat all. To prevent any
unnecessary discrepancies between training and testing, we repeated the original NEAT+Q runs
with annealing turned off and used the resulting final generation champions.

Figure 11 shows the results of these tests. In the mountain car domain, performance remains
relatively stable regardless of whether the networks continue to learn. The networks tested without
annealing show more fluctuation but maintain performance similar to those that were annealed.
However, in the scheduling domain, the networks subjected to continual learning rapidly plummet
in performance whereas those that are annealed continue to perform asthey did in training. These
results directly confirm our hypothesis that evolutionary computation can find weights that perform
well under continual learning in mountain car but not in scheduling. This explains why on-line
NEAT+Q does not require an annealed learning rate in mountain car but does in scheduling.

These tests also shed light on the comparison between Darwinian and Lamarckian NEAT+Q
presented in Section 5.5. A surprising feature of the Darwinian approachis that it is insensitive to
the issue of continual learning. Since weight changes do not affect offspring, evolution need only
find weights that remain suitable during one individual’s lifetime. By contrast, inthe Lamarckian
approach, weight changes accumulate from generation to generation. Hence, the TD updates that
helped in early episodes can hurt later on. In this light it makes perfect sense that Lamarckian
NEAT+Q performs better in mountain car than in scheduling, where continuallearning is problem-
atic.

These results suggest that the problem of stability under continual learning can greatly exacer-
bate the difficulty of performing neural network function approximation in practice. This issue is
not specific to NEAT+Q, since Q-learning with manually designed networks achieved decent per-
formance only when the learning rate was properly annealed. Darwinian NEAT+Q is a novel way of
coping with this problem, since it obviates the need for long-term stability. In on-line evolutionary
computation annealing may still be necessary but it is less critical to set the rateof decay precisely.

903

WHITESON AND STONE

-16000

-15000

-14000

-13000

-12000

-11000

-10000

-9000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
co

re

Episode

Uniform Moving Average Score Per Episode

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
co

re

Episode

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

NEAT+Q without annealing

NEAT+Q with annealing

NEAT+Q without annealing

NEAT+Q with annealing

Figure 11: A comparison of the performance of the best networks evolved by NEAT+Q when
tested, with and without annealing, for an additional 5,000 episodes.

When learning ends, it prevents only a given individual from continuingto improve. The system
as a whole can still progress, as evolution exerts selective pressure and learning begins anew in the
next generation.

6. Discussion

The results in the mountain car domain presented in Section 5, demonstrate that NEAT+Q can suc-
cessfully train neural network function approximators in a domain which is notoriously problematic
for them. However, NEAT+Q requires many more episodes to find good solutions (by several or-
ders of magnitude) than CMACs do in the same domain. This contrast highlights an important
drawback of NEAT+Q: since each candidate network must be trained longenough to let Q-learning
work, it has very high sample complexity. In ongoing research, we are investigating ways of making
NEAT+Q more sample-efficient. For example, preliminary results suggest that, by pre-training net-
works using methods based on experience replay (Lin, 1992), NEAT+Q’s sample complexity can
be dramatically reduced.

It is not surprising that NEAT+Q takes longer to learn than CMACs because it is actually solving
a more challenging problem. CMACs, like other linear function approximators,require the human
designer to engineer a state representation in which the optimal value functionis linear with respect
to those state features (or can be reasonably approximated as such). For example, when CMACs
were applied to the mountain car domain, the two state features were tiled conjunctively (Sutton,
1996). By contrast, nonlinear function approximators like neural networks can take a simpler state
representation andlearn the important nonlinear relationships. Note that the state representation
used by NEAT+Q, while discretized, does not include any conjunctive features of the original two
state features. The important conjunctive features are represented byhidden nodes that are evolved
automatically by NEAT.

904

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

Conjunctively tiling all state features is feasible in mountain car but quickly becomes impractical
in domains with more state features. For example, doing so in the scheduling domain would require
16 CMACs, one for each action. In addition, each CMAC would have multiple 16-dimensional
tilings. If 10 tilings were used and each state feature were discretized into 10buckets, the resulting
function approximator would have 16×10×1016 cells. Conjunctively tiling only some state fea-
tures is feasible only with a large amount of domain expertise. Hence, methodslike NEAT+Q that
automatically learn nonlinear representations promise to be of great practical importance.

The results in the scheduling domain demonstrate that the proposed methods scale to a much
larger, probabilistic domain and can learn schedulers that outperform existing non-learning ap-
proaches. The difference in performance between the best learned policies and the linear pro-
gramming upper bound is 75% better than that of the baseline random scheduler and 38% better
than that of the next best method, thecµscheduler. However, the results also demonstrate that non-
learning methods can do quite well in this domain. If so, is it worth the trouble of learning? We
believe so. In a real system, the utility functions that the learner maximizes wouldlikely be drawn
directly from Service Level Agreements (SLAs), which are legally bindingcontracts governing how
much clients pay their service providers as a function of the quality of service they receive (Walsh
et al., 2004). Hence, even small improvements in system performance can significantly affect the
service provider’s bottom line. Substantial improvements like those demonstrated in our results, if
replicated in real systems, could be very valuable indeed.

Overall, the main limitation of the results presented in this paper is that they apply only to neu-
ral networks. In particular, the analysis about the effects of continuallearning (Section 5.6) may
not generalize to other types of function approximation that are not as prone to instability or diver-
gence if over-trained. While evolutionary methods could in principle be combined with any kind
of function approximation, in practice it is likely to work well only with very concise representa-
tions. Methods like CMACs, which use many more weights, would result in verylarge genomes and
hence be difficult for evolutionary computation to optimize. However, since such methods methods
become impractical as the number of state features and actions grow, concise methods like neu-
ral networks may become increasingly important in harder domains. If so, evolutionary function
approximation could be an important tool for automatically optimizing their representations.

7. Related Work

A broad range of previous research is related in terms of both methods andgoals to the techniques
presented in this paper. This section highlights some of that research and contrasts it with this work.

7.1 Optimizing Representations for TD Methods

A major challenge of using TD methods is finding good representations for function approximators.
This paper addresses that problem by coupling TD methods with evolutionary techniques like NEAT
that are proven representation optimizers. However, many other approaches are also possible.

One strategy is to train the function approximator using supervised methods that also optimize
representations. For example, Rivest and Precup (2003) train cascade-correlation networks as TD
function approximators. Cascade-correlation networks are similar to NEATin that they grow in-
ternal topologies for neural networks. However, instead of using evolutionary computation to find
such topologies, they rely on the network’s error on a given training setto compare alternative rep-
resentations. The primary complication of Rivest and Precup’s approach is that cascade-correlation

905

WHITESON AND STONE

networks, like many representation-optimizing supervised methods, need thetraining set to be both
large and stable. TD methods do not naturally accommodate this requirement since they produce
training examples only in sequence. Furthermore, those examples quickly become stale as the val-
ues upon which they were based are updated. Rivest and Precup address this problem using a
novel caching system that in effect creates a hybrid value function consisting of a table and a neu-
ral network. While this approach delays the exploitation of the agent’s experience, it nonetheless
represents a promising way to marry the representation-optimizing capacity ofcascade-correlation
networks and other supervised algorithms with the power of TD methods.

Mahadevan (2005) suggests another strategy: using spectral analysis to derive basis functions
for TD function approximators. His approach is similar to this work in that the agent is responsible
for learning both the value function and its representation. It is differentin that the representation is
selected by analyzing the underlying structural properties of the state space, rather than evaluating
potential representations in the domain.

A third approach is advanced by Sherstov and Stone (2005): using the Bellman error generated
by TD updates to assess the reliability of the function approximator in a given region of the state or
action space. They use this metric to automatically adjust the breadth of generalization for a CMAC
function approximator. An advantage of this approach is that feedback arrives immediately, since
Bellman error can be computed after each update. A disadvantage is that thefunction approxima-
tor’s representation is not selected based on its actual performance, which may correlate poorly with
Bellman error.

There is also substantial research that focuses on optimizing the agent’s state and action rep-
resentations, rather than the value function representation. For example,Santamaria et al. (1998)
apply skewing functions to state-action pairs before feeding them as inputsto a function approxima-
tor. These skewing functions make the state-action spaces non-uniform and hence make it possible
to give more resolution to the most critical regions. Using various skewing functions, they demon-
strate improvement in the performance of TD learners. However, they do not offer any automatic
way of determining how a given space should be skewed. Hence, a humandesigner still faces the
burdensome task of manually choosing a representation, though in some domains using skewing
functions may facilitate this process.

Smith (2002) extends this work by introducing a method that uses self-organizing maps to
automatically learn nonlinear skewing functions for the state-action spaces of TD agents. Self-
organizing maps use unsupervised learning methods to create spatially organized internal represen-
tations of the inputs they receive. Hence, the system does not use any feedback on the performance
of different skewing functions to determine which one is most appropriate.Instead it relies on the
heuristic assumption that more resolution should be given to regions of the space that are more fre-
quently visited. While this is an intuitive and reasonable heuristic, it does not hold in general. For
example, a reinforcement learning agent designed to respond to rare emergencies may spend most
of its life in safe states where its actions have little consequence and only occasionally experience
crisis states where its choices are critical. Smith’s heuristic would incorrectly devote most of its
resolution to representing the value function of the unimportant but frequently visited states. Evolu-
tionary function approximation avoids this problem because it evaluates competing representations
by testing them in the actual task. It explicitly favors those representations that result in higher
performance, regardless of whether they obey a given heuristic.

906

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

McCallum (1995) also presents a method for optimizing an agent’s state representation. His ap-
proach automatically learns tree-structured short-term memories that allow reinforcement learning
agents to prevent the state aliasing that results from hidden state.

7.2 Combining Evolutionary Computation with Other Learning Methods

Because of the potential performance gains offered by the Baldwin Effect, many researchers have
developed methods that combine evolutionary computation with other learning methods that act
within an individual’s lifetime. Some of this work is applied to supervised problems, in which
evolutionary computation can be coupled with any supervised learning technique such as backprop-
agation in a straightforward manner. For example, Boers et al. (1995) introduce a neuroevolution
technique that, like NEAT, tries to discover appropriate topologies. They combine this method
with backpropagation and apply the result to a simple supervised learning problem. Also, Giraud-
Carrier (2000) uses a genetic algorithm to tune the parameters of RBF networks, which he applies
to a supervised classification problem.

Inducing the Baldwin Effect on reinforcement learning problems is more challenging, since they
do not automatically provide the target values necessary for supervisedlearning. The algorithms
presented in this paper use TD methods to estimate those targets, though researchers have tried many
other approaches. McQuestion and Miikkulainen (1997) present a neuroevolutionary technique that
relies on each individual’s parents to supply targets and uses backpropagation to train towards those
targets. Stanley et al. (2003) avoid the problem of generating targets by using Hebbian rules, an
unsupervised technique, to change a neural network during its fitness evaluation. The network’s
changes are not directed by any error signal but they allow the networkto retain a memory of
previously experienced input sequences. Hence their approach is analternative to recurrent neural
networks. Downing (2001) combines genetic programming with Q-learning using a simple tabular
representation; genetic programming automatically learns how to discretize the state space.

Nolfi et al. (1994) present a neuroevolutionary system that adds extraoutputs to the network
that are designed to predict what inputs will be presented next. When those inputs actually arrive,
they serve as targets for backpropagation, which adjusts the network’sweights starting from the
added outputs. This technique allows a network to be adjusted during its lifetime using supervised
methods but relies on the assumption that forcing it to learn to predict future inputs will help it select
appropriate values for the remaining outputs, which actually control the agent’s behavior. Another
significant restriction is that the weights connecting hidden nodes to the actionoutputs cannot be
adjusted at all during each fitness evaluation.

Ackley and Littman (1991) combine neuroevolution with reinforcement learning in an artificial
life context. Evolutionary computation optimizes the initial weights of an “action network” that
controls an agent in a foraging scenario. The weights of the network areupdated during each indi-
vidual’s lifetime using a reinforcement learning algorithm called CRBP on the basis of a feedback
signal that is also optimized with neuroevolution. Hence, their approach is similar to the one de-
scribed in this paper, though the neuroevolution technique they employ doesnot optimize network
topologies and CRBP does not learn a value function.

XCS (Butz and Wilson, 2002), based on learning classifier systems (Lanzi et al., 2000), combine
evolutionary computation and reinforcement learning in a different way. Each member of the pop-
ulation, instead of representing a complete policy, represents just a single classifier, which specifies
the action the agent should take for some subset of the state space. Hence, the population as a whole

907

WHITESON AND STONE

represents a single evolving policy. Classifiers are selected for reproduction based on the accuracy
of their value estimates and speciation is used to ensure the state space is properly covered.

Other combinations of evolutionary computation with other learning methods include Arita and
Suzuki (2000), who study iterated prisoner’s dilemma; French and Messinger (1994) and Sasaki
and Tokoro (1999), who use artificial life domains; and Niv et al. (2002) in a foraging bees domain.

Another important related method is VAPS (Baird and Moore, 1999). While it does not use
evolutionary computation, it does combine TD methods with policy search methods. It provides
a unified approach to reinforcement learning that uses gradient descent to try to simultaneously
maximize reward and minimize error on Bellman residuals. A single parameter determines the
relative weight of these goals. Because it integrates policy search and TD methods, VAPS is in much
the same spirit as evolutionary function approximation. However, the resulting methods are quite
different. While VAPS provides several impressive convergence guarantees, it does not address the
question of how to represent the value function.

Other researchers have also sought to combine TD and policy search methods. For example,
Sutton et al. (2000) use policy gradient methods to search policy space but rely on TD methods to
obtain an unbiased estimate of the gradient. Similarly, in actor-critic methods (Konda and Tsitsiklis,
1999), the actor optimizes a parameterized policy by following a gradient informed by the critic’s
estimate of the value function. Like VAPS, these methods do not learn a representation for the value
function.

7.3 Variable Evaluations in Evolutionary Computation

Because it allows members of the same population to receive different numbers of evaluations, the
approach to on-line evolutionary computation presented here is similar to previous research about
optimizing noisy fitness functions. For example, Stagge (1998) introduces mechanisms for deciding
which individuals need more evaluations for the special case where the noise is Gaussian. Beielstein
and Markon (2002) use a similar approach to develop tests for determining which individuals should
survive. However, this area of research has a significantly different focus, since the goal is to find
the best individuals using the fewest evaluations, not to maximize the rewardaccrued during those
evaluations.

The problem of using evolutionary systems on-line is more closely related to other research
about the exploration/exploitation tradeoff, which has been studied extensively in the context of
TD methods (Watkins, 1989; Sutton and Barto, 1998) and multiarmed bandit problems (Bellman,
1956; Macready and Wolpert, 1998; Auer et al., 2002). The selection mechanisms we employ in our
system are well-established though, to our knowledge, their application to evolutionary computation
is novel.

8. Future Work

There are many ways that the work presented in this paper could be extended, refined, or further
evaluated. This section enumerates a few of the possibilities.

Using Different Policy Search Methods This paper focuses on using evolutionary methods to
automate the search for good function approximator representations. However, many other forms of
policy search such as PEGASUS (Ng and Jordan, 2000) and policy gradient methods (Sutton et al.,
2000; Kohl and Stone, 2004) have also succeeded on difficult reinforcement learning tasks. TD

908

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

methods could be combined with these methods in the same way they are combined withevolution-
ary computation in this paper. In the future, we plan to test some of these alternative combinations.

Reducing Sample Complexity As mentioned in Section 6, one disadvantage of evolutionary
function approximation is its high sample complexity, since each fitness evaluationlasts for many
episodes. However, in domains where the fitness function is not too noisy,each fitness evaluation
could be conducted in a single episode if the candidate function approximatorwas pre-trained using
methods based on experience replay (Lin, 1992). By saving sample transitions from the previous
generation, each new generation could be be trained off-line. This method would use much more
computation time but many fewer sample episodes. Since sample experience is typically a much
scarcer resource than computation time, this enhancement could greatly improve the practical ap-
plicability of evolutionary function approximation.

Addressing Non-Stationarity In non-stationarydomains, the environment can change in ways
that alter the optimal policy. Since this phenomenon occurs in many real-world scenarios, it is im-
portant to develop methods that can handle it robustly. Evolutionary and TDmethods are both well
suited to non-stationary tasks and we expect them to retain that capability when combined. In fact,
we hypothesize that evolutionary function approximation will adapt to non-stationary environments
better than manual alternatives. If the environment changes in ways that alter theoptimal repre-
sentation, evolutionary function approximation can adapt, since it is continually testing different
representations and retaining the best ones. By contrast, even if they are effective at the original
task, manually designed representations cannot adapt in the face of changing environments.

On-line evolutionary computation should also excel in non-stationary environments, though
some refinement will be necessary. The methods presented in this paper implicitly assume a station-
ary environment because they compute the fitness of each individual by averaging overall episodes
of evaluation. In non-stationary environments, older evaluations can become stale and misleading.
Hence, fitness estimates should place less trust in older evaluations. This effect could easily be
achieved using recency-weighting update rules like those employed by table-based TD methods.

Using Steady-State Evolutionary Computation The NEAT algorithm used in this paper is an
example ofgenerationalevolutionary computation, in which an entire population is is evaluated
before any new individuals are bred. Evolutionary function approximation might be improved by
using asteady-stateimplementation instead (Fogarty, 1989). Steady-state systems never replacean
entire population at once. Instead, the population changes incrementally after each fitness evalua-
tion, when one of the worst individuals is removed and replaced by a new offspring whose parents
are among the best. Hence, an individual that receives a high score can more rapidly effect the
search, since it immediately becomes a potential parent. In a generational system, that individual
cannot breed until the beginning of the following generation, which might bethousands of episodes
later. Hence, steady-state systems could help evolutionary function approximation perform better
in on-line and non-stationary environments by speeding the adoption of newimprovements. Fortu-
nately, a steady-state version of NEAT already exists (Stanley et al., 2005) so this extension is quite
feasible.

9. Conclusion

Reinforcement learning is an appealing and empirically successful approach to finding effective
control policies in large probabilistic domains. However, it requires a gooddeal of expert knowledge

909

WHITESON AND STONE

to put into practice, due in large part to the need for manually defining function approximator
representations. This paper offers hope that machine learning methods can be used to discover those
representations automatically, thus broadening the practical applicability of reinforcement learning.

This paper makes three main contributions. First, it introduces evolutionary function approx-
imation, which automatically discovers effective representations for TD function approximators.
Second, it introduces on-line evolutionary computation, which employs selection mechanisms bor-
rowed from TD methods to improve the on-line performance of evolutionary computation. Third, it
provides a detailed empirical study of these methods in the mountain car and server job scheduling
domains.

The results demonstrate that evolutionary function approximation can significantly improve the
performance of TD methods and on-line evolutionary computation can significantly improve evo-
lutionary methods. Combined, our novel algorithms offer a promising and general approach to
reinforcement learning in large probabilistic domains.

Acknowledgments

Thanks to Richard Sutton, Michael Littman, Gerry Tesauro, and Manuela Veloso for helpful discus-
sions and ideas. Thanks to Risto Miikkulainen, Nick Jong, Bikram Banerjee, Shivaram Kalyanakr-
ishnan, and the anonymous reviewers for constructive comments about earlier versions of this work.
This research was supported in part by NSF CAREER award IIS-0237699 and an IBM faculty
award.

Appendix A. Statistical Significance

To assess the statistical significance of the results presented in Section 5, we performed a series of
Student’s t-tests on each pair of methods in each domain. For each pair, we performed a t-test after
every 100,000 episodes. Tables 1 and 2 summarize the results of these testsfor the mountain car
and server job scheduling domains, respectively. In each table, the values in each cell indicate the
range of episodes for which performance differences were significant with 95% confidence.

Appendix B. NEAT Parameters

Table 3 details the NEAT parameters used in our experiments. Stanley and Miikkulainen (2002)
describe the semantics of these parameters in detail.

910

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

Episodes Q-Learning Off-Line ε-Greedy Softmax Off-Line Softmax Lamarckian
(x1000) NEAT NEAT NEAT NEAT+Q NEAT+Q NEAT+Q

Q-Learning
Off-Line 300 to
NEAT 1000

ε-Greedy 200 to 200 to
NEAT 1000 1000

Softmax 200 to 200 to 200 to
NEAT 1000 1000 1000

Off-Line 200 to 200 to 200 to 200 to
NEAT+Q 1000 500 1000 1000
Softmax 100 to 200 to 200 to 900 to 200 to
NEAT+Q 1000 1000 1000 1000 1000
Lamarkian 200 to 200 to 200 to 200 to 200 to 100 to
NEAT+Q 1000 1000 1000 1000 1000 1000

Table 1: A summary of the statistical significance of differences in averageperformance between
each pair of methods in mountain car (see Figures 4, 6, 7 & 10). Values in each cell
indicate the range of episodes for which differences were significant with 95% confidence.

Episodes Q-Learning Off-Line ε-Greedy Softmax Off-Line Softmax Lamarckian
(x1000) NEAT NEAT NEAT NEAT+Q NEAT+Q NEAT+Q

Q-Learning
Off-Line 300 to
NEAT 1000

ε-Greedy 200 to 200 to
NEAT 1000 1000

Softmax 200 to 200 to not significant
NEAT 1000 1000 throughout

Off-Line 300 to 300 to 100 to 200 to
NEAT+Q 1000 500 1000 1000
Softmax 200 to 200 to 400 to 200 to 200 to
NEAT+Q 1000 1000 1000 1000 1000

Lamarckian 300 to 300 to 100 to 100 to 700 to 200 to
NEAT+Q 1000 1000 1000 1000 1000 1000

Table 2: A summary of the statistical significance of differences in averageperformance between
each pair of methods in server job scheduling (see Figures 4, 6, 7 & 10).Values in each cell
indicate the range of episodes for which differences were significant with 95% confidence.

911

WHITESON AND STONE

Parameter Value Parameter Value Parameter Value
weight-mut-power 0.5 recur-prop 0.0 disjoint-coeff (c1) 1.0
excess-coeff (c2) 1.0 mutdiff-coeff (c3) 2.0 compat-threshold 3.0
age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25

mutate-link-weights-prob 0.9 mutate-add-node-prob (mn) 0.02 mutate-add-link-prob (ml) 0.1
interspecies-mate-rate 0.01 mate-multipoint-prob 0.6 mate-multipoint-avg-prob 0.4
mate-singlepoint-prob 0.0 mate-only-prob 0.2 recur-only-prob 0.0

pop-size (p) 100 dropoff-age 100 newlink-tries 50
babies-stolen 0 num-compat-mod 0.3 num-species-target 6

Table 3: The NEAT parameters used in our experiments.

References

D. Ackley and M. Littman. Interactions between learning and evolution.Artificial Life II, SFI
Studies in the Sciences of Complexity, 10:487–509, 1991.

T. Arita and R. Suzuki. Interactions between learning and evolution: The outstanding strategy
generated by the Baldwin Effect.Artificial Life, 7:196–205, 2000.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmedbandit problem.
Machine Learning, 47(2-3):235–256, 2002.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. InProceed-
ings of the Twelfth International Conference on Machine Learning, pages 30–37. Morgan Kauf-
mann, 1995.

L. Baird and A. Moore. Gradient descent for general reinforcement learning. InAdvances in Neural
Information Processing Systems 11. MIT Press, 1999.

J. M. Baldwin. A new factor in evolution.The American Naturalist, 30:441–451, 1896.

T. Beielstein and S. Markon. Threshold selection, hypothesis tests and DOE methods. In2002
Congresss on Evolutionary Computation, pages 777–782, 2002.

R. E. Bellman. A problem in the sequential design of experiments.Sankhya, 16:221–229, 1956.

E. J. W. Boers, M. V. Borst, and I. G. Sprinkhuizen-Kuyper. Evolving Artificial Neural Networks
using the “Baldwin Effect”. InArtificial Neural Nets and Genetic Algorithms, Proceedings of the
International Conference in Ales, France, 1995.

J. A. Boyan and M. L. Littman. Packet routing in dynamically changing networks: A reinforcement
learning approach. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural
Information Processing Systems, volume 6, pages 671–678. Morgan Kaufmann Publishers, Inc.,
1994.

J. A. Boyan and A. W. Moore. Generalization in reinforcement learning:Safely approximating the
value function. InAdvances in Neural Information Processing Systems 7, 1995.

912

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

M. V. Butz and S. W. Wilson. An algorithmic description of XCS.Soft Computing - A Fusion of
Foundations, Methodologies and Applications, 6(3-4):144–153, 2002.

R. H. Crites and A. G. Barto. Elevator group control using multiple reinforcement learning agents.
Machine Learning, 33(2-3):235–262, 1998.

K. Mathias D. Whitley, S. Gordon. Lamarckian evolution, the Baldwin effectand function opti-
mization. InParallel Problem Solving from Nature - PPSN III, pages 6–15, 1994.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adverserial classification. InProceed-
ings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 99–108, 2004.

K. L. Downing. Reinforced genetic programming.Genetic Programming and Evolvable Machines,
2(3):259–288, 2001.

L. Ertoz, A. Lazarevic, E. Eilerston, A. Lazarevic, P. Tan, P. Dokas, V. Kumar, and J. Srivastava.
The MINDS - Minnesota Intrustion Detection System, chapter 3. MIT Press, 2004.

T. C. Fogarty. An incremental genetic algorithm for real-time learning. InProceedings of the Sixth
International Workshop on Machine Learning, pages 416–419, 1989.

R. French and A. Messinger. Genes, phenes and the Baldwin effect: Learning and evolution in a
simulated population.Artificial Life, 4:277–282, 1994.

C. Giraud-Carrier. Unifying learning with evolution through Baldwinian evolution and Lamarckism:
A case study. InProceedings of the Symposium on Computational Intelligence and Learning
(CoIL-2000), pages 36–41, 2000.

D. E. Goldberg.Genetic Algorithms in Search, Optimization and Machine Learning. 1989.

D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function opti-
mization. InProceedings of the Second International Conference on Genetic Algorithms, pages
148–154, 1987.

F. Gomez, D. Burger, and R. Miikkulainen. A neuroevolution method for dynamic resource alloca-
tion on a chip multiprocessor. InProceedings of the INNS-IEEE International Joint Conference
on Neural Networks, pages 2355–2361, 2001.

F. Gruau and D. Whitley. Adding learning to the cellular development of neural networks: Evolution
and the Baldwin effect.Evolutionary Computation, 1:213–233, 1993.

F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and direct encoding
for genetic neural networks. InGenetic Programming 1996: Proceedings of the First Annual
Conference, pages 81–89, 1996.

G. E. Hinton and S. J. Nowlan. How learning can guide evolution.Complex Systems, 1:495–502,
1987.

913

WHITESON AND STONE

J. H. Holland.Adaptation in Natural and Artificial Systems: An Introductory Analysis with Appli-
cations to Biology, Control and Artificial Intelligence. University of Michigan Press, Ann Arbor,
MI, 1975.

J. O. Kephart and D. M. Chess. The vision of autonomic computing.Computer, 36(1):41–50,
January 2003.

N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion. In The Nineteenth Na-
tional Conference on Artificial Intelligence, pages 611–616, July 2004.

V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. InAdvances in Neural Information
Processing Systems 11, pages 1008–1014, 1999.

R. M. Kretchmar and C. W. Anderson. Comparison of CMACs and radial basis functions for
local function approximators in reinforcement learning. InInternational Conference on Neural
Networks, 1997.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration.Journal of Machine Learning Re-
search, 4(2003):1107–1149, 2003.

P. L. Lanzi, W. Stolzmann, and S. Wilson.Learning classifier systems from foundations to applica-
tions. Springer, 2000.

L.-J. Lin. Self-improving reactive agents based on reinforcement learning, planning, and teaching.
Machine Learning, 8(3-4):293–321, 1992.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment.Journal of the Association of Computing Machinery, 20(1):46–61, January 1973.

W. G. Macready and D. H. Wolpert. Bandit problems and the exploration/exploitation tradeoff. In
IEEE Transactions on Evolutionary Computation, volume 2(1), pages 2–22, 1998.

S. Mahadevan. Samuel meets Amarel: Automating value function approximation using global state
space analysis. InProceedings of the Twentieth National Conference on Artificial Intelligence,
2005.

S. Mannor, R. Rubenstein, and Y. Gat. The cross-entropy method for fast policy search. InPro-
ceedings of the Twentieth International Conference on Machine Learning, pages 512–519, 2003.

A. R. McCallum. Instance-based utile distinctions for reinforcement learning. In Proceedings of
the Twelfth International Machine Learning Conference, 1995.

A. McGovern, E. Moss, and A. G. Barto. Building a block scheduler using reinforcement learning
and rollouts.Machine Learning, 49(2-3):141–160, 2002.

P. McQuesten and R. Miikkulainen. Culling and teaching in neuro-evolution.In Thomas B̈ack,
editor,Proceedings of the Seventh International Conference on Genetic Algorithms, pages 760–
767, 1997.

914

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

D. McWherter, B. Schroeder, N. Ailamaki, and M. Harchol-Balter. Priority mechanisms for OLTP
and transactional web applications. InProceedings of the Twentieth International Conference on
Data Engineering, 2004.

A. Y. Ng and M. I. Jordan. PEGASUS: A policy search method for large MDPs and POMDPs.
In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 406–415.
Morgan Kaufmann Publishers Inc., 2000.

Y. Niv, D. Joel, I. Meilijson, and E. Ruppin. Evolution of reinforcement learning in foraging bees:
A simple explanation for risk averse behavior.Neurocomputing, 44(1):951–956, 2002.

S. Nolfi, J. L. Elman, and D. Parisi. Learning and evolution in neural networks. Adaptive Behavior,
2:5–28, 1994.

F. B. Pereira and E. Costa. Understanding the role of learning in the evolution of busy beaver: A
comparison between the Baldwin Effect and a Lamarckian strategy. InProceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), 2001.

L. D. Pyeatt and A. E. Howe. Decision tree function approximation in reinforcement learning. In
Proceedings of the Third International Symposium on Adaptive Systems:Evolutionary Compu-
tation and Probabilistic Graphical Models, pages 70–77, 2001.

N. J. Radcliffe. Genetic set recombination and its application to neural network topology optimiza-
tion. Neural computing and applications, 1(1):67–90, 1993.

M. Reidmiller. Neural fitted Q iteration - first experiences with a data efficientneural reinforcement
learning method. InProceedings of the Sixteenth European Conference on Machine Learning,
pages 317–328, 2005.

F. Rivest and D. Precup. Combining TD-learning with cascade-correlation networks. InProceedings
of the Twentieth International Conference on Machine Learning, pages 632–639. AAAI Press,
2003.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. InParallel Distributed Processing, pages 318–362. 1986.

J. Santamaria, R. Sutton, and A. Ram. Experiments with reinforcement learning in problems with
continuous state and action spaces.Adaptive Behavior, 6(2), 1998.

T. Sasaki and M. Tokoro. Evolving learnable neural networks underchanging environments with
various rates of inheritance of acquired characters: Comparison between Darwinian and Lamar-
ckian evolution.Artificial Life, 5(3):203–223, 1999.

A. A. Sherstov and P. Stone. Function approximation via tile coding: Automating parameter choice.
In J.-D. Zucker and I. Saitta, editors,SARA 2005, volume 3607 ofLecture Notes in Artificial
Intelligence, pages 194–205. Springer Verlag, Berlin, 2005.

W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in continuous spaces. InProceed-
ings of the Seventeeth International Conference on Machine Learning, pages 903–910, 2000.

915

WHITESON AND STONE

A. J. Smith. Applications of the self-organizing map to reinforcement learning. Journal of Neural
Networks, 15:1107–1124, 2002.

P. Stagge. Averaging efficiently in the presence of noise. InParallel Problem Solving from Nature,
volume 5, pages 188–197, 1998.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving adaptive neural networks with and
without adaptive synapses. InProceeedings of the 2003 Congress on Evolutionary Computation
(CEC 2003), volume 4, pages 2557–2564, 2003.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving neural network agents in the NERO
video game. InProceedings of the IEEE 2005 Symposium on Computational Intelligence and
Games, 2005.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary Computation, 10(2):99–127, 2002.

K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary complexification.
Journal of Artificial Intelligence Research, 21:63–100, 2004a.

K. O. Stanley and R. Miikkulainen. Evolving a roving eye for go. InProceedinngs of the Genetic
and Evolutionary Computation Conference, 2004b.

R. Sutton. Learning to predict by the methods of temporal differences.Machine Learning, 3:9–44,
1988.

R. S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. InAdvances in Neural Information Processing Systems 8, pages 1038–1044, 1996.

R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. InAdvances in Neural Information Processing Systems,
pages 1057–1063, 2000.

G. Tesauro. TD-Gammon, a self-teaching backgammon program, achievesmaster-level play.Neu-
ral Computation, 6(2):215–219, 1994.

J. A. van Mieghem. Dynamic scheduling with convex delay costs: The generalizedcµ rule. The
Annals of Applied Probability, 5(3):809–833, August 1995.

W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in autonomic systems. In
Proceedings of the International Conference on Autonomic Computing, pages 70–77, 2004.

C. Watkins.Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, 1989.

S. Whiteson and P. Stone. Adaptive job routing and scheduling.Engineering Applications of Arti-
ficial Intelligence, 17(7):855–869, 2004. Corrected version.

916

EVOLUTIONARY FUNCTION APPROXIMATION FORREINFORCEMENTLEARNING

J. Wildstrom, P. Stone, E. Witchel, R. J. Mooney, and M. Dahlin. Towards self-configuring hard-
ware for distributed computer systems. InThe Second International Conference on Autonomic
Computing, pages 241–249, June 2005.

K. Yamasaki and M. Sekiguchi. Clear explanation of different adaptivebehaviors between Dar-
winian population and Lamarckian population in changing environment. InProceedings of the
Fifth International Symposium on Artificial Life and Robotics, volume 1, pages 120–123, 2000.

X. Yao. Evolving artificial neural networks.Proceedings of the IEEE, 87(9):1423–1447, 1999.

W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop scheduling. In
Proceedings of the 1995 Joint Conference on Artificial Intelligence, pages 1114–1120, 1995.

M. Zweben and M. Fox, editors.Intelligent Scheduling. Morgan Kaufmann, 1998.

917

Journal of Machine Learning Research 7 (2006) 919–943 Submitted 2/05; Revised 12/05; Published 6/06

Rearrangement Clustering:
Pitfalls, Remedies, and Applications

Sharlee Climer SHARLEE@CLIMER.US

Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130-4899, USA

Weixiong Zhang ZHANG@CSE.WUSTL.EDU

Department of Computer Science and Engineering
and Department of Genetics
Washington University in St. Louis
St. Louis, MO 63130-4899, USA

Editor: Thorsten Joachims

Abstract

Given a matrix of values in which the rows correspond to objects and the columns correspond
to features of the objects, rearrangement clustering is theproblem of rearranging the rows of the
matrix such that the sum of the similarities between adjacent rows is maximized. Referred to by
various names and reinvented several times, this clustering technique has been extensively used in
many fields over the last three decades. In this paper, we point out two critical pitfalls that have been
previously overlooked. The first pitfall is deleterious when rearrangement clustering is applied to
objects that form natural clusters. The second concerns a similarity metric that is commonly used.
We present an algorithm that overcomes these pitfalls. Thisalgorithm is based on a variation of
the Traveling Salesman Problem. It offers an extra benefit asit automatically determines cluster
boundaries. Using this algorithm, weoptimallysolve four benchmark problems and a 2,467-gene
expression data clustering problem. As expected, our new algorithm identifies better clusters than
those found by previous approaches in all five cases. Overall, our results demonstrate the benefits
of rectifying the pitfalls and exemplify the usefulness of this clustering technique. Our code is
available at our websites.

Keywords: clustering, visualization of patterns in data, bond energyalgorithm, traveling salesman
problem, asymmetric clustering

1. Introduction

Science is organized knowledge. Wisdom is organized life.
- Immanuel Kant

Clustering is aimed at discovering structures and patterns of a given data set. As a fundamental
problem and technique for data analysis, clustering has become increasingly important, especially
with the explosion of data on the World Wide Web and the advent of massive quantities of genomic
data.

c©2006 Sharlee Climer and Weixiong Zhang.

CLIMER AND ZHANG

A given set of objects can be clustered in a variety of ways, depending on three criteria: the
degree of granularity desired, the distance measure that is employed, andthe objective that is stated
as the goal for the clustering.

The degree of granularity affects clustering results. There is usually a range of values for the
number of clustersk that are of interest. The desired degree of granularity is problem specific.
Consider for example, clustering the population of a large geographical region. A company wishing
to determine the location of a few distribution centers would desire a smallk value, while a utility
company may have applications requiring several thousand clusters. Once a range of values is
established fork, it is frequently useful to determine clustering results for several valuesof k within
this range and use domain knowledge to determine the best solution.

The choice of a distance measure also impacts clustering results. A distance measure is a means
of quantifying the pair-wise dissimilarities between objects. Alternatively, a similarity measure
is used to quantify pair-wise similarities. When objects can be accurately characterized as points
residing within a metric space, the Euclidean distance is frequently employed. Distance functions
are sometimes assumed to be symmetric (i.e., d(i, j) = d(j, i)), obey the triangle inequality, and
require thatd(i, i) = 0. In this paper, we do not assume that any of these properties necessarily
hold as there exist applications when effective distance measures do notobey these properties. For
instance, in the realm of document clustering, thecosine distanceis frequently employed, although
this measure does not obey the triangle inequality (Steinbach et al., 2000).

Finally, the objective that is stated as the goal guides the clustering results. Clustering problems
are interesting as there is no single objective that is universally applicable.Many objective functions
have been proposed and used throughout the history of clustering. Some objectives optimize with
respect to distances of objects to their respective cluster centers. Some base their optimizations
on diameters, or maximum pair-wise distances of each cluster. These objectives tend to assume
somewhat regular cluster configurations and can lead to undesirable results when cluster boundaries
are complex as in Figure 1. Intuitive clustering using the Euclidean distance measure is shown in
Figure 1(b). In this case, many objects are closer to the center of a different cluster than their own
and the diameters are not minimized.

One clustering problem that has been studied extensively is the problem ofidentifying and
displaying groups of similar objects that occur in complex data arrays (McCormick et al., 1972;
Arabie and Hubert, 1990; Arabie et al., 1988; Alpert, 1996; Johnson et al., 2004; Torres-Velzquez
and Estivill-Castro, 2004). The problem can be represented as a matrix where the rows correspond
to the objects to be clustered and the columns are their features. Similar objects can be identified
and displayed by rearranging the rows so that the overall similarity betweenall adjacent objects is
maximized. After rearranging the rows, the clusters are identified either manually or automatically
in a second step.

This clustering problem actually consists of two objectives. The first objective is consistently
used for a number of applications and requires either the maximization of the sum of similarities
between adjacent rows or the minimization of the sum of distances between adjacent rows. The
second objective varies in the literature, however, the general goal is toidentify clusters among the
rearranged objects.

In 1972, McCormick, Schweitzer, and White introduced thebond energy algorithm(BEA)
which yields an approximate solution for the first objective of this clustering problem. Since that
time, a “fast-growing literature” (Marcotorchino, 1987, p. 73) has appeared on this subject. This
problem has been applied to a number of different applications in diverseareas, such as database

920

REARRANGEMENT CLUSTERING

Figure 1: (a) A data set with Euclidean distance used for the distance measure. (b) Intuitive clus-
tering of the data set. Many objects are closer to the center of a different cluster than their
own and the diameters are not minimized.

design (Ozsu and Valduriez, 1999), data mining (Dunham, 2003), factorization of sparse matrices
(Alpert, 1996), matrix compression (Johnson et al., 2004), information retrieval (March, 1983),
manufacturing (Kusiak, 1985), imaging (Kusiak, 1984), marketing (Arabieet al., 1988), software
engineering (Gorla and Zhang, 1999), VLSI circuit design (Alpert, 1996), clustering of web-users
(Torres-Velzquez and Estivill-Castro, 2004), shelf space allocation (Lim et al., 2004), and clustering
of genes (Liu et al., 2004).

For some of these applications, it is useful to also rearrange the columns. Since the rearrange-
ment of the columns is independent of the rearrangement of rows, the columns can be rearranged in
a separate step, using the same technique that is used for the rows.

The core problem does not seem to have been given a consistent name and has been reinvented
several times1 (McCormick et al., 1972; Alpert and Kahng, 1997; Johnson et al., 2004; Torres-
Velzquez and Estivill-Castro, 2004). It has been referred to as “structuring of matrices” (Punnen,
2002), “data reorganization” (McCormick et al., 1972), “clustering of data arrays” (Lenstra, 1974),
“restricted partitioning” (Alpert and Kahng, 1997), and “matrix reordering” (Johnson et al., 2004).
Due to its nature and for the convenience of our discussion, we call this clustering problemrear-
rangement clustering.

Almost all of the existing rearrangement clustering algorithms have focusedon arranging the
objects to approximately maximize the overall similarity (or minimize the overall dissimilarity)
between adjacent objects, while few methods have been developed to automatically identify the
clusters of objects that form natural groups. An exception is the work ofAlpert and Kahng (1997), in
which they identified optimal partitioning for a given number of clustersk. For many rearrangement
clustering algorithms, the objects are first rearranged, then a domain expert determines the cluster
intervals.

Although rearrangement clustering has been extensively used for morethan 30 years, there are
two serious pitfalls that have been previously overlooked. The first pitfall is deleterious when the
objects to be rearranged form natural clusters; which is the case for every application we have

1. In fact, we also reinvented it ourselves at the beginning of this research.

921

CLIMER AND ZHANG

observed. The second pitfall concerns the use of themeasure of effectiveness(ME) metric, which is
employed by the bond energy algorithm.

In this paper, we first briefly summarize background material. Then we identify two pitfalls
of previous approaches. In Section 4 we present techniques for rectifying these pitfalls. Section 5
describes the implementation of rearrangement clustering without the pitfalls. We summarize the
results of using this implementation for four benchmark problems and a 2,467 gene expression data
clustering problem in Section 6. We conclude this paper with a brief discussion. A preliminary
report on this work appeared in an earlier paper (Climer and Zhang, 2004).

2. Background

Given a matrix in which each row corresponds to an object and each columncorresponds to a feature
of the objects, rearrangement clustering is the problem of shuffling the rows around until the sum of
the similarities between adjacent rows is maximized. The similarity of two objects can be measured
by a similarity score defined on their features.

More formally, letP represent the set of all possible permutations of rows for a given matrix
and s(i, j) represent a non-negative similarity measure for objects (rows)i, j. Then an optimal
permutationp∈ P for the given similarity measure is

V(P) = max

(

n−1

∑
i=1

s(i, i +1)

)

(1)

for n objects. Conversely, given a non-negativedissimilarity function,d(i, j), an optimal permuta-
tion p∈ P is

W(P) = min

(

n−1

∑
i=1

d(i, i +1)

)

. (2)

2.1 Bond Energy Algorithm

One of the first algorithms to tackle rearrangement clustering was the bond energy algorithm (BEA)
(McCormick et al., 1972). BEA uses the measure of effectiveness (ME)in which the similarity
measure for two rows,i and j, is

s(i, j) =
m

∑
k=1

aika jk (3)

wherem is the number of features andaik is the (non-negative)kth feature of objecti.2 Hence, each
element in the matrix, except those in the last row, is multiplied by the element directlybelow it, and
ME is equal to the sum of these products. The intuition behind this similarity measure is that large
values will be drawn to other large values, and small values to other small values, so as to increase
the overall sum of the products. The termbond energyexpresses this concept. BEA computes an
approximate solution that attempts to maximize ME.

BEA has gained wide recognition and remains the algorithm of choice for a number of applica-
tions. One such use arises in manufacturing. In these applications, parts or machines with similar
features are grouped into families in a process referred to ascell formation. Chu and Tsai (1990)

2. McCormick et al. used a single ME function to simultaneously quantify similarities of adjacent columns as well as
adjacent rows.

922

REARRANGEMENT CLUSTERING

compared three rearrangement algorithms for this application: rank orderclustering (ROC) (King,
1980), direct clustering analysis (DCA) (Chan and Milner, 1982), andBEA. They ran trials for var-
ious manufacturing applications and found that BEA outperformed the othertwo algorithms in all
of their tests.

BEA is also popular for database design. The goal here is to determine setsof attributes that are
accessed by distinct sets of applications, using a process referred to asvertical fragmentation(Ozsu
and Valduriez, 1999). BEA has been promoted for this use (Hoffer andSeverance, 1975; Navathe
et al., 1984). Furthermore, BEA is included in textbooks on database design (Ozsu and Valduriez,
1999) and data mining (Dunham, 2003).

BEA has also been used for analyzing program structure in the field of software engineering
(Gorla and Zhang, 1999). The locations of all of the components, their respective calls, and the
depth of nested calls all contribute to the difficulties that can be expected during the debugging
and maintenance phases of a program’s life. Due to the fact that these phases are generally much
more expensive than the other phases, structural improvements are valuable. BEA has been used to
determine the placement of components with good results (Gorla and Zhang, 1999).

A recent application of BEA was the clustering of gene expression data (Liu et al., 2004). The
current microarray gene expression profiling technology (Baldi and Hatfield, 2002; Eisen et al.,
1998) is able to examine the expressions of hundreds, thousands or even tens of thousands of genes
at once. A large amount of microarray data has been collected on numerous species and organisms,
ranging from microbial organisms to plants to animals. The results of a set of microarray experi-
ments on a collection of genes under different conditions are typically arranged as a matrix of gene
expression levels in real values, where the rows represent the genesto be analyzed and the columns
corresponds to experimental conditions (Baldi and Hatfield, 2002; Eisenet al., 1998). The objective
is to identify and display clusters of genes that have similar expression patterns. BEA was shown to
outperformk-means for the clustering of 44 yeast genes (Liu et al., 2004).

2.2 Traveling Salesman Problem

It has been pointed out that rearrangement clustering is equivalent to the Traveling Salesman Prob-
lem (TSP) and can be solved tooptimality by solving the TSP (Lenstra, 1974; Lenstra and Kan,
1975). The TSP forn cities is the problem of finding a tour visiting all the cities and returning to
the starting city such that the sum of the distances between consecutive citiesis minimized. In other
words, the TSP is to find a cyclic permutation of the cities so that the total distanceof adjacent cities
under the permutation is minimized. It is well known that TSP is NP-hard (Karp,1972).

The mapping from a rearrangement clustering problem instance to a TSP instance is straight-
forward (Lenstra, 1974; Lenstra and Kan, 1975). We first view each object as a city and transform
the dissimilarity between two objects to the distance between the corresponding cities. The TSP
tour, which must have the minimum distance among all complete tours, is an optimal rearrange-
ment of the objects with the minimum dissimilarity. (We use the wordsdistanceanddissimilarity
synonymously in this paper.) Thus, the TSP is the same problem as finding an optimal permutation
p, except that the TSP finds a cycle through the cities and rearrangement clustering finds a path.

This discrepancy can easily be rectified by adding adummy city. A dummy city is an added city
whose distance to each of the other cities is equal to a constantC. The location of the dummy city
is the optimal point for breaking the TSP cycle into a path (Lenstra and Kan, 1975). The TSP path
is defined as the TSP tour with the dummy city and its two incident edges excluded.The length of

923

CLIMER AND ZHANG

this path is equal to the length of the tour minus 2C. Following are two critical observations on the
above extended TSP.

Lemma 1 The direct distance between the two cities that are separated by the dummy city is greater
than or equal to any of the distances between adjacent pairs of cities on theTSP tour, and the total
distance of the TSP path is the smallest possible.

Proof: We prove the first part of the Lemma by contradiction. Assume that the distanced(x,y)
between an adjacent pair of cities,x andy, on the TSP tourT is greater than the direct distance
d(u,v) of the two cities,u andv, which are spanned by the dummy city. That is,d(u,v) < d(x,y).
Then we can directly connect citiesu andv, and insert the dummy city between citiesx andy, with
a net difference ofd(u,v)−d(x,y) < 0 to the final tour length. This contradicts the fact thatT is a
minimum-distance complete tour.

We prove the second part of the Lemma by contradiction also. Assume the length of the TSP
path isD and that there exists a path with a lengthD′ whereD′ < D. A cycle that includes the
dummy city can be constructed using the new path and its length isD′+2C. This cycle is a feasible
solution to the original TSP, but has a length that is shorter than the original TSP solution ofD+2C.
This contradicts the fact that the original cycle has the minimum possible length.⊓⊔

2.3 Restricted Partitioning

A well-known approximation algorithm for solving the Euclidean TSP was introduced by Karp
(1977) and uses the rule of thumb that every city within the current cluster isvisited before moving
out of the cluster. This work was cited two decades later and it was proposed that the “inverse” of
Karp’s algorithm be used to determine clustersi.e., solve the TSP to find the clusters (Alpert and
Kahng, 1997). In other words, Alpert and Kahng reinvented rearrangement clustering and referred
to it asrestricted partitioning(RP). They took rearrangement clustering a step further, however, as
they introduced an algorithm for automatically determining the locations of clusterboundaries for a
given TSP solution and a given number of clustersk. This algorithm computes the boundaries that
will yield a set of clusters in which the largest diameter is as small as possible. This partitioning
algorithm is based on dynamic programming and runs inO(kn3) time when applied after solving a
TSP tour andO(kn2) time when applied after solving a TSP path.

Alpert and Kahng applied rearrangement clustering to various problems,including cluster-
ing of flower types and clustering cities according to their average temperatures throughout the
year (Alpert and Kahng, 1997). However, the main focus of their workwas on partitioning circuits
for use in the computer-aided design of VLSI circuits (Alpert, 1996).

2.4 Matrix Reordering

Rearrangement clustering was recently reinvented by David Johnson etal. and referred to asmatrix
reordering(Johnson et al., 2004). This work presents a lossless compression strategy for effective
storage and access of large, but sparse, boolean matrices on disk. The columns of these matrices are
rearranged so as to bring together the one’s in the rows. In their paper,the problem was identified
as a TSP. This work was demonstrated by compressing matrices within the domains of interactive
visualization and telephone call data.

As with Alpert and Kahng’s work, rearrangement clustering was taken astep further in Johnson
et al.’s paper. For the problems they addressed, finding even an approximate solution for the TSP

924

REARRANGEMENT CLUSTERING

was obstructed as many of these problems were too large to fit into main memory. To address this
obstacle, they devised a multi-faceted approach that blends classical TSPheuristics with instance-
partitioning and sampling. Their approach resulted in significant improvementsin access time as
well as compression.

2.5 Rearrangement Clustering

Just prior to the work done by Johnson et al., we reinvented rearrangement clustering ourselves
(Climer and Zhang, 2004). We were motivated by the need to cluster gene expression data and
inspired by the work of Eisen et al. (1998). In their work, Eisen et al. clustered a 2,467 yeast
gene set using hierarchical clustering, then arranged the results in a linear order, creating a matrix
in which each row corresponded to a gene and each column to an experimental condition. After
creating this matrix, they examined it and manually determined cluster boundaries.

Given that the objective was to derive a matrix from which clusters could beidentified, we set
out to optimize such a matrix. That is when we reinvented rearrangement clustering and identified
it as the TSP. However, we soon realized there was a flaw in our approach. This pitfall is described
in the next section.

3. Pitfalls

Although rearrangement clustering has been extensively studied and used over the last three decades,
there is a serious flaw in previous approaches when applied to data that falls into natural clusters.
Consider the example illustrated in Figure 2, where objects have only two features (their horizontal
and vertical coordinates) and the dissimilarity between objects is the Euclideandistance. When
these objects are rearranged according to the objective in (2), the largecluster on the bottom is bro-
ken in half and placed at each end of the ordering. Although objectsx andy are very similar, they
are separated by 16 objects in two different clusters. We use this simple example as the optimal
solution is obvious. However, it is clear that in general, clusters may be broken in pieces in order to
minimize the “jumps” to adjacent clusters.

When natural clusters occur, the inter-cluster distances are much greater than the intra-cluster
distances. Therefore, the sum of distances between adjacent objects inobjective (2) is dominated
by the inter-cluster distances. The rearrangement may skew itself in orderto minimize these large
distances. In the next section, we propose an alternative objective function that addresses this defect
and present a technique for resolving this new objective.

The second pitfall applies to the measure of effectiveness (ME) that is used by BEA. ME uses
the similarity measure that is defined in equation (3). Two problems associated with ME are that
it can fail to ascertain the quality of clustering of non-maximal values and it tends to push small
values to the top and bottom of the rearranged matrix. Consider the following examples. Table
1 shows three arrangements of a binary matrix that have the same ME= 0, which is the highest
value possible. ME fails to distinguish between the levels of clustering of the pairs of zeros. This
behavior is not limited to zeros. Table 2 shows three arrangements of a ternary matrix. The first two
have ME values of 16, which is optimal. However, the first fails to bring together any of the three
identical rows, each containing all ones. Moreover, note how the small values are pushed to the top
and bottom of the array. The third arrangement is more likely to be of use formost applications, but
it has a sub-optimal ME value of 15.

925

CLIMER AND ZHANG

Figure 2: (a) Three clusters. (b) The TSP path specifying the optimal rearrangement. Althoughx
andy are very close, their placement in the rearrangement is far apart.

0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0
0 1 0 1 0 1 1 0 1

(a) (b) (c)

Table 1: Three rearrangements of a matrix with an optimal ME. (a) One pair, (b) two pairs, (c) three
pairs of zeros are aligned.

4. Remedies

The second pitfall can be easily rectified by using a different similarity measure. There are a number
of similarity measures that are available, including simple Euclidean distances and somewhat more
complicated correlation coefficients. In general, the measure that is used can have a profound effect
on clustering results and should be selected to suit the problem that is addressed.

We now turn our attention to the first pitfall. A remedy to this pitfall is to omit the inter-cluster
distances from the sum in objective (2). We redefine our objective as follows:

W(p,k) = min

(

k

∑
i=1

vi−1

∑
j=ui

d(j, j +1)

)

(4)

whereui is the first item andvi is the last item of clusteri, andk is the number of clusters. The inner
summation of objective (4) is the sum of distances between adjacent rows within a cluster and the
outer summation is over all the clusters. In this way, we minimize the intra-cluster distances while
disregarding the inter-cluster distances. The inter-cluster distances will assume whatever values best
suit the minimization of intra-cluster distances.

This revised problem can be solved using the TSP with a twist. The key to solving this problem
lies in Lemma 1. What if we introducek dummy cities to the TSP representation of the clustering
problem? Just as one dummy node cuts the TSP cycle into a path, these dummy citiesvirtually
cut the tour intok segments and form the cluster borders. The distances between pairs of dummy
cities are set to infinity, to ensure that no two dummy cities are adjacent on the tour. After this
“TSP+k” problem is solved, the dummy cities and their incident edges are removed andreplaced

926

REARRANGEMENT CLUSTERING

0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0
1 2 1 1 2 1 1 1 1
1 1 1 2 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 1
0 0 0 0 0 0 2 1 1

(a) (b) (c)

Table 2: Three rearrangements of a matrix. (a) ME= 16, which is optimal. The three identical
rows of ones are all separated. (b) ME= 16. Two of the rows of ones are adjacent, but
the third is separated by two intervening rows. (c) A clustering that would probably be
preferred, but ME= 15.

by cluster borders. The lengths of the edges that span the borders, orborderlineedges, are not of
any consequence in the solution of TSP+k. In this way, the TSP+k solution optimizes the intra-
cluster distances, while disregarding inter-cluster distances. As a bonus, the cluster boundaries are
automatically identified.

Theorem 2 When there exist k dummy cities, the sum of the lengths of the k paths that aredefined
by the TSP+k tour is minimized, and every edge in these paths has a distance that is no longer than
any of the resulting k borderline edge lengths.

Proof: No two dummy cities are adjacent on the TSP+k tour, as the distance between them is
infinity. Therefore, every TSP+k tour has 2k edges of costC that are adjacent to the dummy cities.
The rest of the proof is similar to the proof of Lemma 1.⊓⊔

In Figure 3, an example of the use of this new objective function is shown. Aset of color samples
are rearranged, using the intensities of their red, green, and blue components as their features. BEA
finds a suboptimal solution as shown in the figure. Solving the TSP with objective (2) leads to
splitting the large color cluster in half and inserting the gray color cluster in order to reduce the
inter-cluster distance. Note that the color immediately above the gray cluster is very similar to the
color immediately below the gray cluster, yet they are far apart in the rearrangement. Moreover,
none of the gray colors separating them are nearly as similar to either of themas the two are to each
other. This solution is optimal for objective (2). Restricted partitioning (RP) automatically identifies
the cluster boundaries as shown in Figure 3(d). RP yields the same linear ordering as TSP+k with
k = 1. The partitioning minimizes the maximum diameter of the clusters. Notice that this goalsplits
the gray colors between the two clusters. Finally, by using the new objectivein (4) and adding a
second dummy city, the inter-cluster distance is ignored and the two clusters are correctly formed
as shown in Figure 3(e).

Theorem 2 guarantees the optimality of identifyingk clusters for a givenk, based on the objec-
tive function (4). Assuming that a range ofk values is specified, determining the best value fork
within this range is the next consideration.

927

CLIMER AND ZHANG

Figure 3: Rearrangement clustering of a set of color samples using their red, green, and blue compo-
nents as their features. (To view this figure in color, please see the on-lineversion of this
paper.) (a) The initial arrangement. (b) Rearrangement using BEA. (c)Rearrangement
using TSP. This rearrangement is optimal for objective (2). (d) Restricted partitioning
with k = 2. The black line indicates the cluster boundary. This algorithm yields the same
ordering as TSP+k with k = 1. The gray cluster is split as the partitioning minimizes
the maximum diameter. (e) Rearrangement using TSP+k with k = 2. The clusters are
correctly identified as indicated by the black line.

928

REARRANGEMENT CLUSTERING

Theorem 3 Let

dmean=
∑k

i=1 ∑vi−1
j=ui

d(j, j +1)

(n−k)
. (5)

As k increases, dmeanis non-increasing.

Proof: dmeanis the average intra-cluster distance. In general, ask increases, the membership of
clusters may be rearranged to provide the current optimal solution. Let usconsider the special case
in which the number of clusters is increased fromk to k+1 and the only change in the TSP tour is
that a single edge is replaced by two edges with costsC and the new dummy node. From Theorem
2, we know that the deleted edge must have the maximum distance. Thus, the average distance
of the edges cannot increase with this change. Since the TSP finds the minimumtour distance,
this property holds when the tour undergoes more than just this one minor change. Therefore, the
average distance within clusters is non-increasing.⊓⊔

The TSP+k algorithm guarantees an optimal rearrangement clustering for a givenk. However,
as shown by Theorem 3, we must consider desirable qualities other than average intra-cluster dis-
tance when determining the best value fork. One approach to handling this problem is to run the
algorithm for each value ofk in the desired range and use problem-specific information to deter-
mine the best clustering result. Another approach is based on the observation that a clustering in
which the clusters are well-defined will tend to have large distances betweenclusters. Therefore, an
analysis of the changes in inter-cluster distances may be useful in determining the bestk.

When using TSP+k, the resulting clusters are randomly ordered. For some of our experiments,
we applied TSP to the border cities to determine an ordering of the clusters. The resulting ordering
minimizes the distances between clusters. While this is not necessary for identifying the clusters,
it yields useful information about the average distance between clusters,may aid the evaluation of
variousk values, and may be advantageous for displaying the clustering result. It isalso useful if it
is desirable to merge small clusters in a post-processing step.

5. Implementation

Our code is composed of two programs and is available on-line.3 The first program converts a data
matrix into a TSP problem, and the second rearranges the rows of the data according to the TSP
solution. Any TSP solver can be used. Our method is usable for large clustering problems thanks to
recent advances in TSP research.

The TSP has been extensively studied for many decades. A plethora of papers have been written,
books have been published (Gutin and Punnen, 2002; Lawler et al., 1985), and websites have been
devoted to this problem (Cook, web; Moscato, web; Johnson, web).

There has been a vast amount of research devoted to solving TSPs to guaranteed optimality. For
all of our experiments, we used Concorde (Applegate et al., 2001), an award winning TSP solver
that has successfully solved a record 24,978-city TSP instance to optimality.The Concorde code is
publicly available athttp://www.tsp.gatech.edu//concorde.html.

There are many applications in which computation time is critical. Fortunately, a great deal of
research has been devoted to quickly finding high-quality approximate solutions for the TSP, yield-
ing a wealth of available code (Lodi and Punnen, 2002). These implementations vary drastically in

3. Please find the code athttp://www.climer.usor http://www.cse.wustl.edu/∼zhang/projects/software.html.

929

CLIMER AND ZHANG

running time and quality of solutions. The fastest compute solutions almost as quickly as the input
can be read.

Others run more slowly but yield more accurate solutions. For instance, Helsgaun’s method
(2000), which is based on the Lin-Kernighan heuristic (Lin and Kernighan, 1973), has produced the
optimal solution for every optimally solved problem Helsgaun has obtained, including a 15,112-
city TSP instance. It has also improved upon the best known solutions for anumber of large-scale
instances, including a 1,904,711-city problem. Useful comparisons of time versus quality for a
number of approximate algorithms are available (Johnson and McGeoch, 2002; Arora, 2002).

In some cases there are an extremely large number of objects that need to beclustered. Pro-
pitiously, TSP research has explored the problem of solving very large instances. For example,
Johnson et al. presented an algorithm for solving TSP instances that aretoo large to fit into main
memory (Johnson et al., 2004).

In some applications, there may exist a distance function that is not strictly symmetric. That
is, d(i, j) may not necessarily be equal tod(j, i). For example, the affinities between amino acid
sequences are frequently

asymmetric due to different lengths of the sequences and/or asymmetries in theamino acid
substitution matrix. In these cases, TSP+k is still viable. Instead of solving a symmetric TSP, an
asymmetric TSP (ATSP) would be computed. There are a number of approximation algorithms
for the ATSP and comparisons of these algorithms are available (Johnson et al., 2002). Optimal
solutions can be found using branch-and-bound (Carpaneto et al., 1995), branch-and-cut (Fischetti
et al., 2002), or cut-and-solve (Climer and Zhang, 2006). Furthermore, symmetric TSP (STSP)
codes such as Concorde could be used by converting the ATSP instanceinto an STSP instance. One
way to make this conversion is the2-nodetransformation (Jonker and Volgenant, 1983), in which
the number of cities is doubled.

6. Experimental Comparisons and Applications

In this section, we describe four benchmark problems as well as a 2,467-gene expression data clus-
tering problem. The benchmark problems were previously solved using BEAwith the ME metric.
The clusters were manually identified by domain experts. We present comparisons with TSP+k
using the ME metric. We did not compare these results with restricted partitioning (RP). Such a
comparison would be misleading as RP minimizes with respect to cluster diameters. In the final
part of this section, we present the results of clustering a yeast gene data set. Yeast genes have been
extensively studied and functionally related groups have been identified.This research allows ob-
jective evaluation of cluster quality. We used these evaluations to compare results from hierarchical
clustering, RP, and TSP+k.

6.1 Testbed

Four examples from diverse application domains have been previously presented in the literature.
The first three were compared by McCormick et al. (1972) and Lenstra and Kan (1975). They
include an airport design example, an aircraft types and functions example, and a marketing ap-
plications and techniques example. The fourth example was used by March (1983) for clustering
personnel database records.

We also tackled rearrangement clustering of a large set of gene expression data. The data set
consists of 2,467 genes in the budding yeastSaccharomyces cerevisiaethat were studied during the

930

REARRANGEMENT CLUSTERING

diauxic shift (DeRisi et al., 1997), mitotic cell division cycle (Spellman et al., 1998), sporulation
(Chu et al., 1998), and temperature and reducing shocks (P.T. Spellman,P.O. Brown, and D. Bot-
stein, unpublished results), yielding 79 measurements that are used as the features for the genes.
These genes were previously clustered (Eisen et al., 1998) and the datais available at the PNAS
website (http://www.pnas.org).

6.2 Results for Benchmark Problems

In this section, we first compare the old and new objective functions for four problems that have been
presented in work by McCormick et al. (1972), Lenstra and Kan (1975), and March (1983). We
based our comparisons on the quality of the individual clusters that are identified. Since McCormick
et al. and March manually determined clusters based on the ME metric, we also used ME and
compared cluster quality using the ME metric for these four problems.

The clusters identified by McCormick et al. (1972) do not strictly partition the objects. There
is some overlapping and some objects are left unclustered. Overlapping ofclusters is not allowed
in most applications and is not addressed by our new objective. For thesereasons, our comparisons
are based on non-overlapping results.

The marketing example is shown in Figure 4. The rows represent applications and the columns
represent various techniques. This is a binary matrix, where a one indicates that a technique has
been shown to be useful for an application and a zero indicates that it hasnot been useful. This is
the only example we present in which it is desirable to find clusters for both thecolumns and the
rows. The ME for the entire matrix is equal whether approximately solved by BEA or optimally
solved as a TSP withk = 1. When clustering was performed on the techniques (columns), TSP+k
with k = 17 identified the same three clusters that were identified by McCormick et al. (1972).
When TSP+k was used to cluster the applications (rows), it identified clusters with two, three,
and four elements, respectively. Notice that McCormicket al. identified three clusters, which
overlapped for the applications (rows) clustering. We used the four- and three-element clusters that
were not overlapping for comparisons. The four-element cluster was the same for both algorithms.
However, the three-element clusters differed by one application,i.e. BEA grouped together ‘sales
forecasting’, ‘brand strategy’, and ‘advertising research’ while TSP+k substituted ‘pricing strategy’
for ‘sales forecasting’. Computing the ME for the three applications yieldeda value of 8 for BEA
and 10 for TSP+k, revealing that, based on ME, the cluster identified by TSP+k is of higher quality.

The airport design example was presented by McCormick et al. (1972) to demonstrate how
BEA can be used for problem decomposition, reducing a large project intoa set of small projects
with minimal interdependency. The values in the matrix were set to 0, 1, 2, or 3 toindicate no,
weak, moderate, or strong dependencies respectively. Figure 5 shows the results for this data. The
ME for the entire matrix is 577 for BEA and improved to 580 for TSP withk = 1. McCormick et
al. (1972) identified eight clusters, with three pairs of clusters overlapping by one object. To make
comparisons, we eliminated these overlaps by including the overlapped object in only one cluster,
the one that increased the ME value the most. In order to compare the quality ofthe clusters, we
only considered the intra-cluster similarities and ignored the similarities between adjacent clusters.
The ME for each cluster was computed and the sum of ME values for the eight clusters is 464 for
BEA and 503 for TSP+k with k = 8, yielding an improvement in the quality of the clusters.

Figure 6 shows the results for rearrangement clustering of aircraft types based on their functions.
Values in the matrix were set from zero to two reflecting the extent that the aircraft can perform the

931

CLIMER AND ZHANG

Figure 4: Marketing techniques and applications example. (a) Initial matrix. (b) BEA clustering.
The gray rectangles indicate the clusters identified by McCormick et al. (1972). The
black horizontal lines indicate the two non-overlapping clusters that are compared. (c)
Optimal clustering withk = 1. (d) TSP+k solution. The horizontal lines indicate the two
clusters that are compared with the BEA solution. The 4-element cluster is the same for
both algorithms. The 3-element clusters differ by one item, yielding ME = 8 for BEA and
ME = 10 for TSP+k.

Figure 5: Airport design example. (a) Initial array. (b) BEA clustering with ME = 577 for the entire
matrix. The sum of the ME values for the 8 clusters is 464. (c) Optimal clustering with
k = 1, yielding ME = 580 for the entire matrix. (d) Optimal clustering withk = 8. The
sum of the ME values for the 8 clusters is 503.

function. The ME for the entire matrix is 1930 for BEA and 1961 for TSP withk = 1. The clusters
identified by McCormick et al. (1972) had substantial overlapping. We compared the two largest
clusters, containing 24 and 14 aircraft, respectively. The two largest clusters for TSP+k with k = 17
also contained 24 and 14 aircraft. The sum of the ME values for the two clusters is 1545 for BEA
and is 1616 for TSP+k.

Figure 7 shows the results for the personnel database records examplefrom March (1983). The
values in this matrix range from one to one hundred. The ME for the entire matrix is 1,791,870 for
BEA and 1,836,260 for TSP withk = 1. March identified six clusters with no overlapping. The sum
of the ME values for these clusters using BEA is 1,533,034 and for TSP+k with k = 6 is 1,645,207.

932

REARRANGEMENT CLUSTERING

Figure 6: Aircraft types and functions example. (a) Initial array. (b) BEA clustering with ME =
1930 for the entire matrix. The sum of the ME values for the two largest clusters of
aircraft is 1545. (c) Optimal clustering withk = 1, with ME = 1961 for the entire matrix.
(d) Optimal clustering withk = 17. The sum of the ME values of the two largest clusters
is 1616. These clusters contain the same number of aircraft as the BEA clusters with 24
and 14 aircraft respectively.

Figure 7: Personnel database records example. (a) Initial array. (b) BEA clustering with ME =
1,791,870 for the entire matrix. The sum of the ME values for the 6 clusters is 1,533,034.
(c) Optimal clustering withk = 1 and ME = 1,836,260 for the entire matrix. (d) Optimal
clustering withk = 6. The sum of the ME values for the 6 clusters is 1,645,207.

6.3 Gene Expression Data

In this section we compare rearrangement clustering methods for yeast gene expression data. Yeast
genes have been extensively researched and annotated, allowing objective evaluation of the quality
of clusters found by each method.

933

CLIMER AND ZHANG

6.3.1 METRICS

In our gene clustering tests, we used the Pearson correlation coefficient (PCC) for the similarity
measure. The PCC is defined as follows:

s(x,y) =
∑XY− ∑X ∑Y

N
√

(

∑X2−
(∑X)2

N

)(

∑Y2−
(∑Y)2

N

)

(6)

whereX andY are the feature vectors for genesx andy, respectively, andN is the number of features
for which bothx andy have data tabulated. PCC has been extensively used for gene expression
data clustering and was used for comparisons of gene clustering algorithmsby Shamir and Sharan
(2002). After finding the similarities, we scaled and applied an additive inverse to translate the
similarities to nonnegative integral distances.

To objectively evaluate the performance of the various algorithms on gene expression data, we
used Gene Ontology (GO) Term Finder (http://www.yeastgenome.org/), a tool for finding function-
ally related groups of yeast genes in a given cluster. This tool calculatesa p-value that indicates
the likelihood of observing a group ofu genes with a particular functional annotation in a cluster
containingv genes, given thatM genes have this annotation in the total population ofN genes. More
specifically, thep-value is equal to

1−
u−1

∑
j=0

(

M
j

)(

N−M
v− j

)

(

N
v

)

.

(7)

Notice that the size of the cluster is reflected in calculating thep-value. For instance, if a small and
a large cluster both contain a group ofu genes with a particular functional annotation, thep-value
will be greater for the group in the large cluster as the probability of findingu genes with the given
functional annotation is greater in a larger cluster.

6.3.2 RESULTS FORGENE EXPRESSIONDATA

In this section, the results of using three different algorithms for clusteringthe 2,467 yeast gene data
set are presented. The first algorithm uses a hierarchical technique and was presented by Eisen et
al. (1998). After applying hierarchical clustering, the results were illustrated in a linear fashion and
ten clusters were identified by a domain expert. The identification of clusters was the same as is
commonly used in rearrangement clustering. However, the rearrangement of the rows was not based
on finding maximum similarity between adjacent rows. Out of the 2,467 genes, 263 were selected
for the ten clusters that were identified. It was observed by Eisen et al. that each cluster contained
genes that are functionally related.

We ran TSP+k with k = 100, k = 200, andk = 300 on the 2,467-gene data set. Our results
are compared with restricted partitioning (RP) (Alpert and Kahng, 1997) and the results from Eisen
et al. (1998). We adjusted thek value for RP so as to yield the same number of non-singleton
clusters for comparisons. GO Term Finder (http://www.yeastgenome.org/) was run for each cluster
found in each trial and on the ten clusters identified by Eisen et al. Functional groups found withp-
values having orders of magnitude less than or equal to 10−7 were designated as “good” functional

934

REARRANGEMENT CLUSTERING

(a) (b) (c) (d) (e) (f)
TSP+k 44 56 100 13 129.6 40

RP 44 0 44 13 101.4 28
TSP+k 77 123 200 13 81.8 44

RP 77 0 77 16 42.2 34
TSP+k 109 191 300 16 63.8 41

RP 109 1 110 18 33.1 39
Eisen et al. 10 - - 9 26.3 49

Table 3: Results for 2,467 yeast gene clustering where “good” functional groups are defined as
those withp-values with orders of magnitude≤ 10−7. (a) Number of non-singleton clus-
ters. (b) Number of singleton clusters. (c) Value ofk used. (d) Number of clusters found
containing “good” functional groups. (e) Average size of these “good” clusters. (f) Num-
ber of “good” functional groups.

groups. Tables 3 and 4 contain the results of these trials. Figure 8 displaysthe reordered matrices
for TSP+k.

An interesting result of the TSP+k tests was the large number of singletons, as listed in Table
3. In all cases, more than half of the clusters contained singletons. Yet there was not a dominance
of clusters containing only two or three genes. For instance, there were only six clusters containing
two or three genes whenk = 100. However, that trial had 56 singletons. Gene expression data is
notoriously noisy, so many of the singletons that were found may correspond to outliers in the data.
This result suggests that TSP+k may be useful for identifying outliers.

For all the values ofk that we tested, the rearrangement clustering algorithms found more “good”
clusters than the nine found by Eisen et al. RP found more “good” clustersthan TSP+k for the two
larger trials. However, the TSP+k clusters were larger in all three trials and a greater number of
the 2,467 genes were placed into meaningful clusters. Note that thep-value essentially reflects the
concentrationof related genes within a cluster. Consequently, for a fixedp-value and a particular
functional relationship, a larger cluster contains more of these related genes than a smaller cluster.

Table 3 lists the number of “good” functional groups found. TSP+k found more of these groups
than RP for each run. Eisenet al. found more groups than any of the rearrangement clustering trials.
However, the rearrangement clustering algorithms found more distinct functional groups than Eisen
et al. when the results from the three trials are combined. Table 4 lists the combined results. Eisen et
al. found 49 “good” functional groups. 25 of these groups were missed by RP and 18 were missed
by TSP+k. RP found a total of 48 distinct functional groups. 24 of these were missed by Eisen et
al. and 11 were missed by TSP+k. Finally, TSP+k found 61 distinct functional groups. Eisen et al.
missed 37 of these and RP missed 33. Some of these functional groups wererelated and appeared
in the same cluster. For example, in all but one trial, TSP+k identified a “good” cluster containing
functionally related groups of genes involved in carbohydrate transporter activity and six related
functions. All seven of these functional groups were overlooked by both RP and Eisen et al.

Tables listing the functional groups for each trial can be found on the webat http://www.
climer.us/cluster/TSPX.htmandhttp://www.climer.us/cluster/RPX.htm, whereX is replaced by the
value ofk. The results for Eisen et al. can be found athttp://www. climer.us/cluster/eisen.htm.

935

CLIMER AND ZHANG

Figure 8: 2,467 yeast gene expression data randomly ordered (left) and rearranged using TSP+k
with k equal to 100, 200, and 300. Cluster boundaries are marked by black lines. Missing
data values are colored white.

6.3.3 CHANGES IN DOMAIN KNOWLEDGE

About a year ago, we ran GO Term Finder on the clusters found by Eisenet al. and those found
using TSP+k. The results are listed in Table 5. It can be expected that a number of additional genes

936

REARRANGEMENT CLUSTERING

Total number of Number missed Number missed Number missed
distinct groups by Eisen et al. by RP by TSP+k

Eisen et al. 49 - 25 18
RP 48 24 - 11

TSP+k 61 37 33 -

Table 4: Total number of distinct “good” functional groups found by each algorithm. For each
algorithm, the number of groups missed by the other algorithms are shown.

old number new number old number new number
k of clusters of clusters of groups of groups

TSP+k 100 13 13 39 40
TSP+k 200 12 13 42 44
TSP+k 300 16 16 38 41

Eisen et al. - 10 9 48 49

Table 5: Comparisons of current GO Term Finder results with those founda year ago. This table
lists the number of clusters containing “good” functional groups and the total number of
“good” functional groups.

have been annotated during the year, resulting in changes inp-values. In other words, the clusters
themselves have not changed during the year, but some of thep-values have, due to additional in-
formation found by other means. For Eisen et al., the number of “good” functional groups increased
by one. For the three TSP+k trials, the number of “good” functional groups increased by one, two,
and three groups respectively. For TSP+k, the number of “good” clusters remained the same for
k = 100 andk = 300 and increased from 12 to 13 fork = 200. However, for Eisen et al., the number
of “good” clusters decreased from 10 to 9.

Eisen’s group published their work in 1998. If they were to redetermine theclusters today,
they could use the additional information that has been found experimentally since that time to
improve their results. RP and TSP+k do not rely on prior knowledge of functionally related groups
to determine the clusters. If they were run in 1998, they would have yielded the same clusters as
they do today. Indeed, if they were run before any knowledge of yeast functions was realized, they
still would have produced these same clusters.

When using domain experts to determine cluster boundaries, the quality of the results is de-
pendent on the current knowledge of the experts. As more knowledge isacquired in a domain, the
clustering results found previously may become obsolete. Automated methods do not rely on cur-
rent domain knowledge and consequently do not suffer from this antiquation. Moreover, automated
methods can be used when there is little or noa priori knowledge or when the use of domain experts
is impractical. The latter case can occur when the cost of a domain expert is too high or the number
of objects is too large.

937

CLIMER AND ZHANG

6.4 Computation Time

The time required to run either TSP+k or RP depends on the algorithm used to solve the TSP. Fast
approximate TSP solvers can be used when computation time needs to be minimized.

In the experiments presented in this paper, Concorde was used to solve each instance optimally.
(During these tests Concorde aborted early several times and required restarting.) For the 2,467-
gene problem, the computation time ranged from 3 to 22 minutes on an Athlon 1.9 MHzprocessor
with two gigabytes memory. An advantage of RP over TSP+k is that a single TSP solution can be
used for various values ofk. Each partitioning of the TSP path runs inO(kn2) time.

BEA and hierarchical clustering arrange objects quickly, but both techniques require a domain
expert to identify the cluster boundaries. CPU time has become surprisingly inexpensive and a very
large number of CPU hours would be equivalent in value to a single hour ofa domain expert’s
time. Moreover, identifying clusters manually requires a fair amount of time. Wecan be certain that
Eisen’s group spent substantially more time identifying cluster boundaries than our computer spent
solving TSPs. On the other hand, a domain expert simultaneously determines the number of clusters
k while identifying cluster boundaries. For the 2,467-gene data set, we arbitrarily setk equal to 100,
200, and 300. Multiple solutions can be advantageous when attempting to maximizethe number of
functionally related groups as in this example. However, a single solution is frequently desired in
many domains. Future work to automatically determine the “best” clustering for a set of k values
would maximize the efficiency of rearrangement clustering for these cases. This determination
could be based on inter-cluster distances (as discussed in Section 4) and/or other qualities of the
clustering results.

7. Discussion

In this section, we examine a couple of considerations that may arise when using rearrangement
clustering.

7.1 Number of Features

An interesting property of TSP+k is that the number of features has little impact on the computa-
tion time. More features may increase the time required to compute the distances between cities.
However, the time required to actually solve the TSP is not directly dependenton the number of
features.

While the number of features has little effect on the computation time, it may have bearing on
the quality of the results. When the number of features is much greater than thenumber of objects,
transitivity of the similarity measure might not be upheld. The transitive property requires that if
objectx is similar to objecty, andy is similar to objectz, thenx andz are similar. In the previous
work we have examined, transitivity is apparently assumed, though it is not explicitly stated. Given
an appropriate similarity measure, transitivity might be expected when the number of objects is large
in comparison to the number of features. However, care should be used inapplying rearrangement
clustering when the converse is the case.

7.2 Linearity Requirement

Rearrangement clustering requires a linear ordering of objects. Visualization of complex data is
enhanced by arranging objects in this manner (Eisen et al., 1998; McCormicket al., 1972). For

938

REARRANGEMENT CLUSTERING

some applications, the objects are actually placed in a linear manner, such as shelf space allocation
(Lim et al., 2004). However, for many of the problems that have been previously solved using
rearrangement clustering, linearity is not inherently necessary for identifying clusters.

When using rearrangement clustering, there is no quality assurance requiring that the diameters
of clusters are less than a given value. This may be a concern for large clusters, in which the first and
last objects may be quite dissimilar. On the other hand, this property may be advantageous when it
is useful to identify elongated, but contiguous, clusters or irregularly shaped clusters as in Figure 1.
Although rearrangement clustering requires the objects be linearly ordered, it doesn’t suffer from
the drawbacks that can arise when the objective is based on minimizing diameters or minimizing
distances of objects from the centers of their respective clusters. In essence, rearrangement cluster-
ing yields solutions that tend to be contiguous as each object is a relatively short distance from at
least one other object in the same cluster.

Furthermore, the addition ofk dummy cities appears to increase the viability of the use of re-
arrangement clustering for general clustering problems. To gain some intuition about this, consider
a traveling salesman who is givenk free “jumps” and is required to visitn cities that fall intok
distinct clusters. It is reasonable to expect that he will frequently find it most economical to use the
free jumps for the long distances between clusters as opposed to using themfor intra-cluster hops.
When this is the case, TSP+k will correctly identify thek clusters. For example, when TSP+k with
k = 3 is applied to the example in Figure 2, the three clusters are correctly identified.

As a final note, previous experiments have shown that rearrangement clustering, despite its
pitfalls and linearity requirement, has outperformed non-linear-ordering clustering algorithms for
applications that do not require linear ordering (Alpert, 1996; Alpert and Kahng, 1997; Liu et al.,
2004).

8. Conclusion

Rearrangement clustering has been extensively used in a variety of domains over the last three
decades. Yet, the previous approaches have overlooked two seriouspitfalls: the summation in the
objective function is dominated by inter-cluster distances and the ME metric canfail to appropriately
quantify the quality of clustering. These pitfalls can be remedied by using the TSP+k algorithm and
an alternate metric. As a bonus, TSP+k provides automatic identification of cluster boundaries.

By translating rearrangement clustering into the TSP, it is possible to take fulladvantage of the
wealth of research that has been invested in optimally and approximately solving TSPs. Generally
speaking, BEA is a relatively simple greedy approximation when compared to highly-refined TSP
solvers. Moreover, rearrangement clustering can be solvedoptimallyfor many problems using TSP
solvers such as Concorde (Applegate et al., 2001), as illustrated by arranging 2,467 genes in this
paper.

Rearrangement clustering has been embraced in many diverse applications. Our new ability
to overcome previous pitfalls should result in an even greater usefulnessof this popular clustering
technique. This usefulness is further enhanced by the fact that TSP+k does not require a domain
expert to identify cluster boundaries, thus enabling its use in domains that are not well understood
or when experts are unavailable.

Acknowledgments

939

CLIMER AND ZHANG

This research was supported in part by NDSEG and Olin Fellowships and by NSF grants IIS-
0196057, ITR/EIA-0113618, and IIS-0535257. We extend thanks toanonymous reviewers of the
current paper as well as an earlier version (Climer and Zhang, 2004) who provided valuable com-
ments and insights. We also thank David Applegate, Robert Bixby, Vašek Chv́atal, and William
Cook for the use of Concorde and Charles Alpert and Andrew Kahng for use of RP. Finally, we
thank Michael Eisen for a useful discussion.

References

C. J. Alpert.Multi-way Graph and Hypergraph Partitioning. PhD thesis, UCLA, Los Angeles, CA,
1996.

C. J. Alpert and A. B. Kahng. Splitting an ordering into a partition to minimize diameter. Journal
of Classification, 14:51–74, 1997.

D. Applegate, R. Bixby, V. Chv́atal, and W. Cook. TSP cuts which do not conform to the template
paradigm. In M. Junger and D. Naddef, editors,Computational Combinatorial Optimization,
pages 261–304. Springer, 2001.

P. Arabie and L. J. Hubert. The bond energy algorithm revisited.IEEE Trans. Systems, Man, and
Cybernetics, 20(1):268–74, 1990.

P. Arabie, S. Schleutermann, J. Daws, and L. Hubert. Marketing applications of sequencing and
partitioning of nonsymmetric and/or two-mode matrices. In W. Gaul and M. Schader, editors,
Data Analysis, Decision Support, and Expert Knowledge Representationin Marketing, pages
215–24. Springer Verlag, 1988.

S. Arora. Approximation algorithms for geometric TSP. In G. Gutin and A. Punnen, editors,The
Traveling Salesman Problem and its Variations. Kluwer Academic, Norwell, MA, 2002.

P. Baldi and G. W. Hatfield.DNA Microarrays and Gene Expression. Cambridge University Press,
2002.

G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large-scale,asymmetric Traveling
Salesman Problems.ACM Trans. on Mathematical Software, 21:394–409, 1995.

H. M. Chan and D. A. Milner. Direct clustering algorithm for group formation in cellular manufac-
turing. Journal of Manufacturing Systems, 1:65–74, 1982.

S. Chu, J. L. DeRisi, M. B. Eisen, J. Mulholland, D. Botstein, P. O. Brown, and I. Herskowitz. The
transcriptional program of sporulation in budding yeast.Science, 282:699–705, 1998.

S. Climer and W. Zhang. Cut-and-solve: An iterative search strategy forcombinatorial optimization
problems.Artificial Intelligence, 170:714–738, June 2006.

S. Climer and W. Zhang. Take a walk and cluster genes: A TSP-based approach to optimal rear-
rangement clustering. In21st International Conference on Machine Learning (ICML’04), pages
169–176, Banff, Canada, July 2004.

W. Cook. Traveling Salesman Problem.http://www.tsp.gatech.edu, web.

940

REARRANGEMENT CLUSTERING

J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the metabolic and genetic control of gene
expression on a genomic scale.Science, 278:680–686, 1997.

M. H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice-Hall, Upper Saddle
River, NJ, 2003.

M. B. Eisen, P. T. Spellman, P.O Brown, and D. Botstein. Cluster analysis and display of genome-
wide expression patterns.Proc. of the Natl. Acad. of Sciences, 95(25):14863–8, 1998.

M. Fischetti, A. Lodi, and P. Toth. Exact methods for the Asymmetric TravelingSalesman Problem.
In G. Gutin and A. Punnen, editors,The Traveling Salesman Problem and its Variations. Kluwer
Academic, Norwell, MA, 2002.

N. Gorla and K. Zhang. Deriving program physical structures using bond energy algorithm. In
Proc. 6th Asia Pacific Software Engineering Conference, 1999.

G. Gutin and A. P. Punnen.The Traveling Salesman Problem and its variations. Kluwer Academic
Publishers, Norwell, MA, 2002.

H. A. Hoffer and D. G. Severance. The use of cluster analysis in physical data base design. InPro-
ceedings of the 1st International Conference on Very Large Data Bases, pages 69–86, September
1975.

D. S. Johnson. 8th DIMACS implementation challenge.http://www.research.att.com/˜ dsj/chtsp/,
web.

D. S. Johnson and L. A. McGeoch. Experimental analysis of heuristics for the STSP. In G. Gutin
and A. Punnen, editors,The Traveling Salesman Problem and its Variations, pages 369–443.
Kluwer Academic, Norwell, MA, 2002.

D. S. Johnson, G. Gutin, L. A. McGeoch, A. Yeo, W. Zhang, and A. Zverovich. Experimental
analysis of heuristics for the ATSP. In G. Gutin and A. Punnen, editors,The Traveling Salesman
Problem and its Variations. Kluwer Academic, Norwell, MA, 2002.

D. S. Johnson, S. Krishnan, J. Chhugani, S. Kumar, and S. Venkatasubramanian. Compressing
large boolean matrices using reordering techniques. In30th Int. Conf. on Very Large Databases
(VLDB), pages 13–23, 2004.

R. Jonker and T. Volgenant. Transforming asymmetric into symmetric traveling salesman problems.
Operations Research Letters, 2:161–163, 1983.

R. M. Karp. Reducibility among combinatorial problems. InComplexity of Computer Computa-
tions, pages 85–103. Plenum Press, New York, 1972.

J. R. King. Machine-component grouping in production flow analysis: anapproach using a rank
order clustering algorithm.International Journal of Production Research, 18(2):213–32, 1980.

A. Kusiak. Analysis of integer programming formulations of clustering problems. Image and Vision
Computing, 2:35–40, 1984.

941

CLIMER AND ZHANG

A. Kusiak. Flexible manufacturing systems: A structural approach.Int. J. Production Res., 23:
1057–73, 1985.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys.The Traveling Salesman
Problem. John Wiley & Sons, Essex, England, 1985.

J. K. Lenstra. Clustering a data array and the Traveling Salesman Problem.Operations Research,
22(2):413–4, 1974.

J. K. Lenstra and A. H. G. Rinnooy Kan. Some simple applications of the Travelling Salesman
Problem.Operational Research Quarterly, 26(4):717–733, 1975.

A. Lim, B. Rodrigues, and X. Zhang. Metaheuristics with local search techniques for retail shelf-
space optimization.Informs, 50(1):117 –131, 2004.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling salesman problem.
Operations Research, 21:498–516, 1973.

Y. Liu, B. J. Ciliax, A. Pivoshenko, J. Civera, V. Dasigi, A. Ram, R. Dingledine, and S. B. Navathe.
Evaluation of a new algorithm for keyword-based functional clustering of genes. In8th Interna-
tional Conf. on Research in Computational Molecular Biology (RECOMB-04), San Diego, CA,
March 2004. Poster paper.

A. Lodi and A. P. Punnen. TSP software. In G. Gutin and A. Punnen, editors, The Traveling
Salesman Problem and its Variations. Kluwer Academic, Norwell, MA, 2002.

S. T. March. Techniques for structuring data base records.Computing Surveys, 15:45–79, 1983.

F. Marcotorchino. Block seriation problems: A unified approach.Appl. Stochastic Models and Data
Analysis, 3:73–91, 1987.

W. T. McCormick, P. J. Schweitzer, and T. W. White. Problem decompositionand data reorganiza-
tion by a clustering technique.Operations Research, 20:993–1009, 1972.

P. Moscato. TSPBIB.http://www.densis.fee.unicamp .br/˜ moscato/TSPBIB_home.html, web.

S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical partitioning of algorithms for database
design.ACM Trans. Database Syst., 9(4):680–710, 1984.

M. T. Ozsu and P. Valduriez.Principles of distributed database systems. Prentice Hall, Upper
Saddle River, NJ, 2nd edition, 1999.

A. P. Punnen. The Traveling Salesman Problem: applications, formulations,and variations. In
G. Gutin and A. Punnen, editors,The Traveling Salesman Problem and its Variations. Kluwer
Academic, Norwell, MA, 2002.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Bot-
stein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast
saccharomyces cerevisiaeby microarray hybridization.Molecular Biology of the Cell, 9(12):
3273–97, 1998.

942

REARRANGEMENT CLUSTERING

M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. Tech-
nical Report 00-034, University of Minnesota, 2000.

R. Torres-Velzquez and V. Estivill-Castro. Local search for hamiltonian path with applications to
clustering visitation paths.Journal of the Operational Research Society, 55(7):737–748, 2004.

943

Journal of Machine Learning Research 7 (2006) 945–969 Submitted 10/05; Revised 3/06; Published 10/06

Segmental Hidden Markov Models with Random Effects for
Waveform Modeling

Seyoung Kim SYKIM @ICS.UCI.EDU

Department of Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

Padhraic Smyth SMYTH@ICS.UCI.EDU

Department of Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

Editor: Sam Roweis

Abstract
This paper proposes a general probabilistic framework for shape-based modeling and classification
of waveform data. A segmental hidden Markov model (HMM) is used to characterize waveform
shape and shape variation is captured by adding random effects to the segmental model. The
resulting probabilistic framework provides a basis for learning of waveform models from data as
well as parsing and recognition of new waveforms. Expectation-maximization (EM) algorithms are
derived and investigated for fitting such models to data. In particular, the “expectation conditional
maximization either” (ECME) algorithm is shown to provide significantly faster convergence than
a standard EM procedure. Experimental results on two real-world data sets demonstrate that the
proposed approach leads to improved accuracy in classification and segmentation when compared
to alternatives such as Euclidean distance matching, dynamic time warping, and segmental HMMs
without random effects.
Keywords: waveform recognition, random effects, segmental hidden Markov models, EM algo-
rithm, ECME

1. Introduction

Automatically parsing and recognizing waveforms based on their shape hasbroad applications,
including interpretation and classification of heartbeats in ECG data analysis (Koski, 1996), analysis
of waveforms from turbulent flow experiments (Bruun, 1995), and discrimination of nuclear events
and earthquakes in seismograph data (Bennett and Murphy, 1986). Waveform analysis has also
attracted attention in information retrieval and data mining, with a focus on algorithms that can take
a waveform as an input query and search a large database to find similar waveforms that match the
query waveform (e.g., Yi and Faloutsos, 2000). Applications include finding temporal patterns in
retail time-series data (Agrawal et al., 1993) and fault diagnosis in complexsystems (Keogh and
Smyth, 1997).

While the human visual system can easily recognize the characteristic signature of a partic-
ular waveform shape (a heartbeat waveform for example) the problemcan be quite difficult for
automated methods. For example, Figure 1 shows a set of time-series waveforms collected during
turbulent fluid-flow experiments where the shape of each waveform is determined by the nature of

c©2006 Seyoung Kim and Padhraic Smyth.

K IM AND SMYTH

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)
0 50 100 150 200 250

−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

(a) (b)

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

time
y

(m
ea

su
re

m
en

ts
)

(c) (d)

Figure 1: Fluid-flow waveform data: (a) a waveform from the classsplitting (where the probe splits
a bubble), (b) a set of such waveforms, (c) a waveform from the class glance, and (d) a
set of such waveforms.

interactions between a probe and bubbles in the fluid. Figure 1(a) shows an example waveform
from a particular type of interaction. Figure 1(b) shows a whole set of such waveforms that have
all been classified (by human experts) as being of the same interaction type.Although all of these
waveforms belong to the same interaction class, there is significant variability inshape among those
waveforms. The sources of variability include shifts of the locations of prominent features such as
peaks, valleys, and plateaus, scaling along the time and amplitude axes, and measurement noise. An
example waveform from a different class is shown in Figure 1(c), and aset of such waveforms are
shown in Figure 1(d). Again there is significant within-class variability.

In this paper we address the problem of detecting and classifying general classes of waveforms
based on their shape and propose a new statistical model that directly addresses within-class shape
variability. We will assume in the paper that the waveforms to be analyzed are inthe form of
“snippets” that have already been extracted from the “background” time-series, e.g., in the form
of Figures 1(b) and (d). This assumption can be relaxed—we outline a method for detection of
waveforms that are embedded in a time-series in Section 6. We will also assume that the waveforms
are being analyzed offline, i.e., that all of the waveform measurements areavailable at the time
of analysis rather than arriving sequentially in an online fashion. The online sequential detection
problem can be addressed by generalizing the methods we propose, butwe do not pursue online
algorithms in this paper.

We will assume that a set of one or more waveforms from a single class are provided a priori
(e.g., the data in Figures 1(b) or (d)) and from this data we wish to learn a model for recognition.
Hidden Markov models (HMMs) are a broadly useful class of generative models for waveform

946

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

segmental HMMs
waveform data

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

random effects segmental HMMs
waveform data

(a) (b) (c)

Figure 2: Waveform models: (a) a piecewise linear approximation of the waveform in Figure 1(a),
(b) a segmental HMM best fit, and (c) a random effects segmental HMM best fit as de-
scribed in this paper.

modeling, finding application (for example) in heartbeat monitoring of ECG data(Koski, 1996;
Hughes et al., 2003). These models are characterized by (a) a discrete-time finite-state Markov
process which is unobserved, and (b) a set of observed measurements at each timet which only
depend (stochastically) on the state value at timet. From a shape-modeling viewpoint the standard
version of the model generates noisy versions of piecewise constant shapes over time, since the
observations within a sequence of states of the same value have constant mean. For waveform
modeling, a useful extension is the so-called segmental HMM, originally introduced in the speech
recognition (Russell, 1993) and more recently used for more general waveform modeling (Ge and
Smyth, 2000). The segmental model allows for the observed data within eachsegment (a sequence
of states with the same value) to follow a general parametric regression form,such as a linear
function of time with additive noise. This allows us to model the shape of the waveform directly,
in this case as a sequence of piecewise linear components—Figure 2(a) shows a piecewise linear
representation of the waveform in Figure 1(a).

A limitation of this particular model is that it assumes that the parameters of the modelare fixed.
Thus, the only source of variability in an observed waveform arises from variation in the lengths of
the segments and observation noise added to the functional form in each segment. The limitation
of this can clearly be seen in Figure 2(b), where a segmental HMM has been trained on the data
in Figure 1(b) and then used to generate maximum-likelihood estimates of segmentboundaries,
slopes, and intercepts for the new waveform in Figure 2(b). We can seethat the best-fit slopes and
intercepts provided by the model do not match the observed data particularlywell in each segment,
e.g., in the first segment the intercept is clearly too low on they-axis, in the second segment the
slope is too small, and so forth. By using the same fixed parameters for all waveforms, the model
cannot fully account for variability in waveform shapes (e.g., as seen inFigure 1(b)).

To address this limitation, in this paper we combine segmental HMMs with random effects mod-
els. The general idea of random effects is to allow each group of observations (or each waveform)
to have its own parameters that are still coupled together by an overall population prior (Laird and
Ware, 1982). By extending the segmental HMM to include random effects,we can allow the slopes
and intercepts within each segment of each waveform to vary according toa prior distribution. As
illustrated in Figure 3, in the hierarchical setup of our model each waveform (at the bottom level)
has its own slope and intercept parameters (as shown at the middle level) thatcome from a shape

947

K IM AND SMYTH

template (at the top level) modeled as a population prior. The parameters of this prior can be learned
in an unsupervised manner from data in the form of sets of waveforms. The resulting model can be
viewed as a directed graphical model, allowing for application of standard methods for inference
and learning (Jordan, 1999; Murphy, 2002). For example, we can in principle learn that the slopes
across multiple waveforms for the first segment in Figure 1(b) tend to have acharacteristic mean
slope and standard deviation. The random effects approach providesa systematic mechanism for
allowing variation in “shape space” in a manner that can be parametrized. Figure 2(c) shows a
visual example of how a random effects model (constructed from the training data in Figure 1(b))
is used to generate maximum-likelihood estimates of segment boundaries and segment slopes and
intercepts for the waveform in Figure 1(a).

Kim et al. (2004) described preliminary results using random effects segmental HMMs for
waveform parsing and recognition. A drawback of this earlier approach is the relatively slow con-
vergence of the expectation-maximization (EM) algorithm in learning. This is a result of the large
amount of missing information present (due to the random effects componentof the model), com-
pared to a standard segmental HMM. In this paper we use the “expectation conditional maximization
either” (ECME) algorithm (Liu and Rubin, 1994) for parameter estimation of random effects seg-
mental HMMs. This dramatically speeds up convergence relative to the EM algorithm, making the
model much more practical to use for real-world waveform recognition problems.

We begin our discussion by reviewing related work on segmental HMMs andrandom effects
models in Section 2. We introduce segmental HMMs in Section 3. In Section 4, weextend this
model to incorporate random effects models, and describe the inferenceprocedure and the EM
algorithm for parameter estimation. We also show that the ECME algorithm can beused to signifi-
cantly speed up the convergence of the EM algorithm. In Section 5, we evaluate our model on two
applications involving bubble-probe interaction data and ECG data, and compare random effects
segmental HMMs to other waveform-matching algorithms such as Euclidean distance matching,
dynamic time warping, and segmental HMMs without random effects. Section 6contains a brief
discussion of possible extensions of the model and final conclusions.

2. Related Work and Contributions

A general approach to waveform recognition is to extract characteristicfeatures from the wave-
form in the time-domain or the frequency-domain, and then perform classification in the resulting
feature-vector space. Examples of this approach include the work of Shimshoni and Intrator (1998)
who used neural networks to classify seismic waveforms, and Jankowski and Oreziak (2003) who
used support vector machines to classify heartbeats in ECG data. Using classifiers in this manner
requires training data from both positive and negative classes as well asthe extraction of reliable dis-
criminative features from the raw waveform data. In the approach described in this paper we avoid
these requirements by learning models from the positive class only and by modeling the waveform
directly in the time-domain without any need for feature extraction. Other techniques have been
pursued in the area of waveform query-matching for information retrieval involving time-series
data (e.g., Agrawal et al., 1993; Chan and Fu, 1999; Keogh and Pazzani, 2000; Yi and Faloutsos,
2000). These approaches generally focus on the investigation of robust and computationally ef-
ficient similarity measures. In contrast, in this paper, we focus on a generative model approach,
allowing techniques from statistical learning to be brought to bear. This allows us (for example)

948

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

to learn models from data, to handle within-class waveform variability, and to generate maximum-
likelihood segmentations of waveforms.

As mentioned in Section 1, standard discrete-time finite-state HMMs are not ideal for modeling
waveform shapes since the generative model implicitly assumes a geometric distribution on segment
lengths and a piecewise constant shape model. Segmental HMMs relax thesemodeling constraints
by allowing (a) arbitrary distributions on run lengths, and (b) “segment models” (regression mod-
els) that allow the mean to be a function of time within each segment. HMMs that allow arbitrary
distributions on run lengths (the semi-Markov property in a HMM context) were introduced in the
work of Ferguson (1980), Russell and Moore (1985), and Levinson (1986). Deng et al. (1994) and
Russell (1993) extended these models to segmental HMMs by modeling dependencies between ob-
servations from the same state with a parametric trajectory model that changesover time. Ostendorf
et al. (1996) reviewed variations of segmental HMMs from a speech recognition perspective. More
recent work includes Achan et al. (2005) and Yun and Oh (2000). Geand Smyth (2000) introduced
the idea of using segmental HMMs for general waveform recognition problems.

The idea of using random effects with segmental HMMs to model parameter variability across
waveforms is implicit in the speech recognition work of both Gales and Young (1993) and, later,
Holmes and Russell (1999). This work can be viewed as precursors to the more general random
effects segmental HMM framework we present in this paper. Gales and Young (1993) used a model
with a constant mean per segment, but where the mean values themselves come from a distribution,
allowing modeling of variability across different individual speakers. Holmes and Russell (1999)
extended this idea to use a linear regression function instead of a constantmean for each segment
with a Gaussian prior on the regression parameters (slope and intercept) for each segment. In earlier
work (Kim et al., 2004), we noted that Holmes and Russell’s model could be formalized within
a random effects framework, and derived a more general EM framework for such models, taking
advantage of ideas developed separately in speech recognition and in statistics.

In the statistical literature there is a significant body of work on modeling a hierarchical data-
generating process with a random effects model and estimating the parameters of this model (Searle
et al., 1992). Dempster et al. (1977) sketched the EM algorithm for finding maximum-likelihood
estimates for parameters of random effects models. This algorithm was further developed by Demp-
ster et al. (1981), Laird and Ware (1982), and Laird et al. (1987). There appears to be no work in
the statistical literature on applying random effects to segmental HMMs.

In this context, the primary contribution of this paper is a general frameworkfor random-effects
segmental hidden Markov models. We demonstrate how such models can be used for waveform
modeling, recognition, and segmentation, with experimental comparisons of therandom effects
approach with alternative methods such as dynamic time warping, using two real-world data sets.
We extend earlier approaches for learning the parameters of random effects segmental HMMs by
deriving a provably correct EM algorithm with monotonic convergence. Both Gales and Young
(1993) and Holmes and Russell (1999) derived EM-like optimization algorithms, but their M steps
are not in a closed form and use approximate solutions—thus, the monotonic convergence property
of EM is not guaranteed in general using their approaches.

We further extend the standard EM algorithm to develop an ECME algorithm for fitting ran-
dom effects segmental HMMs. The ECME approach significantly reducesthe number of iterations
required for convergence, relative to EM, while increasing the time complexity per iteration only
slightly. For example, as we will discuss later, ECME led to a time-savings of 3 orders of mag-
nitude over the standard EM approach in our experiments. We derive a computationally efficient

949

K IM AND SMYTH

inference algorithm (applicable to both EM and ECME) that reduces the time complexity of the
forward-backward algorithm by a factor ofT2, whereT is the length of a waveform. We also show
that this inference algorithm can be applied to full covariance models ratherthan assuming (as in
Holmes and Russell, 1999) that the intercept and slope in the segment distribution are conditionally
independent. Since the inference algorithm is used in each iteration of the E step in the EM and
ECME iterations, this significantly reduces the overall time complexity of each iteration of EM and
ECME.

3. Segmental HMMs

A segmental HMM withM states is described by anM×M transition matrix, a probability distri-
bution over duration for each state, and a segment model for each state. The transition matrixA
(assumed here to be stationary in time) has entriesakl, namely, the probability of being in statel at
time t + 1 given statek at timet. The initial state distribution can be included inA as transitions
from a special state 0 to each statek = 1, . . . ,M. In waveform modeling, we typically constrain the
transition matrix to allow only left-to-right transitions and do not allow self-transitions. Thus, there
is an ordering on states, each state can be visited at most once, and states can be skipped.

In this paper, we model the duration distribution of statek using a Poisson distribution,

P(d−1|λk) =
e−λkλk

d−1

(d−1)!
d = 1,2, . . .

(shifted to start atd = 1 to prevent a silent state). Other choices for the duration distribution could
also be used (e.g., Ferguson, 1980; Levinson, 1986). Once the process enters statek, a durationd
is drawn, and statek produces a segment of observations of lengthd from the segment distribution
model. In this paper we focus on models with linear functional forms within eachsegment. We
model therth segment of observations of lengthd, yr , generated by statek, as a linear function of
time,

yr = Xrβk + er er ∼ Nd(0,σ2Id), (1)

whereβk is a 2×1 vector of regression coefficients for the intercept and slope,er is ad×1 vector of
Gaussian noise with varianceσ2 for each component, andXr is ad×2 design matrix consisting of
a column of 1’s (for the intercept term) and a column ofx values representing discrete time values.

In speech recognition using the mid-point of a segment as a parameter in the model instead of
intercept has been shown to lead to better speech recognition performance(Holmes and Russell,
1999). Nonetheless, parametrization of the model via the intercept workedwell in our experiments,
and for this reason we use the intercept in the models discussed in this paper. For simplicity,σ2 is
assumed to be common across all states; again this can be relaxed. We do notenforce continuity
of the mean functions (Equation (1)) across segments in the probabilistic model. However, as re-
ported in Section 5, the model without continuity constraints worked well on real-world data in our
recognition experiments.

Treating the unobserved state sequences as missing, we can estimate the parameters,θ = {A,Λ =
{λk|k= 1, . . . ,M}, θ f = {βk,(σ2)|k= 1, . . . ,M}}, using the EM algorithm, with the forward-backward
(F-B) algorithm as a subroutine for inference in the E step (Deng et al., 1994). The F-B algorithm
for segmental HMMs, modified from that of standard HMMs to take into account the duration dis-

950

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

tribution, recursively computes

αt(k) = P(y1:t ,statek ends att|θ)

α∗
t (k) = P(y1:t ,statek starts att +1|θ) (2)

in the forward pass, and

βt(k) = P(yt+1:T |statek ends att,θ)

β∗
t (k) = P(yt+1:T |statek starts att +1,θ) (3)

in the backward pass, and returns the results to the M step as a set of sufficient statistics (Rabiner
and Juang, 1993).

Inference algorithms for segmental HMMs provide a natural way to evaluate the performance
of the model on test data. The F-B algorithm scores a previously unseen waveformy by calculating
the likelihood

p(y|θ) = ∑
s

p(y,s|θ) = ∑
k

αT(k), (4)

wheres represents a sequence of unknown state labels for observationsy. The Viterbi algorithm
can provide a segmentation of a waveform by computing the most likely state sequence (e.g., Figure
2(b)). The addition of duration distributions in segmental HMMs increases the time complexity of
both the F-B and Viterbi algorithms fromO(M2T) for standard HMMs toO(M2T2), whereT is the
length of the waveform (i.e., the number of observations).

4. Segmental HMMs with Random Effects

A random effects model is a general statistical framework when the data generation process has a
hierarchical structure, coupling a population-level model with individual-level variation. At each
level of the generative process, the model defines a prior distribution over the individual group pa-
rameters, called random effects, of one level below. The observed data are generated at the bottom
of the hierarchy, given parameters drawn from the prior distribution onelevel above. Typically, the
random effects are not observable, so the EM algorithm is a popular approach to learning model
parameters from the observed data (Dempster et al., 1981; Laird and Ware, 1982). By combin-
ing segmental HMMs and random effects models we can take advantage of the strength of each in
waveform modeling. Random effects models add one level of hierarchy tothe probabilistic struc-
ture of segmental HMMs, defining a population distribution over the possible shapes of waveform
segments. Instead of requiring all waveforms to be modeled with a single set of parameters, indi-
vidual waveforms are allowed to have their own parameters but coupled bya common population
prior across all waveforms.

4.1 The Model

Beginning with the segmental HMMs described in Section 3, we add random effects via a new
variableui

r to the segment distribution part of the model as follows. Consider therth segmentyi
r of

lengthd from theith individual waveformyi generated by statek. Following the discussion in Laird

951

K IM AND SMYTH

Templateβk’s

��+ ��	 ? @@R
QQs

(βk + ûi
r)’s for

ith waveform
i = 1, . . . ,5

? ? ? ? ?

Observed data

Figure 3: A visual illustration of the random effects segmental HMM, using fluid-flow waveform
data as an example (as described in Section 5.1). The top level shows the population level
parametersβk’s for the waveform shape. The plots at the bottom level consist of observed
data. The plots in the middle level show the posterior estimates (combining both the data
and the prior) of̂ui andŝi , using Equation (8) and the Viterbi algorithm respectively.

and Ware (1982), we describe the generative model as a two-level process. At the bottom level, we
model the observed datayi

r as

yi
r = Xi

rβk +Xi
ru

i
r + ei

r ei
r ∼ Nd(0,σ2Id), (5)

whereei
r is the measurement noise,Xi

r is a d× 2 design matrix for the time measurements cor-
responding toyi

r , (βk + ui
r) are the regression coefficients, and 1≤ i ≤ N (for N waveforms).βk

represents the mean regression parameters for segmentk, andui
r represents the variation in regres-

sion (or shape) parameters for theith individual waveform. At this level, the individual random
effectsui

r as well asβk andσ2 are viewed as parameters. At the top level,ui
r is viewed as a random

variable with distribution
ui

r ∼ N2(0,Ψk), (6)

whereΨk is a 2×2 covariance matrix, andui
r is independent ofei

r . Notice that this model described
by Equations (5) and (6) is equivalent to havingyi

r = Xi
rβ

i
r + ei

r with βi
r ∼ N2(βk,Ψk). It can be

shown thatyi
r andui

r have the following joint distribution:

(

yi
r

ui
r

)

∼ Nd+2

((

Xi
rβk
0

)

,

(

Xi
rΨkXi

r
′
+σ2Id Xi

rΨk

ΨkXi
r
′ Ψk

))

. (7)

Also, from Equation (7), the posterior distribution ofui
r can be written as

ui
r |y

i
r ,βk,Ψk,σ2 ∼ N2

(

ûi
r ,Ψûi

r

)

, (8)

where

ûi
r = (Xi

r
′
Xi

r +σ2(Ψk)
−1)−1Xi

r
′
(yi

r −Xi
rβk), (9)

952

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

��
��

yi
t ��

��
Xi

t

��
��

βk ��
��

σ2

t = 1 : D

i = 1 : N

?

�
�

��	
�

��
��

ui
r

��
��

Ψk

-
?

i = 1 : N

��
��

yi
t ��

��
Xi

t

��
��

βk ��
��

σ2

t = 1 : D

?

�
�

��	
�

��
��

Ψk

i = 1 : N

��
��

yi
t ��

��
Xi

t

��
��

βk ��
��

σ2

t = 1 : D

?

�
�

��	

@
@

@@R
�

(a) (b) (c)

Figure 4: Plate diagrams for the segment distribution part of segmental HMMsand random effects
segmental HMMs. (a) segment model in segmental HMMs, (b) a two-stage model with
random effects parameters in random effects segmental HMMs, and (c)the model after
integrating out random effects parameters from (b).

and

Ψûi
r
= σ2(Xi

r
′
Xi

r +σ2(Ψk)
−1)

−1
. (10)

In the discussion that follows we useui to denote{ui
r |r = 1, . . . ,R} given the segmentationsi of

waveformyi into R segments. Similarly,̂ui represents{ûi
r |r = 1, . . . ,R}, given the segmentation̂si

of waveformyi found by the Viterbi algorithm.
Figure 3 conceptually illustrates the hierarchical setup of the model. The shape template de-

scribed by the population parametersβk’s is shown at the top of the hierarchy. The plots at the
bottom level consist of observed data. The plots at the middle level show theposterior estimates
(combining both the data and the prior) ofûi andŝi , using Equation (8) and the Viterbi algorithm re-
spectively. From a generative model perspective, the shape templates inthe middle row,(βk +ui

r)’s,
i = 1, . . . ,5, are generated from the mean shape at the top level by Equation (6). The observed data
at the bottom of the hierarchy are modeled as noisy realizations of these individual shape templates.
This final data generation process is modeled in Equation (5).

Figure 4 shows plate diagrams for the segment distribution part of segmentalHMMs and random
effects segmental HMMs, illustrating the generative process forN waveforms,y1, . . . ,yN, under the
simplifying assumption that each waveform comes from a single segment of lengthD corresponding
to statek.

4.2 Inference

To handle the random effects component in the F-B and Viterbi algorithms for segmental HMMs,
we notice from Equation (7) that the marginal distribution of a segmentyi

r generated by statek
is Nd(Xi

rβk, Xi
rΨkXi

r
′
+σ2Id), and that this corresponds to Equation (1) with the covariance matrix

σ2Id replaced by(Xi
rΨkXi

r
′
+σ2Id). Replacing the two-level segment distribution with this marginal

distribution, and collapsing the hierarchy into a single level, we can use the same F-B and Viterbi
algorithm as in segmental HMMs in the marginalized space over the random effects parametersui .

953

K IM AND SMYTH

The F-B algorithm recursively computes the quantities in Equations (2) and (3). These are then
used in the M step of the EM algorithm. The likelihood of a waveformy, given fixed parameters
θ = {A,Λ,θ f = {βk,Ψk,(σ2)|k = 1, . . . ,M}}, but with statess and random effectsu unknown, is
evaluated as

p(y|θ) = ∑
s

Z

p(y,s,u|θ)du (11)

= ∑
s

p(y,s|θ) = ∑
k

αT(k).

As in segmental HMMs, the Viterbi algorithm can be used as a method to segmenta waveform by
computing the most likely state sequence.

What appears to make the inference in random effects segmental HMMs computationally much
more expensive than in segmental HMMs is the inversion of thed× d covariance matrix of the
marginal segment distribution,Xi

rΨkXi
r
′
+ σ2Id, during the evaluation of the likelihood of a seg-

ment. For example, in the F-B algorithm, the likelihood of a segmentyi
r of lengthd given statek,

p(yi
r |βk,Ψk,σ2), needs to be calculated for all possible durationsd in each of theαt(k) andβt(k)

expressions at each recursion. Naive computation of a segment likelihood, using direct inversion of
thed×d covariance matrix, requiresO(T3) computations, whereT is the upper bound ford, lead-
ing to an overall time complexity ofO(M2T5). This can be computationally impractical for long
waveforms with a large value ofT (for example,T = 256 for the fluid-flow data shown in Figure
1(a)).

In the case of a simpler model with a diagonal covariance matrix forΨk, Holmes and Russell
(1999) derived a method for computing the segment likelihood with time complexityO(M2T3). We
obtain the same complexity for a more general case with an arbitrary covariance matrix as follows.
In discussing computational issues for random effects models, Dempster et al. (1981) suggested
an expression for the likelihood that is simple to evaluate. Applying their method tothe segment
distribution of our model, we rewrite, using Bayes’ rule, the likelihood of a segmentyi

r generated
by statek as

p(yi
r |βk,Ψk) =

p(yi
r ,u

i
r |βk,Ψk,σ2)

p(ui
r |yi

r ,βk,Ψk,σ2)
,

where the numerator and the denominator of the right-hand side are given as Equations (7) and (8),
respectively. The right-hand side of the above equation holds for all values ofui

r . By settingui
r to

ûi
r as in Equation (9), we can simplify the expression for the segment likelihood to

p(yi
r |βk,Ψk) = (2π)−d/2σ−d|Ψûi

r
|1/2/|Ψk|

1/2exp(−Si
r/(2σ2)), (12)

where

Si
r = (yi

r −Xi
rβk−Xi

r û
i
r)

′(yi
r −Xi

rβk−Xi
r û

i
r)+σ2ûi

r
′Ψ(−1)

k ûi
r .

This can be further simplified using Equation (9):

Si
r = (yi

r −Xi
rβk)

′(yi
r −Xi

rβk−Xi
r û

i
r).

Equation (12) has a form that involves onlyO(d) computations for each step, where previously this
involved O(d3) computations in the case of the naive approach with matrix inversions. Thus,the

954

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

time complexities of the F-B and Viterbi algorithms are reduced toO(M2T3). For segmental HMMs
this computational complexity can be further reduced toO(M2T2) by precomputing the segment
likelihood and storing the values in a table (Mitchell et al., 1995). However, this precomputation
is not possible with random effects models, leading to the additional factor ofT in the complexity
term.

4.3 Parameter Estimation

In this section, we describe how to obtain maximum-likelihood estimates of the parameters from a
training set of multiple waveforms for a random effects segmental HMM usingthe EM algorithm.
We augment the observed waveform data with both (a) state sequences and (b) random effects
parameters (both are considered to be hidden). The log likelihood of the complete data ofN wave-
forms,Dcomplete= (Y,S,U) = {(y1,s1,u1), . . . ,(yN,sN,uN)}, where the state sequencesi implies

Ri segments in waveformyi , is defined as:

logL(θ|Dcomplete) =
N

∑
i=1

logp(yi ,si ,ui |A,Λ,θ f)

=
N

∑
i=1

Ri

∑
r=1

logP(si
r |s

i
r−1,A) (13a)

+
N

∑
i=1

Ri

∑
r=1

logP(di
r |λk,k = si

r) (13b)

+
N

∑
i=1

Ri

∑
r=1

logp(yi
r |u

i
r ,βk,σ

2,k = si
r ,d

i
r) (13c)

+
N

∑
i=1

Ri

∑
r=1

logp(ui
r |Ψk,k = si

r). (13d)

As we can see from the above equation, given the complete data, the log-likelihood decouples into
four parts Equations (13a)-(13d), where the transition matrix, the duration distribution parameters,
the bottom level parametersβk,σ2, and the top level random effect parametersui

r appear in each of
the four terms. If we had complete data, we could optimize the four sets of parameters indepen-
dently. When only parts of the data are observed, by iterating between the Estep and the M step in
the EM algorithm as described below, we can find a solution that locally maximizesthe likelihood
of the observed data.

4.3.1 E STEP

In the E step, we find the expected log likelihood of the complete data,

Q(θ(t),θ) = E[logL(θ|Dcomplete)], (14)

with respect to

p(S,U|Y,θ(t)) = p(U|S,Y,θ(t))P(S|Y,θ(t))

=
N

∏
i=1

Ri

∏
r=1

p(ui
r |s

i
r = k,yi

r ,θ
(t))P(si

r = k|yi
r ,θ

(t)), (15)

955

K IM AND SMYTH

10
0

10
1

10
2

10
3

10
4−400

−350

−300

−250

−200

Iteration

Lo
g

lik
el

ih
oo

d

10
0

10
1

10
2

10
3

10
4

814

816

818

820

822

824

826

828

Iteration

Lo
g

lik
el

ih
oo

d

Figure 5: Example of training data log-likelihood convergence as a functionof the number of EM
iterations, for fluid-flow waveform data, comparing segmental HMMs (on the left) and
random effects segmental HMMs (on the right), both using the EM algorithm,x-axis on
a log-scale.

whereθ(t) is the estimate of the parameter vector from the previous M step of thetth EM iteration.
P(si

r = k|yi
r ,θ

(t)) in Equation (15) can be obtained from the F-B algorithm. The sufficient statistics,

E
[

ui
r |s

i
r = k,Y,θ(t)

]

and E
[

ui
ru

i
r
′
|si

r = k,Y,θ(t)
]

, for P(ui
r |s

i
r = k,yi

r ,θ
(t)) in Equation (15) can be

directly obtained from Equations (9) and (10). The time complexity for an E step is O(M2T3N)
whereN is the number of waveforms (and assuming each waveform is of lengthT).

4.3.2 M STEP

In the M step, we find the values of the parameters that maximize Equation (14).As we can see
from Equations (13a)-(13d) and (14), the optimization problem decouples into four parts, each of
which involves a distinct set of parameters. Closed form solutions exist for all of the parameters
(the equations are included in Appendix A). The time complexity for each M stepis O(MT3N).

In practice, the algorithm often converges relatively slowly, compared to segmental HMMs,
due to the additional missing information in random effects parametersU. Figure 5 shows a typ-
ical run of the algorithm. The segmental HMM converges much faster but converges to a lower
log-likelihood value. The iterations were halted when the increase of the log-likelihood from one
iteration to the next was less than 10−5.

Holmes and Russell (1999) augmented the observed waveform data with state sequences after
integrating out the random effects parameters, and usedDcomplete= {Y,S} in the E step. In this

case the parameters for the segment distribution{βk,σ2,Ψk} do not decouple in the complete data
log-likelihood and there is no closed form solution for those parameters in theM step. Using
the approximate solutions proposed in Holmes and Russell means that the monotonic convergence
property of EM is no longer guaranteed. In contrast, if we useDcomplete= {Y,S,U} in the E step as
in Equation (14), we can ensure that the algorithm is a proper EM algorithm that always converges
to a local maximum of log likelihood.

956

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

10
0

10
1

10
2

10
3

10
4

814

816

818

820

822

824

826

828

Iteration

Lo
g

lik
el

ih
oo

d

EM
ECME

10
2

10
3

10
4

10
5

10
6

814

816

818

820

822

824

826

828

Time (sec)

Lo
g

lik
el

ih
oo

d

EM
ECME

Figure 6: Example of training data log-likelihood convergence as a functionof the number of it-
erations (on the left) and as a function of computation time (on the right), for fluid-flow
waveform data (the same data set as in Figure 5), comparing EM vs. ECME for the
random effects segmental HMM,x-axis on a log-scale.

4.4 Faster Learning with ECME

As mentioned above, the convergence of the EM algorithm can be very slowespecially in the es-
timation of random effects models. Various extensions of the algorithm have been proposed to
speed up the convergence. In the expectation conditional maximization (ECM) algorithm Meng
and Rubin (1993) replaced the M step of the EM algorithm with a sequence ofW > 1 constrained
or conditional maximizations (the CM steps). This does not necessarily decrease the number of
EM iterations but can significantly reduce the total computation time. Liu and Rubin(1994) fur-
ther extended the ECM algorithm to the ECME algorithm, reducing both the numberof iterations
and the total computation time. Both the ECM and the ECME algorithms preserve the property of
monotone convergence of the EM algorithm.

More specifically, the CM step of thetth iteration of the ECM algorithm consists ofW CM
steps. Thewth CM step maximizesQ(θ(t),θ) under the constraint

gw(θ) = gw(θ(t+(w−1)/W)),

where θ(t+w/W) denotes the value ofθ in the wth CM step of the(t + 1)th iteration andC =
{gw(θ),w = 1, . . . ,W} is a set ofW preselected vector functions. These constraints are set so that
the maximization is over the full parameter space ofθ. In a typical application of the ECM algo-
rithm the set of parametersθ is divided intoW subvectorsθ1, . . . ,θW and in thewth CM step of the
tth iterationQ(θ(t),θ) is maximized overθw. In this casegw(θ) is equal toθ−w, the vector of all
parameters except forθw. In all of the following discussion we assumegw(θ) has this particular
form.

In the ECME algorithm some of the CM steps of the ECM algorithm are replaced by a maxi-
mization of the actual log likelihood subject to the same constraint instead of the expected complete
data log likelihood. The large amount of missing information present in the expected complete data
log likelihood leads to slow convergence of the EM algorithm (Dempster et al., 1977). The ECME
algorithm often speeds up the convergence dramatically by removing the missing information alto-
gether and maximizing the actual log likelihood in some of the CM steps.

957

K IM AND SMYTH

−1 −0.9 −0.8 −0.7 −0.6
−5

0

5x 10
−3

Intercept

S
lo

pe

−2.6 −2.4 −2.2 −2 −1.8
0.032

0.033

0.034

0.035

0.036

0.037

0.038

Intercept

S
lo

pe

15 20 25

−0.25

−0.2

−0.15

Intercept

S
lo

pe

State 1 State 2 State 3

−3 −2 −1 0 1

−0.015

−0.01

−0.005

0

Intercept

S
lo

pe

−26 −24 −22 −20 −18
0.12

0.13

0.14

0.15

0.16

0.17

0.18

Intercept

S
lo

pe

2.3 2.4 2.5 2.6 2.7
−8.5

−8

−7.5

−7x 10
−3

Intercept

S
lo

pe

State 4 State 5 State 6

Figure 7: Convergence ofβ (x-axis is intercept,y-axis is slope) for fluid-flow data. The starting
point is indicated by a circle. Gray arrows represent ECME, black arrows represent EM.
An arrow for the parameter values is drawn for each iteration in ECME and for every 100
iterations in EM.

Laird and Ware (1982) first derived an ECME algorithm for random effects models but mistak-
enly thought it was the EM algorithm. Liu and Rubin (1994) gave a formal description of the ECME
algorithm and introduced two different versions of the algorithm for random effects models. The
first version has a closed form solution in the CM steps. The other requires an iterative algorithm for
one of CM steps, and loses the monotone convergence property of the EMalgorithm. Liu and Rubin
report slightly faster convergence from the latter, but in our application of the ECME algorithm to
random effects segmental HMMs we use the first version with closed formCM steps, thus, retaining
the monotone convergence property of EM.

For random effects segmental HMMs we partition the parametersθ into θ1 = {A,Λ,Ψk, σ2|k =
1, . . . ,M} andθ2 = {βk|k = 1, . . . ,M} and consider the ECME algorithm with two CM steps for
each of the two partitions as follows.

CM step 1: ComputeA(t+1), Λ(t+1), Ψ(t+1)
k , k = 1, . . . ,M, and(σ2)(t+1) as in the M step of the

EM algorithm.

CM step 2: GivenΨ(t+1)
k , k = 1, . . . ,M, and(σ2)(t+1) obtained from CM Step 1, we can integrate

outui from Equations (13c)-(13d), and maximize∑N
i=1 ∑Ri

r=1 logp(yi
r |βk, Ψ(t+1)

k ,(σ2)(t+1),k=

si
r ,d

i
r), wherep(yi

r |βk,Ψ
(t+1)
k ,(σ2)(t+1),k = si

r ,d
i
r) is given as

Nd(Xi
rβk, Xi

rΨ
(t+1)
k Xi

r
′
+(σ2)(t+1)Id).

958

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

The update equations forβ(t+1)
k , k = 1, . . . ,M are

β(t+1)
k =

(

∑N
i=1

∑t ∑d<t Ciktd(Xi
td
′Zi

tdXi
td)

P(yi |θ(t)
)

)−1

·

(

∑N
i=1

∑t ∑d<t Ciktd(Xi
td
′Zi

tdyi
td)

P(yi |θ(t)
)

)

,

whereXi
td = Xi

t−d+1:t and

Zi
td = (Xi

tdΨ(t+1)
k Xi

td
′
+(σ2)(t+1)Id)

−1.

Whend is large we can avoid inverting ad×d matrix to obtainZi
td by rewriting this as

Zi
td = {Id −Xi

td((σ
2)(t+1)(Ψk)

−1 +Xi
td
′
Xi

td)
−1Xi

td
′
}/(σ2)(t+1).

CM step 1 maximizes the expected complete data log likelihood where both state sequences
S and random effects parametersU are considered missing. In CM step 2 the incomplete data
log likelihood is augmented only withS and then maximized. The computational complexity of the
update equation forβ(t+1)

k in CM step 2 isO(MT4N) compared toO(MT3N) for the same parameter
in the M step of the EM algorithm. Thus, the overall asymptotic complexity for the CMsteps is
O(MT4N), and the ECME algorithm is computationally more expensive in time complexity per
iteration than the EM algorithm.

The convergence of the EM and the ECME algorithms for a random effectssegmental HMM
with six states is shown in Figure 6 for the fluid-flow waveform data described in Section 5.1. The
parameters were initialized to the same values for both algorithms and the convergence criterion
was set to 10−5. In Figure 6(a) the EM algorithm takes 11506 iterations to converge to roughly
the same log-likelihood that the ECME algorithm converges to in only 8 iterations.Each iteration
takes 133.3s in the ECME algorithm, versus 47.4s in the EM algorithm, but the overall time to
convergence of ECME is still over 3 orders of magnitude faster than EM (as shown in Figure 6(b)).

The convergence trajectories of the 2-dimensional parametersβk for both algorithms are shown
in Figure 7 for each of the six states. The starting values are shown as black circles. Black arrows
represent the parameter values of every 100 iterations in the EM algorithm and grey arrows represent
the parameters in every iteration of the ECME algorithm. Both Figure 6 and Figure 7 show a
dramatic improvement in the speed of convergence of ECME over EM: they both converge to the
same solutions in parameter space but ECME converges much more quickly.

5. Experiments

We apply our model to two real-world data sets: (a) hot-film anemometry data in turbulent bubbly
fluid-flow and (b) ECG heartbeat data: both are described in more detail below in Section 5.1. In all
of our experiments we compare the results from our new segmental HMM with random effects to
those obtained using segmental HMMs without random effects. We use several methods to evaluate
the models:

Average LogP Score: We compute logp(y|θ) scores (Equations (4) and (11) for each model) for
test waveformsy to compare how much probability is assigned to new test data by different
models. Higher logP scores indicate better predictive power.

959

K IM AND SMYTH

50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

time

y
(m

ea
su

re
m

en
ts

)

(a) (b) (c) (d)

Figure 8: Negative examples in bubble-probe interaction data. (a) no interaction (b) glancing (c)
bouncing (d) penetrating.

50 100 150 200 250

−2

−1

0

1

2

time

y
(m

ea
su

re
m

en
ts

)

50 100 150 200 250

−2

−1

0

1

2

time

y
(m

ea
su

re
m

en
ts

)

50 100 150 200 250

−2

−1

0

1

2

time
y

(m
ea

su
re

m
en

ts
)

50 100 150 200 250

−2

−1

0

1

2

time

y
(m

ea
su

re
m

en
ts

)

(a) (b) (c) (d)

Figure 9: Negative examples in ECG data (a) right bundle branch block beat (b) left bundle branch
block beat (c) paced beat (d) premature ventricular contraction beat.

Segmentation Quality: To evaluate how well the model can segment test waveforms, we first
obtain the segmentations of test waveforms with the Viterbi algorithm, estimate the regres-
sion coefficientŝγ of each segment, and calculate the mean squared difference between the
observed data andXγ̂. Good segmentations should produce low scores.

Recognition Accuracy: We use the model learned from a training set of positive examples to
recognize waveforms of interest from a test set with both positive and negative exemplars.
We compare the results from random effects segmental HMMs with those from dynamic time
warping (Keogh and Pazzani, 2000), Euclidean distance matching, and segmental HMMs.

All of the experiments were conducted using cross-validation. The numberof segmentsM for
each data set was determined by visual inspection prior to training the models. All waveforms were
shifted to have zero mean amplitude before training and testing.

In all experiments reported below, we use the ECME algorithm for training random effects
segmental HMMs. The convergence criterion is set to 10−5. We found in our experiments that
providing one manually-segmented example is useful in initialization of both EM and ECME—
details on initialization are described in Appendix B.

5.1 Data Sets

Below we describe two different data sets that were used as the basis forour experiments.

960

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

Bubble-probe ECG
interaction data data

Avg. Avg. Avg. Avg.
LogP Segmentation LogP Segmentation
Score Error Score Error

Segmental HMMs -3.25 15.39 -3.12 2.55
Random Effects Segmental HMMs 4.50 1.43 19.63 0.39

Table 1: Average logP scores and segmentation errors for bubble-probe interaction data and ECG
data.

5.1.1 BUBBLE-PROBEINTERACTION DATA

Hot-film anemometry is a technique commonly used in turbulent bubbly flow measurements in fluid
physics. Different types of interactions between the bubbles and the probe in turbulent gas flow,
such as splitting, bouncing, and penetration, lead to characteristic waveform shapes. Automatically
detecting the occurrence and types of interactions from such waveformsis a problem of active
interest (Bruun, 1995). This recognition task is difficult because of thelarge variability in the shapes
of waveforms within a given class of interactions (e.g., Figure 1(b)), caused by various factors such
as velocity fluctuations and different gas fractions during measurement.

We applied our method to individual bubble-probe interaction data. Our dataset consisted of 7
waveforms in the classno interaction(Figure 8(a)), 5 waveforms in the classglancing(Figure 8(b)),
52 waveforms in the classbouncing(Figure 8(c)), 8 waveforms in the classpenetration(Figure 8(d))
and 48 waveforms in the classsplitting(Figures 1(a) and (b)). Class labels were determined for each
interaction based on expert examination of high-speed image recordings of the event obtained simul-
taneously with the interaction signal (Luther, 2004). Each waveform had256 data points sampled
at 5kHz. We built waveform models for the class ofsplitting interactions, where the probe splits
the bubble, and ran a 9-fold cross-validation with 5 waveforms in the trainingset and 43 waveforms
in the test set for each run. The 72 waveforms from the other interactionswere used as negative
examples in the test set. Given that Figure 2(a) is a reasonable piecewise linear approximation of
the general shape, we subjectively choseM = 6 as the number of states for both segmental HMMs
and random effects segmental HMMs.

5.1.2 ECG DATA

The shape of heartbeat cycles in ECG data can be used to diagnose the heart condition of a patient
(Koski, 1996; Hughes et al., 2003). For example, Figure 11 shows the typical shape of normal
heartbeats, whereas Figures 9(a)-(d) are taken from a heart experiencing various abnormal condi-
tions. Heartbeats of the same type can vary significantly across individualsin terms of the heights
and locations of peaks in the shape. Variability can also be found among heartbeats from the same
individual although it is lower than across individuals.

For our experiments we used the ECG recordings with a sampling rate of 360 samples per sec-
ond from the MIT-BIH Arrhythmia database1. We selected hour long recordings from 23 subjects
and manually extracted two heartbeats of the same type from each subject. Normal heartbeats were

1. http://www.physionet.org/physiobank/database/mitdb/

961

K IM AND SMYTH

Top 10 Top 20
Euclidean distance (using mean distance) 86.7 81.7
Euclidean distance (using minimum distance) 82.2 80.0
Dynamic time warping (using mean distance) 85.6 82.2
Dynamic time warping (using minimum distance) 92.2 82.8
Segmental HMMs 86.7 82.2
Random Effects Segmental HMMs 100.0 95.0

Table 2: Cross-validated recognition accuracy for bubble-probe interaction data on test set. The
numbers represent the true positive rates in percentages (%) among the top k waveforms
selected by each algorithm.

taken from each of twelve subjects, and similarly, left bundle branch blockbeats from three sub-
jects, right bundle branch block beats from two subjects, premature ventricular contraction beats
from three subjects, and paced beats from three subjects. The lengths of heartbeats varied approx-
imately from 210 to 410 samples. We modeled each normal heartbeat withM = 9 segments. We
performed a 4-fold cross-validation with 6 normal waveforms from three individuals as a training
set for each cross-validation run and the remainder as a test set. Note that the test set contained
heartbeats from a different set of individuals than the individuals usedto train the model. Segmental
HMMs could not be learned for one of the cross-validation runs due to numerical instability (a prob-
lem that did not occur with random effects HMMs), so we report results from the remaining three
runs of cross-validations for segmental HMMs. The 22 abnormal heartbeats were used as negative
examples for the evaluation of recognition accuracy in the test sets.

5.2 Results

In Table 1 we compare the average logP scores of positive test waveforms for segmental HMMs with
those for random effects segmental HMMs. The new model produces significantly higher scores for
both data sets, indicating that random effects allow segmental HMMs to capture both the typical
shape and shape variability.

Table 1 also shows the average segmentation errors for the test waveforms from both models.
Adding the random effects component to segmental HMMs reduces the segmentation error roughly
by a factor of 10 on both data sets. Segmentation examples are shown in Figure 10 for the bubble-
probe interaction data and Figure 11 for the ECG data, where it is apparent that random effects
segmental HMMs are more consistent in locating segment boundaries.

To evaluate the recognition accuracy we score both pattern and non-pattern waveforms in the
test set using the model for the pattern waveform learned from the trainingset, and rank the wave-
forms according to their log probability scores. We also compare probabilisticmethods with non-
probabilistic scoring methods such as Euclidean distance and dynamic time warping. For non-
probabilistic methods we compute the distance between a test waveform and each of theN training
waveforms, and use both the average and minimum of theN distances as a score for that test wave-
form. The percentages of the true positives in the top 10 and 20 waveformsfrom bubble-probe
interaction data are reported in Table 2. Random effects segmental HMMs give a substantially

962

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

Rank Euclidean Dynamic time Segmental Random effects
distance warping HMM segmental HMM

1

2

3

4

5

6

7

8

9

10

Figure 10: Top 10 waveforms found by four different algorithms in bubble-probe interaction data.
‘o’s are true positives and ‘x’s are false positives. Segmentations by the Viterbi algorithm
are overlaid on top of the waveforms in the case of true positives for segmental HMMs
and random effects segmental HMMs. Segmentations are not produced by the Euclidean
distance method or by dynamic time warping.

963

K IM AND SMYTH

0 50 100 150 200 250
−0.5

0

0.5

1

1.5

2

time

y
(m

ea
su

re
m

en
ts

)

0 50 100 150 200 250
−0.5

0

0.5

1

1.5

2

time

y
(m

ea
su

re
m

en
ts

)

Figure 11: Segmentation of a normal ECG heartbeat by the Viterbi algorithm for segmental HMMs
(left) and for random effects segmental HMMs (right).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

DTW − minimum distance
DTW − mean distance
Segmental HMM
Random effects segmental HMM

Figure 12: ROC plot for ECG data.

higher accuracy than any of the other methods. Figure 10 shows the top 10waveforms found by
the different methods. All of the false positives are from the interaction classbouncing, which is
more similar in shape to the classsplitting than other interaction types. Random effects segmental
HMMs can effectively distinguish subtle differences in shape between thepattern that we are mod-
eling and the non-pattern waveforms. Segmentations are overlaid in Figure 10 on the waveforms as
found by probabilistic models using the Viterbi algorithm. Such segmentations are not available for
dynamic time warping and Euclidean distance methods, providing an additional advantage of using
probabilistic models in applications where segmentation is useful.

Figure 12 shows the ROC curves for the ECG data. The results from Euclidean distance are not
available for ECG data because the method as implemented requires the length ofeach waveform
sequence to be the same. Random effects segmental HMMs have the highestaccuracy, particularly
over the range from 0 to 0.5 in terms of fraction of false positives (x-axis) which is typically the
range of interest when ranking objects by similarity to a target. A similar result was obtained for
bubble-probe interaction data as can be seen in Figure 13.

964

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

DTW − minimum distance
DTW − mean distance
Euclidean − minimum distance
Euclidean − mean distance
Segmental HMM
Random effects segmental HMM

Figure 13: ROC plot for bubble-probe interaction data.

6. Discussions and Conclusions

As noted elsewhere in the paper, the random effects segmental HMM proposed in this paper can
be extended in multiple different ways. For example, the parametrization of thesegment models as
linear functions of time can be generalized directly to any functional form that is linear in the pa-
rameters without altering the underlying time complexity of the learning and inference algorithms.

In the results reported here we applied our model to score relatively short waveform “snippets”
to detect waveforms that are similar in shape to a query waveform. In orderto parse online time-
series data and detect “embedded” waveforms relative to a target, a two-state HMM with a pattern
state and a background state can be used, where the random effects segmental HMM is embedded
inside the pattern state. Each instance of the pattern waveform is allowed to have its own parameters
via the random effects mechanism. The background state models any measurements that do not
belong to pattern waveforms. A long time-series can then be parsed via the Viterbi algorithm (for
example) to segment the series into background and pattern states, where the segments that belong
to the pattern state correspond to predicted waveform locations accordingto the model.

In conclusion, we have proposed a probabilistic model that extends segmental HMMs to in-
clude random effects. This model allows an individual waveform to varyits shape in a constrained
manner via a prior distribution over individual waveform parameters. TheECME algorithm for
learning this model greatly improved the speed of convergence of parameter estimation compared
to a standard EM approach. Experimental results support the hypothesisthat random effects seg-
mental HMMs perform better in modeling, segmentation, and recognition of waveforms compared
both to probabilistic models without random effects and to non-probabilistic methods.

Acknowledgments

This material is based upon work supported by the National Science Foundation under award num-
bers SCI-0225642 and IIS-0431085. We also thank David Van Dyk for discussions relating to
random effects models and EM, Stefan Luther for providing the fluid-flowwaveform data, and the
referees for providing useful comments that improved the presentation ofthe paper.

965

K IM AND SMYTH

Appendix A: Re-estimation Formulas for EM

The re-estimation formula for the transition probabilities and the duration distribution parameters
can be shown to be:

a(t+1)
kl =

∑N
i=1

1

P(yi |θ(t)
)

∑t αi
t(k)a

(t)
kl βi∗

t (l)

∑N
i=1

1

P(yi |θ(t)
)

∑m∑t αi
t(k)a

(t)
kmβi∗

t (l)
,

λ(t+1)
k =

∑N
i=1

1

P(yi |θ(t)
)

∑t ∑dCiktd · (d−1)

∑N
i=1

1

P(yi |θ(t)
)

∑t ∑dCiktd
,

where

Ciktd = αi∗
t (k)P(d|λ(t)

k)p(yi
t+1:t+d|θ

(t)
fk

)βi
t+d(k).

Using the notation ofXi
td = Xi

t−d+1:t andyi
td = yi

t−d+1:t , we update the covariance matrix of the
top level of the segment distribution model according to

Ψ(t+1)
k =

∑N
i=1

∑t ∑d<t CiktdE[ui
kui

k
′
|Y,θ(t)

]

P(yi |θ(t)
)

∑N
i=1

∑t ∑d<t Ciktd

P(yi |θ(t)
)

,

and for the bottom level, we re-estimate the parameters using

β(t+1)
k =

(

∑N
i=1

∑t ∑d<t Ciktd(Xi
td
′Xi

td)

P(yi |θ(t)
)

)−1

·

(

∑N
i=1

∑t ∑d<t Ciktd(Xi
td
′
(yi

td−Xi
tdE[ui

k|Y,θ(t)
])

P(yi |θ(t)
)

)

(σ2)
(t+1)

=
∑N

i=1
∑M

k=1 ∑t ∑d<t CiktdE[Di
k
′Di

k|Y,θ(t)
]

P(yi |θ(t)
)

∑N
i=1

∑M
k=1 ∑t ∑d<t Ciktdd

P(yi |θ(t)
)

,

where

E[Di
k
′
Di

k|Y,θ(t)] = (yi
t+1:t+d −Xi

tdβk−Xi
tdE[ui

k|Y,θ(t)])′ · (yi
td −Xi

tdβk−Xi
tdE[ui

k|Y,θ(t)])

+tr[Xi
td
′
Xi

tdVar(ui
k|Y,θ(t))].

Appendix B: Initialization of the EM and ECME Algorithms

Initialization of the EM and ECME algorithms is based on manual segmentation of a single wave-
form in the training data. The manual segmentation is only used to determine initial values for the
parameters (for use in the first E-step), and is not used in any further manner by EM or ECME after
this initialization.

966

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

Given the manually segmented waveform, the parametersA, θd, andβk’s are set to their maximum-
likelihood values as estimated from this waveform. The 2×2 covariance matricesΨk’s of the ran-
dom effects component of the model require more than two segmented waveforms in order to obtain
maximum-likelihood estimates—thus, their values are initialized in a different manneras follows.
The variance term for the slope inΨk’s is set to a value generated from a uniform distribution over
[zmin,zmax]. From preliminary inspection of datazmin andzmaxare set to 1 and 10 respectively for
bubble-probe interaction data, and 1 and 5 for ECG data. As the state indexincreases, the values
of the intercept parameters inβk’s tend to increase and a small variability in slope leads to a more
significant variability in intercept values. To take into account this we initialize the variance for
the intercept by sampling a value from the same uniform distribution[zmin,zmax] and multiplying
this value by the state indexi for that intercept. Given that a positive change in the slope leads to
a decreased value of the intercept we initialize the covariance between the slope and intercept to a
negative value generated from a uniform distribution over[zmin× (−0.1),zmax× (−0.1)]. Multi-
plying zmin andzmax by 0.1 makes the covariance relatively small compared to variances inΨk’s
and also ensures that the covariance matricesΨk’s are positive definite. Finally, we sample the ini-
tial value for the noise parameterσ2 from a uniform distribution over[1,6] for both data sets. This
initialization strategy essentially sets the variance parametersΨk’s andσ2 to relatively large initial
values and then lets them adjust to the training data.

References

Kannan Achan, Sam Roweis, Aaron Hertzmann, and Brendan Frey. A segment-based probabilistic
generative model of speech. InProc. of the 2005 IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 5, pages 221–224, Philadelphia, PA, 2005. IEEE.

Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient similaritysearch in sequence
databases. InProc. of the 4th International Conference of Foundations of Data Organization and
Algorithms, pages 69–84, Chicago, IL, 1993. Springer Verlag.

Theron Bennett and John Murphy. Analysis of seismic discrimination using regional data from
western United States events.Bull. Seis. Soc. Am., 76:1069–1086, 1986.

Hans Bruun. Hot Wire Anemometry: Principles and Signal Analysis. Oxford University Press,
Oxford, 1995.

King-pong Chan and Ada Wai-chee Fu. Efficient time series matching by wavelets. InProc. of the
15th International Conference on Data Engineering, pages 126–133, Sydney, Australia, 1999.
IEEE Computer Society.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood estimation from incomplete
data via the EM algorithm.Journal of the Royal Statistical Society Series B, 39:1–38, 1977.

Arthur Dempster, Donald Rubin, and Robert Tsutakawa. Estimation in covariance components
models.Journal of the American Statistical Association, 76(374):341–353, 1981.

Li Deng, Mike Aksmanovic, Xiaodong Sun, and Jeff Wu. Speech recognition using hidden Markov
models with polynomial regression functions as nonstationary states.IEEE Trans. Speech Audio
Processing, 2(4):507–520, 1994.

967

K IM AND SMYTH

James Ferguson. Variable duration models for speech. InProc. of the Symposium on the Application
of Hidden Markov Models to Text and Speech, pages 143–179, Princeton, NJ, 1980. IDA-CRD.

Mark Gales and Steve Young. The theory of segmental hidden Markov models. Technical Report
CUED/F-INFENG/TR 133, Cambridge University Engineering Department, 1993.

Xianping Ge and Padhraic Smyth. Deformable Markov model templates for time-series pattern
matching. InProc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 81–90, Boston, MA, 2000. ACM Press.

Wendy Holmes and Martin Russell. Probabilistic-trajectory segmental HMMs.Computer Speech
and Language, 13(1):3–37, 1999.

Nicholas Hughes, Lionel Tarassenko, and Stephen Roberts. Markovmodels for automated ECG
interval analysis. InAdvances in Neural Information Processing Systems 16, pages 611–618,
Cambridge, MA, 2003. MIT Press.

Stanislaw Jankowski and Artur Oreziak. Learning system for computer-aided ECG analysis based
on support vector machines.International Journal of Bioelectromagnetism, 5(1):175–176, 2003.

Michael Jordan, editor.Learning in Graphical Models. MIT Press, Cambridge, MA, 1999.

Eamonn Keogh and Michael Pazzani. Scaling up dynamic time warping for datamining applications.
In Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 285–289, Boston, MA, 2000. ACM Press.

Eamonn Keogh and Padhraic Smyth. A probabilistic approach to fast patternmatching in time series
databases. InProc. of the 3rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 24–30, Newport Beach, CA, 1997. AAAI Press.

Seyoung Kim, Padhraic Smyth, and Stefan Luther. Modeling waveform shapes with random effects
segmental hidden Markov models. InProc. of the 20th International Conference on Uncertainty
in AI, pages 309–316, Banff, Canada, 2004. AUAI Press.

Antti Koski. Modelling ECG signals with hidden Markov models.Artificial Intelligence in
Medicine, 8(5):453–471, 1996.

Nan Laird and James Ware. Random-effects models for longitudinal data.Biometrics, 38(4):963–
974, 1982.

Nan Laird, Nicholas Lange, and Daniel Stram. Maximum likelihood computationswith repeated
measures: application of the EM algorithm.Journal of the American Statistical Association, 82
(397):97–105, 1987.

Stephen Levinson. Continuously variable duration hidden Markov models for automatic speech
recognition.Computer Speech and Language, 1(1):29–45, 1986.

Chuanhai. Liu and Donald Rubin. The ECME algorithm: a simple extension of EMand ECM with
faster monotone convergence.Biometrika, 81(4):633–648, 1994.

Stefan Luther, 2004. personal correspondence.

968

SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

Xiao-Li Meng and Donald Rubin. Maximum likelihood estimation via the ECM algorithm: a
general framework.Biometrika, 80:267–278, 1993.

Carl Mitchell, Mary Harper, and Leah Jamieson. On the computational complexity of explicit
duration HMMs.IEEE Trans. on Speech and Audio Processing, 3(3):213–217, 1995.

Kevin Murphy.Dynamic Bayesian Networks: Representation, Inference, and Learning. PhD thesis,
University of California, Berkeley, 2002.

Mari Ostendorf, Vassilios Digalakis, and Owen Kimball. From HMMs to segmental models: a
unified view of stochastic modeling for speech recognition.IEEE Trans. on Speech and Audio
Processing, 4(5):360–378, 1996.

Lawrence Rabiner and Biing-Hwang Juang.Fundamentals of Speech Recognition. Prentice Hall,
Englewood Cliffs, NJ, 1993.

Martin Russell. A segmental HMM for speech pattern matching. InProc. of the 1993 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pages 499–502, Minneapolis,
MN, 1993. IEEE.

Martin Russell and Roger Moore. Explicit modeling of state occupancy in hidden Markov mod-
els for automatic speech recognition. InProc. of the 1985 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 2376–2379, Tampa, FL, 1985. IEEE.

Shayle Searle, George Casella, and Charles McCulloch.Variance Components. Wiley, New York,
1992.

Yair Shimshoni and Nathan Intrator. Classification of seismic signals by integrating ensembles of
neural networks.IEEE Trans. on Signal Processing, 46:1194–1201, 1998.

Byoung-Kee Yi and Christos Faloutsos. Fast time sequence indexing forarbitraryLp norms. In
Proc. of the 26th Very Large Data Bases Conference, pages 385–394, Cairo, Egypt, 2000. Morgan
Kaufmann.

Young-Sun Yun and Yung-Hwan Oh. A segmental-feature HMM for speech pattern modeling.IEEE
Signal Processing Letters, 7(6):135–137, 2000.

969

Journal of Machine Learning Research 7 (2006) 971–981 Submitted 11/05; Revised 5/06; Published 6/06

Lower Bounds and Aggregation in Density Estimation

Guillaume Lecué LECUE@CCR.JUSSIEU.FR

Laboratoire de Probabilit́es et Mod̀eles Aĺeatoires
Universit́e Paris 6
4 place Jussieu, BP 188
75252 Paris, France

Editor: Gábor Lugosi

Abstract
In this paper we prove the optimality of an aggregation procedure. We prove lower bounds for

aggregation of model selection type ofM density estimators for the Kullback-Leibler divergence
(KL), the Hellinger’s distance and theL1-distance. The lower bound, with respect to the KL dis-
tance, can be achieved by the on-line type estimate suggested, among others, by Yang (2000a).
Combining these results, we state that logM/n is an optimal rate of aggregation in the sense of
Tsybakov (2003), wheren is the sample size.

Keywords: aggregation, optimal rates, Kullback-Leibler divergence

1. Introduction

Let (X ,A) be a measurable space andν be aσ-finite measure on(X ,A). Let Dn = (X1, . . . ,Xn) be
a sample ofn i.i.d. observations drawn from an unknown probability of densityf onX with respect
to ν. Consider the estimation off from Dn.

Suppose that we haveM ≥ 2 different estimatorŝf1, . . . , f̂M of f . Catoni (1997), Yang (2000a),
Yang (2000b), Nemirovski (2000), Juditsky and Nemirovski (2000),Yang (2001), Tsybakov (2003),
Catoni (2004) and Rigollet and Tsybakov (2004) have studied the problem of model selection type
aggregation. It consists in construction of a new estimatorf̃n (calledaggregate) which is approx-
imatively at least as good as the best amongf̂1, . . . , f̂M. In most of these papers, this problem is
solved by using a kind of cross-validation procedure. Namely, the aggregation is based on splitting
the sample in two independent subsamplesD1

m andD2
l of sizesm and l respectively, wherem≫ l

andm+ l = n. The size of the first subsample has to be greater than the one of the second because
it is used for the true estimation, that is for the construction of theM estimatorsf̂1, . . . , f̂M. The
second subsample is used for the adaptation step of the procedure, that isfor the construction of an
aggregatef̃n, which has to mimic, in a certain sense, the behavior of the best among the estimators
f̂i . Thus, f̃n is measurable w.r.t. the whole sampleDn unlike the first estimatorŝf1, . . . , f̂M. Actually,
Nemirovski (2000) and Juditsky and Nemirovski (2000) did not focus on model selection type ag-
gregation. These papers give a bigger picture about the general topicof procedure aggregation and
Yang (2004) complemented their results. Tsybakov (2003) improved theseresults and formulated
the three types of aggregation problems (cf. Tsybakov (2003)).

One can suggest different aggregation procedures and the questionis how to look for an optimal
one. A way to define optimality in aggregation in a minimax sense for a regressionproblem is
suggested in Tsybakov (2003). Based on the same principle we can define optimality for density

c©2006 Guillaume Lecúe.

LECUÉ

aggregation. In this paper we will not consider the sample splitting and concentrate only on the
adaptation step, i.e. on the construction of aggregates (following Nemirovski (2000), Juditsky and
Nemirovski (2000), Tsybakov (2003)). Thus, the first subsample is fixed and instead of estimators
f̂1, . . . , f̂M, we have fixed functionsf1, . . . , fM. Rather than working with a part of the initial sample
we will use, for notational simplicity, the whole sampleDn of sizen instead of a subsampleD2

l .
The aim of this paper is to prove the optimality, in the sense of Tsybakov (2003), of the aggre-

gation method proposed by Yang, for the estimation of a density on(Rd,λ) whereλ is the Lebesgue
measure onRd. This procedure is a convex aggregation with weights which can be seen intwo
different ways. Yang’s point of view is to express these weights in function of the likelihood of the
model, namely

f̃n(x) =
M

∑
j=1

w̃(n)
j f j(x), ∀x∈ X , (1)

where the weights are ˜w(n)
j = (n+1)−1 ∑n

k=0w(k)
j and

w(k)
j =

f j(X1) . . . f j(Xk)

∑M
l=1 fl (X1) . . . fl (Xk)

, ∀k = 1, . . . ,n andw(0)
j =

1
M

. (2)

And the second point of view is to write these weights as exponential ones, as used in Augustin
et al. (1997), Catoni (2004), Hartigan (2002), Bunea and Nobel (2005), Juditsky et al. (2005)
and Lecúe (2005), for different statistical models. Define the empirical Kullback loss Kn(f) =
−(1/n)∑n

i=1 log f (Xi) (keeping only the term independent of the underlying density to estimate) for
all density f . We can rewrite these weights as exponential weights:

w(k)
j =

exp(−kKk(f j))

∑M
l=1exp(−kKk(fl))

, ∀k = 0, . . . ,n.

Most of the results on convergence properties of aggregation methods are obtained for the re-
gression and the gaussian white noise models. Nevertheless, Catoni (1997, 2004), Devroye and
Lugosi (2001), Yang (2000a), Zhang (2003) and Rigollet and Tsybakov (2004) have explored the
performances of aggregation procedures in the density estimation framework. Most of them have
established upper bounds for some procedure and do not deal with the problem of optimality of
their procedures. Nemirovski (2000), Juditsky and Nemirovski (2000) and Yang (2004) state lower
bounds for aggregation procedure in the regression setup. To our knowledge, lower bounds for the
performance of aggregation methods in density estimation are available only in Rigollet and Tsy-
bakov (2004). Their results are obtained with respect to the mean squared risk. Catoni (1997) and
Yang (2000a) construct procedures and give convergence ratesw.r.t. the KL loss. One aim of this
paper is to prove optimality of one of these procedures w.r.t. the KL loss. Lower bounds w.r.t.
the Hellinger’s distance andL1-distance (stated in Section 3) and some results of Birgé (2004) and
Devroye and Lugosi (2001) (recalled in Section 4) suggest that the rates of convergence obtained
in Theorem 2 and 4 are optimal in the sense given in Definition 1. In fact, an approximate bound
can be achieved, if we allow the leading term in the RHS of the oracle inequality (i.e. in the upper
bound) to be multiplied by a constant greater than one.

The paper is organized as follows. In Section 2 we give a Definition of optimality, for a rate
of aggregation and for an aggregation procedure, and our main results. Lower bounds, for different
loss functions, are given in Section 3. In Section 4, we recall a result ofYang (2000a) about an exact
oracle inequality satisfied by the aggregation procedure introduced in (1).

972

LOWER BOUNDS AND AGGREGATION IN DENSITY ESTIMATION

2. Main Definition and Main Results

To evaluate the accuracy of a density estimator we use the Kullback-Leibler (KL) divergence, the
Hellinger’s distance and theL1-distance as loss functions. TheKL divergenceis defined for all
densitiesf , g w.r.t. aσ−finite measureν on a spaceX , by

K(f |g) =

{

R

X log
(

f
g

)

f dν if Pf ≪ Pg;

+∞ otherwise,

wherePf (respectivelyPg) denotes the probability distribution of densityf (respectivelyg) w.r.t. ν.
Hellinger’s distanceis defined for all non-negative measurable functionsf andg by

H(f ,g) =
∥

∥

∥

√

f −√
g
∥

∥

∥

2
,

where theL2-norm is defined by‖ f‖2 =
(

R

X f 2(x)dν(x)
)1/2

for all functions f ∈ L2(X ,ν). The
L1-distanceis defined for all measurable functionsf andg by

v(f ,g) =
Z

X

| f −g|dν.

The main goal of this paper is to find optimal rate of aggregation in the sense ofthe definition
given below. This definition is an analog, for the density estimation problem, ofthe one in Tsybakov
(2003) for the regression problem.

Definition 1 Take M≥ 2 an integer,F a set of densities on(X ,A ,ν) andF0 a set of functions on
X with values inR such thatF ⊆ F0. Let d be a loss function on the setF0. A sequence of positive
numbers(ψn(M))n∈N∗ is calledoptimal rate of aggregation of M functions in (F0,F) w.r.t. the
loss d if :

(i) There exists a constant C< ∞, depending only onF0,F and d, such that for all functions
f1, . . . , fM in F0 there exists an estimator̃fn (aggregate) of f such that

sup
f∈F

[

E f
[

d(f , f̃n)
]

− min
i=1,...,M

d(f , fi)

]

≤Cψn(M), ∀n∈ N
∗. (3)

(ii) There exist some functions f1, . . . , fM in F0 and c> 0 a constant independent of M such that
for all estimatorsf̂n of f ,

sup
f∈F

[

E f
[

d(f , f̂n)
]

− min
i=1,...,M

d(f , fi)

]

≥ cψn(M), ∀n∈ N
∗. (4)

Moreover, when the inequalities (3) and (4) are satisfied, we say that theproceduref̃n, appearing
in (3), is anoptimal aggregation procedure w.r.t. the lossd.

Let A > 1 be a given number. In this paper we are interested in the estimation of densities lying in

F (A) = {densities bounded byA} (5)

and, depending on the used loss function, we aggregate functions inF0 which can be:

973

LECUÉ

1. FK(A) = {densities bounded byA} for KL divergence,

2. FH(A) = {non-negative measurable functions bounded byA} for Hellinger’s distance,

3. Fv(A) = {measurable functions bounded byA} for theL1-distance.

The main result of this paper, obtained by using Theorem 5 and assertion (6) of Theorem 3, is
the following Theorem.

Theorem 1 Let A> 1. Let M and n be two integers such thatlogM ≤ 16(min(1,A−1))2n. The
sequence

ψn(M) =
logM

n
is an optimal rate of aggregation of M functions in(FK(A),F (A)) (introduced in (5)) w.r.t. the
KL divergence loss. Moreover, the aggregation procedure with exponential weights, defined in (1),
achieves this rate. So, this procedure is an optimal aggregation procedure w.r.t. the KL-loss.

Moreover, if we allow the leading term ”mini=1,...,M d(f , fi)”, in the upper bound and the lower
bound of Definition 1, to be multiplied by a constant greater than one, then the rate(ψn(M))n∈N∗ is
said ”near optimal rate of aggregation”. Observing Theorem 6 and the result of Devroye and Lugosi
(2001) (recalled at the end of Section 4), the rates obtained in Theorems 2and 4:

(

logM
n

)
q
2

are near optimal rates of aggregation for the Hellinger’s distance and theL1-distance to the power
q, whereq > 0.

3. Lower Bounds

To prove lower bounds of type (4) we use the following lemma on minimax lower bounds which
can be obtained by combining Theorems 2.2 and 2.5 in Tsybakov (2004). Wesay thatd is asemi-
distance onΘ if d is symmetric, satisfies the triangle inequality andd(θ,θ) = 0.

Lemma 1 Let d be a semi-distance on the set of all densities on(X ,A ,ν) and w be a non-decreasing
function defined onR+ which is not identically0. Let (ψn)n∈N be a sequence of positive numbers.
LetC be a finite set of densities on(X ,A ,ν) such that card(C) = M ≥ 2,

∀ f ,g∈ C , f 6= g =⇒ d(f ,g) ≥ 4ψn > 0,

and the KL divergences K(P⊗n
f |P⊗n

g), between the product probability measures corresponding to
densities f and g respectively, satisfy, for some f0 ∈ C ,

∀ f ∈ C , K(P⊗n
f |P⊗n

f0
) ≤ (1/16) log(M).

Then,
inf
f̂n

sup
f∈C

E f
[

w(ψ−1
n d(f̂n, f))

]

≥ c1,

whereinf f̂n
denotes the infimum over all estimators based on a sample of size n from an unknown

distribution with density f and c1 > 0 is an absolute constant.

974

LOWER BOUNDS AND AGGREGATION IN DENSITY ESTIMATION

Now, we give a lower bound of the form (4) for the three different lossfunctions introduced in
the beginning of the section. Lower bounds are given in the problem of estimation of a density on
R

d, namely we haveX = R
d andν is the Lebesgue measure onR

d.

Theorem 2 Let M be an integer greater than2, A> 1 and q> 0 be two numbers. We have for all
integers n such thatlogM ≤ 16(min(1,A−1))2n,

sup
f1,..., fM∈FH(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

H(f̂n, f)q]− min
j=1,...,M

H(f j , f)q
]

≥ c

(

logM
n

)q/2

,

where c is a positive constant which depends only on A and q. The setsF (A) andFH(A) are defined
in (5) whenX = R

d and the infimum is taken over all the estimators based on a sample of size n.

Proof : For all densitiesf1, . . . , fM bounded byA we have,

sup
f1,..., fM∈FH(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

H(f̂n, f)q]− min
j=1,...,M

H(f j , f)q
]

≥ inf
f̂n

sup
f∈{ f1,..., fM}

E f
[

H(f̂n, f)q] .

Thus, to prove Theorem 1, it suffices to findM appropriate densities bounded byA and to apply
Lemma 1 with a suitable rate.

We considerD the smallest integer such that 2D/8 ≥ M and ∆ = {0,1}D. We seth j(y) =
h(y− (j −1)/D) for all y ∈ R, whereh(y) = (L/D)g(Dy) andg(y) = 1I[0,1/2](y)− 1I(1/2,1](y) for
all y∈ R andL > 0 will be chosen later. We consider

fδ(x) = 1I[0,1]d(x)

(

1+
D

∑
j=1

δ jh j(x1)

)

, ∀x = (x1, . . . ,xd) ∈ R
d,

for all δ = (δ1, . . . ,δD) ∈ ∆. We takeL such thatL ≤ Dmin(1,A− 1) thus, for allδ ∈ ∆, fδ is
a density bounded byA. We choose our densitiesf1, . . . , fM in B = { fδ : δ ∈ ∆}, but we do not
take all of the densities ofB (because they are too close to each other), but only a subset ofB ,
indexed by a separated set (this is a set where all the points are separated from each other by
a given distance) of∆ for the Hamming distancedefined byρ(δ1,δ2) = ∑D

i=1 I(δ1
i 6= δ2

i) for all
δ1 = (δ1

1, . . .δ1
D),δ2 = (δ2

1, . . . ,δ2
D) ∈ ∆. Since

R

R
hdλ = 0, we have

H2(fδ1, fδ2) =
D

∑
j=1

Z

j
D

j−1
D

I(δ1
j 6= δ2

j)

(

1−
√

1+h j(x)

)2

dx

= 2ρ(δ1,δ2)
Z 1/D

0

(

1−
√

1+h(x)
)

dx,

for all δ1 = (δ1
1, . . . ,δ1

D),δ2 = (δ2
1, . . . ,δ2

D) ∈ ∆. On the other hand the functionϕ(x) = 1−αx2−√
1+x, whereα = 8−3/2, is convex on[−1,1] and we have|h(x)| ≤ L/D ≤ 1 so, according to

Jensen,
R 1

0 ϕ(h(x))dx≥ ϕ
(

R 1
0 h(x)dx

)

. Therefore
R 1/D

0

(

1−
√

1+h(x)
)

dx≥ α
R 1/D

0 h2(x)dx =

(αL2)/D3, and we have

H2(fδ1, fδ2) ≥ 2αL2

D3 ρ(δ1,δ2),

975

LECUÉ

for all δ1,δ2 ∈ ∆. According to Varshamov-Gilbert, cf. Tsybakov (2004, p. 89) or Ibragimov and
Hasminskii (1980), there exists aD/8-separated set, calledND/8, on ∆ for the Hamming distance
such that its cardinal is higher than 2D/8 and(0, . . . ,0) ∈ ND/8. On the separated setND/8 we have,

∀δ1,δ2 ∈ ND/8 , H2(fδ1, fδ2) ≥ αL2

4D2 .

In order to apply Lemma 1, we need to control the KL divergences too. Since we have taken
ND/8 such that(0, . . . ,0)∈ND/8, we can control the KL divergences w.r.t.P0, the Lebesgue measure
on [0,1]d. We denote byPδ the probability of densityfδ w.r.t. the Lebesgue’s measure onR

d, for
all δ ∈ ∆. We have,

K(P⊗n
δ |P⊗n

0) = n
Z

[0,1]d
log(fδ(x)) fδ(x)dx

= n
D

∑
j=1

Z j/D

j−1
D

log(1+δ jh j(x))(1+δ jh j(x))dx

= n

(

D

∑
j=1

δ j

)

Z 1/D

0
log(1+h(x))(1+h(x))dx,

for all δ = (δ1, . . . ,δD) ∈ ND/8. Since∀u > −1, log(1+u) ≤ u, we have,

K(P⊗n
δ |P⊗n

0) ≤ n

(

D

∑
j=1

δ j

)

Z 1/D

0
(1+h(x))h(x)dx≤ nD

Z 1/D

0
h2(x)dx=

nL2

D2 .

Since logM ≤ 16(min(1,A−1))2n, we can takeL such that(nL2)/D2 = log(M)/16 and still
havingL ≤ Dmin(1,A−1). Thus, forL = (D/4)

√

log(M)/n, we have for all elementsδ1,δ2 in
ND/8, H2(fδ1, fδ2) ≥ (α/64)(log(M)/n) and∀δ ∈ ND/8 , K(P⊗n

δ |P⊗n
0) ≤ (1/16) log(M).

Applying Lemma 1 whend is H, the Hellinger’s distance, withM densities f1, . . . , fM in
{

fδ : δ ∈ ND/8
}

where f1 = 1I[0,1]d and the increasing functionw(u) = uq, we get the result.

�

Remark 1 The construction of the family of densities
{

fδ : δ ∈ ND/8
}

is in the same spirit as the
lower bound of Tsybakov (2003), Rigollet and Tsybakov (2004). But, as compared to Rigollet and
Tsybakov (2004), we consider a different problem (model selection aggregation) and as compared
to Tsybakov (2003), we study in a different context (density estimation).Also, our risk function is
different from those considered in these papers.

Now, we give a lower bound for KL divergence. We have the same result as for square of
Hellinger’s distance.

Theorem 3 Let M ≥ 2 be an integer, A> 1 and q> 0. We have, for any integer n such that
logM ≤ 16(min(1,A−1))2n,

sup
f1,..., fM∈FK(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

(K(f | f̂n))q]− min
j=1,...,M

(K(f | f j))
q
]

≥ c

(

logM
n

)q

, (6)

976

LOWER BOUNDS AND AGGREGATION IN DENSITY ESTIMATION

and

sup
f1,..., fM∈FK(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

(K(f̂n| f))q]− min
j=1,...,M

(K(f j | f))q
]

≥ c

(

logM
n

)q

, (7)

where c is a positive constant which depends only on A. The setsF (A) andFK(A) are defined in
(5) for X = R

d.

Proof : Proof of the inequality (7) of Theorem 3 is similar to the one for (6). Since wehave for all
densitiesf andg,

K(f |g) ≥ H2(f ,g),

(a proof is given in Tsybakov, 2004, p. 73), it suffices to note that, iff1, . . . , fM are densities bounded
by A then,

sup
f1,..., fM∈FK(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

(K(f | f̂n))q]− min
j=1,...,M

(K(f | fi))q
]

≥ inf
f̂n

sup
f∈{ f1,..., fM}

[

E f
[

(K(f | f̂n))q]]≥ inf
f̂n

sup
f∈{ f1,..., fM}

[

E f
[

H2q(f , f̂n)
]]

,

to get the result by applying Theorem 2.

�

With the same method as Theorem 1, we get the result below for theL1-distance.

Theorem 4 Let M ≥ 2 be an integer, A> 1 and q> 0. We have for any integers n such that
logM ≤ 16(min(1,A−1))2n,

sup
f1,..., fM∈Fv(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

v(f , f̂n)
q]− min

j=1,...,M
v(f , fi)

q
]

≥ c

(

logM
n

)q/2

where c is a positive constant which depends only on A. The setsF (A) andFv(A) are defined in (5)
for X = R

d.

Proof : The only difference with Theorem 2 is in the control of the distances. With thesame
notations as the proof of Theorem 2, we have,

v(fδ1, fδ2) =
Z

[0,1]d
| fδ1(x)− fδ2(x)|dx= ρ(δ1,δ2)

Z 1/D

0
|h(x)|dx=

L
D2 ρ(δ1,δ2),

for all δ1,δ2 ∈ ∆. Thus, forL = (D/4)
√

log(M)/n andND/8, theD/8-separated set of∆ introduced
in the proof of Theorem 2, we have,

v(fδ1, fδ2) ≥ 1
32

√

log(M)

n
, ∀δ1,δ2 ∈ ND/8 andK(P⊗n

δ |P⊗n
0) ≤ 1

16
log(M), ∀δ ∈ ∆.

Therefore, by applying Lemma 1 to theL1-distance withM densitiesf1, . . . , fM in
{

fδ : δ ∈ ND/8
}

where f1 = 1I[0,1]d and the increasing functionw(u) = uq, we get the result.

�

977

LECUÉ

4. Upper Bounds

In this section we use an argument in Yang (2000a) (see also Catoni, 2004) to show that the rate of
the lower bound of Theorem 3 is an optimal rate of aggregation with respectto the KL loss. We use
an aggregate constructed by Yang (defined in (1)) to attain this rate. An upper bound of the type
(3) is stated in the following Theorem. Remark that Theorem 5 holds in a general framework of a
measurable space(X ,A) endowed with aσ-finite measureν.

Theorem 5 (Yang) Let X1, . . . ,Xn be n observations of a probability measure on(X ,A) of density
f with respect toν. Let f1, . . . , fM be M densities on(X ,A ,ν). The aggregatẽfn, introduced in (1),
satisfies, for any underlying density f ,

E f
[

K(f | f̃n)
]

≤ min
j=1,...,M

K(f | f j)+
log(M)

n+1
. (8)

Proof : Proof follows the line of Yang (2000a), although he does not state the result in the form
(3), for convenience we reproduce the argument here. We definef̂k(x;X(k)) = ∑M

j=1w(k)
j f j(x), ∀k =

1, . . . ,n (wherew(k)
j is defined in (2) andx(k) = (x1, . . . ,xk) for all k ∈ N andx1, . . . ,xk ∈ X) and

f̂0(x;X(0)) = (1/M)∑M
j=1 f j(x) for all x∈ X . Thus, we have

f̃n(x;X(n)) =
1

n+1

n

∑
k=0

f̂k(x;X(k)).

Let f be a density on(X ,A ,ν). We have

n

∑
k=0

E f
[

K(f | f̂k)
]

=
n

∑
k=0

Z

X k+1
log

(

f (xk+1)

f̂k(xk+1;x(k))

) k+1

∏
i=1

f (xi)dν⊗(k+1)(x1, . . . ,xk+1)

=
Z

X n+1

(

n

∑
k=0

log

(

f (xk+1)

f̂k(xk+1;x(k))

)

)

n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1)

=
Z

X n+1
log

(

f (x1) . . . f (xn+1)

∏n
k=0 f̂k(xk+1;x(k))

)n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1),

but ∏n
k=0 f̂k(xk+1;x(k)) = (1/M)∑M

j=1 f j(x1) . . . f j(xn+1),∀x1, . . . ,xn+1 ∈ X thus,

n

∑
k=0

E f
[

K(f | f̂k)
]

=
Z

X n+1
log

(

f (x1) . . . f (xn+1)
1
M ∑M

j=1 f j(x1) . . . f j(xn+1)

)

n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1),

moreoverx 7−→ log(1/x) is a decreasing function so,

n

∑
k=0

E f
[

K(f | f̂k)
]

≤ min
j=1,...,M

{

Z

X n+1
log

(

f (x1) . . . f (xn+1)
1
M f j(x1) . . . f j(xn+1)

)

n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1)

}

≤ logM + min
j=1,...,M

{

Z

X n+1
log

(

f (x1) . . . f (xn+1)

f j(x1) . . . f j(xn+1)

)n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1)

}

,

978

LOWER BOUNDS AND AGGREGATION IN DENSITY ESTIMATION

finally we have,
n

∑
k=0

E f
[

K(f | f̂k)
]

≤ logM +(n+1) inf
j=1,...,M

K(f | f j). (9)

On the other hand we have,

E f
[

K(f | f̃n)
]

=
Z

X n+1
log

(

f (xn+1)
1

n+1 ∑n
k=0 f̂k(xn+1;x(k))

)

n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1),

andx 7−→ log(1/x) is convex, thus,

E f
[

K(f | f̃n)
]

≤ 1
n+1

n

∑
k=0

E f
[

K(f | f̂k)
]

. (10)

Theorem 5 follows by combining (9) and (10).

�

Birgé constructs estimators, calledT-estimators(the ”T” is for ”test”), which are adaptive in
aggregation selection model ofM estimators with a residual proportional at(logM/n)q/2 when
Hellinger andL1-distances are used to evaluate the quality of estimation (cf. Birgé (2004)). But it
does not give an optimal result as Yang, because there is a constant greater than 1 in front of the
main term mini=1,...,M dq(f , fi) whered is the Hellinger distance or theL1 distance. Nevertheless,
observing the proof of Theorem 2 and 4, we can obtain

sup
f1,..., fM∈F (A)

inf
f̂n

sup
f∈F (A)

[

E f
[

d(f , f̂n)
q]−C(q) min

i=1,...,M
d(f , fi)

q
]

≥ c

(

logM
n

)q/2

,

whered is the Hellinger orL1-distance,q > 0 andA > 1. The constantC(q) can be chosen equal to
the one appearing in the following Theorem. The same residual appears in this lower bound and in
the upper bounds of Theorem 6, so we can say that

(

logM
n

)q/2

is near optimal rate of aggregation w.r.t. the Hellinger distance or theL1-distance to the powerq, in
the sense given at the end of Section 2. We recall Birgé’s results in the following Theorem.

Theorem 6 (Birgé) If we have n observations of a probability measure of density f w.r.t.ν and
f1, . . . , fM densities on(X ,A ,ν), then there exists an estimatorf̃n (T-estimator) such that for any
underlying density f and q> 0, we have

E f
[

H(f , f̃n)
q]≤C(q)

(

min
j=1,...,M

H(f , f j)
q +

(

logM
n

)q/2
)

,

and for the L1-distance we can construct an estimatorf̃n which satisfies :

E f
[

v(f , f̃n)
q]≤C(q)

(

min
j=1,...,M

v(f , f j)
q +

(

logM
n

)q/2
)

,

where C(q) > 0 is a constant depending only on q.

979

LECUÉ

Another result, which can be found in Devroye and Lugosi (2001), states that the minimum
distance estimate proposed by Yatracos (1985) (cf. Devroye and Lugosi (2001, p. 59)) achieves the
same aggregation rate as in Theorem 6 for theL1-distance withq= 1. Namely, for allf , f1, . . . , fM ∈
F (A),

E f
[

v(f , f̆n)
]

≤ 3 min
j=1,...,M

v(f , f j)+

√

logM
n

,

where f̆n is the estimator of Yatracos defined by

f̆n = arg min
f∈{ f1,..., fM}

sup
A∈A

∣

∣

∣

∣

∣

Z

A
f − 1

n

n

∑
i=1

1I{Xi∈A}

∣

∣

∣

∣

∣

,

andA =
{

{x : fi(x) > f j(x)} : 1≤ i, j ≤ M
}

.

References

N. H. Augustin, S. T. Buckland, and K. P. Burnham. Model selection: Anintegral part of inference.
Biometrics, 53:603–618, 1997.

A. Barron and G. Leung. Information theory and mixing least-square regressions. 2004. manuscript.

L. Birgé. Model selection via testing: an alternative to (penalized) maximum
likelihood estimators. To appear in Annales of IHP, 2004. Available at
http://www.proba.jussieu.fr/mathdoc/textes/PMA-862.pdf.

F. Bunea and A. Nobel. Online prediction algorithms for aggregation of arbitrary estimators of a
conditional mean. 2005. Submitted to IEEE Transactions in Information Theory.

O. Catoni. A mixture approach to universal model selection. 1997. preprint LMENS-97-30, avail-
able at http://www.dma.ens.fr/EDITION/preprints/.

O. Catoni.Statistical Learning Theory and Stochastic Optimization. Ecole d’́et́e de Probabilit́es de
Saint-Flour 2001, Lecture Notes in Mathematics. Springer, N.Y., 2004.

L. Devroye and G. Lugosi.Combinatorial methods in density estimation. 2001. Springer, New-
York.

J.A. Hartigan. Bayesian regression using akaike priors. 2002. Yale University, New Haven, Preprint.

I.A. Ibragimov and R.Z. Hasminskii. An estimate of density of a distribution. Studies in mathemat-
ical stat. IV. Zap. Nauchn. Semin., LOMI, 98(1980),61–85.

A. Juditsky, A. Nazin, A.B. Tsybakov and N. Vayatis. Online aggregationwith mirror-descent
algorithm. 2005. Preprint n.987, Laboratoire de Probabilités et Mod̀ele aĺeatoires, Universités
Paris 6 and Paris 7 (available at http://www.proba.jussieu.fr/mathdoc/preprints/index.html#2005).

A. Juditsky and A. Nemirovski. Functionnal aggregation for nonparametric estimation. Ann. of
Statist., 28:681–712, 2000.

980

LOWER BOUNDS AND AGGREGATION IN DENSITY ESTIMATION

G. Lecúe. Simultaneous adaptation to the marge and to complexity in classification. 2005. Available
at http://hal.ccsd.cnrs.fr/ccsd-00009241/en/.

A. Nemirovski.Topics in Non-parametric Statistics. Springer, N.Y., 2000.

P. Rigollet and A. B. Tsybakov. Linear and convex aggregation of density estimators. 2004.
Manuscript.

A.B. Tsybakov. Optimal rates of aggregation.Computational Learning Theory and Kernel Ma-
chines. B.Scḧolkopf and M.Warmuth, eds. Lecture Notes in Artificial Intelligence, 2777:303–313,
2003. Springer, Heidelberg.

A.B. Tsybakov.Introductionà l’estimation non-paraḿetrique. Springer, 2004.

Y. Yang. Mixing strategies for density estimation.Ann. Statist., 28(1):75–87, 2000a.

Y. Yang. Combining Different Procedures for Adaptive Regression.Journal of Multivariate Analy-
sis, 74:135–161, 2000b.

Y. Yang. Adaptive regression by mixing.Journal of American Statistical Association, 96:574–588,
2001.

Y. Yang. Aggregating regression procedures to impose performance.Bernoulli, 10(1):25–47, 2004.

T. Zhang. From epsilon-entropy to KL-complexity: analysis of minimum information complexity
density estimation. 2003. Tech. Report RC22980, IBM T.J.Watson Research Center.

981

Journal of Machine Learning Research 7 (2006) 983–999 Submitted 10/05; Revised 2/06; Published 6/06

Quantile Regression Forests

Nicolai Meinshausen nicolai@stat.math.ethz.ch

Seminar für Statistik
ETH Zürich
8092 Zürich, Switzerland

Editor: Greg Ridgeway

Abstract

Random forests were introduced as a machine learning tool in Breiman (2001) and have
since proven to be very popular and powerful for high-dimensional regression and classifi-
cation. For regression, random forests give an accurate approximation of the conditional
mean of a response variable. It is shown here that random forests provide information
about the full conditional distribution of the response variable, not only about the con-
ditional mean. Conditional quantiles can be inferred with quantile regression forests, a
generalisation of random forests. Quantile regression forests give a non-parametric and
accurate way of estimating conditional quantiles for high-dimensional predictor variables.
The algorithm is shown to be consistent. Numerical examples suggest that the algorithm
is competitive in terms of predictive power.
Keywords: quantile regression, random forests, adaptive neighborhood regression

1. Introduction

Let Y be a real-valued response variable and X a covariate or predictor variable, possibly
high-dimensional. A standard goal of statistical analysis is to infer, in some way, the
relationship between Y and X. Standard regression analysis tries to come up with an
estimate µ̂(x) of the conditional mean E(Y |X = x) of the response variable Y , given
X = x. The conditional mean minimizes the expected squared error loss,

E(Y |X = x) = arg min
z

E{(Y − z)2|X = x},

and approximation of the conditional mean is typically achieved by minimization of a
squared error type loss function over the available data.

Beyond the Conditional Mean The conditional mean illuminates just one aspect of
the conditional distribution of a response variable Y , yet neglects all other features of
possible interest. This led to the development of quantile regression; for a good summary
see e.g. Koenker (2005). The conditional distribution function F (y|X = x) is given by the
probability that, for X = x, Y is smaller than y ∈ R,

F (y|X = x) = P (Y ≤ y|X = x).

For a continuous distribution function, the α-quantile Qα(x) is then defined such that the
probability of Y being smaller than Qα(x) is, for a given X = x, exactly equal to α. In

c©2006 Nicolai Meinshausen.

Meinshausen

general,

Qα(x) = inf{y : F (y|X = x) ≥ α}. (1)

The quantiles give more complete information about the distribution of Y as a function of
the predictor variable X than the conditional mean alone.

As an example, consider the predictions of next day ozone levels, as in Breiman and
Friedman (1985). Least-squares regression tries to estimate the conditional mean of ozone
levels. It gives little information about the fluctuations of ozone levels around this predicted
conditional mean. It might for example be of interest to find an ozone level that is -with
high probability- not surpassed. This can be achieved with quantile regression, as it gives
information about the spread of the response variable. For some other examples see Le
et al. (2005), which is to the best of our knowledge the first time that quantile regression is
mentioned in the Machine Learning literature.

Prediction Intervals How reliable is a prediction for a new instance? This is a related
question of interest. Consider again the prediction of next day ozone levels. Some days, it
might be possible to pinpoint next day ozone levels to a higher accuracy than on other days
(this can indeed be observed for the ozone data, see the section with numerical results).
With standard prediction, a single point estimate is returned for each new instance. This
point estimate does not contain information about the dispersion of observations around
the predicted value.

Quantile regression can be used to build prediction intervals. A 95% prediction interval
for the value of Y is given by

I(x) = [Q.025(x), Q.975(x)]. (2)

That is, a new observation of Y , for X = x, is with high probability in the interval I(x).
The width of this prediction interval can vary greatly with x. Indeed, going back to the
previous example, next day ozone level can on some days be predicted five times more
accurately than on other days. This effect is even more pronounced for other data sets.
Quantile regression offers thus a principled way of judging the reliability of predictions.

Outlier Detection Quantile regression can likewise be used for outlier detection (for
surveys on outlier detection see e.g. Barnett and Lewis, 1994; Hodge and Austin, 2004). A
new observation (X, Y) would be regarded as an outlier if its observed value Y is extreme,
in some sense, with regard to the predicted conditional distribution function.

There is, however, no generally applicable rule of what precisely constitutes an “extreme”
observation. One could possibly flag observations as outliers if the distance between Y and
the median of the conditional distribution is large; “large” being measured in comparison
to some robust measure of dispersion like the conditional median absolute deviation or
the conditional interquartile range (Huber, 1973). Both quantities are made available by
quantile regression.

Note that only anomalies in the conditional distribution of Y can be detected in this
way. Outliers of X itself cannot be detected. Other research has focused on detecting
anomalies for unlabelled data (e.g. Markou and Singh, 2003; Steinwart et al., 2005).

984

Quantile Regression Forests

Estimating Quantiles from Data Quantile regression aims to estimate the conditional
quantiles from data. Quantile regression can be cast as an optimization problem, just as
estimation of the conditional mean is achieved by minimizing a squared error loss function.
Let the loss function Lα be defined for 0 < α < 1 by the weighted absolute deviations

Lα(y, q) =
{

α |y − q| y > q
(1− α) |y − q| y ≤ q

. (3)

While the conditional mean minimizes the expected squared error loss, conditional quantiles
minimize the expected loss E(Lα),

Qα(x) = arg min
q

E{Lα(Y, q)|X = x}.

A parametric quantile regression is solved by optimizing the parameters so that the empirical
loss is minimal. This can be achieved efficiently due to the convex nature of the optimization
problem (Portnoy and Koenker, 1997). Non-parametric approaches, in particular quantile
Smoothing Splines (He et al., 1998; Koenker et al., 1994), involve similar ideas. Chaudhuri
and Loh (2002) developed an interesting tree-based method for estimation of conditional
quantiles which gives good performance and allows for easy interpretation, being in this
respect similar to CART (Breiman et al., 1984).

In this manuscript, a different approach is proposed, which does not directly employ
minimization of a loss function of the sort (3). Rather, the method is based on random
forests (Breiman, 2001). Random forests grows an ensemble of trees, employing random
node and split point selection, inspired by Amit and Geman (1997). The prediction of
random forests can then be seen as an adaptive neighborhood classification and regression
procedure (Lin and Jeon, 2002). For every X = x, a set of weights wi(x), i = 1, . . . , n for the
original n observations is obtained. The prediction of random forests, or estimation of the
conditional mean, is equivalent to the weighted mean of the observed response variables. For
quantile regression forests, trees are grown as in the standard random forests algorithm. The
conditional distribution is then estimated by the weighted distribution of observed response
variables, where the weights attached to observations are identical to the original random
forests algorithm.

In Section 2, necessary notation is introduced and the mechanism of random forests
is briefly explained, using the interpretation of Lin and Jeon (2002), which views random
forests as an adaptive nearest neighbor algorithm, a view that is later supported in Breiman
(2004). Using this interpretation, quantile regression forests are introduced in Section 3 as
a natural generalisation of random forests. A proof of consistency is given in Section 4,
while encouraging numerical results for popular machine learning data sets are presented
in Section 5.

2. Random Forests

Random forests grows an ensemble of trees, using n independent observations

(Yi, Xi), i = 1, . . . , n.

A large number of trees is grown. For each tree and each node, random forests employs
randomness when selecting a variable to split on. For each tree, a bagged version of the

985

Meinshausen

training data is used. In addition, only a random subset of predictor variables is considered
for splitpoint selection at each node. The size of the random subset, called mtry, is the
single tuning parameter of the algorithm, even though results are typically nearly optimal
over a wide range of this parameter. The value of mtry can be fine-tuned on the out-of-bag
samples. For regression, the prediction of random forests for a new data point X = x is the
averaged response of all trees. For details see Breiman (2001). The algorithm is somewhat
related to boosting (Schapire et al., 1998), with trees as learners. Yet, with random forests,
each tree is grown using the original observations of the response variable, while boosting
tries to fit the residuals after taking into account the prediction of previously generated
trees (Friedman et al., 2000).

Some Notation Following the notation of Breiman (2001), call θ the random param-
eter vector that determines how a tree is grown (e.g. which variables are considered for
splitpoints at each node). The corresponding tree is denoted by T (θ). Let B be the space
in which X lives, that is X : Ω 7→ B ⊆ Rp, where p ∈ N+ is the dimensionality of the
predictor variable. Every leaf ` = 1, . . . , L of a tree corresponds to a rectangular subspace
of B. Denote this rectangular subspace by R` ⊆ B for every leaf ` = 1, . . . , L. For every
x ∈ B, there is one and only one leaf ` such that x ∈ R` (corresponding to the leaf that is
obtained when dropping x down the tree). Denote this leaf by `(x, θ) for tree T (θ).

The prediction of a single tree T (θ) for a new data point X = x is obtained by averaging
over the observed values in leaf `(x, θ). Let the weight vector wi(x, θ) be given by a positive
constant if observation Xi is part of leaf `(x, θ) and 0 if it is not. The weights sum to one,
and thus

wi(x, θ) =
1{Xi∈R`(x,θ)}

#{j : Xj ∈ R`(x,θ)}
. (4)

The prediction of a single tree, given covariate X = x, is then the weighted average of the
original observations Yi, i = 1, . . . , n,

single tree: µ̂(x) =
n∑

i=1

wi(x, θ) Yi.

Using random forests, the conditional mean E(Y |X = x) is approximated by the averaged
prediction of k single trees, each constructed with an i.i.d. vector θt, t = 1, . . . , k. Let wi(x)
be the average of wi(θ) over this collection of trees,

wi(x) = k−1
k∑

t=1

wi(x, θt). (5)

The prediction of random forests is then

Random Forests: µ̂(x) =
n∑

i=1

wi(x)Yi.

The approximation of the conditional mean of Y , given X = x, is thus given by a weighted
sum over all observations. The weights vary with the covariate X = x and tend to be large
for those i ∈ {1, . . . , n} where the conditional distribution of Y , given X = Xi, is similar to
the conditional distribution of Y , given X = x (Lin and Jeon, 2002).

986

Quantile Regression Forests

3. Quantile Regression Forests

It was shown above that random forests approximates the conditional mean E(Y |X = x)
by a weighted mean over the observations of the response variable Y . One could suspect
that the weighted observations deliver not only a good approximation to the conditional
mean but to the full conditional distribution. The conditional distribution function of Y ,
given X = x, is given by

F (y|X = x) = P (Y ≤ y|X = x) = E(1{Y≤y}|X = x).

The last expression is suited to draw analogies with the random forest approximation of the
conditional mean E(Y |X = x). Just as E(Y |X = x) is approximated by a weighted mean
over the observations of Y , define an approximation to E(1{Y≤y}|X = x) by the weighted
mean over the observations of 1{Y≤y},

F̂ (y|X = x) =
n∑

i=1

wi(x) 1{Yi≤y}, (6)

using the same weights wi(x) as for random forests, defined in equation (5). This approxi-
mation is at the heart of the quantile regression forests algorithm.

The Algorithm The algorithm for computing the estimate F̂ (y|X = x) can be summa-
rized as:

a) Grow k trees T (θt), t = 1, . . . , k, as in random forests. However, for every leaf of every
tree, take note of all observations in this leaf, not just their average.

b) For a given X = x, drop x down all trees. Compute the weight wi(x, θt) of observation
i ∈ {1, . . . , n} for every tree as in (4). Compute weight wi(x) for every observation
i ∈ {1, . . . , n} as an average over wi(x, θt), t = 1, . . . , k, as in (5).

c) Compute the estimate of the distribution function as in (6) for all y ∈ R, using the
weights from Step b).

Estimates Q̂α(x) of the conditional quantiles Qα(x) are obtained by plugging F̂ (y|X = x)
instead of F (y|X = x) into (1). Other approaches for estimating quantiles from empirical
distribution functions are discussed in Hyndman and Fan (1996).

The key difference between quantile regression forests and random forests is as follows:
for each node in each tree, random forests keeps only the mean of the observations that fall
into this node and neglects all other information. In contrast, quantile regression forests
keeps the value of all observations in this node, not just their mean, and assesses the
conditional distribution based on this information.

Software is made available as a package quantregForest for R (R Development Core
Team, 2005). The package builds upon the excellent R-package randomForest (Liaw and
Wiener, 2002).

987

Meinshausen

4. Consistency

Consistency of the proposed method is shown. Consistency for random forests (when ap-
proximating the conditional mean) has been shown for a simplified model of random forests
in (Breiman, 2004), together with an analysis of convergence rates. The conditions for
growing individual trees are less stringent in the current analysis but no attempt is made
to analyze convergence rates.

Assumptions Three assumptions are needed for the proof of consistency. First, an as-
sumption is made about the distribution of covariates.

Assumption 1 B = [0, 1]p and X uniform on [0, 1]p.

This assumption is just made for notational convenience. Alternatively, one could assume
that the density of X is positive and bounded from above and below by positive constants.

Next, two assumptions are made about the construction of individual trees. Denote the
node-sizes of the leaves ` of a tree constructed with parameter vector θ by kθ(`), that is
kθ(`) = #{i ∈ {1, . . . , n} : Xi ∈ R`(x,θ)}.

Assumption 2 The proportion of observations in a node, relative to all observations, is
vanishing for large n, max`,θ kθ(`) = o(n), for n →∞. The minimal number of observations
in a node is growing for large n, that is 1/ min`,θ kθ(`) = o(1), for n →∞.

The first part of this assumption is necessary. The second part could possibly be dropped,
with a more involved proof of consistency.

The following assumption concerns the actual construction of trees. An attempt has
been made to keep these assumptions as minimal as possible.

Assumption 3 When finding a variable for a splitpoint, the probability that variable m =
1, . . . , p is chosen for the splitpoint is bounded from below for every node by a positive
constant. If a node is split, the split is chosen so that each of the resulting sub-nodes contains
at least a proportion γ of the observations in the original node, for some 0 < γ ≤ 0.5.

Next, The conditional distribution function is assumed to be Lipschitz continuous.

Assumption 4 There exists a constant L so that F (y|X = x) is Lipschitz continuous with
parameter L, that is for all x, x′ ∈ B,

sup
y
|F (y|X = x)− F (y|X = x′)| ≤ L‖x− x′‖1.

Lastly, positive density is assumed.

Assumption 5 The conditional distribution function F (y|X = x) is, for every x ∈ B,
strictly monotonously increasing in y.

This assumption is necessary to derive consistency of quantile estimates from the consistency
of distribution estimates.

988

Quantile Regression Forests

Consistency Under the made assumptions, consistency of quantile regression forests is
shown.

Theorem 1 Let Assumptions 1-5 be fulfilled. It holds pointwise for every x ∈ B that

sup
y∈R

|F̂ (y|X = x)− F (y|X = x)| →p 0 n →∞.

In other words, the error of the approximation to the conditional distribution converges
uniformly in probability to zero for n →∞. Quantile regression forests is thus a consistent
way of estimating conditional distributions and quantile functions.
Proof Let the random variables Ui, i = 1, . . . , n be defined as the quantiles of the obser-
vations Yi, conditional on X = Xi,

Ui = F (Yi|X = Xi).

Note that Ui, i = 1, . . . , n are i.i.d. uniform on [0, 1]. For a given X = Xi, the event
{Yi ≤ y} is identical to {Ui ≤ F (y|X = Xi)} under Assumption 5. The approximation
F̂ (y|x) = F̂ (y|X = x) can then be written as a sum of two parts,

F̂ (y|x) =
n∑

i=1

wi(x) 1{Yi≤y} =
n∑

i=1

wi(x) 1{Ui≤F (y|Xi)}

=
n∑

i=1

wi(x) 1{Ui≤F (y|x)} +

n∑
i=1

wi(x) (1{Ui≤F (y|Xi)} − 1{Ui≤F (y|x)}).

The absolute difference between the approximation and the true value is hence bounded by

|F (y|x)− F̂ (y|x)| ≤ |F (y|x)−
n∑

i=1

wi(x) 1{Ui≤F (y|x)}|+

|
n∑

i=1

wi(x)(1{Ui≤F (y|Xi)} − 1{Ui≤F (y|x)})|.

The first term is a variance-type part, while the second term reflects the change in the
underlying distribution (if the distribution would be constant as a function of x, the second
term would vanish). Taking supremum over y in the first part leads to

sup
y∈R

|F (y|x)−
n∑

i=1

wi(x) 1{Ui≤F (y|x)}| = sup
z∈[0,1]

|z −
n∑

i=1

wi(x) 1{Ui≤z}|.

Note that E(1{Ui≤z}) = z, as Ui are i.i.d. uniform random variables on [0, 1]. Further-
more 0 ≤ wi(x) ≤ (min`,θ kθ(`))−1. As the weights add to one,

∑n
i=1 wi(x) = 1, and

(min`,θ kθ(`))−1 = o(1) by Assumption 2, it follows that, for every x ∈ B,

n∑
i=1

wi(x)2 → 0 n →∞. (7)

989

Meinshausen

and hence, for every z ∈ [0, 1] and x ∈ B,

|z −
n∑

i=1

wi(x) 1{Ui≤z}| = op(1) n →∞.

By Bonferroni’s inequality, the above still holds true if, on the left hand side, the supremum
over a finite set of z-values is taken, where the cardinality of this set can grow to infinity for
n → ∞. By straightforward yet tedious calculations, it can be shown that the supremum
can be extended not only to such a set of z-values, but also to the whole interval z ∈ [0, 1],
so that

sup
z∈[0,1]

|z −
n∑

i=1

wi(x) 1{Ui≤z}| = op(1) n →∞.

It thus remains to be shown that, for every x ∈ B,

|
n∑

i=1

wi(x)(1{Ui≤F (y|Xi)} − 1{Ui≤F (y|x)})| →p 0 n →∞.

As Ui, i = 1, . . . , n are uniform over [0, 1], it holds that

E(1{Ui≤F (y|Xi)} − 1{Ui≤F (y|x)}) = F (y|Xi)− F (y|x).

Using (7) and independence of all Ui, i = 1, . . . , n, for n →∞,

|
n∑

i=1

wi(x)(1{Ui≤F (y|Xi)} − 1{Ui≤F (y|x)})| →p

n∑
i=1

wi(x){F (y|Xi)− F (y|x)}.

Using Assumption 4 about Lipschitz continuity of the distribution function, it thus remains
to show that

n∑
i=1

wi(x) ‖x−Xi‖1 = op(1) n →∞.

Note that wi(x) = k−1
∑

t=1,...,k wi(x, θt), where wi(x, θ) is defined as the weight produced
by a single tree with (random) parameter θt, as in (4). Thus it suffices to show that, for a
single tree,

n∑
i=1

wi(x, θ) ‖x−Xi‖1 = op(1) n →∞. (8)

The rectangular subspace R`(x,θ) ⊆ [0, 1]p of leaf `(x, θ) of tree T (θ) is defined by the
intervals I(x,m, θ) ⊆ [0, 1] for m = 1, . . . , p,

R`(x,θ) = ⊗p
m=1I(x,m, θ).

Note that Xi /∈ I(x,m, θ) implies wi(x, θ) = 0 by (4). To show (8), it thus suffices to show
that maxm |I(x,m, θ)| = op(1) for n → ∞, for all x ∈ B. The proof is thus complete with
Lemma 2.

990

Quantile Regression Forests

Lemma 2 Under the conditions of Theorem 1, it holds for all x ∈ B that maxm |I(x,m, θ)| =
op(1) for n →∞.

Proof As any x ∈ B is dropped down a tree, several nodes are passed. Denote by S(x,m, θ)
the number of times that these nodes contain a splitpoint on variable m; this is a function
of the random parameter θ and of x. The total number of nodes that x passes through is
denoted by

S(x, θ) =
p∑

m=1

S(x,m, θ).

Using the second part of Assumption 3, the maximal number of observations in any leaf,
max` kθ(`), is bounded (for every tree θ) from below by nγSmin(θ), where

Smin(θ) = min
x∈B

S(x, θ).

Using the first part of Assumption 2, the maximal number of observations in any leaf,
max` kθ(`), is on the other hand bounded from above by an o(n)-term. Putting together,
one can conclude that nγSmin(θ) = o(n) for n → ∞ and thus γSmin(θ) = o(1) for n → ∞.
Hence there exists a sequence sn with sn →∞ for n →∞, such that Smin(θ) ≥ sn for all n.

As the probability of splitting on variable m ∈ {1, . . . , p} is bounded from below by a
positive constant, by the first part of Assumption 3, there exists a sequence gn with gn →∞
for n →∞ such that, for every x ∈ B,

P{min
m

S(x,m, θ) > gn} → 1 n →∞. (9)

Using Assumption 3, the proportion of observations whose m-th component is contained
in I(x,m, θ) is bounded from above by

n−1#{i ∈ {1, . . . , n} : Xi,m ∈ I(x,m, θ)} ≤ (1− γ)S(x,m,θ).

Using (9), it follows that

max
m

n−1#{i ∈ {1, . . . , n} : Xi,m ∈ I(x,m, θ)} = op(1). (10)

Let F
(m)
n be the empirical distribution of Xi,m, i = 1, . . . , n,

F (m)
n (t) = n−1#{i ∈ {1, . . . , n} : Xi,m ≤ t}.

As the predictor variables are assumed to be uniform over [0, 1], it holds by a Kolmogorov-
Smirnov type argument that

sup
t∈[0,1]

|F (m)
n (t)− t| →p 0 n →∞,

and (10) implies thus maxm |I(x,m, θ)| = op(1) for n →∞, which completes the proof.

Note that the discussion of consistency here has several shortcomings, which need to
be addressed in follow-up work. For one, no distinction is made between noise variables

991

Meinshausen

and variables that contain signal, as in Breiman (2004). This treatment would require
more involved assumptions about the probability that a certain variable is selected for a
splitpoint, yet might explain the robustness of quantile regression forests against inclusion
of many noise variables, something that has been observed empirically for random forests
and, according to some numerical experience, holds as well for quantile regression forests.
Second, convergence rates are not discussed. Third, it is noteworthy that Theorem 1 holds
regardless of the number k of grown trees. Empirically, however, a single random tree is
performing very much worse than a large ensemble of trees. The stabilizing effect of many
trees is thus neglected in the current analysis, but would certainly be of relevance when
discussing convergence rates.

5. Numerical Examples

Quantile regression forests (QRF) is applied to various popular data sets from the Machine
Learning literature and results are compared to four other quantile regression methods: lin-
ear quantile regression with interactions (QQR) and without interactions (LQR), and quan-
tile regression trees with with piecewise constant (TRC), piecewise multiple linear (TRM),
and piecewise second-degree polynomial form (TRP).

For quantile regression forests (QRF), bagged versions of the training data are used
for each of the k = 1000 trees. One could use the out-of-bag predictions to determine the
optimal number mtry of variables to consider for splitpoint selection at each node. However,
to demonstrate the stability of QRF with respect to this parameter, the default value is used
throughout all simulations (where mtry is equal to one-third of all variables). Node-sizes are
restricted to have more than 10 observations in each node. It is noteworthy that different
values of this latter parameter do not seem to change the results very much; nevertheless,
it is pointed out in Lin and Jeon (2002) that growing trees until each node is pure (as
originally suggested by Breiman) might lead to overfitting.

Linear quantile regression is very similar to standard linear regression and is extensively
covered in Koenker (2005). To make linear quantile regression (LQR) more competitive,
interaction terms between variables were added for QQR. Starting from the linear model,
interaction terms were added by forward selection until the 5-fold cross-validation error
attained a minimum.

Next, tree-based methods are considered. Quantile regression trees with piecewise poly-
nomial form were introduced in Chaudhuri and Loh (2002). Software for quantile regres-
sion trees comes in the form of the very useful software package GUIDE, available from
www.stat.wisc.edu/∼loh/guide.html, which makes also piecewise constant and piece-
wise linear quantile regression trees (TRC) available. The default settings are used for both
piecewise linear and piecewise second-degree polynomial approximations.

Data Sets The data sets are taken from the packages mlbench and alr3 of the statistical
software package R (R Development Core Team, 2005), and include the well-known Boston
Housing (p = 13 variables, n = 506 observations), Ozone (p = 12, n = 366, after having
removed all missing value observations) and Abalone data set (p = 8, limited to n = 500
randomly chosen observations) from the UCI machine learning repository. In the package
alr3 (Weisberg, 2005), the data set BigMac contains the minutes of labor necessary to
purchase a Big Mac in n = 69 cities worldwide, along with p = 9 other variables like tax

992

Quantile Regression Forests

rates or primaries teacher net income; these variables are used as predictor variables. Last,
the data set Fuel lists average gas-mileage for all n = 51 American states in the year 2001
(the ratio of total gallons of gasoline sold and the approximate number of miles driven),
along with p = 5 variables such as gasoline state tax rate and per capita income; again
these are used as predictor variables.

Evaluation To measure the quality of the conditional quantile approximations, loss func-
tion (3) is used in conjunction with 5-fold cross-validation. The employed loss function
measures the weighted absolute deviations between observations and quantiles, instead of
the more common squared error loss. The minimum of the loss would be achieved by the true
conditional quantile function, as discussed previously. The empirical loss over the test data
is computed for all splits of the data sets at quantiles α ∈ {.005, .025, .05, .5, .95, .975, .995}.
Additionally to the average loss for each method, one might be interested to see whether
the difference in performance between quantile regression forests and the other methods
is significant or not. To this end bootstrapping is used, comparing each method against
quantile regression forests (QRF). The resulting 95% bootstrap confidence intervals for the
difference in average loss is shown by vertical bars; if they do not cross the horizontal
line (which marks the average loss of QRF), the difference in average loss is statistically
significant. Results are shown in Figure 1.

There is not a single data set on which any competing method performs significantly
better than quantile regression forests (QRF). However, QRF is quite often significantly
better than competing methods. If the difference is not significant, QRF has most often the
smaller average loss.

Aggregated trees thus seem to outperform single trees. This is despite the fact that
quantile regression trees have to be grown separately for each quantile α, whereas the same
set of trees can be used for all quantiles with QRF. The performance of QRF could be even
marginally better when growing different set of trees for each value of α. However, this
performance enhancement would come at an additional computational price. Moreover,
monotonicity of the quantile estimates would not be guaranteed any longer. As it is, the
α-quantile of QRF is always at least as large as the β-quantile if α ≥ β. This monotonicity
constraint is not always fulfilled for the other considered methods.

Linear quantile regression with interaction terms works surprisingly well in comparison,
especially for moderate quantiles (that is α is not too close to either 0 or 1). However,
for more extremal quantiles, quantile regression forests delivers most often a better better
approximation. This is even more pronounced if additional noise variables are added. To
this end, every original predictor variables is permuted randomly and added to the list
of predictor variables. The results are shown in Figure 2. The performance of quantile
regression forests seems to be robust with respect to inclusion of noise variables.

Prediction Intervals A possible application of quantile regression forests is the con-
struction of prediction intervals, as discussed previously. For each new data point X, a
prediction interval of the form (2) gives a range that will cover the new observation of the
response variable Y with high probability.

In Figure 3, some graphical results are shown for the Boston Housing data. Figure 4
shows comparable plots for the remaining data sets. There are two main observations:
Firstly, as expected, about 95% of all observations are inside their 95% prediction intervals.

993

Meinshausen

●

●

●

●

●

●

●

●

●

●

●

●

QRF TRC

0.
00

02
0.

00
06

0.
00

10
0.

00
14

F
ue

l
α = 0.005

●

●

●

●

●

●

●

●

●

●

●

●

LQR TRM

0.
00

08
0.

00
12

0.
00

16

α = 0.025

●

●

●
●

●
●

●

●

●
●

●
●

QQR TRP

0.
00

10
0.

00
15

0.
00

20
0.

00
25

α = 0.05

●
●

●

●

●

●

●
●

●

●

●

●

QRF TRC

0.
00

8
0.

01
2

0.
01

6
0.

02
0

α = 0.5

●

●
●

● ●

●
●

●
●

● ●

●

LQR TRM

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

α = 0.95

●

● ●

● ● ●●

● ●

● ● ●

QQR TRP

0.
00

0.
01

0.
02

0.
03

0.
04

α = 0.975

●

● ●

● ● ●●

● ●

● ● ●

QRF TRC

0.
00

0.
01

0.
02

0.
03

0.
04

α = 0.995

●

●
●

●

●

●
●

●
●

●

●

●

QRF TRC

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

B
os

to
n

H
ou

si
ng

●
●

●

●

●

●

●
●

●

●

●

●

LQR TRM

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

● ●
●

●

●

●

● ●
●

●

●

●

QQR TRP

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

●

● ●

●

●

●

●

● ●

●

●

●

QRF TRC

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

●

● ● ●

● ●

●

● ● ●

● ●

LQR TRM

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

● ●

●
●

●

●

● ●

●
●

●

QQR TRP

0.
3

0.
4

0.
5

0.
6

●

● ●

●

●

●

●

● ●

●

●

●

QRF TRC

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

●

●

●

●

●

●

●

●

●

●

●

●

QRF TRC

0.
05

0.
10

0.
15

0.
20

O
zo

ne

●

●

●

●

●

●

●

●

●

●

●

●

LQR TRM

0.
20

0.
25

0.
30

0.
35

●

●

●

●
●

●

●

●

●

●
●

●

QQR TRP

0.
40

0.
45

0.
50

●

●

●

●

●

●

●

●

●

●

●

●

QRF TRC

1.
6

1.
8

2.
0

2.
2

●

●
●

●

● ●
●

●
●

●

● ●

LQR TRM

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

●

●
●

●

●

●
●

●
●

●

●

●

QQR TRP

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

●

●

●

●

●

●
●

●

●

●

●

●

QRF TRC

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

●

● ●

●
●

●

●

● ●

●
●

●

QRF TRC

0.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0
0.

04
5

A
ba

lo
ne

●

● ●

●

●

●●

● ●

●

●

●

LQR TRM

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

●
● ●

●

●

●
●

● ●
●

●

●

QQR TRP

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

●
● ●

●
●

●

●
● ●

●
●

●

QRF TRC

0.
7

0.
8

0.
9

1.
0

●
● ●

●
●

●

●
● ●

●
●

●

LQR TRM

0.
30

0.
35

0.
40

0.
45

0.
50

●

● ●

● ●

●

●

● ●

● ●

●

QQR TRP

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

●

● ●

● ●

●

●

● ●

● ●

●

QRF TRC

0.
06

0.
08

0.
10

0.
12

●

●

●

●

●

●●

●

●

●

●

●

QRF TRC

0.
5

1.
0

1.
5

2.
0

B
ig

M
ac

α = 0.005

●

●

●

●

●

●●

●

●

●

●

●

LQR TRM

0.
5

1.
0

1.
5

2.
0

2.
5

α = 0.025

●

●

●

● ●

●●

●

●

● ●

●

QQR TRP

1.
0

1.
5

2.
0

2.
5

3.
0

α = 0.05

●

●

●

●
● ●●

●

●

●
● ●

QRF TRC

4
6

8
10

α = 0.5

● ●
●

●

●
●

● ●
●

●

●
●

LQR TRM

1
2

3
4

5
6

α = 0.95

● ●
●

●

●
●

● ●
●

●

●
●

QQR TRP

0
1

2
3

4

α = 0.975

●

●

●

●
●

●●

●

●

●
●

●

QRF TRC

0
1

2
3

α = 0.995

Figure 1: Average loss for various data sets (from top to bottom) and quantiles (from left to
right). The average loss of quantile regression forests is shown in each plot as the
leftmost dot and is indicated as well by a horizontal line for better comparison.
The average losses for competing methods are shown for the linear methods in the
middle and the three tree-based methods on the right of each plot. The vertical
bars indicate the bootstrap confidence intervals for the difference in average loss
for each method against quantile regression forests. Note that no parameters
have been fine-tuned for quantile regression forests (the default settings are used
throughout).

994

Quantile Regression Forests

●

●

●

●

●

●●

●

●

●

●

●

QRF TRC

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

F
ue

l

α = 0.005

●

●

●

●

●

●●

●

●

●

●

●

LQR TRM

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0

α = 0.025

●

●

●

●

●

●●

●

●

●

●

●

QQR TRP

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0

α = 0.05

●

●

●

●
● ●

●

●

●

●
● ●

QRF TRC

0.
01

0
0.

01
5

0.
02

0
0.

02
5

α = 0.5

●

● ●

●
● ●

●

● ●

●
● ●

LQR TRM

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

α = 0.95

●

● ●

●

●

●
●

● ●

●

●

●

QQR TRP

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

α = 0.975

●

● ●

●

●

●
●

● ●

●

●

●

QRF TRC

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

α = 0.995

●

●
●

●

●

●●

●
●

●

●

●

QRF TRC

0.
05

0.
10

0.
15

0.
20

0.
25

B
os

to
n

H
ou

si
ng

●

●

●

● ●

●●

●

●

● ●

●

LQR TRM

0.
20

0.
25

0.
30

0.
35

0.
40

●

●

●

●

●
●

●

●

●

●

●
●

QQR TRP

0.
35

0.
40

0.
45

0.
50

0.
55

●

● ●

●

●

●

●

● ●

●

●

●

QRF TRC

1.
2

1.
4

1.
6

1.
8

●

● ●

●

●

●

●

● ●

●

●

●

LQR TRM

0.
4

0.
6

0.
8

1.
0

1.
2

●

● ●

●

●

●

●

● ●

●

●

●

QQR TRP

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

●

● ●

●

●

●
●

● ●

●

●

●

QRF TRC

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

●

●

●

●

●

●●

●

●

●

●

●

QRF TRC

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

O
zo

ne

●

●

●

●

●

●●

●

●

●

●

●

LQR TRM

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

●

●

●

●

●

●●

●

●

●

●

●

QQR TRP

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

●

● ● ●

●
●

●

● ● ●

●
●

QRF TRC

1.
6

1.
8

2.
0

2.
2

●

●
●

●

●

●
●

●
●

●

●

●

LQR TRM

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

●
●

●

●

●
●

●
●

●

●

●

QQR TRP
0.

2
0.

4
0.

6
0.

8

●

●
●

●

●

●●

●
●

●

●

●

QRF TRC

0.
2

0.
4

0.
6

0.
8

●

● ●

● ●

●●

● ●

● ●

●

QRF TRC

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

A
ba

lo
ne

●

●
●

●
●

●●

●
●

●
●

●

LQR TRM

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

●

● ●

●

●

●

●

● ●

●

●

●

QQR TRP

0.
14

0.
16

0.
18

0.
20

●

● ●

●
●

●

●

● ●

●
●

●

QRF TRC

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

●

● ●

● ●

●

●

● ●

● ●

●

LQR TRM

0.
28

0.
32

0.
36

0.
40

●

● ●

● ●

●●

● ●

● ●

●

QQR TRP

0.
15

0.
20

0.
25

0.
30

●

● ●

● ● ●●

● ●

● ● ●

QRF TRC

0.
05

0.
10

0.
15

0.
20

● ● ●
●

●

●● ● ●
●

●

●

QRF TRC

0
20

40
60

80
10

0
12

0
14

0

B
ig

M
ac

α = 0.005

● ● ●
●

●

●● ● ●
●

●

●

LQR TRM

0
20

40
60

80
10

0
12

0
14

0

α = 0.025

● ● ● ●

●

●● ● ● ●

●

●

QQR TRP

0
20

40
60

80
10

0
12

0

α = 0.05

●

● ●
●

●

●●

● ●
●

●

●

QRF TRC

10
20

30
40

50
60

70

α = 0.5

●

●
●

●

●

●

●

●
●

●

●

●

LQR TRM

5
10

15

α = 0.95

●

●
●

● ●
●

●

●
●

● ●
●

QQR TRP

5
10

15

α = 0.975

●

●
●

● ● ●
●

●
●

● ● ●

QRF TRC

0
5

10
15

α = 0.995

Figure 2: Same plots as in Figure 1. However, to test the performance of the methods
under additional noise, each predictor variable is permuted randomly and added
to the list of predictor variables.

995

Meinshausen

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●
●
●
●●

●

●
●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●●
●●

●
●

●

●

●●●

●●

●●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●
●

●

●

●●

●

●●●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●
●●
●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●
●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●
●
●●

●●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●
●●

●

●

●

●

●●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50

10
20

30
40

50

fitted values (conditional median)

ob
se

rv
ed

 v
al

ue
s

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●
●
●
●●

●

●
●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●●
●●

●
●

●

●

●●●

●●

●●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●
●

●

●

●●

●

●●●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●
●●
●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●
●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●
●
●●

●●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●
●●

●

●

●

●

●●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
20

−
10

0
10

20
30

ordered samples

ob
se

rv
ed

 v
al

ue
s

an
d

pr
ed

ic
tio

n
in

te
rv

al
s

(c
en

te
re

d)

●

●●

●

●

●
●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●●

●

●
●

●

●
●
●●●
●

●●
●

●

●

●●
●
●●

●

●●

●●●

●

●

●
●

●
●
●
●
●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●

●●

●

●
●●
●
●●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●
●

●
●
●

●●●

●
●
●

●
●●

●

●

●
●
●

●●

●

●●
●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●

●
●

●●
●

●●
●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●

●●
●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Figure 3: For each data point i = 1, . . . , n in the Boston Housing data set (with n = 506),
conditional quantiles are estimated with QRF on a test set which does not include
the i-th observation (5-fold cross-validation). Left panel: the observed values are
plotted against the predicted median values. Prediction intervals are shown for
each i = 1, . . . , n as transparent grey bars, with vertical black lines at the bottom
and top. It can be seen that prediction intervals vary in length, some being
much shorter than others. Right panel: For better visualisation, observations
i = 1, . . . , n are ordered according to the length of the corresponding prediction
intervals. Moreover, the mean of the upper and lower end of the prediction
interval is subtracted from all observations and prediction intervals. All but 10
observations actually lie in their respective 95% prediction intervals.

996

Quantile Regression Forests

0 10 20 30 40 50 60 70

−
50

0
50

10
0

ordered samples

ob
se

rv
ed

 v
al

ue
s

an
d

pr
ed

ic
tio

n
in

te
rv

al
s

(c
en

te
re

d) BigMac

● ● ●

●

● ● ●
●

●

● ● ●
●

●

●
●

●

●

●
●

●
● ●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

1.4 %

0 %

0 50 100 150 200

−
15

−
10

−
5

0
5

10
15

ordered samples
ob

se
rv

ed
 v

al
ue

s
an

d
pr

ed
ic

tio
n

in
te

rv
al

s
(c

en
te

re
d) Ozone

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 %

1.5 %

0 10 20 30 40 50

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

ordered samples

ob
se

rv
ed

 v
al

ue
s

an
d

pr
ed

ic
tio

n
in

te
rv

al
s

(c
en

te
re

d) Fuel

●
● ●

●

●

● ●

●
●

●

●

●

● ● ●

●
●

●
●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

5.9 %

3.9 %

0 100 200 300 400 500

−
5

0
5

10

ordered samples

ob
se

rv
ed

 v
al

ue
s

an
d

pr
ed

ic
tio

n
in

te
rv

al
s

(c
en

te
re

d) Abalone

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●●

●●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

2.4 %

1 %

Figure 4: Same plots as in the right panel of Figure 3 for the remaining data sets. Addition-
ally, the percentage of observations that lie above the upper end of their respective
prediction intervals (below the lower end) are indicated in the upper left corner
(lower left corner). As 95% prediction intervals are shown, on average 2.5% of
all observations should be above (and below) their prediction intervals. For the
Big Mac, Fuel, and Ozone data sets, it is particularly apparent that the lengths
of the prediction intervals vary strongly (some values can thus be predicted more
accurately than others).

997

Meinshausen

Secondly, the lengths of prediction intervals vary greatly. Some observations can thus be
predicted much more accurately than others.

With quantile regression forests, it is possible to give a range in which each observation
is going to be (with high probability). The wider this range for a new instance, the less
accurate any prediction is going to be. Vice versa, one knows that a prediction is reliable if
the prediction interval is very short.

6. Conclusions

Quantile regression forests infer the full conditional distribution of a response variable. This
information can be used to build prediction intervals and detect outliers in the data.

Prediction intervals cover new observations with high probability. The length of the
prediction intervals reflect thus the variation of new observations around their predicted
values. The accuracy with which new observations can be predicted varies typically quite
strongly for instances in the same data set. Quantile regression forests can quantify this
accuracy. The estimated conditional distribution is thus a useful addition to the commonly
inferred conditional mean of a response variable.

It was shown that quantile regression forests are, under some reasonable assumptions,
consistent for conditional quantile estimation. The performance of the algorithm is very
competitive in comparison with linear and tree-based methods, as shown for some common
Machine Learning benchmark problems.

References

Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9:1545–1588, 1997.

V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley and Sons, 1994.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

L. Breiman. Consistency for a simple model of random forests. Technical Report 670,
Department of Statistics, University of California, Berkeley, 2004.

L. Breiman and J. H. Friedman. Estimating optimal transformations for multiple regression
and correlation. Journal of the American Statistical Association, 80:580–598, 1985.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, Belmont, 1984.

P. Chaudhuri and W. Loh. Nonparametric estimation of conditional quantiles using quantile
regression trees. Bernoulli, 8:561–576, 2002.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view
of boosting. Annals of Statistics, 28:337–407, 2000.

X. He, P. Ng, and S. Portnoy. Bivariate quantile smoothing splines. Journal of the Royal
Statistical Society B, 3:537–550, 1998.

998

Quantile Regression Forests

V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence
Review, 22:85 – 126, 2004.

P. Huber. Robust regression: asymptotics, conjectures, and monte carlo. Annals of Statis-
tics, 1:799–821, 1973.

R. J. Hyndman and Y. Fan. Sample quantiles in statistical packages. American Statistician,
50:361–365, 1996.

R. Koenker. Quantile Regression. Cambridge University Press, 2005.

R. Koenker, P. Ng, and S. Portnoy. Quantile smoothing splines. Biometrika, 81:673–680,
1994.

Q. V. Le, T. Sears, and A. Smola. Nonparametric quantile regression. Technical report,
NICTA, 2005.

Andy Liaw and Matthew Wiener. Classification and regression by randomForest. R News,
2:18–22, 2002.

Y. Lin and Y. Jeon. Random forests and adaptive nearest neighbors. Technical Report
1055, Department of Statistics, University of Wisconsin, 2002.

M. Markou and S. Singh. Novelty detection: A review. Signal Processing, 83:2481–2497,
2003.

S Portnoy and R. Koenker. The gaussian hare and the laplacian tortoise: Computability of
squared-error versus absolute-error estimates. Statistical Science, 12:279–300, 1997.

R Development Core Team. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2005. URL http:
//www.R-project.org. ISBN 3-900051-07-0.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. Annals of Statistics, 26:1651–1686,
1998.

I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection.
Journal of Machine Learning Research, 6:211–232, 2005.

S. Weisberg. Applied Linear Regression. Wiley, 2005.

999

Journal of Machine Learning Research 7 (2006) 1001–1024 Submitted 08/05; Revised 3/06; Published 6/06

Sparse Boosting

Peter Bühlmann BUHLMANN @STAT.MATH .ETHZ.CH

Seminar f̈ur Statistik
ETH Zürich
Zürich, CH-8092, Switzerland

Bin Yu BINYU @STAT.BERKELEY.EDU

Department of Statistics
University of California
Berkeley, CA 94720-3860, USA

Editors: Yoram Singer and Larry Wasserman

Abstract
We propose Sparse Boosting (the SparseL2Boost algorithm), a variant on boosting with the squared
error loss. SparseL2Boost yields sparser solutions than the previously proposed L2Boosting by
minimizing some penalizedL2-loss functions, theFPE model selection criteria, through small-
step gradient descent. Although boosting may give already relatively sparse solutions, for example
corresponding to the soft-thresholding estimator in orthogonal linear models, there is sometimes a
desire for more sparseness to increase prediction accuracyand ability for better variable selection:
such goals can be achieved with SparseL2Boost.

We prove an equivalence of SparseL2Boost to Breiman’s nonnegative garrote estimator for
orthogonal linear models and demonstrate the generic nature of SparseL2Boost for nonparametric
interaction modeling. For an automatic selection of the tuning parameter in SparseL2Boost we
propose to employ the gMDL model selection criterion which can also be used for early stopping
of L2Boosting. Consequently, we can select between SparseL2Boost andL2Boosting by comparing
their gMDL scores.

Keywords: lasso, minimum description length (MDL), model selection,nonnegative garrote,
regression

1. Introduction

Since its inception in a practical form in Freund and Schapire (1996), boosting has obtained and
maintained its outstanding performance in numerous empirical studies both in the machine learning
and statistics literatures. The gradient descent view of boosting as articulated in Breiman (1998,
1999), Friedman et al. (2000) and Rätsch et al. (2001) provides a springboard for the understanding
of boosting to leap forward and at the same time serves as the base for new variants of boosting to be
generated. In particular, theL2Boosting (Friedman, 2001) takes the simple form of refitting a base
learner to residuals of the previous iteration. It coincides with Tukey’s (1977) twicing at its second
iteration and reproduces matching pursuit of Mallat and Zhang (1993) when applied to a dictionary
or collection of fixed basis functions. A somewhat different approach has been suggested by Rätsch
et al. (2002). B̈uhlmann and Yu (2003) investigatedL2Boosting for linear base procedures (weak
learners) and showed that in such cases, the variance or complexity of the boosted procedure is
bounded and increases at an increment which is exponentially diminishing asiterations run – this

c©2006 Peter B̈uhlmann and Bin Yu.

BÜHLMANN AND YU

special case calculation implies that the resistance to the over-fitting behaviorof boosting could be
due to the fact that the complexity of boosting increases at an extremely slow pace.

Recently Efron et al. (2004) made an intriguing connection for linear modelsbetweenL2Boosting
and Lasso (Tibshirani, 1996) which is anℓ1-penalized least squares method. They consider a modi-
fication ofL2Boosting, called forward stagewise least squares (FSLR) and they show that for some
special cases, FSLR with infinitesimally small step-sizes produces a set of solutions which coincides
with the set of Lasso solutions when varying the regularization parameter in Lasso. Furthermore,
Efron et al. (2004) proposed the least angle regression (LARS) algorithm whose variants give a
clever computational short-cut for FSLR and Lasso.

For high-dimensional linear regression (or classification) problems with many ineffective pre-
dictor variables, the Lasso estimate can be very poor in terms of prediction accuracy and as a variable
selection method, see Meinshausen (2005). There is a need for more sparse solutions than pro-
duced by the Lasso. Our new SparseL2Boost algorithm achieves a higher degree of sparsity while
still being computationally feasible, in contrast to all subset selection in linear regression whose
computational complexity would generally be exponential in the number of predictor variables.
For the special case of orthogonal linear models, we prove here an equivalence of SparseL2Boost
to Breiman’s (1995) nonnegative garrote estimator. This demonstrates the increased sparsity of
SparseL2Boost overL2Boosting which is equivalent to soft-thresholding (due to Efron et al. (2004)
and Theorem 2 in this article).

Unlike Lasso or the nonnegative garrote estimator, which are restricted to a(generalized) linear
model or basis expansion using a fixed dictionary, SparseL2Boost enjoys much more generic appli-
cability while still being computationally feasible in high-dimensional problems and yielding more
sparse solutions than boosting orℓ1-regularized versions thereof (see Rätsch et al., 2002; Lugosi and
Vayatis, 2004). In particular, we demonstrate its use in the context of nonparametric second-order
interaction modeling with a base procedure (weak learner) using thin plate splines, improving upon
Friedman’s (1991) MARS.

Since our SparseL2Boost is based on the final prediction error criterion, it opens up the possi-
bility of bypassing the computationally intensive cross-validation by stopping early based on the
model selection score. The gMDL model selection criterion (Hansen and Yu, 2001) uses a data-
driven penalty to theL2-loss and as a consequence bridges between the two well-known AIC and
BIC criteria. We use it in the SparseL2Boost algorithm and for early stopping ofL2Boosting. Fur-
thermore, we can select between SparseL2Boost andL2Boosting by comparing their gMDL scores.

2. Boosting with the Squared Error Loss

We assume that the data are realizations from

(X1,Y1), . . . ,(Xn,Yn),

whereXi ∈ R
p denotes ap-dimensional predictor variable andYi ∈ R a univariate response. In

the sequel, we denote byx(j) the jth component of a vectorx ∈ R
p. We usually assume that the

pairs(Xi ,Yi) are i.i.d. or from a stationary process. The goal is to estimate the regressionfunction
F(x) = E[Y|X = x] which is well known to be the (population) minimizer of the expected squared
error lossE[(Y−F(X))2].

The boosting methodology in general builds on a user-determined base procedure or weak
learner and uses it repeatedly on modified data which are typically outputs from the previous it-

1002

SPARSEBOOSTING

erations. The final boosted procedure takes the form of linear combinations of the base procedures.
For L2Boosting, based on the squared error loss, one simply fits the base procedure to the original
data to start with, then uses the residuals from the previous iteration as the new response vector and
refits the base procedure, and so on. As we will see in section 2.2,L2Boosting is a “constrained”
minimization of the empirical squared error riskn−1 ∑n

i=1(Yi −F(Xi))
2 (with respect toF(·)) which

yields an estimator̂F(·). The regularization of the empirical risk minimization comes in implicitly
by the choice of a base procedure and by algorithmical constraints such as early stopping or penalty
barriers.

2.1 Base Procedures Which Do Variable Selection

To be more precise, a base procedure is in our setting a function estimator based on the data
{(Xi ,Ui); i = 1, . . . ,n}, whereU1, . . . ,Un denote some (pseudo-) response variables which are not
necessarily the originalY1, . . . ,Yn. We denote the base procedure function estimator by

ĝ(·) = ĝ(X,U)(·), (1)

whereX = (X1, . . . ,Xn) andU = (U1, . . . ,Un).
Many base procedures involve some variable selection. That is, only someof the components

of the p-dimensional predictor variablesXi are actually contributing in (1). In fact, almost all of
the successful boosting algorithms in practice involve base procedures which do variable selection:
examples include decision trees (see Freund and Schapire, 1996; Breiman, 1998; Friedman et al.,
2000; Friedman, 2001), componentwise smoothing splines which involve selection of the best single
predictor variable (see B̈uhlmann and Yu, 2003), or componentwise linear least squares in linear
models with selection of the best single predictor variable (see Mallat and Zhang, 1993; B̈uhlmann,
2006).

It will be useful to represent the base procedure estimator (at the observed predictorsXi) as a
hat-operator, mapping the (pseudo-) response to the fitted values:

H : U 7→ (ĝ(X,U)(X1), . . . , ĝ(X,U)(Xn)), U = (U1, . . . ,Un).

If the base procedure selects from a set of predictor variables, we denote the selected predictor
variable index byŜ ⊂ {1, . . . , p}, whereŜ has been estimated from a specified setΓ of subsets of
variables. To emphasize this, we write for the hat operator of a base procedure

H Ŝ : U 7→ (ĝ(X(Ŝ),U)(X1), . . . , ĝ(X(Ŝ),U)(Xn)), U = (U1, . . . ,Un), (2)

where the base procedure ˆg(X,U)(·) = ĝ(X(Ŝ),U)(·) depends only on the componentsX(Ŝ) from X. The
examples below illustrate this formalism.

1003

BÜHLMANN AND YU

Componentwise linear least squares in linear model(see Mallat and Zhang, 1993; Bühlmann,
2006)
We select only single variables at a time fromΓ = {1,2, . . . , p}. The selector̂S chooses the predictor
variable which reduces the residual sum of squares most when using least squares fitting:

Ŝ = argmin1≤ j≤p

n

∑
i=1

(Ui − γ̂ jX
(j)
i)2, γ̂ j =

∑n
i=1UiX

(j)
i

∑n
i=1(X

(j)
i)2

(j = 1, . . . , p).

The base procedure is then

ĝ(X,U)(x) = γ̂Ŝ x
(Ŝ),

and its hat operator is given by the matrix

H Ŝ = X(Ŝ)(X(Ŝ))T , X(j) = (X(j)
1 , . . . ,X(j)

n)T .

L2Boosting with this base procedure yields a linear model with model selection andparameter
estimates which are shrunken towards zero. More details are given in sections 2.2 and 2.4.

Componentwise smoothing spline(see B̈uhlmann and Yu, 2003)
Similarly to a componentwise linear least squares fit, we select only one single variable at a time
from Γ = {1,2, . . . , p}. The selector̂S chooses the predictor variable which reduces residual sum of
squares most when using a smoothing spline fit. That is, for a given smoothingspline operator with
fixed degrees of freedomd.f. (which is the trace of the corresponding hat matrix)

Ŝ = argmin1≤ j≤p

n

∑
i=1

(Ui − ĝ j(X
(j)
i))2,

ĝ j(·) is the fit from the smoothing spline toU versusX(j) with d.f.

Note that we use the same degrees of freedomd.f. for all componentsj ’s. The hat-matrix corre-
sponding to ˆg j(·) is denoted byH j which is symmetric; the exact from is not of particular interest
here but is well known, see Green and Silverman (1994). The base procedure is

ĝ(X,U)(x) = ĝŜ (x
(Ŝ)),

and its hat operator is then given by a matrixH Ŝ . Boosting with this base procedure yields an
additive model fit based on selected variables (see Bühlmann and Yu, 2003).

Pairwise thin plate splines
Generalizing the componentwise smoothing spline, we select pairs of variables fromΓ = {(j,k); 1≤
j < k≤ p}. The selector̂S chooses the two predictor variables which reduce residual sum of squares
most when using thin plate splines with two arguments:

Ŝ = argmin1≤ j<k≤p

n

∑
i=1

(Ui − ĝ j,k(X
(j)
i ,X(k)

i))2,

ĝ j,k(·, ·) is an estimated thin plate spline based onU andX(j),X(k) with d.f.,

1004

SPARSEBOOSTING

where the degrees of freedomd.f. is the same for all componentsj < k. The hat-matrix correspond-
ing to ĝ j,k is denoted byH j,k which is symmetric; again the exact from is not of particular interest
but can be found in Green and Silverman (1994). The base procedureis

ĝ(X,U)(x) = ĝŜ (x
(Ŝ)),

wherex(Ŝ) denotes the 2-dimensional vector corresponding to the selected pair inŜ , and the hat
operator is then given by a matrixH Ŝ . Boosting with this base procedure yields a nonparametric fit
with second order interactions based on selected pairs of variables; an illustration is given in section
3.4.

In all the examples above, the selector is given by

Ŝ = argminS∈Γ

n

∑
i=1

(Ui − (H SU)i)
2 (3)

Also (small) regression trees can be cast into this framework. For example for stumps,Γ =
{(j,c j,k); j = 1, . . . , p, k = 1, . . . ,n−1}, wherec j,1 < .. . < c j,n−1 are the mid-points between (non-

tied) observed valuesX(j)
i (i = 1, . . . ,n). That is,Γ denotes here the set of selected single predictor

variables and corresponding split-points. The parameter values for the two terminal nodes in the
stump are then given by ordinary least squares which implies a linear hat matrix H (j,c j,k). Note
however, that for mid-size or large regression trees, the optimization overthe setΓ is usually not
done exhaustively.

2.2 L2Boosting

Before introducing our new SparseL2Boost algorithm, we describe first its less sparse counterpart
L2Boosting, a boosting procedure based on the squared error loss whichamounts to repeated fitting
of residuals with the base procedure ˆg(X,U)(·). Its derivation from a more general functional gradient
descent algorithm using the squared error loss has been described bymany authors, see Friedman
(2001).

L2Boosting

Step 1 (initialization).F̂0(·) ≡ 0 and setm= 0.

Step 2.Increasemby 1.
Compute residualsUi = Yi − F̂m−1(Xi) (i = 1, . . . ,n) and fit the base procedure to the current resid-
uals. The fit is denoted bŷfm(·) = ĝ(X,U)(·).
Update

F̂m(·) = F̂m−1(·)+ν f̂m(·),

where 0< ν ≤ 1 is a pre-specified step-size parameter.

Step 3 (iteration).Repeat Steps 2 and 3 until some stopping value for the number of iterations is
reached.

1005

BÜHLMANN AND YU

With m= 2 andν = 1, L2Boosting has already been proposed by Tukey (1977) under the name
“twicing”. The number of iterations is the main tuning parameter forL2Boosting. Empirical ev-
idence suggests that the choice for the step-sizeν is much less crucial as long asν is small; we
usually useν = 0.1. The number of boosting iterations may be estimated by cross-validation. As an
alternative, we will develop in section 2.5 an approach which allows to use some model selection
criteria to bypass cross-validation.

2.3 SparseL2Boost

As described above,L2Boosting proceeds in a greedy way: if in Step2 the base procedure is fitted
by least squares and when usingν = 1, L2Boosting pursues the best reduction of residual sum of
squares in every iteration.

Alternatively, we may want to proceed such that the out-of-sample prediction error would be
most reduced, that is we would like to fit a function ˆgX,U (from the class of weak learner estimates)
such that the out-of-sample prediction error becomes minimal. This is not exactly achievable since
the out-sample prediction error is unknown. However, we can estimate it via amodel selection
criterion. To do so, we need a measure of complexity of boosting. Using the notation as in (2), the
L2Boosting operator in iterationm is easily shown to be (see Bühlmann and Yu, 2003)

Bm = I − (I −νH Ŝm) · · · · · (I −νH Ŝ1), (4)

where Ŝm denotes the selector in iterationm. Moreover, if all theH S are linear (that is the hat
matrix), as in all the examples given in section 2.1,L2Boosting has an approximately linear rep-
resentation, where only the data-driven selectorŜ brings in some additional nonlinearity. Thus, in
many situations (for example the examples in the previous section 2.1 and decision tree base pro-
cedures), the boosting operator has a corresponding matrix-form when using in (4) the hat-matrices
for H S . The degrees of freedom for boosting are then defined as

trace(Bm) = trace(I − (I −νH Ŝm) · · ·(I −νH Ŝ1)).

This is a standard definition for degrees of freedom (see Green and Silverman, 1994) and it has
been used in the context of boosting in Bühlmann (2006). An estimate for the prediction error of
L2Boosting in iterationm can then be given in terms of the final prediction error criterionFPEγ
(Akaike, 1970):

n

∑
i=1

(Yi − F̂m(Xi))
2 + γ · trace(Bm). (5)

2.3.1 THE SPARSEL2BOOSTALGORITHM

For SparseL2Boost, the penalized residual sum of squares in (5) becomes the criterionto move from
iterationm−1 to iterationm. More precisely, forB a (boosting) operator, mapping the response
vectorY to the fitted variables, and a criterionC(RSS,k), we use the following objective function to
boost:

T(Y,B) = C

(

n

∑
i=1

(Yi − (BY)i)
2, trace(B)

)

. (6)

1006

SPARSEBOOSTING

For example, the criterion could beFPEγ for someγ > 0 which corresponds to

Cγ(RSS,k) = RSS+ γ ·k. (7)

An alternative which does not require the specification of a parameterγ as in (7) is advocated in
section 2.5.

The algorithm is then as follows.

SparseL2Boost

Step 1 (initialization).F̂0(·) ≡ 0 and setm= 0.

Step 2.Increasemby 1.
Search for the best selector

S̃m = argminS∈ΓT(Y, trace(Bm(S))),

Bm(S) = I − (I −H S)(I −νH S̃m−1
) · · ·(I −νH S̃1),

(for m= 1: B1(S) = H S).

Fit the residualsUi = Yi − F̂m−1(Xi) with the base procedure using the selectedS̃m which yields a
function estimate

f̂m(·) = ĝS̃m;(X,U)(·),

whereĝS ;(X,U)(·) corresponds to the hat operatorH S from the base procedure.

Step 3 (update).Update,

F̂m(·) = F̂m−1(·)+ν f̂m(·).

Step 4 (iteration).Repeat Steps 2 and 3 for a large number of iterationsM.

Step 5 (stopping).Estimate the stopping iteration by

m̂= argmin1≤m≤MT(Y, trace(Bm)), Bm = I − (I −νH S̃m) · · ·(I −νH S̃1).

The final estimate iŝFm̂(·).

The only difference toL2Boosting is that the selection in Step 2 yields a differentS̃m than in (3).
While Ŝm in (3) minimizes the residual sum of squares, the selectedS̃m in SparseL2Boost minimizes
a model selection criterion over all possible selectors. Since the selectorS̃m depends not only on the
current residualsU but also explicitly on all previous boosting iterations throughS̃1, S̃2, . . . , S̃m−1

via the trace ofBm(S), the estimatef̂m(·) in SparseL2Boost is not a function of the current resid-
ualsU only. This implies that we cannot represent SparseL2Boost as a linear combination of base
procedures, each of them acting on residuals only.

1007

BÜHLMANN AND YU

2.4 Connections to the Nonnegative Garrote Estimator

SparseL2Boost based onCγ as in (7) enjoys a surprising equivalence to the nonnegative garrote
estimator (Breiman, 1995) in an orthogonal linear model. This special case allows explicit expres-
sions to reveal clearly that SparseL2Boost (aka nonnegative-garrote) is sparser thanL2Boosting (aka
soft-thresholding).

Consider a linear model withn orthonormal predictor variables,

Yi =
n

∑
j=1

β jx
(j)
i + εi , i = 1, . . . ,n,

n

∑
i=1

x(j)
i x(k)

i = δ jk, (8)

whereδ jk denotes the Kronecker symbol, andε1, . . . ,εn are i.i.d. random variables withE[εi] = 0
and Var(εi) = σ2

ε < ∞. We assume here the predictor variables as fixed and non-random. Usingthe
standard regression notation, we can re-write model (8) as

Y = Xβ+ ε, XTX = XXT = I , (9)

with then×n design matrixX = (x(j)
i)i, j=1,...,n, the parameter vectorβ = (β1, . . . ,βn)

T , the response
vectorY = (Y1, . . . ,Yn)

T and the error vectorε = (ε1, . . . ,εn)
T . The predictors could also be basis

functionsg j(ti) at observed valuesti with the property that they build an orthonormal system.
The nonnegative garrote estimator has been proposed by Breiman (1995) for a linear regression

model to improve over subset selection. It shrinks each ordinary least squares (OLS) estimated
coefficient by a nonnegative amount whose sum is subject to an upper bound constraint (the garrote).
For a given response vectorY and a design matrixX (see (9)), the nonnegative garrote estimator
takes the form

β̂Nngar, j = c j β̂OLS, j

such that

n

∑
i=1

(Yi − (Xβ̂Nngar)i)
2 is minimized, subject toc j ≥ 0,

p

∑
j=1

c j ≤ s, (10)

for somes > 0. In the orthonormal case from (8), since the ordinary least squaresestimator is
simply β̂OLS, j = (XTY) j = Z j , the nonnegative garrote minimization problem becomes findingc j ’s
such that

n

∑
j=1

(Z j −c jZ j)
2 is minimized, subject toc j ≥ 0,

n

∑
j=1

c j ≤ s.

Introducing a Lagrange multiplierτ > 0 for the sum constraint gives the dual optimization problem:
minimizing

n

∑
j=1

(Z j −c jZ j)
2 + τ

n

∑
j=1

c j , c j ≥ 0 (j = 1, ...,n). (11)

1008

SPARSEBOOSTING

This minimization problem has an explicit solution (Breiman, 1995):

c j = (1−λ/|Z j |2)+, λ = τ/2,

whereu+ = max(0,u). Henceβ̂Nngar, j = (1−λ/|Z j |2)+Z j or equivalently,

β̂Nngar, j =

Z j −λ/|Z j |, if sign(Z j)Z2
j ≥ λ,

0, if Z2
j < λ,

Z j +λ/|Z j |, if sign(Zi)Z2
j ≤−λ.

, whereZ j = (XTY) j . (12)

We show in Figure 1 the nonnegative garrote threshold function in comparison to hard- and soft-
thresholding, the former corresponding to subset variable selection andthe latter to the Lasso (Tib-
shirani, 1996). Hard-thresholding either yields the value zero or the ordinary least squares estima-
tor; the nonnegative garrote and soft-thresholding either yield the value zero or a shrunken ordinary
least squares estimate, where the shrinkage towards zero is stronger for the soft-threshold than for
the nonnegative garrote estimator. Therefore, for the same amount of “complexity” or “degrees of
freedom” (which is in case of hard-thresholding the number of ordinary least squares estimated vari-
ables), hard-thresholding (corresponding to subset selection) will typically select the fewest number
of variables (non-zero coefficient estimates) while the nonnegative garrote will include more vari-
ables and the soft-thresholding will be the least sparse in terms of the numberof selected variables;
the reason is that for the non-zero coefficient estimates, the shrinkage effect, which is slight in the
nonnegative garotte and stronger for soft-thresholding, causes fewer degrees of freedom for every

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

threshold functions

z

hard−thresholding
nn−garrote
soft−thresholding

Figure 1: Threshold functions for subset selection or hard-thresholding (dashed-dotted line), non-
negative garrote (solid line) and lasso or soft-thresholding (dashed line).

selected variable. This observation can also be compared with some numerical results in section 3.

1009

BÜHLMANN AND YU

The following result shows the equivalence of the nonnegative garroteestimator and SparseL2Boost
with componentwise linear least squares (using ˆm iterations) yielding coefficient estimatesβ̂(m̂)

SparseBoost, j .

Theorem 1 Consider the model in (8) and any sequence(γn)n∈N. For SparseL2Boost with compo-
nentwise linear least squares, based on Cγn as in (7) and using a step-sizeν, as described in section
2.3, we have

β̂(m̂)
SparseBoost, j = β̂Nngar, j in (12) with parameterλn =

1
2

γn(1+ej(ν)),

max
1≤i≤n

|ej(ν)| ≤ ν/(1−ν) → 0 (ν → 0).

A proof is given in section 5. Note that the sequence(γn)n∈N can be arbitrary and does not need
to depend onn (and likewise for the correspondingλn). For the orthogonal case, Theorem 1 yields
the interesting interpretation of SparseL2Boost as the nonnegative garrote estimator.

We also describe here for the orthogonal case the equivalence ofL2Boosting with component-
wise linear least squares (yielding coefficient estimatesβ̂(m)

Boost, j) to soft-thresholding. A closely re-
lated result has been given in Efron et al. (2004) for the forward stagewise linear regression method
which is similar toL2Boosting. However, our result is for (non-modified)L2Boosting and brings
out more explicitly the role of the step-size.

The soft-threshold estimator for the unknown parameter vectorβ, is

β̂so f t, j =

Z j −λ, if Z j ≥ λ,

0, if |Z j | < λ,

Z j +λ, if Z j ≤−λ.

whereZ j = (XTY) j . (13)

Theorem 2 Consider the model in (8) and a thresholdλn in (13) for any sequence(λn)n∈N. For
L2Boosting with componentwise linear least squares and using a step-sizeν, as described in section
2.2, there exists a boosting iteration m, typically depending onλn, ν and the data, such that

β̂(m)
Boost, j = β̂so f t, j in (13) with threshold of the formλn(1+ej(ν)), where

max
1≤ j≤n

|ej(ν)| ≤ ν/(1−ν) → 0 (ν → 0).

A proof is given in section 5. We emphasize that the sequence(λn)n∈N can be arbitrary: in
particular,λn does not need to depend on sample sizen.

2.5 The gMDL choice for the criterion function

TheFPE criterion functionC(·, ·) in (7) requires in practice the choice of a parameterγ. In principle,
we could tune this parameter using some cross-validation scheme. Alternatively, one could use a
parameter value corresponding to well-known model selection criteria suchas AIC (γ = 2) or BIC
(γ = logn). However, in general, the answer to whether to use AIC or BIC depends on the true
underlying model being finite or not (see Speed and Yu, 1993, and the references therein). In
practice, it is difficult to know which situation one is in and thus hard to choosebetween AIC
and BIC. We employ here instead a relatively new minimum description length criterion, gMDL
(see Hansen and Yu, 2001), developed for linear models. For each model class, roughly speaking,
gMDL is derived as a mixture code length based on a linear model with an inverse Gamma prior

1010

SPARSEBOOSTING

(with a shape hyperparameter) for the variance and conditioning on the variance, the linear model
parameterβ follows an independent multivariate normal prior with the given variance multiplied by
a scale hyperparameter. The two hyperparameters are then optimized based on the MDL principle
and their coding costs are included in the code length. Because of the adaptive choices of the
hyperparameters, the resulted gMDL criterion has a data-dependent penalty for each dimension,
instead of the fixed penalty 2 or logn for AIC or BIC, respectively. In other words, gMDL bridges
the AIC and BIC criteria by having a data-dependent penalty log(F) as given below in (14). The
F in the gMDL penalty is related to the signal to noise ratio (SNR), as shown in Hansen and Yu
(1999). Moreover, the gMDL criterion has an explicit analytical expression which depends only on
the residual sum of squares and the model dimension or complexity. It is worth noting that we will
not need to tune the criterion function as it will be explicitly given as a functionof the data only.
The gMDL criterion function takes the form

CgMDL(RSS,k) = log(S)+
k
n

log(F),

S=
RSS
n−k

, F =
∑n

i=1Y2
i −RSS
kS

. (14)

Here,RSSdenotes again the residual sum of squares as in formula (6) (first argument of the function
C(·, ·)).

In the SparseL2Boost algorithm in section 2.3.1, if we take

T(Y,B) = CgMDL(RSS, trace(B)),

then we arrive at thegMDL-SparseL2Boost algorithm. Often though, we simply refer to it as
SparseL2Boost.

The gMDL criterion in (14) can also be used to give a new stopping rule forL2Boosting. That
is, we propose

m̂= argmin1≤m≤MCgMDL(RSSm, trace(Bm)), (15)

whereM is a large number,RSSm the residual sum of squares afterm boosting iterations andBm is
the boosting operator described in (4). If the minimizer is not unique, we usethe minimalm which
minimizes the criterion. Boosting can now be run without tuning any parameter (we typically do not
tune over the step-sizeν but rather take a value such asν = 0.1), and we call such an automatically
stopped boosting methodgMDL- L2Boosting. In the sequel, it is simply referred to asL2Boosting.

There will be no overall superiority of either SparseL2Boost orL2Boosting as shown in Section
3.1. But it is straightforward to do a data-driven selection: we choose thefitted model which has the
smaller gMDL-score between gMDL-SparseL2Boost and the gMDL stoppedL2Boosting. We term
this methodgMDL-sel-L2Boostwhich does not rely on cross-validation and thus could bring much
computational savings.

3. Numerical Results

In this section, we investigate and compare SparseL2Boost withL2Boosting (both with their data-
driven gMDL-criterion), and evaluate gMDL-sel-L2Boost. The step-size in both boosting methods
is fixed atν = 0.1. The simulation models are based on two high-dimensional linear models and
one nonparametric model. Except for two real data sets, all our comparisons and results are based
on 50 independent model simulations.

1011

BÜHLMANN AND YU

3.1 High-Dimensional Linear Models

3.1.1 ℓ0-SPARSE MODELS

Consider the model

Y = 1+5X1 +2X2 +X9 + ε,
X = (X1, . . . ,Xp−1) ∼ N p−1(0,Σ), ε ∼ N (0,1), (16)

whereε is independent fromX. The sample size is chosen asn = 50 and the predictor-dimension is
p∈ {50,100,1000}. For the covariance structure of the predictorX, we consider two cases:

Σ = Ip−1, (17)

[Σ]i j = 0.8|i− j|. (18)

The models areℓ0-sparse, since theℓ0-norm of the true regression coefficients (the number of effec-
tive variables including an intercept) is 4.

The predictive performance is summarized in Table 1. For theℓ0-sparse model (16), SparseL2Boost
outperformsL2Boosting. Furthermore, in comparison to the oracle performance (denotedby an
asterisk∗ in Table 1), the gMDL rule for the stopping iteration ˆm works very well for the lower-
dimensional cases withp∈{50,100} and it is still reasonably accurate for the very high-dimensional
case withp = 1000. Finally, both boosting methods are essentially insensitive when increasing the

Σ , dim. SparseL2Boost L2Boosting SparseL2Boost* L2Boosting*
(17), p = 50 0.16 (0.018) 0.46 (0.041) 0.16 (0.018) 0.46 (0.036)
(17), p = 100 0.14 (0.015) 0.52 (0.043) 0.14 (0.015) 0.48 (0.045)
(17), p = 1000 0.77 (0.070) 1.39 (0.102) 0.55 (0.064) 1.27 (0.105)
(18), p = 50 0.21 (0.024) 0.31 (0.027) 0.21 (0.024) 0.30 (0.026)
(18), p = 100 0.22 (0.024) 0.39 (0.028) 0.22 (0.024) 0.39 (0.028)
(18), p = 1000 0.45 (0.035) 0.97 (0.052) 0.38 (0.030) 0.72 (0.049)

Table 1: Mean squared error (MSE),E[(f̂ (X)− f (X))2] (f (x) = E[Y|X = x]), in model (16) for
gMDL-SparseL2Boost and gMDL early stoppedL2Boosting using the estimated stopping
iterationm̂. The performance using the oraclem which minimizes MSE is denoted by an
asterisk *. Estimated standard errors are given in parentheses. Sample size isn = 50.

number of ineffective variables from 46(p = 50) to 96(p = 100). However, with very many, that
is 996 (p = 1000), ineffective variables, a significant loss in accuracy shows up in the orthogo-
nal design (17) and there is an indication that the relative differences between SparseL2Boost and
L2Boosting become smaller. For the positive dependent design in (18), the loss in accuracy in the
p = 1000 case is not as significant as in the orthogonal design case in (17),and the relative differ-
ences between SparseL2Boost andL2Boosting actually become larger.

It is also worth pointing out that the resulting mean squared errors (MSEs)in design (17) and
(18) are not really comparable even for the same numberp of predictors. This is because, even
though the noise level isE|ε|2 = 1 for both designs, the signal levelsE| f (X)|2 are different, that is

1012

SPARSEBOOSTING

31 for the uncorrelated design in (17) and 49.5 for the correlated designin (18). If we would like
to compare the performances among the two designs, we should rather look at the signal-adjusted
mean squared error

E| f̂ (X)− f (X)|2
E| f (X)|2

which is the test-set analogue of 1−R2 in linear models. This signal adjusted error measure can
be computed from the results in Table 1 and the signal levels given above. We then obtain for the
lower dimensional cases withp ∈ {50,100} that the prediction accuracies are about the same for
the correlated and the uncorrelated design (for SparseL2Boost and forL2Boosting). However, for
the high-dimensional case withp = 1000, the performance (of SparseL2Boost and ofL2Boosting)
is significantly better in the correlated than the uncorrelated design.

Next, we consider the ability of selecting the correct variables: the results are given in Table 2.

Σ , dim. SparseL2Boost L2Boosting
(17), p = 50: ℓ0-norm 5.00 (0.125) 13.68 (0.438)

non-selected T 0.00 (0.000) 0.00 (0.000)
selected F 1.00 (0.125) 9.68 (0.438)

(17), p = 100: ℓ0-norm 5.78 (0.211) 21.20 (0.811)
non-selected T 0.00 (0.000) 0.00 (0.000)

selected F 1.78 (0.211) 17.20 (0.811)
(17), p = 1000: ℓ0-norm 23.70 (0.704) 78.80 (0.628)

non-selected T 0.02 (0.020) 0.02 (0.020)
selected F 19.72 (0.706) 74.82 (0.630)

(18), p = 50: ℓ0-norm 4.98 (0.129) 9.12 (0.356)
non-selected T 0.00 (0.000) 0.00 (0.000)

selected F 0.98 (0.129) 5.12 (0.356)
(18), p = 100: ℓ0-norm 5.50 (0.170) 12.44 (0.398)

non-selected T 0.00 (0.000) 0.00 (0.000)
selected F 1.50 (0.170) 8.44 (0.398)

(18), p = 1000: ℓ0-norm 13.08 (0.517) 71.68 (1.018)
non-selected T 0.00 (0.000) 0.00 (0.000)

selected F 9.08 (0.517) 67.68 (1.018)

Table 2: Model (16): expected number of selected variables (ℓ0-norm), expected number of non-
selected true effective variables (non-selected T) which is in the range of [0,4], and ex-
pected number of selected non-effective (false) variables (selected F) which is in the range
of [0, p−4]. Methods: SparseL2Boost andL2Boosting using the estimated stopping itera-
tion m̂ (Step 5 in the SparseL2Boost algorithm and (15) respectively). Estimated standard
errors are given in parentheses. Sample size isn = 50.

In the orthogonal case, we have argued that SparseL2Boost has a tendency for sparser results than
L2Boosting; see the discussion of different threshold functions in section 2.4. This is confirmed in

1013

BÜHLMANN AND YU

all our numerical experiments. In particular, for ourℓ0-sparse model (16), the detailed results are
reported in Table 2. SparseL2Boost selects much fewer predictors thanL2Boosting. Moreover, for
this model, SparseL2Boost is a good model selector as long as the dimensionality is not very large,
that is forp∈ {50,100}, while L2Boosting is much worse selecting too many false predictors (that
is too many false positives). For the very high-dimensional case withp= 1000, the selected models
are clearly too large when compared with the true model size, even when using SparseL2Boost.
However, the results are pretty good considering the fact that we are dealing with a much harder
problem of getting rid of 996 irrelevant predictors based on only 50 samplepoints. To summarize,
for this synthetic example, SparseL2Boost works significantly better thanL2Boosting both in terms
of MSE, model selection and sparsity, due to the sparsity of the true model.

3.1.2 A NON-SPARSEMODEL WITH RESPECT TO THEℓ0-NORM

We provide here an example whereL2Boosting will be better than SparseL2Boost. Consider the
model

Y =
p

∑
j=1

1
5

β jXj + ε,

X1, . . . ,Xp ∼ N p(0, Ip), ε ∼ N (0,1), (19)

whereβ1, . . . ,βp are fixed values from i.i.d. realizations of the double-exponential densityp(x) =
exp(−|x|)/2. The magnitude of the coefficients|β j |/5 is chosen to vary the signal to noise ratio from
model (16), making it about 5 times smaller than for (19). Since Lasso (coinciding with L2Boosting
in the orthogonal case) is the maximum a-posteriori (MAP) method when the coefficients are from
a double-exponential distribution and the observations from a Gaussian distribution, as in (19), we
expectL2Boosting to be better than SparseL2Boost for this example (even though we understand
that MAP is not the Bayesian estimator under theL2 loss). The squared error performance is given
in Table 3, supporting our expectations. SparseL2Boost nevertheless still has the virtue of sparsity
with only about 1/3 of the number of selected predictors but with an MSE whichis larger by a factor
1.7 when compared withL2Boosting.

SparseL2Boost L2Boosting SparseL2Boost* L2Boosting*
MSE 3.64 (0.188) 2.19 (0.083) 3.61 (0.189) 2.08 (0.078)

ℓ0-norm 11.78 (0.524) 29.16 (0.676) 11.14 (0.434) 35.76 (0.382)

Table 3: Mean squared error (MSE) and expected number of selected variables (ℓ0-norm) in model
(19) with p = 50. Estimated standard errors are given in parentheses. All other specifica-
tions are described in the caption of Table 1.

3.1.3 DATA -DRIVEN CHOICE BETWEEN SPARSEL2BOOST AND L2BOOSTING:
GMDL- SEL-L2BOOST

We illustrate here the gMDL-sel-L2Boost proposal from section 2.5 that uses the gMDL model
selection score to choose in a data-driven way between SparseL2Boost andL2Boosting. As an

1014

SPARSEBOOSTING

illustration, we consider again the models in (16)-(17) and (19) withp = 50 andn = 50. Figure 2
displays the results in the form of boxplots across 50 rounds of simulations.

gMDL−sel L2Boo SparseBoo

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

model (16)
sq

ua
re

d
er

ro
r

gMDL−sel L2Boo SparseBoo

1
2

3
4

5
6

7

model (19)

sq
ua

re
d

er
ro

r

Figure 2: Out-of-sample squared error losses, aveX[(f̂ (X)− f (X))2] (f (x) = E[Y|X = x]), from the
50 simulations for the models in (16)-(17) and (19) withp = 50. gMDL-sel-L2Boost
(gMDL-sel), L2Boosting (L2Boo) and SparseL2Boost (SparseBoo). Sample size isn =
50.

The gMDL-sel-L2Boost method performs between the better and the worse of the two boosting
algorithms, but closer to the better performer in each situation (the latter is only known for simulated
data sets). For model (19), there is essentially no degraded performance when doing a data-driven
selection between the two boosting algorithms (in comparison to the best performer).

3.2 Ozone Data with Interactions Terms

We consider a real data set about ozone concentration in the Los Angeles basin. There arep = 8
meteorological predictors and a real-valued response about daily ozone concentration; see Breiman
(1996). We constructed second-order interaction and quadratic terms after having centered the orig-
inal predictors. We then obtain a model withp = 45 predictors (including an intercept) and a re-
sponse. We used 10-fold cross-validation to estimate the out-of-sample squared prediction error and
the average number of selected predictor variables. When scaling the predictor variables (and their
interactions) to zero mean and variance one, the performances were very similar. Our results are
comparable to the analysis of bagging in Breiman (1996) which yielded a cross-validated squared
error of 18.8 for bagging trees based on the original eight predictors.

We also run SparseL2Boost andL2Boosting on the whole data set and choose the method accord-
ing to the better gMDL-score, that is gMDL-sel-L2Boost (see section 2.5). Some results are given
in Table 5. Based on SparseL2Boost, an estimate for the error variance isn−1 ∑n

i=1(Yi −Ŷi)
2 = 15.56

1015

BÜHLMANN AND YU

SparseL2Boost L2Boosting
10-fold CV squared error 16.52 16.57

10-fold CV ℓ0-norm 10.20 16.10

Table 4: Boosting with componentwise linear least squares for ozone data with first order-
interactions (n = 330, p = 45). Squared prediction error and average number of selected
predictor variables using 10-fold cross-validation.

and the goodness of fit equalsR2 = ∑n
i=1(Ŷi −Y)2/∑n

i=1(Yi −Y)2 = 0.71, whereŶi = F̂(Xi) and
Y = n−1 ∑n

i=1Yi .

SparseL2Boost (#) L2Boosting
gMDL-score 2.853 2.862

RSS 15.56 15.24
ℓ0-norm 10 18

Table 5: Boosting with componentwise linear least squares for ozone data with first order-
interactions (n = 330, p = 45). gMDL-score,n−1× residual sum of squares (RSS) and
number of selected terms (ℓ0-norm). (#) gMDL-sel-L2Boost selects SparseL2Boost as the
better method.

In summary, while SparseL2Boost is about as good asL2Boosting in terms of predictive accu-
racy, see Table 4, it yields a sparser model fit, see Tables 4 and 5.

3.3 Binary Tumor Classification Using Gene Expressions

We consider a real data set which containsp = 7129 gene expressions in 49 breast tumor samples
using the Affymetrix technology, see West et al. (2001). After thresholding to a floor of 100 and a
ceiling of 16,000 expression units, we applied a base 10 log-transformationand standardized each
experiment to zero mean and unit variance. For each sample, a binary response variableY ∈ {0,1}
is available, describing the status of lymph node involvement in breast cancer. The data are available
athttp://mgm.duke.edu/genome/dna micro/work/.

Although the data has the structure of a binary classification problem, the squared error loss is
quite often employed for estimation. We useL2Boosting and SparseL2Boost with componentwise
linear least squares. We classify the label 1 if ˆp(x) = P̂[Y+1|X = x] > 1/2 and zero otherwise. The
estimate for ˆp(·) is obtained as follows:

p̂m(·) = 1/2+ F̂m(·),
F̂m(·) theL2- or SparseL2Boost estimate using̃Y = Y−1/2. (20)

Note thatF̂m(·) is an estimate ofp(·)−1/2. Using this procedure amounts to modelling and esti-
mating the deviation from the boundary value 1/2 (we do not use an interceptterm anymore in our
model). This is usually much better because theL2- or SparseL2Boost estimate is shrunken towards

1016

SPARSEBOOSTING

zero. When usingL2- or SparseL2Boost onY ∈ {0,1} directly, with an intercept term, we would
obtain a shrunken boosting estimate of the intercept introducing a bias rendering p̂(·) to be system-
atically too small. The latter approach has been used in Bühlmann (2006) yielding worse results for
L2Boosting than what we report here forL2Boosting using (20).

Since the gMDL criterion is relatively new, its classification counterpart is not yet well devel-
oped (see Hansen and Yu, 2002). Instead of the gMLD criterion in (14)and (15), we use the BIC
score for the Bernoulli-likelihood in a binary classification:

BIC(m) = −2· log-likelihood+ log(n) · trace(Bm).

The AIC criterion would be another option: it yields similar, a bit less sparse results for our tumor
classification problem.

We estimate the classification performance by a cross-validation scheme where we randomly
divide the 49 samples into balanced training- and test-data of sizes 2n/3 andn/3, respectively, and
we repeat this 50 times. We also report on the average of selected predictor variables. The reports
are given in Table 6.

SparseL2Boost L2Boosting
CV misclassification error 21.88% 23.13%

CV ℓ0-norm 12.90 15.30

Table 6: Boosting with componentwise linear least squares for tumor classification data (n =
46, p = 7129). Misclassification error and average number of selected predictor variables
using cross-validation (with random 2/3 training and 1/3 test sets).

The predictive performance ofL2- and SparseL2Boosting compares favourably with four other
methods, namely 1-nearest neighbors, diagonal linear discriminant analysis, support vector machine
with radial basis kernel (from the R-packagee1071 and using its default values), and a forward
selection penalized logistic regression model (using some reasonable penalty parameter and number
of selected genes). For 1-nearest neighbors, diagonal linear discriminant analysis and support vector
machine, we pre-select the 200 genes which have the best Wilcoxon score in a two-sample problem
(estimated from the training data set only), which is recommended to improve the classification
performance. Forward selection penalized logistic regression is run without pre-selection of genes.
The results are given in Table 5 which is taken from Bühlmann (2006).

FPLR 1-NN DLDA SVM
CV misclassification error 35.25% 43.25% 36.12% 36.88%

Table 7: Cross-validated misclassification rates for lymph node breast cancer data. Forward variable selec-
tion penalized logistic regression (FPLR), 1-nearest-neighbor rule (1-NN), diagonal linear discrim-
inant analysis (DLDA) and a support vector machine (SVM)

When using SparseL2Boost andL2Boosting on the whole data set, we get the following results
displayed in Table 8. The 12 variables (genes) which are selected by SparseL2Boost are a subset

1017

BÜHLMANN AND YU

of the 14 selected variables (genes) fromL2Boosting. Analogously as in section 3.2, we give some
ANOVA-type numbers of SparseL2Boosting: the error variability isn−1 ∑n

i=1(Yi −Ŷi)
2 = 0.052 and

the goodness of fit equalsR2 = ∑n
i=1(Ŷi −Y)2/∑n

i=1(Yi −Y)2 = 0.57, whereŶi = F̂(Xi) andY =
n−1 ∑n

i=1Yi .

SparseL2Boost (#) L2Boosting
BIC score 35.09 37.19

RSS 0.052 0.061
ℓ0-norm 12 14

Table 8: Boosting with componentwise linear least squares for tumor classification (n = 49, p =
7129). BIC score,n−1× residual sum of squares (RSS) and number of selected terms
(ℓ0-norm). (#) BIC-sel-L2Boost selects SparseL2Boost as the better method.

In summary, the predictive performance of SparseL2Boost is slightly better than ofL2Boosting,
see Table 6, and SparseL2Boost selects a bit fewer variables (genes) thanL2Boosting, see Tables 7
and 8.

3.4 Nonparametric Function Estimation with Second-Order Interactions

Consider the Friedman #1 model Friedman (1991),

Y = 10sin(πX1X2)+20(X3−0.5)2 +10X4 +5X5 + ε,
X ∼ Unif.([0,1]p), ε ∼ N (0,1), (21)

whereε is independent fromX. The sample size is chosen asn = 50 and the predictor dimension is
p∈ {10,20} which is still large relative ton for a nonparametric problem.

SparseL2Boost andL2Boosting with a pairwise thin plate spline, which selects the best pair
of predictor variables yielding lowest residual sum of squares (when having the same degrees of
freedomd.f. = 5 for every thin plate spline), yields a second-order interaction model; seealso
section 2.1. We demonstrate in Table 9 the effectiveness of these procedures, also in comparison
with the MARS Friedman (1991) fit constrained to second-order interactionterms. SparseL2Boost
is a bit better thanL2Boosting. But the estimation of the boosting iterations by gMDL did not do as
well as in section 3.1 since the oracle methods perform significantly better. The reason is that this
example has a high signal to noise ratio. From (Hansen and Yu, 1999), theF in the gMDL penalty
(see (14)) is related to the signal to noise ratio (SNR). Thus, when SNR is high, the log(F) is high
too, leading to too small models in both SparseL2Boost andL2Boosting: that is, this large penalty
forces both SparseL2Boost andL2Boosting to stop too early in comparison to the oracle stopping
iteration which minimizes MSE. However, both boosting methods nevertheless are quite a bit better
than MARS.

When increasing the noise level, using Var(ε) = 16, we obtain the following MSEs forp = 10:
11.70 for SparseL2Boost, 11.65 for SparseL2Boost* with the oracle stopping rule and 24.11 for
MARS. Thus, for lower signal to noise ratios, stopping the boosting iterations with the gMDL
criterion works very well, and our SparseL2Boost algorithm is much better than MARS.

1018

SPARSEBOOSTING

dim. SparseL2Boost L2Boosting MARS SparseL2Boost* L2Boosting*
p = 10 3.71 (0.241) 4.10 (0.239) 5.79 (0.538) 2.22 (0.220) 2.69 (0.185)
p = 20 4.36 (0.238) 4.81 (0.197) 5.82 (0.527) 2.68 (0.240) 3.56 (0.159)

Table 9: Mean squared error (MSE) in model (21). All other specifications are described in the
caption of Table 1, except for MARS which is constrained to second-order interaction
terms.

4. Conclusions

We propose SparseL2Boost, a gradient descent algorithm on a penalized squared error losswhich
yields sparser solutions thanL2Boosting orℓ1-regularized versions thereof. The new method is
mainly useful for high-dimensional problems with many ineffective predictorvariables (noise vari-
ables). Moreover, it is computationally feasible in high dimensions, for example having linear
complexity in the number of predictor variablesp when using componentwise linear least squares
or componentwise smoothing splines (see section 2.1).

SparseL2Boost is essentially as generic asL2Boosting and can be used in connection with non-
parametric base procedures (weak learners). The idea of sparse boosting could also be transferred
to boosting algorithms with other loss functions, leading to sparser variants ofAdaBoost and Log-
itBoost.

There is no general superiority of sparse boosting over boosting, even though we did find in four
out of our five examples (two real data and two synthetic data sets) that SparseL2Boost outperforms
L2Boosting in terms of sparsity and SparseL2Boost is as good or better thanL2Boosting in terms
of predictive performance. In the synthetic data example in section 3.1.2, chosen to be the ideal
situation forL2Boosting, SparseL2Boost loses 70% in terms of MSE, but uses only 1/3 of the pre-
dictors. Hence if one cares about sparsity, SparseL2Boost seems a better choice thanL2Boosting. In
our framework, the boosting approach automatically comes with a reasonablenotion for statistical
complexity or degrees of freedom, namely the trace of the boosting operatorwhen it can be ex-
pressed in hat matrix form. This trace complexity is well defined for many popular base procedures
(weak learners) including componentwise linear least squares and decision trees, see also section
2.1. SparseL2Boost gives rise to a direct, fast computable estimate of the out-of-sample error when
combined with the gMDL model selection criterion (and thus, by-passing cross-validation). This
out-of-sample error estimate can also be used for choosing the stopping iteration inL2Boosting and
for selecting between sparse and traditional boosting, resulting in the gMDL-sel-L2Boost algorithm.

Theoretical results in the orthogonal linear regression model as well as simulation and data
experiments are provided to demonstrate that the SparseL2Boost indeed gives sparser model fits
thanL2Boosting and that gMDL-sel-L2Boost automatically chooses between the two to give a rather
satisfactory performance in terms of sparsity and prediction.

5. Proofs

We first give the proof of Theorem 2. It then serves as a basis for proving Theorem 1.

1019

BÜHLMANN AND YU

Proof of Theorem 2. We represent the componentwise linear least squares base procedureas a
hat operatorH Ŝ with H j = x(j)(x(j))T , wherex(j) = (x(j)

1 , . . . ,x(j)
n)T ; see also section 2.1. The

L2Boosting operator in iterationm is then given by the matrix

Bm = I − (I −νH 1)
m1(I −νH 2)

m2 · · ·(I −νH n)
mn,

wheremi equals the number of times that theith predictor variable has been selected during them
boosting iterations; and hencem= ∑n

i=1mi . The derivation of the formula above is straightforward
because of the orthogonality of the predictorsx(j) andx(k) which implies the commutationH jH k =
H kH j . Moreover,Bm can be diagonalized

Bm = XDmXT with XTX = XXT = I , Dm = diag(dm,1, . . . ,dm,n), dm,i = 1− (1−ν)mi .

Therefore, the residual sum of squares in themth boosting iteration is:

RSSm = ‖Y−BmY‖2 = ‖XTY−XTBmY‖2 = ‖Z−DmZ‖2 = ‖(I −Dm)Z‖2,

whereZ = XTY.
The RSSm decreases monotonically inm. Moreover, the amount of decreaseRSSm−RSSm+1

is decaying monotonously inm, becauseL2Boosting proceeds to decrease theRSSas much as
possible in every step (by selecting the most reducing predictorx(j)) and due to the structure of
(1−dm,i) = (1−ν)mi . Thus, every stopping of boosting with an iteration numberm corresponds to
a toleranceδ2 such that

RSSk−RSSk+1 > δ2, k = 1,2, ...,m−1,

RSSm−RSSm+1 ≤ δ2, (22)

that is, the iteration numberm corresponds to a numerical tolerance where the differenceRSSm−
RSSm+1 is smaller thanδ2.

SinceL2Boosting changes only one of the summands inRSSm in the boosting iterationm+ 1,
the criterion in (22) implies that for alli ∈ {1, . . . ,n}

((1−ν)2(mi−1)− (1−ν)2mi)Z2
i > δ2,

((1−ν)2mi − (1−ν)2(mi+1))Z2
i ≤ δ2. (23)

If mi = 0, only the second line in the above expression is relevant. TheL2Boosting solution with
toleranceδ2 is thus characterized by (23).

Let us first, for the sake of insight, replace the “≤” in (23) by “≈”: we will deal later in which
sense such an approximate equality holds. Ifmi ≥ 1, we get

((1−ν)2mi − (1−ν)2(mi+1))Z2
i = (1−ν)2mi (1− (1−ν)2)Z2

i ≈ δ2,

and hence

(1−ν)mi ≈ δ
√

1− (1−ν)2|Zi |
. (24)

1020

SPARSEBOOSTING

In case wheremi = 0, we obviously have that 1− (1−ν)mi = 0. Therefore,

β̂(m)
Boost,i = Ẑi = dm,i = (1− (1−ν)mi)Zi ≈ Zi −

δ
√

1− (1−ν)2|Zi |
Zi if m1 ≥ 1,

β̂(m)
Boost,i = 0 if mi = 0.

Sincemi = 0 happens only if|Zi | ≤ δ√
1−(1−ν)2

, we can write the estimator as

β̂(m)
Boost,i ≈

Zi −λ, if Zi ≥ λ,

0, if |Zi | < λ,

Zi +λ, if Zi ≤−λ.

(25)

whereλ = δ√
1−(1−ν)2

(note thatm is connected toδ, and hence toλ via the criterion in (22)). This

is the soft-threshold estimator with thresholdλ, as in (13). By choosingδ = λn

√

1− (1−ν)2, we
get the desired thresholdλn.

We will now deal with the approximation in (24). By the choice ofδ two lines above, we would
like that

(1−ν)mi ≈ λn/|Zi |.

As we will see, this approximation is accurate when choosingν small. We only have to deal with
the case where|Zi | > λn; if |Zi | ≤ λn, we know thatmi = 0 andβ̂i = 0 exactly, as claimed in the
right hand side of (25). Denote by

Vi = V(Zi) =
λn

|Zi |
∈ (0,1).

(The range(0,1) holds for the case we are considering here). According to the stopping criterion in
(23), the derivation as for (24) and the choice ofδ, this says that

(1−ν)mi > Vi ,

(1−ν)mi+1 ≤Vi , (26)

and hence

∆(ν,Vi)
def
= ((1−ν)mi −Vi) ≤ ((1−ν)mi − (1−ν)mi+1)

=
ν

1−ν
(1−ν)mi+1 ≤ ν

1−ν
Vi ,

by using (26). Thus,

(1−ν)mi = Vi +((1−ν)mi −Vi) = Vi(1+∆(ν,Vi)/Vi) = Vi(1+ei(ν)),

|ei(ν)| = |∆(ν,Vi)/Vi | ≤ ν/(1−ν). (27)

Thus, when multiplying with(−1)Zi and addingZi ,

β̂(m)
Boost,i = (1− (1−ν)mi)Zi = Zi −ZiVi(1+ei(ν))

= soft-threshold estimator with thresholdλn(1+ei(ν)),

1021

BÜHLMANN AND YU

where max1≤i≤n |ei(ν)| ≤ ν/(1−ν) as in (27). 2

Proof of Theorem 1. The proof is based on similar ideas as for Theorem 2. The SparseL2Boost in
iterationmaims to minimize

MSBm = RSSm+ γntrace(Bm) = ‖Y−Xβ̂(m)
ms−boost‖2 + γntrace(Bm).

When using the orthogonal transformation by multiplying withXT , the criterion above becomes

MSBm = ‖Z− β̂(m)
ms−boost‖2 + γntrace(Bm),

where trace(Bm) = ∑n
i=1(1− (1−ν)mi). Moreover, we run SparseL2Boost until the stopping itera-

tion msatisfies the following:

MSBk−MSBk+1 > 0, k = 1,2, . . . ,m−1,

MSBm−MSBm+1 ≤ 0. (28)

It is straightforward to see for the orthonormal case, that such anmcoincides with the definition for
m̂ in section 2.3. Since SparseL2Boost changes only one of the summands inRSSand the trace of
Bm, the criterion above implies that for alli = 1, . . . ,n, using the definition ofMSB,

(1−ν)2(mi−1)Z2
i (1− (1−ν)2)− γnν(1−ν)mi−1 > 0,

(1−ν)2mi Z2
i (1− (1−ν)2)− γnν(1−ν)mi ≤ 0. (29)

Note that if|Zi |2 ≤ γnν/(1− (1−ν)2), thenmi = 0. This also implies uniqueness of the iterationm
such that (28) holds or of themi such that (29) holds.

Similarly to the proof of Theorem 2, we look at this expression first in terms ofan approximate
equality to zero, that is≈ 0. We then immediately find that

(1−ν)mi ≈ γnν
(1− (1−ν)2)|Zi |2

.

Hence,

β̂(m)
ms−boost,i = (XTBmY)i = (XTXDmXTY)i = (DmZ)i = (1− (1−ν)mi)Zi

≈ Zi −
γnνZi

(1− (1−ν)2)|Zi |2
= Zi −sign(Zi)

γn

2−ν
1
|Zi |

.

The right-hand side is the nonnegative garrote estimator as in (12) with threshold γn/(2−ν).
Dealing with the approximation “≈” can be done similarly as in the proof of Theorem 2. We

define here

Vi = V(Zi) =
γnν

(1− (1−ν)2)|Zi |2
.

We then define∆(ν,Vi) andei(ν) as in the proof of Theorem 2, and we complete the proof as for
Theorem 2. 2

Acknowledgments

1022

SPARSEBOOSTING

B. Yu would like to acknowledge gratefully the partial supports from NSF grants FD01-12731 and
CCR-0106656 and ARO grants DAAD19-01-1-0643 and W911NF-05-1-0104, and the Miller Re-
search Professorship in Spring 2004 from the Miller Institute at University of California at Berkeley.
Both authors thank David Mease, Leo Breiman, two anonymous referees and the action editors for
their helpful comments and discussions on the paper.

References

H. Akaike. Statistical predictor identification.Ann. Inst. Statist. Math., 22:203, 1970.

L. Breiman. Better subset regression using the nonnegative garrote.Technometrics, 37:373–384,
1995.

L. Breiman. Bagging predictors.Machine Learning, 24:123–140, 1996.

L. Breiman. Arcing classifiers (with discussion).Ann. Statist., 26:801–849, 1998.

L. Breiman. Prediction games & arcing algorithms.Neural Computation, 11:1493–1517, 1999.

P. Bühlmann. Boosting for high-dimensional linear models.To appear in Ann. Statist., 34, 2006.

P. Bühlmann and B. Yu. Boosting with thel2loss: regression and classification.J. Amer. Statist.
Assoc., 98:324–339, 2003.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression (with discussion).Ann.
Statist., 32:407–451, 2004.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. InMachine Learning:
Proc. Thirteenth Intern. Conf., pages 148–156. Morgan Kauffman, 1996.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Ann.Statist., 29:
1189–1232, 2001.

J. H. Friedman. Multivariate adaptive regression splines (with discussion). Ann.Statist., 19:1–141,
1991.

J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:a statistical view of
boosting (with discussion).Ann. Statist., 28:337–407, 2000.

P. J. Green and B. W. Silverman.Nonparametric Regression and Generalized Linear Models: A
Roughness Penalty Approach. Chapman and Hall, 1994.

M. Hansen and B. Yu. Model selection and minimum description length principle. J. Amer. Statist.
Assoc., 96:746–774, 2001.

M. Hansen and B. Yu.Minimum Description Length Model Selection Criteria for Generalized
Linear Models. IMS Lecture Notes – Monograph Series, Vol. 40, 2002.

M. Hansen and B. Yu. Bridging aic and bic: an mdl model selection criterion.In IEEE Information
Theory Workshop on Detection, Imaging and Estimation; Santa Fe, 1999.

1023

BÜHLMANN AND YU

G. Lugosi and N. Vayatis. On the bayes-risk consistency of regularized boosting methods (with
discussion).Ann. Statist., 32:30–55 (disc. pp. 85–134), 2004.

S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.IEEE Trans. Signal
Proc., 41:3397–3415, 1993.

N. Meinshausen. Lasso with relaxation. Technical report, 2005.

G. Rätsch, T. Onoda, and K.-R. M̈uller. Soft margins for adaboost.Machine Learning, 42:287–320.,
2001.

G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite and finite hypothesis
spaces.Machine Learning, 48:193–221, 2002.

T. Speed and B. Yu. Model selection and prediction: normal regression. Ann. Inst. Statist. Math.,
45:35–54, 1993.

R. Tibshirani. Regression shrinkage and selection via the lasso.J. Roy. Statist. Soc., Ser. B, 58:
267–288, 1996.

J. W. Tukey.Exploratory data analysis. Addison-Wesley, 1977.

M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. Olson, J. Marks,
and J. Nevins. Predicting the clinical status of human breast cancer by using gene expression
profiles.Proc. Nat. Acad. Sci. (USA), 98:11462–11467, 2001.

1024

Journal of Machine Learning Research 7 (2006) 1025 – 1044 Submitted 5/05; Revised 1/06; Published 6/06

©2005 Andrew B. Gardner, Abba M. Krieger, George Vachtsevanos and Brian Litt

One-Class Novelty Detection for Seizure Analysis from
Intracranial EEG

Andrew B. Gardner AGARDNER@NEUROENG.ORG
Departments of Bioengineering and Neurology
University of Pennsylvania
301 Hayden Hall
Philadelphia, PA 19104, USA

Abba M. Krieger KRIEGER@WHARTON.UPENN.EDU
Department of Statistics, Wharton School
University of Pennsylvania
3733 Spruce Street
Philadelphia, PA 19104, USA

George Vachtsevanos GJV@ECE.GATECH.EDU
Department of Electrical and Computer Engineering
Georgia Institute of Technology
777 Atlantic Drive
Atlanta, GA 30332, USA

Brian Litt LITTB@MAIL .MED.UPENN.EDU
Departments of Bioengineering and Neurology
Hospital of the University of Pennsylvania
3 West Gates, 3400 Spruce Street
Philadelphia, PA 19104, USA

Editor: Leslie Pack Kaelbing

Abstract

This paper describes an application of one-class support vector machine (SVM) novelty detection
for detecting seizures in humans. Our technique maps intracranial electroencephalogram (EEG)
time series into corresponding novelty sequences by classifying short-time, energy-based statistics
computed from one-second windows of data. We train a classifier on epochs of interictal (normal)
EEG. During ictal (seizure) epochs of EEG, seizure activity induces distributional changes in
feature space that increase the empirical outlier fraction. A hypothesis test determines when the
parameter change differs significantly from its nominal value, signaling a seizure detection event.
Outputs are gated in a “one-shot” manner using persistence to reduce the false alarm rate of the
system. The detector was validated using leave-one-out cross-validation (LOO-CV) on a sample
of 41 interictal and 29 ictal epochs, and achieved 97.1% sensitivity, a mean detection latency of

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1026

-7.58 seconds, and an asymptotic false positive rate (FPR) of 1.56 false positives per hour (Fp/hr).
These results are better than those obtained from a novelty detection technique based on
Mahalanobis distance outlier detection, and comparable to the performance of a supervised
learning technique used in experimental implantable devices (Echauz et al., 2001). The novelty
detection paradigm overcomes three significant limitations of competing methods: the need to
collect seizure data, precisely mark seizure onset and offset times, and perform patient-specific
parameter tuning for detector training.

Keywords: seizure detection, novelty detection, one-class SVM, epilepsy, unsupervised learning

1 Introduction
Epilepsy, a neurological disorder in which patients suffer from recurring seizures, affects
approximately 1% of the world population. In the United States, 200,000 new cases are reported
annually. There are more than 30 distinct classes of seizure. Their manifestations range from
subtle, abnormal sensations to unpredictable changes in awareness, to immediate loss of
consciousness and convulsions. In spite of available dietary, drug, and surgical treatment options,
more than 25% of individuals with epilepsy have seizures that are uncontrollable (Kandel,
Schwartz & Jessel, 1991). Daily life for these patients is greatly impaired—education,
employment, and even transportation can become difficult endeavors. Many new therapies for
medically resistant epilepsy are being investigated. Among the most promising are implantable
devices that deliver local therapy, such as direct electrical stimulation or chemical infusions, to
affected regions of the brain. These treatments rely on robust algorithms for seizure detection to
perform effectively.

Over the past 30 years seizure detection technology has matured. Despite impressive
advances, all reported approaches suffer from one or more of the following limitations:

• Accurate detection requires careful, patient-specific tuning
• Seizure detections do not occur “early enough” (i.e., interventions are more likely

to be effective if therapy is administered with minimal delay following onset)
• A priori localization of the seizure focus is required
• Usefulness for poorly localized epilepsies is limited
• Seizure data (which is expensive to collect) is required for training

Techniques for overcoming some or all of these limitations hold promise for more precise

and widely applicable methods to control or eliminate seizures. This paper presents one
technique for improving the state of the art in seizure detection by reformulating the task as a
time-series novelty detection problem. While seizure detection is traditionally considered a
supervised learning problem (e.g., binary classification), an unsupervised approach allows for
uniform treatment of seizure detection and prediction, and offers four key advantages for
implementation. First, there is no need to perform supervised, patient-specific tuning during
training. Second, the assumption that seizures are electrographically homogeneous—often
required for classifier training due to very small data sets—is relaxed. Third, there is no need to
collect seizure data for training. Such data collection is typically expensive (seizures occur
infrequently, and patients must be continually monitored until an event is observed), and often
invasive (e.g., craniotomy or burr hole for electrode implantation). Finally, there is no need to
precisely mark seizure intervals. This practical issue is often overlooked, but is critical for
training and validation: while expert markers usually agree on the presence of a seizure, there is
considerable variability in marking its onset and offset.

Other researchers have investigated novelty detection for event detection from time series, for
instance by directly extending the Incremental SVM algorithm (Tax & Laskov, 2003), or

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1027

modeling novelty region-of-support evolution to detect change-points (Desobry & Davy, 2003).
In contrast to these approaches, we robustly detect empirical changes in the novelty parameter
itself, and use these change-points to segment the (EEG) time series. For “properly chosen”
features, novelties correspond well with the ictal events of interest, and our EEG time series are
successfully segmented in a one-class-from-many manner.

2 Background
In this section, we present a brief review of seizure-related terminology, the seizure detection
literature, and the one-class SVM.

2.1 Seizure-Related Terminology
Seizure analysis refers collectively to algorithms for seizure detection, seizure prediction, and
automatic focus channel identification. These analyses are primarily performed on the EEG. In
this study, analyses were carried out on the intracranial EEG (IEEG), which has considerably
better spatial resolution, higher signal-to-noise ratio, and greater bandwidth than scalp EEG.
When multiple channels are considered, the electrode location that exhibits the earliest evidence
of seizure activity is labeled the focus channel. It is convenient to describe segments of the EEG
signals by their temporal proximity to seizure activity. The ictal period refers to the time during
which a seizure occurs. The interictal period is the time between successive seizures. The
unequivocal electrographic onset (UEO) is defined as the earliest time that a seizure occurrence
is evident to an epileptologist viewing an EEG without prior knowledge that a seizure follows;
the unequivocal clinical onset (UCO) is the earliest time that a seizure occurrence is apparent by
visually observing a patient. Seizure onset in this paper is synonymous with UEO. It is worth
noting that the UEO almost always precedes the UCO by several seconds, and that many
previously published papers defined “seizure onset” as the UCO.

2.2 Seizure Detection
Early attempts to detect seizures began in the 1970s (Viglione, Ordon & Risch, 1970; Liss, 1973)
and primarily considered scalp EEG recordings to detect the clinical (and less frequently)
electrographic onset of seizures. In 1990, Gotman reported a technique for automated seizure
detection that achieved 76% detection accuracy at 1 Fp/hr for 293 seizures recorded from 49
patients (Gotman, 1990). In 1993, it was shown that the short-time mean Teager energy could be
used to detect seizures from electrocorticograms (Zaveri, Williams & Sackellares, 1993). Their
detector achieved 100% detection accuracy on an 11-seizure database. In 1995, Qu and Gotman
presented an early seizure warning system trained on template EEG activity that achieved 100%
detection accuracy at a mean detection latency of 9.35 seconds and false alarm rate of 0.2 Fp/hr
(Qu & Gotman, 1995). Similar results were also reported using time- and frequency-domain
features classified by a k-nearest neighbor classifier (Qu & Gotman, 1997). In 1998, Osorio et al.
claimed 100% detection sensitivity with a mean detection latency of 2.1 seconds using a wavelet-
based measure called seizure intensity. They analyzed a database of 125 patients, but the same
data were used for training and validation (Osorio, Frei & Wilkinson, 1998). The algorithm was
more extensively analyzed in 2002 using offline electrocorticogram recordings; again, 100%
sensitivity was reported, with detection latencies ranging from 1.8 – 31.1 seconds (Osorio et al.,
2002).

Several successful attempts at seizure detection using artificial neural network classifiers
have been reported since 1996 (Khorasani & Weng, 1996; Webber et al., 1996; Gabor, 1998;
Esteller, 2000). Evaluation of 31 distinct features (Esteller, 2000) showed that fractal dimension,
wavelet packet energy, and mean Teager energy were especially promising for seizure detection.
In 2001, Esteller reported a detector based on the line length feature that achieved a mean

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1028

detection latency of 4.1 seconds at a false alarm rate of 0.051 Fp/hr (Esteller et al., 2001). A total
of 111 seizures (many subclinical) were used for validation. NeuroPace, Inc., subsequently
reported a similar detector based upon this work that achieved 97% sensitivity at a mean
detection latency of 5.01 seconds (Echauz et al., 2001). This detector was evaluated on 1265
hours of IEEG data, but was tuned heuristically in a patient-specific manner. The NeuroPace
detector claims represent the state of the art in seizure detection performance. More complete
reviews of the seizure detection and prediction literature are available elsewhere (Litt & Echauz,
2002; Gardner, 2004).

2.3 Novelty Detection
Traditional classification architectures rely on empirical risk minimization algorithms to specify
“good” models for a classification decision function; as such, they are prone to over- or
underfitting. In addition, their performance tends to be highly sensitive to parameter tuning and
researcher skill. Statistical learning theory poses a structural risk minimization (SRM) criterion
that balances the trade-off between good empirical performance (i.e., classification accuracy on
training data) and good generalization ability (i.e., classification accuracy on unseen data). One
popular application of SRM is the SVM, first presented in 1992 (Boser, Guyon & Vapnik, 1992).
The basic idea behind the SVM is to find a hyperplane in a feature space that “optimally”
separates two classes. Many other linear learning machines have been considered for this task,
but the SVM yields a unique solution that can be shown to minimize the expected risk of
misclassifying unseen examples (Vapnik, 1999). Training algorithms involve the solution of a
well-known optimization problem, constrained quadratic programming, that is computationally
efficient and yields global solutions. Several excellent tutorials provide historical context and
details on the SVM (Burges, 1998; Bennett & Campbell, 2000; Müller et al., 2001).

In 1998, Schölkopf et al. introduced an extension to SVMs to estimate the support of a
distribution (Schölkopf et al., 1999). Their motivation was to solve a simplified version of the
density estimation problem, e.g., finding a minimum volume quantile estimator that is “simple.”
The solution they arrived at, the one-class SVM, was introduced for novelty detection.

Definition 1 (Novelty Detection). Given a set of independent identically distributed (iid) training

samples, 1, , N
nx x X∈ ⊆L R , drawn from a probability distribution in feature space, P , the

goal of novelty detection is to determine the “simplest” subset, S , of the feature space such that
the probability that an unseen test point, x′ , drawn from P lies outside of S is bounded by an a
priori specified value, (]1,0∈υ .

In the one-class formulation, data are first mapped into a feature space using an appropriate
kernel function and then maximally separated from the origin using a hyperplane. The
hyperplane parameters are determined by solving a quadratic programming problem, similar to
the basic SVM case:

2

1

1 1
min

2

l

i
i

w
l

ξ ρ
ν =

 + −

∑ (1)

subject to

 ()() 0,,2,1 ≥=−≥Φ⋅ iii lixw ξξρ K (2)

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1029

where w and ρ are hyperplane parameters, Φ is the map from input space to feature space, ν is
the asymptotic fraction of outliers (novelties) allowed, l is the number of training instances, and
ξ is a slack variable. For solutions to this problem, w and ρ , the decision function

 () ()()ρ−Φ⋅= xwxf sgn (3)

specifies labels for examples, e.g., -1 for novelty instances. Figure 1 shows the geometry of the
one-class SVM in feature space.

Figure 1: Geometry of the ν-SVM in feature space. Note the hyperplane and associated

parameters, ρ and w , and the slack-variable, ξ , penalizing misclassifications.

Basic properties of the one-class SVM were proven in the initial paper (Scholkopf et al.,
1999). The most important result is the interpretation of ν as both the asymptotic fraction of
data labeled as outliers, and the fraction of support vectors returned by the algorithm.
Implementation of the one-class SVM algorithm requires the following specifications: kernel
function, kernel parameters, outlier fraction, and separating point in feature space. As with the
basic SVM, there is no automatic method for specifying one-class SVM model parameters, but
the interpretation of ν eases this task to some degree: the choice of outlier fraction should
incorporate prior knowledge about the frequency of novelty occurrences (for example, a typical
value for patient seizure frequency). Additionally, smaller values of ν increase the
computational efficiency of the algorithm. The choice of origin as the separation point is
arbitrary and affects the decision boundary returned by the algorithm. Other work (e.g., Hayton
et al., 2001; Manevitz & Yousef, 2001) has addressed separation point selection given partial
knowledge of outlier classes.

3 Methodology
In this section, we describe and discuss the experimental methods for detecting seizures under a
novelty detection framework. A block diagram of this system is shown in Figure 2.

w
w
ξ

w
ρ

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1030

Figure 2: The seizure analysis architecture. IEEG time series data is block-processed in stages
to produce the final output sequence, []z n , indicating the presence/absence of ictal

activity.

3.1 Human Data Preparation
The data analyzed were selected from intracranial EEG recordings of epilepsy patients implanted
as part of standard evaluation for epilepsy surgery. Patients diagnosed with mesial temporal lobe
epilepsy were observed in a hospital for 3 to 14 days. Between 20 and 36 electrodes were
surgically placed either on the brain (grids or strips of electrodes), or in the brain substance (depth
electrodes), and simultaneous IEEG and video were recorded. The IEEG data were amplified,
bandpass-filtered (cutoffs at 0.1 Hz and 100 Hz), and digitized at 200 samples/second, 12 bits-
per-sample resolution. Five consecutive patients with seizures arising from the temporal lobe(s)
were selected for review, and the corresponding data were expertly and independently marked by
two certified epileptologists to indicate UEO and UCO times. Collectively, these five patient
records contain over 200 hours of data. Further details on this database are available elsewhere
(D’Alessandro, 2001; Gardner, 2004).

Ictal epochs were selected from the focus channel for each temporal lobe seizure that a
patient exhibited. Two patients exhibited some seizures with extra-temporal focal regions: those
events were excluded from further analysis. Ictal epochs were extracted in a consistent manner
such that the UEO occurred at a 10-minute offset within the epoch, allowing for analysis of both
pre-ictal and post-ictal regimes. Interictal epochs from each patient were randomly selected. All
epochs were expertly reviewed to ensure the absence of recording artifacts. The final data set
consisted of 29 ictal- and 41 interictal epochs, each of 15-minute duration.

[]z n

persistence

feature
extraction

novelty
detection

preprocess

IEEG

{ }, , , ,p N Tν γΠ =

parameter
estimation

model
parameters

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1031

3.2 Feature Extraction
Many features have been proposed for seizure analysis (Esteller, 2000; D’Alessandro, 2001;
Esteller et al., 2001). We selected a feature vector, q , composed of three energy-based statistics
that have proven especially effective for seizure detection: mean curve length, CL ; mean energy,
E ; and mean Teager energy, TE ,

 [] [] []
2

1
log 1

n

m n N

CL n x m x m
N = − +

 = − −

∑ (4)

[] []

= ∑
+−=

n

Nnm

mx
N

nE
1

21
log

 (5)

 [] [] [] []()

 −−−= ∑
+−=

n

Nnm

mxmxmx
N

nTE
3

2 21
1

log (6)

where []x m is an EEG time series, and N is the window length. We applied logarithmic scaling

for feature normalization. Features were extracted using a block processing approach. In block
processing, the data are windowed, a feature vector is computed, and the window is advanced in
time. The selection of window length is an important issue (Esteller, 2000). Values typically
range between 0.25 and 5 seconds; we used 1-second windows with 0.5-second overlap.

3.3 One-Class SVM
Feature extraction was performed on interictal epochs to generate feature vectors for training. A
one-class SVM classifier was implemented using LIBSVM, a freely-available library of SVM
tools available from http://www.csie.ntu.edu.tw/~cjlin/libsvm. A Gaussian radial basis function
(1.0γ =) was selected as the kernel function, and 0.1ν = was chosen consistent with the
estimated fraction of ictal data. The resulting classifier model was stored for subsequent use in
testing.

3.4 Parameter Estimation
For a stationary process, the one-class SVM novelty parameter, ν , asymptotically equals the
outlier fraction. We exploit this property by training on features which strongly discriminate
interictal from ictal EEG: features are stationary during interictal periods, but change markedly
during periods of seizure activity, causing significant changes in the empirical outlier fraction.

We modeled classifier outputs, { }1, 1y∈ + − , as (iid) Bernoulli random variables where

() ()1P novelty P y ν= = − = . We assumed that 0ν ν= for interictal EEG, and 1 0ν ν ν= > for

ictal EEG. At each output sample, we computed the maximum likelihood estimate of the outlier
fraction, ν̂ , as

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1032

 []
1

1 1
ˆ 1

2

n
neg

i

n
y i

n n
ν

=

 = = −

∑ (7)

where negn is the number of negative output occurrences in the n most recent samples of y .

Note that the sequence length, n , affects the adaptation rate of the system. We then used this
estimate to compute a seizure event indicator variable,

 [] ()ˆsgnz k Cν= − (8)

where 1z = + if a seizure is indicated or 1z = − otherwise, and []0,1C ∈ is a threshold

parameter. Thresholding is equivalent to a standard hypothesis test of 0 0:H ν ν= vs. 1 1:H ν ν=

where the null hypothesis is rejected if ˆ Cν > . For nominal values of 20n = and 0 0.1ν = , we

retained the null hypothesis (that is, we declared a frame to be interictal) if we observed fewer
than five novelty outputs (0.8C =). Under the iid assumption, this rule has a 4.33% chance of
falsely rejecting the null hypothesis (i.e., producing a false positive). The chance of committing a
Type II error (i.e., producing a false negative) depends on the unknown value 1ν . We calculated

this error rate for several plausible values of 1ν in Section 4.2.

3.5 Persistence (Detector Refractory Period)
During early experiments we observed that the detector tended to generate novelty events (i.e.,
“fire”) in bursts, with increasing frequency near seizure onset. This behavior may indicate the
presence of preictal states, periods of EEG activity that are likely to transition from interictal to
ictal state. The bursty behavior can be problematic for performance assessment as multiple
detections of a single seizure, or multiple false positive declarations may occur during a short
interval of time. To address this problem, a refractory parameter, RT , was introduced to the

detection system. The refractory parameter specifies an interval during which the detector, if
triggered, maintains its state and ignores subsequent triggers. In this sense it behaves like a “one-
shot” device familiar from digital circuits. The use of this refractory rule is termed persistence.

Persistence offers an improvement to the basic system beyond false positive rate
improvement: it allows for the characterization of the detector over a range of detection time
horizons. As persistence decreases, one expects the false positive rate to increase and the
detection latency to approach zero seconds. Conversely, as persistence increases, one expects the
false positive rate to decrease, asymptotically approaching a value determined jointly by the
novelty parameters of the system (some fraction of the data will always be novel) and the actual
novelty rate due to epileptiform activity. Figure 3 illustrates the use of persistence. We
heuristically set the detector persistence to 180RT = seconds for our experiments.

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1033

Figure 3: Examples of persistence for improving detector false alarm performance. (Top) Ictal
epoch showing seizure activity (red, diagonal hatching). (Bottom) Interictal epoch.
When persistence is applied, detections (arrows) are treated as a single event (dashed
green line).

3.6 Performance Metrics
The detector was evaluated using LOO-CV and identical model parameters for each patient.
Training was only performed using interictal epochs, however, testing was performed on each

ictal segment, in addition to the withheld interictal epoch. This scheme yields (),1BLC N

interictal- and (),1BL SZC N N× ictal statistics per patient, where ,BL SZN N are the patient-specific

number of interictal and ictal epochs, respectively. From these statistics we estimate three key
performance metrics: sensitivity, false positive rate, and mean detection latency.

The detector’s sensitivity (9) and false positive rate (10) measure its classification accuracy:

TP

S
TP FN

=
+

 (9)

FP

FPR
T

= (10)

where TP, FN, and FP are the number of block true positives, block false negatives, and block
false positives; and T is the duration (in hours) of the data analyzed. A block true positive
occurs when the detector output, after applying persistence, correctly identifies an interval
containing a seizure onset (c.f., Figure 4). Block false negatives and false positives occur when
the detector incorrectly labels interictal and ictal intervals, respectively.

TR

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1034

Figure 4: Temporal relationships considered in detector evaluation: intervals representing
detected novelty (blue, vertical hatching) and ictal activity (red, diagonal hatching).
(i), (ii) Two examples of block true positives (e.g., the novelty output interval
overlaps ictal activity). The detection latency, τ , is also shown. An early-detection
results in negative latency. (iii) A false positive detector error. (iv) A false negative
detector error. (v) A true negative. (vi) An example of a degenerate case (multiple
detection) producing both a true positive and a false positive event.

Mean detection latency (11) measures detector responsiveness:

1

1 N

i
iNτµ τ
=

= ∑ (11)

where iτ is the detection latency of each detected seizure. A negative latency indicates seizure

event detection prior to the expert-labeled onset time.

τ

τ

T

(i)

(ii)

(iii)

(iv)

(v)

(vi)

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1035

3.7 Benchmark Novelty Detection
To provide a reference for the relative performance of our algorithm, and the general application
of unsupervised learning to the seizure detection problem, we implemented a simple benchmark
novelty detection algorithm.

During training, feature vectors, q , were extracted from IEEG time series (c.f. 3.2) and used

to estimate the covariance matrix, Σ , and mean, µ , of the training data. We subsequently
computed the Mahalanobis distances

 () () ()1T

MD q q qµ µ−= − Σ − (12)

between each sample in the training data set and the centroid of the training set. An outlier
threshold, K , was selected as the ν quantile of the Mahalanobis distances. As with the one-class
SVM, we set 0.1ν = .

During testing, feature vectors were thresholded to produce a frame-wise novelty sequence,
y ,

 [] ()
()

1,

1,
M n

M n

D q K
y n

D q K

+ <= − ≥
 (13)

as a replacement for the SVM classifier output. This sequence was processed in the same manner
as before (c.f. 3.4) to generate detections.

4 Results
In this section we present the results of both seizure detection approaches. Details on the effects
of varying the one-class SVM model parameters—ν ,γ , p , N , and T — and results from a
genetic algorithm optimization are given in Gardner (2004).

4.1 Performance
Detection statistics from our LOO-CV analysis are presented in Table 1. Columns show patient
id, the number of epochs analyzed for interictal (NBL) and ictal data (NSZ), the fraction of false
positive detections on interictal (FPBL) and ictal (FPSZ) trials, the fraction of seizure epochs
producing false positives (MFP), the fraction of false negative detections (FN), and the mean
detection latency (τ). The bottom row of the table shows aggregate statistics weighted by the
number of seizures or number of baselines.

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1036

One-class Novelty Benchmark Novelty
Patient NBL NSZ

FPBL FPSZ MFP FN τ FPBL FPSZ MFP FN τ
1 6 5 0.00 0.10 0.20 0 2.07 0.17 0.13 0.20 0 4.60

2 9 7 0.22 0.43 0.57 0 -13.6 0.33 1.03c 0.71 0 -9.51

3 10 6 0.40a 0.13 0.17 0 6.57 0.40a 0.17 0.17 0 7.08

4 10 6 1.00 0.48 0.17 0.12 -6.57 1.00 0.48 1.00 0.17 -2.08

5 6 5 0.00 0.03 0.20 0 -27.0b 0.33 0.17 0.20 0 -24.9b

 41 29 0.39 0.28 0.28 0.029 -7.58 0.49 0.47 0.45 0.041 -4.76

aAll false positives occurred on a single ictal epoch.
bSeveral seizure onsets were originally mislabeled by as much as 110
seconds. Results in this table are calculated from the corrected markings.
cNote that multiple false positive events per epoch can produce fractional
values greater than one.

Table 1: Summary of detection statistics. Bottom row of table summarizes aggregate

statistics.

We estimate the FPR over interictal EEG from the data in Table 1 by dividing FPBL by the
epoch duration (0.25 hours), yielding 1.56 Fp/hr for the one-class technique, and 1.96 Fp/hr for
the benchmark technique. Since ictal events are rare, and the aggregate false positive rate on ictal
segments is lower than the corresponding rate on interictal segments, we take the interictal FPR
as an asymptotic measure of the overall FPR.

We reviewed the results for those patients (2, 4, and 5) with negative mean detection
latencies. For each of these patients we found that the distribution of detection latencies was
skewed, and a fraction (less than one-third) of the models detected seizures early. The median
detection latencies for these patients, which might give a more balanced view of performance,
ranged between 1.5 and 9.8 seconds for both models; the one-class delays were always less than
the benchmarked values.

The SVM seizure detector achieved 97.1% sensitivity and a mean detection latency of -7.58
seconds at an estimated 1.56 Fp/hr. Representative IEEG time series, novelty sequences, and
estimated outlier fractions for interictal- and ictal epochs are shown in Figures 5 and 6. As
expected, the outlier fraction remained near its (small) nominal value except during periods of
seizure activity. Onsets were detected quickly, and the entire seizure event—not just the onset—
was correctly identified as novel. The near-zero false negative rate (FNR) of the detector was
surprising because the data used for training originated from unknown states of consciousness
(e.g., sleep or wake). Typically, seizure detection performance is drastically affected by patient
state-of-consciousness; evaluation on larger data sets with concomitant sleep staging information
will provide a better estimate of the true FNR.

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1037

Figure 5: A typical interictal epoch. (Top) IEEG signal, (Middle) frame-wise output of the

novelty detector, z , (Bottom) estimated outlier fraction (dashed line is 0.8). The
mean of ν in this figure is 0.063.

-2

0

2

IEEG Interictal Epoch

A
m

pl
itu

de
 (

m
V

)

Sz

Bl

Novelty Sequence

0 1
5

0

1
Estimated Outlier Fraction

time (minutes)

ν

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1038

Figure 6: A typical ictal epoch. (Top) IEEG signal. The earliest electrographic change is
visible as the beginning of the pinched region prior to the high-amplitude seizure
onset. The UEO occurs at time zero, (Middle) frame-wise output of the novelty
detector, z , (Bottom) estimated outlier fraction and 0.8 threshold. The detector has a
latency of about 3 seconds in this example.

The SVM detector’s mean detection latency outperformed all previously reported seizure
detection algorithms. It should be noted, however, that this result is attributable to the large
fraction of seizures (27%) that were detected early. This finding suggests the presence of two
subclasses of seizures: those that are merely detectable, and those that may be predictable. These
classes of seizures appear to be patient-dependent.

A direct comparison to other published detection algorithms is generally not meaningful due
to the disparity of data sets that each research group operates on. However, NeuroPace (Echauz
et al., 2001) previously evaluated their supervised algorithm on the same data set. While they did
not perform cross-validation, and optimized in-sample for each patient, their reported results—a

-2

0

2

IEEG Ictal Epoch

A
m

pl
itu

de
 (

m
V

)

Sz

Bl
Novelty Sequence

-10 0 5
0

1
Estimated Outlier Fraction

time (minutes)

ν

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1039

mean detection latency of 5.01 seconds at 97% sensitivity and 0.013 Fp/hr—support the use of
our approach.

The benchmark seizure detector achieved 95.8% sensitivity and a mean detection latency of
-4.76 seconds at 1.96 Fp/hr. Both techniques are surprisingly effective at seizure detection, but
the one-class SVM method performed consistently better, especially with respect to false positive
rate. To gain insight into the relative performance difference between the two approaches, we
examined the feature space for a single patient. Figure 7 shows the marginal distributions of
features for both interictal and ictal data. It is clear from this figure that the feature distributions
are highly skewed and possibly bimodal. An obvious explanation for the discrepancy in
performance is that the normality assumption of the benchmark detector is severely violated, and
the non-parametric estimation of the one-class SVM is better for modeling the data. The fact that
the one-class SVM performs better, albeit on a limited number of patients, suggests that it tends
to exclude vectors in feature space that appear more commonly when seizures occur as compared
to the benchmark approach. Additionally, we examined the regions-of-support for this patient
produced by each algorithm (Figure 8).

Figure 7: Representative marginals of the feature vector—E (solid blue), TE (dashed red), CL
(dotted green)—for patient 5 corresponding to interictal (top) and ictal (bottom)
frames.

0

0.05

0.10

0 6 1
2

0

0.05

0.10

feature value

Interictal Feature Marginals

Ictal Feature Marginals

fr
eq

ue
nc

y
fr

eq
ue

nc
y

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1040

Figure 8: Representative isosurfaces in interictal feature space produced by each method.
(Top-left) 1S , the 0.1ν = enclosing surface for the one-class SVM; (Top-right) 2S ,

the 0.1ν = enclosing surface for the benchmark method; (Bottom-left) 1 2\S S , the

volume unique to the one-class SVM; (Bottom-right) 2 1\S S , the volume unique to

the benchmark method.

Both approaches, SVM and Mahalanobis, find regions, 1S and 2S , in feature space that

include 90% of the observations from interictal data. It is interesting to note that, although the
overlap of the regions, 1 2S S∩ , must contain at least 80% of the training samples, 25.2% of the

volume of 1S and 37.5% of the volume of 2S are non-intersecting. The minimum-volume

property of the one-class SVM is also evident—1S , is 84.4% of the volume of the benchmark

technique—and may be a contributing factor to its increased performance over the Mahalanobis
method.

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1041

4.2 Detector Output Analysis
We analyzed a sample of 850 interictal detector outputs and confirmed that the empirical outlier
fraction equaled its nominal value, 0.10. We also investigated the performance of the detector
output under the hypothesis 1 1 0:H ν ν ν= > , assuming iid outputs. Illustratively, we considered

1 0.3ν = and 1 0.5ν = for the probabilities of a novelty occurrence during ictal epochs. Results in

Table 1 show that the probability of falsely retaining the null hypothesis is small, and is of course
smaller for 1 0.5ν = than for 1 0.3ν = . This explains the superior FNR performance of the

detector that we observed.
We performed logistic regressions between the outputs at times t , 1t − , and 2t − to test our

assumption that detector outputs are Bernoulli. We observed significant (0.001P <) serial
dependence. Empirically, the conditional probability of a novel detector output given a previous
novelty output increases dramatically from 0.1 to 0.3. This analysis suggests that the detector
output sequence obeys a Markov process where the probability at each point in time of a novelty
is () 01 0.1tP z ν= − = = , but the conditional probabilities for novelty outputs are

()11| 1 0.3t tP z z−= − = − = and ()11| 1 0.078t tP z z−= − = + = .

We wrote a program to compute the probability of observing k novel outputs in N trials
under the Markov process described above, and repeated our performance analysis. The results
(Table 2) clearly show that the performance of the detector is worse under the serial dependence
model.

Binomial Output Markovian Output

0H 1H 1H 0H 1H 1H

 1 0.3p = 1 0.5p =
1 0.3p =
*

1 0.5p =

1 0.5p =
*

1 0.75p =

Normal 0.9567 0.2374 0.0059 0.9175 0.3095 0.0736
Seizure 0.0433 0.7626 0.9941 0.0825 0.6905 0.8264

Table 2: An analysis of the hypothesis test for the detector output for both the binomial, and

Markov cases for the rule where we declare an event if 5 or more out of 20 outputs
are novelties. The estimated probability that an ictal frame is declared novel is1p ,

and its corresponding conditional probability, ()
1

1 | 1
k k

P z z−= − = − , is *
1p .

5 Conclusions
Traditional approaches to seizure detection rely on binary classification. They require seizure data
for training, which is difficult and invasive to collect, and do not address the class imbalance
problem between interictal and ictal EEG, as less than 1% of EEG data from epileptic patients is
seizure-related. These approaches assume that seizures develop in a consistent manner and seek
to identify features and architectures that discriminate seizure EEG from “other” EEG. In
contrast, we have presented a technique for seizure detection based on novelty detection that
operates by modeling the dominant data class, interictal EEG, and declaring outliers to this class
as seizure events. The success of our method relies on detecting change points in the empirical
outlier fraction with respect to a feature space that strongly discriminates interictal from ictal
EEG. If the feature space is well-chosen, the implication is that novelties are seizures.

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1042

In addition to achieving state-of-the-art performance, our technique overcomes three severe
limitations of competing algorithms: (1) it does not need to be trained on seizures, (2) it does not
require patient-specific tuning, and (3) it does not require knowledge of patient state-of-
consciousness. While the false positive performance of the detector is not as good as other
reported algorithms, this may be attributable to the presence of subclinical seizures, or other non-
ictal anomalies in the data (e.g., normal periodic rhythms, artifacts, etc.). Furthermore, the
acceptance by the research community of “hyperdetection strategies”—high false-positive rates
and high-sensitivity detection—diminishes the emphasis placed on FPR metrics. For example, in
early prototype reactive stimulation devices to treat seizures, the very brief and subthreshold
stimulation involved in therapy appears to be well tolerated without any significant side-effects.
In this setting, the need to prevent seizures (avoid false negative events), and the apparent relative
harmlessness of false positive stimulations, encourage making the detector hypersensitive. As a
final note, the entire algorithm is computationally efficient because of the use of the SVM and
small novelty threshold.

Ongoing work includes methodological refinements for reducing FPR, and online
implementations for validation on very large continuous, multichannel data sets.

Acknowledgements
This work was partly supported by funding from the Esther and Joseph Klingenstein Foundation,
Whitaker Foundation, Epilepsy Foundation, American Epilepsy Society, Dana Foundation,
Epilepsy Project, and the National Institutes of Health grant #RO1-NS041811-01.

References

K. P. Bennett and C. Campbell, "Support Vector Machines: Hype or Hallelujah?," SIGKDD

Explorations, 2:1-13, 2000.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A Training Algorithm for Optimal Margin

Classifiers." In Proceedings of the Fifth Annual ACM Workshop on Computational Learning
Theory, Pittsburgh, PA, USA, 1992.

C. J. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," Data Mining and

Knowledge Discovery, 2:1-47, 1998.

M. D'Alessandro, "The Utility of Intracranial EEG Feature and Channel Synergy for Evaluating

the Spatial and Temporal Behavior of Seizure Precursors." Ph.D. Dissertation, Georgia
Institute of Technology, Dept. of Electrical and Computer Engineering. Atlanta, 2001.

F. Desobry and M. Davy, "Support Vector-Based Online Detection of Abrupt Changes." In IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP-03), part IV,
pp. 872-875, 2003.

J. Echauz, R. Esteller, T. Tcheng, B. Pless, B. Gibb, E. Kishawi, and B. Litt, "Long-Term

Validation of Detection Algorithms Suitable for an Implantable Device," Epilepsia,
supplement 7, 42:35-36, Dec. 2001.

R. Esteller, "Detection of Seizure Onset in Epileptic Patients from Intracranial EEG Signals,"

Ph.D. Dissertation, Georgia Institute of Technology, Dept. of Electrical and Computer
Engineering. Atlanta, 2000.

ONE-CLASS NOVELTY DETECTION FOR SEIZURE ANALYSIS FROM IEEG

 1043

R. Esteller, J. Echauz, T. Tcheng, B. Litt, and B. Pless, "Line Length: An Efficient Feature for

Seizure Onset Detection." In Proceedings of the 23rd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, 2:1707-1710, 2001.

A. J. Gabor, "Seizure Detection Using a Self-organizing Neural Network: Validation and

Comparison with other Detection Strategies," Electroencephalography and Clinical
Neurology, 107(1):27 – 32, 1998.

A. Gardner, "A Novelty Detection Approach to Seizure Analysis from Intracranial EEG," Ph.D.

Dissertation, Georgia Institute of Technology, Dept. of Electrical and Computer Engineering.
Atlanta, 2004.

J. Gotman, "Automatic Seizure Detection: Improvements and Evaluation,"

Electroencephalography and Clinical Neurophysiology, 76:317-24, 1990.

P. Hayton, L. Tarrasenko, B. Schölkopf, and P. Anuzis, "Support Vector Novelty Detection

Applied to Jet Engine Vibration Spectra." In T. K. Leen, T. G. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pp. 946-952. MIT Press,
2001.

E. R. Kandel, J. H. Schwartz, and T. M. Jessel, Principles of Neural Science. Prentice-Hall, New

Jersey, 1991.

K. Khorasani and W. Weng, "An Adaptive Structure Neural Networks with Application to EEG

Automatic Seizure Detection, " Neural Networks, 9(7):1223 – 1240, 1996.

S. Liss, "Apparatus for Monitoring and Counteracting Excess Brain Electrical Energy to Prevent

Epileptic Seizures and the Like." US patent #3850161, 1973.

B. Litt and J. Echauz, "Prediction of Epileptic Seizures," The Lancet Neurology, 1:22-30, 2002.

L. Manevitz and M. Yousef, "One-Class SVMs for Document Classification," Journal of

Machine Learning Research, 2:139-154, 2001.

K.-R. M. Müller; G. Ratsch, K. Tsuda, K.; B. Schölkopf, "An Introduction to Kernel-based

Learning Algorithms," IEEE Transactions on Neural Networks, 2:181-201, 2001.

I. Osorio, M. G. Frei, and S. B. Wilkinson, "Real-time Automated Detection and Quantitative

Analysis of Seizures and Short-term Prediction of Clinical Onset," Epilepsia, 39:615-27,
1998.

I. Osorio, M. G. Frei, J. Giftakis, T. Peters, J. Ingram, M. Turnbull, M. Herzog, M. T. Rise, S.

Schaffner, R. A. Wennberg, T. S. Walczak, M. W. Risinger, and C. Ajmone-Marsan,
"Performance Reassessment of a Real-time Seizure-detection Algorithm on Long ECoG
Series," Epilepsia, 43:1522-1535, 2002.

H. Qu and J. Gotman, "A Seizure Warning System for Long-term Epilepsy Monitoring,"

Neurology, 45:2250-2254, 1995.

GARDNER, KRIEGER, VACHTSEVANOS AND LITT

 1044

H. Qu and J. Gotman, "A Patient-specific Algorithm for the Detection of Seizure Onset in Long-
term EEG Monitoring: Possible Use as a Warning Device," IEEE Transactions on
Biomedical Engineering, 44:115-22, 1997.

B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, "Estimating the Support of

a High-dimensional Distribution," Microsoft Research, Redmond, WA, USA MSR-TR-99-
87, 1999.

D. Tax and P. Laskov, "Online SVM Learning: From Classification to Data Description and

Back," Proceedings of the 13th IEEE Workshop on Neural Network for Signal Processing, pp.
499-508, 2003.

V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1999.

S. S. Viglione, V. A. Ordon, and F. Risch, "A Methodology for Detecting Ongoing Changes in

the EEG Prior to Clinical Seizures." In 21st Western Institute on Epilepsy, 1970.

W. R. Webber, R. P. Lesser, R. T. Richardson, and K. Wilson, "An Approach to Seizure

Detection Using an Artificial Neural Network (ANN)," Electroencephalography and Clinical
Neurophysiology, 98(4):250-2722, 1996.

H. P. Zaveri, W. J. Williams, and J. C. Sackellares, "Energy Based Detection of Seizures." In

15th Annual International Conference on Engineering and Medicine in Biology, pp. 363-364,
1993.

Journal of Machine Learning Research 7 (2006) 1045–1078 Submitted 2/06; Published 6/06

A Graphical Representation of Equivalence Classes
of AMP Chain Graphs

Alberto Roverato ROVERATO@UNIMORE.IT
Department of Social, Cognitive and Quantitative Sciences
University of Modena and Reggio Emilia
Viale Allegri 9
I-42100 Reggio Emilia, Italy

Milan Studený STUDENY@UTIA .CAS.CZ

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
Pod vod́arenskou v̌ěźı 4
18208 Prague 8 Liběn, Czech Republic

Editor: David Madigan

Abstract

This paper deals with chain graph models under alternative AMP interpretation. A new represen-
tative of an AMP Markov equivalence class, called thelargest deflagged graph, is proposed. The
representative is based on revealed internal structure of the AMP Markov equivalence class. More
specifically, the AMP Markov equivalence class decomposes into finerstrong equivalenceclasses
and there exists a distinguished strong equivalence class among those forming the AMP Markov
equivalence class. The largest deflagged graph is the largest chain graph in that distinguished strong
equivalence class. A composed graphical procedure to get the largest deflagged graph on the basis
of any AMP Markov equivalent chain graph is presented. In general, the largest deflagged graph
differs from the AMP essential graph, which is another representative of the AMP Markov equiva-
lence class.

Keywords: chain graph, AMP Markov equivalence, strong equivalence, largest deflagged graph,
component merging procedure, deflagging procedure, essential graph

1. Introduction

This paper studies chain graph models under the alternative interpretation introduced by Andersson,
Madigan and Perlman (2001). In general, achain graph modelis a statistical model in which a chain
graph is used to represent the conditional independence structure defining the statistical model.
The vertices of the graph represent random variables and the conditional independence structure
is determined through the respectiveMarkov property. The class of chain graphs was introduced
and the original interpretation was given by Lauritzen and Wermuth (1984); see also Lauritzen and
Wermuth (1989). The mathematical theory of chain graphs was developed by Frydenberg (1990),
who formally defined the Markov property corresponding to the original interpretation. Following
the standard literature in this field, we will refer to this property as theLWF Markov property.

c©2006 Alberto Roverato and Milan Studený.

ROVERATO AND STUDENÝ

More recently, another interpretation of chain graphs was introduced byAndersson, Madigan
and Perlman (1996); see also Andersson et al. (2001). This interpretation leads to an alternative
Markov property and we will refer to it as theAMPMarkov property.

Two different chain graphs may be equivalent with respect to a considered Markov property,
by which is meant that they define the same statistical model. The distinction between different
interpretations of chain graphs is reflected by the different concepts ofequivalence, namely the
LWF Markov equivalenceand theAMP Markov equivalence.

From a statistical perspective, the point of interest is a statistical model. However, if we repre-
sent a statistical model using an arbitrary graph in the respectiveMarkov equivalence class, then the
non-unique nature of graphical description may result in difficulties. Onetype of difficulty concerns
problems one can meet in structural learning of graphical models; see Section 2.3 of Chickering
(2002) for a review in the case of acyclic directed graphs. A solution to these problems may be
provided by a suitable choice of a uniquerepresentativeof each Markov equivalence class, that
is, of a particular element in that equivalence class. The choice of a suitable representative is also
important from the perspective of causal inference in chain graphs (Lauritzen, 2001, Section 11.2).

The problem of the representative choice has a natural solution in the LWFcase. Frydenberg
(1990) showed that every LWF equivalence class contains thelargest chain graph, which is the
graph with the largest amount of undirected edges within the LWF equivalence class. Furthermore,
every arrow in the largest chain graph is an arrow with the same direction in every chain graph from
the class. The largest chain graph is uniquely determined and can serve as a natural representative
of the LWF equivalence class. Moreover, there exist at least two procedures that transform every
chain graph into the largest chain graph of the respective LWF equivalence class Roverato (2005);
Volf and Studeńy (1999).

However, the situation is different in the AMP case. It is not clear what is anatural representative
of an AMP equivalence class and, in particular, the notion of the “largestAMP chain graph” makes
no sense. Andersson et al. (2001) proposed to represent an AMP equivalence class by a so-called
AMP essential graph. Every arrow in the AMP essential graph is either an arrow with the same
direction or an undirected edge in every chain graph from the equivalence class. Their terminology
was inspired by the case of acyclic directed graph models, in which case thecorresponding equiva-
lence class has a suitable representative called theessential graph(Andersson et al., 1997). Indeed,
if an AMP equivalence class contains an equivalence class of acyclic directed graphs, then the AMP
essential graph coincides with the respective essential graph; see Proposition 4.2 in Andersson and
Perlman (2006). However, as of now, there is no algorithm to construct the AMP essential graph,
as in the LWF case. Furthermore, in the case that the AMP equivalence class contains a completely
undirected graph, it may happen that the AMP essential graph has some arrows, and this unpleasant
phenomenon was already reported in Section 7 of Andersson et al. (2001).

The aim of this paper is to provide an alternative solution to the problem of unique graphical
representation of AMP equivalence classes. The point is that AMP equivalence classes have a more
complicated structure than LWF equivalence classes. We succeed in revealing this structure and
provide a representing graph as well as an algorithm for its construction.Our solution, called the
largest deflagged graph, is different from the AMP essential graph proposed in Andersson etal.
(2001). Nevertheless, if an AMP equivalence class contains an acyclicdirected graph then our rep-
resentative reduces to the essential graph of the corresponding equivalence class of acyclic directed
graphs. Moreover, it provides a better solution if the AMP equivalence class contains an undirected

1046

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

graph because then, as one would expect, that undirected graph coincides with our largest deflagged
graph.

These are the main contributions of the paper:

1. We introduce a new concept, namely, the concept ofstrong equivalenceof chain graphs. An
important observation is that every AMP equivalence class of chain graphs decomposes into
strong equivalence classes.

2. Every strong equivalence class has a unique representative given by the largest chain graph of
the class. We introduce a procedure, called thecomponent merging procedure, which starts
from any chain graphG and, by replacing arrows with undirected edges, finds the largest
graph in the class of chain graphs strongly equivalent toG.

3. There exists a unique distinguished strong equivalence class among those forming an AMP
equivalence class. Its elements have the largest amount of immoralities and theleast possible
amount of flags. We call the graphs in this class the maximally deflagged graphs, briefly the
deflagged graphs. We introduce a procedure, called thedeflagging procedure, which starts
from any chain graphG and, by replacing undirected edges with arrows, produces a deflagged
graphĜ AMP equivalent toG.

4. We propose to characterize every AMP equivalence class by means of the respectivelargest
deflagged graph. This representative can be constructed by applying the component merging
procedure to the chain grapĥG obtained by the deflagging procedure.

The next section recalls basic graphical concepts. Then, in Section 3, the main results in the
LWF case are recalled in order to let the reader see some analogy. In Section 4, we give an overview
of our new results and illustrate them by an example. The results on strong equivalence of chain
graphs are formulated in Section 5. They appear to be analogous to the results valid in the LWF
case. In Section 6, we present a deflagging procedure to get a deflagged graph in a given AMP
equivalence class. Section 7 contains some concluding remarks. Proofsof the main results are
moved to the Appendix.

2. Basic Concepts

In this paper we consider graphs that admit both directed edges, called arrows, and undirected
edges, called lines. Formally, given a non-empty finite setN, anarrow over N is an ordered pair
(a,b) of distinct elements ofN and aline overN is a subset{a,b} of N of cardinality two, that is,
an unordered pair of distinct elements ofN. A hybrid graphis a tripletH ≡ (N,A ,L) whereN
is a finite non-empty set ofnodes, A a set of arrows overN andL a set of lines overN such that
no multiple edges are allowed, which means that if(a,b) ∈ A then(b,a) 6∈ A and{a,b} 6∈ L . To
express thatN is the set of nodes ofH we also say thatH is a hybrid graphover N.

Given a hybrid graphH, we will write a−→ b in H or b←− a in H to denote(a,b) ∈ A .
Analogously, we will writea−−−b in H or b−−−a in H if {a,b}∈ L . This notation is in accordance
with usual pictures. An ordered pair[a,b] of distinct nodes inH will be called anedgein H if a−→ b
in H, a−−−b in H or a←− b in H. Observe that[a,b] is an edge iff[b,a] is an edge: this means
that edges can be viewed as unordered pairs of distinct nodes. If[a,b] is an edge inH we also say
thata andb areadjacentin H.

1047

ROVERATO AND STUDENÝ

A set of nodesC⊆ N is connectedin H if, for every a,b∈C, there exists anundirected path
connecting them, that is, a sequence of distinct nodesa = c1, . . . ,cn = b, n≥ 1 such thatci −−−ci+1

in H for i = 1, . . . ,n−1. A (connectivity)componentin H is a maximal connected set inH with
respect to set inclusion. Evidently, components in a hybrid graph are pairwise disjoint.

Given a set of nodesA⊆ N in a hybrid graphH, the set ofparentsof nodes inA, denoted by
paH(A), is the set

paH(A)≡ {b∈ N ; b−→ a in H for some a∈ A} .

A descending pathin H from a nodea to a nodeb is a sequence of distinct nodesa= c1, . . . ,cn = b,
n≥ 1 such that eitherci −→ ci+1 in H or ci −−−ci+1 in H for i = 1, . . . ,n−1. If there exists a path
of this kind inH then we say thata is anancestorof b in H. The set of ancestors inH of nodes in a
setA⊆ N will be denoted by anH(A); observe that one hasA⊆ anH(A).

An undirected graphis a hybrid graph without arrows, that is,A = /0. A setK ⊆ N is complete
in an undirected graphH if, ∀a,b∈K, a 6= b, one hasa−−−b in H. Given a hybrid graphH overN,
the respectiveunderlying graphis an undirected graphHu overN such thata−−−b in Hu iff [a,b]
is an edge inH.

A directed graphis a hybrid graph without lines, that is,L = /0. A directed graphH is acyclic
if there is no directed cycle inH, that is, there is no sequence of nodesd0, . . . ,dn−1,dn = d0, n≥ 3
such thatd0, . . . ,dn−1 are distinct and,∀ i = 0, . . . ,n−1, di −→ di+1 in H.

The concept of achain graph(CG) can be introduced in two equivalent ways. Note that we are
going to use the abbreviationCG in the rest of the paper. The first definition is that a CG is a hybrid
graphH whose components can be ordered to form a chain, that is, a sequenceC1, . . . ,Cm, m≥ 1
such that

• if a−−−b in H thena,b∈Ci for somei,

• if a−→ b in H thena∈Ci ,b∈Cj with i < j.

Note that this is the reason for which some authors call the components in a CGchain components.
A consequence of this definition is that every CG has aterminal component, that is, a component
T such that there is no arrowa −→ b in H with a ∈ T. The other definition is that a CG is a
hybrid graphH without semi-directed cycles. A semi-directed cycle of the lengthn is a sequence
of nodesd0, . . . ,dn−1,dn = d0 with n≥ 3 such thatd0, . . . ,dn−1 are distinct,d0 −→ d1 in H and,
∀ i = 1, . . . ,n−1, eitherdi −→ di+1 in H or di −−−di+1 in H. See Lemma 2.1 in Studený (1997) for
the proof of equivalence of both definitions of a CG. It is easy to see thatevery undirected graph
and every acyclic directed graph is a CG.

Given a hybrid graphH overN and /0 6= A⊆ N, the induced subgraphof H for A, denoted by
HA, is the graphHA ≡ (A,A ∩ (A×A),L ∩P (A)), whereP (A)≡ {B; B⊆ A}. We will deal with a
few special induced subgraphs. Acomplexin a hybrid graphH is an induced subgraph ofH of the
form a−→ c1 −−− . . . −−−cs←− b, s≥ 1, which means that no other edge between distinct nodes
{a,b,c1, . . . ,cs} is present inH. An example of a complex is shown in the left-hand picture of
Figure 1. A special case of a complex is animmorality, which is a configurationa−→ c←− b in H
wherea,b,c are distinct nodes and[a,b] is not an edge inH. An example of an immorality is shown
in the middle picture of Figure 1. Two CGsG andH over N will be calledcomplex equivalent
iff they have the same underlying graph and complexes. Given a CGG, the class of CGs that are
complex equivalent toG will be denoted byG .

1048

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

a b

c1 c2 cs−1 cs

a b

c

a

bc

Figure 1: A complex, an immorality and a flag.

A flag in a hybrid graphH is another induced subgraph ofH for three nodes, namelya−→
c−−− b wherea,b,c are distinct nodes and[a,b] is not an edge inH. An example of a flag is shown
in the right-hand picture of Figure 1. Atriplex in a hybrid graphH is a pair〈{a,b},c〉 such that
eithera−→ c←− b is an immorality inH, a−→ c−−−b is a flag inH or a−−−c←− b is a flag
in H. All three different versions of a triplex are shown in Figure 2. Two CGsG andH over N
will be called triplex equivalentiff they have the same underlying graph and triplexes. Note that
coincidence of triplexes is understood as follows. If, for instance,a−→ c←− b is an immorality
in G then it need not be an immorality inH but it has to be one of three versions of the triplex
〈{a,b},c〉. Given a CGH, the class of CGs that are triplex equivalent toH will be denoted byH.

3. Representation of LWF Equivalence Classes

In this section we recall known results concerning the LWF case. The aim isto help the reader to
realize the analogy between these former results and our new results on strong equivalence of CGs
presented in Section 5. Moreover, an overview of the results in the LWF case will indicate what is
the main difference from the AMP case, which is reported in Section 4.

3.1 Largest Chain Graph in a LWF Equivalence Class

In this paper, we omit the formal definition of LWF Markov property and LWFMarkov equivalence;
this can be found in Frydenberg (1990). Instead, we recall Frydenberg’s graphical characterization
of LWF equivalence of CGs (see Proposition 5.6 in Frydenberg, 1990). He showed that two CGs
over the same set of nodes are LWF Markov equivalent iff they are complex equivalent.

The second crucial point is that every LWF equivalence class is endowed with a natural partial
ordering. Supposing thatH = (N,AH ,LH) andG = (N,AG,LG) are two LWF equivalent CGs, we
say thatH is larger thanG if AH ⊆ AG, that is

a−→ b in H impliesa−→ b in G, (1)

a bc a bc a bc

(i) (ii) (iii)

Figure 2: Three different versions of the triplex〈{a,b},c〉.

1049

ROVERATO AND STUDENÝ

for every paira andb of distinct nodes inH. Observe that the fact thatG andH have the same
underlying graph necessitates thatLG⊆ LH , that is

a−−−b in G impliesa−−−b in H, (2)

which meansH has ‘more’ lines thanG. One can easily show that the relation defined by (1) is a
partial ordering on every LWF equivalence class; we will writeH ≥G if (1) is fulfilled.

Third, Frydenberg also showed (Proposition 5.7 of Frydenberg, 1990) that every LWF equiv-
alence classG has the largest element with respect to this ordering, that is,G∞ ∈ G such that for
everyG in G one hasG∞ ≥G. Thus, this graphG∞, named thelargest chain graphof G , can serve
as a natural representative ofG .

3.2 Feasible Merging of Components

The last important point is that there are procedures which allow one to getthe largest CGG∞ ∈ G
on the basis of any CGG∈ G from the LWF equivalence class. At least three procedures of this
kind have been presented in the literature; however, two of them are methodologically equivalent.

One of them could be a procedure based on Theorem 3.9 of Volf and Studeńy (1999). The basic
idea is that some arrows in a CGG∈ G are indicated as ‘protected’ arrows. Then all arrows inG
which are not ‘protected’ are replaced with lines and the largest chain graphG∞ of G is obtained.

Another procedure, called thepool-component rule, was presented in Section 5 of Studený
(1997). The basic idea is that there is an elementary operation of merging components in a CG
whose result is an LWF equivalent CG. By consecutive application of thisoperation, the respective
largest chain graph can be obtained. However, the formal description of that elementary operation
given in Studeńy (1997) is still awkward.

The third procedure is described in Roverato (2005). Its basic idea is essentially the same;
an elementary step of that procedure consists of merging components of an‘insubstantial’ meta-
arrow, that is, of the bunch of arrows between two certain components. It is shown in Section 4 of
Roverato (2005) that, by consecutive application of that elementary step,the respective largest CG
is obtained. One can show that the elementary operations presented in Studený (1997) and Roverato
(2005) are equivalent (see Studený et al., 2006), but the formal description of the operation presented
in Roverato (2005) is much more elegant from the mathematical point of view. We decided to take
it as the basis of the following definitions.

Definition 1 (meta-arrow)
Let G be a CG. A pair of components(U,L) in G such that there exists an arrow a−→ b in G with
a∈U and b∈ L determines ameta-arrowin G. More specifically, the meta-arrow is the collection of
all arrows a−→ b with a∈U and b∈ L. The component U will be called theupper componentand
the component L thelower component(of the meta-arrow). We will occasionally use the notation
U ⇉ L.

Note that the above notion is a minor modification of the concept of a meta-arrowfrom Roverato
(2005). The essential difference is that in Definition 1 we require that atleast one arrow exists from
a member ofU to a member ofL, while in Roverato (2005) a possibly empty collection of arrows
from U to L was allowed. Thus, the concept of a meta-arrow used in this paper coincides with the
concept of a non-empty meta-arrow from Roverato (2005). Since empty meta-arrows play no role

1050

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

(M1)

L

U
=⇒

U

L

(M2)
U

L

=⇒
U

L

Figure 3: Two examples of feasible merging. The vertices belonging to the set K from (i) are filled
in and arrows of the meta-arrowU ⇉ L are bold.

in a CG, we have decided to simplify our terminology. Our additional assumption also implies that
the considered componentsU andL are different.

Definition 2 (merging of components)
Bymerging of componentsin a CG G we understand the following operation applicable to G. Given
a pair of components(U,L) which defines a meta-arrow, we replace all arrows of the meta-arrow
U ⇉ L with lines and say that the resulting hybrid graph G′ is obtained by merging of components
U and L; more specifically, bymergingof the upper component U and the lower component L.

Note that the above terminology was inspired by terminology from Studený (2004). In general,
the result of the operation of merging components in a CG need not be a CG. However, there are
sufficient conditions for this; one of them is as follows.

Definition 3 (feasible merging)
Let (U,L) be a pair of components in a CG G that defines a meta-arrow in G. We say that merging
of components U and L isfeasible(in G) if the following two conditions hold:

(i) K ≡ paG(L)∩U is a complete set in G,

(ii) ∀ b∈ K paG(L)\U ⊆ paG(b).

Note that the assumption that(U,L) defines a meta-arrow implies that the setK in (i) is a non-
empty set. Two examples of feasible merging are shown in Figure 3.

1051

ROVERATO AND STUDENÝ

It is shown in Section 4 of Roverato (2005) that a hybrid graphG′ obtained from a CGG by
feasible merging of its components is a CG complex equivalent toG; actually, it is shown there that
the requirements (i) and (ii) together establish a necessary and sufficientcondition for this. In fact,
that is the reason we decided to name this operation with CGs “feasible merging of components’’
because the condition ensures that one remains in the same LWF equivalence class of CG after the
merging operation. Moreover, it is also proven in Roverato (2005) that, by repeated application of
this operation to a CGG∈ G , the respective largest CGG∞ ∈ G is obtained.

4. Representation of AMP Equivalence Classes

In this section we reveal the internal structure of AMP Markov equivalence classes. First, we recall
the graphical characterization of AMP equivalence. Then we introducea special kind of equivalence
of CGs, calledstrong equivalence, such that every AMP equivalence class decomposes into strong
equivalence classes. Basic results on strong equivalence are postponed to Section 5. The next
step is to introduce a specialflag orderingbetween strong equivalence classes within a fixed AMP
equivalence class. We show that the smallest element with respect to that ordering exists and,
finally, we propose to represent the whole AMP equivalence class by a natural representative of that
distinguished strong equivalence class, calledlargest deflagged graph.

4.1 Graphical Characterization of AMP Equivalence

The formal definitions of AMP Markov property and AMP Markov equivalence are omitted; they
can be found in Andersson et al. (2001). Here we recall graphical characterization of AMP equiv-
alence given by Andersson et al. (2001, Theorem 5). They showedthat two CGs over the same
set of nodes are AMP Markov equivalent iff they are triplex equivalent. An example of an AMP
equivalence class is given in Figure 2. A further, less trivial, example containing ten CGs is given
in Figure 4.

Given a CGH, let us consider the setH of all CGs triplex equivalent toH. If we consider the
partial ordering of CGs inH defined by (1) then it may be the case that the largest CG inH does
not exist. This is illustrated in Figure 2, where none of the three graphs is larger than the others, but
also in Figure 4.

This is the main difference between the case of LWF equivalence and the case of AMP equiva-
lence. In the LWF case, the key role is played by the ordering of CGs defined by (1). The result on
the existence and uniqueness of the largest CG with respect to this ordering in each LWF equiva-
lence class reported in Section 3 makes this object a natural representative of the LWF equivalence
class. In the representation of an AMP equivalence class, the orderingdefined by (1) also plays
an important role, even though its use in this case is more subtle than in the LWF case. What is
important is that every AMP equivalence class decomposes into some finer equivalence classes.

4.2 Definition of Strong Equivalence

Our decomposition of a given AMP equivalence class is based on the distinction betweentriplex
edges, namely the arrows and lines that belong to a triplex, and non-triplex edges.More specifi-
cally, if two triplex equivalent CGs have identical triplex edges, then we saythat they are strongly
equivalent.

1052

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

Figure 4: An example of an AMP equivalence class. The boxes represent strong equivalence
classes. They are ordered by the flag ordering. There exists a uniquelargest graph within
every strong equivalence class. The largest deflagged graph has vertices filled in.

1053

ROVERATO AND STUDENÝ

Definition 4 (strong equivalence of chain graphs)
Let G,H be CGs over N. We say that they arestrongly equivalentiff

[a] G and H have the same underlying graph,

[b] an immorality a−→ c←− b occurs in G iff it occurs in H,

[c] a flag a−→ c−−−b occurs in G iff it occurs in H.

It is easy to see that strongly equivalent CGs have the same complexes. Inparticular, they are
both complex equivalent and triplex equivalent. On the other hand, two CGswhich are both LWF
and AMP Markov equivalent need not be strongly equivalent as shown, for example, by the graphs
(i) and(ii) in Figure 2.

Given a CGH, the class of CGs that are strongly equivalent toH will be denoted byH . In
Figure 4, strong equivalence classes are represented by boxes. Note that, since all the graphs inH
have the same triplex edges, it makes sense to say thata−→ c is a triplex arrow inH if a−→ c is a
triplex arrow in every CG fromH , and similarly for triplex lines. We are going to show in Section
5 that, similarly to the LWF case, every strong equivalence classH has a unique largest element.
We also present a special component merging procedure to get the largest element on basis of any
graph inH there.

Strong equivalence is an equivalence relation that induces a partition of any AMP equivalence
classH of CGs. We will denote the set of all strong equivalence classes includedin H by H ≡
{H ;H ⊆H}.

4.3 Flag Ordering

Interestingly, the relation (1) restricted to triplex edges defines a partial orderingbetweenstrong
equivalence classes fromH.

Definition 5 (flag larger)
Let H be an AMP equivalence class andH ,G ∈H. We say thatH is flag largerthanG and write
H � G if the following condition holds:

whenever a−→ b is a triplex arrow inH then a−→ b in G . (3)

Observe that (3) and the factG ,H ∈H imply that

whenevera−−−b is a triplex line inG thena−−−b in H . (4)

Hence,H � G � H for H ,G ∈ H implies thatH andG have the same triplex edges, that is,
G = H . This allows one to see that the relation� is indeed an ordering onH. Another point is that
(4) means thatH has ‘more’ triplex lines thanG . In particular, ifH � G then every flag inG is
a flag of the same type inH . For this reason, we will refer to the ordering defined by (3) as to the
flag orderingof strong equivalence classes. In Figure 4 we illustrated this ordering bydashed lines.
Note that there exists the smallest element with respect to flag ordering. It is anatural distinguished
strong equivalence class withinH and, now, we prove its existence.

Proposition 6 Given an AMP equivalence classH, there exists a unique strong equivalence class
H ↓ ∈H such thatH � H ↓ for all H ∈H.

1054

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

Proof As H is finite and� is an ordering onH it suffices to show that, for everyG ,H ∈ H,
there existsF ∈ H with G � F andH � F . ChooseG ∈ G andH ∈ H and construct a hybrid
graphF with the same underlying graph asG (andH) in this way: a−→ b in F iff either a−→ b
in G or [a−−−b in G anda−→ b in H]. Lemma 4 in Andersson et al. (2001) says thatF is a
CG which is triplex equivalent toG (andH). Let F denote the strong equivalence class of CGs
containingF . Thus,F ∈ H and the factG≥ F impliesG � F . The conclusionH � F can be
verified directly: ifa−→ b is a triplex arrow inH (= in H) then the fact thatH andG are triplex
equivalent implies that eithera−→ b in G or a−−−b in G which both givesa−→ b in F (= in F).

4.4 Deflagged Graphs and Essential Flags

Given an AMP equivalence classH, the symbolH ↓ will be used to denote the least strong equiva-
lence class inH with respect to�. The graphs inH ↓ will be calledmaximally deflagged graphsor,
briefly, deflagged graphs.

In the example in Figure 4, both triplexes in the deflagged graphs are immoralities. However,
in general, not all triplex edges inH ↓ have to be arrows. Some flags appear to be essential for the
specification of the setH and, therefore, their lines are shared by all graphs fromH. An example
is given in Figure 5 where a single graph, which has two flags, forms the whole AMP equivalence
class.

Figure 5: An example of a pair of essential flags.

Definition 7 (essential flag)
Let H be an AMP equivalence class. If a−→ b−−−d is a flag in H for every H∈ H then we say
that it is anessential flagin H.

Actually, deflagged graphs can equivalently be introduced as follows.

Proposition 8 Given an AMP equivalence classH, one has G∈ H ↓ iff G ∈H and every flag in G
is an essential flag inH.

Proof To verify the necessity of the condition, consider a flaga−→ b−−−c in G andH ∈ H ∈H.
Then the assumptionH � H ↓ ∋G implies by (4) that the triplex lineb−−−c in G is also inH. As
〈{a,c},b〉 is a triplex both inG andH it allows one to derivea−→ b in H. Thus,a−→ b−−−c is
a flag in everyH ∈H.

For sufficiency, assume thatG∈H only has essential flags. LetG ∈H be the strong equivalence
class containingG. We are to show thatH � G for everyH ∈H. Consider a triplex arrowa−→ b
in H . It has to be a part of a triplex〈{a,c},b〉. Since it has to be a triplex inG the only option
which excludesa−→ b in G is thata−−−b←− c in G. However, then it is an essential flag inH

anda−−−b←− c in H . This contradicts the assumption and one necessarily hasa−→ b in G .

1055

ROVERATO AND STUDENÝ

4.5 Largest Deflagged Graph

Let us summarize. AMP equivalence classes can effectively be handledby first considering their
natural partition into strong equivalence classes (partially ordered by�), and then by dealing with
the CGs in every strong equivalence class (partially ordered by≥). In this way, it is possible to
identify unambiguously a graph inH by first considering the flag-smallest strong equivalence class
and then by taking the largest graph within that class.

Definition 9 (largest deflagged graph)
The graph H↓ is thelargest deflagged graphof an AMP equivalence classH if

(i) H ↓ ∈ H ↓,

(ii) H ↓ ≥ H for all H ∈ H ↓.

In Figure 4, the ordering of CGs within strong equivalence classes is illustrated by means of dotted
lines. The largest deflagged graph is emphasized by means of vertices filled in.

Recall that the existence of the strong equivalence classH ↓ was proven in Proposition 6 whereas
the existence and uniqueness of the largest CG inH ↓ is shown in Section 5. Furthermore, in Section
6, we provide a deflagging procedure which, starting from any CGG in an AMP equivalence class
H, returns a CĜG in H ↓. Then a component merging procedure from Section 5 can be applied to
Ĝ to get the largest deflagged graphH↓.

5. Strong Equivalence

This section is devoted to basic results on strong equivalence of CGs. These results are analogous
to the results on LWF Markov equivalence recalled in Section 3. More specifically, we prove the
existence of the largest CG within each strong equivalence class, introduce the respective elementary
operation ascribing a larger strongly equivalent CG to a CG, and show that the largest CG in a strong
equivalence class is attainable by this operation.

5.1 Largest Chain Graph in a Strong Equivalence Class

In this subsection we show the existence of the largest CG within a strong equivalence class. The
first step for this is a direct construction of the supremum of two CGs with a shared underlying
graph with respect to the orderingH ≥ G defined by (1). Note that the construction was already
mentioned without further details in Frydenberg (1990). The constructionutilizes the following
auxiliary concept.

Definition 10 (cyclic arrow)
Given a hybrid graph H, we say that an arrow a−→ b in H is acyclic arrowin H if b ∈ anH(a).
An equivalent formulation is that there exists a semi-directed cycle in H containing a−→ b.

Lemma 11 Let us consider the class E of all CGs over N with a prescribed underlyinggraph
E, ordered by the relation≥ defined by (1). Then every pair of graphs G and H from E has the
supremum G∨H in (E,≥). It can be obtained directly in two steps.

1. Define a hybrid graph G∪H over N as follows

a−→ b in G∪H iff both a−→ b in G and a−→ b in H ,

1056

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

and a−−−b in G∪H for remaining edges in E.

2. Replace all cyclic arrows in G∪H with lines and obtain G∨H.

Proof It is easy to see that(E,≥) is a partially ordered set. We need to show thatG∨H ∈ E,
G∨H ≥G, G∨H ≥ H and, whenever there isF ∈ E with F ≥G,H thenF ≥G∨H.

The fact thatG∨H is a CG was proven as Consequence 2.5 in Volf and Studený (1999). Hence,
it is clear thatG∨H ∈ E and thatG∨H is larger than bothG andH.

To show thatF ≥ G∨H for F ∈ E with F ≥ G,H, consider an arrowa−→ b in F in order to
verify a−→ b in G∨H. Sincea−→ b in G∪H, it suffices to showb 6∈ anG∪H(a). Suppose for
contradiction that there exists a descending pathρ : b = c1, . . . ,cn = a, n≥ 2 in G∪H. There is no
1≤ i ≤ n−1 with ci ←− ci+1 in F , as otherwiseci ←− ci+1 in G∪H. Thus,ρ is a descending path
in F which contradicts the assumption thatF is a CG.

The preceding construction can be utilized to prove that every strong equivalence class of CGs
is a join semi-lattice with respect to≥.

Proposition 12 Let G and H be strongly equivalent CGs over N. Then their supremum G∨H is
strongly equivalent to them as well.

Because the proof is technical, it is moved to the Appendix. Proposition 12 has the following
consequence.

Corollary 13 Given a strong equivalence classG of CGs over N, there exists G† ∈ G which is the
largest CG inG .

Proof SinceG is a finite set, one can apply Proposition 12 repeatedly to get the supremum ofall
graphs inG . Of course, it is the largest CG inG .

5.2 Legal Merging of Components

In this subsection we introduce an elementary operation that produces a strongly equivalent CG
when applied to a CG. Here is the definition.

Definition 14 (legal merging of components)
Let (U,L) be a pair of components in a CG G that defines a meta-arrow. We say that merging of
components U and L islegal(in G) if the following three conditions hold:

[i] K ≡ paG(L)∩U is a complete set in G,

[ii] ∀b∈ K paG(L)\U = paG(b),

[iii] for every d∈ L one haspaG(L) = paG(d).

Evidently, the conditions [i]-[iii] imply the conditions (i)-(ii) from Definition 3. Inbrief, every
legal merging (of components in a CG) is feasible. In Figure 3, (M1) is an example of feasible
merging that is not legal whereas (M2) is an example of legal merging. IfG is a CG without flags
then the condition [iii] is always fulfilled and [ii] takes a simpler form:

1057

ROVERATO AND STUDENÝ

[ĩi] paG(L)\U = paG(U).

Thus, the operation from Definition 14 generalizes the operation of legal merging of components
(of a CG without flags) from Studený (2004). The requirement [i]+[̃ii] also coincides with the
condition from Roverato (2005) demanding that the arrowhead of the meta-arrowU ⇉ L is strongly
insubstantial.

Proposition 15 Let G be a CG over N, and(U,L) be a pair of its components which defines a meta-
arrow. Then the conditions from Definition 14 are satisfied iff the graph G′ obtained by merging of
components U and L is a CG strongly equivalent to G; of course, it is (strictly) larger than G.

The proof is moved to the Appendix. Note that one has to replace the whole collection of arrows
between components with lines; otherwise the obtained graph would not be a CG. This is the reason
why legal merging is indeed an elementary operation yielding a larger and strongly equivalent CG.

5.3 Component Merging Procedure

An important fact is that the largest CG in a strong equivalence classG can be obtained from any
CG inG by consecutive application of the operation of legal merging of components. Actually, we
show the following, formally stronger, result.

Proposition 16 Let G and H be strongly equivalent CGs over N such that H≥G. Then there exists
a finite sequence G≡ F1, . . . ,Fm≡H, m≥ 1 of CGs over N such that, for every i= 1, . . . ,m−1, the
graph Fi+1 is obtained from Fi by legal merging of components.

The proof is technical and it is moved to the Appendix. Proposition 16 has thefollowing conse-
quence.

Corollary 17 Given a strong equivalence classG of CGs over N and G∈ G , the largest CG G† in
G is attainable from G by a series of legal mergings.

Proof We simply putH = G† in Proposition 16.

6. Deflagging Procedure

In this section we describe a procedure to construct a deflagged graphĜ starting from any CGG
in the respective AMP equivalence classH. We proceed as follows. First, we introduce alabeling
algorithm that assigns some labels to endings of lines inG. Second, we introduce adirecting
algorithmwhich, on the basis of those labels, replaces certain lines inG with arrows. In this way,
we get a CG which is both triplex equivalent toG and flag-smaller thanG. Finally, we provide a
deflagging procedure which consists of repeated application of these twoalgorithms. We show that
the result is a deflagged graph.

1058

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

(a) ⇒

x

(b) ⇒

x

(c)

x

x ⇒

x

x

x

Forbidden configurations

Figure 6: Three blocking rules from the labeling algorithm.

6.1 Labeling Algorithm

Let G = (N,A ,L) be a CG. Alabeled graph Gℓ = (N,A ,L ℓ) is a graph obtained by ascribing a
pair of labels to every line{a,b} ∈ L . The labels on a linea−−−b correspond to endings of the
line: one of them is associated witha and the other withb. We use two different kinds of labels: a
blocking label denoted by a cross, ‘x’, and a label denoted by a dot, ‘•’, to be read as ‘free’. Thus, if
the blocking label is associated witha on a−−−b then we will say that the line isblocked at aand
write a−x−− b in Gℓ. On the other hand, the notationa−•−− b in Gℓ will mean that the line isfree at
a. The intuition behind the terminology is as follows. A blocked ending at a nodea will mean that
the line cannot be replaced with an arrow directed toa, for otherwise we would get a graph outside
H. A free ending ata will mean that no such conclusion has been derived so far.

Consequently, a labeled CG has three types of lines: two symmetric forms−x−−x and −•−−• , and
an asymmetric form−x−−• . Let us emphasize that we only consider labeled graphs in which all lines
have both endings labeled. However, in our notation, labels need not be explicitly indicated. For
instance, the notationa−−−x b in Gℓ will mean that eithera−x−−x b in Gℓ or a−•−−x b in Gℓ.

The labeling algorithm, whose pseudo-code is given in Algorithm 1, produces a special labeled
versionGℓ of a given CGG. Initially, all lines are replaced with labeled lines with free endings.
Then, threeblocking rules, illustrated in Figure 6, are repeatedly applied until they are not applica-
ble. Each blocking rule modifies just one ending of one line: a free ending isblocked. In this way,
we get a labeled CG in which noforbidden configuration(see Figure 6) is present. The labelling
algorithm is the first step of the overall deflagging procedure and in the following step some lines
of G are replaced by arrows; thus, the reader can possibly understand that the three forbidden con-
figurations actually correspond to three unwanted operations: (a) corresponds to cancellation of a
triplex, (b) to creation of a triplex and (c) to creation of a semi-directed cycle(of the length 3).

1059

ROVERATO AND STUDENÝ

Algorithm 1 Pseudo-code for theLabelingAlgorithm (G).
1: input a CGG = (N,A ,L)
2: put i = 0
3: initialize Gℓ

i = (N,A ,L ℓ) by replacing every linea−−−b in G by a−•−−• b in Gℓ
i

4: while at least one forbidden configuration is present inGℓ
i do

5: i = i +1
6: Gℓ

i = modify Gℓ
i−1 by applying one of the following rules (see also Figure 6):

(a) if a−→ b−−−• c in Gℓ
i−1 anda andc are not adjacent thenb−−−x c in Gℓ

i
(b) if a−−−b−•−− c in Gℓ

i−1 anda andc are not adjacent thenb−x−− c in Gℓ
i

(c) if a−−−x b−−−x c−•−− a in Gℓ
i−1 thenc−x−− a in Gℓ

i
7: end while
8: returnGℓ = Gℓ

i

The point is that the result of the labelling algorithm is invariant with respect tothe order in
which the blocking rules are applied.

Proposition 18 For any CG G, the labeled graph Gℓ=LabelingAlgorithm (G) is unique. This
means that the output of the labeling algorithm does not depend on the ordering in which the three
blocking rules are applied.

The proof can be found in the Appendix. In the rest of the paper,Gℓ will always denote the
labeled version ofG resulting from the application of Algorithm 1. An example of application of
the labeling algorithm is given in Figure 7.

Note that Algorithm 1 is specified so that just one single label is changed in one iteration. This
is useful in the proofs of the results of this section, but may be inefficient inpractice. A more
efficient implementation of the procedure can be achieved by applying the rules (a) and (b) first in a
multi-step, and then only applying the rule (c) iteratively. This follows from Proposition 18 and the
fact that the application of the rules (a) and (b) does not depend on the result of previous iterations
of Algorithm 1.

6.2 Directing Algorithm

Thedirecting algorithm, described in Algorithm 2, is the second building block of the deflagging
procedure. It replaces some (labeled) lines with arrows in order to possibly reduce the number of
flags in the original CG. More precisely, every line of the forma−x−−• b is replaced with the arrow
a−→ b and then the labels on other lines are removed.

Algorithm 2 Pseudo-code for theDirectingAlgorithm (Gℓ).

1: input a labeled CGGℓ = (N,A ,L ℓ)
2: Gℓ

∗ = modify Gℓ by applying the following rule:

a−x−−• b in Gℓ ⇒ a−→ b in Gℓ
∗

3: G′= unlabeled version ofGℓ
∗

4: returnG′

We show that if the directing algorithm is applied to the result of the labeling algorithm then an
AMP equivalent graph is obtained.

1060

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

x

1 –G 2 –Gℓ
0 3 – conf. (a) 4 –Gℓ

1

x xx

x

x x

x

x

5 – conf. (a) 6 –Gℓ
2 7 – conf. (b) 8 –Gℓ

3

x

x

x

x

x

x

x
x

x x

x

x

x

x

x

x

9 – conf. (b) 10 –Gℓ
4 11 –conf. (b) 12 –Gℓ

5

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

13 –conf. (c) 14 –Gℓ
6 15 –conf. (c) 16 –Gℓ = Gℓ

7

Figure 7: An example of the application of the labeling algorithm to be read following the number-
ing. Initially, all lines of G are replaced with labeled lines with free endings. Then, in
every pair of successive pictures, a forbidden configuration is highlighted and the corre-
sponding rule is applied.

1061

ROVERATO AND STUDENÝ

Theorem 19 Let G be a CG, Gℓ denote the labeled graph obtained from G by Algorithm 1, and G′

the graph resulting from Gℓ by Algorithm 2. Then G′ is a CG which is triplex equivalent to G.

The proof is relatively long and we have placed it in the Appendix. Clearly,one hasG≥ G′

and, hence,G � G ′ for the respective equivalence classes. Moreover, one hasG 6= G′ unless no
line is replaced with an arrow in the directing phase. An example of the application of the directing
algorithm will be shown in the next section.

6.3 Overall Procedure

The application of the above algorithms to a CGG produces a graphG′ in the same AMP equiva-
lence class such thatG≥ G′. However,G′ still need not be a maximally deflagged graph and one
can then apply the same procedure toG′. In Algorithm 3, we provide the pseudo-code of the over-
all deflagging procedure which consists in repeated application of both algorithms until no line is
replaced with an arrow during the directing phase. Its result will be denoted by Ĝ.

Algorithm 3 Pseudo-code for theDeflaggingProcedure (G).
1: inputG = (N,A ,L)
2: j = 0
3: initialize Ĝ j = G
4: repeat
5: j = j +1
6: Ĝℓ

j−1 = LabelingAlgorithm(Ĝ j−1)

7: Ĝ j = DirectingAlgorithm(Ĝℓ
j−1)

8: until Ĝ j is equal toĜ j−1

9: returnĜ = Ĝ j

SinceG has a finite number of lines, the procedure will return a result in finitely many steps.
An example of the application of the deflagging algorithm is given in Figure 8. Note that, in this
example,Ĝ is already the largest deflagged graph from Figure 4; however, this is not true in general.

x

x x

x

x

x

x

xx

G = Ĝ0 Ĝℓ
0 Ĝ1 Ĝℓ

1 Ĝ2 Ĝℓ
2 Ĝ = Ĝ3

Figure 8: An example of the application of the deflagging procedure, where G is the top left graph
in Figure 4. Note that the first application of the labeling algorithm, to obtainGℓ

0 from
Gℓ, is detailed in Figure 7.

We are to show that̂G is a deflagged graph, that is,Ĝ in H ↓ whereH ↓ is the class of deflagged
graphs in the respective AMP equivalence class. It follows from Algorithm 3 thatĜ is such that the

1062

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

directing algorithm does not direct any line if applied to the labeled version ofĜ. This means, every
line in Ĝℓ is either of the type−•−−• or of the type−x−−x .

Proposition 20 Let G be a CG such that there is no line of asymmetric form−x−−• in its labeled
version Gℓ. Then, every line a−−−b in G such that a−x−−x b in Gℓ is a line in every CG F which is
triplex equivalent to G.

The proof is again postponed to the Appendix. Proposition 20 is not valid if the assumption on
G is omitted. A counterexample is given in Figure 8 whereG = Ĝ0 andF = Ĝ. A consequence of
Proposition 20 is that every flag in̂G is an essential flag.

Corollary 21 Given a CG G, the grapĥG = DeflaggingProcedure(G) is a deflagged graph,
formally Ĝ in H ↓.

Proof By Theorem 19,Ĝ belongs to the same AMP equivalence classH asG. Owing to Propo-
sition 8, we need to show that ifa−→ b−−−d is a flag inĜ then it is an essential flag. By the
blocking rule (a)a−→ b−−−d in Ĝ impliesa−→ b−−−x d in Ĝℓ. Since there are no lines of the
form −•−−x in Ĝℓ, it necessitatesa−→ b−x−−x d in Ĝℓ. It follows from Proposition 20 thatb−−−d
in H for everyH ∈H. As a−→ b−−−d has to correspond to a triplex inH, one can conclude that
a−→ b−−−d in H.

Note that the arguments in the proof above actually imply that a simple sufficient condition for
a CG to be deflagged is that its labelled version has no line of asymmetric form.

7. Conclusions

This paper is devoted to the problem of choosing a graphical representative of the statistical model
ascribed to a CG under AMP interpretation. As a matter of fact, any CG from the respective AMP
Markov equivalence class provides a graphical representative of the corresponding model. However,
a representative only makes sense if it complies with some properties that uniquely identify it within
each class. Furthermore, in the framework of structural learning, the usefulness of a graphical
representative is related to the availability of procedures which can be practically dealt with. That
means, for instance, that an implementable construction procedure to obtain the representative (on
the basis of any other graph in the Markov equivalence class) should beat our disposal.

Nevertheless, from the point of view of interpretation, a representativeshould be chosen on the
basis of the information carried with respect to the corresponding statisticalmodel. Hereafter, we
address the issue of the information contained in the largest deflagged graph, which is the represen-
tative for an AMP chain graph model we have proposed.

Andersson et al. (2001, Theorem 4) showed that, for a CGH, the AMP and the LWF Markov
properties coincide iffH has no flags. Thus, if there exists a CG without flags inH then formal
distinction between the two Markov properties is not necessary. In this case, all the results derived
in the LWF case can be applied. For instance, the useful factorization of conditional densities into
‘potentials’ given by Frydenberg (1990, Theorem 4.1(iii)) can be applied in the AMP case only
with respect to CGs without flags. Clearly, there is a strong connection between the set of CGs
without flags and the setH ↓ of deflagged graphs. More specifically,H has a CG without flags iff

1063

ROVERATO AND STUDENÝ

there are no essential flags inH. In this case, the class of deflagged graphsH ↓ is just the class of
CGs without flags inH. Conversely, if there exists some essential flag inH ↓ then one can conclude
that there is no CG inH for which the two Markov properties coincide. Because deflagged graphs
only contain essential flags, they eliminate the ambiguity resulting from the non-unique graphical
representation of triplexes, and allow an immediate comparison with the LWF case.

The above reasons justify our restriction to the class of deflagged graphs. Now we justify the
choice of the largest deflagged graph inH ↓. If H ↓ contains no flags thenH↓ is the largest CG
without flags inH. Thus, if H contains an undirected graph then the largest deflagged graphH↓

coincides with that undirected graph. Analogously, ifH contains an acyclic directed graphD then
H↓ coincides with the essential graphD∗ for D (Andersson et al., 1997; Studený, 2004; Roverato,
2005). We remark that the AMP essential graphH∗ proposed by Andersson et al. (2001) is a de-
flagged graph (see Andersson and Perlman, 2006, Lemma 3.2(a)) so that H∗ ≤H↓. Nevertheless, in
general, the largest deflagged graphH↓ is different from the AMP essential graphH∗: for instance,
if H contains an undirected graph thenH∗ may even have some arrows (see Andersson et al., 2001,
Figure 14).

Another issue related to the problem of representative choice is the topic ofcausal discovery in
CGs (see Section 11.2 of Lauritzen, 2001). This is a controversial topic (see Section 3 of Dawid,
2002, for more discussion). The disputable question is whether one can identify some causal rela-
tionships between variables on the basis of data. Nevertheless, what we think that what is generally
accepted in the field of causal discovery is the following proposition:

If data are “generated” from a distribution which is “faithful” with respectto a CG and
if an arrowa−→ b is not invariant across the respective Markov equivalence class, then
onecannotreveal possible causal relationship froma to b on basis of data.

In short, one cannot make causal discovery betweena andb if there is anundirectededge betweena
andb in at least one of the chain graphs from the Markov equivalence class,or if there are two chain
graphs such thata−→ b in the one of them first andb−→ a in the latter one. On the other hand, if
an arrowa−→ b is invariant across the respective Markov equivalence class then causal discovery
could be possible. Consequently, from the point of view of causal discoveryin chain graphs, a
good representative of a Markov equivalence class should indicate that the corresponding edge is
not an invariant arrow by the presence of a line. Standard representatives in the LWF case, such as
the largest CGs (Studený, 1997), the essential graphs for acyclic directed graphs (Andersson et al.,
1997), and theB -essential graphs (Roverato and La Rocca, 2006), are fully informative from this
point of view because they have the largest number of lines and, furthermore, they contain an arrow
if and only if it is invariant. As the examples in Figures 2 and 4 show, a CG with thisproperty may
not exist in an AMP equivalence class and therefore both the AMP essential graph and the largest
deflagged graph may contain some arrows that are not invariant. However, the largest deflagged
graph is more informative than the AMP essential graph because it is a larger chain graph and,
therefore, it has more lines.

We have not mentioned this explicitly but, in this paper, we have actually provided an algo-
rithmic characterization of the largest deflagged graphs. More specifically, a CG G is the largest
deflagged graph iff it is again obtained by the consecutive application of two procedures: the de-
flagging procedure is applied toG and the component merging procedure to its resultĜ.

1064

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

The results of the paper also lead to some natural open problems. For instance, we would like
to know whether the converse of Proposition 20 is valid. More specifically,does the deflagging
procedure identify all essential lines inH as double-blocked lines? Further conjecture is that the
AMP essential graph is obtained if the deflagging procedure is applied to thelargest deflagged
graph. Another issue is as follows. We know that both LWF and AMP Markov equivalence are
associated to Markov properties for CGs. Is there any Markov property for CGs which gives rise to
the strong equivalence of CGs?

Acknowledgements

We are indebted to Nanny Wermuth who invited both of us to a workshop held in Wiesbaden in
September 2002. We started there a discussion, which resulted in this paper. We also thank Michael
Perlman for useful comments during the Barcelona meeting in 2004 and the anonymous referees
for useful suggestions. Financial support to the fist author has beenprovided by Miur, PRIN03 and
PRIN05 n. 134079. The research of the second author has been supported by GǍCR n. 201/04/0393.

Appendix A. Proofs

Proof of Proposition 12

Throughout the proof we assume thatG andH are strongly equivalent CGs. LetG∪H andG∨H
denote the graphs introduced in Lemma 11. We start with an auxiliary observation.

Fact 1 Let d0−→ d1 be a cyclic arrow in G∪H andρ : d0,d1, . . . ,dm≡ d0, m≥ 3 a semi-directed
cycle in G∪H containing it which cannot be shortened (to a semi-directed cycle in G∪H containing
d0−→ d1 of the length l< m). Then d2−→ d1 in one of the graphs G and H while d0−→ d2 in the
other graph.

Proof SinceG is a CG, there exist 2≤ j ≤mwith d j−1←− d j in G and the same conclusion holds
for H. Let us put

s= min{2≤ j ≤m; d j−1←− d j either inG or in H }.

Let us, without loss of generality, assume thatds−1←− ds in G. Thend0, . . . ,ds−1 is a descending
pathG. Moreover, observe thatd1, . . . ,ds is necessarily a descending path in the other graph, namely
in H. This impliess< m for otherwiseρ is a semi-directed cycle in a CGH.

The next step is to verify that[ds−2,ds] is an edge inG∪H. This is because otherwiseds−→
ds−1←− ds−2 is an immorality inG or ds−→ ds−1 −−−ds−2 is a flag inG, which, by strong equiv-
alence ofG andH, implies thatds −→ ds−1 in H and this contradicts the assumption thatρ is a
semi-directed cycle inG∪H.

Since H is a CG andds−2,ds−1,ds a descending path inH, one has eitherds←− ds−2 or
ds−−−ds−2 in H, and, therefore, inG∪H.

Thus, necessarilys= 2; otherwiseρ could be shortened inG∪H by the edge[ds−2,ds] to get
a shorter semi-directed cycle containingd0 −→ d1 which would contradict its definition. Thus,
d2 −→ d1 in G. The facts thatH is a CG,[d0,d2] = [ds−2,ds] is an edge inH, d0 −→ d1 in H and
eitherd1−→ d2 or d1 −−−d2 in H imply thatd0−→ d2 in H.

1065

ROVERATO AND STUDENÝ

Fact 2 There is no cyclic arrow a−→ c in G∪H which belongs either to an immorality a−→ c←−
b or to a flag a−→ c−−−b in G∪H.

Proof For a contradiction, suppose that at least one such cyclic arrow exists.Choose a semi-directed
cycle ρ : d0,d1, . . . ,dm≡ d0, m≥ 3 in G∪H of shortest possible length among all semi-directed
cycles containing an arrow of this kind. Assume thatd0 = a−→ c = d1 is that arrow inG∪H and,
using Fact 1, observe thatd2−→ d1 in one of the graph, say inG, while d0−→ d2 in the other graph
H.

Consider the induced subgraph over{a,c,b}mentioned in the formulation of Fact 2. As[a,b] is
not an edge inG∪H whereas[d0,d2] = [a,d2] is an edge inH, one hasd2 6= b. Observe thatc←− b
or c−−−b in G. Indeed, otherwisec−→ b in G implies¬(c−→ b in H) by the assumption of Fact
2, andH has either an immoralitya−→ c←− b or a flaga−→ c−−−b. By strong equivalence of
G andH, G has the same induced subgraph for{a,c,b}, which contradicts the factc−→ b in G. By
interchange ofG andH derive thatc←− b or c−−−b in H as well.

This allows one to see that[b,d2] is an edge inG∪H as otherwise the induced subgraph ofG
for {d2,d1 = c,b} havingd2−→ d1 coincides, by strong equivalence ofG andH, with the subgraph
of H and the conclusiond2 −→ d1 in H contradicts the assumption thatρ is a semi-directed cycle
in G∪H. Sinceb,c,d2 is a descending path inH one has eitherb−→ d2 or b−−−d2 in H.

Thus, H has either an immoralityd0 −→ d2←− b or a flagd0 −→ d2 −−−b. SinceG and
H are strongly equivalent,G has the same induced subgraph for{d0,d2,b}. Of course, the same
conclusion holds forG∪H andd0−→ d2 is an arrow inG∪H belonging to a triplex.

Hence, it is impossible thatm> 3 as otherwiseρ can be shortened tod0,d2, . . . ,dm = d0 by a
cyclic arrowd0 −→ d2 of the considered type which contradicts its definition. However, ifm= 3
then the factd3 ≡ d0 −→ d2 in G∪H contradicts the assumption thatρ is a semi-directed cycle in
G∪H.

Observe easily by contradiction that ifG andH are strongly equivalent then

[d] if a−→ c both inG and inH then an induced subgrapha−→ c−→ b occurs inH iff it occurs
in G.

This observation is used in the proof of the following fact and also later.

Fact 3 There is no cyclic arrow c−→ b in G∪H which belongs to an induced subgraph a−→
c−→ b in G∪H.

Proof For a contradiction, suppose that such an arrow exists. Choose a semi-directed cycle
ρ : d0,d1, . . . ,dm≡ d0, m≥ 3 in G∪H of shortest possible length among all semi-directed cycles
containing an arrow of this kind. More specifically, assume thatd0 = c−→ b = d1 in G∪H. By
Fact 1 observe that one can assumed2−→ d1 in G andd0−→ d2 in H. One has eitherd2←− d1 or
d2 −−−d1 in H for otherwised2−→ d1 in G∪H contradicts the assumption thatρ is a semi-directed
cycle. Asa−→ c in H whereasd2←− d0 = c in H, one hasa 6= d2.

Observe, by contradiction, that[a,d2] is not an edge inG∪H. Indeed, otherwisea−→ c =
d0−→ d2 in a CGH impliesa−→ d2 in H andH has either an immoralitya−→ d2←− d1 or a flag
a−→ d2 −−−d1. Thus,G has the same subgraph for{a,d2,d1} which contradicts the factd2−→ d1

in G.

1066

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

Thus,H has an induced subgrapha−→ c= d0−→ d2, which implies, by the condition [d] men-
tioned above Fact 3, thatG has the same induced subgraph. In particular,G∪H has this induced
subgraph as well. Thus, necessarilym≤ 3 for otherwiseρ can be shortened inG∪H by d0−→ d2

to get a shorter cycle of the required type. Ifm= 3 thend3 = d0 −→ d2 in G∪H implies a contra-
dictory conclusion thatρ is not a semi-directed cycle inG∪H.

Now, the proof of Proposition 12 follows directly from Lemma 11 and Facts 2 and 3. SinceG
andH are strongly equivalent an immorality or a flag inG occurs also inH and, therefore, inG∪H.
By Fact 2 it is preserved inG∨H. Conversely, ifa−→ c←− b is an immorality inG∨H then it is
also inG. If a−→ c−−−b is a flag inG∨H thena−→ c both inG and inH. The optionc←− b
in one of the graphsG andH is excluded because then the graph has an immoralitya−→ c←− b,
which is saved inG∨H. If c−→ b in both graphs thenG∪H has an induced subgrapha−→ c−→ b.
By Fact 3 the arrowc−→ b remains inG∨H which contradicts the assumption. Thus,c−−−b either
in G or in H and this implies, by their strong equivalence, that the flaga−→ c−−−b is in G.

Proof of Proposition 15

This proposition is analogous to the result on LWF equivalence and feasible merging given in The-
orem 8 of Roverato (2005). It says this:

Given a CGGand a meta-arrowU ⇉ L in G, the conditions (i) and (ii) from Definition 3
form together a necessary and sufficient condition for the graphG′ obtained by merging
U andL to be a CG which is complex equivalent toG.

In fact, we utilize this result in our proof of Proposition 15. Recall that the condition [i] from
Definition 14 is identical to the condition (i) from Definition 3 and the condition [ii] from Definition
14 is stronger than (ii) from Definition 3.

Proof First, we are going to verify the necessity of the conditions [i]-[iii]. Since strong equivalence
of CGs implies their complex equivalence the necessity of conditions (i)-(ii) follows from Theorem
8 in Roverato (2005). The conditions [i] and (i) are identical, but [ii] is stronger than (ii). Indeed,
[ii] requires equality of sets paG(L) \U and paG(b) for every b ∈ K whereas (ii) only requires
paG(L)\U ⊆ paG(b).

Thus, to verify [ii] it suffices to show

• ∀b∈ K paG(b)⊆ paG(L)\U .

Suppose for contradiction thatb∈ K anda∈ paG(b) exists witha 6∈ paG(L)\U . Thend ∈ L exists
such thatb−→ d in G. Of course,a 6= d and, sinceG is a CG, the optionsa←− d anda−−−d in G
cannot occur. The optiona−→ d is excluded by the assumptiona 6∈ paG(L)\U . If [a,d] is not an
edge inG thenG has an induced subgrapha−→ b−→ d while G′ has a flaga−→ b−−−d which
contradicts the assumption that they are strongly equivalent.

The next step is to verify the necessity of the condition

[ĩii] for every d ∈ L one has paG(L)⊆ paG(d),

which is an equivalent formulation of [iii]. Let us fixd∈ L. Givenb∈ paG(L), to show thatb−→ d
in G two cases can be distinguished.

1067

ROVERATO AND STUDENÝ

• b∈U , that is,b∈ K.
Then there existsg ∈ L with b−→ g in G. If g 6= d then one can consider a pathb−→
g−−− . . . −−−d in G and its shorteningρ which cannot be shortened any more. If[b,d] is not
an edge inG thenG has a flagb−→ e−−− f composed of nodes ofρ. This contradicts the
assumption thatG andG′ are strongly equivalent since one hasb−−−e in G′ by definition of
merging. Thus,[b,d] is an edge andb−→ d in G sinceG is a CG.

• b∈ paG(L)\U .
Observe thata∈ K exists by Definition 1 andb−→ a follows from (ii). Moreover, one has
a−→ d in G by the previous case. If[b,d] is not an edge thenG has an induced subgraph
b−→ a−→ d while G′ has a flagb−→ a−−−d which contradicts the assumption that they
are strongly equivalent. Thus,[b,d] is an edge, namelyb−→ d in G becauseG is a CG.

This concludes the proof of the necessity of conditions [i]-[iii].

Second, we prove the sufficiency of those conditions. Since they imply the conditions (i)-(ii)
from Definition 3, it follows from Theorem 8 in Roverato (2005) thatG′ is a CG which is complex
equivalent toG but strictly larger. In particular,G andG′ have the same immoralities and, to show
that they are strongly equivalent, it suffices to verify that they have identical flags.

If a−→ b−−−d is a flag inG then we are to show that it is a flag inG′. The only option which
avoids the desired conclusion isa∈U andb∈ L. However, thend ∈ L and by [iii] observea−→ d
in G which contradicts the assumption.

If a−→ b−−−d is a flag inG′ then the factG′ ≥ G impliesa−→ b in G and the only option
which avoids the desired conclusion thata−→ b−−−d is a flag inG is that [b,d] was modified.
There are basically two cases.

• If b∈ L andd ∈U thena−→ b←− d is an immorality inG and, because of complex equiv-
alence of graphs, also inG′. This contradicts the assumption.

• If b ∈ U andd ∈ L then observeb ∈ K and by [ii] a ∈ paG(b) ⊆ paG(L) \U . By [iii] get
a∈ paG(d) which contradicts the assumption.

Thus, the sufficiency proof is finished.

Proof of Proposition 16

Basic observation which is needed is as follows.

Fact 4 Let E,F,G be CGs over N with the same underlying graph such that E≥ F ≥ G and the
following condition holds for any c∈ N:

[e] if there exists a∈ N with a−−−c in E and a−→ c in F then for every b∈ N with c−−−b in
F one has c−−−b in G.

If E and G are strongly equivalent then F is strongly equivalent to them as well.

1068

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

Note that the conclusion of Fact 4 need not be valid if the condition [e] is omitted: consider
N = {a,b,c}, E an undirected graph witha−−−c−−−b, F a CG witha−→ c−−−b andG a directed
graph witha−→ c−→ b.

Proof We can show thatF is strongly equivalent toE. If a−→ c←− b is an immorality inE then
E≥ F implies that it is an immorality inF . Conversely, ifa−→ c←− b is an immorality inF then
F ≥G implies that it is an immorality inG and, therefore, inE.

If a−→ c−−−b is a flag inE, then it is a flag inG which impliesc−−−b in F by F ≥G. Since
a−→ c in F by E ≥ F the graphF has a flaga−→ c−−−b.

If a−→ c−−−b is a flag inF , thenF ≥G impliesa−→ c in G. We first verifya−→ c in E by
excluding two other variants of the edge[a,e] in E. SinceE ≥ F the casea←− c in E is excluded.
The casea−−−c in E is also excluded, this time owing to the condition [e] from the assumption of
Fact 4. Indeed, [e] saysc−−−b in G, which implies thata−→ c−−−b is a flag inG and, therefore,
in E, which contradicts the assumptiona−−−c in E. Thus,a−→ c in E and the aim is to show
c−−−b in G. It can be shown by contradiction.

• If c←− b in G thena−→ c←− b is an immorality inG and, therefore, inE, which implies,
by E ≥ F , a contradictory conclusionc←− b in F .

• If c−→ b in G thena−→ c−→ b is an induced subgraph inG. By the condition [d] mentioned
above Fact 3 applied toG andE, it is also an induced subgraph inE. The assumptionE ≥ F
then implies a contradictory conclusionc−→ b in F .

Hence,a−→ c−−−b is a flag inG, and therefore inE.

The main step is the following ‘sandwich lemma’.

Fact 5 Let G,E be strongly equivalent CGs, E≥ G, E 6= G. Then there exists a CG F which is
strongly equivalent to G and E, such that E≥ F ≥G and E is obtained from F by legal merging of
components.

Note that the idea of the proof of this proposition is analogous to the proof ofTheorem 7 in
Roverato (2005).

Proof SinceE ≥ G, every component inE is the union of components inG and the assumption
E 6= G implies that there exists a componentC in E containing at least two components inG. As
GC is a CG one can find a terminal componentT in it. By the constructionC\T 6= /0 and there is an
arrow fromC\T to T in G. Let us construct a hybrid graphF from E by replacement of all lines
betweenC\T andT in E by arrows fromC\T to T. Observe the following facts.

{a} F is a CG.
Assume for contradiction thatF has a semi-directed cycleρ. SinceFN\C = EN\C is a CG and
FC is a CG by construction,ρ has an edge betweenN\C andC, namely an arrow. This arrow
is also an arrow inE (with the same direction); the other arrows ofρ either are kept inE or
become lines, the lines ofρ retain inE. Therefore,ρ has to be a semi-directed cycle inE,
which contradicts the assumption.

1069

ROVERATO AND STUDENÝ

{b} E ≥ F ≥G andF 6= E.
The factE ≥ F is evident. To seeF ≥ G observe that ifa−→ b in F then eithera−→ b in
E in which caseE ≥G impliesa−→ b in G, or a−−−b in E. In the latter casea∈C\T and
b∈ T which also implies, by the definition ofT, thata−→ b in G.

{c} C\T is a connected set inF and, therefore, it is a component inF .
Indeed, suppose for contradiction that distincta,b∈C\T exist which are not connected by
an undirected path inFC\T = EC\T . SinceC is a connected set inE, one can construct a path
ã−→ c1 −−− . . . −−−cm←− b̃, m≥ 1 in F with somec1, . . . ,cm ∈ T and ã, b̃∈C\T such
that [ã, b̃] is not an edge inF . This path has the same form inG and can be shortened to a
complex inG. This complex is not inE which contradicts the assumption thatE andG are
strongly equivalent since strong equivalence implies complex equivalence.

{d} F is strongly equivalent toG andE.
This follows from Fact 4 owing to{a} and{b}. The condition [e] from Fact 4 holds because
of the construction ofF : if a−−−c in E anda−→ c in F thenc∈ T andc−−−b in F implies
b∈ T for which reasonc−−−b in G.

Now, the conclusion thatE is made ofF by legal merging of components is easy to see. The condi-
tion {c} implies that bothC\T andT are components inF andE is obtained fromF by merging
of the upper componentU ≡C\T and the lower componentL ≡ T. SinceE andF are strongly
equivalent is follows from Proposition 15 that the merging is legal.

Now, the proof of Proposition 16 is easy. The required sequenceG= F1, . . . ,Fm = H, m≥ 1 can
be constructed backwards by consecutive application of Fact 5 toG andE≡ Fi to getFi−1 = F until
Fi−1 is the graphG. Of course, one starts withFm = H, wherem−1 is the difference between the
numbers of components ofG andH.

Proof of Proposition 18

Assume for contradiction that two different orderings of applications of blocking rules leads to two
different labeled graphsGℓ(1) and Gℓ(2). Since they only differ in their labels, one can assume
without loss of generality thatGℓ(1) has at least one blocked label that is ‘free’ inGℓ(2). Let us fix
a sequence of iterationsGℓ(1)

0 ,Gℓ(1)
1 , . . . ,Gℓ(1)

n = Gℓ(1), n≥ 2 leading toGℓ(1). Let Gℓ(1)
i be the first

graph in this sequence which has a blocked label that is ‘free’ inGℓ(2), saya−x−− d ∈ Gℓ(1)
i and

a−•−− d ∈Gℓ(2). In particular,b−x−− c in Gℓ(1)
j for j < i impliesb−x−− c in Gℓ(2).

We now show thata−x−− d ∈ Gℓ(1)
i and a−•−− d in Gℓ(2) implies thatGℓ(2) has a forbidden

configuration, which contradicts the assumption. There are three possiblecases.

1. If a−x−− d in Gℓ(1)
i is blocked ata by the rule (a) then there exists a vertexb such thatb−→

d −−−a is a flag inG (cf. Algorithm 1). In particular,b−→ d −−−• a in Gℓ(2) is a forbidden
configuration inGℓ(2).

2. If a−x−− d in Gℓ(1)
i is blocked ata by (b) then there exists a vertexb with b−−−a−−−d in G,

while [b,d] is not an edge inG. Thenb−−−a−•−− d is a forbidden configuration inGℓ(2).

1070

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

3. If a−x−− d in Gℓ(1)
i is blocked ata by the rule (c) then there exists a vertexb such that the

following forbidden configuration

x

x

a

b d

appears inGℓ(1)
i−1 . As mentioned above, blocking labels inGℓ(1)

j for j < i also occur inGℓ(2).

Thus, that forbidden configuration is also present inGℓ(2).

Proof of Theorem 19

Throughout the proof we assume thatG is a CG,Gℓ the labeled version ofG obtained fromG by
the labeling algorithm andG′ the hybrid graph obtained fromGℓ by the directing algorithm. The
overall aim is to show thatG′ is a CG triplex equivalent toG. To improve the readability of the
proof, we split it into more elementary facts. The first goal is to show thatG′ has no semi-directed
cycle of the length 3. This is the main step to show that it has no semi-directed cycles at all, that is,
it is a CG. Finally, we prove thatG′ is triplex equivalent toG.

We start with two auxiliary facts.

Fact 6 If there is a semi-directed cycle in G′ then it is undirected in G.

Proof Assume for contradiction thatρ : d0, . . . ,dn−1,dn = d0, n≥ 3 is a semi-directed cycle inG′

which has an arrowd0 −→ d1 in G. SinceG is a CG, there exists an arrowdi−1←− di , 2≤ i ≤ n
in G. Basic observation is that arrows inG are kept inG′ with the same direction. In particular,
d0−→ d1 anddi−1←− di in G′, which contradicts the assumption thatρ is a semi-directed cycle in
G′.

Fact 7 If ρ : a,b,d,a is a semi-directed cycle of the length 3 in G′ with a−→ b in G′ then it corre-
sponds to the following configuration in Gℓ:

x

a

b d

(5)

Proof By Fact 6,ρ consists of lines inG. As a−→ b in G′, it follows from Algorithm 2 thatρ
corresponds to the following configuration

x

a

b d

in Gℓ. We only need to show thatρ cannot occur in either of the following two configurations inGℓ:

1071

ROVERATO AND STUDENÝ

x

x

a

b d

or
x

x

a

b d

(A) (B)

Consider the case (A) and observe thata−−−d also has to have a blocked ending atd in Gℓ.
Indeed, otherwise by Algorithm 2a−→ d in G′ andρ is not a semi-directed cycle inG′, which
contradicts the assumption. Hence, we have

x
x

x

a

b d

in Gℓ. Now, it follows from Algorithm 1 thatb−−−d has a blocked ending atd. Indeed, otherwise
a forbidden configurationb−−−x a−−−x d −•−− b of type (c) exists inGℓ. Thus, the situation is as
follows:

x

x
x

x

a

b d

Again, b−−−d has a blocked ending atb for otherwise, by Algorithm 2,b←− d in G′ contradicts
the assumption thatρ is a semi-directed cycle. Thus,Gℓ

{a,b,d} looks like

xx

x
x

x

a

b d

which is, however, also impossible becausea−−−x d −−−x b−•−− a is a forbidden configuration of
type (c) inGℓ. Hence, the configuration (A) cannot occur. Using the same kind of reasoning, it is
also easy to check that the configuration (B) inGℓ is impossible. This is left to the reader.

Fact 8 G′ has no semi-directed cycle of the length 3.

Proof Suppose for contradiction thatG′ has a semi-directed cycle of the length 3. Thus, the set
A ′ of arrows inG′ belonging to (at least one of) those cycles is assumed to be non-empty. By Fact
6, every arrowe−→ f in A ′ corresponds to a linee−−− f in G, and, therefore, by the directing
algorithm, to a labeled linee−x−−• f in Gℓ. Let us fix a sequenceGℓ

0, . . . ,G
ℓ
n, n≥ 1 of labeled CGs

generated by the labeling algorithm. Clearly, everye−→ f in A ′ is assigned the unique 1≤ i ≤ n
such thate−x−− f in Gℓ

i ande−•−− f in Gℓ
j for j < i. Let a−→ b denote that arrow inA ′ which has

assigned the least suchi. In particular, ife−x−− f in Gℓ
i−1 thene−→ f does not belong toA ′.

Let us fix a semi-directed cycleρ : a,b,d,a of the length 3 inG′ containinga−→ b. By Fact
7, the subset of vertices{a,b,d} corresponds to the configuration (5) inGℓ and, because of the

1072

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

construction ofGℓ, also inGℓ
i . Now, we show that the occurrence of (5) inGℓ

i leads to contradiction
because the linea−•−−• b in the previous iterationGℓ

i−1 cannot be blocked ata by any of the blocking
rules from Algorithm 1.

1. If b−•−−x a is blocked ata on basis of the rule (a) then there exists a vertexg∈N, not adjacent
to a, such thatg−→ b in G. If we add this arrow to the configuration (5) inGℓ above then we
obtain (possibly omitting an edge betweeng andd)

x

a

b d

g

Nodesg andd are necessarily adjacent for otherwiseGℓ has a forbidden configurationg−→
b−−−• d of the type (a). Actually, one hasg−→ d in G as otherwiseG has a semi-directed
cycleg,b,d,g. However, theng−→ d −−−• a is a forbidden configuration of type (a) inGℓ,
which is impossible.

2. If a−x−−• b is blocked ata on basis of the rule (b) then there exists a vertexg∈N, not adjacent
to b, such thatg−−−a in G. If we add this line to the configuration (5) inGℓ and obtain
(possibly omitting an edge betweeng andd)

x

a

b d

g

Nodesg andd have to be adjacent for otherwise a forbidden configurationg−−−a−•−− d of
the type (b) exists inGℓ. As G is a CG, one hasg−−−d in G. However, theng−−−d −•−− b
is a forbidden configuration of type (b) inGℓ, which is impossible.

3. If a−x−−• b is blocked ata on basis of the rule (c) then there exists a vertexg such that
b−−−x g−−−x a−•−− b in Gℓ

i−1. As g−−−x a and d −−−• a in Gℓ one hasg 6= d. Thus, the
following configuration occurs inGℓ, where the possible edge betweeng andd is omitted:

x

x
x

a

b d

g

The nodesg andd have to be adjacent for otherwiseg−−−a−•−− d would be a forbidden
configuration of type (b) inGℓ. SinceG is a CG, one hasg−−−d in G. The ending of
g−−−d at g in Gℓ has to be free as otherwised −−−x g−−−x a−•−− d would be a forbidden
configuration of type (c) inGℓ. Analogously, its ending atd in Gℓ is also free for otherwise
b−−−x g−−−x d −•−− b would be a forbidden configuration of type (c) inGℓ. Thus,g−−−d has
both endings free inGℓ and

1073

ROVERATO AND STUDENÝ

x
x

x

a

b d

g

To show thata−−−g is blocked atg in Gℓ recall thata−x−− g in Gℓ
i−1. If a−x−−• g in Gℓ

then Algorithm 2 implies thata,g,d,a is a semi-directed cycle inG′ (note thatd −−−• a in Gℓ

implies that eitherd −→ a or d −−−a in G′). This, however, means thata−→ g belongs to
A ′, which contradicts the choice ofa−→ b: as mentioned above, that choice ensures that if
e−x−− f in Gℓ

i−1 thene−→ f does not belong toA ′.

The conclusion thatg−−−b is blocked atb in Gℓ can be derived analogously. Ifg−x−−• b in Gℓ

then Algorithm 2 implies thatg,b,d,g is a semi-directed cycle inG′. Theng−→ b belongs
to A ′ which is not possible because of the factg−x−− b in Gℓ

i−1.

Hence, one has bothg−x−−x b andg−x−−x a in Gℓ, and the situation is as follows:

x
x x

x

x

a

b d

g

(6)

However, the configuration (6) has a subconfigurationa−−−x g−−−x b−•−− a which is a for-
bidden configuration of type (c) inGℓ. This contradicts the assumptions.

This completes the proof.

Fact 9 The graph G′ has no semi-directed cycle.

Proof We show that ifG′ has a semi-directed cycle of the lengthk+ 1, wherek≥ 3 then it has a
semi-directed cycle of the lengthl , 3≤ l ≤ k. This, together with Fact 8, implies what is desired.

Assume thatρ : a,b,g1, . . . ,gk−1,a, k≥ 3 is a semi-directed cycle inG′ with a−→ b in G′. By
Fact 6,a−−−b in G and Algorithm 2 implies thatρ corresponds to the following configuration

x

a

b g1

gk−1

in Gℓ, where the dotted connection stands for an undirected path and some edges are possibly
omitted. It follows from Algorithm 1 thata andg1 are adjacent inG for otherwiseg1 −−−b−•−− a
is a forbidden configuration of the type (b) inGℓ. As G is a CG,a−−−g1 in G and the situation is
as follows:

x

a

b g1

gk−1

1074

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

If either a←− g1 or a−−−g1 in G′ thena,b,g1,a is a semi-directed cycle of the length 3 inG′. On
the other hand, ifa−→ g1 in G′ thena,g1,g2, . . . ,gk−1,a is a semi-directed cycle of the lengthk in
G′.

Thus, we have verified thatG′ is a CG. The last step is to show that it is in the AMP equivalence
class containingG.

Fact 10 G′ is triplex equivalent to G.

Proof We already know thatG and G′ are CGs with the same underlying graph. Moreover, it
follows from the construction ofG′ thatG≥G′.

In particular, every immorality inG remains inG′. Thus, to verify that triplexes inG are also
in G′ it is enough to show that every flaga−→ b−−−d in G remains a triplex inG′. As a−→ b in
G′, the only option of canceling the triplex〈{a,d},b〉 is if b−→ d in G′. Then Algorithm 2 implies
a−→ b−x−−• d in Gℓ, which is, however, a forbidden configuration of type (a) inGℓ (cf. Algorithm
1).

Now, we show that triplexes inG′ are also inG. Realize thatG≥ G′ implies that an arrow
in G′ cannot be an arrow with the opposite direction inG. Thus, if a−→ b−−−d is a flag inG′

then, by (2), eithera−→ b−−−d or a−−−b−−−d in G. By Algorithm 2, the latter case means
a−x−−• b−−−d in Gℓ, which is a forbidden configuration of type (b). Analogously, ifa−→ b←− d
is an immorality inG′ that does not correspond to a triplex inG thena−−−b−−−d in G. Hence,
a−x−−• b−•−−x d in Gℓ, which is also a forbidden configuration of type (b).

Proof of Proposition 20

Recall thatG is a CG such that there is no line of the form−x−−• in its labeled versionGℓ. Let F be
a CG which is triplex equivalent toG. We are to show thata−−−b in F whenevera−x−−x b in Gℓ.
Suppose for contradiction that there exists (at least one) line of the forme−x−−x f in Gℓ such that
e−→ f in F . Thus, the setAF of arrowse−→ f in F of the forme−x−−x f in Gℓ is assumed to be
non-empty.

Let us fix a chain of componentsC1, . . . ,Cm, m≥ 1 in F . Let k be the highest 1≤ k≤m such
that there exists an arrowe−→ f from AF with f ∈Ck. Denote byA ′F the subset ofAF consisting
of arrowse−→ f with f ∈Ck. Clearly,A ′F 6= /0.

The next step is to fix a sequenceGℓ
0, . . .G

ℓ
n, n≥ 1 of labeled CGs generated by Algorithm 1.

Everye−→ f from A ′F is assigned unique 1≤ i ≤ n such thate−−−x f in Gℓ
i ande−−−• f in Gℓ

j for
j < i. Let a−→ b denote the arrow fromA ′F which has assigned the least suchi. Observe that this
choice ofa−→ b ensures that the following two conditions are valid.

(I) If b−→ d in F for some noded thenb−→ d does not belong toAF .

This is becauseb∈Ck. The fact thatC1, . . . ,Cm is a chain forF impliesd ∈Cl with l > k. However,
k was chosen so that no arrowe−→ f from AF with f ∈Cl for l > k exists.

(II) Whenevere−−−x f in Gℓ
i−1 thenA ′F does not containe−→ f .

1075

ROVERATO AND STUDENÝ

This follows from the choice ofi: a necessary condition fore−→ f to belong toA ′F is e−−−x f in
Gℓ

j only for j ≥ i, that is,e−−−• f in Gℓ
i−1.

Now, we are going to derive a contradictory conclusion thata−x−−x b cannot be blocked atb by
any of the blocking rules from Algorithm 1.

1. If a−x−−x b is blocked atb on basis of the blocking rule (a) then there exists a vertexd such
thatd −→ a−−−b in G andb is not adjacent tod. Hence,d −→ a−−−b is a flag inG. As
G andF are triplex equivalent,F has a triplex〈{b,d},a〉, which, however, contradicts the
assumptiona−→ b in F .

2. If a−x−−x b is blocked atb on basis of the blocking rule (b) then there exists a vertexd such
thata−−−b−−−d in G anda is not adjacent tod. This impliesb−→ d in F for otherwise
the facta−→ b in F implies that〈{a,d},b〉 is a triplex inF which is not inG. Moreover,
a−−−b−−−d in G implies, by the blocking rule (b) from Algorithm 1, thata−−−x b−x−− d
in Gℓ. BecauseGℓ has no lines of the form−x−−• this meansa−x−−x b−x−−x d in Gℓ. Thus,
b−→ d belongs toAF , contradicting the condition (I) above.

3. If a−x−−x b is blocked atb on basis of the blocking rule (c) then there exists a vertexd such
thata−−−x d −−−x b−•−− a in Ĝℓ

i−1. Thus, we have
x

x

xa b

d

in Gℓ. Since there is no line of the type−x−−• in Gℓ, we have

x

x

x

x

x xa b

d

(7)

in Gℓ, whereas the corresponding subgraph inF is

a b

d

(8)

where the dashed connection means that the nodes are adjacent. However, the configurations
(7) and (8) cannot coexist because any possible type of the edge betweend andb in F leads
to a contradiction.

• If d−→ b in F then (7) and the factb∈Ck imply d−→ b is in A ′F . As d −−−x b in Gℓ
i−1

this contradicts the condition (II) above.

• If d −−−b in F then d ∈ Ck and a −→ d in F for otherwiseF has a semi-directed
cycle. Hence, by (7)a−→ d belongs toA ′F . As a−−−x d in Ĝℓ

i−1 it also contradicts the
condition (II) above.

• If b−→ d in F then (7) givesb−→ d in AF contradicting the condition (I) above.

This concludes the proof.

1076

A GRAPHICAL REPRESENTATION OFEQUIVALENCE CLASSES OFAMP CHAIN GRAPHS

References

S. A. Andersson, D. Madigan and M. D. Perlman. An alternative Markovproperty for chain graphs.
In Uncertainty in Artificial Intelligence: Proceedings of the Twelfth Conference(F. Jensen and E.
Horvitz eds.), pages 40–48, Morgan Kaufmann, San Francisco, 1996.

S. A. Andersson, D. Madigan and M. D. Perlman. A characterization of Markov equivalence classes
for acyclic digraphs.The Annals of Statistics, 25:505–541, 1997.

S. A. Andersson, D. Madigan and M. D. Perlman. Alternative Markov properties for chain graphs.
Scandinavian Journal of Statistics, 28:33–85, 2001.

S. A. Andersson and M. D. Perlman. Characterizing Markov equivalence classes for AMP chain
graph models.The Annals of Statistics, 34, 2006, forthcoming.

D. M. Chickering. Learning equivalence classes of Bayesian-network structure.Journal of Machine
Learning Research, 2:445–498, 2002.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spiegelhalter.Probabilistic Networks and
Expert Systems. Springer–Verlag, New York, 1999.

A. P. Dawid. Influence diagrams for causal modelling and inference.International Statistical Re-
view, 70:161–189, 2002.

M. Frydenberg. The chain graph Markov property.Scandinavian Journal of Statistics, 17:333–353,
1990.

S. L. Lauritzen and N. Wermuth. Mixed interaction models. Research Report R-84-8, Inst. Elec.
Sys., University of Aalborg, Denmark, 1984.

S. L. Lauritzen and N. Wermuth. Graphical models for association betweenvariables, some of which
are qualitative and some quantitative.The Annals of Statistics, 17:31–57, 1989.

S. L. Lauritzen. Causal inference from graphical models. InComplex Stochastic Systems, (O. E.
Barndorff-Nielsen, D. R. Cox and C. Klüppelberg eds.), pages 63–107, Chapman and Hall/CRC,
2001.

A. Roverato. A unified approach to the characterisation of equivalenceclasses of DAGs, chain
graphs with no flags and chain graphs.Scandinavian Journal of Statistics, 32:295–312, 2005.

A. Roverato and L. La Rocca. On block ordering of variables in graphical modeling.Scandinavian
Journal of Statistics, 33:65–81, 2006.

M. Studeńy. A recovery algorithm for chain graphs.International Journal of Approximate Reason-
ing, 17:265–293, 1997.

M. Studeńy, Characterization of essential graphs by means of an operation of legal component
merging.International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12:43–
62, 2004.

1077

ROVERATO AND STUDENÝ

M. Studeńy, A. Roverato and S.̌Sťeṕanov́a. Two operations of merging components in a chain
graph. Submitted. Available electronically at
http://staff.utia.cas.cz/studeny/aa23.html, 2006.

M. Volf and M. Studeńy. A graphical characterization of the largest chain graphs.International
Journal of Approximate Reasoning, 20:209–236, 1999.

1078

Journal of Machine Learning Research 7 (2006) 1079–1105 Submitted 2/05; Published 6/06

Action Elimination and Stopping Conditions for the
Multi-Armed Bandit and Reinforcement Learning Problems∗

Eyal Even-Dar EVENDAR@SEAS.UPENN.EDU

Department of Information and Computer Science
University of Pennsylvania
Philadelphia, PA 19104

Shie Mannor SHIE@ECE.MCGILL .CA

Department of Electrical & Computer Engineering
McGill University
H3A-2A7 Qúebec, Canada

Yishay Mansour MANSOUR@CS.TAU .AC.IL
School of Computer Science
Tel-Aviv University
Tel-Aviv, 69978, Israel

Editor: Sridhar Mahadevan

Abstract
We incorporate statistical confidence intervals in both themulti-armed bandit and the reinforcement
learning problems. In the bandit problem we show that givenn arms, it suffices to pull the arms a
total of O

(

(n/ε2) log(1/δ)
)

times to find anε-optimal arm with probability of at least 1−δ. This
bound matches the lower bound of Mannor and Tsitsiklis (2004) up to constants. We also devise
action elimination procedures in reinforcement learning algorithms. We describe a framework
that is based on learning the confidence interval around the value function or the Q-function and
eliminating actions that are not optimal (with high probability). We provide a model-based and a
model-free variants of the elimination method. We further derive stopping conditions guaranteeing
that the learned policy is approximately optimal with high probability. Simulations demonstrate a
considerable speedup and added robustness overε-greedy Q-learning.

1. Introduction

Two of the most studied problems in control, decision theory, and learning in unknown environment
are the multi-armed bandit (MAB) and reinforcement learning (RL). In this paper we consider
both models under the probably approximately correct (PAC) settings and study several important
questions arising in this model. The first question is when can an agent stop learning and start
exploiting using the knowledge it obtained. The second question is which strategy leads to minimal
learning time. Since the multi-armed bandit setup is simpler, we start by introducingit and later
describe the reinforcement learning problem.

The Multi-armed bandit problem is one of the classical problems in decision theory and control.
There is a number of alternative arms, each with a stochastic reward whoseprobability distribution is
initially unknown. We try these arms in some order, which may depend on the sequence of rewards

∗. Preliminary and partial results from this work appeared as extended abstracts in COLT 2002 and ICML 2003.

c©2006 Eyal Even-Dar, Shie Mannor and Yishay Mansour.

EVEN-DAR, MANNOR AND MANSOUR

that have been observed so far. A common objective in this context is to finda policy for choosing
the next arm to be tried, under which the sum of the expected rewards comes as close as possible
to the ideal reward, i.e., the expected reward that would be obtained if we were to try the “best”
arm at all times. One of the attractive features of the multi-armed bandit problem is that despite its
simplicity, it encompasses many important decision theoretic issues, such as thetradeoff between
exploration and exploitation.

The multi-armed bandit problem has been widely studied in a variety of setups.The problem
was first considered in the 50’s in the seminal work of Robbins (1952) that derives strategies that
asymptotically attain an average reward that converges in the limit to the rewardof the best arm.
The multi-armed bandit problem was later studied in discounted, Bayesian, Markovian, expected
reward, and adversarial setups. (See Berry and Fristedt, 1985, for a review of the classical results
on the multi-armed bandit problem.) Most of the research so far has considered the expected regret,
and devised strategies for minimizing it. The seminal work of Lai and Robbins (1985) provides tight
bounds as a function of the Kullback-Leibler divergence between the arms reward distribution, and
a logarithmic growth with the number of steps. The bounds of Lai and Robbins(1985) were shown
to be efficient, in the sense that the convergence rates are optimal. The adversarial multi-armed
bandit problem was considered in Auer et al. (1995, 2002), where it was shown that the expected
regret grows proportionally to the square root of the number of steps.

We consider the classical multi-armed bandit problem, but rather than lookingat the expected
regret, we develop PAC style bounds. The agent’s goal is to find, with highprobability, a near
optimal arm, namely, with probability at least 1−δ output anε-optimal arm. This naturally abstracts
the case where the agent needs to choose one specific arm, and it is given only limited exploration
initially. Our main complexity criterion, in addition to correctness, is the number of steps taken
by the algorithm, which can be viewed as pure exploration steps. This is in contrast to most of
the results for the multi-armed bandit problem, where the main aim is to maximize the expected
cumulative reward while both exploring and exploiting. Therefore, methods which balance between
exploration and exploitation such as softmax, andε-greedy are not comparable to our methods.
Following our initial conference publication, a lower bound on the number ofsteps needed to obtain
a PAC solution was developed in Mannor and Tsitsiklis (2004); it matches the upper bound we
develop in this paper.

The MAB problem models a situation where the environment is static and the same decision has
to be made repeatedly. In many cases of practical interest, the model shouldrepresent a situation
where the state of the system changes with time. This is encompassed in the Markov decision
process model (MDP), that has been the subject of intensive research since the 1950’s. When the
model is known, and learning is not required, there are several standard methods for calculating the
optimal policy - linear programming, value iteration, policy iteration, etc.; see Puterman (1994) for a
review. When the model is not known a-priori, alearningscheme is needed. RL has emerged in the
recent decade as unified discipline for adaptive control of dynamic environments (e.g., Sutton and
Barto, 1998, Bertsekas and Tsitsiklis, 1996). A common problem with many RLalgorithms is a slow
convergence rate, even for relatively small problems. For example, consider the popular Q-learning
algorithm (Watkins, 1989) which is essentially an asynchronous stochasticapproximation algorithm
(Bertsekas and Tsitsiklis, 1996). Generic convergence rate bounds for stochastic approximation
(e.g., Borkar and Meyn, 2000) or specific rates for Q-learning (see,Kearns and Singh, 1998, Even-
Dar and Mansour, 2003) are somewhat disappointing. However, the generic convergence rate is
shown there to be almost tight for several particularly bad scenarios. The question that we ask

1080

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

is: When is enough information gathered? When can the learning agent declare with reasonable
confidence that the policy discovered is optimal, or at least approximately optimal? To summarize
the differences, we are not concerned in the generic convergence rate (which must be slow), but we
are rather interested in supplying rates which will be adjusted to the specific MDP parameters and
as a result are much better for certain problems.

The problem of obtaining stopping conditions for learning in MDPs is a fundamental problem
in RL. As opposed to supervised learning problems where typically a data set is given to the learner
who has to commit to a classifier (or regressor in regression problem), in RLthe decision maker can
continue its interaction with the environment and obtain additional samples. The stopping rules that
are currently employed in practice are based on ad-hoc rules, and may lead to premature stopping
or to overly long trajectories.

When an action in a certain state can be determined tonot belong to the optimal policy in an
MDP, it can be discarded and disregarded in both planning and learning.This idea, commonly
known as action elimination (AE), was proposed by MacQueen (1966) in thecontext of planning
when the MDP parameters are known. In the planning case AE serves two purposes: reduce the size
of the action sets to be searched at every iteration; identify optimal policies when there is a unique
optimal policy. (In value iteration this is the only way to reach optimal policy ratherthanε-optimal
policy.) AE procedures are standard practice in solving large practical MDPs and are considered
state-of-the-art; see Puterman (1994) for more details. We consider AE inthelearningcontext when
the model is not known a-priori.

In many applications the computational power is available but sampling of the environment is
expensive. By eliminating sub-optimal actions early in the learning process,the total amount of
sampling is reduced, leading to spending less time on estimating the parameters of sub-optimal
actions. The main motivation for applying AE in RL is reducing the amount of samples needed
from the environment. In addition to that, AE in RL enjoys the same advantages as in MDPs -
convergence rate speedup and possibility to find an optimal policy (rather thanε-optimal).

Overview of the paper

After defining the settings in Section 2, we consider the MAB problem in Section3. We start from
a naive algorithm for the MAB problem, and present two improved algorithms.The first algorithm
in the bandit settings,Successive Elimination, has the potential to exhibit an improved behavior in
cases where the differences between the expected rewards of the optimal arm and sub-optimal arms
are much larger thanε. The second algorithm,Median Elimination, achieves a better dependence
on the number of arms. Namely, the total number of arm trials isO(n/ε2 log(1/δ)), which improves
the naive bound by a factor of logn, and matches the lower bounds given in Mannor and Tsitsiklis
(2004).

In Section 4 we consider AE in RL. The underlying idea is to maintain upper andlower estimates
of the value (or Q) function. When the expected upper estimate of the returnof a certain action falls
below the expected lower estimate of another action, the obviously inferior action is eliminated. We
suggest both, a model-based and a Q-learning style AE algorithms. The upper and lower bounds are
based on a large deviations inequality, so that when an action is eliminated, it is not optimal with
high probability.

Stopping conditions that are based on generic convergence rate bounds (as in Even-Dar and
Mansour, 2003) are overly conservative. We suggest a stopping time based on the difference be-

1081

EVEN-DAR, MANNOR AND MANSOUR

tween the upper and lower bounds of the value (or Q) function. We show that if the difference is
small, then the greedy policy with respect to the lower estimate is almost optimal.

In Section 5 we present the results of several experiments with AE in toy problems as well as
in non-trivial problems. Significant speedup with negligible computational overhead is observed as
compared toε-greedy Q-learning.

2. Model and Preliminaries

In this section we define the models considered in this paper. We start from the MAB model in
Section 2.1. We then describe the MDP model in Section 2.2. While both models arewell studied
we prefer to recapitulate them in the PAC setup, to avoid confusion. We finallyrecall Hoeffding’s
inequality which is a central tool in this work in Section 2.3.

2.1 Multi-Armed Bandit

The model is comprised of a set of armsA with n = |A|. When sampling arma∈ A a reward which
is a random variableR(a) is received. We assume that the reward is binary, i.e., for every arma∈ A
the rewardR(a) ∈ {0,1} (all the results apply without change if the reward is bounded in[0,1] and
in general as long as the reward is bounded with appropriate modifications). Denote the arms by
a1, · · · ,an andpi = IE[R(ai)]. For simplicity of notations we enumerate the arms according to their
expected rewardp1 > p2 > ... > pn.

An arm with the highest expected reward is called thebest arm, and denoted bya∗, and its
expected rewardr∗ is theoptimal reward. An arm whose expected reward is strictly less thanr∗,
the expected reward of the best arm, is called anon-best arm. An arma is called anε-optimal arm
if its expected reward is at mostε from the optimal reward, i.e., IE[R(a)] ≥ r∗− ε.

An algorithm for the MAB problem, at each time stept, samples an armat and receives a
rewardrt (distributed according toR(at)). When making its selection the algorithm may depend on
the history (i.e., the actions and rewards) up to timet −1. Eventually the algorithm must commit to
a single arm and select it.

Next we define the desired properties of an algorithm formally.

Definition 1 An algorithm is a(ε,δ)-PAC algorithm for the multi armed bandit withsample com-
plexity T, if it outputs anε-optimal arm, a′, with probability at least1−δ, when it terminates, and
the number of time steps the algorithm performs until it terminates is bounded by T.

Remark 2 The MAB algorithm may terminate beforeT steps passed. The sample complexity we
consider is the complexity of theworst trajectory. The expected sample complexity (where the
expectation is taken with respect to both the model and the algorithm) was considered in Mannor
and Tsitsiklis (2004). The expected sample complexity behaves likeΩ((n+ log(1/δ))/ε2), which
is different than the complexity we prove below in Theorem 10. We note that the running time of
the algorithm from Mannor and Tsitsiklis (2004) is not bounded in the worstcase.

2.2 Markov Decision Processes

We define an MDP as follows:

1082

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Definition 3 A Markov Decision process (MDP) M is a 4-tuple(S,A,P,R), where S is a set of the
states, A is a set of actions, Pa

s,s′ is the transition probability from state s to state s′ when performing
action a∈ A in state s, and R(s,a) is the reward received when performing action a in state s.

A strategy for an MDP assigns, at each timet, for each states a probability for performing
actiona∈ A, given a historyFt−1 = {s1,a1, r1, ...,st−1,at−1, rt−1} which includes the states, actions
and rewards observed until timet − 1. While executing a strategyπ we perform at timet action
at in statest and observe a rewardrt (distributed according toR(st ,at)), and the next statest+1

distributed according toPat
st ,·. We combine the sequence of rewards into a single value called the

return. Our goal is to maximize the return. In this work we focus on thediscounted return, which
has a parameterγ ∈ (0,1), and the discounted return of policyπ is Vπ = ∑∞

t=0 γtrt , wherert is the
reward observed at timet. We also consider thefinite horizonreturn,Vπ = ∑H

t=0 rt for a given
horizonH.

We assume thatR(s,a) is non-negative and bounded byRmax, i.e., for everys,a : 0≤ R(s,a) ≤
Rmax. This implies that the discounted return is bounded byVmax = Rmax/(1− γ); for the finite
horizon the return is bounded byHRmax. We define a value function for each states, under policy
π, asVπ(s) = IEπ[∑∞

i=0 r iγi], where the expectation is over a run of policyπ starting at states. We
further denote the state-action value function as using actiona in statesand then followingπ as:

Qπ(s,a) = R(s,a)+ γ∑
s′

Pa
s,s′V

π(s′).

Similarly, we define the value functions for the finite horizon model.
Let π∗ be an optimal policy which maximizes the return from any start state. For discounted

return criterion, there exists such a policy which is deterministic and stationary(see, e.g., Put-
erman, 1994). This implies that for any policyπ and any states we haveVπ∗

(s) ≥ Vπ(s), and
π∗(s) = argmaxa(R(s,a) + γ(∑s′ P

a
s,s′V

π∗
(s′)). We useV∗ and Q∗ for Vπ∗

and Qπ∗
, respectively.

We say that a policyπ is ε-optimal if ‖V∗−Vπ‖∞ ≤ ε. We also define the policyGreedy(Q) as
the policy that prescribes in each state the action that maximizes theQ-function in the state, i.e.,
π(s) = argmaxaQ(s,a).

For a given trajectory let:Ts,a be the set of times in which we perform actiona in states and
Ts,a,s′ be a subset ofTs,a in which we reached states′. Also, #(s,a, t) is the number of times action
a is performed in states up to timet, i.e., |Ts,a∩{1,2,3, . . . , t}|. We similarly define #(s,a,s′, t) as
|Ts,a,s′ ∩{1,2,3, . . . , t}|. Next we define the empirical model at timet. Given that #(s,a, t) > 0 we
define the empirical next state distribution at timet as

P̂a
s,s′ =

#(s,a,s′, t)
#(s,a, t)

and R̂(s,a) =
∑t∈Ts,a rt

#(s,a, t)
.

If #(s,a, t) = 0 the empirical model and the reward can be chosen arbitrarily. We define the expec-
tation of the empirical model aŝIEs,s′,a[V(s′)] = ∑s′∈SP̂a

s,s′V(s′). To simplify the notations we omit

s,a in the notationŝIEs′ whenever evident.

2.3 A Concentration Bound

We often use large deviation bounds in this paper. Since we assume boundedness we can rely on
Hoeffding’s inequality.

1083

EVEN-DAR, MANNOR AND MANSOUR

Lemma 4 (Hoeffding, 1963) Let X be a set, D be a probability distribution on X, and f1, ..., fm be
real-valued functions defined on X with fi : X → [ai ,bi] for i = 1, ...,m, where ai and bi are real
numbers satisfying ai < bi . Let x1, . . . ,xm be independent identically distributed samples from D.
Then we have the following inequality

P

[

1
m

m

∑
i=1

fi(xi)−
(

1
m

m

∑
i=1

Z bi

ai

fi(x)D(x)

)

≥ ε

]

≤ e
− 2ε2m2

∑m
i=1(bi−ai)

2

P

[

1
m

m

∑
i=1

fi(xi)−
(

1
m

m

∑
i=1

Z bi

ai

fi(x)D(x)

)

≤−ε

]

≤ e
− 2ε2m2

∑m
i=1(bi−ai)

2
.

Remark 5 We note that the boundedness assumption is not essential and can be relaxed in certain
situations. We also note that sometimes tighter bounds can be obtained using the relative Chernoff
bound (Angluin and Valiant, 1979).

3. PAC Bounds for the Multi-Armed Bandit Problem

In this section we investigate an(ε,δ)-PAC algorithms for the MAB problem. Such algorithms
are required to output with probability 1− δ anε-optimal arm. We start with a naive solution that
samples each arm 1/(ε/2)2 ln(2n/δ) and picks the arm with the highest empirical reward. The
sample complexity of this naive algorithm isO(n/ε2 log(n/δ)). The naive algorithm is described
in Algorithm 1. In Section 3.1 we consider an algorithm that eliminates one arm after the other.
In Section 3.2 we finally describe the Median Elimination algorithm whose sample complexity is
optimal in the worst case.

Input : ε > 0, δ > 0
Output : An arm
foreach Arm a∈ A do

Sample itℓ = 4
ε2 ln(2n

δ) times;
Let p̂a be the average reward of arma;

end
Outputa′ = argmaxa∈A{p̂a};

Algorithm 1: Naive Algorithm

Theorem 6 The algorithmNaive(ε,δ) is an (ε,δ)-PAC algorithm with arm sample complexity
O
(

(n/ε2) log(n/δ)
)

.

Proof The sample complexity is immediate from the definition of the algorithm. We now prove it
is an(ε,δ)-PAC algorithm. Leta′ be an arm for which IE(R(a′)) < r∗− ε. We want to bound the
probability of the event ˆpa′ > p̂a∗ .

P(p̂a′ > p̂a∗) ≤ P
(

p̂a′ > IE[R(a′)]+ ε/2 or p̂a∗ < r∗− ε/2
)

≤ P
(

p̂a′ > IE[R(a′)]+ ε/2
)

+P(p̂a∗ < r∗− ε/2)

≤ 2exp(−2(ε/2)2ℓ) ,

1084

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

where the last inequality uses the Hoeffding inequality. Choosingℓ = (2/ε2) ln(2n/δ) assures that
P(p̂a′ > p̂a∗) ≤ δ/n. Summing over all possiblea′ we have that the failure probability is at most
(n−1)(δ/n) < δ.

3.1 Successive Elimination

The successive elimination algorithm attempts to sample each arm a minimal number oftimes
and eliminate the arms one after the other. To motivate the successive elimination algorithm, we
first assume that the expected rewards of the arms are known, but the matching of the arms to the
expected rewards is unknown. Let∆i = p1− pi > 0. Our aim is to sample armai for (1/∆2

i) ln(n/δ)
times, and then eliminate it. This is done in phases. Initially, we sample each arm(1/∆2

n) ln(n/δ)
times. Then we eliminate the arm which has the lowest empirical reward (and never sample it again).
At the i-th phase we sample each of then− i surviving arms

O

((

1

∆2
n−i

− 1

∆2
n−i+1

)

log(
n
δ
)

)

times and then eliminate the empirically worst arm. The algorithm described as Algorithm 2 below.
In Theorem 7 we prove that the algorithm is(0,δ)-PAC and compute its sample complexity.

Input : δ > 0, bias of armsp1, p2, . . . , pn

Output : An arm

SetS= A; ti = (8/∆2
i) ln(2n/δ); andtn+1 = 0, for every arma: p̂a = 0, i = 0;

while i < n−1 do
Sample every arma∈ S for tn−i − tn−i+1 times;
Let p̂a be the average reward of arma (in all rounds);
SetS= S\{amin}, whereamin = argmina∈S{p̂a}, i = i +1;

end
Output S;

Algorithm 2: Successive Elimination with Known Biases

Theorem 7 Suppose that∆i > 0 for i = 2,3, . . . ,n. Then the Successive Elimination with Known
Biases algorithm is an(0,δ)-PAC algorithm and its arm sample complexity is

O

(

log(
n
δ
)

n

∑
i=2

1

∆2
i

)

. (1)

Proof The sample complexity of the algorithm is as follows. In the first round we samplen arms
tn times. In the second round we samplen−1 armstn−1− tn times. In thekth round (1≤ k < n)
we samplen− k+ 1 arms fortn−k − tn−k+1 times. The total number of arms samples is therefore
t2 +∑n

i=2 ti which is of the form (1).
We now prove that the algorithm is correct with probability at least 1−δ. Consider first a simplified

1085

EVEN-DAR, MANNOR AND MANSOUR

algorithm which is similar to the naive algorithm, suppose that each arm is pulled 8/(∆2
2) ln(2n/δ)

times. For every 2≤ i ≤ n−1 we define the event

Ei =
{

p̂1
t j ≥ p̂i

t j |∀t j s.t. j ≥ i
}

,

wherep̂i
t j is the empirical value theith arm at timet j . If the eventsEi hold for all i > 1 the algorithm

is successful.

P[not(Ei)] ≤
n

∑
j=i

P[p̂n
t j < p̂i

t j]

≤
n

∑
j=i

2exp(−2(∆i/2)2t j) ≤
n

∑
j=i

2exp(−2(∆i/2)28/∆2
j ln(2n/δ))

≤
n

∑
j=i

2exp(− ln(4n2/δ2))

≤ (n− i +1)δ2/n2 ≤ δ
n
.

Using the union bound over allEi ’s we obtain that the simplified algorithm satisfies allEi with
probability at least 1− δ. Consider the original setup. If arm 1 is eliminated at timet j for some is
implies that some armi < j has higher empirical value at timet j . The probability of failure of the
algorithm is bounded by the probability of failure in the simplified setting.

Next, we relax the requirement that the expected rewards of the arms are known in advance, and
introduce the Successive Elimination algorithm that works with any set of biases. The algorithm we
present as Algorithm 3 finds the best arm (rather thanε-best) with high probability. We later explain
in Remark 9 how to modify it to be an(ε,δ)-PAC algorithm.

Input : δ > 0
Output : An arm
Sett = 1 andS= A;
Set for every arma: p̂1

a = 0;
Sample every arma∈ Sonce and let ˆpt

a be the average reward of arma by timet;
repeat

Let p̂t
max= maxa∈S p̂t

a andαt =
√

ln(cnt2/δ)/t, wherec is a constant;
foreach arma∈ Ssuch that ˆpt

max− p̂t
a ≥ 2αt do

setS= S\{a};
end
t = t +1;

until |S| > 1;

Algorithm 3: Successive elimination with unknown biases

Theorem 8 Suppose that∆i > 0 for i = 2,3, . . . ,n. Then the Successive Elimination algorithm
(Algorithm 3) is a(0,δ)-PAC algorithm, and with probability at least1−δ the number of samples

1086

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

is bounded by

O

(

n

∑
i=2

ln(n
δ∆i

)

∆2
i

)

.

Proof Our main argument is that, at any timet and for any actiona, the observed probability ˆpt
a is

within αt of the true probabilitypa. For any timet and actiona∈ St we have that,

P[|p̂t
a− pa| ≥ αt] ≤ 2e−2α2

t t ≤ 2δ
cnt2

.

By taking the constantc to be greater than 4 and from the union bound we have that with probability
at least 1− δ/n for any timet and any actiona ∈ St , |p̂t

a− pa| ≤ αt . Therefore, with probability
1−δ, the best arm is never eliminated. Furthermore, sinceαt goes to zero ast increases, eventually
every non-best arm is eliminated. This completes the proof that the algorithm is(0,δ)-PAC.

It remains to compute the arm sample complexity. To eliminate a non-best armai we need to
reach a timeti such that,

∆̂ti = p̂ti
a1
− p̂ti

ai
≥ 2αti .

The definition ofαt combined with the assumption that|p̂t
a− pa| ≤ αt yields that

∆i −2αt = (p1−αt)− (pi +αt) ≥ p̂1− p̂i ≥ 2αt ,

which holds with probability at least 1− δ
n for

ti = O

(

ln(n/δ∆i)

∆2
i

)

.

To conclude, with probability of at least 1− δ the number of arm samples is 2t2 + ∑n
i=3 ti , which

completes the proof.

Remark 9 One can easily modify the successive elimination algorithm so that it is(ε,δ)-PAC.
Instead of stopping when only one arm survives the elimination, it is possibleto settle for stopping
when either only one arm remains or when each of thek surviving arms were sampledO(1

ε2 log(k
δ)).

In the latter case the algorithm returns the best arm so far. In this case it is not hard to show that the
algorithm finds anε-optimal arm with probability at least 1−δ after

O

(

∑
i:∆i>ε

log(n
δ∆i

)

∆2
i

+
N(∆,ε)

ε2 log

(

N(∆,ε)
δ

)

)

,

whereN(∆,ε) = |{i | ∆i < ε}| is the number of arms which areε-optimal.

3.2 Median Elimination

The following algorithm substitutes the termO(log(1/δ)) for O(log(n/δ)) of the naive bound. The
idea is to eliminate the worst half of the arms at each iteration. We do not expectthe best arm to be
empirically “the best”, we only expect anε-optimal arm to be above the median.

1087

EVEN-DAR, MANNOR AND MANSOUR

Input : ε > 0,δ > 0
Output : An arm

SetS1 = A, ε1 = ε/4, δ1 = δ/2, ℓ = 1. repeat
Sample every arma∈ Sℓ for 1/(εℓ/2)2 log(3/δℓ) times, and let ˆpℓ

a denote its empirical
value;
Find the median of ˆpℓ

a, denoted bymℓ;
Sℓ+1 = Sℓ \{a : p̂ℓ

a < mℓ};
εℓ+1 = 3

4εℓ; δℓ+1 = δℓ/2; ℓ = ℓ+1;
until |Sℓ| = 1;

Algorithm 4: Median Elimination

Theorem 10 The Median Elimination(ε,δ) algorithm is an(ε,δ)-PAC algorithm and its sample
complexity is

O

(

n
ε2 log

(

1
δ

))

.

First we show that in theℓ-th phase the expected reward of the best arm inSℓ drops by at most
εℓ.

Lemma 11 For theMedian Elimination(ε,δ) algorithm we have that for every phaseℓ:

P[max
j∈Sℓ

p j ≤ max
i∈Sℓ+1

pi + εℓ] ≥ 1−δℓ.

Proof Without loss of generality we look at the first round and assume thatp1 is the reward of the
best arm. We bound the failure probability by looking at the eventE1 = {p̂1 < p1−ε1/2}, which is
the case that the empirical estimate of the best arm is pessimistic. Since we sample sufficiently, we
have thatP[E1] ≤ δ1/3.

In caseE1 does not hold, we calculate the probability that an armj which is not anε1-optimal
arm is empirically better than the best arm.

P[p̂ j ≥ p̂1 | p̂1 ≥ p1− ε1/2] ≤ P[p̂ j ≥ p j + ε1/2 | p̂1 ≥ p1− ε1/2] ≤ δ1/3

Let #bad be the number of arms which are notε1-optimal but are empirically better than the best
arm. We have that IE[#bad| p̂1 ≥ p1− ε1/2] ≤ nδ1/3. Next we apply Markov inequality to obtain,

P[#bad≥ n/2 | p̂1 ≥ p1− ε1/2] ≤ nδ1/3
n/2

= 2δ1/3.

Using the union bound gives us that the probability of failure is bounded byδ1.

Next we prove that arm sample complexity is bounded byO((n/ε2) log(1/δ)).

Lemma 12 The sample complexity of theMedian Elimination(ε,δ) is O
(

(n/ε2) log(1/δ)
)

.

Proof The number of arm samples in theℓ-th round is 4nℓ log(3/δℓ)/ε2
ℓ . By definition we have that

1088

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

1. δ1 = δ/2 ; δℓ = δℓ−1/2 = δ/2ℓ

2. n1 = n ; nℓ = nℓ−1/2 = n/2ℓ−1

3. ε1 = ε/4 ; εℓ = 3
4εℓ−1 =

(

3
4

)ℓ−1 ε/4

Therefore we have

log2(n)

∑
ℓ=1

nℓ log(3/δℓ)

(εℓ/2)2 = 4
log2(n)

∑
ℓ=1

n/2ℓ−1 log(2ℓ3/δ)

((3
4)ℓ−1ε/4)2

= 64
log2(n)

∑
ℓ=1

n(
8
9
)ℓ−1(

log(1/δ)

ε2 +
log(3)

ε2 +
ℓ log(2)

ε2)

≤ 64
nlog(1/δ)

ε2

∞

∑
ℓ=1

(
8
9
)ℓ−1(ℓC′ +C) = O(

nlog(1/δ)

ε2)

Now we can prove Theorem 10.
Proof From Lemma 12 we have that the sample complexity is bounded byO

(

nlog(1/δ)/ε2
)

. By
Lemma 11 we have that the algorithm fails with probabilityδi in each round so that over all rounds
the probability of failure is bounded by∑log2(n)

i=1 δi ≤ δ. In each round we reduce the optimal reward

of the surviving arms by at mostεi so that the total error is bounded by∑log2(n)
i=1 εi ≤ ε.

4. Learning in MDPs

In this section we consider algorithms for the RL problem, which are based onthe MAB algorithms
presented above. We start from model-based learning in Section 4.1, where the parameters of the
models are learned. We describe algorithms which are based on the successive elimination algo-
rithm and provide stopping conditions for these algorithms. In Section 4.2 we consider model-free
learning and suggest a version of the Q-learning algorithm that incorporates action elimination and
stopping conditions. In Section 4.3 we analyze the batched sampling setting of Kearns and Singh
(2002) and provide a mechanism that can use any(ε,δ)-MAB algorithm to enhance the performance
of the Phased Q-learning introduced in Kearns and Singh (2002). We also provide a matching lower
bound.

4.1 Model-Based Learning

In this section we focus on model-based learning. In model-based methods,we first learn the model,
i.e., estimate the immediate reward and the next state distribution. Then by either value iteration,
policy iteration, or linear programming on the learned (empirical) model, we find the exact optimal
policy for the empirical model. If enough exploration is done, this policy is almost optimal for the
true model. We note that there is an inherent difference between the finite horizon and the infinite
discounted return. Technically, the finite horizon return is simpler than the discounted return, as one
can apply the concentration inequality directly. We provide model-based algorithms for both cases.

1089

EVEN-DAR, MANNOR AND MANSOUR

4.1.1 FINITE HORIZON

Let us first recall the classical optimality equations for finite horizon:

VH(s) = max
a

{R(s,a)+ IEs′ [V
H−1(s′)]}, H > 0

V0(s) = max
a

R(s,a),

whereVH(s) is the optimal value function for horizonH. We often abuse notation by using IEs′

instead of IEs′,a. Given the empirical model by timet we define the upper estimateVδ, which will

be shown to satisfy for every horizonk and every states, V
k
δ(s) ≥Vk(s) with high probability. For

horizonH we define:

V
H
δ (s) = max

a

{

R̂(s,a)+ ÎEs′ [V
H−1
δ (s′)]+HRmax

√

ln(c|S||A|H2

δ)

|Ts,a|
}

, H > 0 (2)

V
0
δ(s) = max

a

{

R̂(s,a)+Rmax

√

ln(c|S||A|
δ)

|Ts,a|
}

, (3)

for some constantc ≥ 4. Similarly to the upper boundV
H
δ , a lower bound may be defined where

theRmax is replaces by−Rmax. We call this estimate the lower estimateVH
δ . The following Lemma

proves thatV
H
δ is an upper estimation for any horizon and thatVH

δ is a lower estimation.

Theorem 13 We have thatV
k
δ(s) ≥Vk(s) ≥Vk

δ(s) for all states s and horizons k, with probability
at least1−δ.

Proof We prove the claim by induction. For the base of the induction, by a simple use of Hoeffding
inequality we have that for every statesV

0
δ(s)≥maxa R̂(s,a) with probability 1−δ/(c|S||A|) . Next

we assume that the claim holds fori ≤ k and prove fork+1 and for every actiona. By definition
V

k+1
δ (s) satisfies for everya that

V
k+1
δ (s) ≥ R̂(s,a)+ ÎEs′ [V

k
δ(s

′)]+(k+1)Rmax

√

ln(c|S||A|(k+1)2

δ)

|Ts,a|

≥ R̂(s,a)+ ÎEs′ [V
k(s′)]+(k+1)Rmax

√

ln(c|S||A|(k+1)2

δ)

|Ts,a| ,

where the second inequality follows from the inductive hypothesis. Note that Vk is not a random
variable, so we can bound the last expression using Hoeffding’s inequality. We arrive at:

P

R̂(s,a)+ ÎEs′ [V
k(s′)]+(k+1)Rmax

√

ln(c|S||A|(k+1)2

δ)

|Ts,a| < R(s,a)+ IEs′ [V
k(s′)]

≤ e

− ln(
c|S||A|(k+1)2

δ)|Ts,a|
(

(k+1)Rmax√
|Ts,a|

)2

((k+1)Rmax)2 =
δ

c|S||A|(k+1)2 .

1090

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Therefore, we have that with high probability the following holds

V
k+1
δ (s) ≥ max

a
{R(s,a)+ ÎEs′ [V

k(s′)]+kRmax

√

ln(c|S||A|k2

δ)

|Ts,a| }

≥ max
a

{R(s,a)+ IEs′ [V
k(s′)]}

= Vk+1(s).

Using the union bound over all state-action pairs and all finite horizonsk, we obtain that the
failure probability is bounded byδ/2 for c≥ 4. Repeating the same argument for the lower estimate
and applying the union bound completes the proof.

Consequently, a natural early stopping condition is to stop sampling when‖VH −VH‖∞ < ε. We do
not provide an algorithm here, however a detailed algorithm will be given inthe following subsec-
tion.

4.1.2 DISCOUNTEDRETURN - INFINITE HORIZON

In this subsection, we provide upper and lower estimates of the value function V for the infinite
horizon case. The optimal value is the solution of the set of the equations:

V∗(s) = max
a

{R(s,a)+ γIEs′ [V
∗(s′)]}, s∈ S.

As in Subsection 4.1.1, we provide an upper value functionVδ, which satisfies with high probability
Vδ(s) ≥V∗(s). We defineV

t
δ at timet as the solution of the set of equations:

V
t
δ(s) = max

a

{

R̂(s,a)+ γÎEs′ [V
t
δ(s

′)]+Vmax

√

ln(ct2|S| |A|
δ)

|Ts,a|)
}

for some positive constantc andQ
t
δ as:

Q
t
δ(s,a) = R̂(s,a)+ γÎEs′ [Vδ(s

′)]+Vmax

√

ln(ct2|S| |A|
δ)

|Ts,a| .

Similarly, we defineVt
δ andQt

δ as:

Vt
δ(s) = max

a

{

R̂(s,a)+ γÎEs′Vδ(s
′)−Vmax

√

ln(ct2|S| |A|
δ)

|Ts,a|)
}

Qt
δ(s,a) = R̂(s,a)+ γÎEs′ [V

t
δ(s

′)]−Vmax

√

ln(ct2|S| |A|
δ)

|Ts,a| .

The next lemma shows that with high probability the upper and lower estimations are indeed
correct.

Lemma 14 With probability at least1− δ we have thatQ
t
δ(s,a) ≥ Q∗(s,a) ≥ Qt

δ(s,a) for every
state s, action a and time t.

1091

EVEN-DAR, MANNOR AND MANSOUR

Proof Suppose we run a value iteration algorithm on the empirical model at timet. LetV
t,k
δ be the

kth iteration of the value function algorithm at timet, and letQ
t,k
δ be the associated Q-function, that

is

Q
t,k
δ (s,a) = R̂(s,a)+ γÎEs′ [V

t,k
δ (s′)]+Vmax

√

ln(ct2|S||A|
δ)

|Ts,a| .

Assume that we start withV
t,0
δ = V∗. (The use ofV∗ is restricted to the proof and not used in the

algorithm.) We need to prove thatQ
t
δ(s,a) ≥ Q∗(s,a) for everys anda. Note that since the value

iteration converges,Q
t,k
δ converges toQ

t
δ. We prove by induction on the number of the iterations

that by takingV
t,0
δ =V∗, with high probability for everyk we have thatQ

t,k
δ ≥Q

t,k−1
δ , i.e.,P[∀k Q

k
δ ≥

Q
k−1
δ]≥ 1− δ

ct2 . For the basis, sinceV∗ is not a random variable we can apply Hoeffding’s inequality
and obtain that for every state action pair(s,a)

P
{

R̂(s,a)+ γÎEs′ [V
∗(s′)]+Vmax

√

ln(ct2|S||A|
δ)

|Ts,a| < R(s,a)+ γIEs′ [V
∗(s′)]

}

≤ e− ln(ct2|S||A|
δ) =

δ
ct2|S||A| .

SinceV
t,0
δ (s) = V∗ we have thatQ

t,1
δ (s,a) = R̂(s,a)+ γÎEs′ [V

t,0
δ (s′)]+Vmax

√

ln(ct2|S||A|
δ)

|Ts,a| . Therefore,

Q
t,1
δ ≥ Q

t,0
δ with probability 1− δ

ct2 . For the induction step, we assume that the claim holds fori < k
and prove fork.

Q
t,k
δ (s,a)−Q

t,k−1
δ (s,a) = γÎEs′ [V

t,k−1
δ (s′)−V

t,k−2
δ (s′)].

SinceV
t,k−1
δ (s′) = maxaQ

t,k−1
δ (s′,a) we have by the induction that for everys,

Vt,k−1
δ (s) = max

a
Q

t,k−1
δ (s,a) ≥ max

a
Q

t,k−2
δ (s,a) = Vt,k−2

δ (s).

So thatQ
t,k
δ −Q

t,k−1
δ ≥ 0. We conclude thatP[Qδ ≥ Q∗] ≥ 1− δ

ct2 . Repeating the same argument
for the lower estimate,Qδ, and applying the union bound over both and over all times completes the
proof for the appropriatec.

The AE procedure is demonstrated in the following algorithm, which also supplies a stopping
condition for sampling the model and eliminates actions when they are sub-optimalwith high prob-
ability.

1092

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Input : MDP M, ε > 0, δ > 0
Output : A policy for M
Choose arbitrarily an initial states0, let t = 0,
and letU0 = {(s,a)|s∈ S,a∈ A}
repeat

At statest perform any actiona s.t. (st ,a) ∈Ut

Receive a rewardrt , and a next statest+1

Compute,Qδ,Qδ from all the samples
t = t +1
Ut = {(s,a)|Qδ(s,a) ≥Vδ(s)}

until ∀(s,a) ∈U |Qδ(s,a)−Qδ(s,a)| < ε(1−γ)
2 ;

return Greedy(Qδ)

Algorithm 5: Model-Based AE Algorithm

A direct corollary from Lemma 14, is a stopping time condition to the Model-Basedalgorithm
using the following Corollary.

Corollary 15 [Singh and Yee (1994)] If̃Q is a function such that|Q̃(s,a)−Q∗(s,a)| ≤ ε for all
s∈ S and a∈ A. Then for all s

V∗(s)−V π̃(s) ≤ 2ε
1− γ

,

whereπ̃ = Greedy(Q̃).

Theorem 16 Supposed the Model-Based AE Algorithm terminates. Then the policy,π, the algo-
rithm returns isε-optimal with probability at least1−δ.

Proof By Lemma 14 we know that with probability at least 1−δ for everys, a and timet we have
thatQδ(s,a) ≤ Q∗(s,a) ≤ Qδ(s,a). Therefore, with probability of at least 1− δ the optimal action
has not been eliminated in any state in any timet. Furthermore, any actionb in states that has not
been eliminated satisfiesQ∗(s,b)−Qδ(s,b) ≤ Qδ(s,b)−Qδ(s,b) ≤ ε(1− γ)/2. The result follows
by Corollary 15.

4.2 Model-Free Learning

In this section we describe a model-free algorithm. We use two functionsQt andQ
t
, which provide

lower and upper estimations onQ∗, respectively. We use these functions to derive an asynchronous
algorithm, which eliminates actions and supplies stopping condition. This algorithmrequires space
which is proportional to the space used by Q-learning and converges under the same conditions.
Let us first recall the Q-learning algorithm (Watkins, 1989). The Q-learning algorithm estimates the
state-action value function (for discounted return) as follows:

Q0(s,a) = 0,

Qt+1(s,a) = (1−αt(s,a))Qt(s,a)+αt(s,a)(rt(s,a)+ γVt(s′)),

1093

EVEN-DAR, MANNOR AND MANSOUR

wheres′ is the state reached from stateswhen performing actionaat timet, andVt(s)= maxaQt(s,a).
Setαt(s,a) = 1/#(s,a, t) for t ∈ Ts′,a′ and 0 otherwise.1 We define the upper estimation process as:

Q
0
δ(s,a) = Vmaxln(

c|S||A|
δ

),

Q
t+1
δ (s,a) = (1−αt(s,a))Q

t
δ(s,a)+αt(s,a)

(

R(s,a)+ γVt
δ(s

′)+β(#(s,a, t))
)

,

wherec > 4 ands′ is the state reached from states when performing actiona at timet, V
t
δ(s) =

maxaQ
t
δ(s,a) and the functionβ, which maintains the upper estimate interval is defined as:

β(k) = k

(

√

k ln(ck2|S||A|/δ)− (1−1/k)
√

(k−1) ln(c(k−1)2|S||A|/δ)

)

Vmax.

Analogously, we define the lower estimateQδ as :

Q0
δ(s,a) = −Vmaxln(

c|S||A|
δ

),

Qt+1
δ (s,a) = (1−αt(s,a))Qt

δ(s,a)+αt(s,a)
(

R(s,a)+ γVt
δ(s

′)−β(#(s,a, t))
)

,

whereVδ(s) = maxaQδ(s,a). We claim that these processes converge almost surely toQ∗. (The
proof appears in Appendix A.)

Proposition 17 If every state-action pair is performed infinitely often then the upper (lower)esti-
mation process,Q

t
δ (Qt

δ), converges to Q∗ with probability one.

The following Proposition claims thatQ
t
δ upper boundsQ∗ and Qt

δ lower boundsQ∗ with high
probability.

Proposition 18 With probability at least1− δ we have that for every state action pair(s,a) and
time t:

Q
t
δ(s,a) ≥ Q∗(s,a) ≥ Qt

δ(s,a).

Proof We start by defining disjoints events such that their union is the event ofQ not always being
an upper bound ofQ∗. Let

Ek,s,a = {The first time for whichQ is not an upper bound of

Q∗ is whena is performed at statesat thekth time}.

Note that ifQ does not upper boundQ∗ it implies that one of the eventsEk,s,a occurred. Next we
bound the probability that an eventEk,s,a happens. Note that the onlyQ value that has changed
wherea was performed art thekth time at states is Q(s,a). We lett ′ be the time ofEk,s,a and note
thatQ

t
(s′,a′) ≥ Q∗(s,a) for anyt < t ′.

P(Ek,s,a) = P
(

Q
t ′
(s,a)−Q∗(s,a) < 0

)

1. This particular learning rate is especially convenient, since the recurrence Xt = (1− 1/t)Xt−1 + (1/t)θt has the
solutionXt = (1/t)∑t

i=1 θi .

1094

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Input : MDP M, ε > 0, δ > 0
Output : A policy for M

For every state action(s,a):
Q(s,a) = Vmaxln(c|S||A|

δ)

Q(s,a) = −Vmaxln(c|S||A|
δ)

#(s,a) = 1
Choose an arbitrary initial states
repeat

Let U(s) = {a|Q(s,a) ≥V(s)}
choose arbitrarily actiona∈U(s), perform it and observe the next states′

Q(s,a) := (1− 1
#(s,a))Q(s,a)+ 1

#(s,a)

(

R(s,a)+ γV(s′)+β(#(s,a))
)

Q(s,a) := (1− 1
#(s,a))Q(s,a)+ 1

#(s,a)

(

R(s,a)+ γV(s′)−β(#(s,a))
)

#(s,a) := #(s,a)+1; s= s′

until ∀s∈ S ∀a∈U(s) |Q(s,a)−Q(s,a)| < ε(1−γ)
2 ;

return Greedy(Q)

Algorithm 6: Model-Free AE Algorithm

= P

(

1
k

k

∑
i=1

(r i + γVti (si)+β(i))−Q∗(s,a) < 0

)

≤ P

(

1
k

k

∑
i=1

(r i + γV∗(si)+β(i))−Q∗(s,a) < 0

)

≤ δ
c|S||A|k2 ,

where we could apply Hoeffding’s inequality sinceV∗ is not a random variable. Now taking the
union bound over all pairs(s,a) and timesk completes the proof for the upper estimate. A similar
argument for the lower estimate completes the proof.

We combine the upper and lower estimates to an algorithm, which eliminates sub-optimal ac-
tions whenever possible. Furthermore, the algorithm supplies a stopping condition that assures a
near optimal policy. The model free AE algorithm is described in Algorithm 6.

A direct corollary from Proposition 18 is a stopping condition to the model free AE algorithm.
The following corollary follows from Corollary 15 and its proof is similar to the proof of Theorem
16.

Corollary 19 Suppose the Model-Free AE Algorithm terminates. Then the policy, it returns is ε-
optimal with probability at least1−δ.

4.3 MAB Phased Q-learning Algorithm

In contrast to previous sections concerning learning in MDPs, we restrict the setup in this section.
In this limited setup we can fully exploit the connection between the MAB problem and learning

1095

EVEN-DAR, MANNOR AND MANSOUR

in MDPs. The setup is that of parallel sampling where the decision maker can sample every state
and action pair, as opposed to the typical Q-learning setup where a single trajectory is followed.
We will focus on the phased Q-learning algorithm Kearns and Singh (2002) which partitions the
learning to phases. We will use a MAB black-box to perform the updates for each state and phase
of the phased Q-learning algorithm. Although the parallel sampling model is nota realistic model it
is often considered in theory as a relaxation of the MDP model which still captures many important
aspects of the original problem; see Kearns and Singh (2002), Szepesvri and Munos (2005). The
parallel sampling model can represent a situation where sampling from different states is very cheap
(for example, when a simulator is available), so there is no real need to followa single trajectory. In
this case, reducing the number of samples needed for finding an optimal (orapproximately optimal)
policy is the main concern.

In phased Q-learning the value ofVk(s) is fixed during thekth phased and updated only at the
end of the phase. This implies that for every state and action(s,a) we can define a random variable
Ys(a) whose value isR(s,a)+ γVk(s′), whereR(s,a) is the random variable representing the reward
ands′ is distributed usingPa

s,s′ .
Our aim is to find, at each state, the action that maximizes the expected reward,and estimate

its expected reward, where the rewards areYs(a). The phased Q-Learning can now be viewed
as using the naive algorithm for the MAB problem (Algorithm 1) in order to find the best arm.
In the following we show how, using more sophisticated MAB algorithms, one can improve the
convergence rate of the Phased Q-Learning.

Our algorithm uses any (ε,δ)-PAC Multi-armed bandit algorithm as a black box in the learning
process. In order to use the MAB algorithmB as, a black box, we define a simple interface, which
requires the following procedures:

• InitB(ε,δ) - Initialize the parameters ofB.

• GetArmB() - returns the arma thatB wants to sample next.

• U pdateB(a, r) - informsB the latest rewardr of arma.

• StopB(a,v) - returns TRUE ifB terminates, and in such a casea is the output ofB andv is its
estimated value. (We assume that on termination, with probability at least 1−δ, the arma is
anε-optimal arm and|r∗−v| ≤ ε.)

The MAB Phased Q-learning algorithm uses as a black box, an algorithmB for the MAB prob-
lem. It receives as input(ε,δ) and returns a policyπ which is ε-optimal with probability at least
1−δ.

Suppose that we have some (ε,δ)-PAC MAB algorithm B, and assumeB has arm sample com-
plexity TB(ε,δ). Namely, with probability 1− δ, algorithmB terminates after at mostTB(ε,δ) and
outputs a policyπ which isε-optimal. The following theorem computes the sample complexity of
MAB Phased Q-Learning algorithm as a function ofTB.

Theorem 20 Assume B is an (ε̂, δ̂)-PAC multi-armed bandit algorithm. Then the MAB Phased Q-
Learning(ε,δ) algorithm outputs a policyπ which isε-optimal policy with probability at least1−δ,
and has sample complexity of

T(ε,δ) = |S|TB(ε̂, δ̂) logγ(
ε̂

2Vmax
) = O

(|S|
1− γ

ln(
Vmax

(1− γ)ε
)TB

(

ε(1− γ)2

2
,

δ(1− γ)
|S| ln(Vmax/ε)

))

.

1096

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Input : ε,δ > 0 andB a multi-armed bandit algorithm
Output : A policy

Let ε̂ = ε(1−γ)2

2 ; n = logγ(ε̂/2Vmax) = O(ln(Vmax
(1−γ)ε)/(1− γ)); δ̂ = δ

|S|n;
Initialize for everys∈ S: V0(s) = 0;
for i = 1 : n do

foreachs∈ Sdo
InitB(ε̂, δ̂);
repeat

a = GetArmB();
(s′, r) = sample(s,a);
r ′ = r + γVi(s′);
U pdateB(a, r ′);

until Stop(a,v) = TRUE;
Vi+1(s) = v; π(s) = a;

end
end

Algorithm 7: MAB Phased Q-Learning algorithm

First we show that in each phase the norm‖V∗−V‖∞ decreases.

Lemma 21 Assume B is an (ε̂, δ̂)-PAC multi-armed bandit algorithm, and consider the MAB Phased
Q-Learning(ε,δ) algorithm using B. Then with probability at least1−δ, for all k ≤ n, ‖V∗−Vk‖∞
is bounded by ε̂

1−γ +Vmaxγk.

Proof First we bound the probability thatB outputs an arm which is notε-optimal. We bound the
failure probability by using the union bound on all the invocations ofB. There are

|S|n = |S| logγ (ε̂/Vmax) = O

(

|S| ln(Vmax
(1−γ)ε)

1− γ

)

initializations of algorithmB and for each invocation the failure probability is bounded byδ/|S|n.
Thus, the failure probability is at mostδ.

Next, we show that the error contracts in every phase. We compare the value vector,Vk, with the
standard value iteration value vectorV̂k for the case of a known model (at the end of thek-th step).
Formally,

V̂k+1(s) = max
u

{IE[R(s,u)]+ γIEs′ [V̂k(s
′)]},

wheres′ is distributed according toPu
s,s′ andV̂0 = 0.

We show by induction on the number of phases, thatdk = ‖Vk− V̂k‖∞ ≤ ε̂
1−γ . The base of the

induction,t = 0, for every states we haved0 = |V0(s)− V̂0(s)| = 0. We assume that the induction
assumption holds fort < k and prove fork. Let ms,a denote the number of times the state action pair
(s,a) was sampled in thek-th iteration.

|Vk(s)−V̂k(s)| =
∣

∣

∣
max

u
[

1
ms,u

ms,u

∑
i=1

r(s,u)+ γVk−1(s
′
i)]

1097

EVEN-DAR, MANNOR AND MANSOUR

−max
a

[IE[R(s,a)]+ γ∑
s′

Pa
s,s′V̂k−1(s

′)]
∣

∣

∣

≤ max
ρ∈{−ε̂,ε̂}

∣

∣

∣
max

u
[IE[R(s,u)]+ γ∑

s′
Pu

s,s′Vk−1(s
′)]+ρ

−max
a

[IE[R(s,a)]+ γ∑
s′

Pa
s,s′V̂k−1(s

′)]
∣

∣

∣

≤ ε̂+max
a

∣

∣

∣
γ∑

s′
Pa

s,s′(Vk−1(s
′)−V̂k−1(s

′))
∣

∣

∣

≤ ε̂+ γdk−1

≤ ε̂+ γ(
ε̂

1− γ
) =

ε̂
1− γ

.

To conclude the proof note that for the value iteration we have that‖V̂k −V∗‖∞ ≤ γkVmax, where
V̂0 = 0 (see, e.g., Bertsekas and Tsitsiklis, 1995).

Lemma 22 When the MAB Phased Q-Learning algorithm terminates, the policyπ it returns is
ε-optimal with probability at least1−δ.

Proof By Lemma 21 we have that with probability at least 1− δ the difference‖Vk −V∗‖∞ ≤
ε̂

1−γ +Vmaxγk. Sinceε̂ = ε(1− γ)2/2, we have that‖Vk−V∗‖∞ ≤ ε(1− γ)/2+Vmaxγk. The lemma
follows from our choice ofn = logγ(ε(1− γ)/2Vmax).

We can now complete the proof Theorem 20.
Proof The correctness follows from Lemma 22. We bound the sample complexity as follows. By
definition, the MAB Phased Q-Learning algorithm samples at each state and action during every
phaseTB(ε̂, δ̂). By definition of the algorithm, the number of phases isn = O(ln(Vmax/ε̂)/(1− γ)),
and each phase is composed from|S| MAB instances. This completes the bound on the sample
complexity.

Applying the multi-armed bandit algorithms described in the previous sections wederive the
following corollary. We show that by using themedian eliminationalgorithm, the arm sample
complexity can be reduced by a factor of log(|A|).

Corollary 23 Let B be the median elimination algorithm. MAB Phased Q-Learning algorithm has
sample complexity

T(ε,δ) = O

(|S| |A|V2
max

(1− γ)5ε2 ln(
Vmax

(1− γ)ε
) ln(

|S| ln(Vmax/ε)
δ(1− γ)

)

)

.

Next we introduce an almost matching lower bound. Let us introduce some more notation before
we proceed. LetT denote the time until an RL algorithm stops (this may be in general a random
number). For a given RL algorithmL and a given MDPL we denote by IEL,M the expectation with
respect to randomization in both the algorithm and the MDP.

1098

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

Theorem 24 Let L be a learning algorithm for MDPs under the parallel sampling model. There
are constants C1,C2,ε0,δ0,γ0 such that for everyε ∈ (0,ε0), δ ∈ (0,δ0), andγ ∈ (0,γ0) if L returns
an ε-optimal policy with probability of at least1− δ for every MDP with discount factorγ there
exist an MDP M for which:

IEL,M [T] ≥C1
|S| |A|

(1− γ)2ε2 log

(

C2

δ

)

= Ω
(|S| |A|

(1− γ)2ε2 log(
1
δ
)

)

.

Proof Consider the following construction which was used in Theorem 1 of Mannor and Tsitsiklis
(2004) for the MAB problem. A MAB problem with|A| arms is given. We enumerate the arms
from 0 to|A|−1, and fixε̂ > 0. In each of the states one of the following hypotheses is true:

H0 : r(0) = 1/2+ ε̂ ; r(i) = 1/2 (i = 1,2, . . . , |A−1|),
and forℓ = 1,2, . . . , |A|−1:

Hℓ : r(0) = 1/2+ ε̂ ; r(i) = 1/2 (i = 1,2, . . . , |A−1|, i 6= ℓ) ; r(ℓ) = 1/2+2ε̂.

Let IEℓ be the expectation given than hypothesisHℓ is true, andA(s) the event that the algorithm errs
in states. In Lemma 4 in Mannor and Tsitsiklis (2004) it was proved that there are constantsc1 and
c2 such that for̂ε < ε̂0 every algorithm that can identify the true hypothesis with probability 1− δ̂
for all the hypotheses must satisfy that:

IE0[T] ≥ c1
|A|−1

ε̂2 log(
c2

δ̂
). (4)

We create the following set of MDPs. In each possible MDP there are|S| states and|A| actions in
each state. All the states are absorbing and have one of the aboveA hypotheses per state. The reward
in each state behaves according toH0 or one of theHℓ. (There are|A||S| possible MDPs.) We set
ε̂ = 2(1− γ)ε. We run algorithmL until termination. WhenL terminates it returns a policy which is
ε-optimal with probability of at least 1− δ. Since every state is absorbing, and by our choice ofε̂,
it implies that the right hypothesis was found in all states. Note that even ifL returns a randomized
policy, we will determine that the action with the highest reward is the best one (this is the reason
for the factor of 2 in determininĝε). By taking the sum of Eq. (4) over all states we obtain that

IEL,M[T] ≥ c1
|A|−1

ε̂2 |S| log(
c2

δ
).

The result follows by an appropriate choice of constants.

5. Experiments

In this section we show four types of MDPs in which the number of samples used by AE procedures
is significantly smaller than the number of samples used by standard Q-learningandε-greedy Q-
learning. Both model free AE algorithm and standard Q-learning choose the action in each state
uniformly at random. In our experiments we focused on the steady state norm (L1 weighted by
steady state probabilities) rather than theL∞ norm to emphasize the average behavior. We note that
we use the steady state rather than the discounted steady state. We run AE Q-learning algorithm
from Section 4.2 with the same input (for actions that were not eliminated) as a standard Q-learning
algorithm. The following experiments were conducted:

1099

EVEN-DAR, MANNOR AND MANSOUR

1. A queueing system.The MDP represents a queueing problem that appears in Differentiated
Services (Aiello et al., 2000, Kesselman et al., 2004). The basic settings are that the arriving
packets have different values and they are buffered in a FIFO queuebefore being sent. The
major constraints are that we reject or accept a packet upon its arrival(no preemption) and
that the buffer has limited capacity. We have analyzed a queue of size five and three different
packets values, 1,20,150. In each time unit we either receive a packet or send a packet
according to some distribution. We modeled the queueing problem via a discounted MDP
with discount factorγ = 0.99. The AE model-free algorithm2 was compared withε-greedy Q-
learning with epsilon varying from 0.05 to 0.2. In Figure 1 we present the results forε which
was empirically best,ε = 0.1. In this experiment we used a fixed step size. We focused here
on the fraction of times in which optimal actions were performed and on the valuefunction
criterion. The results are demonstrated in Figure 1, in which we see that notonly AE has
better results but the variance in the results is much smaller in both the fraction oftimes that
almost optimal actions were performed and in the value function. Figure 2 demonstrates the
elimination rate of the AE procedure.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

P
er

ce
nt

ag
e

of
 p

la
yi

ng
 9

9%
 o

pt
im

al

The queue problem: AE Vs. ε−greedy

AE Q−learning

ε−greedy Q−learning, ε =0.1

1.5 2 2.5 3 3.5 4

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The queue problem: value function

Iteration

F
ra

ct
io

n
of

 th
e

O
pt

im
al

 V
al

ue

AE Q−learning
Eps greedy, Q−learning eps =.1

Figure 1: Example of a Queue of size 5 with three types of packets with values1,20,150. The
discount factor is set to 0.99. We disregard the full queue state in which every action is
optimal. We repeated each experiment 15 times and the error bars represent 1 standard
deviation.

2. Random MDPs. Two types of random MDPs were randomly generated. In both types there
were 20 states and 50 actions in each state. The first type is due to Puterman (1994) and is
a sparse MDP, such that each action can reach only three states. The second type of random
MDPs is dense, such that the next state distribution is randomly chosen for each state-action
pair and might include all states. For both MDPs the immediate reward expectationis ran-
domly chosen in the interval[0,10]. Results of ten runs are presented by Figure 3 for the

2. Since we were interested in the short term results rather than the long term, we initialized the upper and lower values
to similar values and allowed elimination only after an exploration period, we stillused theβ function for both the
upper and lower estimates as stated in the theoretical part up to constants.

1100

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The queue problem: Elimination Progress

Number of Samples

F
ra

ct
io

n
of

 v
al

id
 a

ct
io

ns

Figure 2: Example of a Queue of size 5 with three types of packets with values1,20,150. The
discount factor is set to 0.99. This figure demonstrates the elimination rate. We repeated
each experiment 15 times and the error bars represent 1 standard deviation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
7

6

7

8

9

10

11

12

Number Of Samples

P
re

ci
si

on

Sparse Random MDP, γ=0.83

AE Q−Learning

Q−Learning

Figure 3: Example of a 20 state sparse randomly generated MDPs with 50 actions in each state,
whereγ = 0.833 (as in Puterman (1994).) The precision is the distance of theQ-function
from the optimalQ-function. We repeated each experiment 10 times and the error bars
represent 1 standard deviation.

sparse MDP, in this experiment the model free AE algorithm needs only about half the sam-
ples used by the Q-learning to achieve the same precision. The precision is measured as the
distance of the Q-function from the optimal function in steady state norm. In Figure 4 for
dense MDP, the results are similar. The AE algorithm required about 40% fewer samples.

1101

EVEN-DAR, MANNOR AND MANSOUR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
7

28

29

30

31

32

33

34

35

36

37

38

Number Of Samples

P
re

ci
si

on

Dense Random MDP, γ =0.9

AE Q−Learning

Q−Learning

Figure 4: Example of a 20 state dense randomly generated MDPs with 50 actions in each state,
γ = 0.9. The error bars represent 1 standard deviation.

3. Howard’s automobile replacement problem.This MDP represents another realistic problem—
Howard’s automobile replacement problem Howard (1960). This problemcontains 40 states,
in each state there are 41 actions. See Howard (1960) for a detailed description. This problem
was considered as a benchmark by several authors in the optimization community. We used
the model free AE algorithm for this problem with discount factorγ = 0.833 against standard
Q-learning and the results appear in Figure 5. A significant improvement is evident.

0 0.5 1 1.5 2 2.5

x 10
7

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number Of Samples

P
re

ci
si

on

Howard’s Automobile Replacement Problem, γ=0.83

AE Q−Learning

Q−Learning

Figure 5: Example of Howard’s Automobile Replacement Problem, where the discount factor,γ, is
0.833. The norm is the steady state norm. The error bars represent 1 standard deviation.

1102

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

6. Future Directions

Extending the concept of action elimination to large state spaces is probably themost important
direction. The extension to function approximation, which approximates the value function, requires
some assumptions on the value (or Q) function approximation architecture. Following Kakade and
Langford (2002) we can consider value functions that can be approximated under the infinity norm.
For an example of such an algorithm see (Ormoneit and Sen (2002)). If convergence rate of the
function approximation is provided, as in (Ormoneit and Sen (2002)), thenan AE procedure can be
derived as before.

Acknowledgements

E.E. and Y.M. was supported in part by the IST Programme of the EuropeanCommunity, under
the PASCAL Network of Excellence, IST-2002-506778, by a grants no. 525/00 and 1079/04 from
the Israel Science Foundation and an IBM faculty award. The work wasdone while E.E was a
graduate student at Tel Aviv University. S.M. was partially supported by the Natural Sciences and
Engineering Research Council of Canada and by the Canada Research Chairs Program. We thank
Alex Strehl and Csaba Szepesvari for helpful discussions. This publication only reflects the authors’
views.

Appendix A. Proof of Proposition 17

In order to show the almost sure convergence of the upper and lower estimations, we follow the proof
of Bertsekas and Tsitsiklis (1996). We consider a general type ofiterative stochastic algorithms,
which is performed as follows:

Xt+1(i) = (1−αt(i))Xt(i)+αt(i)((HXt)(i)+wt(i)+ut(i)),

wherewt is a bounded random variable with zero expectation and eachH is a pseudo contraction
mapping (See Bertsekas and Tsitsiklis, 1996, for details).

Definition 25 An iterative stochastic algorithm is well behaved if:

1. The step sizeαt(i) satisfies (1)∑∞
t=0 αt(i) = ∞, (2) ∑∞

t=0 α2
t (i) < ∞ and (3)αt(i) ∈ (0,1).

2. There exists a constant A that bounds wt(i) for any history Ft , i.e.,∀t, i : |wt(i)| ≤ A.

3. There existsγ ∈ [0,1) and a vector X∗ such that for any X we have||HX−X∗|| ≤ γ||X−X∗||,
where|| · || is any norm.

4. There exists a nonnegative random sequenceθt , that converges to zero with probability 1, and
is such that

∀i, t |ut(i)| ≤ θt(||Xt ||+1)

We first note that the Q-learning algorithm satisfies the first three criteria and the fourth criteria
holds trivially sinceut = 0, thus its convergence follows if all state-action pairs are tried infinitely
often (see Proposition 5.6 in Bertsekas and Tsitsiklis, 1996). The upper estimate has an additional
noise term,ut . If we show that it satisfies the fourth requirement, then the convergencewill follow.

1103

EVEN-DAR, MANNOR AND MANSOUR

Lemma 26 The upper estimation algorithm is well behaved.

Proof In the convergence proof of Q-learning, it was shown that requirements 1–3 are satisfied,

this implies that the upper estimates satisfies them as well. Now we letut = θt = c
√

ln(#(s,a,t))
#(s,a,t) Vmax.

It follows thatθt converges to zero, thus

|ut(i)| = θt ≤ θt(||Xt ||+1).

Similar result holds for the lower estimate as well.

References

W. A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue policies for differen-
tiated services. InINFOCOM, 2000. (To appear in J. of Algorithms).

D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltonian circuitsand matchings.
Journal of Computer and System Sciences, 18:155–193, 1979.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in arigged casino: The adver-
sarial multi-armed bandit problem. InProc. 36th Annual Symposium on Foundations of Computer
Science, pages 322–331. IEEE Computer Society Press, 1995.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The non-stochastic multi-armed bandit
problem.SIAM J. on Computing, 32(1):48–77, 2002.

D. A. Berry and B. Fristedt.Bandit Problems. Chapman and Hall, 1985.

D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, 1995.

D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

V. S. Borkar and S.P Meyn. The O.D.E. method for convergence of stochastic approximation and
reinforcement learning.SIAM J. Control Optim., 38(2):447–469, 2000.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning.Journal of Machine Learning Re-
search, 5:1–25, 2003. (A preliminary version appeared in the Fourteenth Annual Conference on
Computation Learning Theory (2001), 589-604.).

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

R. Howard.Dynamic programming and Markov decision processes. MIT press, 1960.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. InPro-
ceedings of the Nineteenth International Conference on Machine Learning, pages 267–274. Mor-
gan Kaufmann, 2002.

1104

ACTION ELIMINATION FOR REINFORCEMENTLEARNING

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine Learn-
ing, 49(2-3):209–232, 2002. (A preliminary version appeared in ICML (1998), 260-268.).

M. Kearns and S. P. Singh. Finite-sample convergence rates for Q-learning and indirect algorithms.
In Neural Information Processing Systems 10, pages 996–1002, 1998.

A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, andM. Sviridenko. Buffer over-
flow management in QoS switches.SIAM J. on Computing, 33(3):563–583, 2004. (A preliminary
version appeared in ACM Symposium on Theory of Computing (2001), 520-529.).

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, 1985.

J. MacQueen. A modified dynamic programming method for Markov decision problems.J. Math.
Anal. Appl., 14:38–43, 1966.

S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the multi-armed bandit
problem. Journal of Machine Learning Research, 5:623–648, 2004. (A preliminary version
appeared in the Sixteenth Annual Conference on Computation Learning Theory (2003), 418-
432.).

D. Ormoneit and S. Sen. Kernel-based reinforcement learning.Machine Learning, 49(2-3):161–
178, 2002.

M. Puterman.Markov Decision Processes. Wiley-Interscience, 1994.

H. Robbins. Some aspects of sequential design of experiments.Bull. Amer. Math. Soc., 55:527–535,
1952.

S. P. Singh and R. C. Yee. An upper bound on the loss from approximate optimal-value functions.
Machine Learning, 16(3):227–233, 1994.

R. Sutton and A. Barto.Reinforcement Learning. 1998.

Cs. Szepesvri and R. Munos. Finite time bounds for sampling based fitted value iteration. In
Proceedings of the 22nd International Conference on Machine Learning (ICML), page 881886,
2005.

C. Watkins.Learning from Delayed Rewards. PhD thesis, Cambridge University, 1989.

1105

Journal of Machine Learning Research 7 (2006) 1107–1133 Submitted 11/05; Published 06/06

Step Size Adaptation in Reproducing Kernel Hilbert Space

S.V.N. Vishwanathan SVN.VISHWANATHAN @NICTA .COM.AU

Nicol N. Schraudolph NIC.SCHRAUDOLPH@NICTA .COM.AU

Alex J. Smola ALEX .SMOLA @NICTA .COM.AU

Statistical Machine Learning Program
National ICT Australia
Locked Bag 8001
Canberra ACT 2601, Australia

Research School of Information Sciences and Engineering
Australian National University
Canberra ACT 0200, Australia

Editor: Thorsten Joachims

Abstract
This paper presents an online support vector machine (SVM) that uses the stochastic meta-descent
(SMD) algorithm to adapt its step size automatically. We formulate the online learning problem as
a stochastic gradient descent in reproducing kernel Hilbert space (RKHS) and translate SMD to the
nonparametric setting, where its gradient trace parameteris no longer a coefficient vector but an
element of the RKHS. We derive efficient updates that allow usto perform the step size adaptation
in linear time. We apply the online SVM framework to a varietyof loss functions, and in particular
show how to handle structured output spaces and achieve efficient online multiclass classification.
Experiments show that our algorithm outperforms more primitive methods for setting the gradient
step size.

Keywords: online SVM, stochastic meta-descent, structured output spaces

1. Introduction

Stochastic (“online”) gradient methods incrementally update their hypothesis by descending a sto-
chastic approximation of the gradient computed from just the current observation. Although they
require more iterations to converge than traditional deterministic (“batch”) techniques, each iteration
is faster as there is no need to go through the entire training set to measure thecurrent gradient. For
large, redundant data sets, or continuing (potentially non-stationary) streams of data, stochastic
gradient thus outperforms classical optimization methods. Much work in this area centers on the
key issue of choosing an appropriate time-dependent gradient step sizeηt .

Though support vector machines (SVMs) were originally conceived asbatch techniques with
time complexity quadratic to cubic in the training set size, recent years have seen the development
of online variants (Herbster, 2001; Kivinen et al., 2004; Crammer et al., 2004; Weston et al., 2005;
Kim et al., 2005) which overcome this limitation. To date, online kernel methods based on stochastic
gradient descent (Kivinen et al., 2004; Kim et al., 2005) have either held ηt constant, or let it decay
according to some fixed schedule. Here we adopt the more sophisticated approach ofstochastic

c©2006 S. V. N. Vishwanathan, Nicol N. Schraudolph, and Alex J.Smola.

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

meta-descent(SMD): performing a simultaneous stochastic gradient descent on the stepsize itself.
Translating this into the kernel framework yields a fast online optimization methodfor SVMs.

Outline. In Section 2 we review gradient-based step size adaptation algorithms so as tomotivate
our subsequent derivation of SMD. We briefly survey kernel-basedonline methods in Section 3,
then present the online SVM algorithm with a systematic, unified view of variousloss functions
(including losses on structured label domains) in Section 4. Section 5 then introduces online SVMD,
our novel application of SMD to the online SVM. Here we also derive linear-time incremental
updates and standard SVM extensions for SVMD, and discuss issues ofbuffer management and
time complexity. Experiments comparing SVMD to the online SVM are then presentedin Section 6,
followed by a discussion.

2. Stochastic Meta-Descent

The SMD algorithm (Schraudolph, 1999, 2002) for gradient step size adaptation can considerably
accelerate the convergence of stochastic gradient descent; its applications to date include indepen-
dent component analysis (Schraudolph and Giannakopoulos, 2000),nonlinear principal component
analysis in computational fluid dynamics (Milano, 2002), visual tracking of articulated objects (Bray
et al., 2005, 2006), policy gradient reinforcement learning (Schraudolph et al., 2006), and training
of conditional random fields (Vishwanathan et al., 2006).

2.1 Gradient-Based Step Size Adaptation

Let V be a vector space,θ ∈V a parameter vector, andJ : V → R the objective function which we
would like to optimize. We assume thatJ is twice differentiable almost1 everywhere. Denote by
Jt :V→R the stochastic approximation of the objective function at timet. Our goal is to findθ such
thatEt [Jt(θ)] is minimized. An adaptive version of stochastic gradient descent works bysetting

θt+1 = θt −ηt ·gt , where gt = ∂θt Jt(θt), (1)

using∂θt as a shorthand for∂∂θ

∣

∣

∣

θ=θt

. Unlike conventional gradient descent algorithms whereηt is

scalar, hereηt ∈ R
n
+, and · denotes component-wise (Hadamard) multiplication. In other words,

each coordinate ofθ has its own positive step size that serves as a diagonal conditioner. Sincewe
need to choose suitable values we shall adaptη by a simultaneous meta-level gradient descent.

A straightforward implementation of this idea is thedelta-deltaalgorithm (Sutton, 1981; Jacobs,
1988), which updatesη via

ηt+1 = ηt −µ∂ηt Jt+1(θt+1)

= ηt −µ∂θt+1Jt+1(θt+1) ·∂ηt θt+1

= ηt +µgt+1 ·gt , (2)

whereµ∈R is a scalar meta-step size. In a nutshell, step sizes are decreased where anegative auto-
correlation of the gradient indicates oscillation about a local minimum, and increased otherwise.
Unfortunately such a simplistic approach has several problems:

1. Since gradient descent implements a discrete approximation to an infinitesimal (differential) process in any case, we
can in practice ignore non-differentiability ofJ on a set of measure zero, as long as our implementation of the gradient
function returns a subgradient at those points.

1108

STEP SIZE ADAPTATION IN RKHS

t0

(a)

(b)t0(c)

(d)

θt

ηt

θt

ηt

Figure 1: Dependence of a parameterθ on its step sizeη at timet0. (a) Future parameter values
depend on the current step size; the dependence diminishes over time due tothe ongoing
adaptation ofη. (b) Standard step size adaptation methods capture only the immediate
effect, even when (c) past gradients are exponentially smoothed. (d) SMD, by contrast,
iteratively models the dependence of the current parameter on an exponentially weighted
past history of step sizes, thereby capturing long-range effects. Figure adapted from Bray
et al. (2005).

Firstly, (2) allows step sizes to become negative. This can be avoided by updatingη multiplica-
tively, e.g.via exponentiated gradientdescent (Kivinen and Warmuth, 1997).

Secondly, delta-delta’s cure is worse than the disease: individual step sizes are meant to address
ill-conditioning, but (2) actually squares the condition number. The auto-correlation of the gradient
must therefore be normalized before it can be used. A popular (if extreme) form of normalization
is to consider only the sign of the auto-correlation. Such sign-based methods (Jacobs, 1988; Tol-
lenaere, 1990; Silva and Almeida, 1990; Riedmiller and Braun, 1993), however, do not cope well
with stochastic approximation of the gradient since the non-linear sign function does not commute
with the expectation operator (Almeida et al., 1999). More recent algorithms (Harmon and Baird,
1996; Almeida et al., 1999; Schraudolph, 1999, 2002) therefore use multiplicative (hence linear)
normalization factors to condition the step size update.

Finally, (2) fails to take into account that changes in step size not only affect the current, but
also future parameter updates (see Figure 1). In recognition of this shortcoming,gt in (2) is usually
replaced with an exponential running average of past gradients (Jacobs, 1988; Tollenaere, 1990;
Silva and Almeida, 1990; Riedmiller and Braun, 1993; Almeida et al., 1999). Although such ad-
hoc smoothing does improve performance, it does not properly capture long-term dependencies, the
average still being one of immediate, single-step effects (Figure 1c).

By contrast, Sutton (1992) modeled the long-term effect of step sizes on future parameter values
in a linear system by carrying the relevant partials forward in time, and found that the resulting step
size adaptation can outperform a less than perfectly matched Kalman filter. Stochastic meta-descent
(SMD) extends this approach to arbitrary twice-differentiable nonlinear systems, takes into account
the full Hessian instead of just the diagonal, and applies an exponential decay to the partials being
carried forward (Figure 1d).

2.2 SMD Algorithm

SMD employs two modifications to address the problems described above: it adjusts step sizes in
log-space, and optimizes over an exponentially decaying trace of gradients. Thus logη is updated

1109

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

as follows:

logηt+1 = logηt −µ
t

∑
i=0

λi∂logηt−i J(θt+1)

= logηt −µ∂θt+1J(θt+1) ·
t

∑
i=0

λi∂logηt−i θt+1

= logηt −µgt+1 ·vt+1, (3)

where the vectorv ∈V characterizes the long-term dependence of the system parameters on their
past step sizes over a time scale governed by the decay factor 0≤λ≤1.

Note that virtually the same derivation holds if — as will be the case in Section 5 — we wish to
adapt only a single, scalar step sizeηt for all system parameters; the only change necessary is to
replace the Hadamard product in (3) with an inner product.

Element-wise exponentiation of (3) yields the desired multiplicative update

ηt+1 = ηt ·exp(−µgt+1 ·vt+1)

≈ ηt ·max(1
2,1−µgt+1 ·vt+1), (4)

where the approximation eliminates an expensive exponentiation operation for each step size update.
The particular bi-linearization we use,eu≈max(1

2,1+u),

• matches the exponential in value and first derivative atu = 0, and thus becomes accurate in
the limit of smallµ;

• ensures that all elements ofη remain strictly positive; and

• improves robustness by reducing the effect of outliers:u≫ 0 leads to linear2 rather than
exponential growth in step sizes, while foru≪ 0 they are at most cut in half.

The choice of12 as the lower bound stems from the fact that a gradient descent converging on a
minimum of a differentiable function can overshoot that minimum by at most a factor of two, since
otherwise it would by definition be divergent. A reduction by at most1

2 in step size thus suffices to
maintain stability from one iteration to the next.

To compute the gradient tracev efficiently, we expandθt+1 in terms of its recursive definition
(1):

vt+1 :=
t

∑
i=0

λi∂logηt−iθt+1 (5)

=
t

∑
i=0

λi∂logηt−iθt −
t

∑
i=0

λi∂logηt−i (ηt ·gt)

≈ λvt −ηt ·gt −ηt ·

[

∂θt gt

t

∑
i=0

λi∂logηt−i θt

]

Here we have used∂logηt θt = 0, and approximated

t

∑
i=1

λi∂logηt−i logηt ≈ 0 (6)

2. A quadratic approximation with similar properties would beeu ≈

{ 1
2 u2 +u+1 if u >−1;

1
2 otherwise.

1110

STEP SIZE ADAPTATION IN RKHS

which amounts to stating that the step size adaptation (in log space) must be in equilibrium at the
time scale determined byλ. Noting that∂θt gt is the HessianHt of Jt(θt), we arrive at the simple
iterative update

vt+1 = λvt −ηt · (gt +λHtvt). (7)

Since the initial parametersθ0 do not depend on any step sizes,v0 = 0.

2.3 Efficiency and Conditioning

Although the HessianH of a system withn parameters hasO(n2) entries, efficient indirect meth-
ods from algorithmic differentiation are available to compute its product with an arbitrary vector
within the same time as 2–3 gradient evaluations (Pearlmutter, 1994; Griewank,2000). For non-
convex systems (where positive semi-definiteness of the Hessian cannotbe guaranteed) SMD uses
an extended Gauss-Newton approximation ofH for which a similar but even faster technique exists
(Schraudolph, 2002). An iteration of SMD — comprising (1), (4), and (7) — thus consumes less
than 3 times as many floating-point operations as simple gradient descent.

Iterating (7) while holdingθ andη constant would drivev towards the fixpoint

v→−[λH +(1−λ)diag(1/η)]−1g, (8)

which is a Levenberg-Marquardt gradient step with a trust region conditioned byη and scaled by
1/(1−λ). Forλ = 1 this reduces to a Newton (resp. Gauss-Newton) step, which converges rapidly
but may become unstable in regions of low curvature. In practice, we find that SMD performs best
whenλ is pushed as close to 1 as possible without losing stability.

Note that in this regime, theg ·v term in (4) is approximately affine invariant, with the inverse
curvature matrix in (8) compensating for the scale of the gradient auto-correlation. This means
that the meta-step sizeµ is relatively problem-independent; in experiments we typically use values
within an order of magnitude ofµ= 0.1. Likewise, well-adapted step sizes (η ·g≈H−1g) will con-
dition the update not only ofθ (1) but also ofv (7). Thus SMD maintains an adaptive conditioning
of all its updates, provided it is given reasonable initial step sizesη0 to begin with.

3. Survey of Online Kernel Methods

Theperceptronalgorithm (Rosenblatt, 1958) is arguably one of the simplest online learning algo-
rithms. Given a set of labeled instances{(x1,y1),(x2,y2) . . .(xm,ym)} ⊂ X ×Y whereX ⊆R

d and
yi ∈ {±1} the algorithm starts with an initial weight vectorθ = 0. It then predicts the label of a
new instancex to beŷ = sign(〈θ,x〉). If ŷ differs from the true labely then the vectorθ is updated
asθ = θ +yx. This is repeated until all points are well classified. The following result bounds the
number of mistakes made by the perceptron algorithm (Freund and Schapire, 1999, Theorem 1):

Theorem 1 Let{(x1,y1),(x2,y2), . . .(xm,ym)} be a sequence of labeled examples with||xi || ≤ R.
Letθ be any vector with||θ||= 1 and letγ > 0. Define the deviation of each example as

di = max(0,γ−yi 〈θ,xi〉), (9)

and let D=
√

∑i d
2
i . Then the number of mistakes of the perceptron algorithm on this sequenceis

bounded by(R+D
γ)2.

1111

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

This generalizes the original result (Block, 1962; Novikoff, 1962; Minsky and Papert, 1969) for
the case when the points are strictly separable,i.e., when there exists aθ such that||θ|| = 1 and
yi 〈θ,xi〉 ≥ γ for all (xi ,yi).

The so-calledkernel trickhas recently gained popularity in machine learning (Schölkopf and
Smola, 2002). As long as all operations of an algorithm can be expressedwith inner products, the
kernel trick can used tolift the algorithm to a higher-dimensionalfeature space: The inner product
in the feature space produced by the mappingφ : X → H is represented by akernel k(x,x′) =
〈φ(x),φ(x′)〉H . We can now drop the conditionX ⊆R

d but instead require thatH be areproducing
kernel Hilbert space(RKHS).

To kernelize the perceptron algorithm, we first useφ to map the data into feature space, and
observe that the weight vector can be expressed asθ = ∑ j∈J y jφ(x j), whereJ is the set of indices
where mistakes occurred. We can now compute〈θ,xi〉= ∑ j∈J y j

〈

φ(x j),φ(xi)
〉

= ∑ j∈J y jk(x j ,xi),
replacing explicit computation ofφ with kernel evaluations.

The main drawback of the perceptron algorithm is that it does not maximize the margin of
separation between the members of different classes. Frieß et al. (1998) address this issue with
their closely relatedkernel adatron(KA). The KA algorithm uses a weight vectorθ = ∑i αiyiφ(xi).
Initially all αi are set to 1. For a new instance(x,y) we computez = 1− y∑i αiyiK(xi ,x), and
update the correspondingα asα := α + ηz if α + ηz > 0; otherwise we setα = 0.3 Frieß et al.
(1998) show that if the data is separable, this algorithm converges to the maximum margin solution
in a finite number of iterations, and that the error rate decreases exponentially with the number of
iterations.

To address the case where the data is not separable in feature space, Freund and Schapire (1999)
work with a kernelized perceptron but use the online-to-batch conversion procedure of Helmbold
and Warmuth (1995) to derive theirvoted perceptronalgorithm. Essentially, every weight vector
generated by the kernel perceptron is retained, and the decision rule is amajority vote amongst the
predictions generated by these weight vectors. They prove the followingmistake bound:

Theorem 2 (Freund and Schapire, 1999, Corollary 1) Let{(x1,y1),(x2,y2), . . .(xm,ym)} be a
sequence of training samples and(xm+1,ym+1) a test sample, all taken i.i.d. at random. Let
R= max1≤i≤m+1 ||xi ||. For ||θ||= 1 andγ > 0, let

Dθ,γ =

√

m+1

∑
i=1

(max(0,γ−yi 〈θ,xi〉)2. (10)

Then the probability (under resampling) that the voted perceptron algorithm does not predict ym+1

on test samplexm+1 after one pass through the sequence of training samples is at most

2
m+1

E

[

inf
||θ||=1;γ>0

(

R+Dθ,γ

γ

)2
]

,

(11)

whereE denotes the expectation under resampling.

Another online algorithm which aims to maximize the margin of separation between classes is
LASVM (Bordes et al., 2005). This follows a line ofbudget(kernel Perceptron) algorithms which
sport a removal step (Crammer et al., 2004; Weston et al., 2005). Briefly,LASVM tries to solve the

3. In the interest of a clear exposition we ignore theoffset bhere.

1112

STEP SIZE ADAPTATION IN RKHS

SVM quadratic programming (QP) problem in an online manner. If the new instance violates the
KKT conditions then it is added to the so-calledactive setduring thePROCESSstep. AREPROCESS

step is run to identify points in the active set whose coefficients are constrained at either their upper
or lower bound; such points are then discarded from the active set. Bordes et al. (2005) have shown
that in the limit LASVM solves the SVM QP problem, although no rates of convergence or mistake
bounds have been proven.

The ballseptronis another variant of the perceptron algorithm which takes the margin of sep-
aration between classes into account (Shalev-Shwartz and Singer, 2005). In contrast to the classic
perceptron, the ballseptron updates its weight vector even for well-classified instances if they are
close to the decision boundary. More precisely, if a ballB(x, r) of radiusr around the instance
x intersects the decision boundary, the worst-violating point inB is used as a pseudo-instance for
updating the weight vector. Shalev-Shwartz and Singer (2005) show that appropriate choice ofr
yields essentially the same bound as Theorem 1 above; this bound can be tightened further when
the number of margin errors is strictly positive.

Another notable effort to derive a margin-based online learning algorithmis ALMA p, theap-
proximate large margin algorithmw.r.t. normp (Gentile, 2001). Following Gentile and Littlestone
(1999), the notion of a margin is extended top-norms: Letx′ = x/||x||p, and||θ||q ≤ 1, where
1
p + 1

q = 1. Then thep-margin of (x,y) w.r.t. θ is defined asyi 〈θ,x′〉. Like other perceptron-
inspired algorithms, ALMAp does not perform an update if the current weight vector classifies the
current instance with a largep-margin. If a margin violation occurs, however, the algorithm per-
forms ap-norm perceptron update, then projects the obtainedθ to theq-norm unit ball to maintain
the constraint||θ||q≤ 1. ALMA p is one of the few percpetron-derived online algorithms we know
of which modify their learning rate: Itsp-norm perceptron update step scales with the number of
corrections which have occurred so far. ALMAp can be kernelized only forp = 2.

Many large-margin algorithms (Li and Long, 2002; Crammer and Singer, 2003; Herbster, 2001)
are based on the same general principle: They explicitly maximize the margin andupdate their
weights only when a margin violation occurs. These violating instances are inserted into the ker-
nel expansion with a suitable coefficient. To avoid potential over-fitting andreduce computational
complexity, these algorithms either implement a removal step or work with a fixed-size buffer. The
online SVM (Kivinen et al., 2004) is one such algorithm.

4. Online SVM

We now present the online SVM (akaNORMA) algorithm (Kivinen et al., 2004) from a loss func-
tion and regularization point of view, with additions and modifications for logisticregression, nov-
elty detection, multiclass classification, and graph-structured label domains. This sets the scene for
our application of SMD to the online SVM in Section 5. While many of the loss functions dis-
cussed below have been proposed before, we present them here in acommon, unifying framework
that cleanly separates the roles of loss function and optimization algorithm.

4.1 Optimization Problem

Let X be the space of observations, andY the space of labels. We use|Y | to denote the size ofY .
Given a sequence{(xi ,yi)|xi ∈ X ,yi ∈ Y } of examples and a loss functionl : X ×Y ×H →R, our

1113

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

goal is to minimize the regularized risk

J(f) =
1
m

m

∑
i=1

l(xi ,yi , f)+
c
2
‖ f‖2H , (12)

whereH is a reproducing kernel Hilbert space (RKHS) of functions onX ×Y . Its defining kernel
is denoted byk : (X ×Y)2→ R, which satisfies〈 f ,k((x,y), ·)〉H = f (x,y) for all f ∈ H . In a de-
parture from tradition, but keeping in line with Altun et al. (2004); Tsochantaridis et al. (2004); Cai
and Hofmann (2004), we let our kernel depend on the labels as well as the observations. Finally, we
make the assumption thatl only depends onf via its evaluations atf (xi ,yi) and thatl is piecewise
differentiable.

By the reproducing property ofH we can compute derivatives of the evaluation functional. That
is,

∂ f f (x,y) = ∂ f 〈 f ,k((x,y), ·)〉H = k((x,y), ·). (13)

Sincel depends onf only via its evaluations we can see that∂ f l(x,y, f)∈ H , and more specifically

∂ f l(x,y, f) ∈ span{k((x, ỹ), ·) whereỹ∈ Y }. (14)

Let (xt ,yt) denote the example presented to the online algorithm at time instancet. Using the
stochastic approximation ofJ(f) at timet:

Jt(f) := l(xt ,yt , f)+
c
2
‖ f‖2H (15)

and setting

gt := ∂ f Jt(ft) = ∂ f l(xt ,yt , ft)+c ft , (16)

we obtain the following online learning algorithm:

Algorithm 1 Online learning (adaptive step size)

1. Initialize f0 = 0
2. Repeat

(a) Draw data sample(xt ,yt)
(b) Adapt step sizeηt

(c) Updateft+1← ft −ηtgt

Practical considerations are how to implement steps 2(b) and 2(c) efficiently. We will discuss
2(c) below. Step 2(b), which primarily distinguishes the present paper from the previous work of
Kivinen et al. (2004), is discussed in Section 5.

Observe that, so far, our discussion of the online update algorithm is independent of the partic-
ular loss function used. In other words, to apply our method to a new setting we simply need to
compute the corresponding loss function and its gradient. We discuss particular examples of loss
functions and their gradients in the next section.

1114

STEP SIZE ADAPTATION IN RKHS

4.2 Loss Functions

A multitude of loss functions are commonly used to derive seemingly different kernel methods.
This often blurs the similarities as well as subtle differences between these methods. In this section,
we discuss some commonly used loss functions and put them in perspective.We begin with loss
functions on unstructured output domains, then proceed to to cases where the label spaceY is
structured. Since our online update depends on it, we will state the gradientof all loss functions we
present below, and give its kernel expansion coefficients. For piecewise linear loss functions, we
employ one-sided derivatives at the points where they are not differentiable —cf. Footnote 1.

4.2.1 LOSSFUNCTIONS ONUNSTRUCTUREDOUTPUT DOMAINS

Binary Classification uses the hinge or soft margin loss (Bennett and Mangasarian, 1992; Cortes
and Vapnik, 1995)

l(x,y, f) = max(0,1−y f(x)) (17)

whereH is defined onX alone. We have

∂ f l(x,y, f) =

{

0 if y f(x)≥ 1

−yk(x, ·) otherwise
(18)

Multiclass Classification employs a definition of the margin arising from log-likelihood ratios
(Crammer and Singer, 2000). This leads to

l(x,y, f) = max(0,1+max
ỹ6=y

f (x, ỹ)− f (x,y)) (19)

(20)
∂ f l(x,y, f) =

{

0 if f (x,y)≥ 1+ f (x,y∗)

k((x,y∗), ·)−k((x,y), ·) otherwise

Here we definedy∗ to be the maximizer of the maxỹ6=y operation. If severaly∗ exist we pick one of
them arbitrarily,e.g.by dictionary order.

Logistic Regression works by minimizing the negative log-likelihood. This loss function is used
in Gaussian process classification (MacKay, 1998). For binary classification this yields

l(x,y, f) = log(1+exp(−y f(x))) (21)

∂ f l(x,y, f) =−yk(x, ·)
1

1+exp(y f(x))
(22)

Again the RKHSH is defined onX only.

Multiclass Logistic Regression works similarly to the example above. The only difference is that
the log-likelihood arises from a conditionally multinomial model (MacKay, 1998). This means that

l(x,y, f) =− f (x,y)+ log ∑
ỹ∈Y

exp f (x, ỹ) (23)

∂ f l(x,y, f) = ∑
ỹ∈Y

k((x, ỹ), ·)[p(ỹ|x, f)−δy,ỹ], (24)

where we used p(y|x, f) =
ef (x,y)

∑ỹ∈Y ef (x,ỹ)
. (25)

1115

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

Novelty Detection uses a trimmed version of the log-likelihood as a loss function. In practice this
means that labels are ignored and the one-class margin needs to exceed 1 (Scḧolkopf et al., 2001).
This leads to

l(x,y, f) = max(0,1− f (x)) (26)

∂ f l(x,y, f) =

{

0 if f (x)≥ 1

−k(x, ·) otherwise
(27)

4.2.2 LOSSFUNCTIONS ONSTRUCTUREDLABEL DOMAINS

In many applications the output domain has an inherent structure. For example, document cat-
egorization deals with the problem of assigning a set of documents to a set ofpre-defined topic
hierarchies or taxonomies. Consider a typical taxonomy shown in Figure 2 which is based on a sub-
set of the open directory project (http://www.dmoz.org/). If a document describing CDROMs
is classified under hard disk drives (‘HDD’), intuitively the loss should be smaller than when the
same document is classified under ‘Cables’. Roughly speaking, the valueof the loss function should
depend on the length of the shortest path connecting the actual label to the predicted labeli.e., the
loss function should respect the structure of the output space (Tsochantaridis et al., 2004).C o m p u t e r s

H a r d w a r e S o f t w a r e
S t o r a g e C a b l e s

H D D C D R O M
F r e e w a r e S h a r e w a r eO p e n s o u r c e

Figure 2: A taxonomy based on the open directory project.

To formalize our intuition, we need to introduce some notation. A weighted graphG= (V,E) is
defined by a set of nodesV and edgesE⊆V×V, such that, each edge(vi ,v j)∈E is assigned a non-
negative weightw(vi ,v j) ∈R

+. A path fromv1 ∈V to vn ∈V is a sequence of nodesv1v2 . . .vn such
that(vi ,vi+1) ∈ E. The weight of a path is the sum of the weights on the edges. For an undirected
graph,(vi ,v j) ∈ E =⇒ (v j ,vi) ∈ E∧w(vi ,v j) = w(v j ,vi).

1116

STEP SIZE ADAPTATION IN RKHS

A graph is said to be connected if every pair of nodes in the graph are connected by a path. In
the sequel we will deal exclusively with connected graphs, and let∆G(vi ,v j) denote the weight of
the shortest (i.e., minimum weight) path fromvi to v j . If the output labels are nodes in a graphG,
the following loss function takes the structure ofG into account:

l(x,y, f) = max{0,max
ỹ6=y

[∆G(ỹ,y)+ f (x, ỹ)]− f (x,y)}. (28)

This loss requires that the output labels ˜y which are “far away” from the actual labely (on the
graph) must be classified with a larger margin while nearby labels are allowedto be classified with
a smaller margin. More general notions of distance, including kernels on thenodes of the graph,
can also be used here instead of the shortest path∆G(ỹ,y).

Analogous to (24), by definingy∗ to be the maximizer of the maxỹ6=y operation we can write the
gradient of the loss as:

∂ f l(x,y, f) =

{

0 if f (x,y)≥ ∆(y,y∗)+ f (x,y∗)

k((x,y∗), ·)−k((x,y), ·) otherwise
(29)

The multiclass loss (19) is a special case of graph-based loss (28): consider a simple two-level
tree in which each label is a child of the root node, and every edge has a weight of 1

2. In this graph,
any two labelsy 6= ỹwill have∆(y, ỹ) = 1, and thus (28) reduces to (19). We will employ a similar but
multi-level tree-structured loss in our experiments on hierarchical document categorization (Section
6.4).

4.2.3 LOSSFUNCTION SUMMARY AND EXPANSION COEFFICIENTS

Note that the gradient always has the form

∂ f l(xt ,yt , ft) =: 〈ξt ,k((xt , ·), ·)〉 (30)

whereξ denotes theexpansion coefficient(s)— more than one in the multiclass and structured label
domain cases — arising from the derivative of the loss at timet.

Table 1 summarizes the tasks, loss functions, and expansion coefficients we have considered
above. Similar derivations can be found forε-insensitive regression, Huber’s robust regression, or
LMS problems.

4.3 Coefficient Updates

Since the online update in step 2(c) of Algorithm 1 is not particularly useful inHilbert space, we
now rephrase it in terms of kernel function expansions. This extends and complements the reasoning
of Kivinen et al. (2004) as applied to the various loss functions of the previous section. From (15)
it follows thatgt = ∂ f l(xt ,yt , ft)+c ft and consequently

ft+1 = ft −ηt [∂ f l(xt ,yt , ft)+c ft]

= (1−ηtc) ft −ηt∂ f l(xt ,yt , ft). (31)

Using the initializationf1 = 0 this implies that

ft+1(·) =
t

∑
i=1

∑
y

αtiyk((xi ,y), ·). (32)

1117

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

task loss function l(xt ,yt , ft) expansion coefficient(s)ξt

Novelty
Detection

max(0,1− ft(xt)) ξt =

{

0 if ft(xt)≥ 1

−1 otherwise

Binary
Classification

max(0,1−yt ft(xt)) ξt =

{

0 if yt ft(xt)≥ 1

−yt otherwise

Multiclass max[0,1− ft(xt ,yt) ξt = 0 if ft(xt ,yt)≥ 1+ ft(xt ,y∗)

Classification +max
ỹ6=yt

ft(xt , ỹ)] ξt,yt =−1,ξt,y∗ = 1 otherwise

Graph-Struct. max{0,− f (xt ,yt)+ ξt = 0 if ft(xt ,yt)≥ ∆(yt ,y∗)+ ft(xt ,y∗)

Label Domains max
ỹ6=yt

[∆(yt , ỹ)+ f (xt , ỹ)]} ξt,yt =−1,ξt,y∗ = 1 otherwise

Binary Logistic
Regression

log
(

1+e−yt ft(xt)
)

ξt =
−yt

1+eyt ft(xt))

Multiclass Log-
istic Regression

log ∑
ỹ∈Y

eft(xt ,ỹ)− ft(xt ,yt) ξt,y = p(y|xt , ft)−δy,yt

Table 1: Loss functions and gradient expansion coefficients.

With some abuse of notation we will use the same expression for the cases whereH is defined on
X rather thanX ×Y . In this setting we replace (32) by the sum overi only (with corresponding
coefficientsαti). Whenever necessary we will useαt to refer to the entire coefficient vector (or
matrix) andαti (or αtiy) will refer to the specific coefficients. Observe that we can write

gt(·) =
t

∑
i=1

∑
y

γtiyk((xi ,y), ·), (33)

where γt :=

[

cαt−1

ξ⊤t

]

. (34)

We can now rewrite the update equation (31) using only the expansion coefficients as

αt =

[

(1−ηtc)αt−1

−ηtξ
⊤
t

]

=

[

αt−1

0

]

−ηtγt . (35)

Note that conceptuallyα grows indefinitely as it acquires an additional row with each new data
sample. Practical implementations will of course retain only a buffer of past examples with nonzero
coefficients (see Section 5.5).

5. Online SVMD

We now show how the SMD framework described in Section 2 can be used to adapt the step size
for online SVMs. The updates given in Section 4 remain as before, the onlydifference being that
the step sizeηt is adapted before its value is used to updateα.

1118

STEP SIZE ADAPTATION IN RKHS

5.1 Scalar Representation

Since we are dealing with an optimization in a RKHS only scalar variants are possible.4 The scalar
equivalent of (4) is

ηt+1 = ηt max(1
2,1−µ〈gt+1,vt+1〉), (36)

whereµ is the meta-step size described in Section 2. The update forv is now given by

vt+1 = λvt −ηt(gt +λHtvt), (37)

whereHt is the Hessian of the objective function. Note that nowHt is an operator in Hilbert space.
ForJt(f) as defined in (15), this operator has a form that permits efficient computation of Htvt :

For piecewise linear loss functions, such as (18), (20), and (27), wehaveHt = cI, whereI is
the identity operator, and obtain the simple update

vt+1 = (1−ηtc)λvt −ηtgt . (38)

For other losses, note thatl only depends onf via its evaluations at(x,y). This means thatHt

differs fromcI only by a low-rank object. In particular, for logistic regression (22) we have

Ht−cI = ρ(xt)k(xt , ·)⊗k(xt , ·), (39)

whereρ(xt) := eyt ft(xt)/(1+ eyt ft(xt))2, and⊗ denotes the outer product between functions inH ,
obeying(u⊗v)w= u〈v,w〉 for u,v,w∈H . Likewise, for multiclass logistic regression (24) we have

Ht−cI = ∑
y,ỹ∈Y

ρ(xt ,y, ỹ)k((xt ,y), ·)⊗k((xt , ỹ), ·), (40)

where ρ(xt ,y, ỹ) := δy,ỹ p(ỹ|xt , ft) − p(ỹ|xt , ft) p(y|xt , ft). (41)

5.2 Expansion in Hilbert Space

The above discussion implies thatv can be expressed as a linear combination of kernel functions,
and consequently is also a member of the RKHS defined byk(·, ·). Thusv cannot be updated
explicitly, as is done in the normal SMD algorithm (Section 2). Instead we write

vt+1(·) =
t

∑
i=1

∑
y

βtiyk((xi ,y), ·) (42)

and update the coefficientsβ. This is sufficient for our purpose because we only need to be able
to compute the inner products〈g,v〉H in order to updateη. Below, we first discuss the case when
H = cI and then extend the discussion to handle the off diagonal entries.

Diagonal Hessian.Analogous to the update onα we can determine the updates onβ via

βt =

[

(1−ηtc)λβt−1

0

]

−ηtγt . (43)

Although (43) suffices in principle to implement the overall algorithm, a naive implementation of
the inner product〈gt ,vt〉 in (36) takesO(t2) time, rendering it impractical. We show in Section 5.3
how we can exploit the incremental nature of the updates to compute this inner product in linear
time.

4. The situation is different for reduced-rank expansions which are parametrized by the reduced set vectors.

1119

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

Non-diagonal Hessian.The only modification to (43) that we need to take into account is the
contribution of the off-diagonal entries ofHt to βt . A close look at (39) and (40) reveals that the
low-rank modification tocI only happens in the subspace spanned byk((xt ,y), ·) for y∈ Y . This
means that we can express

(Ht−cI)vt = ∑
ỹ∈Y

χtyk((xt , ỹ), ·), (44)

allowing us to derive the analog of (43):

βt =

[

(1−ηtc)λβt−1

0

]

−ηt(γt +λχt). (45)

In the case of binary logistic regression we have

(Ht−cI)vt = ρ(xt)vt(xt)k(xt , ·), (46)

and for multiclass logistic regression

(Ht−cI)vt = ∑
y,ỹ∈Y

ρ(xt ,y, ỹ)vt(xt ,y)k((xt , ỹ), ·). (47)

5.3 Linear-Time Incremental Updates

We now turn to computing〈gt+1,vt+1〉 in linear time by bringing it into an incremental form. For
ease of exposition we will consider the case whereHt = cI; an extension to non-diagonal Hessians
is straightforward but tedious. We use the notationf (xt , ·) to denote the vector off (xt , ỹ) for ỹ∈ Y .
Expandinggt+1 into c ft+1 +ξt+1 we can write

〈gt+1,vt+1〉= cπt+1 +ξ⊤t+1vt+1(xt+1, ·), (48)

whereπt := 〈 ft ,vt〉. The function update (31) yields

πt+1 = (1−ηtc)〈 ft ,vt+1〉−ηtξ
⊤
t vt+1(xt , ·). (49)

Thev update (37) then gives us

〈 ft ,vt+1〉= (1−ηtc)λπt −ηt 〈 ft ,gt〉 , (50)

and usinggt = c ft +ξt again we have

〈 ft ,gt〉= c‖ ft‖
2 +ξ⊤t ft(xt , ·). (51)

Finally, the squared norm off can be maintained via:

‖ ft+1‖
2 = (1−ηtc)

2‖ ft‖
2− 2ηt(1−ηtc)ξ

⊤
t ft(xt , ·) + η2

t ξ⊤t k((xt , ·),(xt , ·))ξt . (52)

The above sequence (48)–(52) of equations, including the evaluation of the associated functionals,
can be performed inO(t) time, and thus allows us to efficiently compute〈gt+1,vt+1〉.

1120

STEP SIZE ADAPTATION IN RKHS

5.4 Extensions

We will now implement in the context of SVMD two important standard extensions tothe SVM
framework: offsets, and the specification of the fraction of points which violate the margin via
the so-calledν-trick. Both of these extensions create new parameters, which we will also tune by
stochastic gradient descent, again using SMD for step size adaptation.

5.4.1 HANDLING OFFSETS

In many situations, for instance in binary classification, it is advantageous toadd an offsetb ∈R
|Y |

to the predictionf ∈ H . While the update equations described above remain unchanged, the offset
parameterb is now adapted as well:

bt+1 = bt−ηb,t ·∂bJt(ft +bt) = bt−ηb,t ·ξt . (53)

Applying the standard SMD equations (4) and (7) to the case at hand, we update the offset step sizes
ηb via

ηb,t+1 = ηb,t ·max(1
2,1−µb ξt+1 ·vb,t+1), (54)

whereµb is the meta-step size for adjustingηb, andvb is adapted as

vb,t+1 = λbvb,t −ηb,t ·ξt . (55)

Note that we can adjust the offset for each class inY individually.

5.4.2 THE ν-TRICK

The so calledν-trick allows one to pre-specify the fraction, 0< ν < 1, of points which violate the
margin. For instance, when performing novelty detection using theν-trick, the loss function that is
commonly used is

l(x,y, f) = max(0,ε− f (x))−νε. (56)

Here, the regularization parameter is fixed atc = 1, but the margin is adapted with the additional
constraintε > 0. This can easily be taken into account by adaptingε in log-space. Observe that

∂logεJt(ft) = ε∂εJt(ft) =−ε(ξt +ν), (57)

and therefore the updates forε can now be written as

εt+1 = εt exp(−ηε,t ∂logεJt(ft)) (58)

= εt exp(ηε,tεt(ξt +ν)). (59)

We now use SMD to adapt the margin step sizeηε,t :

ηε,t+1 = ηε,t max(1
2,1+µεvε,tεt(ξt +ν)), (60)

wherevε,t is updated as

vε,t+1 = λεvε,t +ηε,tεt(ξt +ν)(1+λεvε,t). (61)

This is a straightforward application of the SMD update equations (4) and (7), taking into account
thatε is adapted in log-space.

This completes our description of the online SVMD algorithm. Since it comprises arather large
number of update equations, it is non-trivial to arrange them in an appropriate order. Algorithm 2
shows the ordering which we have found most advantageous.

1121

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

Algorithm 2 Online [ν-]SVMD

1. Initialize
2. Repeat

(a) data, prediction and loss:

i. draw data sample(xt ,yt)

ii. calculate predictionft(xt)

iii. calculate lossl(xt ,yt , ft)

(b) obtain gradients:

i. calculateξt = ∂ f l(xt ,yt , ft)

ii. (42) calculatevt(xt)

iii. (48) calculate〈gt ,vt〉

iv. (34) calculateg resp.γt

(c) perform SMD:

i. (36) update step size(s)[ηε,ηb,] η
ii. (46)/(47) if H non-diag.: computeχ

iii. (43)/(45) update[ε,vε,vb,] v resp.β

(d) maintain incrementals:

i. (51) calculate〈 ft ,gt〉

ii. (50) calculate〈 ft ,vt+1〉

iii. (42) calculatevt+1(xt)

iv. (49) updateπ
v. (52) update‖ f‖2

(e) (35) update functionf resp.α

5.5 Time Complexity and Buffer Management

The time complexity of online SVMD is dominated by the cost of the kernel expansions in steps
2(a)ii, 2(b)ii, and 2(d)iii of Algorithm 2, which grows linearly with the size ofthe expansion. Since
unlimited growth would be undesirable, we maintain aleast recently used(LRU) circular buffer
which stores only the lastω non-zero expansion coefficients; each kernel expansion then takes
O(ω|Y |) time.

The online SVM (NORMA) algorithm does not require steps 2(b)ii or 2(d)iii, but still has to
employ step 2(a)ii to make a prediction, so its asymptotic time complexity isO(ω|Y |) as well.
The two algorithms thus differ in time complexity only by a constant factor; in practice we observe
online SVMD to be 3–4 times slower per iteration than NORMA.

Limiting the kernel expansion to the most recentω non-zero terms makes sense because at each
iterationt the coefficientsαi with i < t are multiplied by a factor(1−ηtc) < 1. After sufficiently
many iterationsαi will thus have shrunk to a small value whose contribution tof (xt) becomes
negligible — and likewise forβi ’s contribution tov(xt). If the loss function has a bounded gradient
(as in all cases of Table 1), then it can be shown that the truncation errorthus introduced decreases

1122

STEP SIZE ADAPTATION IN RKHS

001 101 201 301 401I t e r a t i o n s0 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0
A verageE rror MVSenilno

)0=λ(DMVS
DMVS

001 101 201 301 401I t e r a t i o n s
2−01

1−01

001

St epSi ze
MVSenilno
)0=λ(DMVS

DMVS

Figure 3: ν-SVM binary classification over a single run through the USPS data set. Current average
error (left) and step size (right) for SVMD withλ = 0.95 (solid),λ = 0 (dotted), and online
SVM with step size decay (62), usingτ = 10 (dashed).

exponentially with the number of terms retained (Kivinen et al., 2004, Proposition 1), so good
solutions can be obtained with limited buffer sizeω.

A good buffer management scheme has to deal with two conflicting demands: To the extent
that the data set is non-stationary, it is desirable to remove old items from the buffer in order to
reduce the effect of obsolete data. The truncation error, on the other hand, is reduced by using as
large a buffer as possible. Although we employ a simple LRU circular bufferto good effect here,
smarter buffer management strategies which explicitly remove the least important point based on
some well-defined criterion (Crammer et al., 2004; Weston et al., 2005; Dekel et al., 2006) could
also be adapted to work with our algorithm.

6. Experiments

We now evaluate the performance of SMD’s step size adaptation in RKHS by comparing the online
SVMD algorithm described in Section 5 above to step size adaptation based only on immediate,
single-step effects — obtained by settingλ = 0 in SVMD — and to the conventional online SVM
(akaNORMA) algorithm (Kivinen et al., 2004) with a scheduled step size decay of

ηt =
√

τ/(τ+ t) , (62)

whereτ is hand-tuned to obtain good performance. We do not use offsets here;where we employ
theν-trick (cf. Section 5.4.2), we always setηε,0 = 1, µε = µ, andλε = λ.

6.1 USPS Data Set

For our first set of experiments we use the well-known USPS data set (LeCun et al., 1989) with the
RBF kernel

k(x,x′) = exp

(

−||x−x′||2

2σ2

)

, (63)

1123

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

settingσ = 8 via cross-validation. We extend this kernel to the multiclass case via the delta kernel:

k((x,y),(x′,y′)) := k(x,x′)δyy′ . (64)

In the spirit of online learning, we train for just a single run through the data, so that no digit is
seen more than once by any algorithm. For a fair comparison, all algorithms started with the same
initial step sizeη0, and had the data presented in the same order. For implementation efficiency,we
only store the last 512 support vectors in a circular buffer.

6.1.1 BINARY CLASSIFICATION

Figure 3 shows our results for binary classification. Here, the data was split into two classes com-
prising the digits 0–4 and 5–9, respectively. We useν-SVM with ν = 0.05, η0 = 1, andµ = 1 and
plot current average error rate — that is, the total number of errors onthe training samples seen so
far divided by the iteration number — and step size. Observe that online SVMD (solid) is initially
slower to learn, but after about 20 iterations it overtakes the online SVM (dashed), and overall makes
only about half as many classification errors. The single-step version ofSVMD with λ = 0 (dotted)
has the fastest early convergence but is asymptotically inferior to SVMD proper, though still far
better than the online SVM with scheduled step size decay.

6.1.2 MULTICLASS CLASSIFICATION

Figure 4 shows our results for 10-way multiclass classification using soft margin loss withη0 = 0.1,
µ= 0.1, andc = 1/(500n), wheren is the number of training samples. Again online SVMD (solid)
makes only about half as many classification errors overall as the online SVM (dashed), with the
single-step (λ = 0) variant of SVMD (dotted) falling in between.

We found (by cross-validation) the online SVM with fixed decay schedule toperform best here
for η0 = 0.1. SVMD, on the other hand, is less dependent on a particular value ofη0 since it can
adaptively adjust its step size. In this experiment, for instance, SVMD raised η significantly above
its initial value of 0.1 — something that a predetermined decay schedule cannotdo. We generally
find the performance of online SVMD to be fairly independent of the initial step size.

6.2 Non-stationary USPS Counting Sequence

For our next set of experiments we rearrange the USPS data to create a highly non-stationary prob-
lem: we take 600 samples of each digit, then present them in the order corresponding to a 3-digit
decimal counter running twice from 000 through 999 (Figure 5). This creates pronounced non-
stationarities in the distribution of labels: ’0’ for instance is very frequent early in the sequence but
rare towards the end.

6.2.1 MULTICLASS CLASSIFICATION

Here we perform 10-way multiclass classification on the USPS counting sequence, usingν-SVMD
with soft margin loss,ν = 0.05, η0 = 1, andµ = 1. As Figure 6 shows,ν-SVMD (solid) makes
significantly fewer classification errors than the controls: Theaverageerror rate forν-SVMD over
its entire first (and only) pass through this sequence is less than 19% here. Online ν-SVM with
scheduled step size decay, on the other hand, has serious difficulty with the non-stationary nature
of our data and performs barely above change level (90% error rate); even the simple step size

1124

STEP SIZE ADAPTATION IN RKHS

001 101 201 301 401I t e r a t i o n s0 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0
A verageE rror MVSenilno

)0=λ(DMVS
DMVS

001 101 201 301 401I t e r a t i o n s
1−01

001

St epSi ze
MVSenilno
)0=λ(DMVS

DMVS

Figure 4: Online 10-way multiclass classification over a single run through theUSPS data set. Cur-
rent average error (left) and step size (right) for SVMD withλ = 0.99 (solid), λ = 0
(dotted), and online SVM with step size decay (62), usingτ = 100 (dashed).

adaptation obtained forλ = 0 clearly outperforms it. This is not surprising since a step size decay
schedule typically assumes stationarity. By contrast, the decay factor of SVMD can be adjusted
to match the time scale of non-stationarity; hereλ = 0.95 yielded the best performance. In other
experiments, we found (as one would expect)λ = 1 to work well for stationary data.

6.2.2 NOVELTY DETECTION

We also perform novelty detection with SVMD (µ = λ = 1) on the USPS counting sequence. Fig-
ure 7 (left) shows that though SVMD markedly reduces the initial step size, itdoes not anneal it
down to zero. Its ongoing reactivity is evidenced by the occurrence of spikes inηt that correspond
to identifiable events in our counting sequence. Specifically, major increases in ηt can be observed
after seeing the first non-zero digit att = 6, as the counter wraps from 19 to 20 att = 60 (and like-
wise att = 120,150,180), then att = 300,1200,1500 as the hundreds wrap from 099 to 100, 399
to 400, and 499 to 500, respectively, and finally att = 3000 as the entire sequence wraps around
from 999 to 000. Many more minor peaks and troughs occur in between, closely tracking the fractal
structure of our counting sequence.

. . .

Figure 5: To create a highly non-stationary problem, we rearranged 6000 USPS digits into a 3-digit
counting sequence, running twice from 000 to 999.

1125

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

001 101 201 301 401I t e r a t i o n s0 . 00 . 20 . 40 . 60 . 81 . 0
A verageE rror MVSenilno

)0=λ(DMVS
DMVS

001 101 201 301 401I t e r a t i o n s
2−01

1−01

001

St epSi ze
MVSenilno
)0=λ(DMVS

DMVS

Figure 6: Online 10-way multiclass classification over a single run through our USPS counting
sequence (Figure 5). Current average error (left) and step size (right) for ν-SVMD with
λ = 0.95 (solid), λ = 0 (dotted), and onlineν-SVM with step size decay (62), using
τ = 100 (dashed).

6.3 MNIST Data Set: Effect of Buffer Size

We now scale up our 10-way multiclass classification experiments to a much largerdata set: 60000
digits from MNIST. We illustrate the effect of the circular buffer size on classification accuracy,
usingλ = 1, µ = 0.01, and a polynomial kernel of degree 9. On a single run through the data, a
buffer size of 256 yields around 20% average error (Figure 7, right). This reduces to 3.9% average
error when the buffer size is increased to 4096; averaged over the last 4500 digits, the error rate is
as low as 2.9%. For comparison, batch SVM algorithms achieve (at far greater computational cost)
a generalization error rate of 1.4% on this data (Burges and Schölkopf, 1997; Scḧolkopf and Smola,
2002, p. 341).

6.4 WIPO-alpha Data Set: Tree-Structured Loss

For our experiments on document categorization we use the WIPO-alpha data set published in 2002
by the World Intellectual Property Organization (WIPO).5 The data set consists of 75250 patents
which have been classified into 4656 categories according to a standard taxonomy known asinter-
national patent classification(IPC, http://www.wipo.int/classifications/en/). Each doc-
ument is assigned labels from a four-level hierarchy comprising sections, classes, sub-classes and
groups. A typical label might be ‘D05C 1/00’ which would be read as Section D (Textiles; Paper),
class 05 (Sewing; Embroidering; Tufting), sub-class C (Embroidering; Tufting) and group 1/00
(apparatus, devices, or tools for hand embroidering).

The IPC defines an undirected taxonomy tree. A tree is a graph with no cycles —i.e.,no paths
whose start and end vertices coincide — and one node designated as the root. We use ˜y� y to denote
that ỹ is an ancestor ofy, i.e., the path fromy to the root contains ˜y.6

5. This data is now available on request from WIPO (http://www.wipo.int/).
6. Note that according to this definition, every node is an ancestor of itself;this is deliberate.

1126

STEP SIZE ADAPTATION IN RKHS

001 101 201 301 401I t e r a t i o n s2−01

1−01

001

St epSi ze
001 101 201 301 401 501I t e r a t i o n s0 . 00 . 20 . 40 . 60 . 81 . 0

A verageE rror b u f f e r s i z e 2 5 6b u f f e r s i z e 1 0 2 4b u f f e r s i z e 4 0 9 6

Figure 7: Left: The step size for novelty detection with SVMD on the USPS counting sequence
(Figure 5) closely follows the non-stationarity of the data. Right: Average error of SVMD
on the MNIST data set, for three different circular buffer sizes.

Figure 8: Average error (left) and loss (right) for SVMD over two passes (separated by vertical line)
through section D of the WIPO-alpha data set.

Following Cai and Hofmann (2004), we perform document categorizationexperiments on the
WIPO-alpha data set, using a loss function that is a special case of our graph-structured loss (28).
Here the graphG is the taxonomy tree with a weight of1

2 on every edge, and the weighted distance
between nodes is defined as (Cai and Hofmann, 2004):

∆G(y, ỹ) :=

 ∑
z:z�y
∧z�ỹ

1
2

+

 ∑
z:z�ỹ
∧z�y

1
2

. (65)

A patent could have potentially many categories, but it has exactly one primary category. Fol-
lowing Cai and Hofmann (2004) we concentrate on predicting the primary category using the title

1127

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

and claim contents. Furthermore, for the sake of reporting results, we restrict ourselves to Section
D from the data set. This section contains 1710 documents categorized into 160 categories. Prepro-
cessing of the data consisted of document parsing, tokenization, and termnormalization in order to
produce a bag-of-words representation. The bag-of-words vector is normalized to unit length. We
use a product kernel which is defined as

k((x,y),(x′,y′)) := k(x,x′)κ(y,y′). (66)

For the document vectors we use a linear dot-product kernel

k(x,x′) := x⊤x′, (67)

while for the labels we use

κ(y,y′) := ∑
z:z�y
∧z�y′

1, (68)

which counts the number of common ancestors ofy andy′. Like Cai and Hofmann (2004), we set
the regularizerc to the reciprocal of the number of data points. We use a buffer of size 1024, initial
step sizeη0 = 1, meta-step sizeµ = 0.1, and decay parameterλ = 0.999. In Figure 8 we plot the
current average error rate and graph-structured loss (28) over two passes through the data.

The WIPO-alpha data set is known to be difficult to learn (Cai and Hofmann, 2004; Tsochan-
taridis et al., 2004). Only 94 out of the 160 possible categories contain four or more examples
while as many as 34 categories have exactly one sample, which makes it extremely hard for an
online learning algorithm to predict well. Even the best offline algorithms havea reported error rate
of 57.2% (Cai and Hofmann, 2004). SVMD performs competitively on this challenging data set,
achieving an average error rate of around 75% over its first pass through the data, and 68% over its
second pass. It reduces the average loss to around 1.32 over the first pass, and 1.28 over both passes
(Figure 8). We found that further runs through the data set did not yielda significant increase in
accuracy or reduction of the loss.

7. Discussion

We presented online SVMD, an extension of the SMD step size adaptation method to the kernel
framework. Using an incremental approach to reduce a naiveO(t2) computation toO(t), we showed
how the SMD parameters can be updated efficiently even though they now reside in an RKHS. We
addressed the difficult cases of multiclass classification and logistic regression, where the Hessian
operator in RKHS includes non-diagonal terms. We also showed how SVMDcan be adapted to
deal with structured output spaces. In experiments online SVMD outperformed the conventional
online SVM (aka NORMA) algorithm with scheduled step size decay for binary and multiclass
classification, especially on a non-stationary problem. In particular, it accelerated convergence
to a good solution, which is one of the main aims of performing step size adaptation. In novelty
detection experiments we observe that SVMD is able to closely track the non-stationarity in the data
and adapt the step sizes correspondingly. With a reasonable buffer size SVMD attains competitive
performance in a single pass through the MNIST data set. On a difficult document categorization
task using the WIPO-alpha data set, SVMD performed well compared to the best offline algorithm.

1128

STEP SIZE ADAPTATION IN RKHS

Empirically we observe that in all our experiments the SVMD algorithm significantly speeds up
the convergence of the conventional online SVM algorithm. It would be interesting to obtain worst
case loss bounds for SVMD akin to those of Kivinen et al. (2004). The main technical challenge
here is that the SMD update consists of three interleaved updates, and applying a straightforward
analysis using Bregman divergences (Gentile and Littlestone, 1999; Azoury and Warmuth, 2001)
is infeasible. Established methods for proving worst case loss bounds rely on the cancellation of
telescoped terms, which works only when the step sizeη is held constant. In the case of SVMD,
however, step sizes change from iteration to iteration. Even worse, their update is governed by two
other feedback equations. A more sophisticated analysis, possibly involving second-order informa-
tion, will have to be developed to establish similar loss bounds for SVMD.

SMD is a generic method to hasten the convergence of stochastic gradient descent methods. In
combination with the kernel trick this provides a powerful learning tool. Otherkernel algorithms
which rely on stochastic gradient descent —e.g., that of Kim et al. (2005) — could also be acceler-
ated with SMD; this is a focus of our ongoing work in this area.

Acknowledgments

We would like to thank Alexandros Karatzoglou and Chang Chui for their help with early imple-
mentations, Lijuan Cai and Thomas Hofmann for making a pre-preprocessed version of the WIPO-
Alpha data set available to us, and the anonymous reviewers for ICML, NIPS, and JMLR for their
many helpful comments. National ICT Australia is funded by the Australian Government’s De-
partment of Communications, Information Technology and the Arts and the Australian Research
Council through Backing Australia’s Ability and the ICT Center of Excellence program. This work
was supported by the IST Program of the European Community, under the Pascal Network of Ex-
cellence, IST-2002-506778.

References

L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter adaptation in stochastic
optimization. In David Saad, editor,On-Line Learning in Neural Networks, Publications of the
Newton Institute, chapter 6, pages 111–134. Cambridge University Press, 1999.

Y. Altun, A. J. Smola, and T. Hofmann. Exponential families for conditional random fields. In
Uncertainty in Artificial Intelligence (UAI), pages 2–9, 2004.

K. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation with the ex-
ponential family of distributions.Machine Learning, 43(3):211–246, 2001. Special issue on
Theoretical Advances in On-line Learning, Game Theory and Boosting.

A. G. Barto and R. S. Sutton. Goal seeking components for adaptive intelligence: An initial as-
sessment. Technical Report AFWAL-TR-81-1070, Air Force Wright Aeronautical Laboratories,
Wright-Patterson AFB, Ohio 45433, USA, 1981.

K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly
inseparable sets.Optimization Methods and Software, 1:23–34, 1992.

1129

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

H. D. Block. The perceptron: A model for brain functioning.Reviews of Modern Physics, 34:
123–135, 1962. Reprinted inNeurocomputingby Anderson and Rosenfeld.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active
learning.Journal of Machine Learning Research, 6:1579–1619, September 2005.

M. Bray, E. Koller-Meier, P. M̈uller, N. N. Schraudolph, and L. Van Gool. Stochastic optimization
for high-dimensional tracking in dense range maps.IEE Proceedings Vision, Image & Signal
Processing, 152(4):501–512, 2005.

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Fast stochastic optimization for
articulated structure tracking.Image and Vision Computing, 24, in press 2006.

C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector learning
machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,Advances in Neural Information
Processing Systems 9, pages 375–381, Cambridge, MA, 1997. MIT Press.

L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. InPro-
ceedings of the Thirteenth ACM conference on Information and knowledgemanagement, pages
78–87, New York, NY, USA, 2004. ACM Press.

C. Cortes and V. Vapnik. Support vector networks.Machine Learning, 20(3):273–297, 1995.

K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass prob-
lems. In N. Cesa-Bianchi and S. Goldman, editors,Proc. Annual Conf. Computational Learning
Theory, pages 35–46, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991, January 2003.

K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget. In Sebastian Thrun,
Lawrence Saul, and Bernhard Schölkopf, editors,Advances in Neural Information Processing
Systems 16, pages 225–232, Cambridge, MA, 2004. MIT Press.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a fixed
budget. In Yair Weiss, Bernhard Schölkopf, and John Platt, editors,Advances in Neural Informa-
tion Processing Systems 18, Cambridge, MA, 2006. MIT Press.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.Machine
Learning, 37(3):277–296, 1999.

T.-T. Frieß, N. Cristianini, and C. Campbell. The kernel adatron algorithm: Afast and simple
learning procedure for support vector machines. In J. Shavlik, editor, Proc. Intl. Conf. Machine
Learning, pages 188–196. Morgan Kaufmann Publishers, 1998.

C. Gentile. A new approximate maximal margin classification algorithm.Journal of Machine
Learning Research, 2:213–242, December 2001.

C. Gentile and N. Littlestone. The robustness of the p-norm algorithms. InProc. Annual Conf.
Computational Learning Theory, pages 1–11, Santa Cruz, California, United States, 1999. ACM
Press, New York, NY.

1130

STEP SIZE ADAPTATION IN RKHS

A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

M. E. Harmon and L. C. Baird, III. Multi-player residual advantage learning with general func-
tion approximation. Technical Report WL-TR-1065, Wright Laboratory, WL/AACF, Wright-
Patterson Air Force Base, OH 45433-7308, 1996.http://www.leemon.com/papers/sim
tech/sim tech.pdf.

D. Helmbold and M. K. Warmuth. On weak learning.Journal of Computer and System Sciences,
50(3):551–573, June 1995.

M. Herbster. Learning additive models online with fast evaluating kernels.In D. P. Helmbold and
R. C. Williamson, editors,Proc. Annual Conf. Computational Learning Theory, volume 2111 of
Lecture Notes in Computer Science, pages 444–460. Springer, 2001.

R. A. Jacobs. Increased rates of convergence through learning rate adaptation.Neural Networks, 1:
295–307, 1988.

K. I. Kim, M. O. Franz, and B. Scḧolkopf. Iterative kernel principal component analysis for image
modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351–1366,
2005.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradientdescent for linear predictors.
Information and Computation, 132(1):1–64, January 1997.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.IEEE Transactions on
Signal Processing, 52(8), Aug 2004.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. J. Jackel.
Backpropagation applied to handwritten zip code recognition.Neural Computation, 1:541–551,
1989.

Y. Li and P. M. Long. The relaxed online maximum margin algorithm.Machine Learning, 46(1–3):
361–387, 2002.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor,Neural Networks
and Machine Learning, pages 133–165. Springer, Berlin, 1998.

M. Milano. Machine Learning Techniques for Flow Modeling and Control. PhD thesis, Eidgen̈os-
sische Technische Hochschule (ETH), Zürich, Switzerland, 2002.

M. Minsky and S. Papert.Perceptrons: An Introduction To Computational Geometry. MIT Press,
Cambridge, MA, 1969.

A. B. J. Novikoff. On convergence proofs on perceptrons. InProceedings of the Symposium on the
Mathematical Theory of Automata, volume 12, pages 615–622. Polytechnic Institute of Brooklyn,
1962.

B. A. Pearlmutter. Fast exact multiplication by the Hessian.Neural Computation, 6(1):147–160,
1994.

1131

V ISHWANATHAN , SCHRAUDOLPH AND SMOLA

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. InProc. International Conference on Neural Networks, pages 586–591, San
Francisco, CA, 1993. IEEE, New York.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain.Psychological Review, 65(6):386–408, 1958.

B. Scḧolkopf and A. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Scḧolkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimatingthe support
of a high-dimensional distribution.Neural Computation, 13(7):1443–1471, 2001.

N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.Neural
Computation, 14(7):1723–1738, 2002.

N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf. Artifi-
cial Neural Networks, pages 569–574, Edinburgh, Scotland, 1999. IEE, London.

N. N. Schraudolph and X. Giannakopoulos. Online independent component analysis with local
learning rate adaptation. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors,Neural Information
Processing Systems, volume 12, pages 789–795, Vancouver, Canada, 2000. MIT Press.

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast online policy gradient learning with SMD gain
vector adaptation. In Yair Weiss, Bernhard Schölkopf, and John Platt, editors,Advances in Neural
Information Processing Systems 18, Cambridge, MA, 2006. MIT Press.

S. Shalev-Shwartz and Y. Singer. A new perspective on an old perceptron algorithm. In P. Auer and
R. Meir, editors,Proc. Annual Conf. Computational Learning Theory, number 3559 in Lecture
Notes in Artificial Intelligence, pages 264 – 279, Bertinoro, Italy, June 2005. Springer-Verlag.

F. M. Silva and L. B. Almeida. Acceleration techniques for the backpropagation algorithm. In
Luı́s B. Almeida and C. J. Wellekens, editors,Neural Networks: Proc. EURASIP Workshop,
volume 412 ofLecture Notes in Computer Science, pages 110–119. Springer Verlag, 1990.

R. S. Sutton. Adaptation of learning rate parameters, 1981. URLhttp://www.cs.ualberta.ca/
∼sutton/papers/sutton-81.pdf. Appendix C of (Barto and Sutton, 1981).

R. S. Sutton. Gain adaptation beats least squares? InProceedings of the 7th Yale Workshop on
Adaptive and Learning Systems, pages 161–166, 1992. URLhttp://www.cs.ualberta.ca/
∼sutton/papers/sutton-92b.pdf.

T. Tollenaere. SuperSAB: Fast adaptive back propagation with good scaling properties.Neural
Networks, 3:561–573, 1990.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. InProc. Intl. Conf. Machine Learning, New York,
NY, USA, 2004. ACM Press. ISBN 1-58113-828-5.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark Schmidt, and Kevin Murphy. Training condi-
tional random fields with stochastic gradient methods. InProc. Intl. Conf. Machine Learning, to
appear 2006.

1132

STEP SIZE ADAPTATION IN RKHS

J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter budget. InProceedings
of International Workshop on Artificial Intelligence and Statistics, 2005.

1133

Journal of Machine Learning Research 7 (2006) 1135–1158 Submitted 2/05; Published 6/06

New Algorithms for Efficient High-Dimensional
Nonparametric Classification

Ting Liu TINGLIU @CS.CMU.EDU

Andrew W. Moore AWM @CS.CMU.EDU

Alexander Gray AGRAY@CS.CMU.EDU

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Editor: Claire Cardie

Abstract
This paper is about non-approximate acceleration of high-dimensional nonparametric operations

such ask nearest neighbor classifiers. We attempt to exploit the factthat even if we want exact
answers to nonparametric queries, we usually do not need to explicitly find the data points close to
the query, but merely need to answer questions about the properties of that set of data points. This
offers a small amount of computational leeway, and we investigate how much that leeway can be
exploited. This is applicable to many algorithms in nonparametric statistics, memory-based learn-
ing and kernel-based learning. But for clarity, this paper concentrates on purek-NN classification.
We introduce new ball-tree algorithms that on real-world data sets give accelerations from 2-fold
to 100-fold compared against highly optimized traditionalball-tree-basedk-NN . These results in-
clude data sets with up to 106 dimensions and 105 records, and demonstrate non-trivial speed-ups
while giving exact answers.

keywords: ball-tree,k-NN classification

1. Introduction

Nonparametric models have become increasingly popular in the statistics and probabilistic AI com-
munities. These models are extremely useful when the underlying distribution of the problem is
unknown except that which can be inferred from samples. One simple well-known nonparametric
classification method is called thek-nearest-neighbors ork-NN rule. Given a data setV ⊂ RD con-
tainingn points, it finds thek closest points to a query pointq ∈ RD, typically under the Euclidean
distance, and chooses the label corresponding to the majority. Despite the simplicity of this idea,
it was famously shown by Cover and Hart (Cover and Hart, 1967) that asymptotically its error is
within a factor of 2 of the optimal. Its simplicity allows it to be easily and flexibly appliedto a
variety of complex problems. It has applications in a wide range of real-world settings, in particular
pattern recognition (Duda and Hart, 1973; Draper and Smith, 1981); textcategorization (Uchimura
and Tomita, 1997); database and data mining (Guttman, 1984; Hastie and Tibshirani, 1996); in-
formation retrieval (Deerwester et al., 1990; Faloutsos and Oard, 1995; Salton and McGill, 1983);
image and multimedia search (Faloutsos et al., 1994; Pentland et al., 1994; Flickner et al., 1995;
Smeulders and Jain, 1996); machine learning (Cost and Salzberg, 1993); statistics and data anal-
ysis (Devroye and Wagner, 1982; Koivune and Kassam, 1995) and also combination with other

c©2006 Ting Liu, Andrew W. Moore and Alexander Gray.

L IU , MOORE AND GRAY

methods (Woods et al., 1997). However, these methods all remain hamperedby their computational
complexity.

Several effective solutions exist for this problem when the dimensionD is small, including Voronoi
diagrams (Preparata and Shamos, 1985), which work well for two dimensional data. Other meth-
ods are designed to work for problems with moderate dimension (i.e. tens of dimensions), such
as k-D tree (Friedman et al., 1977; Preparata and Shamos, 1985), R-tree (Guttman, 1984), and
ball-tree (Fukunaga and Narendra, 1975; Omohundro, 1991; Uhlmann, 1991; Ciaccia et al., 1997).
Among these tree structures, balltree, or metric-tree (Omohundro, 1991),represent the practical
state of the art for achieving efficiency in the largest dimension possible (Moore, 2000; Clarkson,
2002) without resorting to approximate answers. They have been used inmany different ways, in a
variety of tree search algorithms and with a variety of “cached sufficient statistics” decorating the
internal leaves, for example in Omohundro (1987); Deng and Moore (1995); Zhang et al. (1996);
Pelleg and Moore (1999); Gray and Moore (2001). However, many real-world problems are posed
with very large dimensions that are beyond the capability of such search structures to achieve sub-
linear efficiency, for example in computer vision, in which each pixel of an image represents a
dimension. Thus, the high-dimensional case is the long-standing frontier ofthe nearest-neighbor
problem.

With one exception, the proposals involving tree-based or other data structures have considered
the generic nearest-neighbor problem, not that of nearest-neighborclassificationspecifically. Many
proposals designed specifically for nearest-neighbor classification have been proposed, virtually all
of them pursuing the idea of reducing the number of training points. In most of these approaches,
such as Hart (1968), although the runtime is reduced, so is the classification accuracy. Several sim-
ilar training set reduction schemes yielding only approximate classifications have been proposed
(Fisher and Patrick, 1970; Gates, 1972; Chang, 1974; Ritter et al., 1975; Sethi, 1981; Palau and
Snapp, 1998). Our method achieves the exact classification that would beachieved by exhaus-
tive search for the nearest neighbors. A few training set reduction methods have the capability of
yielding exact classifications. Djouadi and Bouktache (1997) described both approximate and exact
methods, however a speedup of only about a factor of two over exhaustive search was reported for
the exact case, for simulated, low-dimensional data. Lee and Chae (1998) also achieves exact clas-
sifications, but only obtained a speedup over exhaustive search of about 1.7. It is in fact common
among the results reported for training set reduction methods that only 40-60% of the training points
can be discarded,i.e. no important speedups are possible with this approach when the Bayes riskis
not insignificant. Zhang and Srihari (2004) pursued a combination of training set reduction and a
tree data structure, but is an approximate method.

In this paper, we propose two new ball-tree based algorithms, which we’ll call KNS2 and KNS3.
They are both designed for binaryk-NN classification. We only focus on binary case, since there
are many binary classification problems, such as anomaly detection (Kruegel and Vigna, 2003),
drug activity detection (Komarek and Moore, 2003); and video segmentation (Qi et al., 2003). Liu
et al. (2004b) applied similar ideas to many-class classification and proposed a variation of the
k-NN algorithm. KNS2 and KNS3 share the same insight that the task ofk-nearest-neighbor clas-
sification of a queryq need not require us to explicitly find those k nearest neighbors. To be more
specific, there are three similar but in fact different questions: (a)“What are the k nearest neigh-

1136

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

bors ofq?” (b) “How many of the k nearest neighbors ofq are from the positive class?”and (c)
“Are at least t of the k nearest neighbors from the positive class?”Many researches have focused
on the first question (a), but uses of proximity queries in statistics far more frequently require (b)
and (c) types of computations. In fact, for thek-NN classification problem, when the thresholdt is
set, it is sufficient to just answer the much simpler question (c). The triangle inequality underlying
a ball-tree has the advantage of bounding the distances between data points, and can thus help us
estimate the nearest neighbors without explicitly finding them. In our paper, we test our algorithms
on 17 synthetic and real-world data sets, with dimensions ranging from 2 to 1.1×106 and number
of data points ranging from 104 to 4.9×105. We observe up to 100-fold speedup compared against
highly optimized traditional ball-tree-basedk-NN , in which the neighbors are found explicitly.

Omachi and Aso (2000) proposed a fastk-NN classifier based on a branch and bound method, and
the algorithm shares some ideas of KNS2, but it did not fully explore the ideaof doingk-NN classifi-
cation without explicitly finding thek nearest neighbor set, and the speed-up the algorithm achieved
is limited. In section 4, we address Omachi and Aso’s method in more detail.

We will first describe ball-trees and this traditional way of using them (whichwe call KNS1), which
computes problem (a). Then we will describe a new method (KNS2) for problem (b), designed for
the common setting of skewed-class data. We’ll then describe a new method (KNS3) for problem
(c), which removes the skewed-class assumption, applying to arbitrary classification problems. At
the end of Section 5 we will say a bit about the relative value of KNS2 versus KNS3.

2. Ball-Tree

A ball-tree(Fukunaga and Narendra, 1975; Omohundro, 1991; Uhlmann, 1991;Ciaccia et al., 1997;
Moore, 2000) is a binary tree where each node represents a set of points, called Points(Node). Given
a data set, theroot nodeof a ball-tree represents the full set of points in the data set. A node can be
either aleaf nodeor anon-leaf node. A leaf node explicitly contains a list of the points represented
by the node. A non-leaf node has two children nodes:Node.child1andNode.child2, where

Points(Node.child1)∩Points(Node.child2) = φ
Points(Node.child1)∪Points(Node.child2) = Points(Node)

Points are organized spatially. Each node has a distinguished point called aPivot. Depending on the
implementation, thePivot may be one of the data points, or it may be the centroid ofPoints(Node).
Each node records the maximum distance of the points it owns to its pivot. Call this the radius of
the node

Node.Radius= max
x∈Points(Node)

| Node.Pivot−x |

Nodes lower down the tree have smaller radius. This is achieved by insisting,at tree construction
time, that

x ∈ Points(Node.child1) ⇒ | x−Node.child1.Pivot | ≤ | x−Node.child2.Pivot |

x ∈ Points(Node.child2) ⇒ | x−Node.child2.Pivot | ≤ | x−Node.child1.Pivot |

1137

L IU , MOORE AND GRAY

Provided that our distance function satisfies the triangle inequality, we can bound the distance from
a query pointq to any point in any ball-tree node. Ifx ∈ Points(Node)then we know that:

|x−q| ≥ |q−Node.Pivot|−Node.Radius (1)

|x−q| ≤ |q−Node.Pivot|+Node.Radius (2)

Here is an easy proof of the inequality. According to triangle inequality, we have |x− q| ≥ |q−
Node.Pivot|− |x−Node.Pivot|. Givenx ∈ Points(Node)andNode.Radiusis the maximum distance
of the points it owns to its pivot,|x−Node.Pivot| ≤ Node.Radius, so |x−q| ≥ |q−Node.Pivot|−
Node.Radius. Similarly, we can prove Equation (2).�

A ball-tree is constructed top-down. There are several ways to construct them, and practical al-
gorithms trade off the cost of construction (it can be inefficient to beO(R2) given a data set withR
points, for example) against the tightness of the radius of the balls. Moore (2000) describes a fast
way for constructing a ball-tree appropriate for computational statistics. Ifa ball-tree is balanced,
then the construction time isO(CRlogR), whereC is the cost of a point-point distance computation
(which isO(m) if there arem dense attributes, andO(f m) if the records are sparse with only frac-
tion f of attributes taking non-zero value). Figure 1 shows a 2-dimensional dataset and the first few
levels of a ball-tree.

1a. A dataset

A

1b. Root node

B

C

1c. The 2 children

D

G

E

F

1d. The 4 grandchildren

A

B C

D EF G

1e. The internal tree
structure

Figure 1: An example of ball-tree structure

3. KNS1: Conventionalk Nearest Neighbor Search with Ball-Tree

In this paper, we call conventional ball-tree-based search (Uhlmann, 1991)KNS1. Let PSbe a set
of data points, andPS ⊆V, whereV is the training set. We begin with the following definition:

1138

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

Say thatPS consists of the k-NN ofq in V if and only if

|V |≥ k and PSare thek-NN of q in V
or

|V |< k and PS== V
(3)

We now define a recursive procedure calledBallKNN with the following inputs and output.

PSout = BallKNN(PSin,Node)

LetV be the set of points searched so far, on entry. Assume thatPSin consists of thek-NN of q in V.
This function efficiently ensures that on exit,PSout consists of thek-NN of q in V ∪Points(Node).
We define

Dsofar=

{

∞ i f | PSin |< k
maxx∈PSin | x−q | i f | PSin |== k

(4)

Dsofar is the minimum distance within which points become interesting to us.

Let DNode
minp =

{

max(|q−Node.Pivot|−Node.Radius,DNode.parent
minp) i f Node6= Root

max(|q−Node.Pivot|−Node.Radius,0) i f Node== Root
(5)

DNode
minp is the minimum possible distance from any point inNodeto q. This is computed using the

bound given by Equation (1) and the fact that all points covered by a node must be covered by
its parent. This property implies thatDNode

minp will never be less than the minimum distance of its
ancestors. Step 2 of section 4 explains this optimization further. See Figure 2for details.
Experimental results show that KNS1 (conventional ball-tree-basedk-NN search) achieves signifi-
cant speedup over Naivek-NN when the dimensiond of the data set is moderate (less than 30). In
the best case, the complexity of KNS1 can be as good asO(d logR), given a data set withR points.
However, withd increasing, the benefit achieved by KNS1 degrades, and whend is really large, in
the worst case, the complexity of KNS1 can be as bad asO(dR). Sometimes it is even slower than
Naivek-NN search, due to the curse of dimensionality.

In the following sections, we describe our new algorithms KNS2 and KNS3, these two algorithms
are both based on ball-tree structure, but by using different search strategies, we explore how much
speedup can be achieved beyond KNS1.

4. KNS2: Fasterk-NN Classification for Skewed-Class Data

In many binary classification domains, one class is much more frequent than the other. For example,
in High Throughput Screening data sets, (described in section 7.2), it is far more common for the
result of an experiment to be negative than positive. In detection of fraud telephone calls (Fawcett
and Provost, 1997) or credit card transactions (Stolfo et al., 1997), the number of legitimate transac-
tions is far more common than fraudulent ones. In insurance risk modeling (Pednault et al., 2000),
a very small percentage of the policy holders file one or more claims in a giventime period. There
are many other examples of domains with similar intrinsic imbalance, and therefore, classification
with a skewed distribution is important. Various researches have been focused on designing clever

1139

L IU , MOORE AND GRAY

ProcedureBallKNN (PSin,Node)
begin

if (DNode
minp ≥ Dsofar) then /* If this condition is satisfied, then impossible

ReturnPSin unchanged. for a point in Node to be closer than the
previously discoveredkth nearest neighbor.*/

else if(Node is a leaf)
PSout = PSin

∀x ∈ Points(Node)
if (| x−q |< Dsofar) then /* If a leaf, do a naive linear scan */

addx to PSout

if (| PSout |== k+1) then
remove furthest neighbor fromPSout

updateDsofar

else /*If a non-leaf, explore the nearer of the two
node1 = child of Node closest toq child nodes, then the further. It is likely that
node2 = child of Node furthest fromq further search will immediately prune itself.*/
PStemp= BallKNN(PSin,node1)
PSout = BallKNN(PStemp,node2)

end

Figure 2: A call of BallKNN({},Root) returns thek nearest neighbors ofq in the ball-tree.

methods to solve this type of problem (Cardie and Howe, 1997). The new algorithm introduced in
this section, KNS2, is designed to acceleratek-NN based classification in such skewed data scenar-
ios.

KNS2 answers type(b) question described in the introduction, namely, “How many of thek nearest
neighbors are in the positive class?” The key idea of KNS2 is we can answer question (b) without
explicitly finding thek-NN set.

KNS2 attacks the problem by building two ball-trees: APostreefor the points from the positive
(small) class, and aNegtreefor the points from the negative (large) class. Since the number of
points from the positive class(small) is so small, it is quite cheap to find the exactk nearest positive
points ofq by using KNS1. And the idea of KNS2 is first searchPostreeusing KNS1 to find the
k nearest positive neighbors setPossetk, and then searchNegtreewhile usingPossetk as bounds to
prune nodes far away, and at the same time estimating the number of negative points to be inserted
to the true nearest neighbor set. The search can be stopped as soon aswe get the answer to question
(b). Empirically, much more pruning can be achieved by KNS2 than conventional ball-tree search.
A concrete description of the algorithm is as follows:

Let Rootpos be the root ofPostree, andRootneg be the root ofNegtree. Then, we classify a new
query pointq in the following fashion

1140

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

• Step 1 —“ Find positive” : Find thek nearest positive class neighbors ofq (and their dis-
tances toq) using conventional ball-tree search.

• Step 2 —“Insert negative” : Do sufficient search on the negative tree to prove that the
number of positive data points amongk nearest neighbors isn for some value ofn.

Step 2 is achieved using a new recursive search calledNegCount. In order to describeNegCountwe
need the following four definitions.

• The Dists Array. Dists is an array of elementsDists1 . . .Distsk consisting of the distances to
thek nearest positive neighbors found so far ofq, sorted in increasing order of distance. For
notational convenience we will also writeDists0 = 0 andDistsk+1 = ∞.

• PointsetV. Define pointsetV as the set of points in the negative balls visited so far in the
search.

• The Counts Array (n,C) (n≤ k+1). C is an array of counts containing n+1 array elements
C0,C1, ...Cn. Say(n,C)summarize interesting negative points for pointsetV if and only if

1. ∀i = 0,1, ...,n,
Ci =|V ∩{x :| x−q |< Distsi} | (6)

Intuitively Ci is the number of points inV whose distances toq are closer thanDistsi . In
other words,Ci is the number of negative points inV closer than theith positive neighbor
to q.

2. Ci + i ≤ k(i < n), Cn +n > k.

This simply declares that the lengthn of theC array is as short as possible while ac-
counting for thek members ofV that are nearest toq. Such ann exists sinceC0 = 0 and
Ck+1 = Total number of negative points. To make the problem interesting, we assume
that the number of negative points and the number of positive points are bothgreater
thank.

• DNode
minp andDNode

maxp

Here we will continue to useDNode
minp which is defined in equation (4).

Symmetrically, we also defineDNode
maxp as follows:

Let DNode
maxp=

{

min(|q−Node.Pivot|+Node.Radius, DNode.parent
maxp) i f Node6= Root

|q−Node.Pivot|+Node.Radius i f Node== Root
(7)

DNode
maxp is the maximum possible distance from any point in Node toq. This is computed using

the bound in Equation (1) and the property of a ball-tree that all the points covered by a node
must be covered by its parent. This property implies thatDNode

maxp will never be greater than the
maximum possible distance of its ancestors.

Figure 3 gives a good example. There are 3 nodesp, c1 andc2. c1 andc2 arep’s children.
q is the query point. In order to computeDc1

minp, first we compute|q−c1.pivot|−c1.radius,

1141

L IU , MOORE AND GRAY

Dminp
c1

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������

������
������
������
������
������

p

c2

c1

q

Figure 3: An example to illustrate how to computeDNode
minp

which is the dotted line in the figure, butDc1
minp can be further bounded byDp

minp, since it is
impossible for any point to be in the shaded area. Similarly, we get the equationfor Dc1

maxp.
DNode

minp andDNode
maxp are used to estimate the counts array(n,C). Again we take advantage of

the triangle inequality of ball-tree. For any Node, if there exists ani (i ∈ [1,n]), such that
Distsi−1 ≤ DNode

maxp< Distsi , then for∀x∈ Points(Node), Distsi−1 ≤| x−q |< Distsi . Accord-
ing to the definition ofC, we can add| Points(Node)| toCi ,Ci+1, ...Cn. The function ofDNode

minp
similar to KNS1, is used to help prune uninteresting nodes.

Step 2 of KNS2 is implemented by the recursive function below:

(nout,Cout) = NegCount(nin,Cin,Node, jparent,Dists)

See Figure 4 for the detailed implementation of NegCount.
Assume that on entry(nin,Cin) summarize interesting negative points for pointsetV, whereV is
the set of points visited so far during the search. This algorithm efficiently ensures that, on exit,
(nout,Cout) summarize interesting negative points forV ∪Points(Node). In addition, jparent is a
temporary variable used to prevent multiple counts for the same point. This variable relates to the
implementation of KNS2, and we do not want to go into the details in this paper.

We can stop the procedure whennout becomes 1 (which means all thek nearest neighbors ofq
are in the negative class) or when we run out of nodes.nout represents the number of positive points
in thek nearest neighbors ofq.The top-level call is

NegCount(k,C0,NegTree.Root,k+1,Dists)

whereC0 is an array of zeroes andDistsare defined in step 2 and obtained by applying KNS1 to the
Postree.

There are at least two situations where this algorithm can run faster than simply finding k-NN .
First of all, whenn = 1, we can stop and exit, since this means we have found at leastk negative
points closer than the nearest positive neighbor toq. Notice that thek negative points we have
found are not necessarily the exactk nearest neighbors toq, but this won’t change the answer to

1142

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

ProcedureNegCount (nin,Cin,Node, jparent,Dists)
begin

nout := nin /* Variables to be returned by the search.
Cout := Cin Initialize them here. */

ComputeDNode
minp andDNode

maxp

Search fori, j ∈ [1,nout], such that
Distsi-1 ≤ DNode

minp < Distsi

Distsj-1 ≤ DNode
maxp< Distsj

For all index∈ [j, jparent) /* Re-estimateCout */
UpdateCout

index := Cout
index+ | Points(Node)| /* Only update the count less thanjparent

Updatenout, such that to avoid counting twice. */
Cout

nout−1 +(nout−1) ≤ k, Cout
nout +nout > k

SetDistsnout := ∞

(1) if (nout == 1) /* At leastk negative points closer toq
Return(1,Cout) than the closest positive one: done! */

(2) if (i == j) /* Node is located between two adjacent
Return(nout,Cout) positive points, no need to split. */

(3) if (Node is a leaf)
Forallx∈ Points(Node)

Compute| x−q |
Update and return (nout,Cout)

(4) else
node1 := child of Node closest toq
node2 := child of Node furthest fromq
(ntemp,Ctemp) := NegCount(nin,Cin,node1, j,Dists)
if (ntemp== 1)

Return (1,Cout)
else (nout,Cout) := NegCount(ntemp,Ctemp,node2, j,Dists)

end

Figure 4: Procedure NegCount.

our question. This situation happens frequently for skewed data sets. The second situation is as
follows: A Node can also be pruned if it is located exactly between two adjacent positive points, or
it is farther away than thenth positive point. This is because that in these situations, there is no need
to figure out which negative point is closer within the Node. Especially asn gets smaller, we have
more chance to prune a node, becauseDistsnin decreases asnin decreases.

Omachi and Aso (2000) proposed ak-NN method based on branch and bound. For simplicity,
we call their algorithm KNSV. KNSV is similar to KNS2, in that for the binary classcase, it also

1143

L IU , MOORE AND GRAY

builds two trees, one for each class. For consistency, let’s still call themPostreeandNegtree. KNSV
first searches the tree whose center of gravity is closer toq. Without loses of generality, we assume
Negtreeis closer, so KNSV will searchNegtreefirst. Instead of fully exploring the tree, it does a
greedy depth first search only to findk candidate points. Then KNSV moves on to searchPostree.
The search is the same as conventional ball-tree search (KNS1), except that it uses thekth candidate
negative point to bound the distance. After the search ofPostreeis done. KNSV counts how many
of thek nearest neighbors so far are from the negative class. If the number ismore thank/2, the al-
gorithm stops. Otherwise, KNSV will go back to searchNegtreefor the second time, this time fully
search the tree. KNSV has advantages and disadvantages. The first advantage is that it is simple,
and thus it is easy to extend to many-class case. Also if the first guess of KNSV is correct and the
k candidate points are good enough to prune away many nodes, it will be faster than conventional
ball-tree search. But there are some obvious drawbacks of the algorithm.First, the guess of the
winner class is only based on which class’s center of gravity is the closestto q. Notice that this is
a pure heuristic, and the probability of making a mistake is high. Second, usinga greedy search to
find thek candidate nearest neighbors has a high risk, since these candidates might not even be close
to the true nearest neighbors. In that case, the chance for pruning away nodes from the other class
becomes much smaller. We can imagine that in many situations, KNSV will end up searching the
first tree for yet another time. Finally, we want to point out that KNSV claims itcan perform well
for many-class nearest neighbors, but this is based on the assumption that the winner class contains
at leastk/2 points within the nearest neighbors, which is often not true for the many-class case.
Comparing to KNSV, KNS2’s advantages are (i) it uses the skewness property of a data set, which
can be robustly detected before the search, and (ii) more careful design gives KNS2 more chance to
speedup the search.

5. KNS3: Are at Leastt of the k Nearest Neighbors Positive?

In this paper’s second new algorithm, we remove KNS2’s constraint of anassumed skewness in the
class distribution. Instead, we answer a weaker question: “are at leastt of thek nearest neighbors
positive?”, where the questioner must supplyt andk. In the usualk-NN rule,t represents a majority
with respect tok, but here we consider the slightly more general form which might be used for
example during classification with known false positive and false negative costs.

In KNS3, we define two important quantities:

Dpos
t = distance o f the tth nearest positive neighbor o fq (8)

Dneg
m = distance o f the mth nearest negative neighbor o fq (9)

wherem+ t = k+1.

Before introducing the algorithm, we state and prove an important proposition, which relate the
two quantitiesDpos

t andDneg
m with the answer to KNS3.

Proposition 1 Dpos
t ≤ Dneg

m if and only if at least t of the k nearest neighbors ofq from the positive
class.

1144

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

Proof:
If Dpos

t ≤ Dneg
m , then there are at leastt positive points closer than themth negative point toq. This

also implies that if we draw a ball centered atq, and with its radius equal toDneg
m , then there are

exactlym negative points and at leastt positive points within the ball. Sincet + m= k+ 1, if we
useDk to denote the distance of thekth nearest neighbor, we getDk ≤ Dneg

m , which means that there
are at mostm− 1 of thek nearest neighbors ofq from the negative class. It is equivalent to say
that there are at leastt of the k nearest neighbors ofq are from the positive class. On the other
hand, if there are at leastt of thek nearest neighbors from the positive class, thenDpos

t ≤ Dk, the
number of negative points is at mostk−t < m, soDk ≤Dneg

m . This implies thatDpos
t ≤Dneg

m is true.�

Figure 5 provides an illustration. In this example,k = 5, t = 3. We use black dots to represent
positive points, and white dots to represent negative points. The reasonto redefine the problem of

D3
neg

D3
pos

q

A

B

Figure 5: An example ofDpos
t andDneg

m

KNS3 is to transform ak nearest neighbor searching problem to a much simpler counting prob-
lem. In fact, in order to answer the question, we do not even have to computethe exact value of
Dpos

t and Dneg
m , instead, we can estimate them. We defineLo(Dpos

t) andU p(Dpos
t) as the lower

and upper bounds ofDpos
t , and similarly we defineLo(Dneg

m) andU p(Dneg
m) as the lower and upper

bounds ofDneg
m . If at any point,U p(Dpos

t) ≤ Lo(Dneg
m), we knowDpos

t ≤ Dneg
m , on the other hand, if

U p(Dneg
m) ≤ Lo(Dpos

t), we knowDneg
m ≤ Dpos

t .

Now our computational task is to efficiently estimateLo(Dpos
t), U p(Dpos

t), Lo(Dneg
m) andU p(Dneg

m).
And it is very convenient for a ball-tree structure to do so. Below is the detailed description:

At each stage of KNS3 we have two sets of balls in use calledP andN, whereP is a set of balls from
Postreebuilt from positive data points, andN consists of balls fromNegtreebuilt from negative data
points.

Both sets have the property that if a ball is in the set, then neither its ball-tree ancestors nor de-
scendants are in the set, so that each point in the training set is a member of oneor zero balls in
P∪N. Initially, P = {PosTree.root} andN = {NegTree.root}. Each stage of KNS3 analyzesP to
estimateLo(Dpos

t), U p(Dpos
t), and analyzesN to estimateLo(Dneg

m), U p(Dneg
m). If possible, KNS3

terminates with the answer, else it chooses an appropriate ball fromP or N, and replaces that ball
with its two children, and repeats the iteration. Figure (6) shows one stage ofKNS3. The balls

1145

L IU , MOORE AND GRAY

involved are labeleda throughg and we have

P = {a,b,c,d}

N = {e, f ,g}

Notice that although c and d are inside b, they are not descendants of b. This is possible because
when a ball is splitted, we only require the pointset of its children be disjoint, butthe balls covering
the children node may be overlapped.

a

b

c

d

f

g

e

q

Figure 6: A configuration at the start of a stage.

In order to computeLo(Dpos
t), we need to sort the ballsu∈ P, such that

∀ui ,u j ∈ P, i < j ⇒ Di
minp≤ D j

minp

Then

Lo(Dpos
t) = D

u j
minp, where

j−1

∑
i=1

| Points(ui) |< t and
j

∑
i=1

| Points(ui) |≥ t

Symmetrically, in order to computeU p(Dpos
t), we sortu∈ P, such that

∀ui ,u j ∈ P, i < j ⇒ Di
maxp≤ D j

maxp.

Then

U p(Dpos
t) = D

u j
maxp, where

j−1

∑
i=1

| Points(ui) |< t and
j

∑
i=1

| Points(ui) |≥ t

Similarly, we can computeLo(Dneg
m) andU p(Dneg

m).

To illustrate this, it is useful to depict a ball as an interval, where the two endsof the interval
denote the minimum and maximum possible distances of a point owned by the ball to the query.
Figure 5(a) shows an example. Notice, we also mark “+5” above the interval to denote the number
of points owned by the ballB. After we have this representation, bothP andN can be represented as
a set of intervals, each interval corresponds to a ball. This is shown in 5(b). For example, the second
horizontal line denotes the fact that ballb contains four positive points, and that the distance from

1146

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

any location inb to q lies in the range[0,5]. The value ofLo(Dpos
t) can be understood as the answer

to the following question: what if we tried to slide all the positive points within their bounds as far
to the left as possible, where would thetth closest positive point lie? Similarly, we can estimate
U p(Dpos

t) by sliding all the positive points to the right ends within their bounds.

Dist
0 1 2 3 4 5

Dist
0 1 2 3 4 5

Up(D6
neg)

Lo(D)7
pos

Lo(D6
neg)

Up(D)7
pos

q

+5

a +2

b +4

+4c

d

e

f

g

−3

+3

−5

−5

B

(a) (b)

Figure 7: (a) The interval representation of a ballB. (b) The interval representation of the configu-
ration in Figure 6

.

For example, in Figure 6, letk= 12 andt = 7. Thenm= 12−7+1= 6. We can estimate (Lo(Dpos
7),

U p(Dpos
7)) and (Lo(Dneg

6), U p(Dneg
6)), and the results are shown in Figure 5. Since the two intervals

(Lo(Dpos
7), U p(Dpos

7)) and (Lo(Dneg
6),U p(Dneg

6)) have overlap now, no conclusion can be made at
this stage. Further splitting needs to be done to refine the estimation.

Below is the pseudo code of KNS3 algorithm: We define a loop procedure called PREDICTwith
the following input and output.

Answer= PREDICT(P,N, t,m)

The Answer, a boolean value, is TRUE, if there are at leastt of the k nearest neighbors from the
positive class; and False otherwise. Initially, P ={PosTree.root} and N ={NegTree.root}. The
thresholdt is given, andm= k− t +1.

Before we describe the algorithm, we first introduce two definitions.
Define:

(Lo(DS
i),U p(DS

i)) = Estimatebound(S, i) (10)

Here S is either setP or N, and we are interested in theith nearest neighbor ofq from set S. The
output is the lower and upper bounds. The concrete procedure for estimating the bounds was just
described.

Notice that the estimation of the upper and lower bounds could be very loose inthe beginning,

1147

L IU , MOORE AND GRAY

and will not give us enough information to answer the question. In this case, we will need to split a
ball-tree node and re-estimate the bounds. With more and more nodes being splitted, our estimation
becomes more and more precise, and the procedure can be stopped as soon asU p(Dpos

t)≤ Lo(Dneg
m)

or U p(Dneg
m) ≤ Lo(Dpos

t). The function ofPick(P,N) below is to choose one node either from P or
N to split. There are different strategies for picking a node, for simplicity, our implementation only
randomly pick a node to split.
Define:

split node= Pick(P,N) (11)

Here splitnode is the node chosen to be split. See Figure 8.

ProcedurePREDICT (P, N, t, m)
begin

Repeat
(Lo(Dpos

t),U p(Dpos
t)) = Estimatebound(P, t) /* See Definition 10. */

(Lo(Dneg
m),U p(Dneg

m)) = Estimatebound(N, m)
if (U p(Dpos

t) ≤ Lo(Dneg
m)) then

Return TRUE
if (U p(m

neg) ≤ Lo(Dneg
m)) then

Return FALSE

split node = Pick(P, N)
remove splitnode from P or N
insert splitnode.child1 and splitnode.child2 to P or N

end

Figure 8: Procedure PREDICT.
.

Our explanation of KNS3 was simplified for clarity. In order to avoid frequent searches over the full
lengths of setsN andP, they are represented as priority queues. Each set in fact uses two queues:
one prioritized byDu

maxpand the other byDu
minp.This ensures that the costs of all argmins, deletions

and splits are logarithmic in the queue size.

Some people may ask the question: “It seems that KNS3 has more advantagesthan KNS2, it re-
moves the assumption of skewness of the data set. In general, it has more chances to prune away
nodes, etc. Why we still need KNS2?” The answer is KNS2 does have its own advantages. It
answers a more difficult question than KNS3. To know exact how many of the nearest neighbors
are from the positive class can be especially useful when the threshold for deciding a class is not
known. In that case, KNS3 doesn’t work at all since we can not provide a statict for answering the
question (c). But KNS2 can still work very well. On the other hand, the implementation of KNS2 is
much simpler than KNS3. For instance, it does not need the priority queues we just described. So
there does exist some cases where KNS2 is faster than KNS3.

1148

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

6. Experimental Results

To evaluate our algorithms, we used both real data sets (from UCI and KDDrepositories) and also
synthetic data sets designed to exercise the algorithms in various ways.

6.1 Synthetic Data Sets

We have six synthetic data sets. The first synthetic data set we have is calledIdeal, as illustrated in
Figure 6.1(a). All the data in the left upper area are assigned to the positive class, and all the data in
the right lower area are assigned to the negative class. The second dataset we have is calledDiag2d,
as illustrated in Figure 6.1(b). The data are uniformly distributed in a 10 by 10 square. The data
above the diagonal are assigned to the positive class, below diagonal are assigned to the negative
class. We made several variants of Diag2d to test the robustness of KNS3.Diag2d(10%) has 10%
data ofDiag2d. Diag3d is a cube with uniformly distributed data and classified by a diagonal-
plane.Diag10d is a 10 dimensional hypercube with uniformly distributed data and classified bya
hyper-diagonal-plane.Noise-diag2d has the same data asDiag2d(10%), but 1% of the data was
assigned to the wrong class.

(10, 0)

(0, 0) (0, 10)

(10, 10)

(b) Diag2d (100,000 data−points)(a) Ideal

Figure 9: Synthetic Data Sets

Table6.1 is a summary of the data sets in the empirical analysis.

6.2 Real-World Data Sets

We used UCI & KDD data (listed in Table 6.2), but we also experimented with datasets of particular
current interest within our laboratory.

Life Sciences.These were proprietary data sets (ds1andds2) similar to the publicly available Open
Compound Database provided by the National Cancer Institute (NCI Open Compound Database,
2000). The two data sets are sparse. We also present results on data sets derived fromds1, denoted
ds1.10pca, ds1.100pcaandds2.100anchorby linear projection using principal component analysis

1149

L IU , MOORE AND GRAY

Data Set Num. of Num. of Num. of Num.pos/Num.neg
records Dimensions positive

Ideal 10000 2 5000 1
Diag2d(10%) 10000 2 5000 1
Diag2d 100000 2 50000 1
Diag3d 100000 3 50000 1
Diag10d 100000 10 50000 1
Noise2d 10000 2 5000 1

Table 1: Synthetic Data Sets

(PCA).

Link Detection. The first, Citeseer, is derived from the Citeseer web site (Citeseer,2002)and lists
the names of collaborators on published materials. The goal is to predict whether JLee (the most
common name) was a collaborator for each work based on who else is listed for that work. We
useJ Lee.100pcato represent the linear projection of the data to 100 dimensions using PCA. The
second link detection data set is derived from the Internet Movie Database (IMDB, 2002) and is
denotedimdbusing a similar approach, but to predict the participation of Mel Blanc (againthe most
common participant).

UCI/KDD data. We use four large data sets from KDD/UCI repository (Bay, 1999). Thedata
sets can be identified from their names. They were converted to binary classification problems.
Each categorical input attribute was converted inton binary attributes by a 1-of-n encoding (where
n is the number of possible values of the attribute).

1. Letteroriginally had 26 classes: A-Z. We performed binary classification using the letter A
as the positive class and “Not A” as negative.

2. Ipums(from ipums.la.97). We predictfarm status, which is binary.

3. Movie is a data set from (informedia digital video library project, 2001). The TREC-2001
Video Track organized by NIST shot boundary Task. 4 hours of video or 13 MPEG-1 video
files at slightly over 2GB of data.

4. Kdd99(10%)has a binary prediction: Normal vs. Attack.

6.3 Methodology

The data setds2 is particular interesting, because its dimension is 1.1×106. Our first experiment
is especially designed for it. We usek=9, andt = ⌈k/2⌉, then we print out the distribution of time
taken for queries of three algorithms: KNS1, KNS2, and KNS3. This is aimedat understanding the
range of behavior of the algorithms under huge dimensions (some queries will be harder, or take
longer, for an algorithm than other queries). We randomly took 1% negative records (881) and 50%
positive records (105) as test data (total 986 points), and train on the remaining 87372 data points.

1150

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

Data Set Num. of Num. of Num.of Num.pos/Num.neg
records Dimensions positive

ds1 26733 6348 804 0.03
ds1.10pca 26733 10 804 0.03
ds1.100pca 26733 100 804 0.03
ds2 88358 1.1×106 211 0.002
ds2.100anchor88358 100 211 0.002
J Lee.100pca 181395 100 299 0.0017
Blanc Mel 186414 10 824 0.004

Data Set Num. Num. of Num.of Num.pos/Num.neg
records Dimensions positive

Letter 20000 16 790 0.04
Ipums 70187 60 119 0.0017
Movie 38943 62 7620 0.24
Kdd99(10%) 494021 176 97278 0.24

Table 2: Real Data Sets

For our second set of experiments, we did 10-fold cross-validation on all the data sets. For each
data set, we testedk = 9 andk = 101, in order to show the effect of a small value and a large
value. For KNS3, we usedt = ⌈k/2⌉: a data point is classified as positive iff the majority of its
k nearest neighbors are positive. Since we use cross-validation, thus each experiment required
R k-NN classification queries (whereR is the umber of records in the data set) and each query in-
volved thek-NN among 0.9R records. A naive implementation with no ball trees would thus require
0.9R2 distance computations. We want to emphasize here that these algorithms are allexact. No
approximations were used in the classifications.

6.4 Results

Figure 10 shows the histograms of times and speed-ups for queries on the ds2 data set. For Naive
k-NN , all the queries take 87372 distance computations. For KNS1, all the queries take more than
1.0×104 distance computations, (the average number of distances computed is 1.3×105) which
is greater than 87372 and thus traditional ball-tree search is worse than “naive” linear scan. For
KNS2, most of the queries take less than 4.0×104 distance computations, a few points take longer
time. The average number of distances computed is 6233. For KNS3, all the queries take less than
1.0× 104 distance computations, the average number of distances computed is 3411. The lower
three figures illustrate speed-up achieved for KNS1, KNS2 and KNS3 over naive linear scan. The
figures show the distribution of the speedup obtained for each query. From 10(d) we can see that on
average, KNS1 is even slower than the naive algorithm. KNS2 can get from 2- to 250-fold speedups.
On average, it has a 14-fold speedup. KNS3 can get from 2- to 2500-fold speedups. On average, it
has a 26-fold speedups.
Table 6.4 shows the results for the second set of experiments. The second column lists the computa-
tional cost of naivek-NN , both in terms of the number of distance computations and the wall-clock

1151

L IU , MOORE AND GRAY

kns1

distance computation

nu
m

be
r

of
 d

at
a

0 20000 40000 60000 80000 120000

0
10

0
20

0
30

0
40

0
50

0
kns2

distance computation

nu
m

be
r

of
 d

at
a

0 20000 40000 60000 80000 120000

0
10

0
20

0
30

0
40

0
50

0

kns3

distance computation

nu
m

be
r

of
 d

at
a

0 20000 40000 60000 80000 120000

0
10

0
20

0
30

0
40

0
50

0

kns1 speedup

folds of speed up

nu
m

be
r

of
 d

at
a

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0

kns2 speedup

folds of speed up

nu
m

be
r

of
 d

at
a

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0

kns3 speedup

folds of speed up

nu
m

be
r

of
 d

at
a

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0

Figure 10: (a) Distribution of times taken for queries of KNS1 (b) Distributionof times taken for
queries of KNS2 (c) Distribution of times taken for queries of KNS3 (d) Distribution of
speedup for queries achieved for KNS1 (e) Distribution of speedup for queries achieved
for KNS2 (f) Distribution of speedup for queries achieved for KNS3

time on an unloaded 2 GHz Pentium. We then examine the speedups of KNS1 (traditional use
of a ball-tree) and our two new ball-tree methods (KNS2 and KNS3). Generally speaking, the
speedup achieved for distance computations on all three algorithms are greater than the correspond-
ing speedup for wall-clock time. This is expected, because the wall-clock time also includes the
time for building ball trees, generating priority queues and searching. We can see that for the syn-
thetic data sets, KNS1 and KNS2 yield 2-700 fold speedup over naive. KNS3 yields a 2-4500 fold
speedup. Notice that KNS2 can’t beat KNS1 for these data sets, because KNS2 is designed to
speedupk-NN search on data sets with unbalanced output classes. Since all the synthetic data sets
have equal number of data from positive and negative classes, KNS2 has no advantage.

It is notable that for some high-dimensional data sets, KNS1 does not produce an acceleration

1152

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

over naive. KNS2 and KNS3 do, however, and in some cases they are hundreds of times faster than
KNS1.

NAIVE KNS1 KNS2 KNS3
dists time dists time dists time dists time

(secs) speedup speedup speedup speedup speedup speedup
ideal k=9 9.0×107 30 96.7 56.5 112.9 78.5 4500 486

k=101 23.0 10.2 24.7 14.7 4500 432
Diag2d(10%)k=9 9.0×107 30 91 51.1 88.2 52.4 282 27.1

k=101 22.3 8.7 21.3 9.3 167.9 15.9
Diag2d k=9 9.0×109 3440 738 366 664 372 2593 287

k=101 202.9 104 191 107.5 2062 287
Diag3d k=9 9.0×109 4060 361 184.5 296 184.5 1049 176.5

k=101 111 56.4 95.6 48.9 585 78.1
Diag10d k=9 9.0×109 6080 7.1 5.3 7.3 5.2 12.7 2.2

k=101 3.3 2.5 3.1 1.9 6.1 0.7
Noise2d k=9 9.0×107 40 91.8 20.1 79.6 30.1 142 42.7

k=101 22.3 4 16.7 4.5 94.7 43.5
ds1 k=9 6.4×108 4830 1.6 1.0 4.7 3.1 12.8 5.8

k=101 1.0 0.7 1.6 1.1 10 4.2
ds1.10pca k=9 6.4×108 420 11.8 11.0 33.6 21.4 71 20

k=101 4.6 3.4 6.5 4.0 40 6.1
ds1.100pca k=9 6.4×108 2190 1.7 1.8 7.6 7.4 23.7 29.6

k=101 0.97 1.0 1.6 1.6 16.4 6.8
ds2 k=9 8.5×109 105500 0.64 0.24 14.0 2.8 25.6 3.0

k=101 0.61 0.24 2.4 0.83 28.7 3.3
ds2.100- k=9 7.0×109 24210 15.8 14.3 185.3 144 580 311

k=101 10.9 14.3 23.0 19.4 612 248
J Lee.100- k=9 3.6×1010 142000 2.6 2.4 28.4 27.2 15.6 12.6

k=101 2.2 1.9 12.6 11.6 37.4 27.2
Blanc Mel k=9 3.8×1010 44300 3.0 3.0 47.5 60.8 51.9 60.7

k=101 2.9 3.1 7.1 33 203 134.0
Letter k=9 3.6×108 290 8.5 7.1 42.9 26.4 94.2 25.5

k=101 3.5 2.6 9.0 5.7 45.9 9.4
Ipums k=9 4.4×109 9520 195 136 665 501 1003 515

k=101 69.1 50.4 144.6 121 5264 544
Movie k=9 1.4×109 3100 16.1 13.8 29.8 24.8 50.5 22.4

k=101 9.1 7.7 10.5 8.1 33.3 11.6
Kddcup99 k=9 2.7×1011 1670000 4.2 4.2 574 702 4 4.1
(10%) k=101 4.2 4.2 187.7 226.2 3.9 3.9

Table 3: Number of distance computations and wall-clock-time for Naivek-NN classification (2nd
column). Acceleration for normal use of KNS1 (in terms of num. distances and time).
Accelerations of new methods KNS2 and KNS3 in other columns. Naive times are inde-
pendent ofk.

7. Comments and Related Work

Why k-NN ? k-NN is an old classification method, often not achieving the highest possible accu-
racies when compared to more complex methods. Why study it? There are many reasons.k-NN is
a useful sanity check or baseline against which to check more sophisticated algorithmsprovided
k-NN is tractable. It is often the first line of attack in a new complex problem dueto its simplic-
ity and flexibility. The user need only provide a sensible distance metric. The method is easy to
interpret once this distance metric is understood. We have already mentionedits compelling theo-

1153

L IU , MOORE AND GRAY

retical properties, which explains its surprisingly good performance in practice in many cases. For
these reason and others,k-NN is still popular in some fields that need classification, for example
Computer Vision and QSAR analysis of High Throughput Screening data (e.g., Zheng and Tropsha,
2000). Finally, we believe that the same insights that acceleratek-NN will apply to more modern
algorithms. From a theoretical viewpoint, many classification algorithms can be viewed simply as
the nearest-neighbor method with a certain broader notion of distance function; see for example
Baxter and Bartlett (1998) for such a broad notion. RKHS kernel methods use another example of a
broadened notion of distance function. More concretely, we have applied similar ideas to speed up
nonparametric Bayes classifiers, in work to be submitted.

Applicability of other proximity query work. For the problem of “find thek nearest datapoints”
(as opposed to our question of “performk-NN or Kernel classification”) in high dimensions, the fre-
quent failure of a traditional ball-tree to beat naive has lead to some very ingenious and innovative
alternatives, based on random projections, hashing discretized cubes, and acceptance of approxi-
mate answers. For example Gionis et al. (1999) gives a hashing method thatwas demonstrated to
provide speedups over a ball-tree-based approach in 64 dimensions bya factor of 2-5 depending
on how much error in the approximate answer was permitted. Another approximatek-NN idea is
in Arya et al. (1998), one of the firstk-NN approaches to use a priority queue of nodes, in this
case achieving a 3-fold speedup with an approximation to the truek-NN . In (Liu et al., 2004a),
we introduced a variant of ball-tree structures which allow non-backtracking search to speed up
approximate nearest neighbor, and we observed up to 700-fold accelerations over conventional ball-
tree basedk-NN . Similar idea has been proposed by Indyk (2001). However, theseapproaches are
based on the notion that any points falling within a factor of(1+ ε) times the true nearest neighbor
distance are acceptable substitutes for the true nearest neighbor. Notingin particular that distances
in high-dimensional spaces tend to occupy a decreasing range of continuous values (Hammersley,
1950), it remains unclear whether schemes based upon the absolute values of the distances rather
than theirranksare relevant to the classification task. Our approach, because it need not find the
k-NN to answer the relevant statistical question, finds an answer without approximation. The fact
that our methods are easily modified to allow(1+ ε) approximation in the manner of Arya et al.
(1998) suggests an obvious avenue for future research.

No free lunch. For uniform high-dimensional data no amount of trickery can save us. The expla-
nation for the promising empirical results is that all the inter-dependences in the data mean we are
working in a space of much lower intrinsic dimensionality (Maneewongvatana and Mount, 2001).
Note though, that in experiments not reported here, QSAR and visionk-NN classifiers give better
performance on the original data than on PCA-projected low dimensional data, indicating that some
of these dependencies are non-linear.

Summary. This paper has introduced and evaluated two new algorithms for more effectively ex-
ploiting spatial data structures duringk-NN classification. We have shown significant speedups on
high dimensional data sets without resorting to approximate answers or sampling. The result is
that thek-NN method now scales to many large high-dimensional data sets that previously were not
tractable for it, and are still not tractable for many popular methods such as support vector machines.

1154

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

References

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for
approximate nearest neighbor searching fixed dimensions.Journal of the ACM, 45(6):891–923,
1998. URLciteseer.ist.psu.edu/arya94optimal.html.

J. Baxter and P. Bartlett. The Canonical Distortion Measure in Feature Space and 1-NN Classifica-
tion. In Advances in Neural Information Processing Systems 10. Morgan Kaufmann, 1998.

S. D. Bay. UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of California, Dept of
Information and Computer Science, 1999.

C. Cardie and N. Howe. Improving minority class prediction using case-specific feature weights.
In Proceedings of 14th International Conference on Machine Learning, pages 57–65. Morgan
Kaufmann, 1997. URLciteseer.nj.nec.com/cardie97improving.html.

C. L. Chang. Finding prototypes for nearest neighbor classifiers.IEEE Trans. Computers, C-23
(11):1179–1184, November 1974.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in
metric spaces. InProceedings of the 23rd VLDB International Conference, September 1997.

K. Clarkson. Nearest Neighbor Searching in Metric Spaces: Experimental Results for sb(S). ,
2002.

S. Cost and S. Salzberg. A Weighted Nearest Neighbour Algorithm for Learning with Symbolic
Features.Machine Learning, 10:57–67, 1993.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification.IEEE Trans. Information Theory,
IT-13,no.1:21–27, 1967.

S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis.Journal of the American Society of Information Science, 41(6):391–407,
1990.

K. Deng and A. W. Moore. Multiresolution Instance-based Learning. InProceedings of the Twelfth
International Joint Conference on Artificial Intelligence, pages 1233–1239, San Francisco, 1995.
Morgan Kaufmann.

L. Devroye and T. J. Wagner.Nearest neighbor methods in discrimination, volume 2. P.R. Krish-
naiah and L. N. Kanal, eds., North-Holland, 1982.

A. Djouadi and E. Bouktache. A fast algorithm for the nearest-neighbor classifier. IEEE Trans.
Pattern Analysis and Machine Intelligence, 19(3):277–282, March 1997.

N. R. Draper and H. Smith.Applied Regression Analysis, 2nd ed.John Wiley, New York, 1981.

R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. John Wiley & Sons, 1973.

C. Faloutsos and D. W. Oard. A survey of information retrieval and filtering methods. Technical
Report CS-TR-3514, Carnegie Mellon University Computer Science Department, 1995.

1155

L IU , MOORE AND GRAY

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and William Equitz.
Efficient and effective querying by image content.Journal of Intelligent Information Systems, 3
(3/4):231–262, 1994.

T. Fawcett and F. J. Provost. Adaptive fraud detection.Data Mining and Knowledge Discovery, 1
(3):291–316, 1997. URLciteseer.nj.nec.com/fawcett97adaptive.html.

F. P. Fisher and E. A. Patrick. A preprocessing algorithm for nearestneighbor decision rules. In
Proc. Nat’l Electronic Conf., volume 26, pages 481–485, December 1970.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, and P. Yanker. Query by image and video content:the qbic system.IEEE
Computer, 28:23–32, 1995.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic
expected time.ACM Transactions on Mathematical Software, 3(3):209–226, September 1977.

K. Fukunaga and P.M. Narendra. A Branch and Bound Algorithm for Computing K-Nearest Neigh-
bors. IEEE Trans. Computers, C-24(7):750–753, 1975.

G. W. Gates. The reduced nearest neighbor rule.IEEE Trans. Information Theory, IT-18(5):431–
433, May 1972.

A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hashing. In
Proceedings of the 25th VLDB Conference, 1999.

A. Gray and A. W. Moore. N-Body Problems in Statistical Learning. In Todd K. Leen, Thomas G.
Dietterich, and Volker Tresp, editors,Advances in Neural Information Processing Systems 13.
MIT Press, 2001.

A. Guttman. R-trees: A dynamic index structure for spatial searching. InProceedings of the Third
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. Assn for Computing
Machinery, April 1984.

J. M. Hammersley. The Distribution of Distances in a Hypersphere.Annals of Mathematical Statis-
tics, 21:447–452, 1950.

P. E. Hart. The condensed nearest neighbor rule.IEEE Trans. Information Theory, IT-14(5):515–
516, May 1968.

T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification. IEEE Trans.
Pattern Analysis and Machine Intelligence, 18(6):607–615, June 1996.

P. Indyk. On approximate nearest neighbors underl∞ norm. Journal of Computer and System
Sciences, 63(4), 2001.

CMU informedia digital video library project. The trec-2001 video trackorganized by nist shot
boundary task, 2001.

V. Koivune and S. Kassam. Nearest neighbor filters for multivariate data. In IEEE Workshop on
Nonlinear Signal and Image Processing, 1995.

1156

NEW ALGORITHMS FOREFFICIENT HIGH-DIMENSIONAL NONPARAMETRIC CLASSIFICATION

P. Komarek and A. W. Moore. Fast robust logistic regression for largesparse datasets with binary
outputs. InArtificial Intelligence and Statistics, 2003.

C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. InProceedings of the 10th
ACM conference on Computer and communications security table of contents, pages 251–261,
2003.

E. Lee and S. Chae. Fast design of reduced-complexity nearest-neighbor classifiers using triangular
inequality. IEEE Trans. Pattern Analysis and Machine Intelligence, 20(5):562–566, May 1998.

T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of practicalapproximate nearest
neighbor algorithms. InProceedings of Neural Information Processing Systems, 2004a.

T. Liu, K. Yang, and A. Moore. The ioc algorithm: Efficient many-class non-parametric classifi-
cation for high-dimensional data. InProceedings of the conference on Knowledge Discovery in
Databases (KDD), 2004b.

S. Maneewongvatana and D. M. Mount. The analysis of a probabilistic approach to nearest neighbor
searching. InIn Proceedings of WADS 2001, 2001.

A. W. Moore. The Anchors Hierarchy: Using the Triangle Inequality to Survive High-Dimensional
Data. InTwelfth Conference on Uncertainty in Artificial Intelligence. AAAI Press, 2000.

S. Omachi and H. Aso. A fast algorithm for a k-nn classifier based on branch and bound method and
computational quantity estimation. InIn Systems and Computers in Japan, vol.31, no.6, pp.1-9,
2000.

S. M. Omohundro. Bumptrees for Efficient Function, Constraint, and Classification Learning. In
R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors,Advances in Neural Information
Processing Systems 3. Morgan Kaufmann, 1991.

S. M. Omohundro. Efficient Algorithms with Neural Network Behaviour.Journal of Complex
Systems, 1(2):273–347, 1987.

A. M. Palau and R. R. Snapp. The labeled cell classifier: A fast approximation to k nearest neigh-
bors. InProceedings of the 14th International Conference on Pattern Recognition, 1998.

E. P. D. Pednault, B. K. Rosen, and C. Apte. Handling imbalanced data setsin insurance risk
modeling, 2000.

D. Pelleg and A. W. Moore. Accelerating Exactk-means Algorithms with Geometric Reasoning.
In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining.
ACM, 1999.

A. Pentland, R. Picard, and S. Sclaroff. Photobook: Content-based manipulation of image databases,
1994. URLciteseer.ist.psu.edu/pentland95photobook.html.

F. P. Preparata and M. Shamos.Computational Geometry. Springer-Verlag, 1985.

Y. Qi, A. Hauptman, and T. Liu. Supervised classification for video shot segmentation. InProceed-
ings of IEEE International Conference on Multimedia and Expo, 2003.

1157

L IU , MOORE AND GRAY

G. L. Ritter, H. B. Woodruff, S. R. Lowry, and T. L. Isenhour. An algorithm for a selective nearest
neighbor decision rule.IEEE Trans. Information Theory, IT-21(11):665–669, November 1975.

G. Salton and M. McGill. Introduction to Modern Information Retrieval.McGraw-Hill Book
Company, New York, NY, 1983.

I. K. Sethi. A fast algorithm for recognizing nearest neighbors.IEEE Trans. Systems, Man, and
Cybernetics, SMC-11(3):245–248, March 1981.

A. Smeulders and R. Jain, editors.Image Databases and Multi-media Search. World Scientific
Publishing Company, 1996.

S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan. Credit card fraud detection using meta-
learning: Issues and initial results, 1997. URLciteseer.nj.nec.com/stolfo97credit.html.

Y. Hamamoto S. Uchimura and S. Tomita. A bootstrap technique for nearest neighbor classifier
design.IEEE Trans. Pattern Analysis and Machine Intelligence, 19(1):73–79, 1997.

J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.Information
Processing Letters, 40:175–179, 1991.

K. Woods, K. Bowyer, and W. P. Kegelmeyer Jr. Combination of multiple classifiers using local
accuracy estimates.IEEE Trans. Pattern Analysis and Machine Intelligence, 19(4):405–410,
1997.

B. Zhang and S. Srihari. Fast k-nearest neighbor classification usingcluster-based trees.IEEE
Trans. Pattern Analysis and Machine Intelligence, 26(4):525–528, April 2004.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very
Large Databases. InProceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems : PODS 1996. ACM, 1996.

W. Zheng and A. Tropsha. A Novel Variable Selection QSAR Approach based on the K-Nearest
Neighbor Principle.J. Chem. Inf.Comput. Sci., 40(1):185–194, 2000.

1158

Journal of Machine Learning Research 7 (2006) 1159–1182 Submitted 2/05; Revised 4/06; Published 7/06

A Very Fast Learning Method for Neural Networks
Based on Sensitivity Analysis

Enrique Castillo CASTIE@UNICAN .ES

Department of Applied Mathematics and Computational Sciences
University of Cantabria and University of Castilla-La Mancha
Avda de Los Castros s/n, 39005 Santander, Spain

Bertha Guijarro-Berdi ñas CIBERTHA@UDC.ES

Oscar Fontenla-Romero OFONTENLA@UDC.ES

Amparo Alonso-Betanzos CIAMPARO@UDC.ES

Department of Computer Science
Faculty of Informatics, University of A Coruña
Campus de Elviña s/n, 15071 A Corũna, Spain

Editor: Yoshua Bengio

Abstract
This paper introduces a learning method for two-layer feedforward neural networks based on sen-
sitivity analysis, which uses a linear training algorithm for each of the two layers. First, random
values are assigned to the outputs of the first layer; later, these initial values are updated based on
sensitivity formulas, which use the weights in each of the layers; the process is repeated until con-
vergence. Since these weights are learnt solving a linear system of equations, there is an important
saving in computational time. The method also gives the local sensitivities of the least square errors
with respect to input and output data, with no extra computational cost, because the necessary in-
formation becomes available without extra calculations. This method, called the Sensitivity-Based
Linear Learning Method, can also be used to provide an initial set of weights, which significantly
improves the behavior of other learning algorithms. The theoretical basis for the method is given
and its performance is illustrated by its application to several examples in which it is compared with
several learning algorithms and well known data sets. The results have shown a learning speed gen-
erally faster than other existing methods. In addition, it can be used as an initialization tool for other
well known methods with significant improvements.

Keywords: supervised learning, neural networks, linear optimization, least-squares, initialization
method, sensitivity analysis

1. Introduction

There are many alternative learning methods and variants for neural networks. In the case of feedfor-
ward multilayer networks the first successful algorithm was the classical backpropagation (Rumel-
hart et al., 1986). Although this approach is very useful for the learning process of this kind of
neural networks it has two main drawbacks:

• Convergence to local minima.

• Slow learning speed.

c©2006 Enrique Castillo, Bertha Guijarro-Berdiñas, Oscar Fontenla-Romero and Amparo Alonso-Betanzos.

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

In order to solve these problems, several variations of the initial algorithm and also new methods
have been proposed. Focusing the attention on the problem of the slow learning speed, some algo-
rithms have been developed to accelerate it:

• Modifications of the standard algorithms: Some relevant modifications of the backpropaga-
tion method have been proposed. Sperduti and Antonina (1993) extend the backpropagation
framework by adding a gradient descent to the sigmoids steepness parameters. Ihm and Park
(1999) present a novel fast learning algorithm to avoid the slow convergence due to weight
oscillations at the error surface narrow valleys. To overcome this difficulty they derive a
new gradient term by modifying the original one with an estimated downward direction at
valleys. Also, stochastic backpropagation—which is opposite to batch learning and updates
the weights in each iteration—often decreases the convergence time, and is specially rec-
ommended when dealing with large data sets on classification problems (see LeCun et al.,
1998).

• Methods based on linear least-squares: Some algorithms based on linear least-squares meth-
ods have been proposed to initialize or train feedforward neural networks (Biegler-K̈onig and
Bärmann, 1993; Pethel et al., 1993; Yam et al., 1997; Cherkassky and Mulier, 1998; Castillo
et al., 2002; Fontenla-Romero et al., 2003). These methods are mostly based on minimiz-
ing the mean squared error (MSE) between the signal of an output neuron, before the output
nonlinearity, and a modified desired output, which is exactly the actual desired output passed
through the inverse of the nonlinearity. Specifically, in (Castillo et al., 2002)a method for
learning a single layer neural network by solving a linear system of equations is proposed.
This method is also used in (Fontenla-Romero et al., 2003) to learn the last layer of a neural
network, while the rest of the layers are updated employing any other non-linear algorithm
(for example, conjugate gradient). Again, the linear method in (Castillo et al., 2002) is the
basis for the learning algorithm proposed in this article, although in this case all layers are
learnt by using a system of linear equations.

• Second order methods: The use of second derivatives has been proposed to increase the con-
vergence speed in several works (Battiti, 1992; Buntine and Weigend, 1993; Parker, 1987). It
has been demonstrated (LeCun et al., 1991) that these methods are more efficient, in terms of
learning speed, than the methods based only on the gradient descent technique. In fact, second
order methods are among the fastest learning algorithms. Some of the most relevant exam-
ples of this type of methods are the quasi-Newton, Levenberg-Marquardt (Hagan and Men-
haj, 1994; Levenberg, 1944; Marquardt, 1963) and the conjugate gradient algorithms (Beale,
1972). Quasi-Newton methods use a local quadratic approximation of the error function, like
the Newton’s method, but they employ an approximation of the inverse of the hessian matrix
to update the weights, thus getting a lowest computational cost. The two most common up-
dating procedures are the Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) (Dennis and Schnabel, 1983). The Levenberg-Marquardt method combines,
in the same weight updating rule, both the gradient and the Gauss-Newton approximation of
the hessian of the error function. The influence of each term is determinedby an adaptive
parameter, which is automatically updated. Regarding the conjugate gradientmethods, they
use, at each iteration of the algorithm, different search directions in a waythat the compo-
nent of the gradient is parallel to the previous search direction. Several algorithms based on

1160

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

conjugate directions were proposed such as the Fletcher-Reeves (Fletcher and Reeves, 1964;
Hagan et al., 1996), Polak-Ribiére (Fletcher and Reeves, 1964; Hagan et al., 1996), Powell-
Beale (Powell, 1977) and scaled conjugate gradient algorithms (Moller, 1993). Also, based
on these previous approaches, several new algorithms have been developed, like those of
Chella et al. (1993) and Wilamowski et al. (2001). Nevertheless, second-order methods are
not practicable for large neural networks trained in batch mode, althoughsome attempts to
reduce their computational cost or to obtain stochastic versions have appeared (LeCun et al.,
1998; Schraudolph, 2002).

• Adaptive step size: In the standard backpropagation method the learning rate, which deter-
mines the magnitude of the changes in the weights for each iteration of the algorithm, is fixed
at the beginning of the learning process. Several heuristic methods for the dynamical adapta-
tion of the learning rate have been developed (Hush and Salas, 1988; Jacobs, 1988; Vogl et al.,
1988). Other interesting algorithm is the superSAB, proposed by Tollenaere (Tollenaere,
1990). This method is an adaptive acceleration strategy for error backpropagation learning
that converges faster than the gradient descent with optimal step size value, reducing the sen-
sitivity to parameter values. Moreover, in (Weir, 1991) a method for the self-determination of
this parameter has also been presented. More recently, in Orr and Leen (1996), an algorithm
for fast stochastic gradient descent, which uses a nonlinear adaptivemomentum scheme to op-
timize the slow convergence rate was proposed. Also, in Almeida et al. (1999), a new method
for step size adaptation in stochastic gradient optimization was presented. This method uses
independent step sizes for all parameters and adapts them employing the available derivatives
estimates in the gradient optimization procedure. Additionally, a new online algorithm for
local learning rate adaptation was proposed (Schraudolph, 2002).

• Appropriate weights initialization: The starting point of the algorithm, determined by the
initial set of weights, also influences the method convergence speed. Thus, several solutions
for the appropriate initialization of weights have been proposed. Nguyen and Widrow assign
each hidden processing element an approximate portion of the range of thedesired response
(Nguyen and Widrow, 1990), and Drago and Ridella use the statistically controlled activation
weight initialization, which aims to prevent neurons from saturation during theadaptation
process by estimating the maximum value that the weights should take initially (Dragoand
Ridella, 1992). Also, in (Ridella et al., 1997), an analytical technique, to initialize the weights
of a multilayer perceptron with vector quantization (VQ) prototypes given the equivalence
between circular backpropagation networks and VQ classifiers, has been proposed.

• Rescaling of variables: The error signal involves the derivative of the neural function, which
is multiplied in each layer. Therefore, the elements of the Jacobian matrix can differ greatly
in magnitude for different layers. To solve this problem Rigler et al. (1991) have proposed a
rescaling of these elements.

On the other hand, sensitivity analysis is a very useful technique for deriving how and how
much the solution to a given problem depends on data (see, for example, Castillo et al., 1997,
1999, 2000). However, in this paper we show that sensitivity formulas can also be used for learning,
and a novel supervised learning algorithm for two-layer feedforwardneural networks that presents a
high convergence speed is proposed. This algorithm, the Sensitivity-Based Linear Learning Method

1161

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

(SBLLM), is based on the use of the sensitivities of each layer’s parameters with respect to its inputs
and outputs, and also on the use of independent systems of linear equations for each layer, to obtain
the optimal values of its parameters. In addition, this algorithm gives the sensitivities of the sum of
squared errors with respect to the input and output data.

The paper is structured as follows. In Section 2 a method for learning one layer neural networks
that consists of solving a system of linear equations is presented, and formulas for the sensitivities
of the sum of squared errors with respect to the input and output data are derived. In Section 3 the
SBLLM method, which uses the previous linear method to learn the parameters of two-layer neural
networks and the sensitivities of the total sum of squared errors with respect to the intermediate
output layer values, which are modified using a standard gradient formulauntil convergence, is
presented. In Section 4 the proposed method is illustrated by its application to several practical
problems, and also it is compared with some other fast learning methods. In Section 5 the SBLLM
method is presented as an initialization tool to be used with other learning methods.In Section 6
these results are discussed and some future work lines are presented. Finally, in Section 7 some
conclusions and recommendations are given.

2. One-Layer Neural Networks

Consider the one-layer network in Figure 1. The set of equations relatinginputs and outputs is given
by

y js = f j

(

I

∑
i=0

w ji xis

)

; j = 1,2, . . . ,J; s= 1,2, . . . ,S,

whereI is the number of inputs,J the number of outputs,x0s = 1, w ji are the weights associated
with neuronj andS is the number of data points.

f1

f2

fJ

...

y1S

y2S

yJS

x1S

x2S

xIS

...

w11

w21wJ1

w12

w22

wJ2

w1I w2I

wJI

wJ0
w10

w20

x0S=1

+

+

+

Figure 1: One-layer feedforward neural network.

To learn the weightsw ji , the following sum of squared errors between the real and the desired
output of the networks is usually minimized:

1162

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

P =
S

∑
s=1

J

∑
j=1

δ2
js =

S

∑
s=1

J

∑
j=1

(

y js− f j

(

I

∑
i=0

w ji xis

))2

.

Assuming that the nonlinear activation functions,f j , are invertible (as it is the case for the most
commonly employed functions), alternatively, one can minimize the sum of squared errors before
the nonlinear activation functions (Castillo et al., 2002), that is,

Q =
S
∑

s=1

J
∑
j=1

ε2
js =

S
∑

s=1

J
∑
j=1

(

I
∑

i=0
w ji xis− f−1

j (y js)

)2

, (1)

which leads to the system of equations:

∂Q
∂w jp

= 2
S

∑
s=1

(

I

∑
i=0

w ji xis− f−1
j (y js)

)

xps = 0; p = 0,1, . . . , I ; ∀ j,

that is,

I

∑
i=0

w ji

S

∑
s=1

xisxps =
S

∑
s=1

f−1
j (y js)xps; p = 0,1, . . . , I ; ∀ j

or

I

∑
i=0

Apiw ji = bp j; p = 0,1, . . . , I ; ∀ j, (2)

where

Api =
S

∑
s=1

xisxps; p = 0,1, . . . , I ; ∀i

bp j =
S

∑
s=1

f−1
j (y js)xps; p = 0,1, . . . , I ; ∀ j.

Moreover, for the neural network shown in Figure 1, the sensitivities (see Castillo et al., 2001,
2004, 2006) of the new cost function,Q, with respect to the output and input data can be obtained
as:

∂Q
∂ypq

= −

2

(

I
∑

i=0
wpixiq − f−1

p (ypq)

)

f ′p(ypq)
; ∀p,q (3)

∂Q
∂xpq

= 2
J

∑
j=1

(

I

∑
i=0

w ji xiq − f−1
j (y jq)

)

w jp; ∀p,q. (4)

1163

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

3. The Proposed Sensitivity-Based Linear Learning Method

The learning method and the sensitivity formulas given in the previous sectioncan be used to de-
velop a new learning method for two-layer feedforward neural networks, as it is described below.

Consider the two-layer feedforward neural network in Figure 2 whereI is the number of inputs,
J the number of outputs,K the number of hidden units,x0s = 1,z0s = 1,Sthe number of data samples
and the superscripts(1) and(2) are used to refer to the first and second layer, respectively. This
network can be considered to be composed of two one-layer neural networks. Therefore, assuming
that the intermediate layer outputsz are known, using equation (1), a new cost function for this
network is defined as

Q(z) = Q(1)(z)+Q(2)(z) =

=
S

∑
s=1

K

∑
k=1

(

I

∑
i=0

w(1)
ki xis− f (1)−1

k (zks)

)2

+
J

∑
j=1

(

K

∑
k=0

w(2)
jk zks− f (2)−1

j (y js)

)2

.

Thus, using the outputszks we can learn, for each layer independently, the weightsw(1)
ki and

w(2)
jk by solving the corresponding linear system of equations (2). After that, the sensitivities (see

equations (3) and (4)) with respect tozks are calculated as:

∂Q
∂zks

=
∂Q(1)

∂zks
+

∂Q(2)

∂zks
=

= −

2

(

I
∑

i=0
w(1)

ki xis− f (1)−1

k (zks)

)

f
′(1)
k (zks)

+2
J

∑
j=1

(

K

∑
r=0

w(2)
jr zrs− f (2)−1

j (y js)

)

w(2)
jk

with k = 1, . . . ,K, asz0s = 1,∀s.

fK
(1)

f2
(1)

f1
(1)wki

(1)

f1
(2)

fJ
(2)

x1s

x0s

xIs

y1s

yJs

wjk
(2)z1s

z2s

zKs

z0s

Figure 2: Two-layer feedforward neural network.

Next, the values of the intermediate outputsz are modified using the Taylor series approxima-
tion:

Q(z+∆z) = Q(z)+
K

∑
k=1

S

∑
s=1

∂Q(z)
∂zks

∆zks≈ 0,

1164

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

which leads to the following increments

∆z = −ρ
Q(z)

||∇Q||2
∇Q, (5)

whereρ is a relaxation factor or step size.

The proposed method is summarized in the following algorithm.

Algorithm SBLLM

Input. The data set (input,xis, and desired data,y js), two threshold errors (ε andε′) to control
convergence, and a step sizeρ .

Output. The weights of the two layers and the sensitivities of the sum of squared errors with
respect to input and output data.

Step 0: Initialization. Assign to the outputs of the intermediate layer the output associated with
some random weightsw(1)(0) plus a small random error, that is:

zks = f (1)
k

(

I

∑
i=0

w(1)
ki (0)xis

)

+ εks; εks∼U(−η,η);k = 1, . . . ,K,

whereη is a small number, and initializeQprevious andMSEprevious to some large number, where
MSEmeasures the error between the obtained and the desired output.

Step 1: Subproblem solution.Learn the weights of layers 1 and 2 and the associated sensitivities
solving the corresponding systems of equations, that is,

I

∑
i=0

A(1)
pi w(1)

ki = b(1)
pk

K

∑
k=0

A(2)
qk w(2)

jk = b(2)
q j ,

whereA(1)
pi =

S
∑

s=1
xisxps; b(1)

pk =
S
∑

s=1
f (1)−1

k (zks)xps; p = 0,1, . . . , I ; k = 1,2, . . . ,K

andA(2)
qk =

S
∑

s=1
zkszqs; b(2)

q j =
S
∑

s=1
f (2)−1

j (y js)zqs; q = 0,1, . . . ,K; ∀ j.

Step 2: Evaluate the sum of squared errors.EvaluateQ using

Q(z) = Q(1)(z)+Q(2)(z)

=
S

∑
s=1

K

∑
k=1

(

I

∑
i=0

w(1)
ki xis− f (1)−1

k (zks)

)2

+
J

∑
j=1

(

K

∑
k=0

w(2)
jk zks− f (2)−1

j (y js)

)2

and evaluate also theMSE.

1165

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

Step 3: Convergence checking.If |Q−Qprevious| < ε or |MSEprevious−MSE| < ε′ stop and return
the weights and the sensitivities. Otherwise, continue with Step 4.

Step 4: Check improvement ofQ. If Q > Qprevious reduce the value ofρ, that is,ρ = ρ/2, and
return to the previous position, that is, restore the weights,z= zprevious, Q= Qpreviousand go to Step
5. Otherwise, store the values ofQ andz, that is,Qprevious= Q, MSEprevious= MSEandzprevious= z
and obtain the sensitivities using:

∂Q
∂zks

= −

2

(

I
∑

i=0
w(1)

ki xis− f (1)−1

k (zks)

)

f
′(1)
k (zks)

+2
J

∑
j=1

(

K

∑
r=0

w(2)
jr zrs− f (2)−1

j (y js)

)

w(2)
jk ;k = 1, . . . ,K.

Step 5: Update intermediate outputs. Using the Taylor series approximation in equation (5),
update the intermediate outputs as

z = z−ρ
Q(z)

||∇Q||2
∇Q

and go to Step 1.
The complexity of this method is determined by the complexity of Step 1 which solves alinear

system of equations for each network’s layer. Several efficient methods can be used to solve this
kind of systems with a complexity ofO(n2), wheren is the number of unknowns. Therefore, the
resulting complexity of the proposed learning method is alsoO(n2), beingn the number of weights
of the network.

4. Examples of Applications of the SBLLM to Train Neural Networks

In this section the proposed method, SBLLM,1 is illustrated by its application to five system iden-
tification problems. Two of them are small/medium size problems (Dow-Jones andLeuven compe-
tition time series), while the other three used large data sets and networks (Lorenz time series, and
the MNIST and UCI Forest databases). Also, in order to check the performance of the SBLLM,
it was compared with five of the most popular learning methods. Three of these methods are the
gradient descent (GD), the gradient descent with adaptive momentum and step sizes (GDX), and
the stochastic gradient descent (SGD), whose complexity isO(n). The other methods are the scaled
conjugated gradient (SCG), with complexity ofO(n2), and the Levenberg-Marquardt (LM) (com-
plexity of O(n3)). All experiments were carried out in MATLABR© running on a Compaq HPC 320
with an Alpha EV68 1 GHz processor and 4GB of memory. For each experiment all the learning
methods shared the following conditions:

• The network topology and neural functions. In all cases, the logistic function was used for
hidden neurons, while for output neurons the linear function was used for regression problems
and the logistic function was used for classification problems. It is important toremark that
the aim here is not to investigate the optimal topology, but to check the performance of the
algorithms in both small and large networks.

1. MATLAB R© demo code available at http://www.dc.fi.udc.es/lidia/downloads/SBLLM.

1166

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

• Initial step size equal to 0.05, except for the stochastic gradient descent. In this last case, we
used a step size in the interval[0.005,0.2]. These step sizes were tuned in order to obtain
good results.

• The input data set was normalized (mean = 0 and standard deviation = 1).

• Several simulations were performed using for each one a different setof initial weights. This
initial set was the same for all the algorithms (except for the SBLLM), and was obtained by
the Nguyen-Widrow (Nguyen and Widrow, 1990) initialization method.

• Finally, statistical tests were performed in order to check whether the differences in accuracy
and speed were significant among the different training algorithms. Specifically, first the
non-parametric Kruskal-Wallis test (Hollander and Wolfe, 1973) was applied to check the
hypothesis that all mean performances are equal. When this hypothesis is rejected, a multiple
comparison test of means based on the Tukey’s honestly significant difference criterion (Hsu,
1996) was applied to know which pairs of means are different. In all cases, a significance
level of 0.05 was used.

4.1 Dow-Jones Time Series

The first data set is the time series corresponding to the Dow-Jones index values for years 1994-
1996 (Ley, 1996). The goal of the network in this case is to predict the index for a given day based
on the index of five previous days. For this data set a 5-7-1 topology (5 inputs, 7 hidden neurons
and 1 output neuron) was used. Also, 900 samples were employed for thelearning process. In order
to obtain the MSE curves during the learning process 100 simulations of 3000iterations each, were
done.

Figure 3(a) shows, for each method, the mean error curve calculated over the 100 simulations.
Also, in Figure 3(b) the box-whisker plots are shown for the 100 MSEs obtained by each method at
the end of the training. In this graphic the box corresponds to the interquartile range, the bar inside
the box represents the median, the whiskers extend to the farthest points that are not outliers, and
outliers are represented by the plus sign.

Also, different measures were calculated and collected in Table 4.1. These measures are:

• M1: Mean and standard deviation of the minimum MSEs obtained by each method over the
100 simulations.

• M2: Mean epoch and corresponding standard deviation in which each of theother methods
reaches the minimum MSE obtained by the SBLLM.

• M3: MSE and standard deviation for each of the other methods at the epoch in which the
SBLLM gets its minimum.

In this case, the best mean MSE is achieved by the LM method (seeM1 in Table 4.1). Also,
applying the multiple comparison test, it was found that the difference betweenthis mean and those
from the others methods was statistically significant.

Finally, the mean CPU times and the corresponding standard deviations for each of the methods
are shown in Table 4.1. In this table, the variablestepochmean and tepochstd are the mean and
standard deviation CPU time (in seconds) per epoch, respectively, while the variablesttotalmeanand

1167

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

ttotalstd correspond to the mean and standard deviation of the time needed to reach theminimum
MSE. TheRatio column contains the relation between thettotalmean of each algorithm and the
fastest one. Again, the multiple comparison test applied over thettotalmeanrevealed that the speed
of the fastest method, that is the SBLLM, was only comparable to that of the SCG.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

SBLLM

LM

SGD

SCG

GDX

GD

(a) Mean error curves over 100 simulations

 GD SCG GDX LM SBLLM SGD

0

0.01

0.02

0.03

0.04

0.05

0.06

M
S

E
(b) Boxplot of the 100 MSE values obtained at the
end of the training

Figure 3: Results of the learning process for the Dow-Jones data.

M1 M2 M3

SBLLM 4.866×10−4±2.252×10−6 2.08±0.394 4.866×10−4±2.252×10−6

LM 4.601×10−4±1.369×10−5 20±11.5 9.099×10−2±2.190×10−1

SCG 1.928×10−3±8.959×10−3 354±150(∗1) 5.517×10−2±6.034×10−3

GDX 7.747×10−3±1.802×10−2 2,180±635(∗2) 4.717×10−1±5.962×10−1

GD 2.020×10−2±2.369×10−2 > 3000 5.517×10−2±5.950×10−1

SGD 5.995×10−2±1.360×10−3 > 3000 9.001×10−2±1.356×10−2

(∗1) 4% of the curves did not get the minimum of SBLLM

(∗2) 99.5% of the curves did not get the minimum of SBLLM

Table 1: Comparative measures for the Dow-Jones data.

tepochmean tepochstd ttotalmean ttotalstd Ratio
GD 0.0077 9.883×10−5 23.125 0.297 223.4

GDX 0.0078 1.548×10−4 22.764 3.548 219.9
SBLLM 0.0089 1.600×10−3 0.104 0.115 1

SCG 0.0165 2.800×10−3 15.461 8.595 149.4
LM 0.0395 3.460×10−2 115.619 106.068 1,117.1
SGD 0.2521 1.814×10−3 756.570 5.445 7,274.7

Table 2: CPU time comparison for the Dow-Jones data.

1168

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

4.2 K.U. Leuven Competition Data

The K.U. Leuven time series prediction competition data (Suykens and Vandewalle, 1998) were
generated from a computer simulated 5-scroll attractor, resulting from a generalized Chua’s circuit
which is a paradigm for chaos. 1800 data points of this time series were usedfor training. The
aim of the neural network is to predict the current sample using only 4 previous data points. Thus
the training set is reduced to 1796 input patterns corresponding to the number of 4-samples sliding
windows over the initial training set. For this problem a 4-8-1 topology was used. As for the
previous experiment 100 simulations of 3000 iterations each were carried out. Results are shown in
Figure 4, and Tables 4.2 and 4.2.

In this case, the best mean MSE is achieved by the LM method (seeM1 in Table 4.2). However,
the multiple comparison test did not show any significant difference with respect to the means of
the SCG and the SBLLM. Regarding thettotalmean, the multiple comparison test showed that the
speed of the fastest method, that is the SBLLM, was only comparable to thoseof the GDX and the
GD.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

SBLLM

LM

SGD

SCG

GDX GD

(a) Mean error curves over 100 simulations

 GD SCG GDX LM SBLLM SGD

10
−4

10
−3

M
S

E

(b) Boxplot of the 100 MSE values obtained at the
end of the training

Figure 4: Results of the learning process for the Leuven competition data.

M1 M2 M3

SBLLM 3.639×10−5±2.098×10−7 2.2±0.471 3.639×10−5±2.098×10−7

LM 2.7064×10−5±2.439×10−6 23.5±16.3 1.323×10−1±3.143×10−1

SCG 3.517×10−5±9.549×10−7 2160±445(∗) 1.949×10−1±2.083×10−1

GDX 8.121×10−4±4.504×10−4 > 3000 7.190×10−1±6.651×10−1

GD 3.280×10−3±1.698×10−3 > 3000 1.949×10−1±6.621×10−1

SGD 4.748×10−5±9.397×10−6 > 3000 8.458×10−3±5.292×10−3

(∗) 9.8% of the curves did not get the minimum of SBLLM

Table 3: Comparative measures for the Leuven competition data.

1169

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

tepochmean tepochstd ttotalmean ttotalstd Ratio
GDX 0.0114 3.256×10−4 34.309 0.977 710.3
GD 0.0117 3.208×10−4 35.018 0.963 725

SBLLM 0.0173 2.362×10−3 0.048 0.017 1
SCG 0.0238 6.271×10−4 69.571 5.022 1440.4
LM 0.0669 5.440×10−2 196.816 164.539 4074.9
SGD 0.5083 2.982×10−3 1,525.34 8.949 31,777.9

Table 4: CPU time comparison for the Leuven competition data.

4.3 Lorenz Time Series

A Lorenz system (Lorenz, 1963) is described by the solution of three simultaneous differential
equations:

dx/dt = −σx+σy

dy/dt = −xz+ rx−y

dz/dt = xy−bz,

whereσ, r andb are constants. For this work, we employedσ = 10, r = 28, andb = 8/3, for which
the system presents a chaotic dynamics. The goal of the network is to predict the current sample
based on the four previous samples. For this data set a 8-100-1 topologywas used. Also, 150000
samples were employed for the learning process. In this case, and due to the large size of both the
data set and the neural networks, the conditions of the experiments were the following:

• The number of simulations, which were carried out to obtain the MSE curves during the
learning process was reduced to 30, of 1000 iterations each.

• Neither the GD nor the LM methods were used. The results of the GD will not bepresented
because the method performed poorly, and the LM is impractical in these cases as it is highly
computationally demanding (LeCun et al., 1998).

Results are shown in Figure 5, and Tables 4.3 and 4.3. In this case, the SBLLM was the best
both in mean MSE and total CPU time, confirmed by the multiple comparison test.

1170

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Epoch

M
ea

n
M

S
E

SBLLM

SGD

SCG

GDX

(a) Mean error curves over 30 simulations

 SCG GDX SBLLM SGD

10
−7

10
−6

10
−5

10
−4

10
−3

M
S

E

(b) Boxplot of the 30 MSE values obtained at the
end of the training

Figure 5: Results of the learning process for the Lorenz data.

M1 M2 M3

SBLLM 3.118×10−8±2.151×10−8 2.47±0.776 3.118×10−8±2.151×10−8

SGD 1.426×10−6±2.710×10−7 > 1000 2.512×10−2±1.345×10−2

SCG 1.545×10−5±3.922×10−6 > 1000 1.286×101±5.538
GDX 3.774×10−3±8.409×10−4 > 1000 7.722×101±1.960×101

Table 5: Comparative measures for the Lorenz data.

tepochmean tepochstd ttotalmean ttotalstd Ratio
GDX 9.75 0.04 9,750.92 42.65 849.7
SCG 21.01 0.63 21,111.2 633.62 1830.9
SGD 56.56 0.39 56,611.9 395.15 986.6

SBLLM 22.55 0.40 57.38 20.57 1

Table 6: CPU time comparison for the Lorenz data.

4.4 MNIST Data Set

The MNIST database, available at http://yann.lecun.com/exdb/mnist/, contains grey level images of
handwritten digits of 28×28 pixels. It is a real classification problem whose goal is to determine
the written number which is always an integer in the range between 0 and 9. This database is
originally divided into a training set of 60,000 examples, and a test set of 10,000 examples. Further
we extracted 10,000 samples from the training set to be used as a validation set.

For this data set we used 784 inputs neurons fed by the 28×28 pixels of each input pattern, and
one output neuron per class. Specifically a 784-800-10 topology was used. In this case, and due to
the large size of both the data set and the neural network, the conditions ofthe experiments were
the following:

• The number of simulations, which were carried out to obtain the classification error was
reduced to 20.

1171

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

• Allowing a maximum of 200 iterations per simulation, the early stopping criteria usingthe
validation set was employed to halt learning.

• The LM method was not used, since it is impractical in these cases as it is highlycomputa-
tionally demanding (LeCun et al., 1998).

• Concerning the other batch methods only the SCG was used since it is the one that clearly
obtains the best results and convergence speed in the previous experiments.

Results are shown in Tables 4.4 and 4.4. As mentioned, the training process of the three methods
were halted using the stop learning criteria. In this case, as can be observed the SGD achieved the
best mean test accuracy, confirmed by the multiple comparison test. Besides,in all simulations the
SBLLM always stops in iteration 75 achieving a worse accuracy than the SGD but employing a total
time lesser than the other methods. In order to check if this result could be improved we did some
other experiments allowing the SBLLM to run as long as the Stochastic GradientDescent (SGD).
However, results were not improved. Therefore, the presented tablesshow the most favourable
situation for each algorithm.

Regarding the total CPU time, again the fastest method is the SBLLM, with attotalmeansignifi-
cantly different from the other two methods.

Trainmean±std Validationmean±std Testmean±std

SGD 99.93±0.04 97.87±0.09 97.70±0.08
SCG 78.12±22.46 77.21±21.97 77.03±22.05

SBLLM 85.73±0.03 86.52±0.15 86.08±0.26

Table 7: Classification accuracy for the MNIST data.

tepochmean±std ttotalmean±std iterationsmean±std Ratio
SGD 1,209.86±6.70 87,607.1±485.41 72.4±16.99 2.73
SCG 310.64±2.93 61,311.4±1,537 197.4±5.81 1.92

SBLLM 422.82±1.28 32,134.4±97 75±0 1

Table 8: CPU time comparison for the MNIST data.

4.5 Forest

The Forest CoverType database, on-line at http://kdd.ics.uci.edu/databases/covertype/covertype.html,
contains data describing the wilderness areas and soil types for 30×30 meter cells obtained from US
Forest Service Region 2 Resource Information System data. It is also a real classification problem
whose goal is to determine the forest cover type from 54 input variables.Originally, the problem
consider 7 cover classes, although in this case we have employed the 2-class version of the problem
that consist of distinguishing the most frequent class from the other six (Collobert et al., 2003).
This database contains 500,000 examples from which we built a training set of 101,241 examples, a
validation set of 10,123 and a test set of 50,620 examples. These sets preserve the same proportion
of samples for each of the seven classes as in the original data set.

1172

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

For this data set a 54-500-2 topology was used. Regarding the number ofsimulations, stopping
criteria and learning methods, the conditions were the same as those of the MNIST experiment
described in the previous section.

As in the previous section, the most favourable results for each algorithm are shown in Tables
4.5 and 4.5. In this data set, the SGD achieved the best mean test accuracy,confirmed by the
multiple comparison test. Regarding the total CPU time, the fastest method is the SBLLM, with a
ttotalmeansignificantly different from the other two methods. It is important to remark that although
in this case the SBLLM is the fastest method, this is due to the stop of the learning process in an
early stage. This does not allow the SBLLM to achieve a good accuracy, as it is shown in Table 4.5.
These results confirm that, for classification problems the SGD seems to be better in error than the
SBLLM, which is similar in error but faster than the SCG.

Trainmean±std Validationmean±std Testmean±std

SGD 89.60±0.92 88.21±0.69 88.22±0.56
SCG 79.03±1.29 78.69±1.15 79.08±1.16

SBLLM 79.87±1.05 79.65±0.22 79.92±0.15

Table 9: Classification accuracy for the forest cover type data.

tepochmean±std ttotalmean±std iterationsmean±std Ratio
SGD 106.95±1.92 15,210.63±273.34 142.2±55.36 109.14
SCG 100.20±3.40 17,903.66±3063.92 178.60±29.66 92.58

SBLLM 139.37±0.72 139.37±0.72 1±0 1

Table 10: CPU time comparison for the forest cover type data.

5. The SBLLM as Initialization Method

As has been shown in the previous section, the SBLLM achieves a small error rate in very few
epochs. Although this error rate is very small and, in general, better than the errors obtained by
other learning methods, as can be seen in Figures 3(a), 4(a) and 5(a),once the SBLLM gets this
point the variation in the MSE in further epochs is not significant. For this reason, an interesting
alternative is to combine the SBLLM with other learning methods.

In this section, the results of the SBLLM used as an initialization method instead of as a learning
algorithm are presented. Thus, several experiments were accomplishedusing the SBLLM only to
get the initial values of the weights of the neural network. Afterwards, theLM and SCG were used
as learning methods from these initial values. The experiments were carriedout using the Dow-
Jones, Leuven and Lorenz time series. For these three data sets the experimental conditions were
the same as those described in Section 4.

For every experiment 100 simulations were done of 3000 iterations each. In all cases, the
SBLLM performed at most three iterations to get the initial weights. Moreover, in order to ac-
complish a comparative study, the obtained results were confronted with the ones achieved by the
same learning methods (LM and SCG) but using the Nguyen-Widrow (NW) initialization method
(Nguyen and Widrow, 1990), one of the most popular, to obtain the initial weights.

1173

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

Figures 6(a), 7(a) and 8(a) show the corresponding mean curves (over the 100 simulations) of
the learning process using the SBLLM and the NW as initialization methods and theLM as the
learning algorithm. Figures 6(b), 7(b) and 8(b) show the same mean curves of the learning process
using this time the SCG as learning algorithm.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

NW + LM

SBLLM + LM

(a) Mean error curves for the LM method

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

NW + SCG

SBLLM + SCG

(b) Mean error curves for the SCG method

Figure 6: Mean error curves over 100 simulations for the Dow-Jones time series using the SBLLM
and the NW as initialization methods.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

NW + LM

SBLLM + LM

(a) Mean error curves for the LM method

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Epoch

M
ea

n
M

S
E

NW + SCG

SBLLM + SCG

(b) Mean error curves for the SCG method

Figure 7: Mean error curves over 100 simulations for the Leuven competition time series using the
SBLLM and the NW as initialization methods.

1174

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

M
ea

n
M

S
E

NW + LM

SBLLM + LM

Epoch

(a) Mean error curves for the LM method

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Epoch

M
ea

n
M

S
E

NW + SCG

SBLLM + SCG

(b) Mean error curves for the SCG method

Figure 8: Mean error curves over 100 simulations for the Lorenz time series using the SBLLM and
the NW as initialization methods.

Figures 9(a), 10(a) and 11(a) contain the boxplots of the methods in the last epoch of training
(3000) using the SBLLM and NW as initialization methods and the LM as the learning algorithm.
Figures 9(b), 10(b) and 11(b) depict the same boxplots when using the SCG as the learning algo-
rithm.

NW + LM SBLLM + LM

4.3

4.4

4.5

4.6

4.7

4.8

x 10
−4

M
S

E

(a) Boxplot for the LM method

NW + SCG SBLLM + SCG

4.7

4.75

4.8

4.85

x 10
−4

M
S

E

(b) Boxplot for the SCG method

Figure 9: Boxplot of the 100 MSE values at the last epoch of training for the Dow-Jones time series
using the SBLLM and NW as initialization methods.

1175

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

NW + LM SBLLM + LM

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

x 10
−5

M
S

E

(a) Boxplot for the LM method

NW + SCG SBLLM + SCG
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

x 10
−5

M
S

E

(b) Boxplot for the SCG method

Figure 10: Boxplot of the 100 MSE values at the last epoch of training forthe Leuven competition
time series using the SBLLM and NW as initialization methods.

NW + LM SBLLM + LM

0

1

2

3

4

5

6

7

x 10
−11

M
S

E

(a) Boxplot for the LM method

NW + SCG SBLLM + SCG

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−6

M
S

E

(b) Boxplot for the SCG method

Figure 11: Boxplot of the 100 MSE values at the last epoch of training forthe Lorenz time series
using the SBLLM and NW as initialization methods.

6. Discussion

Regarding the behavior of the SBLLM as alearning algorithm, and from the experiments made and
the results presented in Section 4, there are three main features of the SBLLM that stand out:

1. High speed in reaching the minimum error. For the first three problems (Dow-Jones, Leuven
and Lorenz time series), this feature can be observed in Figures 3(a), 4(a) and 5(a), and the
measureM2 in Tables 4.1, 4.2 and 4.3, where it can be seen that in all cases the SBLLM

1176

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

obtains its minimum MSE (minMSE) just before the first 4 iterations and also sooner than
the rest of the algorithms. Moreover, and generally speaking, measureM3 reflects that the
SBLLM gets its minimum in an epoch for which the other algorithms are far from similar
MSE values.

If we take into account the CPU times in Tables 4.1, 4.2, 4.3, 4.4 and 4.5 we can see that,
as expected, the CPU time per epoch of the SBLLM is similar to that of the SCG (both of
O(n2)), and when we consider the total CPU time per simulation the SBLLM is, in the worst
case, more than 150 times faster than the fastest algorithm for the regression examples and
approximately 2 times faster for the classification examples. It is also important toremark
that despite of the advantages of the LM method, it could not be applied in the experiments
that involved large data sets and neural networks as it is impractical for such cases (LeCun
et al., 1998).

2. A good performance. From Figures 3(a), 4(a) and 5(a), and the measureM1 in Tables 4.1, 4.2
and 4.3, it can be deduced that not only the SBLLM stabilizes soon, but also the minMSE that
it reaches is quite good and comparable to that obtained by the second order methods. On the
other hand, the GD and the GDX learning methods never succeeded in attaining this minMSE
before the maximum number of epochs, as reflected in measureM2 (Tables 4.1, 4.2 and 4.3).
Finally, the SCG algorithm presents an intermediate behavior, although seldomachieves the
levels of performance of the LM and SBLLM.

Regarding the classification problems, from Tables 4.4 and 4.5, it can be deduced that the
SBLLM performs similar or better than the other batch method, that is the SCG, while the
stochastic method (SGD) is the best algorithm for this kind of problems (LeCunet al., 1998).

Although the ability of the proposed algorithm to get a minimum in just very few epochs
is usually an advantage, it can also be noticed that once it achieves this minimum(local
or global) it gets stuck in this point. This causes that, sometimes like in the classification
examples included, the algorithm is not able to obtain a high accuracy. This behavior could
be explained by the initialization method and the updating rule for the step size employed.

3. Homogeneous behavior. This feature comprehends several aspects:

• The SBLLM learning curve stabilizes soon, as can be observed in Figures 3(a), 4(a) and
5(a).

• Regarding the minimum MSE reached at the end of the learning process, it can be
observed from Figures 3(b), 4(b) and 5(b) that, in any case, the GD and GDX algorithms
present a wider dispersion, given even place to the appearance of outliers. On the other
hand, the SGD, SCG, LM and SBLLM algorithms tend to always obtain nearervalues
of MSE. This fact is also reflected by the standard deviations of measureM1.

• The SBLLM behaves homogeneously not only if we consider just the end of the learning
process, as commented, but also during the whole process, in such a waythat very sim-
ilar learning curves where obtained for all iterations of the first three experiments. This
is, in a certain way, reflected in the standard deviation of measureM3 which corresponds
to the MSE value taken at some intermediate point of the learning process.

1177

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

• Finally, from Tables 4.4 and 4.5 it can be observed that for these last two experiments
(MNIST and Forest databases) this homogeneus behaviour stands forthe SGD and the
SBLLM, while the SCG presents a wider dispersion in its classification errors.

With respect to the use of the SBLLM asinitialization method, as it can be observed in Figures
6, 7 and 8, the SBLLM combined with the LM or the SCG achieves a faster convergence speed than
the same methods using the NW as initialization method. Also, the SBLLM obtains a very good
initial point, and thus a very low MSE in a few epochs of training. Moreover,in this case, most
of the times the final MSE achieved is smaller than the one obtained using the NW initialization
method. This result is better illustrated in the boxplots of the corresponding time series where it can
be observed, in addition, that the final MSE obtained with NW presents a higher variability than
that achieved by the SBLLM, that is, the SBLLM helps the learning algorithms toobtain a more
homogeneous MSE at the end of the training process. Thus, experiments confirm the utility of the
SBLLM as an initialization method, which effect is to speed up the convergence.

7. Conclusions and Future Work

The main conclusions that can be drawn from this paper are:

1. The sensitivities of the sum of squared errors with respect to the outputs of the intermediate
layer allow an efficient and fast gradient method to be applied.

2. Over the experiments made the SBLLM offers an interesting combination of speed, reliability
and simplicity.

3. Regarding the employed regression problems only second order methods, and more specifi-
cally the LM, seem to obtain similar results although at a higher computational cost.

4. With respect to the employed classification problems, the SBLLM performs similar or bet-
ter than the other batch method, although requiring less computational time. Besides, the
stochastic gradient (SGD) is the one that obtains the lowest classification error. This result is
in accordance with that obtained by other authors (LeCun et al., 1998) that recommend this
method for large data sets and networks in classification tasks.

5. The SBLLM used as an initialization method significantly improves the performance of a
learning algorithm.

Finally, there are some aspects of the proposed algorithm that need an in depth study, and will
be addressed in a future work:

1. A more appropriate method to set the initial values of the outputsz of hidden neurons (step 0
of the proposed algorithm).

2. A more efficient updating rule for the step sizeρ, like a method based on a line search (hard
or soft).

3. An adaptation of the algorithm to improve its performance on classification problems, specif-
ically for large data sets.

1178

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

Acknowledgments

We would like to acknowledge support for this project from the Spanish Ministry of Science and
Technology (Projects DPI2002-04172-C04-02 and TIC2003-00600, this last partially supported by
FEDER funds) and the Xunta de Galicia (project PGIDT04PXIC10502PN). Also, we thank the
Supercomputing Center of Galicia (CESGA) for allowing us the use of the highperformance com-
puting servers.

References

L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter adaptation in stochastic
optimization. In D. Saad, editor,On-line Learning in Neural Networks, chapter 6, pages 111–
134. Cambridge University Press, 1999.

R. Battiti. First and second order methods for learning: Between steepestdescent and Newton’s
method.Neural Computation, 4(2):141–166, 1992.

E. M. L. Beale. A derivation of conjugate gradients. In F. A. Lootsma, editor, Numerical methods
for nonlinear optimization, pages 39–43. Academic Press, London, 1972.

F. Biegler-K̈onig and F. B̈armann. A learning algorithm for multilayered neural networks based on
linear least-squares problems.Neural Networks, 6:127–131, 1993.

W. L. Buntine and A. S. Weigend. Computing second derivatives in feed-forward networks: A
review. IEEE Transactions on Neural Networks, 5(3):480–488, 1993.

E. Castillo, J. M. Gutíerrez, and A. Hadi. Sensitivity analysis in discrete bayesian networks.IEEE
Transactions on Systems, Man and Cybernetics, 26(7):412–423, 1997.

E. Castillo, A. Cobo, J. M. Gutiérrez, and R. E. Pruneda. Working with differential, functional and
difference equations using functional networks.Applied Mathematical Modelling, 23(2):89–107,
1999.

E. Castillo, A. Cobo, J. M. Gutiérrez, and R. E. Pruneda. Functional networks. a new neural network
based methodology.Computer-Aided Civil and Infrastructure Engineering, 15(2):90–106, 2000.

E. Castillo, A. Conejo, P. Pedregal, R. Garcı́a, and N. Alguacil.Building and Solving Mathematical
Programming Models in Engineering and Science. John Wiley & Sons Inc., New York., 2001.

E. Castillo, O. Fontenla-Romero, A. Alonso Betanzos, and B. Guijarro-Berdiñas. A global optimum
approach for one-layer neural networks.Neural Computation, 14(6):1429–1449, 2002.

E. Castillo, A. S. Hadi, A. Conejo, and A. Fernández-Canteli. A general method for local sensitivity
analysis with application to regression models and other optimization problems.Technometrics,
46(4):430–445, 2004.

E. Castillo, C. Castillo A. Conejo and, R. Mı́nguez, and D. Ortigosa. A perturbation approach to
sensitivity analysis in nonlinear programming.Journal of Optimization Theory and Applications,
128(1):49–74, 2006.

1179

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

A. Chella, A. Gentile, F. Sorbello, and A. Tarantino. Supervised learningfor feed-forward neural
networks: a new minimax approach for fast convergence.Proceedings of the IEEE International
Conference on Neural Networks, 1:605 – 609, 1993.

V. Cherkassky and F. Mulier.Learning from Data: Concepts, Theory, and Methods. Wiley, New
York, 1998.

R. Collobert, Y. Bengio, and S. Bengio. Scaling large learning problems withhard parallel mixtures.
International Journal of Pattern Recognition and Artificial Intelligence, 17(3):349–365, 2003.

J. E. Dennis and R. B. Schnabel.Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

G. P. Drago and S. Ridella. Statistically controlled activation weight initialization (SCAWI). IEEE
Transactions on Neural Networks, 3:899–905, 1992.

R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients.Computer Journal, 7
(149–154), 1964.

O. Fontenla-Romero, D. Erdogmus, J.C. Principe, A. Alonso-Betanzos,and E. Castillo. Linear
least-squares based methods for neural networks learning.Lecture Notes in Computer Science,
2714(84–91), 2003.

M. T. Hagan and M. Menhaj. Training feedforward networks with the marquardt algorithm.IEEE
Transactions on Neural Networks, 5(6):989–993, 1994.

M. T. Hagan, H. B. Demuth, and M. H. Beale.Neural Network Design. PWS Publishing, Boston,
MA, 1996.

M. Hollander and D. A. Wolfe.Nonparametric Statistical Methods. John Wiley & Sons, 1973.

J. C. Hsu. Multiple Comparisons. Theory and Methods. Chapman&Hall/CRC, Boca Raton, FL,
1996.

D. R. Hush and J. M. Salas. Improving the learning rate of back-propagation with the gradient reuse
algorithm.Proceedings of the IEEE Conference of Neural Networks, 1:441–447, 1988.

B. C. Ihm and D. J. Park. Acceleration of learning speed in neural networks by reducing weight
oscillations. Proceedings of the International Joint Conference on Neural Networks, 3:1729–
1732, 1999.

R. A. Jacobs. Increased rates of convergence through learning rate adaptation.Neural Networks, 1
(4):295–308, 1988.

Y. LeCun, I. Kanter, and S.A. Solla. Second order properties of error surfaces: Learning time and
generalization. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors, Neural Information
Processing Systems, volume 3, pages 918–924, San Mateo, CA, 1991. Morgan Kaufmann.

Y. LeCun, L. Bottou, G.B. Orr, and K.-R. M̈uller. Efficient backprop. In G. B. Orr and K.-R. M̈uller,
editors,Neural Networks: Tricks of the trade, number 1524 in LNCS. Springer-Verlag, 1998.

1180

A V ERY FAST LEARNING METHOD FORNEURAL NETWORKSBASED ON SENSITIVITY ANALYSIS

K. Levenberg. A method for the solution of certain non-linear problems in least squares.Quaterly
Journal of Applied Mathematics, 2(2):164–168, 1944.

E. Ley. On the peculiar distribution of the U.S. stock indeces’ first digits.The American Statistician,
50(4):311–314, 1996.

E. N. Lorenz. Deterministic nonperiodic flow.Journal of the Atmospheric Sciences, 20:130–141,
1963.

D. W. Marquardt. An algorithm for least-squares estimation of non-linear parameters.Journal of
the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.

M. F. Moller. A scaled conjugate gradient algorithm for fast supervisedlearning.Neural Networks,
6:525–533, 1993.

D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural networks by choosing
initial values of the adaptive weights.Proceedings of the International Joint Conference on
Neural Networks, 3:21–26, 1990.

G. B. Orr and T. K. Leen. Using curvature information for fast stochastic search. In M.I. Jordan,
M.C. Mozer, and T. Petsche, editors,Neural Information Processing Systems, volume 9, pages
606–612, Cambridge, 1996. MIT Press.

D. B. Parker. Optimal algorithms for adaptive networks: second order back propagation, second
order direct propagation, and second order hebbian learning.Proceedings of the IEEE Conference
on Neural Networks, 2:593–600, 1987.

S. Pethel, C. Bowden, and M. Scalora. Characterization of optical instabilities and chaos using MLP
training algorithms.SPIE Chaos Opt., 2039:129–140, 1993.

M. J. D. Powell. Restart procedures for the conjugate gradient method.Mathematical Programming,
12:241–254, 1977.

S. Ridella, S. Rovetta, and R. Zunino. Circular backpropagation networks for classification.IEEE
Transactions on Neural Networks, 8(1):84–97, January 1997.

A. K. Rigler, J. M. Irvine, and T. P. Vogl. Rescaling of variables in backpropagation learning.
Neural Networks, 4:225–229, 1991.

D. E. Rumelhart, G. E. Hinton, and R. J. Willian. Learning representations of back-propagation
errors.Nature, 323:533–536, 1986.

N. N. Schraudolph. Fast curvature matrix-vector products for second order gradient descent.Neural
Computation, 14(7):1723–1738, 2002.

A. Sperduti and S. Antonina. Speed up learning and network optimization withextended back
propagation.Neural Networks, 6:365–383, 1993.

J. A. K. Suykens and J. Vandewalle, editors.Nonlinear Modeling: advanced black-box techniques.
Kluwer Academic Publishers Boston, 1998.

1181

CASTILLO , GUIJARRO-BERDIÑAS, FONTENLA-ROMERO AND ALONSO-BETANZOS

T. Tollenaere. Supersab: Fast adaptive back propagation with good scaling properties.Neural
Networks, 3(561–573), 1990.

T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon. Accelerating the convergence
of back-propagation method.Biological Cybernetics, 59:257–263, 1988.

M. K. Weir. A method for self-determination of adaptive learning rates in back propagation.Neural
Networks, 4:371–379, 1991.

B. M. Wilamowski, S. Iplikci, O. Kaynak, and M. O. Efe. An algorithm for fast convergence in
training neural networks.Proceedings of the International Joint Conference on Neural Networks,
2:1778–1782, 2001.

J. Y. F. Yam, T. W. S Chow, and C. T Leung. A new method in determining the initial weights of
feedforward neural networks.Neurocomputing, 16(1):23–32, 1997.

1182

Journal of Machine Learning Research 7 (2006) 1183–1204 Submitted 12/05; Revised 3/06; Published 7/06

Computational and Theoretical Analysis of Null Space and
Orthogonal Linear Discriminant Analysis

Jieping Ye JIEPING.YE@ASU.EDU

Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287, USA

Tao Xiong TXIONG@ECE.UMN .EDU

Department of Electrical and Computer Engineering
University of Minnesota
Minneapolis, MN 55455, USA

Editor: David Madigan

Abstract

Dimensionality reduction is an important pre-processing step in many applications. Linear discrim-
inant analysis (LDA) is a classical statistical approach for supervised dimensionality reduction. It
aims to maximize the ratio of the between-class distance to the within-class distance, thus maximiz-
ing the class discrimination. It has been used widely in manyapplications. However, the classical
LDA formulation requires the nonsingularity of the scattermatrices involved. For undersampled
problems, where the data dimensionality is much larger thanthe sample size, all scatter matrices
are singular and classical LDA fails. Many extensions, including null space LDA (NLDA) and
orthogonal LDA (OLDA), have been proposed in the past to overcome this problem. NLDA aims
to maximize the between-class distance in the null space of the within-class scatter matrix, while
OLDA computes a set of orthogonal discriminant vectors via the simultaneous diagonalization of
the scatter matrices. They have been applied successfully in various applications.

In this paper, we present a computational and theoretical analysis of NLDA and OLDA. Our
main result shows that under a mild condition which holds in many applications involving high-
dimensional data, NLDA is equivalent to OLDA. We have performed extensive experiments on
various types of data and results are consistent with our theoretical analysis. We further apply the
regularization to OLDA. The algorithm is called regularized OLDA (or ROLDA for short). An effi-
cient algorithm is presented to estimate the regularization value in ROLDA. A comparative study on
classification shows that ROLDA is very competitive with OLDA. This confirms the effectiveness
of the regularization in ROLDA.

Keywords: linear discriminant analysis, dimensionality reduction,null space, orthogonal matrix,
regularization

1. Introduction

Dimensionality reduction is important in many applications of data mining, machine learning, and
bioinformatics, due to the so-calledcurse of dimensionality(Bellmanna, 1961; Duda et al., 2000;
Fukunaga, 1990; Hastie et al., 2001). Many methods have been proposed for dimensionality reduc-
tion, such as principal component analysis (PCA) (Jolliffe, 1986) and linear discriminant analysis

c©2006 Jieping Ye and Tao Xiong.

YE AND X IONG

(LDA) (Fukunaga, 1990). LDA aims to find the optimal discriminant vectors (transformation) by
maximizing the ratio of the between-class distance to the within-class distance, thus achieving the
maximum class discrimination. It has been applied successfully in many applications including
information retrieval (Berry et al., 1995; Deerwester et al., 1990), face recognition (Belhumeour
et al., 1997; Swets and Weng, 1996; Turk and Pentland, 1991), and microarray gene expression data
analysis (Dudoit et al., 2002). However, classical LDA requires the so-calledtotal scatter matrixto
be nonsingular. In many applications such as those mentioned above, all scatter matrices in ques-
tion can be singular since the data points are from a very high-dimensional space and in general the
sample size does not exceed this dimensionality. This is known as thesingularityor undersampled
problem(Krzanowski et al., 1995).

In recent years, many approaches have been proposed to deal with such high-dimensional, un-
dersampled problem, including null space LDA (NLDA) (Chen et al., 2000;Huang et al., 2002),
orthogonal LDA (OLDA) (Ye, 2005), uncorrelated LDA (ULDA) (Ye et al., 2004a; Ye, 2005), sub-
space LDA (Belhumeour et al., 1997; Swets and Weng, 1996), regularized LDA (Friedman, 1989),
and pseudo-inverse LDA (Raudys and Duin, 1998; Skurichina and Duin, 1996). Null space LDA
computes the discriminant vectors in the null space of the within-class scatter matrix. Uncorrelated
LDA and orthogonal LDA are among a family of algorithms for generalized discriminant analysis
proposed in (Ye, 2005). The features in ULDA are uncorrelated, whilethe discriminant vectors in
OLDA are orthogonal to each other. Subspace LDA (or PCA+LDA) applies an intermediate di-
mensionality reduction stage such as PCA to reduce the dimensionality of the original data before
classical LDA is applied. Regularized LDA uses a scaled multiple of the identity matrix to make
the scatter matrix nonsingular. Pseudo-inverse LDA employs the pseudo-inverse to overcome the
singularity problem. More details on these methods, as well as their relationship, can be found in
(Ye, 2005). In this paper, we present a detailed computational and theoretical analysis of null space
LDA and orthogonal LDA.

In (Chen et al., 2000), the null space LDA (NLDA) was proposed, where the between-class
distance is maximized in the null space of the within-class scatter matrix. The singularity problem
is thus implicitly avoided. Similar idea has been mentioned briefly in (Belhumeour et al., 1997).
(Huang et al., 2002) improved the efficiency of the algorithm by first removing the null space of
the total scatter matrix, based on the observation that the null space of the total scatter matrix is the
intersection of the null space of the between-class scatter matrix and the nullspace of the within-
class scatter matrix.

In orthogonal LDA (OLDA), a set of orthogonal discriminant vectors iscomputed, based on
a generalized optimization criterion (Ye, 2005). The optimal transformation is computed through
the simultaneous diagonalization of the scatter matrices, while the singularity problem is overcome
implicitly. Discriminant analysis with orthogonal transformations has been studied in (Duchene and
Leclerq, 1988; Foley and Sammon, 1975). By a close examination of the computations involved in
OLDA, we can decompose the OLDA algorithm into three steps: first remove the null space of the
total scatter matrix; followed by classical uncorrelated LDA (ULDA), a variant of classical LDA
(details can be found in Section 2.1); and finally apply an orthogonalization step to the transforma-
tion.

Both the NLDA algorithm (Huang et al., 2002) and the OLDA algorithm (Ye, 2005) result in or-
thogonal transformations. However, they applied different schemes in deriving the optimal transfor-
mations. NLDA computes an orthogonal transformation in the null space of thewithin-class scatter
matrix, while OLDA computes an orthogonal transformation through the simultaneous diagonaliza-

1184

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

tion of the scatter matrices. Interestingly, we show in Section 5 that NLDA is equivalent to OLDA,
under a mild condition C1,1 which holds in many applications involving high-dimensional data (see
Section 7). Based on the equivalence result, an improved algorithm for NLDA, called iNLDA, is
presented, which further reduces the computational cost of the originalNLDA algorithm.

We extend the OLDA algorithm by applying the regularization technique, whichis commonly
used to stabilize the sample covariance matrix estimation and improve the classification performance
(Friedman, 1989). The algorithm is called regularized OLDA (or ROLDA for short). The key idea
in ROLDA is to add a constantλ to the diagonal elements of the total scatter matrix. Hereλ > 0
is known as theregularization parameter. Choosing an appropriate regularization value is a critical
issue in ROLDA, as a largeλ may significantly disturb the information in the scatter matrix, while
a smallλ may not be effective in improving the classification performance. Cross-validation is
commonly used to estimate the optimalλ from a finite set of candidates. Selecting an optimal value
for a parameter such asλ is calledmodel selection(Hastie et al., 2001). The computational cost
of model selection for ROLDA can be expensive, especially when the candidate set is large, since
it requires expensive matrix computations for eachλ. We show in Section 6 that the computations
in ROLDA can be decomposed into two components: the first component involves matrices of
high dimensionality but independent ofλ, while the second component involves matrices of low
dimensionality. When searching for the optimalλ from a set of candidates via cross-validation, we
repeat the computations involved in the second component only, thus reducing the computational
cost of model selection in ROLDA.

We have conducted experiments using 14 data sets from various data sources, including low-
dimensional data from UCI Machine Learning Repository2 and high-dimensional data such as text
documents, face images, and gene expression data. (Details on these datasets can be found in
Section 7.) We did a comparative study of NLDA, iNLDA, OLDA, ULDA, ROLDA, and Support
Vector Machines (SVM) (Scḧokopf and Smola, 2002; Vapnik, 1998) in classification. Experimental
results show that

• For all low-dimensional data sets, the null space of the within-class scatter matrix is empty,
and both NLDA and iNLDA do not apply. However, OLDA is applicable and the reduced
dimensionality of OLDA is in generalk−1, wherek is the number of classes. Condition C1
holds for most high-dimensional data sets (eight out of nine data sets). NLDA, iNLDA, and
OLDA achieve the same classification performance, in all cases when condition C1 holds. For
cases where condition C1 does not hold, OLDA outperforms NLDA and iNLDA, as OLDA
has a larger number of reduced dimensions than NLDA and iNLDA. These empirical results
are consistent with our theoretical analysis.

• iNLDA and NLDA achieve similar performance in all cases. OLDA is very competitive with
ULDA. This confirms the effectiveness of the final orthogonalization stepin OLDA. ROLDA
achieves a better classification performance than OLDA, which shows the effectiveness of
the regularization in ROLDA. Overall, ROLDA and SVM are very competitive with other
methods in classification.

The rest of the paper is organized as follows. An overview of classicalLDA and classical
uncorrelated LDA is given in Section 2. NLDA and OLDA are discussed in Section 3 and Section 4,

1. Condition C1 requires that the rank of the total scatter matrix equals to the sum of the rank of the between-class
scatter matrix and the rank of the within-class scatter matrix. More details will be given in Section 5.

2. http://www.ics.uci.edu/∼mlearn/MLRepository.html

1185

YE AND X IONG

Notation Description Notation Description

A data matrix n number of training data points
m data dimensionality ℓ reduced dimensionality
k number of classes Sb between-class scatter matrix

Sw within-class scatter matrix St total scatter matrix
G transformation matrix Si covariance matrix of thei-th class
ci centroid of thei-th class ni sample size of thei-th class
c global centroid K number of neighbors in K-NN
t rank ofSt q rank ofSb

Table 1: Notation.

respectively. The relationship between NLDA and OLDA is studied in Section5. The ROLDA
algorithm is presented in Section 6. Section 7 includes the experimental results. We conclude in
Section 8.

For convenience, Table 1 lists the important notation used in the rest of this paper.

2. Classical Linear Discriminant Analysis

Given a data set consisting ofn data points{a j}nj=1 in IRm, classical LDA computes a linear trans-

formationG ∈ IRm×ℓ (ℓ < m) that maps eacha j in the m-dimensional space to a vector ˆa j in the
ℓ-dimensional space by ˆa j = GTa j . Define three matricesHw, Hb, andSt as follows:

Hw =
1√
n
[(A1−c1eT), · · · ,(Ak−cke

T)], (1)

Hb =
1√
n
[
√

n1(c1−c), · · · ,√nk(ck−c)], (2)

Ht =
1√
n
(A−ceT), (3)

whereA = [a1, · · · ,an] is the data matrix,Ai , ci , Si , andni are the data matrix, the centroid, the
covariance matrix, and the sample size of thei-th class, respectively,c is the global centroid,k is
the number of classes, ande is the vector of all ones. Then thebetween-class scatter matrix Sb,
thewithin-class scatter matrix Sw, and thetotal scatter matrix St are defined as follows (Fukunaga,
1990):

Sw = HwHT
w , Sb = HbHT

b , andSt = HtH
T
t .

It follows from the definition (Ye, 2005) that trace(Sw) measures the within-class cohesion,
trace(Sb) measures the between-class separation, and trace(St) measures the variance of the data
set, where the trace of a square matrix is the summation of its diagonal entries (Golub and Van
Loan, 1996). It is easy to verify thatSt = Sb+Sw. In the lower-dimensional space resulting from the
linear transformationG, the scatter matrices becomeSL

w = GTSwG, SL
b = GTSbG, andSL

t = GTStG.
An optimal transformationG would maximize trace(SL

b) and minimize trace(SL
w). Classical LDA

1186

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

aims to compute the optimalG by solving the following optimization problem:

G = arg max
G∈IRm×ℓ

:GTSwG=Iℓ

trace
(

(

GTSwG
)−1

GTSbG
)

. (4)

Other optimization criteria, including those based on the determinant could also be used instead
(Duda et al., 2000; Fukunaga, 1990). The solution to the optimization problem in Eq. (4) is given
by the eigenvectors ofS−1

w Sb corresponding to the nonzero eigenvalues, provided that the within-
class scatter matrixSw is nonsingular (Fukunaga, 1990). The columns ofG form the discriminant
vectors of classical LDA. Since the rank of the between-class scatter matrix is bounded from above
by k−1, there are at mostk−1 discriminant vectors in classical LDA. Note that classical LDA does
not handle singular scatter matrices, which limits its applicability to low-dimensional data. Several
methods, including null space LDA and orthogonal LDA subspace LDA, were proposed in the past
to deal with such singularity problem as discussed in Section 1.

2.1 Classical Uncorrelated LDA

Classical uncorrelated LDA (cULDA) is an extension of classical LDA. Akey property of cULDA
is that the features in the transformed space are uncorrelated, thus reducing the redundancy in the
transformed space.

cULDA aims to find the optimal discriminant vectors that areSt-orthogonal.3 Specifically,
supposer vectorsφ1,φ2, · · · ,φr are obtained, then the(r +1)-th vectorφr+1 is the one that maximizes
the Fisher criterion function (Jin et al., 2001):

f (φ) =
φTSbφ
φTSwφ

, (5)

subject to the constraints:φT
r+1Stφi = 0, for i = 1, · · · , r.

The algorithm in (Jin et al., 2001) finds the discriminant vectorsφi ’s successively by solving a
sequence of generalized eigenvalue problems, which is expensive forlarge and high-dimensional
data sets. However, it has been shown (Ye et al., 2004a) that the discriminant vectors of cULDA can
be computed efficiently by solving the following optimization problem:

G = arg max
G∈IRm×ℓ

:GTStG=Iℓ

trace
(

(

GTSwG
)−1

GTSbG
)

, (6)

whereG = [φ1, · · · ,φℓ], if there existℓ discriminant vectors in cULDA. Note that in Eq. (6), all
discriminant vectors inG are computed simultaneously. The optimization problem above is a variant
of the one in Eq. (4). The optimalG is given by the eigenvectors ofS−1

t Sb.

3. Null Space LDA

(Chen et al., 2000) proposed the null space LDA (NLDA) for dimensionality reduction, where
the between-class distance is maximized in the null space of the within-class scatter matrix. The
basic idea behind this algorithm is that the null space ofSw may contain significant discriminant
information if the projection ofSb is not zero in that direction (Chen et al., 2000; Lu et al., 2003).

3. Two vectorsx andy areSt -orthogonal, ifxTSty = 0.

1187

YE AND X IONG

The singularity problem is thus overcome implicitly. The optimal transformation of NLDA can be
computed by solving the following optimization problem:

G = argmaxGTSwG=0trace(GTSbG). (7)

The computation of the optimalG involves the computation of the null space ofSw, which may
be large for high-dimensional data. Indeed, the dimensionality of the null space ofSw is at least
m+k−n, wherem is the data dimensionality,k is the number of classes, andn is the sample size.
In (Chen et al., 2000), a pixel grouping method was used to extract geometric features and reduce
the dimensionality of samples, and then NLDA was applied in the new feature space. (Huang et al.,
2002) improved the efficiency of the algorithm in (Chen et al., 2000) by first removing the null space
of the total scatter matrixSt . It is based on the observation that the null space ofSt is the intersection
of the null space ofSb and the null space ofSw, asSt = Sw +Sb.

We can efficiently remove the null space ofSt as follows. LetHt = UΣVT be the Singular Value
Decomposition (SVD) (Golub and Van Loan, 1996) ofHt , whereHt is defined in Eq. (3),U andV
are orthogonal,

Σ =

(

Σt 0
0 0

)

,

Σt ∈ IRt×t is diagonal with the diagonal entries sorted in the non-increasing order, and t = rank(St).
Then

St = HtH
T
t = UΣVTVΣTUT = UΣΣTUT = U

(

Σ2
t 0

0 0

)

UT . (8)

Let U = (U1,U2) be a partition ofU with U1 ∈ IRm×t andU2 ∈ IRm×(m−t). Then the null space ofSt

can be removed by projecting the data onto the subspace spanned by the columns ofU1. Let S̃b, S̃w,
andS̃t be the scatter matrices after the removal of the null space ofSt . That is,

S̃b = UT
1 SbU1, S̃w = UT

1 SwU1, andS̃t = UT
1 StU1.

Note that onlyU1 is involved for the projection. We can thus apply the reduced SVD computation
(Golub and Van Loan, 1996) onHt with the time complexity ofO(mn2), instead ofO(m2n). When
the data dimensionalitym is much larger than the sample sizen, this leads to a big reduction in
terms of the computational cost.

With the computedU1, the optimal transformation of NLDA is given byG = U1N, whereN is
obtained by solving the following optimization problem:

N = argmaxNT S̃wN=0trace(NTS̃bN). (9)

That is, the columns ofN lie in the null space of̃Sw, while maximizing trace(NTS̃bN).
Let W be the matrix so that the columns ofW span the null space of̃Sw. ThenN = WM, for

some matrixM, which is to be determined next. Since the constraint in Eq. (9) is satisfied with
N = WM for anyM, the optimalM can be computed by maximizing

trace(MTWTS̃bWM).

By imposing the orthogonality constraint onM (Huang et al., 2002), the optimalM is given by the
eigenvectors ofWTS̃bW corresponding to the nonzero eigenvalues. With the computedU1, W, and
M above, the optimal transformation of NLDA is given by

G = U1WM.

1188

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

Algorithm 1: NLDA (Null space LDA)
Input: data matrixA
Output: transformation matrixG
1. Form the matrixHt as in Eq. (3);
2. Compute the reduced SVD ofHt asHt = U1ΣtVT

1 ;
3. Form the matrices̃Sb = UT

1 SbU1 andS̃w = UT
1 SwU1;

4. Compute the null space,W, of S̃w, via the eigen-decomposition;
5. Construct the matrixM, consisting of the top eigenvectors ofWTS̃bW;
6. G←U1WM.

In (Huang et al., 2002), the matrixW is computed via the eigen-decomposition ofS̃w. More
specifically, let

S̃w = [W,W̃]

(

0 0
0 ∆w

)

[W,W̃]T

be its eigen-decomposition, where[W,W̃] is orthogonal and∆w is diagonal with positive diagonal
entries. ThenW forms the null space of̃Sw. The pseudo-code for the NLDA algorithm is given in
Algorithm 1 .

4. Orthogonal LDA

Orthogonal LDA (OLDA) was proposed in (Ye, 2005) as an extension of classical LDA. The dis-
criminant vectors in OLDA are orthogonal to each other. Furthermore, OLDA is applicable even
when all scatter matrices are singular, thus overcoming the singularity problem. It has been applied
successfully in many applications, including document classification, face recognition, and gene
expression data classification. The optimal transformation in OLDA can be computed by solving
the following optimization problem:

G = argmax
G∈IRm×ℓ

:GTG=Iℓ
trace

(

(GTStG)+GTSbG
)

, (10)

whereM+ denotes the pseudo-inverse of matrixM (Golub and Van Loan, 1996). The orthogonality
condition is imposed in the constraint. The computation of the optimal transformationof OLDA is
based on the simultaneous diagonalization of the three scatter matrices as follows (Ye, 2005).

From Eq. (8),U2 lies in the null space of bothSb andSw. Thus,

UTSbU =

(

UT
1 SbU1 0

0 0

)

, UTSwU =

(

UT
1 SwU1 0

0 0

)

. (11)

DenoteB = Σ−1
t UT

1 Hb and letB = PΣ̃QT be the SVD ofB, whereP andQ are orthogonal and̃Σ is
diagonal. Define the matrixX as

X = U

(

Σ−1
t P 0
0 Im−t

)

. (12)

It can be shown (Ye, 2005) thatX simultaneously diagonalizesSb, Sw, andSt . That is

XTSbX = Db, XTSwX = Dw, andXTStX = Dt , (13)

1189

YE AND X IONG

Algorithm 2: OLDA (Orthogonal LDA)
Input: data matrixA
Output: transformation matrixG
1. ComputeU1, Σt , andP;
2. Xq←U1Σ−1

t Pq, whereq = rank(Sb);
3. Compute the QR decomposition ofXq asXq = QR;
4. G←Q.

whereDb, Dw, andDt are diagonal with the diagonal entries inDb sorted in the non-increasing order.
The main result in (Ye, 2005) has shown that the optimal transformation of OLDA can be computed
through the orthogonalization of the columns inX, as summarized in the following theorem:

Theorem 4.1 Let X be the matrix defined in Eq. (12) and let Xq be the matrix consisting of the first
q columns of X, where q= rank(Sb). Let Xq = QR be the QR-decomposition of Xq, where Q has
orthonormal columns and R is upper triangular. Then G= Q solves the optimization problem in
Eq. (10).

From Theorem 4.1, only the firstq columns ofX are used in computing the optimalG. From
Eq. (12), the firstq columns ofX are given by

Xq = U1Σ−1
t Pq, (14)

wherePq consists of the firstq columns of the matrixP. We can observe thatU1 corresponds to the
removal of the null space ofSt as in NLDA, whileΣ−1

t Pq is the optimal transformation when clas-
sical ULDA is applied to the intermediate (dimensionality) reduced space by the projection ofU1.
The OLDA algorithm can thus be decomposed into three steps: (1) Remove thenull space ofSt ; (2)
Apply classical ULDA as an intermediate step, since the reduced total scatteris nonsingular; and (3)
Apply an orthogonalization step to the transformation, which corresponds tothe QR decomposition
of Xq in Theorem 4.1. The pseudo-code for the OLDA algorithm is given inAlgorithm 2 .

Remark 1 The ULDA algorithm in (Ye et al., 2004a; Ye, 2005) consists of steps 1 and2 above,
without the final orthogonalization step. Experimental results in Section 7 show that OLDA is com-
petitive with ULDA. The rationale behind this may be that ULDA involves the minimum redundancy
in the transformed space and is susceptible to overfitting; OLDA, on the otherhand, removes the
R matrix through the QR decomposition in the final orthogonalization step, which introduces the
redundancy in the reduced space, but may be less susceptible to overfitting.

5. Relationship Between NLDA and OLDA

Both the NLDA algorithm and the OLDA algorithm result in orthogonal transformations. Our
empirical results show that they often lead to similar performance, especially for high-dimensional
data. This implies there may exist an intrinsic relationship between these two algorithms. In this
section, we take a closer look at the relationship between NLDA and OLDA. More specifically, we
show that NLDA is equivalent to OLDA, under a mild condition

C1 : rank(St) = rank(Sb)+ rank(Sw), (15)

1190

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

which holds in many applications involving high-dimensional data (see Section 7). It is easy to
verify from the definition of the scatter matrices that rank(St)≤ rank(Sb)+ rank(Sw).

From Eqs. (8) and (11), the null space,U2, of St can be removed, as follows:

S̃t = UT
1 StU1 = UT

1 SbU1 +UT
1 SwU1 = S̃w + S̃b ∈ IRt×t .

Since the null space ofSt is the intersection of the null space ofSb and the null space ofSw, the
following equalities hold:

rank(S̃t) = rank(St) = t, rank(S̃b) = rank(Sb), and rank(S̃w) = rank(Sw).

Thus condition C1 is equivalent to

rank(S̃t) = rank(S̃b)+ rank(S̃w).

The null space of̃Sb and the null space of̃Sw are critical in our analysis. The relationship between
these two null spaces is studied in the following lemma.

Lemma 5.1 Let S̃t , S̃b, and S̃w be defined as above and t= rank(S̃t). Let {w1, · · · ,wr} forms an
orthonormal basis for the null space ofS̃w, and let{b1, · · · ,bs} forms an orthonormal basis for the
null space ofS̃b. Then,{w1, · · · ,wr ,b1, · · · ,bs} are linearly independent.

Proof Prove by contradiction. Assume there existαi ’s andβ j ’s, not all zeros, such that

r

∑
i=1

αiwi +
s

∑
j=1

β jb j = 0.

It follows that

0 =

(

r

∑
i=1

αiwi +
s

∑
j=1

β jb j

)T

S̃w

(

r

∑
i=1

αiwi +
s

∑
j=1

β jb j

)

=

(

s

∑
j=1

β jb j

)T

S̃w

(

s

∑
j=1

β jb j

)

,

sincewi ’s lie in the null space of̃Sw. Hence,
(

s

∑
j=1

β jb j

)T

S̃t

(

s

∑
j=1

β jb j

)

=

(

s

∑
j=1

β jb j

)T

S̃w

(

s

∑
j=1

β jb j

)

+

(

s

∑
j=1

β jb j

)T

S̃b

(

s

∑
j=1

β jb j

)

= 0.

SinceS̃t is nonsingular, we have∑s
j=1 β jb j = 0. Thusβ j = 0, for all j, since{b1, · · · ,bs} forms an

orthonormal basis for the null space ofS̃b.
Similarly, we have

0 =

(

r

∑
i=1

αiwi +
s

∑
j=1

β jb j

)T

S̃b

(

r

∑
i=1

αiwi +
s

∑
j=1

β jb j

)

=

(

r

∑
i=1

αiwi

)T

S̃b

(

r

∑
i=1

αiwi

)

.

and
(

r

∑
i=1

αiwi

)T

S̃t

(

r

∑
i=1

αiwi

)

=

(

r

∑
i=1

αiwi

)T

S̃w

(

r

∑
i=1

αiwi

)

+

(

r

∑
i=1

αiwi

)T

S̃b

(

r

∑
i=1

αiwi

)

= 0.

1191

YE AND X IONG

Hence∑r
i=1 αiwi = 0, andαi = 0, for all i, since{w1, · · · ,wr} forms are orthonormal basis for the

null space ofS̃w. This contradicts our assumption that not all of theαi ’s and theβ j ’s are zero, Thus,
{w1, · · · ,wr ,b1, · · · ,bs} are linearly independent.

Next, we show how to compute the optimal transformation of NLDA using these twonull
spaces. Recall that in NLDA, the null space ofSt may be removed first. In the following dis-
cussion, we work on the reduced scatter matricesS̃w, S̃b, andS̃t directly as in Lemma 5.1. The main
result is summarized in the following theorem.

Theorem 5.1 Let U1, S̃t , S̃b, andS̃w be defined as above and t= rank(S̃t). Let R= [W,B], where
W = [w1, · · · ,wr], B= [b1, · · · ,bs], and{w1, · · · ,wr ,b1, · · · ,bs} are defined as in Lemma 5.1. Assume
that condition C1: rank(St) = rank(Sb)+ rank(Sw) holds. Then G= U1WM solves the optimization
problem in Eq. (9), where the matrix M, consisting of the eigenvectors of WTS̃bW, is orthogonal.

Proof From Lemma 5.1,{w1, · · · ,wr ,b1, · · · ,bs}∈ IRt is linearly independent. Condition C1 implies
that t = r +s. Thus{w1, · · · ,wr ,b1, · · · ,bs} forms a basis for IRt , that is,R= [W,B] is nonsingular.
It follows that

RTS̃tR = RTS̃bR+RTS̃wR

=

(

WTS̃bW WTS̃bB
BTS̃bW BTS̃bB

)

+

(

WTS̃wW WTS̃wB
BTS̃wW BTS̃wB

)

=

(

WTS̃bW 0
0 0

)

+

(

0 0
0 BTS̃wB

)

.

Since matrixRTS̃tRhas full rank,WTS̃bW, the projection of̃Sb onto the null space of̃Sw, is non-
singular. LetWTS̃bW = M∆bMT be the eigen-decomposition ofWTS̃bW, whereM is orthogonal
and∆b is diagonal with positive diagonal entries (note thatWTS̃bW is positive definite). Then, from
Section 3, the optimal transformationG of NLDA is given byG = U1WM.

Recall that the matrixM in NLDA is computed so that trace(MTWTS̃bWM) is maximized. Since
trace(QAQT) = trace(A) for any orthogonalQ, the solution in NLDA is invariant under an arbitrary
orthogonal transformation. ThusG = U1W is also a solution to NLDA, sinceM is orthogonal, as
summarized in the following corollary.

Corollary 5.1 Assume condition C1: rank(St) = rank(Sb) + rank(Sw) holds. Let U1 and W be
defined as in Theorem 5.1. Then G= U1W solves the optimization problem in Eq. (9). That is,
G = U1W is an optimal transformation of NLDA.

Corollary 5.1 implies that when condition C1 holds, Step 5 inAlgorithm 1 may be removed,
as well as the formation of̃Sb in Step 3 and the multiplication ofU1W with M in Step 6. This
improves the efficiency of the NLDA algorithm. The improved NLDA (iNLDA) algorithm is given
in Algorithm 3 . Note that it is recommended in (Liu et al., 2004) that the maximization of the
between-class distance in Step 5 ofAlgorithm 1 should be removed to avoid possible overfitting.
However, Corollary 5.1 shows that under condition C1, the removal of Step 5 has no effect on the
performance of the NLDA algorithm.

Next, we show the equivalence relationship between NLDA and OLDA, when condition C1
holds. The main result is summarized in the following theorem.

1192

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

Algorithm 3: iNLDA (improved NLDA)
Input: data matrixA
Output: transformation matrixG
1. Form the matrixHt as in Eq. (3);
2. Compute the reduced SVD ofHt asHt = U1ΣtVT

1 ;
3. Construct the matrix̃Sw = UT

1 SwU1;
4. Compute the null space,W, of S̃w, via the eigen-decomposition;
5. G←U1W.

Theorem 5.2 Assume that condition C1: rank(St) = rank(Sb)+ rank(Sw) holds. Let U1 and W be
defined as in Theorem 5.1. Then, G= U1W solves the optimization problem in Eq. (10). That is,
under the given assumption, OLDA and NLDA are equivalent.

Proof Recall that the optimization involved in OLDA is

G = argmax
G∈IRm×ℓ

:GTG=Iℓ
trace

(

(SL
t)+SL

b

)

, (16)

whereSL
t = GTStG andSL

b = GTSbG. From Section 4, the maximum number,ℓ, of discriminant
vectors is no larger thanq, which is the rank ofSb. Recall that

q = rank(Sb) = rank(S̃b) = rank(S̃t)− rank(S̃w) = r,

wherer is the dimension of the null space ofS̃w.
Based on the property of the trace of matrices, we have

trace
(

(SL
t)+SL

b

)

+ trace
(

(SL
t)+SL

w

)

= trace
(

(SL
t)+SL

t

)

= rank(SL
t)≤ q = r,

where the second equality follows since trace(A+A) = rank(A) for any square matrixA, and the
inequality follows since the rank ofSL

t ∈ IRℓ×ℓ is at mostℓ≤ q.
It follows that trace

(

(SL
t)+SL

b

)

≤ r, since trace
(

(SL
t)+SL

w

)

, the trace of the product of two positive
semi-definite matrices, is always nonnegative. Next, we show that the maximumis achieved, when
G = U1W.

Recall that the dimension of the null space,W, of S̃w is r. That is,W ∈ IRt×r . It follows that
(U1W)TSt(U1W) ∈ IRr×r , and rank((U1W)TSt(U1W)) = r. Furthermore,

(U1W)TSw(U1W) = WTS̃wW = 0,

asW forms the null space of̃Sw. It follows that,

trace
(

(

(U1W)TSt(U1W)
)+

(U1W)TSw(U1W)
)

= 0.

Hence,

trace
(

(

(U1W)TSt(U1W)
)+

(U1W)TSb(U1W)
)

= rank
(

(U1W)TSt(U1W)
)

− trace
(

(

(U1W)TSt(U1W)
)+ (

(U1W)TSw(U1W)
)

)

= r.

1193

YE AND X IONG

ThusG = U1W solves the optimization problem in Eq. (10). That is, OLDA and NLDA are equiva-
lent.

Theorem 5.2 above shows that under condition C1, OLDA and NLDA are equivalent. Next, we
show that condition C1 holds when the data points are linearly independent as summarized below.

Theorem 5.3 Assume that condition C2, that is, the n data points in the data matrix A∈ IRm×n are
linearly independent, holds. Then condition C1: rank(St) = rank(Sb)+ rank(Sw) holds.

Proof Since then columns inA are linearly independent,Ht = A− ceT is of rankn−1. That is,
rank(St) = n−1. Next we show that rank(Sb) = k−1 and rank(Sw) = n− k. Thus condition C1
holds.

It is easy to verify that rank(Sb)≤ k−1 and rank(Sw)≤ n−k. We have

n−1 = rank(St)≤ rank(Sb)+ rank(Sw)≤ (k−1)+(n−k) = n−1. (17)

It follows that all inequalities in Eq. (17) become equalities. That is,

rank(Sb) = k−1, rank(Sw) = n−k, and rank(St) = rank(Sb)+ rank(Sw). (18)

Thus, condition C1 holds.

Our experimental results in Section 7 show that for high-dimensional data, the linear indepen-
dence condition C2 holds in many cases, while condition C1 is satisfied in most cases. This explains
why NLDA and OLDA often achieve the same performance in many applicationsinvolving high-
dimensional data, such as text documents, face images, and gene expression data.

6. Regularized Orthogonal LDA

Recall that OLDA involves the pseudo-inverse of the total scatter matrix, whose estimation may not
be reliable especially for undersampled data, where the number of dimensionsexceeds the sample
size. In such case, the parameter estimates can be highly unstable, giving rise to high variance.
By employing a method of regularization, one attempts to improve the estimates by regulating this
bias variance trade-off (Friedman, 1989). We employ the regularization technique to OLDA by
adding a constantλ to the diagonal elements of the total scatter matrix. Hereλ > 0 is known as
the regularization parameter. The algorithm is called regularized OLDA (ROLDA). The optimal
transformation,Gr , of ROLDA can be computed by solving the following optimization problem:

Gr = argmax
G∈IRm×ℓ

:GTG=Iℓ
trace

(

(

GT(St +λIm)G
)+

GTSbG
)

. (19)

The optimalGr can be computed by solving an eigenvalue problem as summarized in the following
theorem (The proof follows Theorem 3.1 in (Ye, 2005) and is thus omitted):

Theorem 6.1 Let Xr
q be the matrix consisting of the first q eigenvectors of the matrix

(St +λIm)−1Sb (20)

corresponding to the nonzero eigenvalues, where q= rank(Sb). Let Xr
q = QR be the QR-decomposition

of Xr
q, where Q has orthonormal columns and R is upper triangular. Then G= Q solves the opti-

mization problem in Eq. (19).

1194

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

Theorem 6.1 implies that the main computation involved in ROLDA is the eigen-decomposition of
the matrix(St + λIm)−1Sb. Direct formation of the matrix is expensive for high-dimensional data,
as it is of sizem by m. In the following, we present an efficient way of computing the eigen-
decomposition. Denote

Br = (Σ2
t +λIt)

−1/2UT
1 Hb (21)

and let
Br = Pr Σ̃r(Qr)T (22)

be the SVD ofBr . From Eqs. (8) and (11), we have

(St +λIm)−1Sb = U

(

(Σ2
t +λIt)−1 0

0 λ−1Im−t

)

UTU

(

UT
1 SbU1 0

0 0

)

UT

= U

(

(Σ2
t +λIt)−1UT

1 HbHT
b U1 0

0 0

)

UT

= U

(

(Σ2
t +λIt)−1/2Br(Br)T(Σ2

t +λIt)1/2 0
0 0

)

UT

= U

(

(Σ2
t +λIt)−1/2Pr Σ̃r(Σ̃r)T(Pr)T(Σ2

t +λIt)1/2 0
0 0

)

UT .

It follows that the columns of the matrix

U1(Σ2
t +λIt)

−1/2Pr
q

form the eigenvectors of(St + λIm)−1Sb corresponding to the topq nonzero eigenvalues, wherePr
q

denotes the firstq columns ofPr . That is,Xr
q in Theorem 6.1 is given by

Xr
q = U1(Σ2

t +λIt)
−1/2Pr

q. (23)

The pseudo-code for the ROLDA algorithm is given inAlgorithm 4 . The computations in ROLDA
can be decomposed into two components: the first component involves the matrix, U1 ∈ IRm×t , of
high dimensionality but independent ofλ, while the second component involves the matrix,

(Σ2
t +λIt)

−1/2Pr
q ∈ IRt×q,

of low dimensionality. When we apply cross-validation to search for the optimalλ from a set of
candidates, we repeat the computations involved in the second component only, thus making the
computational cost of model selection small.

More specifically, let
Λ = {λ1, · · · ,λ|Λ|} (24)

be the candidate set for the regularization parameterλ, where|Λ| denotes the size of the candidate
setΛ. We applyv-fold cross-validation for model selection (we choosev = 5 in our experiment),
where the data is divided intov subsets of (approximately) equal size. All subsets are mutually
exclusive, and in thei-th fold, thei-th subset is held out for testing and all other subsets are used for
training. For eachλ j (j = 1, · · · , |Λ|), we compute the cross-validation accuracy, Accu(j), defined
as the mean of the accuracies for all folds. The optimal regularization valueλ j∗ is the one with

j∗ = argmax
j

Accu(j). (25)

1195

YE AND X IONG

Algorithm 4: ROLDA (Regularized OLDA)
Input: data matrixA and regularization valueλ
Output: transformation matrixGr

1. ComputeU1, Σt , andPr
q, whereq = rank(Sb);

2. Xr
q←U1(Σ2

t +λIt)−1/2Pr
q;

3. Compute the QR decomposition ofXr
q asXr

q = QR;
4. Gr ←Q.

TheK-Nearest Neighbor algorithm withK = 1, called 1-NN, is used for computing the accuracy.
The pseudo-code for the model selection procedure in ROLDA is given inAlgorithm 5 . Note that
we apply the QR decomposition to

(Σ2
t +λIt)

−1/2Pr
q ∈ IRt×q (26)

instead of
Xr

q = U1(Σ2
t +λIt)

−1/2Pr
q ∈ IRm×q, (27)

as done in Theorem 6.1, sinceU1 has orthonormal columns.

Algorithm 5: Model selection for ROLDA
Input: data matrixA and candidate setΛ = {λ1, · · · ,λ|Λ|}
Output: optimal regularization valueλ j∗

1. Fori = 1 : v /* v-fold cross-validation */
2. ConstructAi andAî ;

/* Ai = i-th fold, for training andAî = rest, for testing */
3. ConstructHb andHt usingAi as in Eqs. (2) and (3), respectively;
4. Compute the reduced SVD ofHt asHt = U1ΣtVT

1 ; t← rank(Ht);
5. Hb,L←UT

1 Hb, q← rank(Hb);
6. Ai

L←UT
1 Ai ; Aî

L←UT
1 Aî ; /* Projection byU1 */

7. For j = 1 : |Λ| /* λ1, · · · ,λ|Λ| */
8. D j ← (Σ2

t +λ j It)−1/2; Br ← D jHb,L

9. Compute the SVD ofBr asBr = Pr Σ̃r(Qr)T ;
10. Dq,P← D jPr

q; Compute the QR decomposition ofDq,P asDq,P = QR;

11. Ai
L←QTAi

L; Aî
L←QTAî

L;

12. Run 1-NN on
(

Ai
L,A

î
L

)

and compute the accuracy, denoted as Accu(i, j);

13. EndFor
14. EndFor
15. Accu(j)← 1

v ∑v
i=1Accu(i, j);

16. j∗← argmaxj Accu(j);
17. Outputλ j∗ as the optimal regularization value.

6.1 Time Complexity

We conclude this section by analyzing the time complexity of the model selection procedure de-
scribed above.

1196

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

Line 4 in Algorithm 5 takesO(n2m) time for the reduced SVD computation. Lines 5 and 6
takeO(mtk) = O(mnk) andO(tmn) = O(mn2) time, respectively, for the matrix multiplications.
For eachλ j , for j = 1, · · · , |Λ|, of the ”For” loop, Lines 9 and 10 takeO(tk2) = O(nk2) time for the
SVD and QR decomposition and matrix multiplication. Line 11 takesO(ktn) = O(kn2) time for
the matrix multiplication. The computation of the classification accuracy by 1-NN in Line 12 takes
O(n2k/v) time, as the size of the test set,Aî

L, is aboutn/v. Thus, the time complexity,T(|Λ|), of the
model selection procedure is

T(|Λ|) = O
(

v
(

n2m+mn2 +mnk+ |Λ|(nk2 +kn2 +n2k/v)
))

.

For high-dimensional and undersampled data, where the sample size,n, is much smaller than the
dimensionalitym, the time complexity is simplified to

T(|Λ|) = O
(

v(n2m+ |Λ|n2k)
)

= O

(

vn2m

(

1+
k
m
|Λ|
))

.

When the number,k, of classes in the data set is much smaller than the dimensionality,m, the over-
head of estimating the optimal regularization value among a large candidate set may be small. Our
experiments on a collection of high-dimensional and undersampled data (seeSection 7) show that
the computational cost of the model selection procedure in ROLDA grows slowly as|Λ| increases.

7. Experimental Studies

In this section, we perform extensive experimental studies to evaluate the theoretical results and the
ROLDA algorithm presented in this paper. Section 7.1 describes our test data sets. We perform a
detailed comparison of NLDA, iNLDA, and OLDA in Section 7.2. Results are consistent with our
theoretical analysis. In Section 7.3, we compare the classification performance of NLDA, iNLDA,
OLDA, ULDA, ROLDA, and SVM. The K-Nearest-Neighbor (K-NN) algorithm with K = 1 is used
as the classifier for all LDA based algorithms.

7.1 Data Sets

We used 14 data sets from various data sources in our experimental studies. The statistics of our test
data sets are summarized in Table 2.

The first five data sets, including spambase,4 balance, wine, waveform, and vowel, are low-
dimensional data from the UCI Machine Learning Repository. The next nine data sets, including
text documents, face images, and gene expression data, have high dimensionality: re1, re0, and
tr41 are three text document data sets, where re1 and re0 are derivedfrom Reuters-21578text
categorization test collection Distribution 1.0,5 and tr41 is derived from the TREC-5, TREC-6,
and TREC-7 collections;6 ORL,7 AR,8 and PIX9 are three face image data sets; GCM, colon, and
ALLAML4 are three gene expression data sets (Ye et al., 2004b).

4. Only a subset of the original spambase data set is used in our study.
5. http://www.daviddlewis.com/resources/testcollections/reuters21578/
6. http://trec.nist.gov
7. http://www.uk.research.att.com/facedatabase.html
8. http://rvl1.ecn.purdue.edu/∼aleix/aleix faceDB.html
9. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/

1197

YE AND X IONG

Data Set Sample size (n) # of dimensions # of classes
training test total (m) (k)

spambase 400 600 1000 56 2
balance 416 209 625 4 3
wine 118 60 178 13 3
waveform 300 500 800 21 3
vowel 528 462 990 10 11
re1 — — 490 3759 5
re0 — — 320 2887 4
tr41 — — 210 7454 7
ORL — — 400 10304 40
AR — — 650 8888 50
PIX — — 300 10000 30
GCM — — 198 16063 14
colon — — 62 2000 2
ALLAML4 — — 72 7129 4

Table 2: Statistics of our test data sets. For the first five data sets, we usedthe given partition of
training and test sets, while for the last nine data sets, we did random splittingsinto training
and test sets of ratio 2:1.

7.2 Comparison of NLDA, iNLDA, and OLDA

In this experiment, we did a comparative study of NLDA, iNLDA, and OLDA. For the first five
low-dimensional data sets from the UCI Machine Learning Repository, we used the given splitting
of training and test sets. The result is summarized in Table 3. For the next nine high-dimensional
data sets, we performed our study by repeated random splittings into trainingand test sets. The data
was partitioned randomly into a training set, where each class consists of two-thirds of the whole
class and a test set with each class consisting of one-third of the whole class. The splitting was
repeated 20 times and the resulting accuracies of different algorithms for the first ten splittings are
summarized in Table 4. Note that the mean accuracy for the 20 different splittings will be reported
in the next section. The rank of three scatter matrices,Sb, Sw, andSt , for each of the splittings is
also reported.

The main observations from Table 3 and Table 4 include:

• For the first five low-dimensional data sets, we have rank(Sb) = k− 1, and rank(Sw) =
rank(St) = m, wherem is the data dimensionality. Thus the null space ofS̃w is empty, and
both NLDA and iNLDA do not apply. However, OLDA is applicable and the reduced dimen-
sionality of OLDA isk−1.

• For the next nine high-dimensional data sets, condition C1: rank(St) = rank(Sb)+ rank(Sw) is
satisfied in all cases except the re0 data set. For the re0 data set, either rank(St) = rank(Sb)+
rank(Sw) or rank(St) = rank(Sb)+ rank(Sw)−1 holds, that is, condition C1 is not severely
violated for re0. Note that re0 has the smallest number of dimensions among thenine high-

1198

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

Data Set
spambase balance wine waveform vowel

NLDA — — — — —
Method iNLDA — — — — —

OLDA 88.17 86.60 98.33 73.20 56.28
Sb 1 2 2 2 10

Rank Sw 56 4 13 21 10
St 56 4 13 21 10

Table 3: Comparison of NLDA, iNLDA, and OLDA on classification accuracy (in percentage) us-
ing five low-dimensional data sets from UCI Machine Learning Repository.The ranks of
three scatter matrices are reported.

dimensional data sets. From the experiments, we may infer that condition C1 is more likely
to hold for high-dimensional data.

• NLDA, iNLDA, and OLDA achieve the same classification performance in all cases when
condition C1 holds. The empirical result confirms the theoretical analysis in Section 5. This
explains why NLDA and OLDA often achieve similar performance for high-dimensional data.
We can also observe that NLDA and iNLDA achieve similar performance in allcases.

• The numbers of training data points for the nine high-dimensional data (in the same order as
in the table) are 325, 212, 140, 280, 450, 210, 125, 68, and 48, respectively. By examining
the rank ofSt in Table 4, we can observe that the training data in six out of nine data sets,
including tr41, ORL, AR, GCM, colon, and ALLAML4, are linearly independent. That is, the
independence assumption C2 from Theorem 5.3 holds for these data sets.It is clear from the
table that for these six data sets, condition C1 holds and NLDA, iNLDA, and OLDA achieve
the same performance. These are consistent with the theoretical analysis inSection 5.

• For the re0 data set, where condition C1 does not hold, i.e., rank(St) < rank(Sb)+ rank(Sw),
OLDA achieves higher classification accuracy than NLDA and iNLDA. Recall that the re-
duced dimensionality of OLDA equals rank(Sb) ≡ q. The reduced dimensionality in NLDA
and iNLDA equals the dimension of the null space ofS̃w, which equals rank(St)− rank(Sw) <
rank(Sb). That is, OLDA keeps more dimensions in the transformed space than NLDA and
iNLDA. Experimental results in re0 show that these extra dimensions used in OLDA improve
its classification performance.

7.3 Comparative Studies on Classification

In this experiment, we conducted a comparative study of NLDA, iNLDA, OLDA, ULDA, ROLDA,
and SVM in terms of classification. For ROLDA, the optimalλ is estimated through cross-validation
on a candidate set,Λ = {λ j}|Λ|j=1. Recall thatT(|Λ|) denotes the computational cost of the model
selection procedure in ROLDA, where|Λ| is the size of the candidate set of the regularization values.
We have performed model selection on all nine high-dimensional data sets using different values of

1199

YE AND X IONG

Data Set Method Ten different splittings into training and test sets of ratio 2:1

NLDA 92.73 93.33 93.33 93.94 94.55 95.15 96.36 95.15 92.12 93.94
iNLDA 92.73 93.33 93.33 93.94 94.55 95.15 96.36 95.15 92.12 93.94

re1 OLDA 92.73 93.33 93.33 93.94 94.55 95.15 96.36 95.15 92.12 93.94
Sb 4 4 4 4 4 4 4 4 4 4
Sw 316 318 319 316 316 320 316 318 317 318
St 320 322 323 320 320 324 320 322 321 322

NLDA 64.81 62.04 64.81 68.52 87.96 70.37 71.30 73.15 87.04 75.93
iNLDA 65.74 62.04 64.81 69.44 87.96 70.37 71.30 72.22 87.04 75.93

re0 OLDA 75.93 75.00 77.78 74.07 87.96 80.56 74.07 78.70 87.04 79.63
Sb 3 3 3 3 3 3 3 3 3 3
Sw 205 204 203 203 205 204 201 203 203 205
St 207 206 205 205 208 206 203 205 206 207

NLDA 97.14 95.71 97.14 98.57 97.14 98.57 100.0 95.71 98.57 95.71
iNLDA 97.14 95.71 97.14 98.57 97.14 98.57 100.0 95.71 98.57 95.71

tr41 OLDA 97.14 95.71 97.14 98.57 97.14 98.57 100.0 95.71 98.57 95.71
Sb 6 6 6 6 6 6 6 6 6 6
Sw 133 133 133 133 133 133 133 133 133 133
St 139 139 139 139 139 139 139 139 139 139

NLDA 99.17 96.67 98.33 98.33 95.00 95.83 98.33 97.50 98.33 95.83
iNLDA 99.17 96.67 98.33 98.33 95.00 95.83 98.33 97.50 98.33 95.83

ORL OLDA 99.17 96.67 98.33 98.33 95.00 95.83 98.33 97.50 98.33 95.83
Sb 39 39 39 39 39 39 39 39 39 39
Sw 240 240 240 240 240 240 240 240 240 240
St 279 279 279 279 279 279 279 279 279 279

NLDA 96.50 94.50 96.50 94.00 93.50 94.50 93.50 97.00 94.00 96.00
iNLDA 96.50 94.50 96.50 94.00 93.50 94.50 93.50 97.00 94.00 96.00

AR OLDA 96.50 94.50 96.50 94.00 93.50 94.50 93.50 97.00 94.00 96.00
Sb 49 49 49 49 49 49 49 49 49 49
Sw 400 400 400 400 400 400 400 400 400 400
St 449 449 449 449 449 449 449 449 449 449

NLDA 98.89 97.78 98.89 97.78 98.89 98.89 98.89 97.78 98.89 97.78
iNLDA 98.89 97.78 98.89 97.78 98.89 98.89 98.89 97.78 98.89 97.78

PIX OLDA 98.89 97.78 98.89 97.78 98.89 98.89 98.89 97.78 98.89 97.78
Sb 29 29 29 29 29 29 29 29 29 29
Sw 178 179 179 179 178 180 179 179 180 178
St 207 208 208 208 207 209 208 208 209 207

NLDA 81.54 80.00 81.54 83.08 84.62 87.69 75.38 78.46 84.62 83.08
iNLDA 81.54 80.00 81.54 83.08 84.62 87.69 75.38 78.46 84.62 83.08

GCM OLDA 81.54 80.00 81.54 83.08 84.62 87.69 75.38 78.46 84.62 83.08
Sb 13 13 13 13 13 13 13 13 13 13
Sw 111 111 111 111 111 111 111 111 111 111
St 124 124 124 124 124 124 124 124 124 124

NLDA 91.18 94.12 100.0 97.06 91.18 91.18 97.06 94.12 94.12 97.06
iNLDA 91.18 94.12 100.0 97.06 91.18 91.18 97.06 94.12 94.12 97.06

colon OLDA 91.18 94.12 100.0 97.06 91.18 91.18 97.06 94.12 94.12 97.06
Sb 1 1 1 1 1 1 1 1 1 1
Sw 66 66 66 66 66 66 66 66 66 66
St 67 67 67 67 67 67 67 67 67 67

NLDA 95.83 91.67 95.83 95.83 87.50 95.83 95.83 100.0 91.67 95.83
iNLDA 95.83 91.67 95.83 95.83 87.50 95.83 95.83 100.0 91.67 95.83

ALLAML4 OLDA 95.83 91.67 95.83 95.83 87.50 95.83 95.83 100.0 91.67 95.83
Sb 3 3 3 3 3 3 3 3 3 3
Sw 44 44 44 44 44 44 44 44 44 44
St 47 47 47 47 47 47 47 47 47 47

Table 4: Comparison of classification accuracy (in percentage) for NLDA, iNLDA, and OLDA us-
ing nine high-dimensional data sets. Ten different splittings into training and test sets of
ratio 2:1 (for each of thek classes) are applied. The rank of three scatter matrices for each
splitting is reported.

1200

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

Data Set NLDA iNLDA OLDA ULDA ROLDA SVM

re1 94.33 (1.72) 94.33 (1.72) 94.33 (1.72) 94.76 (1.67) 94.79 (1.64) 94.54 (1.88)
re0 74.03 (9.22) 74.15 (8.19) 79.54 (4.73) 79.72 (4.82) 85.79 (3.66) 85.87 (3.34)
tr41 97.00 (2.01) 97.00 (2.01) 97.00 (2.01) 97.14 (2.02) 97.17 (2.04) 97.14 (2.01)
ORL 97.29 (1.79) 97.29 (1.79) 97.29 (1.79) 92.75 (1.82) 97.52 (1.64) 97.55 (1.34)
AR 95.42 (1.30) 95.42 (1.30) 95.42 (1.30) 94.37 (1.46) 97.30 (1.32) 95.75 (1.43)
PIX 98.22 (1.41) 98.22 (1.41) 98.22 (1.41) 96.61 (1.92) 98.29 (1.32) 98.50 (1.24)
GCM 81.77 (3.61) 81.77 (3.61) 81.77 (3.61) 80.46 (3.71) 82.69 (3.42) 75.31 (4.45)
Colon 86.50 (5.64) 86.50 (5.64) 86.50 (5.64) 86.50 (5.64) 87.00 (6.16) 87.25 (5.25)
ALLAML4 93.54 (3.70) 93.54 (3.70) 93.54 (3.70) 93.75 (3.45) 93.75 (3.45) 93.70 (3.40)

Table 5: Comparison of classification accuracy (in percentage) for six different methods: NLDA,
iNLDA, OLDA, ULDA, ROLDA, and SVM using nine high-dimensional data sets. The
mean accuracy and standard deviation (in parenthesis) from 20 different runs are reported.

|Λ|. We have observed thatT(|Λ|) grows slowly as|Λ| increases, and the ratio,T(1024)/T(1), on
all nine data sets ranges from 1 to 5. Thus, we can run model selection using a large candidate set
of regularization values, without dramatically increasing the cost. In the following experiments, we
apply model selection to ROLDA with a candidate set of size|Λ|= 1024, where

λ j = α j/(1−α j), (28)

with {α j}|Λ|j=1 uniformly distributed between 0 and 1. As for SVM, we employed the cross-validation
to estimate the optimal parameter using a candidate set of size 50. To compare different classifi-
cation algorithms, we applied the same experimental setting as in Section 7.2. The splitting into
training and test sets of ratio 2:1 (for each of thek classes) was repeated 20 times. The final accu-
racy reported was the average of the 20 different runs. The standard deviation for each data set was
also reported. The result on the nine high-dimensionality data sets is summarized in Table 5.

As observed in Section 7.2, OLDA has the same performance as NLDA and iNLDA in all
cases except the re0 data set, while NLDA and iNLDA achieve similar performance in all cases.
Overall, ROLDA and SVM are very competitive with other methods. SVM performs well in all
cases except GCM. The poor performance of SVM in GCM has also beenobserved in (Li et al.,
2004). ROLDA outperforms OLDA for re0, AR, and GCM, while it is comparable to OLDA for
all other cases. This confirms the effectiveness of the regularization applied in ROLDA. Note that
from Remark 1, ULDA is closely related to OLDA. However, unlike OLDA, ULDA does not apply
the final orthogonalization step. Experimental result in Table 5 confirms the effectiveness of the
orthogonalization step in OLDA, especially for three face image data sets andGCM.

8. Conclusions

In this paper, we present a computational and theoretical analysis of two LDA based algorithms,
including null space LDA and orthogonal LDA. NLDA computes the discriminant vectors in the
null space of the within-class scatter matrix, while OLDA computes a set of orthogonal discrimi-
nant vectors via the simultaneous diagonalization of the scatter matrices. Theyhave been applied
successfully in many applications, such as document classification, face recognition, and gene ex-
pression data classification.

1201

YE AND X IONG

Both NLDA and OLDA result in orthogonal transformations. However, they applied different
schemes in deriving the optimal transformation. Our theoretical analysis in thispaper shows that un-
der a mild condition C1 which holds in many applications involving high-dimensionaldata, NLDA
is equivalent to OLDA. Based on the theoretical analysis, an improved algorithm for null space
LDA algorithm, called iNLDA, is proposed. We have performed extensive experimental studies on
14 data sets, including both low-dimensional and high-dimensional data. Results have shown that
condition C1 holds for eight out of the nine high-dimensional data sets, whilethe null space of̃Sw

is empty for all five low-dimensional data. Thus, NLDA may not be applicable for low-dimensional
data, while OLDA is still applicable in this case. Results are also consistent with our theoretical
analysis. That is, for all cases when condition C1 holds, NLDA, iNLDA, and OLDA achieve the
same classification performance. We also observe that for other cases with condition C1 violated,
OLDA outperforms NLDA and iNLDA, due to the extra number of dimensions used in OLDA. We
also compare NLDA, iNLDA, and OLDA with uncorrelated LDA (ULDA), which does not perform
the final orthogonalization step. Results show that OLDA is very competitive with ULDA, which
confirms the effectiveness of the orthogonalization step used in OLDA. Our empirical and theoret-
ical results presented in this paper provide further insights into the nature of these two LDA based
algorithms.

We also present the ROLDA algorithm, which extends the OLDA algorithm by applying the
regularization technique. Regularization may stabilize the sample covariance matrix estimation and
improve the classification performance. ROLDA involves the regularization parameterλ, which
is commonly estimated via cross-validation. To speed up the cross-validation process, we decom-
pose the computations in ROLDA into two components: the first component involves matrices of
high dimensionality but independent ofλ, while the second component involves matrices of low
dimensionality. When searching for the optimalλ from a candidate set, we repeat the computations
involved in the second component only. A comparative study on classification shows that ROLDA
is very competitive with OLDA, which shows the effectiveness of the regularization applied in
ROLDA.

Our extensive experimental studies have shown that condition C1 holds for most high-dimensional
data sets. We plan to carry out theoretical analysis on this property in the future. Some of the theo-
retical results in (Hall et al., 2005) may be useful for our analysis.

The algorithms in (Yang et al., 2005; Yu and Yang, 2001) are closely related to the null space
LDA algorithm discussed in this paper. The analysis presented in this papermay be useful in un-
derstanding why these algorithms perform well in many applications, especially in face recognition.
We plan to explore this further in the future.

Acknowledgements

We thank the reviewers for helpful comments. Research of JY is sponsored, in part, by the Center
for Evolutionary Functional Genomics of the Biodesign Institute at the Arizona State University.

References

P. N. Belhumeour, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition
using class specific linear projection.IEEE Trans Pattern Analysis and Machine Intelligence, 19
(7):711–720, 1997.

1202

ANALYSIS OF NULL SPACE AND ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

R. Bellmanna.Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.

M. W. Berry, S. T. Dumais, and G. W. O’Brie. Using linear algebra for intelligent information
retrieval.SIAM Review, 37:573–595, 1995.

L. F. Chen, H. Y. M. Liao, M. T. Ko, J. C. Lin, and G. J. Yu. A new LDA-based face recognition
system which can solve the small sample size problem.Pattern Recognition, 33:1713–1726,
2000.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent
semantic analysis.Journal of the Society for Information Scienc, 41:391–407, 1990.

L. Duchene and S. Leclerq. An optimal transformation for discriminant andprincipal component
analysis.IEEE Trans. Pattern Analysis and Machine Intelligence, 10(6):978–983, 1988.

R. O. Duda, P. E. Hart, and D. Stork.Pattern Classification. Wiley, 2000.

S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification
of tumors using gene expression data.Journal of the American Statistical Association, 97(457):
77–87, 2002.

D. H. Foley and J. W. Sammon. An optimal set of discriminant vectors.IEEE Trans Computers, 24
(3):281–289, 1975.

J. H. Friedman. Regularized discriminant analysis.Journal of the American Statistical Association,
84(405):165–175, 1989.

K. Fukunaga.Introduction to Statistical Pattern Classification. Academic Press, San Diego, Cali-
fornia, USA, 1990.

G. H. Golub and C. F. Van Loan.Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, USA, third edition, 1996.

P. Hall, J. S. Marron, and A. Neeman. Geometric representation of high dimension, low sample size
data.Journal of the Royal Statistical Society series B, 67:427–444, 2005.

T. Hastie, R. Tibshirani, and J. H. Friedman.The Elements of Statistical Learning : Data Mining,
Inference, and Prediction. Springer, 2001.

R. Huang, Q. Liu, H. Lu, and S. Ma. Solving the small sample size problem ofLDA. In Proc.
International Conference on Pattern Recognition, pages 29–32, 2002.

Z. Jin, J. Y. Yang, Z. S. Hu, and Z. Lou. Face recognition based on theuncorrelated discriminant
transformation.Pattern Recognition, 34:1405–1416, 2001.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

W. J. Krzanowski, P. Jonathan, W.V McCarthy, and M. R. Thomas. Discriminant analysis with
singular covariance matrices: methods and applications to spectroscopic data. Applied Statistics,
44:101–115, 1995.

1203

YE AND X IONG

T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and multiclass clas-
sification methods for tissue classification based on gene expression.Bioinformatics, 20(15):
2429–2437, 2004.

W. Liu, Y. Wang, S. Z. Li, and T. Tan. Null space approach of Fisher discriminant analysis for
face recognition. InProc. European Conference on Computer Vision, Biometric Authentication
Workshop, 2004.

J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Face recognition using kernel direct discrimi-
nant analysis algorithms.IEEE Trans. Neural Networks, 14(1):117–126, 2003.

S. Raudys and R. P. W. Duin. On expected classification error of the Fisher linear classifier with
pseudo-inverse covariance matrix.Pattern Recognition Letters, 19(5-6):385–392, 1998.

B. Scḧokopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press, 2002.

M. Skurichina and R. P. W. Duin. Stabilizing classifiers for very small samplesize. In Proc.
International Conference on Pattern Recognition, pages 891–896, 1996.

D. L. Swets and J. Y. Weng. Using discriminant eigenfeatures for image retrieval. IEEE Trans.
Pattern Analysis and Machine Intelligence, 18(8):831–836, 1996.

M. A. Turk and A. P. Pentland. Face recognition using Eigenfaces. InProc. Computer Vision and
Pattern Recognition Conference, pages 586–591, 1991.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin. KPCA plus LDA: a complete kernel Fisher
discriminant framework for feature extraction and recognition.IEEE Trans. Pattern Analysis and
Machine Intelligence, 27(2):230– 244, 2005.

J. Ye. Characterization of a family of algorithms for generalized discriminantanalysis on under-
sampled problems.Journal of Machine Learning Research, 6:483–502, 2005.

J. Ye, R. Janardan, Q. Li, and H. Park. Feature extraction via generalized uncorrelated linear dis-
criminant analysis. InProc. International Conference on Machine Learning, pages 895–902,
2004a.

J. Ye, T. Li, T. Xiong, and R. Janardan. Using uncorrelated discriminant analysis for tissue classifi-
cation with gene expression data.IEEE/ACM Trans. Computational Biology and Bioinformatics,
1(4):181–190, 2004b.

H. Yu and J. Yang. A direct LDA algorithm for high-dimensional data with applications to face
recognition.Pattern Recognition, 34:2067–2070, 2001.

1204

Journal of Machine Learning Research 7 (2006) 1205–1230 Submitted 10/05; Revised 3/06; Published 7/06

Worst-Case Analysis of Selective Sampling
for Linear Classification

Nicolò Cesa-Bianchi CESA-BIANCHI @DSI.UNIMI .IT
DSI, Universit̀a di Milano
via Comelico, 39
20135 Milano, Italy

Claudio Gentile CLAUDIO .GENTILE@UNINSUBRIA.IT
DICOM, Universit̀a dell’Insubria
via Mazzini, 5
21100 Varese, Italy

Luca Zaniboni ZANIBONI @DTI .UNIMI .IT
DTI, Universit̀a di Milano
via Bramante, 65
26013 Crema, Italy

Editor: Manfred Warmuth

Abstract
A selective sampling algorithm is a learning algorithm for classification that, based on the past
observed data, decides whether to ask the label of each new instance to be classified. In this pa-
per, we introduce a general technique for turning linear-threshold classification algorithms from
the general additive family into randomized selective sampling algorithms. For the most popular
algorithms in this family we derive mistake bounds that holdfor individual sequences of examples.
These bounds show that our semi-supervised algorithms can achieve, on average, the same accu-
racy as that of their fully supervised counterparts, but using fewer labels. Our theoretical results
are corroborated by a number of experiments on real-world textual data. The outcome of these
experiments is essentially predicted by our theoretical results: Our selective sampling algorithms
tend to perform as well as the algorithms receiving the true label after each classification, while
observing in practice substantially fewer labels.

Keywords: selective sampling, semi-supervised learning, on-line learning, kernel algorithms,
linear-threshold classifiers

1. Introduction

A selective sampling algorithm (see, e.g., Cohn et al., 1990; Cesa-Bianchiet al., 2003; Freund et al.,
1997) is a learning algorithm for classification that receives a sequenceof unlabelled instances and
decides whether to query the label of the current instance based on the past observed data. The idea
is to let the algorithm determine which labels are most useful to its inference mechanism, and thus
achieve a good classification performance while using fewer labels.

Natural real-world scenarios for selective sampling are all those applications where labels are
scarce or expensive to obtain. For example, collecting web pages is a fairly automated process,
but assigning them a label (e.g., from a set of possibletopics) often requires time-consuming and

c©2006 Nicol̀o Cesa-Bianchi, Claudio Gentile, Luca Zaniboni.

CESA-BIANCHI , GENTILE AND ZANIBONI

costly human expertise. For this reason, it is clearly important to devise learning algorithms having
the ability to exploit the label information as much as possible. An additional motivation for using
selective sampling arises from the widespread use of kernel-based algorithms (Vapnik, 1998; Cris-
tianini and Shawe-Taylor, 2001; Schölkopf and Smola, 2002). In this case, saving labels implies
using fewer support vectors to represent the hypothesis, which in turnentails a more efficient use of
the memory and a shorter running time in both training and test phases.

Many algorithms have been proposed in the literature to cope with the broad task of learning
with partially labelled data, working under both probabilistic and worst-case assumptions for either
on-line or batch settings. These range from active learning algorithms (Campbell et al., 2000; Tong
and Koller, 2000), to the query-by-committee algorithm (Freund et al., 1997), to the adversarial
“apple tasting” and label efficient algorithms investigated by Helmbold et al. (2000) and Helmbold
and Panizza (1997), respectively. More recent work on this subjectincludes (Bordes et al., 2005;
Dasgupta et al., 2005; Dekel et al., 2006).

In this paper we present a mistake bound analysis for selective sampling versions of Perceptron-
like algorithms. In particular, we study the standard Perceptron algorithm (Rosenblatt, 1958; Block,
1962; Novikov, 1962) and the second-order Perceptron algorithm (Cesa-Bianchi et al., 2005). Then,
we argue how to extend the above analysis to the general additive family of linear-threshold algo-
rithms introduced by Grove et al. (2001) and Warmuth and Jagota (1997) (see also Cesa-Bianchi
and Lugosi, 2003; Gentile, 2003; Gentile and Warmuth, 1999; Kivinen andWarmuth, 2001), and
we provide details for a specific algorithm in this family, i.e., the (zero-threshold) Winnow algo-
rithm (Littlestone, 1988, 1989; Grove et al., 2001).

Our selective sampling algorithms use a simple randomized rule to decide whetherto query the
label of the current instance. This rule prescribes that the label shouldbe obtained with probability
b/(b+ |p̂|), wherep̂ is the (signed) margin achieved by the current linear hypothesis on the current
instance, andb > 0 is a parameter of the algorithm acting as a scaling factor onp̂. Note that
a label is queried with a small probability whenever the marginp̂ is large in magnitude. If the
label is obtained, and it turns out that a mistake has been made, then the algorithm proceeds with its
standard update rule. Otherwise, the algorithm’s current hypothesis is left unchanged. It is important
to remark that in our model we evaluate algorithms by counting their prediction mistakes also on
those time steps when the true labels remain unknown. For each of the algorithmswe consider a
bound is proven on the expected number of mistakes made in an arbitrary datasequence, where the
expectation is with respect to the randomized sampling rule.

Our analysis reveals an interesting phenomenon. In all algorithms we analyze, a proper choice
of the scaling factorb in the randomized rule yields the same mistake bound as the one achieved
by the original algorithm before the introduction of the selective sampling mechanism. Hence, in
some sense, our technique exploits the margin information to select those labelsthat can be ignored
without increasing (in expectation) the overall number of mistakes.

One may suspect that this gain is not real: it might very well be the case that the tuning ofb
preserving the original mistake bound forces the algorithm to query all butan insignificant number
of labels. In the last part of the paper we present some experiments contradicting this conjecture. In
particular, by running our algorithms on real-world textual data, we show that no significant decrease
in the predictive performance is suffered even whenb is set to values that leave a significant fraction
of the labels unobserved.

The paper is organized as follows. In the remainder of this introduction we give the notation
and the basic definitions used throughout the paper. In Section 2 we describe and analyze our

1206

WORST-CASE SELECTIVE SAMPLING

Perceptron-like selective sampling algorithms. In Section 3 we extend our margin-based argument
to the zero-threshold Winnow algorithm. Empirical comparisons are reportedin Section 4. Finally,
Section 5 is devoted to conclusions and open problems.

Notation and basic definitions

An exampleis a pair(x,y), wherex∈ R
d is aninstancevector andy∈ {−1,+1} is the associated

binary label.

We consider the following selective sampling variant of the standard on-linelearning model (An-
gluin, 1988; Littlestone, 1988). Learning proceeds in a sequence oftrials. In the generic trialt the
algorithm observes instancext , outputs a prediction̂yt ∈ {−1,+1} for the labelyt associated with
xt , and decides whether or not to ask the labelyt . No matter what the algorithm decides, we say that
the algorithm has made aprediction mistakeif ŷt 6= yt . We measure the performance of a linear-
threshold algorithm by the total number of mistakes it makes on a sequence of examples (including
the trials where the true labelyt remains unknown). The goal of the algorithm is to bound, on an
arbitrary sequence of examples, the amount by which this total number of mistakes exceeds the
performance of the best linear predictor in hindsight.

In this paper we are concerned with selective sampling versions of linear-threshold algorithms.
When run on a sequence(x1,y1),(x2,y2), . . . of examples, these algorithms compute a sequence
w0,w1, . . . of weight vectorswt ∈ R

d, wherewt can only depend on the past examples(x1,y1), . . .,
(xt ,yt) but not on the future ones,(xs,ys) for s > t. In each trialt = 1,2, . . . the linear-threshold
algorithm predictsyt using1 ŷt = SGN(p̂t) wherep̂t = w⊤

t−1xt is the margin ofwt−1 on the instance
xt . If the labelyt is queried, then the algorithm (possibly) usesyt to compute a new weightwt ; on
the other hand, ifyt remains unknown thenwt = wt−1.

We identify an arbitrary linear-threshold classifier with its coefficient vector u ∈ R
d. For a

fixed sequence(x1,y1), . . . ,(xn,yn) of examples and a given margin thresholdγ > 0, we measure the
performance ofu by its cumulativehinge loss(Freund and Schapire, 1999; Gentile and Warmuth,
1999)

Lγ,n(u) =
n

∑
t=1

ℓγ,t(u) =
n

∑
t=1

(γ−ytu
⊤xt)+

where we used the notation(x)+ = max{0,x}. In words, the hinge loss, also calledsoft marginin
the statistical learning literature (Vapnik, 1998; Cristianini and Shawe-Taylor, 2001; Scḧolkopf and
Smola, 2002), measures the extent to which the hyperplaneu separates the sequence of examples
with margin at leastγ.

We represent the algorithm’s decision of querying the label at timet through the value of a
Bernoulli random variableZt , whose parameter is determined by the specific selection rule used by
the algorithm under consideration. Though we make no assumptions on the source generating the
sequence(x1,y1),(x2,y2), . . ., we require that each example(xt ,yt) be generated before the value
of Zt is drawn. In other words, the source cannot use the knowledge ofZt to determinext andyt .
We useEt−1[·] to denote the conditional expectationE[· |Z1, . . . ,Zt−1] andMt to denote the indicator
function of the event̂yt 6= yt , wherêyt is the prediction at timet of the algorithm under consideration.

1. Here and throughoutSGN denotes the signum functionSGN(x) = 1 if x > 0 andSGN(x) = −1, otherwise.

1207

CESA-BIANCHI , GENTILE AND ZANIBONI

Selective sampling Perceptron.
Parameters:b > 0.
Initialization: w0 = (0, . . . ,0)⊤.

For each trialt = 1,2, . . .

(1) observe an instance vectorxt ∈ R
d, and set̂pt = w⊤

t−1xt ;

(2) predict withŷt = SGN(p̂t);

(3) draw a Bernoulli random variableZt ∈ {0,1} of parameter
b

b+ |p̂t |
;

(4) if Zt = 1 then query labelyt ∈ {−1,+1} and perform the standard Perceptron
update:wt = wt−1 +Mt yt xt ;

(5) else(Zt = 0) setwt = wt−1.

Figure 1: A selective sampling version of the classical Perceptron algorithm.

Finally, whenever the distribution laws ofZ1,Z2, . . . andM1,M2, . . . are clear from the context,
we use the abbreviation

Lγ,n(u) = E

[
n

∑
t=1

Mt Zt ℓγ,t(u)

]
.

Note thatLγ,n(u) ≤ Lγ,n(u) trivially holds for all choices ofγ, n, andu.

2. Selective Sampling Algorithms and Their Analysis

In this section we describe and analyze three algorithms: a selective samplingversion of the clas-
sical Perceptron algorithm (Rosenblatt, 1958; Block, 1962; Novikov, 1962), a variant of the same
algorithm with a dynamically tuned parameter, and a selective sampling version of the second-order
Perceptron algorithm (Cesa-Bianchi et al., 2005). It is worth pointing out that, like any Perceptron-
like update rule, each of the algorithms presented in this section can be efficiently run in any given
reproducing kernel Hilbert space once the update rule is expressed inan equivalent dual-variable
form (see, e.g., Vapnik, 1998; Cristianini and Shawe-Taylor, 2001; Schölkopf and Smola, 2002).
Note that, in the case of kernel-based algorithms, label efficiency provides the additional benefit
of a more compact representation of the trained classifiers. The experiments reported in Section 4
were indeed obtained using a dual-variable implementation of our algorithms.

2.1 Selective Sampling Perceptron

Our selective sampling variant of the classical Perceptron algorithm is described in Figure 1. The
algorithm maintains a vectorw ∈ R

d (whose initial value is zero). In each trialt the algorithm
observes an instance vectorxt ∈ R

d and predicts the binary labelyt through the sign of the margin

1208

WORST-CASE SELECTIVE SAMPLING

valuep̂t = w⊤
t−1xt . Then the algorithm decides whether to query the labelyt through the randomized

rule described in the introduction: a coin with biasb/(b+ |p̂t |) is flipped; if the coin turns up heads
(Zt = 1 in Figure 1), then the labelyt is queried. If a prediction mistake is observed (ŷt 6= yt), then
the algorithm updates vectorwt according to the usual Perceptron additive rule. On the other hand,
if either the coin turns up tails or̂yt = yt (Mt = 0 in Figure 1), then no update takes place.

The following theorem shows that our selective sampling Perceptron can achieve, in expectation,
the same mistake bound as the standard Perceptron’s, but using fewer labels.

Theorem 1 If the algorithm of Figure 1 is run with input parameter b> 0 on a sequence(x1,y1),
(x2,y2), . . . ∈ R

d ×{−1,+1} of examples, then for all n≥ 1, all u∈ R
d, and allγ > 0,

E

[
n

∑
t=1

Mt

]
≤
(

1+
X2

2b

)
Lγ,n(u)

γ
+

‖u‖2(2b+X2
)2

8bγ2

where X= maxt=1,...,n‖xt‖. Furthermore, the expected number of labels queried by the algorithm

equals∑n
t=1E

[
b

b+|p̂t |

]
.

The above bound depends on the choice of parameterb. In general,b might be viewed as a noise
parameter ruling the extent to which a linear threshold model fits the data at hand. In principle, the
optimal tuning ofb is easily computed. Choosing

b =
X2

2

√

1+
4γ2

||u||2X2

Lγ,n(u)

γ

in Theorem 1 gives the following bound on the expected number of mistakes

Lγ,n(u)

γ
+

‖u‖2 X2

2γ2 +
‖u‖ X

γ

√
Lγ,n(u)

γ
+

‖u‖2 X2

4γ2 . (1)

This is an expectation version of the mistake bound for the standard Perceptron algorithm (Freund
and Schapire, 1999; Gentile, 2003; Gentile and Warmuth, 1999). Note thatin the special case
when the data are linearly separable with marginγ∗ the optimal tuning simplifies tob = X2/2 and

yields the familiar Perceptron bound
(
‖u‖X

)2
/(γ∗)2. Hence, in the separable case, we obtain the

somewhat counterintuitive result that the standard Perceptron bound is achieved by an algorithm
whose label rate does not (directly) depend on how big the separation margin is.

As it turns out, (1) might be even sharper than its deterministic counterpart since, as already
noted,Lγ,n(u) can be much smaller thanLγ,n(u). However, sinceb is an input parameter of the
selective sampling algorithm, the above setting implies that, at the beginning of the prediction pro-
cess, the algorithm needs some extra information on the sequence of examples. In addition, unlike
the bound of Theorem 1, which holds simultaneously for allγ andu, this refined bound can only be
obtained for fixed choices of these quantities. Finally, observe that lettingb→ ∞ in Figure 1 yields
the standard Perceptron algorithm but, as a shortcoming, the corresponding bound in Theorem 1
gets vacuous. This is due to the fact that our simple proof produces a mistake bound where the
constant ruling the (natural) trade-off between hinge loss term and marginterm is directly related to
the label sampling rate.

1209

CESA-BIANCHI , GENTILE AND ZANIBONI

All of the above shortcomings will be fixed in Section 2.2, where we presentan adaptive pa-
rameter version of the algorithm in Figure 1. Via a more involved analysis, we show that it is still
possible to achieve a bound having the same form as (1) with no prior information.

That said, we are ready to prove Theorem 1.

Proof of Theorem 1. The proof extends the standard proof of the Perceptron mistake bound (see,
e.g., Duda et al., 2000, Chap. 5) which is based on estimating the influence ofan update on the
distance‖u−wt−1‖2 between the current weight vectorwt−1 and an arbitrary “target” hyperplane
u. Our analysis uses a tighter estimate on this influence, and then uses a probabilistic analysis to
turn this increased tightness into an expected saving on the number of observed labels. Since this
probabilistic analysis only involves the terms that are brought about by the improved estimate, we
are still able to recover (in expectation) the original Perceptron bound.

Fix an arbitrary sequence(x1,y1), . . . ,(xn,yn) ∈ R
d×{−1,+1} of examples. Lett be an update

trial, i.e., a trial such thatMt Zt = 1. We can write

γ− ℓγ,t(u) = γ− (γ−yt u⊤xt)+

≤ yt u⊤xt

= yt(u−wt−1 +wt−1)
⊤xt

= yt w⊤
t−1xt +

1
2
‖u−wt−1‖2− 1

2
‖u−wt‖2 +

1
2
‖wt−1−wt‖2

= yt p̂t +
1
2
‖u−wt−1‖2− 1

2
‖u−wt‖2 +

1
2
‖wt−1−wt‖2 .

Since the above inequality holds for anyγ > 0 and anyu∈ R
d, we can replaceγ by αγ andu by αu,

whereα is a constant to be optimized.
Rearranging, and usingyt p̂t ≤ 0 implied byMt = 1, yields

αγ+ |p̂t | ≤ αℓγ,t(u)+
1
2
‖αu−wt−1‖2− 1

2
‖αu−wt‖2 +

1
2
‖wt−1−wt‖2 .

Note that, instead of discarding the term|p̂t |, as in the original Perceptron proof, we keep it around.
This yields a stronger inequality which, as we will see, is the key to achieving our final result.

If t is such thatMt Zt = 0 then no update occurs andwt = wt−1. Hence we conclude that, for any
trial t,

Mt Zt(αγ+ |p̂t |) ≤ Mt Zt αℓγ,t(u)

+
1
2
‖αu−wt−1‖2− 1

2
‖αu−wt‖2 +

Mt Zt

2
‖wt−1−wt‖2 . (2)

We now sum the above overt, use‖wt−1−wt‖2 ≤ X2 and recall thatw0 = 0. We get

n

∑
t=1

Mt Zt

(
αγ+ |p̂t |−

X2

2

)
≤ α

n

∑
t=1

Mt Zt ℓγ,t(u)+
α2

2
‖u‖2 .

Now chooseα = (2b+X2)/(2γ), whereb> 0 is the algorithm’s parameter. The above then becomes

n

∑
t=1

Mt Zt
(
b+ |p̂t |

)
≤ 2b+X2

2γ

n

∑
t=1

Mt Zt ℓγ,t(u)+
‖u‖2(2b+X2

)2

8γ2 . (3)

1210

WORST-CASE SELECTIVE SAMPLING

A similar inequality is also obtained in the analysis of the standard Perceptron algorithm. Here,
however, we have added the random variableZt , associated with the selective sampling, and kept
the term|p̂t |. Note that this term also appears in the conditional expectation ofZt , since we have
definedEt−1Zt asb/(b+ |p̂t |). This fact is exploited now, when we take expectations on both sides
of (3). On the left-hand side we obtain

E

[
n

∑
t=1

Mt Zt
(
b+ |p̂t |

)
]

= E

[
n

∑
t=1

Mt
(
b+ |p̂t |

)
Et−1Zt

]
= E

[
n

∑
t=1

bMt

]
,

where the first equality is proven by observing thatMt and p̂t are determined byZ1, . . . ,Zt−1 (that
is, they are both measurable with respect to theσ-algebra generated byZ1, . . . ,Zt−1). Dividing by b
we obtain the claimed inequality on the expected number of mistakes.

The value ofE [∑n
t=1Zt] (the expected number of queried labels) trivially follows from

E

[
n

∑
t=1

Zt

]
= E

[
n

∑
t=1

Et−1Zt

]
.

This concludes the proof.

2.2 Selective Sampling Perceptron: Adaptive Version

In this section we show how to learn the best trade-off parameterb in an on-line fashion. Our goal
is to devise a time-changing expression for this parameter that achieves a bound on the expected
number of mistakes having the same form as (1)—i.e., with constant 1 in front of the cumulative
hinge loss term—but relying on no prior knowledge whatsoever on the sequence of examples.

We follow the “self-confident” approach introduced by Auer et al. (2002) and Gentile (2001)
though, as pointed out later, our self-confidence tuning here is technically different, since it does
not rely on projections to control the norm of the weight (as in, e.g., Herbster and Warmuth, 2001;
Auer et al., 2002; Gentile, 2001, 2003).

Our adaptive version of the selective sampling Perceptron algorithm is described in Figure 2.
The algorithm still has a parameterβ > 0 but, as we will see, any constant value forβ leads to
bounds of the form (1). Thusβ has far less influence on the final bound than theb parameter in
Figure 1.

The adaptive algorithm is essentially the same as the one in Figure 1, but for maintaining two
further variables,Xt andKt . At theendof trial t, variableXt stores the maximal norm of the instance
vectors involved in updates up to and including timet, while Kt just counts the number of such
updates. Observe thatbt increases with (the square root of) this number, thereby implementing the
easy intuition that the more updates are made by the algorithm the harder the problem looks, and the
more labels are needed on average. However the reader should not conclude from this observation
that the label ratebt−1/(bt−1 + |p̂t |) converges to 1 ast → ∞, sincebt does not scale with timet but
with the number ofupdatesmade up to timet, which can be far smaller thant. At the same time,
the margin|p̂t | might have an erratic behavior whose oscillations can also grow with the number of
updates.

We have the following result.

1211

CESA-BIANCHI , GENTILE AND ZANIBONI

Selective sampling Perceptron with adaptive parameter.
Parameters: β > 0.
Initialization: w0 = (0, . . . ,0)⊤, X0 = 0, K0 = 0.

For each trialt = 1,2, . . .

(1) observe an instance vectorxt ∈ R
d, and set̂pt = w⊤

t−1xt ;

(2) predict withŷt = SGN(p̂t);

(3) setX′ = max{Xt−1,‖xt‖};

(4) draw a Bernoulli random variableZt ∈ {0,1} of parameter

bt−1

bt−1 + |p̂t |
where bt−1 = β(X′)2

√
1+Kt−1 ;

(5) if Zt = 1 then

(a) query labelyt ∈ {−1,+1},

(b) if ŷt 6= yt (i.e.,Mt = 1) then update

wt = wt−1 +yt xt

Kt = Kt−1 +1

Xt = X′;

(6) else(Zt = 0) setwt = wt−1, Kt = Kt−1, Xt = Xt−1.

Figure 2: Adaptive parameter version of the selective sampling Perceptron algorithm.

Theorem 2 If the algorithm of Figure 2 is run with input parameterβ > 0 on a sequence(x1,y1),
(x2,y2) . . . ∈ R

d ×{−1,+1} of examples, then for all n≥ 1, all u∈ R
d, and allγ > 0,

E

[
n

∑
t=1

Mt

]
≤ Lγ,n(u)

γ
+

R
2β

+
B2

2
+B

√
Lγ,n(u)

γ
+

R
2β

+
B2

4

where

B = R+
1+3R/2

β
and R=

‖u‖
(
maxt=1,...,n‖xt‖

)

γ
.

Moreover, the expected number of labels queried by the algorithm equals∑n
t=1E

[
bt−1

bt−1+|p̂t |

]
.

Before delving into the proof, it is worth observing the role of parameterβ. As we have already
said, if we setβ to any constant value (no matter how small), we obtain a bound of the form (1).
On the other hand, forβ → ∞ the algorithm reduces to the classical Perceptron algorithm, and the

1212

WORST-CASE SELECTIVE SAMPLING

bound (unlike the one in Theorem 1) becomes the Perceptron bound, as given by Gentile (2003).
Clearly, the larger isβ the more labels are queried on average over the trials. Thusβ has also an
indirect influence on the hinge loss termLγ,n(u). In particular, we might expect that a small value
of β makes the number of updates shrink (note that in the limit whenβ → 0 this number goes to 0).

Proof of Theorem 2. Fix an arbitrary sequence(x1,y1), . . . ,(xn,yn) ∈ R
d ×{−1,+1} of examples

and letX = maxt=1,...,n‖xt‖. The proof is a more involved version of the proof of Theorem 1. We
start from the one-trial equation (2) established there, where we replace the (constant) stretching
factor α by the time-varying factorct−1/γ, wherect−1 ≥ 0 will be set later andγ > 0 is the free
margin parameter of the hinge loss. This yields

Mt Zt(ct−1 + |p̂t |) ≤ Mt Zt
ct−1

γ
ℓγ,t(u)

+
1
2

∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

− 1
2

∥∥∥∥
ct−1

γ
u−wt

∥∥∥∥
2

+
Mt Zt

2
‖wt−1−wt‖2 .

From the update rule in Figure 2 we have(Mt Zt/2)‖wt−1−wt‖2 ≤ (Mt Zt/2)‖xt‖2. We rearrange
and divide bybt−1. This yields

Mt Zt

(
ct−1 + |p̂t |−‖xt‖2/2

bt−1

)
≤ Mt Zt

ct−1

bt−1

ℓγ,t(u)

γ

+
1

2bt−1

(∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

−
∥∥∥∥

ct−1

γ
u−wt

∥∥∥∥
2
)

. (4)

We now transform the difference of squared norms in (4) into a pair of telescoping differences,

1
2bt−1

(∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

−
∥∥∥∥

ct−1

γ
u−wt

∥∥∥∥
2
)

=
1

2bt−1

∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

− 1
2bt

∥∥∥∥
ct

γ
u−wt

∥∥∥∥
2

+
1

2bt

∥∥∥∥
ct

γ
u−wt

∥∥∥∥
2

− 1
2bt−1

∥∥∥∥
ct−1

γ
u−wt

∥∥∥∥
2

. (5)

If we set

ct−1 =
1
2

(
max{Xt−1,‖xt‖}

)2
+bt−1

we can expand the difference of norms (5) as follows

(5) =
‖u‖2

2γ2

(
c2

t

bt
− c2

t−1

bt−1

)
+

u⊤wt

γ

(
ct−1

bt−1
− ct

bt

)
+

‖wt‖2

2

(
1
bt

− 1
bt−1

)

≤ ‖u‖2

2γ2

(
c2

t

bt
− c2

t−1

bt−1

)
+

‖u‖‖wt‖
γ

(
ct−1

bt−1
− ct

bt

)
(6)

where in the last step we usedbt ≥ bt−1 and the inequality

ct−1

bt−1
≥ ct

bt

1213

CESA-BIANCHI , GENTILE AND ZANIBONI

which follows fromct−1/bt−1 = 1
/(

2β
√

1+Kt−1
)
+1.

Recall now the standard way of bounding the norm of a Perceptron weight vector in terms of
the number of updates,

‖wt‖2 = ‖wt−1‖2 +MtZtytw
⊤
t−1xt +MtZt ‖xt‖2

≤ ‖wt−1‖2 +MtZt ‖xt‖2

≤ ‖wt−1‖2 +MtZtX
2

which, combined withw0 = 0, implies

‖wt‖ ≤ X
√

Kt for anyt. (7)

Applying inequality (7) to (6) yields

(5) ≤ ‖u‖2

2γ2

(
c2

t

bt
− c2

t−1

bt−1

)
+

‖u‖ X
√

Kt

γ

(
ct−1

bt−1
− ct

bt

)
. (8)

We continue by bounding from above the last term in (8). Ift is such thatMtZt = 1 we have
Kt = Kt−1 +1. Thus we can write

√
Kt

(
ct−1

bt−1
− ct

bt

)
=

√
Kt

2β

(
1√

1+Kt−1
− 1√

1+Kt

)

=

√
Kt

2β

(
1√
Kt

− 1√
1+Kt

)

=
1
2β

√
1+Kt −

√
Kt√

1+Kt

≤ 1
4β

1√
Kt
√

1+Kt

(using
√

1+x−√
x≤ 1

2
√

x)

≤ 1
4β

1
Kt

.

On the other hand, ifMtZt = 0 we havebt = bt−1 andct = ct−1. Hence, for any trialt we obtain

√
Kt

(
ct−1

bt−1
− ct

bt

)
≤ MtZt

4β
1
Kt

.

Putting together as in (4) and usingct−1−‖xt‖2/2≥ bt−1 on the left-hand side yields

Mt Zt

(
bt−1 + |p̂t |

bt−1

)
≤ Mt Zt

ct−1

bt−1

ℓγ,t(u)

γ

+
1

2bt−1

∥∥∥∥
ct−1

γ
u−wt−1

∥∥∥∥
2

− 1
2bt

∥∥∥∥
ct

γ
u−wt

∥∥∥∥
2

+
‖u‖2

2γ2

(
c2

t

bt
− c2

t−1

bt−1

)
+

‖u‖ X
γ

MtZt

4β
1
Kt

1214

WORST-CASE SELECTIVE SAMPLING

holding for any trialt, anyu∈ R
d, and anyγ > 0.

Now, as in the proof of Theorem 1, we sum overt = 1, . . . ,n, usew0 = 0, and simplify

n

∑
t=1

Mt Zt

(
bt−1 + |p̂t |

bt−1

)
≤ 1

γ

n

∑
t=1

Mt Zt
ct−1

bt−1
ℓγ,t(u) (9)

+
c2

n

bn

‖u‖2

2γ2 − 1
2bn

∥∥∥∥
cn

γ
u−wn

∥∥∥∥
2

(10)

+
1
4β

‖u‖ X
γ

n

∑
t=1

MtZt

Kt
.

We now proceed by bounding separately the terms in the right-hand side of the above inequality.
For (9) we get

1
γ

ct−1

bt−1
ℓγ,t(u) =

1
γ

(
1

2β
√

1+Kt−1
+1

)
ℓγ,t(u)

≤ 1
γ

1
2β

√
1+Kt−1

(
γ+‖u‖X

)
+

ℓγ,t(u)

γ
(sinceℓγ,t(u) ≤ γ+‖u‖X)

=
1
2β

(
1+

‖u‖X
γ

)
1√

1+Kt−1
+

ℓγ,t(u)

γ
.

For (10) we obtain

c2
n

bn

‖u‖2

2γ2 − 1
2bn

∥∥∥∥
cn

γ
u−wn

∥∥∥∥
2

=
cn

bn

u⊤wn

γ
− ‖wn‖2

2bn

≤ cn

bn

u⊤wn

γ

≤ cn

bn

‖u‖ ‖wn‖
γ

≤
(

1+
1

2β
√

1+Kn

) ‖u‖ X
√

Kn

γ

where in the last step we used (7). Using these expressions to bound the left-hand side of (9) yields

n

∑
t=1

Mt Zt

(
bt−1 + |p̂t |

bt−1

)

≤ 1
γ

n

∑
t=1

Mt Zt ℓγ,t(u)+
1
2β

(
1+

‖u‖X
γ

) n

∑
t=1

Mt Zt√
1+Kt−1

(11)

+

(
1+

1

2β
√

1+Kn

) ‖u‖X
√

Kn

γ
+

1
4β

‖u‖X
γ

n

∑
t=1

MtZt

Kt
. (12)

Next, we focus on the second sum in (11) and the sum in (12). SinceMt Zt = 1 impliesKt = Kt−1+1
we can write

n

∑
t=1

Mt Zt√
1+Kt−1

= ∑
t :Mt Zt=1

1√
Kt

=
Kn

∑
t=1

1√
t
≤ 2

√
Kn .

1215

CESA-BIANCHI , GENTILE AND ZANIBONI

Similarly for the other sum, but using a more crude bound,

n

∑
t=1

MtZt

Kt
= ∑

t :Mt Zt=1

1
Kt

≤ ∑
t :Mt Zt=1

1√
Kt

≤ 2
√

Kn .

Recalling the short-handR= (‖u‖X)/γ, we apply these bounds to (11) and (12). After a simple
overapproximation this gives

n

∑
t=1

Mt Zt

(
bt−1 + |p̂t |

bt−1

)
≤ 1

γ

n

∑
t=1

Mt Zt ℓγ,t(u)+
√

Kn

(
R+

1+3R/2
β

)
+

R
2β

.

We are now ready to take expectations on both sides. As in the proof of Theorem 1, sinceEt−1Zt =
bt−1

bt−1+|p̂t | and bothMt andbt−1 are measurable with respect to theσ-algebra generated byZ1, . . . ,Zt−1,
we obtain

E

[
n

∑
t=1

Mt Zt

(
bt−1 + |p̂t |

bt−1

)]
= E

[
n

∑
t=1

Mt

]
.

In taking the expectation on the right-hand side, we first boundKn = ∑n
t=1Mt Zt asKn ≤ ∑n

t=1Mt ,
then exploit the concavity of the square root. This results in

n

∑
t=1

EMt ≤
Lγ,n(u)

γ
+

(
R+

1+3R/2
β

)√ n

∑
t=1

EMt +
R
2β

.

Solving the above inequality for∑n
t=1EMt gives the stated bound on the expected number of mis-

takes.
Finally, as in the proof of Theorem 1, the expected number of labels queried by the algorithm

trivially follows from

E

[
n

∑
t=1

Zt

]
= E

[
n

∑
t=1

Et−1Zt

]

concluding the proof.

The proof of Theorem 2 is reminiscent of the analysis of the “self-confident” dynamical tuning
used in Auer et al. (2002) and Gentile (2001). In those papers, however, the variable learning rate
was combined with a re-normalization step of the weight. Here we use a different technique based
on a time-changing stretching factorαt−1 = ct−1/γ for the comparison vectoru. This alternative
approach is made possible by the boundedness of the hinge loss terms, as shown by the inequality
ℓγ,t(u) ≤ γ+‖u‖X.

2.3 Selective Sampling Second-Order Perceptron

We now consider a selective sampling version of the second-order Perceptron algorithm introduced
by Cesa-Bianchi et al. (2005). The second-order Perceptron algorithm might be seen as running
the standard (first-order) Perceptron algorithm as a subroutine. Letvt−1 denote the weight vector
computed by the standard Perceptron algorithm. In trialt, instead of using the sign ofv⊤t−1xt to
predict the current instancext , the second-order algorithm predicts through the sign of the margin

p̂t =
(
M−1/2vt−1

)⊤(
M−1/2xt

)
= v⊤t−1M−1xt .

1216

WORST-CASE SELECTIVE SAMPLING

HereM = I + ∑sxsx⊤s + xtx⊤t is a (full-rank) positive definite matrix, whereI is thed×d identity
matrix, and the sum∑sxsx⊤s runs over the mistaken trialss up to timet − 1. If, when using the
above prediction rule, the algorithm makes a mistake in trialt, thenvt−1 is updated according to
the standard Perceptron rule andt is included in the set of mistaken trials. Hence the second-order
algorithm differs from the standard Perceptron algorithm in that, before each prediction, a linear
transformationM−1/2 is applied to both the current Perceptron weightvt−1 and the current instance
xt . This linear transformation depends on the correlation matrix defined over mistaken instances,
including the current one. As explained in Cesa-Bianchi et al. (2005),this linear transformation has
the effect of reducing the number of mistakes whenever the instance correlation matrix∑sxsx⊤s +
xtx⊤t has a spectral structure that causes an eigenvector with small eigenvalueto correlate well with
a good linear approximatoru of the entire data sequence. In such situations, the mistake bound of
the second-order Perceptron algorithm can be shown to be significantly better than the one for the
first-order algorithm.

In what follows, we useAt−1 to denoteI + ∑sxsx⊤s where the sum ranges over the mistaken
trials between trial 1 and trialt − 1. We derive a selective sampling version of the second-order
algorithm in much the same way as we did for the standard Perceptron algorithm:The selective
sampling second-order Perceptron algorithm predicts and then decides whether to ask for the label
yt using the same randomized rule as the one in Figure 1. In Figure 3 we providea pseudo-code
description and introduce the notation used in the analysis.

The analysis follows the same pattern as the proof of Theorem 1. A key stepis a one-trial
progress equation developed by Forster (1999) for a regression framework. See also Azoury and
Warmuth (2001). As before, the comparison between the second-orderPerceptron’s bound and the
one contained in Theorem 3 reveals that the selective sampling algorithm canachieve, in expecta-
tion, the same mistake bound using fewer labels.

Theorem 3 If the algorithm of Figure 3 is run with parameter b> 0 on a sequence(x1,y1), (x2,y2),
. . . ∈ R

d ×{−1,+1} of examples, then for all n≥ 1, all u∈ R
d, and allγ > 0,

E

[
n

∑
t=1

Mt

]
≤ Lγ,n(u)

γ
+

b
2γ2u⊤E[An]u+

1
2b

d

∑
i=1

E ln(1+λi)

whereλ1, . . . ,λd are the eigenvalues of the (random) correlation matrix∑n
t=1Mt Zt xtx⊤t and An =

I +∑n
t=1Mt Zt xtx⊤t (thus1+λi is the i-th eigenvalue of An). Moreover, the expected number of labels

queried by the algorithm equals∑n
t=1E

[
b

b+|p̂t |

]
.

Again, the above bound depends on the algorithm’s parameterb. Setting

b = γ

√
∑d

i=1E ln(1+λi)

u⊤E [An]u

in Theorem 3 we are led to the bound

E

[
n

∑
t=1

Mt

]
≤ Lγ,n(u)

γ
+

1
γ

√

(u⊤E [An]u)
d

∑
i=1

E ln(1+λi) . (13)

This is an expectation version of the mistake bound for the (deterministic) second-order Percep-
tron algorithm, as proven by Cesa-Bianchi et al. (2005). As for the first-order algorithms, this

1217

CESA-BIANCHI , GENTILE AND ZANIBONI

Selective sampling second-order Perceptron.
Parameter: b > 0.
Initialization: A0 = I , v0 = (0, . . . ,0)⊤.

For each trialt = 1,2, . . .

(1) observe an instance vectorxt ∈ R
d, and set̂pt = v⊤t−1(At−1 +xtx⊤t)−1xt ;

(2) predict withŷt = SGN(p̂t);

(3) draw a Bernoulli random variableZt ∈ {0,1} of parameter
b

b+ |p̂t |
;

(4) if Zt = 1 then query labelyt ∈ {−1,+1} and perform the standard second-order
Perceptron update:

vt = vt−1 +Mt ytxt ,

At = At−1 +Mt xtx
⊤
t ;

(5) else(Zt = 0) setvt = vt−1 andAt = At−1.

Figure 3: A selective sampling version of the second-order Perceptronalgorithm.

bound might be sharper than its deterministic counterpart, since the magnitude of the three quan-
tities Lγ,n(u), u⊤E[An]u, and∑d

i=1E ln(1+ λi) is ruled by the size of the random set of updates
{t : MtZt = 1}, which is typically smaller than the set of mistaken trials of the deterministic algo-
rithm.

However, as for the algorithm in Figure 1, this parameter tuning turns out to be unrealistic,
since it requires preliminary information on the structure of the sequence ofexamples. Unlike the
first-order algorithm, we have been unable to devise a meaningful adaptive parameter version for
the algorithm in Figure 3.

Proof of Theorem 3. The proof proceeds along the same lines as the proof of Theorem 1, thuswe
only emphasize the main differences. In addition to the notation given there, we defineΦt to be the
(random) function

Φt(u) =
1
2
‖u‖2 +

t

∑
s=1

MsZs

2
(ys−u⊤xs)

2 .

The quantityΦt(u), which is the regularized cumulative square loss ofu on the past mistaken trials,
plays a key role in the proof. Indeed, we now show that the algorithm incurs on each mistaken
trial a square loss

(
yt − p̂t

)2
bounded by the difference infv Φt+1(v)− infv Φt(v) plus a quadratic

term involvingA−1
t . When we sum over mistaken trials, the difference telescopes and the sum of

quadratic terms can be bounded using known results. Finally, the margin we use in the probabilistic
analysis is obtained as cross-term when the square loss is expanded.

1218

WORST-CASE SELECTIVE SAMPLING

When trial t is such thatMt Zt = 1 we can exploit a result proven by Forster (1999) for lin-
ear regression (proof of Theorem 3 therein), where it is essentially shown that choosinĝpt =
v⊤t−1(At−1 +xtx⊤t)−1xt (as in Figure 3) yields

1
2

(
p̂t −yt

)2
= inf

v
Φt+1(v)− inf

v
Φt(v)+

1
2

x⊤t A−1
t xt −

1
2

(
x⊤t A−1

t−1xt

)
p̂2

t .

On the other hand, if trialt is such thatMt Zt = 0 we have infv∈Rd Φt+1(v) = infv∈Rd Φt(v). Hence
the equality

MtZt

2

(
p̂t −yt

)2
= inf

v
Φt+1(v)− inf

v
Φt(v)+

Mt Zt

2
x⊤t A−1

t xt −
Mt Zt

2

(
x⊤t A−1

t−1xt

)
p̂2

t

holds for all trialst. We drop the term−MtZt
(
x⊤t A−1

t−1xt
)

p̂2
t /2, which is nonpositive (sinceAt−1 is

positive definite), and sum overt = 1, . . . ,n. Observing that infv Φ1(v) = 0, we obtain

1
2

n

∑
t=1

MtZt
(
p̂t −yt

)2 ≤ inf
v

Φn+1(v)− inf
v

Φ1(v)+
1
2

n

∑
t=1

Mt Zt x⊤t A−1
t xt

≤ Φn+1(u)+
1
2

n

∑
t=1

Mt Zt x⊤t A−1
t xt

≤ 1
2
‖u‖2 +

1
2

n

∑
t=1

Mt Zt
(
u⊤xt −yt

)2
+

1
2

n

∑
t=1

Mt Zt x⊤t A−1
t xt

holding for anyu∈ R
d.

Expanding the squares and performing trivial simplifications we arrive atthe following inequal-
ity

1
2

n

∑
t=1

MtZt
(
p̂2

t −2yt p̂t
)

≤ 1
2

[
‖u‖2 +

n

∑
t=1

MtZt
(
u⊤xt

)2

]
−

n

∑
t=1

MtZt ytu
⊤xt +

1
2

n

∑
t=1

MtZt x⊤t A−1
t xt . (14)

We focus on the right-hand side of (14). We rewrite the first term and bound from above the last
term. For the first term we have

1
2

[
‖u‖2 +

n

∑
t=1

Mt Zt
(
u⊤xt

)2

]
=

1
2

u⊤
(

I +
n

∑
t=1

xt x⊤t Mt Zt

)
u =

1
2

u⊤Anu . (15)

1219

CESA-BIANCHI , GENTILE AND ZANIBONI

For the third term, we use a property of the inverse matricesA−1
t (see, e.g., Lai and Wei, 1982;

Azoury and Warmuth, 2001; Forster, 1999; Cesa-Bianchi et al., 2005),

1
2

n

∑
t=1

Mt Zt x⊤t A−1
t xt =

1
2

n

∑
t=1

(
1− |At−1|

|At |

)

≤ 1
2

n

∑
t=1

ln
|At |
|At−1|

=
1
2

ln
|An|
|A0|

=
1
2

ln |An|

=
1
2

d

∑
i=1

ln(1+λi)

where we recall that 1+λi is thei-th eigenvalue ofAn.
Replacing back, observing that−yt p̂t ≤ 0 wheneverMt = 1, dropping the term involvinĝp2

t ,
and rearranging yields

n

∑
t=1

Mt Zt
(
|p̂t |+ytu

⊤xt
)
≤ 1

2
u⊤Anu+

1
2

d

∑
i=1

ln(1+λi) .

At this point, as in the proof of Theorem 1, we introduce hinge loss terms andstretch the comparison
vectoru to b

γ u, whereb is the algorithm’s parameter. We obtain

n

∑
t=1

Mt Zt
(
|p̂t |+b

)
≤ b

γ

n

∑
t=1

Mt Zt ℓγ,t(u)+
b2

2γ2u⊤Anu+
1
2

d

∑
i=1

ln(1+λi) .

We take expectations on both sides. Recalling thatEt−1Zt = b/(b+ |p̂t |), and proceeding similarly
to the proof of Theorem 1 we get the claimed bounds on∑n

t=1EMt and∑n
t=1EZt .

3. Selective Sampling Winnow

The techniques used to prove Theorem 1 can be readily extended to analyze selective sampling
versions of algorithms in the general additive family of Grove et al. (2001), Warmuth and Jagota
(1997), and Kivinen and Warmuth (2001). The algorithms in this family—whichincludes Win-
now (Littlestone, 1988), thep-norm Perceptron (Grove et al., 2001; Gentile, 2001), and others—are
parametrized by a strictly convex and differentiablepotential functionΨ : R

d → R obeying some
additional regularity properties. We now show a concrete example by analyzing the selective sam-
pling version of the Winnow algorithm (Littlestone, 1988), a member of the general additive family
based on the exponential potentialΨ(u) = eu1 + · · ·+eud .

In its basic version, Winnow uses weights that belong to the probability simplex inR
d. The

update rule for the weights is multiplicative, and is followed by a normalization stepwhich projects
the updated weight vector back to the simplex. Introducing the intermediate weight w′

t , we define

1220

WORST-CASE SELECTIVE SAMPLING

Selective sampling Winnow.
Parameters: η,b > 0.
Initialization: w0 = (1/d, . . . ,1/d)⊤.

For each trialt = 1,2, . . .

(1) observe an instance vectorxt ∈ R
d, and set̂pt = w⊤

t−1xt ;

(2) predict withŷt = SGN(p̂t);

(3) draw a Bernoulli random variableZt ∈ {0,1} of parameter
b

b+ |p̂t |
;

(4) if Zt = 1 then query labelyt ∈ {−1,+1} and perform the standard Winnow
update:

w′
i,t = wi,t−1eMt ηyt xi,t ,

wi,t = w′
i,t/(w′

1,t + · · ·+w′
d,t) i = 1, . . . ,d;

(5) else(Zt = 0) setwt = wt−1.

Figure 4: A selective sampling version of the Winnow algorithm.

the update rule as follows:

w′
i,t = wi,t−1eηyt xi,t

wi,t =
w′

i,t

∑d
j=1w′

j,t

for i = 1, . . . ,d.

The theory behind the analysis of general additive family of algorithms shows that, notwithstand-
ing their apparent diversity, Winnow and Perceptron are actually instances of the same additive
algorithm.

To obtain a selective sampling version of Winnow we proceed exactly as we did in the previous
cases: we query the labelyt with probabilityb/(b+ |p̂t |), where|p̂t | is the margin computed by the
algorithm. The complete pseudo-code is described in Figure 4.

The mistake bound we prove for selective sampling Winnow is somewhat atypical since, unlike
the Perceptron-like algorithms analyzed so far, the choice of the learning rateη given in this theorem
is the same as the one suggested by the original Winnow analysis (see, e.g., Littlestone, 1989; Grove
et al., 2001). Furthermore, since a meaningful bound in Winnow requiresη be chosen in terms of
γ, it turns out that in the selective sampling version there is no additional tuningto perform, and
we are able to obtain the same mistake bound as the original version. Thus, unlike the other cases,
the selective sampling mechanism does not weaken in any respect the original mistake bound, apart
from turning a deterministic bound into an expected one.

1221

CESA-BIANCHI , GENTILE AND ZANIBONI

Theorem 4 If the algorithm of Figure 4 is run with parameters

η =
2(1−α)γ

X2
∞

and b = αγ for someα ∈ (0,1)

on a sequence(x1,y1), . . . ,(xn,yn) ∈ R
d ×{−1,+1} of examples such that‖xt‖∞ ≤ X∞ for all t =

1, . . . ,n, then for all u∈ R
d in the probability simplex,

E

[
n

∑
t=1

Mt

]
≤ 1

α
Lγ,n(u)

γ
+

1
2α(1−α)

X2
∞ lnd
γ2 .

As before, the expected number of labels queried by the algorithm equals∑n
t=1E

[
b

b+|p̂t |

]
.

Proof Similarly to the proof of Theorem 1, we estimate the influence of an update on thedistance
between the current weightwt−1 and an arbitrary “target” hyperplaneu, where in this case both vec-
tors live in the probability simplex. Unlike the Perceptron analysis, based on the squared Euclidean
distance, the analysis of Winnow uses the Kullback-Leibler divergence,or relative entropy,KL(·, ·)
to measure the progress ofwt−1 towardsu. The relative entropy of any two vectorsu,v belonging
to the probability simplex onRd is defined by

KL(u,v) =
d

∑
i=1

ui ln
ui

vi
.

Fix an arbitrary sequence(x1,y1), . . . ,(xn,yn) ∈ R
d ×{−1,+1} of examples. As in the proof of

Theorem 1, we have thatMtZt = 1 implies

η
(
γ− ℓγ,t(u)

)
= η

(
γ− (γ−yt ,u

⊤xt)+

)

≤ ηyt u⊤xt

= ηyt(u−wt−1 +wt−1)
⊤xt

= ηyt(u−wt−1)
⊤xt +ηyt w⊤

t−1xt .

Besides, exploiting a simple identity (as in the proof of Theorem 11.3 in Cesa-Bianchi and Lugosi,
2006, Chap. 5), we can rewrite the termηyt(u−wt−1)

⊤xt as

ηyt(u−wt−1)
⊤xt = KL(u,wt−1)− KL(u,wt)+ ln

(
d

∑
j=1

w j,t−1eηyt v j

)

wherev j = x j −w⊤
t−1xt . This equation is similar to the one obtained in the analysis of the selective

sampling Perceptron algorithm, but for the relative entropy replacing the squared Euclidean dis-
tance. Note, however, that the last term in the right-hand side of the aboveequation is not a relative
entropy. To bound this last term, we consider the random variableX taking valuexi,t ∈ [−X∞,X∞]
with probabilitywi,t−1. Then, from the Hoeffding inequality (Hoeffding, 1963) applied toX,

ln

(
d

∑
j=1

w j,t−1eηyt v j

)
= lnE

[
eηyt(X−EX)

]
≤ η2

2
X2

∞ .

1222

WORST-CASE SELECTIVE SAMPLING

We plug back, rearrange and note thatwt = wt−1 wheneverMtZt = 0. This gets

Mt Zt η
(

γ+ |p̂t |−
η
2

X2
∞

)
≤ Mt Zt ηℓγ,t(u)+ KL(u,wt−1)− KL(u,wt) ,

holding for anyt. Summing overt = 1, . . . ,n and dividing byη yields

n

∑
t=1

MtZt

(
γ+ |p̂t |−

η
2

X2
∞

)
≤

n

∑
t=1

Mt Zt ℓγ,t(u)+
KL(u,w0)

η
− KL(u,wn)

η
.

We drop the last term (which is nonpositive), and useKL(u,w0) ≤ lnd holding for anyu in the
probability simplex wheneverw0 = (1/d, . . . ,1/d). Then the above reduces to

n

∑
t=1

Mt Zt

(
γ+ |p̂t |−

η
2

X2
∞

)
≤

n

∑
t=1

Mt Zt ℓγ,t(u)+
lnd
η

.

Substituting our choice forη andb yields

n

∑
t=1

Mt Zt
(
b+ |p̂t |

)
≤

n

∑
t=1

Mt Zt ℓγ,t(u)+
X2

∞ lnd
2(1−α)γ

.

To conclude, it suffices to exploitEt−1Zt = b/(b+ |p̂t |) and proceed as in the proof of the previous
theorems.

4. Experiments

To investigate the empirical behavior of our algorithms we carried out a series of experiments on the
first (in chronological order) 40,000 newswire stories from the Reuters Corpus Volume 1 (Reuters,
2000). Each story in this dataset is labelled with one or more elements from a set of 101 categories.
In our experiments, we associated a binary classification task with each oneof the 50 most frequent
categories in the dataset, ignoring the remaining 51 (this was done mainly to reduce the effect of
unbalanced datasets). All results presented in this section refer to the average performance over
these 50 binary classification tasks. Though all of our algorithms are randomized, we did not com-
pute averages over multiple runs of the same experiment, since we empirically observed that the
variances of our statistics are quite small for the sample size taken into consideration.

To evaluate the algorithms we used theF-measure (harmonic average between precision and
recall) since this is the most widespread performance index in text categorization experiments. Re-
placingF-measure with classification accuracy yields results that are qualitatively similar to the
ones shown here.

We focused on the following three algorithms: the selective sampling Perceptron algorithm of
Figure 1 (here abbreviated asSEL-P), its adaptive version of Figure 2 (abbreviated asSEL-ADA), and
the selective sampling second-order Perceptron algorithm of Figure 3 (abbreviated asSEL-2ND).

In Figure 5 we check whether our margin-based sampling technique achieves a better perfor-
mance than the baseline sampling strategy of querying each label with constant probability. In
particular, we fixed 7 different sampling rates (from 29.2% to 71.8%) and runSEL-P each time with
the parameterb chosen so as to obtain the desired sampling rate. Then we compared the achieved

1223

CESA-BIANCHI , GENTILE AND ZANIBONI

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

0.7180.6880.6490.6000.5330.4380.292

F
-m

ea
su

re

Sampling rate

SEL-P
SEL-P-FIXED

SEL-P 100% rate

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

0.7180.6880.6490.6000.5330.4380.292

F
-m

ea
su

re

Sampling rate

SEL-2ND
SEL-2ND-FIXED

SEL-2ND 100% rate

Figure 5: Comparison between margin-based sampling and random sampling with pre-specified
sampling rate for the Perceptron algorithm (left) and the second-order Perceptron algo-
rithm (right). The dotted lines show the performance obtained by querying all labels.

performance to the performance obtained by sampling each label with constant probability, i.e., the
case when the Bernoulli random variablesZt in step (3) of Figure 1 have constant parameter equal
to the desired sampling rate. We call this variantSEL-P-FIXED. The same experiment was repeated
usingSEL-2ND and its fixed probability variantSEL-2ND-FIXED.

The following table shows the values of parameterb leading to the fixed sampling rates for both
experiments.

SAMPLING RATE b (SEL-P) b (SEL-2ND)
0.292 0.250 0.040
0.438 0.500 0.085
0.533 0.750 0.125
0.600 1.000 0.168
0.649 1.250 0.210
0.688 1.500 0.236
0.718 1.750 0.240

Note that in both cases the margin-based sampling technique is clearly dominating. Also, as ex-
pected, the difference between the two techniques tends to shrink as the sampling rate gets larger. In
Figure 6 we illustrate the sensitivity of performance and sampling rate to different choices of the in-
put parameterb for the two algorithmsSEL-P andSEL-2ND. This experiment supports Theorems 1
and 3 in two ways: First, it shows that the choice ofb achieving a performance comparable to the
one obtained by sampling all labels can save a significant fraction of labels;second, this choice is
not unique. Indeed, in a sizeable interval of values for parameterb, the sampling rate decreases
significantly withb while the performance level is essentially constant. In Figure 7 we directly
compare the performance ofSEL-P, SEL-2ND, andSEL-ADA for different values of their average
sampling rate (obtained, as before, via suitable choices of their input parametersb andβ). This
experiment confirms thatSEL-2ND is the algorithm offering the best trade-off between performance
and sampling rate. On the other hand, the fact thatSEL-ADA performs slightly worse thanSEL-P,
together with the results of Figure 6, appears to indicate that our adaptive choice ofb can only be
motivated on theoretical grounds.

1224

WORST-CASE SELECTIVE SAMPLING

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
-m

ea
su

re
 a

nd
 S

am
pl

in
g

ra
te

Parameter b

F-measure
Sampling rate

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

F
-m

ea
su

re
 a

nd
 S

am
pl

in
g

ra
te

Parameter b

F-measure
Sampling rate

Figure 6: Dependence of performance and sampling rate on theb parameter for the Perceptron
algorithm (left) and the second-order Perceptron algorithm (right).

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

0.7180.6880.6490.6000.5330.4380.292

F
-m

ea
su

re

Sampling rate

SEL-ADA
SEL-P

SEL-2ND

Figure 7: Performance level ofSEL-P, SEL-2ND, andSEL-ADA at different sampling rates.

In the last experiment we fixed a target value (0.65) for theF-measure averaged over all 50 cate-
gories and we tuned all algorithms to achieve that performance after trainingon the entire sequence
of 40,000 examples. Then, we compared the sampling rates that each algorithm needed to attain the
target performance. To get a more accurate picture of the behavior of each algorithm, each time a
block of 4,000 training examples was completed, we plotted the averageF-measure and sampling
rate achieved over that block. The results are reported in Figure 8. NotethatSEL-P uses an average
sampling rate of about 60%, whileSEL-ADA needs a larger (and growing with time) sampling rate
of about 74%. On the other hand,SEL-2ND uses only about 9% of the labels. Note also that the
sampling rate ofSEL-P andSEL-2ND decreases with time, thus indicating that in both cases the mar-
gin tends to grow in magnitude. The small sampling rate exhibited bySEL-2ND compared toSEL-P

1225

CESA-BIANCHI , GENTILE AND ZANIBONI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

360002800020000120004000

Examples

F-measure SEL-P
F-measure SEL-ADA
F-measure SEL-2ND

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

360002800020000120004000

Examples

Sampling rate SEL-P
Sampling rate SEL-ADA
Sampling rate SEL-2ND

Figure 8: The right plot shows the sampling rates required by different algorithms to achieve a
given target performance value (shown in the left plot).

(andSEL-ADA) might be an indication that the second-order Perceptron tends to achievea larger
margin than the standard Perceptron, but we do not have a clear explanation for this phenomenon.

5. Conclusions and Open Problems

We have introduced a general technique for turning linear-threshold algorithms from the general
additive family into selective sampling algorithms. We have analyzed these algorithms in a worst-
case on-line learning setting, providing bounds on the expected number ofmistakes. Our theoretical
investigation naturally arises from the traditional way margin-based algorithmsare analyzed in the
mistake bound model of on-line learning (Littlestone, 1988; Grove et al., 2001; Gentile and War-
muth, 1999; Freund and Schapire, 1999; Gentile, 2003; Cesa-Bianchiet al., 2005). This investi-
gation suggests that our semi-supervised algorithms can achieve, on average, the same accuracy as
that of their fully supervised counterparts, but allowing a substantial saving of labels. When applied
to (kernel-based) Perceptron-like algorithms, label saving directly implies higher sparsity for the
computed classifier which, in turn, yields a running time saving in both training and test phases.

Our theoretical results are corroborated by an empirical comparison on textual data. In these
experiments we have shown that proper choices of the scaling parameterb yield a significant re-
duction in the rate of queried labels without causing an excessive degradation of the classification
performance. In addition, we have also shown that by fixing ahead of time the total number of
label observations, the margin-driven way of distributing these observations over the training set is
largely more effective than a random one.

The choice of the scaling parameterb might affect performance in a significant way. Thus
we have also provided a theoretical analysis for an adaptive parameter version of the (first-order)
selective sampling Perceptron algorithm. This analysis shows that it is still possible to obtain, with

1226

WORST-CASE SELECTIVE SAMPLING

no prior information, a bound on the expected number of mistakes having the same form as the
one achieved by choosing the “best”b in hindsight. Now, it is intuitively clear that the number
of prediction mistakes and the number of queried labels can be somehow traded-off against each
other. Within this trade-off, the above “best” choice is only aimed at minimizing mistakes, rather
than queried labels. In fact, the practical utility of this adaptive algorithm seems, at present, fairly
limited.

There are many ways this work could be extended. Perhaps the most important is being able to
quantify the expected number of requested labels as a function of the problem parameters (margin
of the data and so on). It is worth observing that for the adaptive version of the selective sampling
Perceptron (Figure 2) we can easily derive alower bound on the label sampling rate. Assume for
simplicity that‖xt‖ = 1 for all t. Then we can write

bt−1

bt−1 + |p̂t |
=

β
√

1+Kt−1

β
√

1+Kt−1 + |w⊤
t−1xt |

≥ β
√

1+Kt−1

β
√

1+Kt−1 +‖wt−1‖

≥ β
√

1+Kt−1

β
√

1+Kt−1 +
√

Kt−1
(using Inequality (7))

≥ β
β+1

holding for any trialt. Is it possible to obtain a meaningfulupper bound? At first glance, this
requires a lower bound on the margin|p̂t |. But since there are no guarantees on the margin the
algorithm achieves (even in the separable case), this route does not lookprofitable. Would such
an argument work for on-line large margin algorithms, such as those by Li and Long (2002) and
Gentile (2001)?

As a related issue, our theorems do not make any explicit statement about thenumber of weight
updates (i.e., support vectors) computed by our selective sampling algorithms. We would like to
see a theoretical argument that enables us to combine the bound on the number of mistakes with a
bound on the number of labels, resulting in an informative upper bound on the number of updates.

Finally, the adaptive parameter version of Figure 2 centers on inequalities such as (7) to deter-
mine the current label request rate. It seems these inequalities are too coarse to make the algorithm
effective in practice. Our experiments basically show that this algorithm tends to query more labels
than needed. It turns out there are many ways one can modify this algorithmto make it less “cau-
tious”, though this gives rise to algorithms which seem to escape a crisp mathematical analysis. We
would like to devise an adaptive parameter version of the selective sampling Perceptron algorithm
that both lends itself to formal analysis and is competitive in practice.

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightfulcomments that greatly
helped to improve the presentation of this paper. In particular, we thank oneof them for finding
a mistake in our initial version of the proof of Theorem 4. We would also like to thank the action
editor for his timely work.

1227

CESA-BIANCHI , GENTILE AND ZANIBONI

The authors gratefully acknowledge partial support by the PASCAL Network of Excellence
under EC grant no. 506778. This publication only reflects the authors’ views.

References

D. Angluin. Queries and concept learning.Machine Learning, 2(4):319–342, 1988.

P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning algorithms.
Journal of Computer and System Sciences, 64:48–75, 2002.

K. S. Azoury and M. K. Warmuth. Relative loss bounds for on-line densityestimation with the
exponential familiy of distributions.Machine Learning, 43(3):211–246, 2001.

H. D. Block. The Perceptron: A model for brain functioning.Reviews of Modern Physics, 34:
123–135, 1962.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active
learning.Journal of Machine Learning reserarch, 6:1579–1619, 2005.

C. Campbell, N. Cristianini, and A. Smola. Query learning with large margin classifiers. In Pro-
ceedings of the 17th International Conference on Machine Learning, pages 111–11. Morgan
Kaufman, 2000.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. Learning probabilistic linear-threshold classifiers via
selective sampling. InProceedings of the 16th Annual Conference on Learning Theory, LNAI
2777, pages 373–386. Springer, 2003.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order Perceptron algorithm.SIAM Journal
on Computing, 43(3):640–668, 2005.

N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line prediction and game theory.
Machine Learning, 51(3):239–261, 2003.

N. Cesa-Bianchi and G. Lugosi.Prediction, Learning, and Games. Cambridge University Press,
2006.

R. Cohn, L. Atlas, and R. Ladner. Training connectionist networks with queries and selective
sampling. InAdvances in Neural Information Processing Systems 2. MIT Press, 1990.

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines. Cambridge Uni-
versity Press, 2001.

S. Dasgupta, A. T. Kalai, and C. Monteleoni. Analysis of Perceptron-based active learning. In
Proceedings of the 18th Annual Conference on Learning Theory, LNAI 2777, pages 249–263.
Springer, 2005.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: a kernel-based Perceptron on a fixed
budget. InAdvances in Neural Information Processing Systems 18, pages 259–266. MIT Press,
2006.

1228

WORST-CASE SELECTIVE SAMPLING

R. Duda and P. Hart, and D. Stork.Pattern classification, second edition. Wiley Interscience, 2000.

J. Forster. On relative loss bounds in generalized linear regression. In Proceedings of the 12th
International Symposium on Fundamentals of Computation Theory, LNCS1684, pages 269–280.
Springer, 1999.

Y. Freund and R. Schapire. Large margin classification using the Perceptron algorithm. Machine
Learning, 37(3):277–296, 1999.

Y. Freund, S. Seung, E. Shamir, and N. Tishby. Selective sampling usingthe query by committee
algorithm.Machine Learning, 28(2/3):133–168, 1997.

C. Gentile. A new approximate maximal margin classification algorithm.Journal of Machine
Learning Research, 2:213–242, 2001.

C. Gentile. The robustness of thep-norm algorithms.Machine Learning, 53(3):265–299, 2003.

C. Gentile and M. Warmuth. Linear hinge loss and average margin. InAdvances in Neural Infor-
mation Processing Systems 10, pages 225–231. MIT Press, 1999.

A. J. Grove, N. Littlestone, and D. Schuurmans. General convergence results for linear discriminant
updates.Machine Learning, 43(3):173–210, 2001.

D. P. Helmbold, N. Littlestone, and P. M. Long. Apple tasting.Information and Computation, 161
(2):85–139, 2000.

D. P. Helmbold and S. Panizza. Some label efficient learning results. InProceedings of the 10th
Annual Conference on Computational Learning Theory, pages 218–230. ACM Press, 1997.

M. Herbster and M. K. Warmuth. Tracking the Best Linear Predictor.Journal of Machine Learning
Research, 1: 281–309, 2001.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression problems.
Machine Learning, 45(3):301–329, 2001.

T. L. Lai and C. Z. Wei. Least squares estimates in stochastic regressionmodels with applications
to identification and control of dynamic systems.The Annals of Statistics, 10(1):154–166, 1982.

Y. Li and P. Long. The relaxed online maximum margin algorithm.Machine Learning, 46:361–387,
2002.

N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algo-
rithm. Machine Learning, 2(4):285–318, 1988.

N. Littlestone.Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. PhD thesis,
University of California Santa Cruz, 1989.

A. B. J. Novikov. On convergence proofs on Perceptrons. InProceedings of the Symposium on the
Mathematical Theory of Automata, vol. XII, pages 615–622, 1962.

1229

CESA-BIANCHI , GENTILE AND ZANIBONI

Reuters. Reuters corpus vol. 1, 2000.
URL about.reuters.com/researchandstandards/corpus/.

F. Rosenblatt. The Perceptron: A probabilistic model for information storage and organization in
the brain.Psychological Review, 65:386–408, 1958.

B. Scḧolkopf and A. Smola.Learning with Kernels. MIT Press, 2002.

S. Tong and D. Koller. Support vector machine active learning with applications to text classifica-
tion. InProceedings of the 17th International Conference on Machine Learning, pages 999–1006.
Morgan Kaufmann, 2000.

V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

M. K. Warmuth and A. K. Jagota. Continuous and discrete-time nonlinear gradient descent: Relative
loss bounds and convergence. InElectronic proceedings of the 5th International Symposium on
Artificial Intelligence and Mathematics, 1997.

1230

Journal of Machine Learning Research 7 (2006) 1231–1264 Submitted 10/05; Revised 5/06; Published 7/06

Nonparametric Quantile Estimation

Ichiro Takeuchi TAKEUCHI@PA.INFO.MIE-U.AC.JP

Division of Computer Science
Graduate School of Engineering, Mie University
1577, Kurimamachiya-cho, Tsu 514-8507, Japan

Quoc V. Le QUOC.LE@ANU .EDU.AU

Timothy D. Sears TIM .SEARS@ANU .EDU.AU

Alexander J. Smola ALEX .SMOLA @NICTA .COM.AU

RSISE, Australian National University and
Statistical Machine Learning Program, National ICT Australia
0200, ACT, Australia

Editor: Chris Williams

Abstract
In regression, the desired estimate ofy|x is not always given by a conditional mean, although
this is most common. Sometimes one wants to obtain a good estimate that satisfies the property
that a proportion,τ, of y|x, will be below the estimate. Forτ = 0.5 this is an estimate of the
median. What might be called median regression, is subsumed under the termquantile regression.
We present a nonparametric version of a quantile estimator,which can be obtained by solving a
simple quadratic programming problem and provide uniform convergence statements and bounds
on the quantile property of our estimator. Experimental results show the feasibility of the approach
and competitiveness of our method with existing ones. We discuss several types of extensions
including an approach to solve thequantile crossingproblems, as well as a method to incorporate
prior qualitative knowledge such as monotonicity constraints.

Keywords: support vector machines, kernel methods, quantile estimation, nonparametric tech-
niques, estimation with constraints

1. Introduction

Regression estimation is typically concerned with finding a real-valued function f such that its
values f (x) correspond to the conditional mean ofy, or closely related quantities. Many methods
have been developed for this purpose, e.g. least mean square (LMS) regression, robust regression
(Huber, 1981), orε-insensitive regression (Vapnik, 1995; Vapnik et al., 1997). Regularized variants
include Wahba (1990), penalized by a Reproducing Kernel Hilbert Space (RKHS) norm, and Hoerl
and Kennard (1970), regularized via ridge regression.

1.1 Motivation

While these estimates of the mean serve their purpose, there exists a large area of problems where
we are more interested in estimating a quantile. That is, we might wish to know otherfeatures of
the the distribution of the random variabley|x:

c©2006 Ichiro Takeuchi, Quoc V Le, Timothy D. Sears and Alexander J. Smola.

TAKEUCHI , LE, SEARS AND SMOLA

• A device manufacturer may wish to know what are the 10% and 90% quantiles for some
feature of the production process, so as to tailor the process to cover 80% of the devices
produced.

• For risk management and regulatory reporting purposes, a bank may need to estimate a lower
bound on the changes in the value of its portfolio which will hold with high probability.

• A pediatrician requires a growth chart for children given their age and perhaps even med-
ical background, to help determine whether medical interventions are required, e.g. while
monitoring the progress of a premature infant.

These problems are addressed by a technique called Quantile Regression(QR) or Quantile Estima-
tion championed by Koenker (see Koenker, 2005, for a description, practical guide, and extensive
list of references). These methods have been deployed in econometrics, social sciences, ecology,
etc. The purpose of our paper is:

• To bring the technique of quantile regression to the attention of the machine learning commu-
nity and show its relation toν-Support Vector Regression (Schölkopf et al., 2000).

• To demonstrate a nonparametric version of QR which outperforms the currently available
nonlinear QR regression formations (Koenker, 2005). See Section 5 for details.

• To derive small sample size results for the algorithms. Most statements in the statistical
literature for QR methods are of asymptotic nature (Koenker, 2005). Empirical process results
permit us to define two quality criteria and show tail bounds for both of them in the finite-
sample-size case.

• To extend the technique to permit commonly desired constraints to be incorporated. As exam-
ples we show how to enforce non-crossing constraints and a monotonicity constraint. These
constraints allow us to incorporate prior knowlege on the data.

1.2 Notation and Basic Definitions

In the following we denote byX ,Y the domains ofxandy respectively.X = {x1, . . . ,xm} denotes the
training set with corresponding targetsY = {y1, . . . ,ym}, both drawn independently and identically
distributed (iid) from some distributionp(x,y). With some abuse of notationy also denotes the
vector of allyi in matrix and vector expressions, whenever the distinction is obvious.

Unless specified otherwiseH denotes a Reproducing Kernel Hilbert Space (RKHS) onX , k is
the corresponding kernel function, andK ∈R

m×m is the kernel matrix obtained viaKi j = k(xi ,x j). θ
denotes a vector infeature spaceandφ(x) is the corresponding feature map ofx. That is,k(x,x′) =
〈φ(x),φ(x′)〉. Finally, α ∈ R

m is the vector of Lagrange multipliers.

Definition 1 (Quantile) Denote by y∈ R a random variable and letτ ∈ (0,1). Then theτ-quantile
of y, denoted by µτ is given by the infimum over µ for whichPr{y≤ µ}= τ. Likewise, the conditional
quantile µτ(x) for a pair of random variables(x,y) ∈ X ×R is defined as the function µτ : X → R

for which pointwise µτ is the infimum over µ for whichPr{y≤ µ|x} = τ.

1232

NONPARAMTERIC QUANTILE ESTIMATION

1.3 Examples

To illustrate regression analyses with conditional quantile functions, we provide two simple exam-
ples here.

1.3.1 ARTIFICIAL DATA

The above definition of conditional quantiles may be best illustrated by a simple example. Consider
a situation where the relationship betweenx andy is represented as

y(x) = f (x)+ξ, whereξ ∼ N
(

0,σ(x)2) . (1)

Here, note that, the amount of noiseξ is a function ofx. Sinceξ is symmetric with mean and median
0 we haveµ0.5(x) = f (x). Moreover, we can compute theτ-th quantiles by solving Pr{y≤ µ|x} =
τ explicitly. Sinceξ is normally distributed, we know that theτ-th quantile ofξ is given by
σ(x)Φ−1(τ), whereΦ is the cumulative distribution function of the normal distribution with unit
variance. This means that

µτ(x) = f (x)+σ(x)Φ−1(τ).

Figure 1 shows the case wherex is uniformly drawn from[−1,1] andy is obtained based on
(1) with f (x) = sinc(x) andσ(x) = 0.1exp(1−x). The black circles are 500 data examples and the
five curves areτ = 0.10,0.25,0.50,0.75 and 0.90 conditional quantile functions. The probability
densitiesp(y|x=−0.5) andp(y|x= +0.5) are superimposed. Theτ-th conditional quantile function
is obtained by connecting theτ-th quantile of the conditional distributionp(y|x) for all x∈ X . We
see thatτ = 0.5 case provides the central tendency of the data distribution andτ = 0.1 and 0.9
cases track the lower and upper envelope of the data points, respectively. The error bars of many
regression estimates can be viewed as crude quantile regressions. Quantile regression on the other
hand tries to estimate such quantities directly.

1.3.2 REAL DATA

The next example is based on actual measurements of bone density (BMD) inadolescents. The
data was originally reported in Bachrach et al. (1999) and is also analyzed in Hastie et al. (2001).1

Figure 2 (a) shows a regression analysis with conditional mean and figure 2(b) shows that with
a set of conditional quantiles for the variable BMD. The response in the vertical axis is relative
change in spinal BMD and the covariate in the horizontal axis is the age of theadolescents. The
conditional mean analysis (a) provides only the central tendency of the conditional distribution,
while apparently the entire distribution of BMD changes according to age. The conditional quantile
analysis (b) gives us more detailed description of these changes. For example, we can see that the
variance of the BMD changes with the age (heteroscedastic) and that the conditional distribution is
slightly positively skewed.

2. Quantile Estimation

Given the definition ofµτ(x) and knowledge of support vector machines we might be tempted to
use version of theε-insensitive tube regression to estimateµτ(x). More specifically one might try to

1. The data is also available from the website http://www-stat.stanford.edu/ElemStatlearn.

1233

TAKEUCHI , LE, SEARS AND SMOLA

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

data sample
0.10 quantile
0.25 quantile
0.50 quantile
0.75 quantile
0.90 quantile

data sample
0.10 quantil
0.25 quantil
0.50 quantil
0.75 quantil
0.90 quantil

p y x

p y x

input x

o
u

tp
u

t
y

Figure 1: Illustration of conditional quantile functions of a simple artificial system in (1) with
f (x) = sinc(x) andσ(x) = 0.1exp(1− x). The black circles are 500 data examples and
the five curves areτ = 0.10,0.25,0.50,0.75 and 0.90 conditional quantile functions. The
probability densitiesp(y|x = −0.5) andp(y|x = +0.5) are superimposed. In this paper,
we are concerned with the problem of estimating these conditional quantile functions
from training data.

estimate quantiles nonparametrically using an extension of theν-trick, as outlined in Scḧolkopf et al.
(2000). However this approach carries the disadvantage of requiringus to estimate both an upper
and lower quantilesimultaneously.2 While this can be achieved by quadratic programming, in doing
so we estimate “too many” parameters simultaneously. More to the point, if we are interested in
finding an upper bound ony which holds with 0.95 probability we may not want to use information
about the 0.05 probability bound in the estimation. Following Vapnik’s paradigm of estimating only
the relevant parameters directly (Vapnik, 1982) we attack the problem by estimating each quantile
separately. For completeness and comparison, we provide a detailed description of a symmetric
quantile regression in Appendix A.

2.1 Loss Function

The basic strategy behind quantile estimation arises from the observation thatminimizing theℓ1-loss
function for a location estimator yields the median. Observe that to minimize∑m

i=1 |yi −µ| by choice
of µ, an equal number of termsyi −µ have to lie on either side of zero in order for the derivative wrt.
µ to vanish. Koenker and Bassett (1978) generalizes this idea to obtain a regression estimate for any
quantile by tilting the loss function in a suitable fashion. More specifically one mayshow that the
following “pinball” loss leads to estimates of theτ-quantile:

Lemma 2 (Quantile Estimator) Let Y= {y1, . . . ,ym} ⊂ R and letτ ∈ (0,1) then the minimizer µτ
of ∑m

i=1 lτ(yi −µ) with respect to µ satisfies:

2. Scḧolkopf et al. (2000) does, in fact, suggests that a choice of differentupper bounds on the dual problem would lead
to estimators which weigh errors for positive and negative excess differently, that is, which would lead to quantile
regression estimators.

1234

NONPARAMTERIC QUANTILE ESTIMATION

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 10 12 14 16 18 20 22 24

R
e

la
ti

v
e

 C
h

a
n

g
e

 in
 S

p
in

a
l B

M
D

Age

training data
mean

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 10 12 14 16 18 20 22 24

R
e

la
ti

v
e

 C
h

a
n

g
e

 in
 S

p
in

a
l B

M
D

Age

training data
0.1 quantile
0.2 quantile
0.3 quantile
0.4 quantile
0.5 quantile
0.6 quantile
0.7 quantile
0.8 quantile
0.9 quantile

(a) Conditional mean analysis (b) Conditional quantile analysis

Figure 2: An illustration of (a) conditional mean analysis and (b) conditionalquantile analysis for a
data set on bone mineral density (BMD) in adolescents. In (a) the conditional mean curve
is estimated by regression spline with least square criterion. In (b) the nine curves are the
estimated conditional quantile curves at orders 0.1,0.2, . . . ,0.9. The set of conditional
quantile curves provides more informative description of the relationship among variables
such as non-constant variance or non-normality of the noise (error) distribution. In this
paper, we are concerned with the problem of estimating these conditional quantiles.

lτ(ξ) =

{

τξ if ξ ≥ 0

(τ−1)ξ if ξ < 0
(2)

 0
 0

ξ

lτ(ξ)

τ

τ − 1

Figure 3: Pinball loss function for quantile estimation.

1. The number of terms, m−, with yi < µτ is bounded from above byτm.

2. The number of terms, m+, with yi > µτ is bounded from above by(1− τ)m.

3. For m→ ∞, the fractionm−
m , converges toτ if Pr(y) does not contain discrete components.

Proof Assume that we are at an optimal solution. Then, increasing the minimizerµ by δµ changes
the objective by[(1−m+)(1− τ)−m+τ]δµ. Likewise, decreasing the minimizerµ by δµ changes
the objective by[−m−(1− τ)+(1−m−)τ]δµ. Requiring that both terms are nonnegative at opti-

1235

TAKEUCHI , LE, SEARS AND SMOLA

mality in conjunction with the fact thatm− + m+ ≤ m proves the first two claims. To see the last
claim, simply note that the eventyi = y j for i 6= j has probability measure zero for distributions not
containing discrete components. Taking the limitm→ ∞ shows the claim.

The idea is to use the same loss function for functions,f (x), rather than just constants in order
to obtain quantile estimates conditional onx. Koenker (2005) uses this approach to obtain linear
estimates and certain nonlinear spline models. In the following we will use kernels for the same
purpose.

2.2 Optimization Problem

Based onlτ(ξ) we define the expected quantile risk as

R[f] := Ep(x,y) [lτ(y− f (x))] . (3)

By the same reasoning as in Lemma 2 it follows that forf : X → R the minimizer ofR[f] is
the quantileµτ(x). Sincep(x,y) is unknown and we only haveX,Y at our disposal we resort to
minimizing the empirical risk plus a regularizer:

Rreg[f] :=
1
m

m

∑
i=1

lτ (yi − f (xi))+
λ
2
‖g‖2
H where f = g+b andb∈ R. (4)

Here‖·‖H is RKHS norm and we requireg ∈ H . Notice that we do not regularize the constant
offset,b, in the optimization problem. This ensures that the minimizer of (4) will satisfy the quantile
property:

Lemma 3 (Empirical Conditional Quantile Estimator) Assuming that f contains a scalar un-
regularized term, the minimizer of (4) satisfies:

1. The number of terms m− with yi < f (xi) is bounded from above byτm.

2. The number of terms m+ with yi > f (xi) is bounded from above by(1− τ)m.

3. If (x,y) is drawn iid from a distributionPr(x,y), with Pr(y|x) continuous and the expecta-
tion of the modulus of absolute continuity of its density satisfyinglimδ→0E [ε(δ)] = 0. With
probability1, asymptotically,m−

m equalsτ.

Proof For the two claims, denote byf ∗ the minimum ofRreg[f] with f ∗ = g∗+b∗. ThenRreg[g∗+b]
has to be minimal forb = b∗. With respect tob, however, minimizingRreg amounts to finding theτ
quantile in terms ofyi −g(xi). Application of Lemma 2 proves the first two parts of the claim.

For the second part, an analogous reasoning to Schölkopf et al. (2000, Proposition 1) applies.
In a nutshell, one uses the fact that the measure of theδ-neighborhood off (x) converges to 0 for
δ → 0. Moreover, for kernel functions the entropy numbers are well behaved (Williamson et al.,
2001). The application of the union bound over a cover of such functionclasses completes the
proof. Details are omitted, as the proof is identical to that of Schölkopf et al. (2000).

Later, in Section 4 we discuss finite sample size results regarding the convergence ofm−
m → τ and

related quantities. These statements will make use of scale sensitive loss functions. Before we do
that, let us consider the practical problem of minimizing the regularized risk functional.

1236

NONPARAMTERIC QUANTILE ESTIMATION

2.3 Dual Optimization Problem

Here we compute the dual optimization problem to (4) for efficient numerical implementation. Us-
ing the connection between RKHS and feature spaces we writef (x) = 〈φ(x),w〉+b and we obtain
the following equivalent to minimizingRreg[f].

minimize
w,b,ξ(∗)

i

C
m

∑
i=1

τξi +(1− τ)ξ∗i +
1
2
‖w‖2 (5a)

subject to yi −〈φ(xi),w〉−b≤ ξi and 〈φ(xi),w〉+b−yi ≤ ξ∗i whereξi ,ξ∗i ≥ 0 (5b)

Here we usedC := 1/(λm). The dual of this problem can be computed straightforwardly using
Lagrange multipliers. The dual constraints forξ andξ∗ can be combined into one variable. This
yields the following dual optimization problem

minimize
α

1
2

α⊤Kα−α⊤~y subject toC(τ−1) ≤ αi ≤Cτ for all 1≤ i ≤ mand~1⊤α = 0. (6)

We recoverf via the familiar kernel expansion

w = ∑
i

αiφ(xi) or equivalentlyf (x) = ∑
i

αik(xi ,x)+b. (7)

Note that the constantb is the dual variable to the constraint1⊤α = 0. Alternatively, b can be
obtained by using the fact thatf (xi) = yi for αi 6∈ {C(τ−1),Cτ}. The latter holds as a consequence
of the KKT-conditions on the primal optimization problem of minimizingRreg[f].

Note that the optimization problem is very similar to that of anε-SV regression estimator (Vap-
nik et al., 1997). The key difference between the two estimation problems is that in ε-SVR we have
an additionalε‖α‖1 penalty in the objective function. This ensures that observations with deviations
from the estimate, i.e. with|yi − f (xi)|< ε do not appear in the support vector expansion. Moreover
the upper and lower constraints on the Lagrange multipliersαi are matched. This means that we
balance excess in both directions. The latter is useful for a regression estimator. In our case, how-
ever, we obtain an estimate which penalizes loss unevenly, depending on whether f (x) exceedsy or
vice versa. This is exactly what we want from a quantile estimator: by this procedure errors in one
direction have a larger influence than those in the converse direction, which leads to the shifted esti-
mate we expect from QR. A practical advantage of (6) is that it can be solved directly with standard
quadratic programming code rather than using pivoting, as is needed in SVMregression (Vapnik
et al., 1997).

A practical estimate does require a procedure for setting the regularizationparameter. Figure 4
shows how QR responds to changing the regularization parameter. All three estimates in Figure 4
attempt to compute the median, subject to different smoothness constraints. While they all satisfy
the quantile property having half the points on either side of the regression,some estimates appear
track the observations better. This issue is addressed in Section 5 where we compute quantile
regression estimates on a range of data sets.

3. Extensions and Modifications

Our optimization framework lends itself naturally to a series of extensions and modifications of the
regularized risk minimization framework for quantile regression. In the following we discuss some
extensions and modifications.

1237

TAKEUCHI , LE, SEARS AND SMOLA

0 1 0 2 0 3 0 4 0 5 0 6 0M i l l i s e c o n d s� 1 5 0� 1 0 0� 5 0 05 01 0 0

A ccel erati on
t r a i n i n g d a t al a m b d a = 0 . 0 0 0 0 1l a m b d a = 0 . 0 1l a m b d a = 0 . 1

Figure 4: The data set measures acceleration in the head of a crash test dummy v. time in tests of
motorcycle crashes. Three regularized versions of the median regression estimate (τ =
0.5). While all three variants satisfy the quantile property, the degree of smoothness is
controlled by the regularization constantλ. All three estimates compare favorably to a
similar graph of nonlinear QR estimates reported by Koenker (2005).

1238

NONPARAMTERIC QUANTILE ESTIMATION

3.1 Non-Crossing Constraints

When we want to estimate several conditional quantiles (e.g.τ = 0.1,0.2, . . . ,0.9), two or more
estimated conditional quantile functions can cross or overlap. This embarrassing phenomenon
called quantile crossingsoccurs because each conditional quantile function is independently es-
timated (Koenker, 2005; He, 1997). Figure 5(a) shows BMD data presented in 1.3.2 andτ =
0.1,0,2, . . . ,0.9 conditional quantile functions estimated by the kernel-based estimator described
in the previous section. Both of the input and the output variables are standardized in[0,1]. We
note quantile crossings at several places, especially at the outside of thetraining data range (x < 0
and 1< x). In this subsection, we address this problem by introducingnon-crossing constraints.3

Figure 5(b) shows a family of conditional quantile functions estimated with the non-crossing con-
straints.

Suppose that we want to estimaten conditional quantiles at 0< τ1 < τ2 < .. . < τn < 1. We
enforcenon-crossingconstraints atl points{x j}l

j=1 in the input domainX . Let us write the model
for the τh-th conditional quantile function asfh(x) = 〈φ(x),wh〉+ bh for h = 1,2, . . . ,n. In H the
non-crossing constraints are represented as linear constraints

〈

φ(x j),ωh
〉

+bh ≤
〈

φ(x j),ωh+1
〉

+bh+1, for all 1≤ h≤ n−1, 1≤ j ≤ l . (8)

Solving (5) or (6) for 1≤ h≤ n with non-crossing constraints (8) allows us to estimaten conditional
quantile functions not crossing atl pointsx1, . . . ,xl ∈ X . The primal optimization problem is given
by

minimize
wh,bh,ξ

(∗)
hi

n

∑
h=1

[

C
m

∑
i=1

τhξhi +(1− τh)ξ∗hi +
1
2
‖wh‖2

]

(9a)

subject toyi −〈φ(xi),wh〉−bh = ξhi −ξ∗hi whereξhi,ξ∗hi ≥ 0,

for all 1≤ h≤ n, 1≤ i ≤ m. (9b)

{
〈

φ(x j),ωh+1
〉

+bh+1}−{
〈

φ(x j),ωh
〉

+bh} ≥ 0,

for all 1≤ h≤ n−1, 1≤ j ≤ l . (9c)

Using Lagrange multipliers, we can obtain the dual optimization problem:

minimize
αh,θh

n

∑
h=1

[1
2

α⊤
h Kαh +α⊤

h K̃(θh−1−θh)+
1
2
(θh−1−θh)

TK̄(θh−1−θh)−α⊤
h~y

]

(10a)

subject to C(τh−1) ≤ αhi ≤Cτh, for all 1≤ h≤ n,1≤ i ≤ m, (10b)

θh j ≥ 0, for all 1≤ h≤ n,1≤ j ≤ l , ~1⊤αh = 0, for all 1≤ h≤ n, (10c)

whereθh j is the Lagrange multiplier of (9c) for all 1≤ h≤ n, 1≤ j ≤ l , K̃ is m× l matrix with its
(i, j)-th entryk(xi ,x j), K̄ is l × l matrix with its(j1, j2)-th entryk(x j1,x j2) andθh is l -vector with its
j-th entryθh j for all 1≤ h≤ n. For notational convenience we defineθ0 j = θn j = 0 for all 1≤ j ≤ l .
The model for conditional quantileτh-th quantile function is now represented as

fh(x) =
m

∑
i=1

αhik(x,xi)+
l

∑
j=1

(θh−1i −θhi)k(x,x j)+bh. (11)

3. A part of the contents in this subsection was presented by one of the authors (Takeuchi and Furuhashi, 2004).

1239

TAKEUCHI , LE, SEARS AND SMOLA

In section 5.2.1 we empirically investigate the effect of non-crossing constraints on the generaliza-
tion performances.

It is worth noting that, after enforcing the non-crossing constraints, the quantile property as in
Lemma 3 may not be guaranteed. This is because the method both tries to optimize for the quantile
property and the non-crossing property (in relation to other quantiles). Hence, the final outcome
may not empirically satisfy the quantile property. Yet, the non-crossing constraints are very nice
because they ensure the semantics of the quantile definition: lower quantile level should not cross
the higher quantile level.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

B
M

D
 (

st
a

n
d

a
rd

iz
e

d
)

age (standardized)

training data
0.1 quantile
0.2 quantile
0.3 quantile
0.4 quantile
0.5 quantile
0.6 quantile
0.7 quantile
0.8 quantile
0.9 quantile

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

B
M

D
 (

st
a

n
d

a
rd

iz
e

d
)

age (standardized)

training data
0.1 quantile
0.2 quantile
0.3 quantile
0.4 quantile
0.5 quantile
0.6 quantile
0.7 quantile
0.8 quantile
0.9 quantile

(a) Withoutnon-crossingconstraints (b) Withnon-crossingconstraints

Figure 5: An example ofquantile crossingproblem in BMD data set presented in Section 1. Both
of the input and the output variable are standardized in[0,1]. In (a) the set of conditional
quantiles at 0.1,0.2, . . . ,0.9 are estimated by the kernel-based estimator presented in the
previous section. Quantile crossings are found at several points, especially at the outside
of the training data range (x < 0 and 1< x). The plotted curves in (b) are the conditional
quantile functions obtained withnon-crossingconstraints explained in Section 3.1. There
are noquantile crossingeven at the outside of the training data range.

3.2 Monotonicity and Growth Curves

Consider the situation of a health statistics office which wants to produce growth curves. That is, it
wants to generate estimates ofy being the height of a child given parametersx such as age, ethnic
background, gender, parent’s height, etc. Such curves can be used to assess whether a child’s growth
is abnormal.

A naive approach is to apply QR directly to the problem of estimatingy|x. Note, however, that
we have additional information about the biological process at hand: the height of every individual
child is amonotonically increasingfunction of age. Without observing large amounts of data, there
is no guarantee that the estimatesf (x), will also be monotonic functions of age. Figure 6 is an
example of quantile regression with monotonicity constraints. The data set is taken from Mammen
et al. (2001). Fuel efficiency (in miles per gallon) is studied as a function of engine output.

1240

NONPARAMTERIC QUANTILE ESTIMATION

5 0 1 0 0 1 5 0 2 0 051 01 52 02 53 03 54 04 55 0

Figure 6: Example plots from quantile regression with and without monotonicity constraints. The
thin line represents the nonparametric quantile regression without monotonicitycon-
straints whereas the thick line represents the nonparamtric quantile regression with mono-
tonicity constraints.

To address this problem we adopt an approach similar to (Vapnik et al., 1997; Smola and
Scḧolkopf, 1998) and impose constraints on the derivatives off directly. While this only ensures
that f is monotonic on the observed dataX, we could always add more locationsx′i for the express
purpose of enforcing monotonicity.

Formally, we require that for a differential operatorD, such asD = ∂xage the estimateD f (x) ≥ 0
for all x∈ X. Using the linearity of inner products we have

D f (x) = D(〈φ(x),w〉+b) = 〈Dφ(x),w〉 = 〈ψ(x),w〉 whereψ(x) := Dφ(x). (12)

Note that accordingly inner products betweenψ andφ can be obtained via〈ψ(x),φ(x′)〉= D1k(x,x′)
and〈ψ(x),ψ(x′)〉 = D1D2k(x,x′), whereD1 andD2 denote the action ofD on the first and second
argument ofk respectively. Consequently the optimization problem (5) acquires an additional set of

1241

TAKEUCHI , LE, SEARS AND SMOLA

constraints and we need to solve

minimize
w,b,ξi

C
m

∑
i=1

τξi +(1− τ)ξ∗i +
1
2
‖w‖2

subject toyi −〈φ(xi),w〉−b≤ ξi , 〈φ(xi),w〉+b−yi ≤ ξ∗i ,
〈ψ(xi),w〉 ≥ 0, ξi ,ξ∗i ≥ 0.

Since the additional constraint does not depend onb it is easy to see that the quantile property still
holds. The dual optimization problem yields

minimize
α,β

1
2

[

α
β

]⊤[

K D1K
D2K D1D2K

][

α
β

]

−α⊤~y (13a)

subject toC(τ−1) ≤ αi ≤Cτ and 0≤ βi for all 1≤ i ≤ mand~1⊤α = 0. (13b)

HereD1K is a shorthand for the matrix of entriesD1k(xi ,x j) andD2K,D1D2K are defined analo-
gously. Herew = ∑i αiφ(xi)+βiψ(xi) or equivalentlyf (x) = ∑i αik(xi ,x)+βiD1k(xi ,x)+b.

Example Assume thatx ∈ R
n and thatx1 is the coordinate with respect to which we wish to

enforce monotonicity. Moreover, assume that we use a Gaussian RBF kernel, that is

k(x,x′) = exp

(

− 1
2σ2

∥

∥x−x′
∥

∥

2
)

. (14)

In this caseD1 = ∂1 with respect tox andD2 = ∂1 with respect tox′. Consequently we have

D1k(x,x′) =
x′1−x1

σ2 k(x,x′);D2k(x,x′) =
x1−x′1

σ2 k(x,x′) (15a)

D1D2k(x,x′) =

[

σ−2− (x1−x′1)
2

σ4

]

k(x,x′). (15b)

Plugging the values of (15) into (13) yields the quadratic program. Note alsothat bothk(x,x′) and
D1k(x,x′) in (15a), are used in the function expansion.

If x1 were drawn from a discrete (yet ordered) domain we could replaceD1,D2 with a finite
difference operator. This is still a linear operation onk and consequently the optimization problem
remains unchanged besides a different functional form forD1k.

An alternative to the above approach is not to modify the optimization problem but to ensure the
constraints by modifying the function in the hypothesis space which is much simpler to implement
as in Le et al. (2006).

3.3 Other Function Classes

Semiparametric Estimates RKHS expansions may not be the only function classes desired for
quantile regression. For instance, in the social sciences a semiparametric model may be more de-
sirable, as it allows for interpretation of the linear coefficients (Gu and Wahba, 1993; Smola et al.,
1999; Bickel et al., 1994). In this case we add a set of parametric functions fi and solve

minimize
1
m

m

∑
i=1

lτ(yi − f (xi))+
λ
2
‖g‖2
H where f (x) = g(x)+

n

∑
i=1

βi fi(x)+b. (16)

1242

NONPARAMTERIC QUANTILE ESTIMATION

For instance, the function classfi could be linear coordinate functions, that is,fi(x) = xi . The
main difference to (6) is that the resulting optimization problem exhibits a larger number of equality
constraint. We obtain (6) with the additional constraints

m

∑
j=1

α j fi(x j) = 0 for all i. (17)

Linear Programming Regularization Convex function classes withℓ1 penalties can be obtained
by imposing an‖α‖1 penalty instead of the‖g‖2

H penalty in the optimization problem. The advan-
tage of this setting is that minimizing

minimize
1
m

m

∑
i=1

lτ(yi − f (xi))+λ
n

∑
j=1

|αi | where f (x) =
n

∑
i=1

αi fi(x)+b. (18)

is alinear programwhich can be solved efficiently by existing codes for large scale problems.In the
context of (18) the functionsfi constitute the generators of the convex function class. This approach
is similar to Koenker et al. (1994) and Bosch et al. (1995). The former discussℓ1 regularization of
expansion coefficients whereas the latter discuss an explicit second order smoothing spline method
for the purpose of quantile regression. Most of the discussion in the present paper can be adapted to
this case without much modification. For details on how to achieve this see Schölkopf and Smola
(2002). Note that smoothing splines are a special instance of kernel expansions where one assumes
explicit knowledge of the basis functions.

Relevance Vector Regularization and Sparse Coding Finally, for sparse expansions one can
use more aggressive penalties on linear function expansions than those given in (18). For instance,
we could use a staged regularization as in the RVM (Tipping, 2001), wherea quadratic penalty on
each coefficient is exerted with a secondary regularization on the penaltyitself. This corresponds to
a Student-t penalty onα.

Likewise we could use a mix between anℓ1 andℓ0 regularizer as used in Fung et al. (2002)
and apply successive linear approximation. In short, there exists a largenumber of regularizers, and
(non)parametric families which can be used. In this sense the RKHS parameterization is but one
possible choice. Even so, we show in Section 5 that QR using the RKHS penalty yields excellent
performance in experiments.

Neural Networks, Generalized Models Our method does not depend on the how the function
class is represented (not only the Kernelized version), in fact, one canuse Neural Networks or
Generalized Models for estimation as long as the loss function is kept the same.This is the main
reason why this paper is calledNon-parametric quantile estimation.

4. Theoretical Analysis

In this section we state some performance bounds for our estimator.

4.1 Performance Indicators

We first need to discuss how to evaluate the performance of the estimatef versus the true conditional
quantileµτ(x). Two criteria are important for a good quantile estimatorfτ:

1243

TAKEUCHI , LE, SEARS AND SMOLA

• fτ needs to satisfy the quantile property as well as possible. That is, we wantthat

Pr
X,Y

{|Pr{y < fτ(x)}− τ| ≥ ε} ≤ δ. (19)

In other words, we want that the probability thaty < fτ(x) does not deviate fromτ by more
thanε with high probability, when viewed over all draws(X,Y) of training data. Note how-
ever, that (19) does not imply having a conditional quantile estimator at all. For instance, the
constant function based on the unconditional quantile estimator with respectto Y performs
extremely well under this criterion. Hence we need a second quantity to assess how closely
fτ(x) tracksµτ(x).

• Sinceµτ itself is not available, we take recourse to (3) and the fact thatµτ is the minimizer
of the expected riskR[f]. While this will not allow us to compareµτ and fτ directly, we can
at least compare it by assessing how close to the minimumR[f ∗τ] the estimateR[fτ] is. Here
f ∗τ is the minimizer ofR[f] with respect to the chosen function class. Hence we will strive to
bound

Pr
X,Y

{R[fτ]−R[f ∗τ] > ε} ≤ δ. (20)

These statements will be given in terms of the Rademacher complexity of the function class of
the estimator as well as some properties of the loss function used in select it. The technique itself
is standard and we believe that the bounds can be tightened considerably by the use oflocalized
Rademacher averages (Mendelson, 2003), or similar tools for empirical processes. However, for
the sake of simplicity, we use the tools from Bartlett and Mendelson (2002), as the key point of the
derivation is to describe a new setting rather than a new technique.

4.2 BoundingR[f ∗τ]

Definition 4 (Rademacher Complexity) Let X := {x1, . . . ,xm} be drawn iid from p(x) and letF
be a class of functions mapping from(X) to R. Letσi be independent uniform{±1}-valued random
variables. Then the Rademacher complexityRm and its empirical variantR̂m are defined as follows:

R̂m(F) := Eσ

[

sup
f∈F

∣

∣

∣

2
m

n

∑
1

σi f (xi)
∣

∣

∣

∣

∣

∣
X

]

andRm(F) := EX

[

R̂m(F)
]

. (21)

Conveniently, ifΦ is a Lipschitz continuous function with Lipschitz constantL, one can show
(Bartlett and Mendelson, 2002) that

Rm(Φ◦F) ≤ 2LRm(F) whereΦ◦F := {g|g = φ◦ f and f ∈ F } . (22)

An analogous result exists for empirical quantities boundingR̂m(Φ◦F) ≤ 2LR̂m(F). The combi-
nation of (22) with Bartlett and Mendelson (2002, Theorem 8) yields:

Theorem 5 (Concentration for Lipschitz Continuous Functions) For any Lipschitz continuous
function Φ with Lipschitz constant L and a function classF of real-valued functions onX and
probability measure onX the following bound holds with probability1−δ for all draws of X from
X :

sup
f∈F

∣

∣

∣

∣

∣

Ex [Φ(f (x))]− 1
m

m

∑
i=1

Φ(f (xi))

∣

∣

∣

∣

∣

≤ 2LRm(F)+

√

8log2/δ
m

. (23)

1244

NONPARAMTERIC QUANTILE ESTIMATION

We can immediately specialize the theorem to the following statement about the loss for QR:

Theorem 6 Denote by f∗τ the minimizer of the R[f] with respect to f∈ F . Moreover assume that
all f ∈ F are uniformly bounded by some constant B. With the conditions listed above for any
sample size m and0< δ < 1, every quantile regression estimate fτ satisfies with probability at least
(1−δ)

R[fτ]−R[f ∗τ] ≤ 2maxLRm(F)+(4+LB)

√

log2/δ
2m

where L= {τ,1− τ} . (24)

Proof We use the standard bounding trick that

R[fτ]−R[f ∗τ] ≤
∣

∣R[fτ]−Remp[fτ]
∣

∣+Remp[f
∗
τ]−R[f ∗τ] (25)

≤ sup
f∈F

∣

∣R[f]−Remp[f]
∣

∣+Remp[f
∗
τ]−R[f ∗τ] (26)

where (25) follows fromRemp[fτ] ≤ Remp[f ∗τ]. The first term can be bounded directly by The-
orem 5. For the second part we use Hoeffding’s bound (Hoeffding,1963) which states that the

deviation between a bounded random variable and its expectation is bounded by B
√

log1/δ
2m with

probabilityδ. Applying a union bound argument for the two terms with probabilities 2δ/3 andδ/3
yields the confidence-dependent term. Finally, using the fact thatlτ is Lipschitz continuous with
L = max(τ,1− τ) completes the proof.

Example Assume thatH is an RKHS with radial basis function kernelk for which k(x,x) = 1.
Moreover assume that for allf ∈ F we have‖ f‖H ≤ C. In this case it follows from Mendel-
son (2003) thatRm(F) ≤ 2C√

m. This means that the bounds of Theorem 6 translate into a rate of
convergence of

R[fτ]−R[f ∗τ] = O(m− 1
2). (27)

This is as good as it gets for nonlocalized estimates. Since we do not expectR[f] to vanish except for
pathological applications where quantile regression is inappropriate (thatis, cases where we have
a deterministic dependency betweeny andx), the use of localized estimates (Bartlett et al., 2002)
provides only limited returns. We believe, however, that the constants in the bounds could benefit
from considerable improvement.

4.3 Bounds on the Quantile Property

The theorem of the previous section gave us some idea about how far the sample average quantile
loss is from its true value underp. We now proceed to stating bounds to which degreefτ satisfies
the quantile property, i.e. (19).

In this view (19) is concerned with the deviationE
[

χ(−∞,0](y− fτ(x))
]

− τ. Unfortunately
χ(−∞,0] ◦F is not scale dependent. In other words, small changes infτ(x) around the pointy= fτ(x)
can have large impact on (19). One solution for this problem is to use an artificial marginε and
ramp functionsr+

ε , r−ε as defined in (28) and Figure 7. These functions are Lipschitz continuous
with constantL = 1/ε. This leads to:

1245

TAKEUCHI , LE, SEARS AND SMOLA

r+
ε (ξ) := min{1,max{0,1−ξ/ε}} (28a)

r−ε (ξ) := min{1,max{0,−ξ/ε}} (28b)

 0

1

 0

lower

bound

upper

bound

ε−ε
ξ

rε (ξ)
-

rε (ξ)
+

Figure 7: Ramp functions bracketing the characteristic function viar+
ε ≥ χ(−∞,0] ≥ r−ε .

Theorem 7 Under the assumptions of Theorem 6 the expected quantile is bounded with probability
1−δ each from above and below by

1
m

m

∑
i=1

r−ε (yi − f (xi))−∆ ≤ E
[

χ(−∞,0](y− fτ(x))
]

≤ 1
m

m

∑
i=1

r+
ε (yi − f (xi))+∆, (29)

where the statistical confidence term is given by∆ = 2
εRm(F)+

√

−8logδ
m .

Proof The claim follows directly from Theorem 5 and the Lipschitz continuity ofr+
ε and r−ε .

Note thatr+
ε and r−ε minorize and majorizeξ(−∞,0], which bounds the expectations. Next use a

Rademacher bound on the class of loss functions induced byr+
ε ◦ F and r−ε ◦ F and note that

the ramp loss has Lipschitz constantL = 1/ε. Finally apply the union bound on upper and lower
deviations.

Note that Theorem 7 allows for some flexibility: we can decide to use a very conservative bound
in terms ofε, i.e. a large value ofε to reap the benefits of having a ramp function with smallL.
This leads to a lower bound on the Rademacher average of the induced function class. Likewise, a
smallε amounts to a potentially tight approximation of the empirical quantile, while risking loose
statistical confidence terms.

5. Experiments

The present section mirrors the theoretical analysis of the previous section.

5.1 Experiments with Standard Nonparametric Quantile Regression

We check the performance of various quntile estimators with respect to two criteria:

• Expected risk with respect to theℓτ loss function. Since computing the true conditional quan-
tile is impossible and all approximations of the latter rely on intermediate density estimation,
this is the only objective criterion we could find. We denote this loss measure aspinball loss.

1246

NONPARAMTERIC QUANTILE ESTIMATION

• Simultaneously we need to ensure that the estimate satisfies the quantile property, that is,
we want to ensure that the estimator we obtained does indeed produce numbers fτ(x) which
exceedy with probability close toτ. The quantile property was measured byramp loss.4

5.1.1 MODELS

We compare the following four models:

• An unconditional quantile estimator. Given the simplicity of the function class (constants!)
this model should tend to underperform all other estimates in terms of minimizing the em-
pirical risk. By the same token, it should perform best in terms of preserving the quantile
property. This appears asuncond.

• Linear QR as described in Koenker and Bassett (1978). This uses a linear unregularized
model to minimizelτ. In experiments, we used therq routine available in theR package5

calledquantreg. This appears aslinear.

• Nonparametric QR as described by Koenker et al. (1994). This uses a spline model for each
coordinate individually, with linear effect. The fitting routine used wasrqss, also available
in quantreg.6 The regularization parameter in this model was chosen by 10-fold cross-
validation within the training sample. This appears asrqss.

• Nonparametric quantile regression as described in Section 2. We used Gaussian RBF ker-
nels with automatic kernel width (ω2) and regularization (C) adjustment by 10-fold cross-
validation within training sample.7 This appears asnpqr.

As we increase the complexity of the function class (from constant to linear tononparametric)
we expect that (subject to good capacity control) the expected risk will decrease. Simultaneously we
expect that the quantile property becomes less and less maintained, as the function class grows. This
is exactly what one would expect from Theorems 6 and 7. As the experiments show, performance of
thenpqr method is comparable or significantly better than other models. In particular it preserves
the quantile property well.

Notes on Gaussian RBF kernel parameter selection trick The parameterσ in the Gaussian
kernel could be chosen by the following trick. We fist subsample the trainingdata (if the training
data set is not large, use the whole training data), then compute the distance between the points
and find the distances at 0.9 and 0.1 quantile of all the distances, the average distance of these
two distances is set to be the initialσ0. This is to guarantee that the kernel parameter is neither
too big or too small. Other values ofσ to be selected in the experiments (via cross-validation) are
[10−4σ0, . . . ,σ0, . . . ,103σ0,104σ0]. In general, depending on the problems, one may set the search
space to be finer (the distance between two consecutive items in the list is smaller) or coarser (the
distance between two consecutive items in the list is larger), or even a highervalue for maximum
item in the list, and a smaller value for minimum item in the list, etc.

4. In the experiments we setε = 0 in (28) for simplicity. Thus, it might be appropriate to call it asstep lossrather than
ramp loss. However, we keep to use the term “ramp loss” throughout thispaper.

5. See http://cran.r-project.org/.
6. Additional code containing bugfixes and other operations necessaryto carry out our experiments is available at

http://users.rsise.anu.edu.au/∼timsears.
7. Code will be available as part of the CREST toolbox for research purposes.

1247

TAKEUCHI , LE, SEARS AND SMOLA

5.1.2 DATA SETS

We chose 20 regression data sets from the following R packages:mlbench, quantreg, alr3 and
MASS. The first library contains data sets from the UCI repository. The last twowere made available
as illustrations for regression textbooks. The data sets are all documentedand available inR. Data
sets were chosen not to have any missing variables, to have suitable datatypes, and to be of a size
where all models would run on them.8 In most cases either there was an obvious variable of interest,
which was selected as they-variable, or else we chose a continuous variable arbitrarily. The sample
sizes vary fromm= 38 (CobarOre) tom= 1375 (heights), and the number of regressors vary from
d = 1 (5 sets) andd = 12 (BostonHousing). Some of the data sets contain categorical variables.
We omitted variables which were effectively record identifiers, or obviously produced very small
groupings of records. Finally, westandardizedall data sets coordinatwise to have zero mean and
unit variance before running the algorithms. This had a side benefit of putting the pinball loss on
similar scale for comparison purposes.

Data Set Sample Size No. Regressors (x) Y Var. Dropped Vars.
caution 100 2 y -
ftcollinssnow 93 1 Late YR1
highway 39 11 Rate -
heights 1375 1 Dheight -
sniffer 125 4 Y -
snowgeese 45 4 photo -
ufc 372 4 Height -
birthwt 189 7 bwt ftv, low
crabs 200 6 CW index
GAGurine 314 1 GAG -
geyser 299 1 waiting -
gilgais 365 8 e80 -
topo 52 2 z -
BostonHousing 506 13 medv -
CobarOre 38 2 z -
engel 235 1 y -
mcycle 133 1 accel -
BigMac2003 69 9 BigMac City
UN3 125 6 Purban Locality
cpus 209 7 estperf name

Table 1: Data Set facts

8. The last requirement, usingrqss proved to be challenging. The underlying spline routines do not allow extrapolation
beyond the previously seen range of a coordinate, only permitting interpolation. This does not prevent fitting, but
does randomly prevent forecasting on unseen examples, which was part of our performance metric.

1248

NONPARAMTERIC QUANTILE ESTIMATION

5.1.3 RESULTS

We tested the performance of the4 models. For each model we used 10-fold cross-validation to
assess the confidence of our results. As mentioned above, a regularization parameter inrqss and
ω2 andC in npqr were automatically chosen by 10-fold cross-validationwithin the training sample,
i.e. we usednestedcross-validation. To compare across all four models we measured bothpinball
lossandramp loss. The 20 data sets and three different quantile levels (τ ∈ {0.1,0.5,0.9}) yield
60 trials for each model. The full results are shown in Appendix B. In summary, we conclude as
follows:

• In terms ofpinball loss, the performance of ournpqr were comparable or better than other
three models.

npqr performed significantly better than other three models in 14 of the 60 trials, whilerqss
performed significantly better than other three models in only one of the 60 trials. In the
rest of 45 trials, no single model performed significantly better then the others. All these
statements are based on the two-sided paired-samplet-test with significance level 0.05. We
got similar but a bit less conservative results by (nonparametric) Wilcoxonsigned rank test.

Figure 8 depicts the comparison ofnpqr performance with each ofuncond, linear andrqss
models. Each of three plots contain 60 points corresponding to 60 trials (3 differentτs times
20 data sets).9 The vertical axis indicates the log pinball losses ofnpqr and the horizontal
axis indicates those of the alternative. The points under (over) the 45 degree line means that
the npqr was better (worse) than the alternative. Circles (squares) indicate thatnpqr was
significantly better (worse) than the alternative at 0.05 significance level inpaired-sample
t-test, while triangles indicate no significant difference.

• In terms oframp loss(quantile property), the performance of ournpqr were comparable to
other three models for intermediate quantile (τ = 0.5). All four models produced ramp losses
close to the desired quantile, although flexible nonparametric modelsrqss andnpqr were
noisier in this regard. Whenτ = 0.5, the number offτ(x) which exceedy did NOT deviate
significantly from the binomial distributionB(sample size,τ) in all 20 data sets.

On the other hand, for extreme quantiles (τ = 0.1 and 0.9), rqss andnpqr showed a small
but significant bias towards the median in a few trials. We conjecture that this bias is related
to the problem ofdata piling(Hall et al., 2005). See section 6 for the discussion.

Note that the quantile property, as such, is not informative measure forconditionalquantile
estimation. It merely measuresunconditionalquantile estimation performances. For example,
uncond, the constant function based on the unconditional quantile estimator with respect to
Y (straightforwardly obtained by sorting{yi}m

i=1 without using{xi}m
i=1 at all), performed best

under this criterion. It is clear that the less flexible model would have the better quantile
property, but it does not necessarily mean that those less flexible ones are better for conditional
quantile functions.

9. In the comparison betweennpqr andrqss, 48 trials were examined since in the other 12 trialsrqss was unable to
produce estimates, due to its construction of the function system.

1249

TAKEUCHI , LE, SEARS AND SMOLA

-6

-5

-4

-3

-2

-1

 0

-6 -5 -4 -3 -2 -1 0

n
p
q
r

lo
g
 p

in
b
al

l
lo

ss

uncond log pinball loss

 0/60 trials
53/60 trials
 7/60 trials

-6

-5

-4

-3

-2

-1

 0

-6 -5 -4 -3 -2 -1 0

n
p
q
r

lo
g
 p

in
b
al

l
lo

ss
linear log pinball loss

 0/60 trials
33/60 trials
27/60 trials

(a)npqr vsuncond (b) npqr vslinear

-6

-5

-4

-3

-2

-1

 0

-6 -5 -4 -3 -2 -1 0

n
p
q
r

lo
g
 p

in
b
al

l
lo

ss

rqss log pinball loss

 2/48 trials
10/48 trials
36/48 trials

(c) npqr vsrqss

Figure 8: Log-log plots of out-of-sample performances. The plots shownpqr versus (a)uncond,
(b) linear and (c)rqss; combining the average pinball losses of all 60 trials (3 quantiles
times 20 data sets). The points under (over) the 45 degree line means that thenpqr was
better (worse) than the alternative. Circle (squares) indicate thatnpqr was significantly
better (worse) than the alternative at 0.05 significance level in paired-samplet-test, while
triangles indicate no significant difference.

1250

NONPARAMTERIC QUANTILE ESTIMATION

5.2 Experiments on Nonparametric Quantile Regression with AdditionalConstraints

We empirically investigate the performances of nonparametric quantile regression estimator with
the additional constraints described in section 3. Imposing constraints is oneway to introduce the
prior knowledge on the data set being analyzed. Although additional constraints always increase
training errors, we will see that these constraints can sometimes reduce testerrors. The full results
are shown in Appendix B.

5.2.1 NON-CROSSINGCONSTRAINTS

First we look at the effect of non-crossing constraints on the generalization performances. We used
the same 20 data sets mentioned in the previous subsection. We denote thenpqrs trained with
non-crossing constraints asnoncross andnpqr indicates standard one here. We made comparisons
betweennpqr andnoncross with τ ∈ {0.1,0.5,0.9}. The results fornoncross with τ = 0.1 were
obtained by training a pair of non-crossing models withτ = 0.1 and 0.2. The results withτ = 0.5
were obtained by training three non-crossing models withτ = 0.4, 0.5 and 0.6. The results with
τ = 0.9 were obtained by training a pair of non-crossing models withτ = 0.8 and 0.9. In this
experiment, we simply impose non-crossing constraints only at a single test point to be evaluated.
The kernel width and smoothing parameter were always set to be the selected ones in the above
standardnpqr experiments. The confidences were assessed by 10-fold cross-validation in the same
way as the previous section. The complete results are found in the tables in Appendix B. The
performances ofnpqr andnoncross are quite similar sincenpqr itself could producealmostnon-
crossing estimates and the constraints only make asmalladjustments only when there happen to be
the violations.

5.2.2 MONOTONICITY CONSTRAINTS

We compare two models:

• Nonparametric QR as described in Section 2 (npqr).

• Nonparametric QR with monotonicity constraints as described in Section 3.2 (npqrm).

We use two data sets:

• Thecarsdata set as described in Mammen et al. (2001). Fuel efficiency (in miles pergallon)
is studied as a function of engine output.

• The onionsdata set as described in Ruppert and Carroll (2003). log(Yield) is studied as a
function of density, we use only the measurements taken at Purnong Landing.

We tested the performance of the two methods on 3 different quantiles (τ ∈ {0.1,0.5,0.9}). In the
experiments withcars, we noticed that the data is not truly monotonic. This is because, smaller en-
gines may correspond to cheap cars and thus may not be very efficient. Monotonic models (npqrm)
tend to do worse than standard models (npqr) for lower quantiles. With higher quantiles,npqrm
tends to do better than the standardnpqr. For theonions data set, as the data is truly monotonic,
thenpqrm does better than the standardnpqr in terms of the pinball loss.

1251

TAKEUCHI , LE, SEARS AND SMOLA

6. Discussion and Extensions

Frequently in the literature of regression, including quantile regression, we encounter the term “ex-
ploratory data analysis”. This is meant to describe a phase before the user has settled on a “model”,
after which some statistical tests are performed, justifying the choice of the model. Quantile re-
gression, which allows the user to highlight many aspects of the distribution, isindeed a useful tool
for this type of analysis. We also note that no attempts at statistical modeling beyond automatic
parameter choice via cross-validation, were made to tune the results. So the effort here stays true to
that spirit, yet may provide useful estimates immediately.

In the Machine Learning literature the emphasis is more on short circuiting the modeling pro-
cess. Here the two approaches are complementary. While not completely model-free, the experience
of building the models in this paper shows how easy it is to estimate the quantities of interest in QR,
with little of the angst of model selection, thanks to regularization. It is interesting to consider
whether kernel methods, with regularization, can blur the distinction betweenmodel building and
data exploration in statistics.

In summary, we have presented a Quadratic Programming method for estimating quantiles
which bests the state of the art in statistics. It is easy to implement, comes with uniform con-
vergence results and experimental evidence for its soundness. We alsointroduce non-crossing and
monotonicity constraints as extensions to avoid some undesirable behaviors insome circumstances.

Overly Optimistic Estimates for Ramp Loss The experiments show us that the there is a bias
towards the median in terms of the ramp loss. For example, if we run a quantile estimator with
τ = 0.05, then we will not necessarily get the empirical quantile is also at 0.05 but more likely to be
at 0.08 or higher. Likewise, the empirical quantile will be 0.93 or lower if the estimator is run at 0.9.
This affects all estimators, using the pinball loss as the loss function, not just the kernel version.

This is because the algorithm tends to aggressively push a number of pointsto the kink in the
training set, these points may then be miscounted (see Lemma 3). The main reasonbehind it is
that the extreme quantiles tend to be less smooth, the regularizer will thereforemakes sure we get
a simpler model by biasing towards the median (which is usually simpler). However, in the test set
it is very unlikely to get the points lying exactly at the kink. Figure 9 shows us there is a linear
relationship between the fraction of points at and below the kink (for low quantiles) and below the
kink (for higher quantiles) with the empirical ramp loss.

Accordingly, in order to get a better performance in terms of the ramp loss, we just estimate the
quantiles, and if they turn out to be too optimistic on the training set, we use a slightlylower (for
τ < 0.5) or higher (forτ > 0.5) value ofτ until we have exactly the right quantity.

The fact that there is a number of points sitting exactly on the kink (quantile regression - this
paper), the edge of the tube (ν-SVR - see Scḧolkopf et al., 2000), or the supporting hyperplane
(single-class problems and novelty detection - see Schölkopf et al., 1999) might affect the overall
accuracy control in the test set. This issue deserves further scrutiny.

Estimation with constraints We introduce non-crossing and monotonicity constraints in the con-
text of nonparametric quantile regression. However, as discussed in Mammen et al. (2001), other
constraints can also be applied very similiarly to the constraints described in thispaper but might be
in different estimation contexts. Here are some variations (we just give directions for the first two,
the rest can be applied in the same manner)

1252

NONPARAMTERIC QUANTILE ESTIMATION

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7r a m p l o s s0 . 10 . 1 50 . 20 . 2 5
f racti onof poi nt sat andb el owth eki nk 1.0=τ

0 0 . 2 0 . 4 0 . 6 0 . 8 1r a m p l o s s0 . 40 . 50 . 60 . 70 . 80 . 91
f racti onof poi nt sb el owth eki nk 9.0=τ

Figure 9: Illustration of the relationship between quantile in training and ramp loss.

• Bivariate extreme-value distributions. Hall and Tajvidi (2000) propose methods to estimate
the dependence function of a bivariate extreme-value distribution. They require to estimate a
convexfunction f such thatf (0) = f (1) = 1 and f (x) ≥ max(x,1−x) for x∈ [0,1]. We can
also apply this approach to our method as to the monotonicity constraint, all we have to do is
to ensure〈φ(0),w〉+b = 〈φ(1),w〉+b = 1, 〈φ′′(x),w〉 ≥ 0 and〈φ(x),w〉+b≥ max(x,1−x)
for x∈ [0,1].

• Positivity constraints. The regression function is positive. In this case, we must ensure
〈φ(x),w〉+b > 0, ∀x.

• Boundary conditions. The regression function is defined in[a,b] and assumed to bev at the
boundary pointa or b.

• Additive models with monotone components. The regression functionf : R
n→R is of additive

form f (x1, ...,xn) = f1(x1)+ ...+ fn(xn) where each additive componentfi is monotonic.

• Observed deriatives. Assume thatm samples are observed corresponding withm regression
functions. Now, the constraint is thatf j coincides with the derivative off j−1 (same notation
with last point) (Cox, 1988).

Future Work Quantile regression has been mainly used as a data analysis tool to assess the influ-
ence of individual variables. This is an area where we expect that nonparametric estimates will lead
to better performance.

Being able to estimate an upper bound on a random variabley|x which hold with probabilityτ
is useful when it comes to determining the so-called Value at Risk of a portfolio. Note, however,
that in this situation we want to be able to estimate the regression quantile for a large set of different
portfolios. For example, an investor may try to optimize their portfolio allocation to maximize return
while keeping risk within a constant bound. Such uniform statements will needfurther analysis if
we are to perform nonparametric estimates. We need more efficient optimizationalgorithm for non-
crossing constraints since we have to work withO (nm) dual variables. Simple SVM (Vishwanathan
et al., 2003) would be a promising candidate for this purpose.

1253

TAKEUCHI , LE, SEARS AND SMOLA

Acknowledgments

National ICT Australia is funded through the Australian Government’sBacking Australia’s Ability
initiative, in part through the Australian Research Council. This work was supported by grants
of the ARC, by the Pascal Network of Excellence and by Japanese Grants-in-Aid for Scientific
Research 16700258. We thank Roger Koenker for providing us with thelatest version of theR
packagequantreg, and for technical advice. We thank Shahar Mendelson and Bob Williamsonfor
useful discussions and suggestions. We also thank the anonymous reviewers for valuable feedback.

Appendix A. Nonparametric ν-Support Vector Regression

In this section we explore an alternative to the quantile regression framework proposed in Section 2.
It derives from Scḧolkopf et al. (2000). There the authors suggest a method for adapting SVregres-
sion and classification estimates such that automatically only a quantileν lies beyond the desired
confidence region. In particular, ifp(y|x) can be modeled by additive noise of equal degree (i.e.
y = f (x)+ ξ whereξ is a random variable independent ofx) Scḧolkopf et al. (2000) show that the
ν-SV regression estimate does converge to a quantile estimate.

A.1 Heteroscedastic Regression

Whenever the above assumption onp(y|x) is violatedν-SVR will not perform as desired. This
problem can be amended as follows: one needs to turn the marginε(x) into a nonparametric estimate
itself. This means that we solve the following optimization problem.

minimize
θ1,θ2,b,ε

λ1

2
‖θ1‖2 +

λ2

2
‖θ2‖2 +

m

∑
i=1

(ξi +ξ∗i)−νmε (30a)

subject to 〈φ1(xi),θ1〉+b−yi ≤ ε+ 〈φ2(xi),θ2〉+ξi (30b)

yi −〈φ1(xi),θ1〉−b≤ ε+ 〈φ2(xi),θ2〉+ξ∗i (30c)

ξi ,ξ∗i ≥ 0 (30d)

Hereφ1,φ2 are feature maps,θ1,θ2 are corresponding parameters,ξi ,ξ∗i are slack variables andb,ε
are scalars. The key difference to the heteroscedastic estimation problemdescribed in Scḧolkopf
et al. (2000) is that in the latter the authors assume that the specific form of the noise isknown. In
(30) instead, we make no such assumption and instead we estimateε(x) as〈φ2(x),θ2〉+ ε.

One may check that the dual of (30) is obtained by

minimize
α,α∗

1
2λ1

(α−α∗)⊤K1(α−α∗)+
1

2λ2
(α+α∗)⊤K1(α+α∗)+(α−α∗)⊤y (31a)

subject to~1⊤(α−α∗) = 0 (31b)

~1⊤(α+α∗) = Cmν (31c)

0≤ αi ,α∗
i ≤ 1 for all 1≤ i ≤ m (31d)

HereK1,K2 are kernel matrices where[Ki] jl = ki(x j ,xl) and~1 denotes the vector of ones. Moreover,
we have the usual kernel expansion, this time for the regressionf (x) and the marginε(x) via

f (x) =
m

∑
i=1

(αi −α∗
i)k1(xi ,x)+b andε(x) =

m

∑
i=1

(αi +α∗
i)k2(xi ,x)+ ε. (32)

1254

NONPARAMTERIC QUANTILE ESTIMATION

The scalarsbandε can be computed conveniently as dual variables of (31) when solving the problem
with an interior point code (see Schölkopf and Smola, 2002, for more details).

A.2 The ν-Property

As in the parametric case also (30) has theν-property. However, it is worth noting that the solution
ε(x) need not be positive throughout unless we change the optimization problemslightly by impos-
ing a nonnegativity constraint onε. The following theorem makes this reasoning more precise:

Theorem 8 The minimizer of (30) satisfies

1. The fraction of points for which|yi − f (xi)| < ε(xi) is bounded by1−ν.

2. The fraction of constraints (30b) and (30c) withξi > 0 or ξ∗i > 0 is bounded from above byν.

3. If (x,y) is drawn iid from a distributionPr(x,y), with Pr(y|x) continuous and the expecta-
tion of the modulus of absolute continuity of its density satisfyinglimδ→0E [ε(δ)] = 0. With
probability1, asymptotically, the fraction of points satisfying|yi − f (xi)|= ε(xi) converges to
0.

Moreover, imposingε ≥ 0 is equivalent to relaxing (31c) to~1⊤(α−α∗) ≤ Cmν. If in addition K2

has only nonnegative entries then alsoε(x) ≥ 0 for all xi .

Proof The proof is essentially similar to that of Lemma 3 and Schölkopf et al. (2000). However
note that the flexibility inε and potentialε(x) < 0 lead to additional complications. However, if
both f andε(x) have well behaved entropy numbers, then alsof ± ε are well behaved.

To see the last set of claims note that the constraint~1⊤(α−α∗)≤Cmν is obtained again directly
from dualization via the conditionε ≥ 0. Sinceαi ,α∗

i ≥ 0 for all i it follows thatε(x) contains only
nonnegative coefficients, which proves the last part of the claim.

Note that in principle we could enforceε(xi) ≥ 0 for all xi . This way, however, we would lose the
ν-property and add even more complication to the optimization problem. A third set of Lagrange
multipliers would have to be added to the optimization problem.

A.3 An Example

The above derivation begs the question why one should not use (31) instead of (6) for the purpose
of quantile regression. After all, both estimators yield an estimate for the upperand lower quantiles.

Firstly, the combined approach is numerically more costly as it requires optimization over twice
the number of parameters, albeit at the distinct advantage of a sparse solution, whereas (6) always
leads to a dense solution.

The key difference, however, is that (31) is prone to producing estimates where the margin
ε(x) < 0. While such a solution is clearly unreasonable, it occurs whenever the margin is rather
small and the overall tradeoff of simplef vs. simpleε yields an advantage by keepingf simple.
With enough data this effect vanishes, however, it occurs quite frequently, even with supposedly
distant quantiles, as can be seen in Figure 10.

In addition, the latter suffers from the assumption that the error be symmetrically distributed. In
other words, if we are just interested in obtaining the 0.95 quantile estimate we end up estimating

1255

TAKEUCHI , LE, SEARS AND SMOLA

0 0 . 2 0 . 4 0 . 6 0 . 8 1� 4� 2 024
68 t r a i n i n g d a t as u p p o r t v e c t o r sr e a l m e a ne s t i m a t e d m e a nu p p e r b a rl o w e r b a r

0 0 . 2 0 . 4 0 . 6 0 . 8 1! 5 05
1 0 t r a i n i n g d a t as u p p o r t v e c t o r sr e a l m e a ne s t i m a t e d m e a nu p p e r b a rl o w e r b a r

Figure 10: Illustration of the heteroscedastic SVM regression on artificialdata set generated from
(1) with f (x) = sinπx andσ(x) = exp(sin2πx). On the left,λ1 = 1, λ2 = 10 andν = 0.2,
the algorithm successfully regresses the data. On the right,λ1 = 1, λ2 = 0.1 andν = 0.2,
the algorithm fails to regress the data asε becomes negative.

the 0.05 quantile on the way. In addition to that, we make the assumption that the additivenoise is
symmetric.

We produced this derivation and experiments mainly to make the point that the adaptive margin
approach of Scḧolkopf et al. (2000) is insufficient to address the problems posed by quantile regres-
sion. We found empirically that it is much easier to adjust QR instead of the symmetric variant.

In summary, the symmetric approach is probably useful only for parametric estimates where the
number of parameters is small and where the expansion coefficients ensure thatε(x) ≥ 0 for all x.

Appendix B. Experimental Results

In this appendix, we show the detail results on the experiments.

B.1 Standard Nonparametric Quantile Regression

Here we assemble six tables to display the comparisons among four models,uncond, linear, rqss
andnpqr. Each table representspinball lossor ramp lossfor each ofτ = 0.1, 0.5 and 0.9 cases.

τ = 0.1 τ = 0.5 τ = 0.9
Pinball Loss Table 2 Table 4 Table 6
Ramp Loss Table 3 Table 5 Table 7

Tables 2, 4, and 6 show the average pinball loss for each data set. A lower figure is preferred in
each case. The bold figures indicate the best (smallest) performances. The circles ’◦’ indicate that
the difference from the second best model were statistically significant at0.05 level with two-sided
paired-samplet-test. NA denotes cases where rqss (Koenker et al., 1994) was unableto produce
estimates, due to its construction of the function system.

Tables 3, 5 and 7, show the ramp loss, a measure for quantile property. Ineach table a figure
close to the intended quantile (10, 50 or 90) is preferred. The figures in round brackets denote the

1256

NONPARAMTERIC QUANTILE ESTIMATION

p-values under the null-hypothesis that the ramp loss, i.e. the number of test points(x,y) such that
y < fτ(x), is a sample from binomial distributionB(sample size,τ). The bold figures indicate the
best (closest to the intended quantileτ) performances. The bullets ’•’ indicate that the ramp loss
deviate significantly from binomial distributionB(sample size,τ).

B.2 Nonparametric Quantile Regression with Constraints

Next, we show the results on constrained nonparameteric quantile regression.

B.2.1 NON-CROSSINGCONSTRAINTS

Table 8 shows the average pinball loss comparison between the nonparametric quantile regression
without (npqr) and with (noncross) non-crossing constraints. The bold figures indicate the better
(smaller) performances The circles ’◦’ indicate that the difference were statistically significant at
0.05 level with two-sided paired-samplet-test.

Table 9 shows the ramp loss, a measure for quantile property, ofnpqr andnoncross. The fig-
ures in round brackets denote thep-values under the null-hypothesis that the ramp loss, i.e. the num-
ber of test points(x,y) such thaty< fτ(x), is a sample from binomial distributionB(sample size,τ).
The bold figures indicate the better (closeer to the intended quantileτ) performances. The bullets
’•’ indicate that the ramp loss deviated significantly from binomial distributionB(sample size,τ).

B.2.2 MONOTONICITY CONSTRAINTS

We tested on the cars and the onions data set for monotonicity with respect to engine size and
diameter respectively. Note that on the engines data set the monotonicity constraint is not perfectly
satisfied. Table 10 shows the average pinball loss comparison between thenonparametric quantile
regression without (npqr) and with (npqrm) monotonicity constraints. See above for the notation of
the table. Table 11 shows the ramp loss, a measure for quantile property, ofnpqr andnpqrm. See
above for the notation of the table.

1257

TAKEUCHI , LE, SEARS AND SMOLA

data set uncond linear rqss npqr
caution 11.09 ± 0.95 11.18 ± 1.04 9.18 ± 0.93 9.56 ± 0.92
ftcollinssnow 16.28 ± 1.18 16.48 ± 1.19 15.68 ± 1.33 16.24 ± 1.17
highway 11.27 ± 1.48 19.32 ± 5.11 19.51 ± 4.44 ◦ 8.34 ± 1.18
heights 17.20 ± 0.44 15.28 ± 0.39 15.27 ± 0.40 15.26 ± 0.39
sniffer 13.92 ± 0.99 6.78 ± 0.68 5.44 ± 0.58 5.48 ± 0.64
snowgeese 8.74 ± 1.44 4.79 ± 0.89 4.85 ± 0.90 5.03 ± 0.87
ufc 17.06 ± 0.72 10.02 ± 0.42 10.11 ± 0.44 9.70 ± 0.42
birthwt 18.29 ± 1.39 18.44 ± 1.24 18.85 ± 1.28 17.68 ± 1.16
crabs 18.27 ± 0.97 1.03 ± 0.08 NA 0.91 ± 0.07
GAGurine 10.53 ± 0.55 8.39 ± 0.41 5.79 ± 0.43 6.00 ± 0.63
geyser 17.15 ± 0.52 11.50 ± 0.49 11.10 ± 0.49 10.91 ± 0.49
gilgais 12.84 ± 0.49 5.93 ± 0.40 5.75 ± 0.44 5.46 ± 0.35
topo 20.41 ± 2.45 9.12 ± 1.32 8.15 ± 1.30 6.03 ± 0.91
BostonHousing 14.05 ± 0.56 6.60 ± 0.34 NA ◦ 5.10 ± 0.42
CobarOre 17.88 ± 2.28 17.36 ± 1.97 14.71 ± 2.20 13.80 ± 2.70
engel 11.92 ± 0.65 6.49 ± 0.79 5.68 ± 0.45 5.55 ± 0.37
mcycle 19.99 ± 0.86 17.87 ± 0.98 10.98 ± 0.66 ◦ 7.39 ± 0.90
BigMac2003 8.37 ± 1.17 6.31 ± 0.95 NA 6.13 ± 0.96
UN3 18.02 ± 1.06 11.47 ± 0.97 NA 11.47 ± 1.02
cpus 5.25 ± 0.69 1.74 ± 0.34 0.77 ± 0.18 0.67 ± 0.23

Table 2: Method Comparison: Pinball Loss (×100,τ = 0.1)

data set uncond linear rqss npqr
caution 11.00 (0.59) 12.00 (0.40) • 16.00 (0.04) 12.00 (0.40)
ftcollinssnow 10.00 (0.91) 11.10 (0.65) 12.20 (0.44) 12.20 (0.44)
highway 10.80 (0.70) • 20.00 (0.03) • 26.70 (0.00) • 20.00 (0.03)
heights 9.60 (0.66) 10.00 (0.92) 10.00 (0.92) 10.00 (0.92)
sniffer 7.80 (0.57) 13.70 (0.15) 12.00 (0.37) • 15.90 (0.02)
snowgeese 12.50 (0.32) 9.70 (0.95) 9.70 (0.95) 13.60 (0.32)
ufc 9.70 (0.92) 9.90 (0.94) 11.80 (0.21) 10.50 (0.68)
birthwt 10.00 (0.86) 12.00 (0.27) 12.60 (0.18) 11.60 (0.38)
crabs 10.00 (0.88) 12.00 (0.29) NA 13.30 (0.09)
GAGurine 10.40 (0.68) 9.90 (0.96) 10.70 (0.55) 12.10 (0.19)
geyser 9.70 (0.96) 11.20 (0.48) 10.70 (0.60) 12.20 (0.21)
gilgais 9.50 (0.88) 10.40 (0.71) • 13.50 (0.03) 12.40 (0.12)
topo 8.90 (0.84) 13.40 (0.29) 16.00 (0.14) • 19.40 (0.03)
BostonHousing 9.70 (0.89) 11.50 (0.24) NA • 15.00 (0.00)
CobarOre 8.50 (0.93) 12.70 (0.35) 16.10 (0.16) 16.10 (0.16)
engel 10.20 (0.81) 9.40 (0.85) 10.20 (0.81) 12.20 (0.20)
mcycle 10.00 (0.92) 11.50 (0.51) 11.40 (0.51) 12.00 (0.35)
BigMac2003 9.00 (0.92) • 18.00 (0.04) NA 14.30 (0.16)
UN3 9.50 (0.97) 12.00 (0.37) NA 10.30 (0.74)
cpus 9.40 (0.95) 12.20 (0.29) • 15.30 (0.01) • 19.10 (0.00)

Table 3: Method Comparison: Ramp Loss (×100,τ = 0.1)

1258

NONPARAMTERIC QUANTILE ESTIMATION

data set uncond linear rqss npqr
caution 38.13 ± 3.44 32.40 ± 2.91 23.76 ± 2.74 22.56 ± 2.68
ftcollinssnow 42.10 ± 2.95 40.82 ± 2.95 44.07 ± 3.24 39.08 ± 3.09
highway 38.35 ± 6.34 45.39 ± 7.04 27.17 ± 3.26 25.33 ± 3.62
heights 40.08 ± 0.81 34.50 ± 0.72 34.66 ± 0.72 34.53 ± 0.72
sniffer 35.74 ± 3.13 12.78 ± 1.11 10.50 ± 0.98 ◦ 9.92 ± 0.94
snowgeese 32.08 ± 6.33 13.85 ± 3.46 10.49 ± 2.53 18.50 ± 4.96
ufc 40.21 ± 1.55 23.20 ± 0.95 21.23 ± 0.90 21.22 ± 0.90
birthwt 41.05 ± 2.14 38.15 ± 1.96 37.55 ± 2.08 37.19 ± 1.96
crabs 41.52 ± 1.99 2.24 ± 0.13 NA 2.14 ± 0.12
GAGurine 40.75 ± 1.81 27.87 ± 1.46 16.02 ± 1.20 14.57 ± 1.11
geyser 41.57 ± 1.84 32.50 ± 1.23 31.03 ± 1.36 30.75 ± 1.40
gilgais 42.10 ± 1.51 16.12 ± 1.01 11.72 ± 0.69 12.40 ± 0.66
topo 42.17 ± 3.86 26.51 ± 2.71 18.58 ± 2.65 14.39 ± 1.65
BostonHousing 35.57 ± 1.60 17.50 ± 0.95 NA ◦ 10.76 ± 0.61
CobarOre 41.37 ± 4.97 41.93 ± 5.20 43.61 ± 4.59 39.29 ± 6.69
engel 35.75 ± 2.33 13.72 ± 1.14 13.25 ± 0.92 13.01 ± 0.85
mcycle 38.38 ± 3.04 37.88 ± 2.76 20.87 ± 1.52 ◦ 17.06 ± 1.42
BigMac2003 33.24 ± 5.12 21.75 ± 2.85 NA ◦ 17.89 ± 3.05
UN3 40.79 ± 2.61 26.32 ± 1.70 NA 23.96 ± 1.84
cpus 23.00 ± 3.30 5.73 ± 1.04 2.45 ± 0.61 ◦ 1.06 ± 0.17

Table 4: Method Comparison: Pinball Loss (×100,τ = 0.5)

data set uncond linear rqss npqr
caution 52.00 (0.62) 49.00 (0.92) 51.00 (0.76) 49.00 (0.92)
ftcollinssnow 50.60 (0.84) 49.70 (1.00) 48.60 (0.84) 51.40 (0.68)
highway 48.30 (1.00) 44.20 (0.52) 45.00 (0.75) 41.70 (0.34)
heights 49.30 (0.63) 50.10 (0.91) 49.80 (0.91) 50.30 (0.79)
sniffer 47.80 (0.72) 51.00 (0.72) 51.00 (0.72) 51.30 (0.72)
snowgeese 48.10 (1.00) 49.20 (1.00) 51.70 (0.77) 50.60 (0.77)
ufc 49.20 (0.80) 50.00 (0.96) 51.60 (0.50) 50.60 (0.80)
birthwt 48.90 (0.77) 50.00 (0.88) 47.80 (0.56) 50.30 (0.88)
crabs 49.50 (0.94) 50.50 (0.83) NA 50.00 (0.94)
GAGurine 49.20 (0.78) 50.90 (0.69) 51.40 (0.61) 49.80 (0.96)
geyser 48.60 (0.64) 49.80 (1.00) 49.50 (0.91) 49.20 (0.82)
gilgais 48.70 (0.68) 50.00 (0.92) 49.70 (0.92) 50.70 (0.75)
topo 47.70 (0.89) 47.70 (0.89) 47.70 (0.89) 54.80 (0.49)
BostonHousing 49.70 (0.89) 49.60 (0.89) NA 51.70 (0.40)
CobarOre 46.40 (0.87) 44.50 (0.63) 47.90 (0.87) 59.40 (0.14)
engel 50.90 (0.70) 49.70 (1.00) 49.60 (1.00) 50.00 (0.90)
mcycle 49.10 (0.86) 51.30 (0.73) 51.40 (0.73) 48.80 (0.86)
BigMac2003 49.30 (1.00) 50.00 (0.81) NA 44.20 (0.34)
UN3 49.40 (1.00) 50.60 (0.86) NA 48.60 (0.86)
cpus 49.20 (0.89) 51.30 (0.68) 49.70 (1.00) 51.80 (0.58)

Table 5: Method Comparison: Ramp Loss (×100,τ = 0.5)

1259

TAKEUCHI , LE, SEARS AND SMOLA

data set uncond linear rqss npqr
caution 23.35 ± 3.19 15.04 ± 1.54 ◦ 13.19 ± 1.57 15.16 ± 1.76
ftcollinssnow 18.71 ± 1.21 19.77 ± 1.76 19.35 ± 1.90 18.67 ± 1.74
highway 25.67 ± 3.71 28.49 ± 6.75 25.34 ± 6.09 14.48 ± 3.53
heights 17.63 ± 0.47 15.47 ± 0.39 15.50 ± 0.39 15.47 ± 0.39
sniffer 23.01 ± 3.62 5.87 ± 0.43 5.88 ± 0.44 ◦ 5.25 ± 0.40
snowgeese 26.94 ± 6.93 7.97 ± 2.67 8.09 ± 3.52 7.94 ± 2.61
ufc 18.05 ± 0.96 10.94 ± 0.45 10.84 ± 0.56 10.15 ± 0.53
birthwt 16.21 ± 1.03 16.17 ± 1.03 16.53 ± 1.19 ◦ 15.20 ± 0.91
crabs 17.09 ± 0.90 0.99 ± 0.07 NA 1.02 ± 0.08
GAGurine 20.86 ± 0.67 15.22 ± 0.83 10.51 ± 1.17 10.13 ± 1.05
geyser 14.21 ± 0.72 12.92 ± 0.67 12.48 ± 0.63 12.10 ± 0.61
gilgais 18.83 ± 0.72 6.74 ± 0.49 5.06 ± 0.37 5.51 ± 0.37
topo 16.50 ± 2.40 13.67 ± 2.80 13.84 ± 3.04 10.30 ± 2.17
BostonHousing 22.68 ± 1.28 11.67 ± 0.95 NA ◦ 6.96 ± 0.63
CobarOre 17.63 ± 2.06 22.28 ± 3.43 20.16 ± 2.92 15.01 ± 2.12
engel 22.44 ± 2.57 5.44 ± 0.43 5.64 ± 0.65 5.70 ± 0.57
mcycle 15.97 ± 1.21 14.06 ± 1.00 10.58 ± 0.89 ◦ 7.02 ± 0.56
BigMac2003 23.29 ± 4.97 13.06 ± 2.20 NA ◦ 9.45 ± 2.85
UN3 16.36 ± 1.00 10.37 ± 0.73 NA ◦ 8.81 ± 0.61
cpus 24.01 ± 4.26 2.67 ± 0.26 1.78 ± 0.72 0.71 ± 0.17

Table 6: Method Comparison: Pinball Loss (×100,τ = 0.9)

data set uncond linear rqss npqr
caution 90.00 (0.90) 90.00 (0.90) 89.00 (0.83) 89.00 (0.83)
ftcollinssnow 90.30 (0.82) 89.20 (0.91) 88.30 (0.65) 89.20 (0.91)
highway 89.20 (0.89) • 64.20 (0.00) • 61.70 (0.00) • 70.00 (0.00)
heights 89.50 (0.58) 90.00 (0.94) 89.80 (0.85) 90.10 (0.87)
sniffer 89.40 (0.97) 87.60 (0.53) 86.80 (0.37) 84.60 (0.09)
snowgeese 88.90 (0.95) 85.00 (0.32) 85.00 (0.32) 83.90 (0.32)
ufc 89.80 (0.94) 90.30 (0.79) 88.50 (0.36) 88.30 (0.28)
birthwt 88.70 (0.68) 87.60 (0.38) 88.00 (0.38) 88.90 (0.68)
crabs 89.00 (0.70) 87.00 (0.20) NA 87.10 (0.20)
GAGurine 89.50 (0.82) 89.80 (0.96) 89.40 (0.82) 87.80 (0.25)
geyser 88.50 (0.48) 89.40 (0.74) 90.40 (0.81) 89.10 (0.60)
gilgais 89.10 (0.59) 88.30 (0.30) 87.10 (0.09) • 83.90 (0.00)
topo 89.10 (0.84) 87.10 (0.52) 85.70 (0.52) • 77.70 (0.01)
BostonHousing 90.10 (0.89) 88.80 (0.38) NA • 80.30 (0.00)
CobarOre 89.10 (0.93) 85.80 (0.66) 79.10 (0.06) 85.80 (0.66)
engel 88.90 (0.65) 90.00 (0.85) 89.10 (0.65) 89.40 (0.81)
mcycle 88.60 (0.70) 88.80 (0.70) 87.70 (0.51) 86.20 (0.23)
BigMac2003 89.30 (0.92) 84.30 (0.16) NA • 77.70 (0.01)
UN3 88.00 (0.53) 86.70 (0.24) NA 85.80 (0.15)
cpus 89.30 (0.87) 87.80 (0.40) • 82.60 (0.00) • 82.10 (0.00)

Table 7: Method Comparison: Ramp Loss (×100,τ = 0.9)

1260

NONPARAMTERIC QUANTILE ESTIMATION

τ = 0.1 τ = 0.5 τ = 0.9
data set npqr noncross npqr noncross npqr noncross
caution 9.56 ± 0.92 9.55 ± 0.92 22.56 ± 2.68 22.51 ± 2.68 15.16 ± 1.76 15.15 ± 1.76
ftcollinssnow 16.24 ± 1.17 16.24 ± 1.17 39.08 ± 3.09 38.81 ± 3.09 18.67 ± 1.74 18.67 ± 1.74
highway 8.34 ± 1.18 8.20 ± 1.20 25.33 ± 3.62 25.30 ± 3.57 14.48 ± 3.53 14.41 ± 3.53
heights 15.26 ± 0.39 15.27 ± 0.39 34.53 ± 0.72 34.54 ± 0.72 15.47 ± 0.39 15.48 ± 0.39
sniffer 5.48 ± 0.64 5.43 ± 0.64 9.92 ± 0.94 9.91 ± 0.94 5.25 ± 0.40 5.19 ± 0.40
snowgeese 5.03 ± 0.87 5.03 ± 0.87 18.50 ± 4.96 18.59 ± 4.98 7.94 ± 2.61 7.88 ± 2.62
ufc 9.70 ± 0.42 9.70 ± 0.39 21.22 ± 0.90 21.23 ± 0.90 10.15 ± 0.53 9.92 ± 0.49
birthwt 17.68 ± 1.16 17.69 ± 1.16 37.19 ± 1.96 37.21 ± 1.96 15.20 ± 0.91 15.20 ± 0.91
crabs 0.91 ± 0.07 0.91 ± 0.07 2.14 ± 0.12 2.14 ± 0.12 1.02 ± 0.08 1.01 ± 0.08
GAGurine 6.00 ± 0.63 5.99 ± 0.63 14.57 ± 1.11 14.57 ± 1.11 10.13 ± 1.05 10.13 ± 1.05
geyser 10.91 ± 0.49 10.91 ± 0.49 30.75 ± 1.40 30.71 ± 1.40 12.10 ± 0.61 12.11 ± 0.61
gilgais 5.46 ± 0.35 5.46 ± 0.35 12.40 ± 0.66 12.37 ± 0.66 5.51 ± 0.37 5.51 ± 0.37
topo 6.03 ± 0.91 6.04 ± 0.91 ◦ 14.39 ± 1.65 15.54 ± 1.62 10.30 ± 2.17 10.21 ± 2.16
BostonHousing 5.10 ± 0.42 5.04 ± 0.42 10.76 ± 0.61 10.73 ± 0.61 6.96 ± 0.63 ◦ 6.85 ± 0.62
CobarOre 13.80 ± 2.70 13.66 ± 2.63 39.29 ± 6.69 40.00 ± 6.61 ◦ 15.01 ± 2.12 15.13 ± 2.12
engel 5.55 ± 0.37 5.55 ± 0.37 13.01 ± 0.85 12.96 ± 0.85 5.70 ± 0.57 5.70 ± 0.57
mcycle 7.39 ± 0.90 7.39 ± 0.90 17.06 ± 1.42 17.03 ± 1.42 7.02 ± 0.56 7.00 ± 0.55
BigMac2003 6.13 ± 0.96 6.36 ± 1.02 17.89 ± 3.05 ◦ 17.72 ± 3.05 9.45 ± 2.85 9.48 ± 2.84
UN3 11.47 ± 1.02 11.52 ± 1.04 23.96 ± 1.84 23.81 ± 1.81 8.81 ± 0.61 8.82 ± 0.61
cpus ◦ 0.67 ± 0.23 1.30 ± 0.18 ◦ 1.06 ± 0.17 1.35 ± 0.17 ◦ 0.71 ± 0.17 0.87 ± 0.18

Table 8: Pinball loss comparison between the nonparametric quantile regression without (npqr) and
with (noncross) non-crossing constraints.

τ = 0.1 τ = 0.5 τ = 0.9
data set npqr noncross npqr noncross npqr noncross
caution 12.00 (0.40) 12.00 (0.40) 49.00 (0.92) 49.00 (0.92) 89.00 (0.83) 89.00 (0.83)
ftcollinssnow 12.20 (0.44) 12.20 (0.44) 51.40 (0.68) 51.40 (0.68) 89.20 (0.91) 89.20 (0.91)
highway • 20.00 (0.03) • 13.30 (0.03) 41.70 (0.34) 45.00 (0.34) • 70.00 (0.00) • 56.70 (0.00)
heights 10.00 (0.92) 9.90 (0.92) 50.30 (0.79) 50.30 (0.79) 90.10 (0.87) 90.10 (0.87)
sniffer • 15.90 (0.02) • 15.90 (0.02) 51.30 (0.72) 51.30 (0.72) 84.60 (0.09) 85.40 (0.09)
snowgeese 13.60 (0.32) 13.60 (0.32) 50.60 (0.77) 50.60 (0.77) 83.90 (0.32) 83.90 (0.32)
ufc 10.50 (0.68) 10.70 (0.68) 50.60 (0.80) 50.60 (0.80) 88.30 (0.28) 88.20 (0.28)
birthwt 11.60 (0.38) 10.00 (0.38) 50.30 (0.88) 50.20 (0.88) 88.90 (0.68) 88.90 (0.68)
crabs 13.30 (0.09) 13.00 (0.09) 50.00 (0.94) 49.50 (0.94) 87.10 (0.20) 87.00 (0.20)
GAGurine 12.10 (0.19) 11.60 (0.19) 49.80 (0.96) 49.90 (0.96) 87.80 (0.25) 88.10 (0.25)
geyser 12.20 (0.21) 12.10 (0.21) 49.20 (0.82) 49.60 (0.82) 89.10 (0.60) 89.00 (0.60)
gilgais 12.40 (0.12) 12.40 (0.12) 50.70 (0.75) 50.80 (0.75) • 83.90 (0.00) • 84.20 (0.00)
topo • 19.40 (0.03) • 19.40 (0.03) 54.80 (0.49) 56.30 (0.49) • 77.70 (0.01) • 77.70 (0.01)
BostonHousing • 15.00 (0.00) • 15.10 (0.00) 51.70 (0.40) 51.50 (0.40) • 80.30 (0.00) • 80.80 (0.00)
CobarOre 16.10 (0.16) 16.10 (0.16) 59.40 (0.14) 59.40 (0.14) 85.80 (0.66) 85.80 (0.66)
engel 12.20 (0.20) 12.20 (0.20) 50.00 (0.90) 50.10 (0.90) 89.40 (0.81) 89.40 (0.81)
mcycle 12.00 (0.35) 12.00 (0.35) 48.80 (0.86) 48.10 (0.86) 86.20 (0.23) 87.40 (0.23)
BigMac2003 14.30 (0.16) 16.00 (0.16) 44.20 (0.34) 43.70 (0.34) • 77.70 (0.01) • 79.30 (0.01)
UN3 10.30 (0.74) 10.30 (0.74) 48.60 (0.86) 47.80 (0.86) 85.80 (0.15) 86.70 (0.15)
cpus • 19.10 (0.00) • 20.60 (0.00) 51.80 (0.58) 46.90 (0.58) • 82.10 (0.00) • 82.50 (0.00)

Table 9: Ramp loss (quantile property) comparison between the nonparametric quantile regression
without (npqr) and with (noncross) non-crossing constraints.

1261

TAKEUCHI , LE, SEARS AND SMOLA

τ = 0.1 τ = 0.5 τ = 0.9
data set npqr npqrm npqr npqrm npqr npqrm
cars 0.65 ± 0.15 0.66 ± 0.16 1.59 ± 0.32 1.61 ± 0.23 0.79 ± 0.16 0.77 ± 0.16
onions 2.68 ± 1.21 2.27 ± 0.71 4.93 ± 1.58 4.89 ± 1.47 1.86 ± 0.73 1.84 ± 0.37

Table 10: Pinball loss comparison between the nonparametric quantile regression without (npqr)
and with (npqrm) monotonicity constraints.

τ = 0.1 τ = 0.5 τ = 0.9
data set npqr monotonic npqr monotonic npqr monotonic
cars 12.00 (0.24) 11.00 (0.24) 51.00 (0.88) 51.00 (0.88) 89.00 (0.82) 89.00 (0.82)
onions • 18.00 (0.00) • 17.00 (0.00) 48.00 (0.44) 48.00 (0.44) • 86.00 (0.01) • 80.00 (0.00)

Table 11: Ramp loss (quantile property) comparison between the nonparametric quantile regression
without (npqr) and with (npqrm) monotonicity constraints.

1262

NONPARAMTERIC QUANTILE ESTIMATION

References

L. K. Bachrach, T. Hastie, M. C. Wang, B. Narashimhan, and R. Marcus. Bone mineral acquisition
in healthy asian, hispanic, black and caucasian youth, a longitudinal study. Journal of Clinical
Endocrinal Metabolism, 84:4702– 4712, 1999.

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results.Journal of Machine Learning Research, 3:463–482, 2002.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Localized rademacher averages. InProc. Annual
Conf. Computational Learning Theory, pages 44–58, 2002.

P. J. Bickel, C. A. J. Klaassen, Y. Ritov, and J. A. Wellner.Efficient and adaptive estimation for
semiparametric models. J. Hopkins Press, Baltimore, ML, 1994.

R. J. Bosch, Y. Ye, and G. G.Woodworth. A convergent algorithm for quantile regression with
smoothing splines.Computational Statistics and Data Analysis, 19:613–630, 1995.

D. D. Cox. Approximation of method of regularization estimators.Annals of Statistics, 16:694–713,
1988.

G. Fung, O. L. Mangasarian, and A. J. Smola. Minimal kernel classifiers. Journal of Machine
Learning Research, 3:303–321, 2002.

C. Gu and G. Wahba. Semiparametric analysis of variance with tensor product thin plate splines.
Journal of the Royal Statistical Society B, 55:353–368, 1993.

P. Hall and N. Tajvidi. Distribution and dependence-function estimation for bivariate extreme-value
distributions.Bernoulli, 2000.

P. Hall, J. S. Marron, and A. Neeman. Geometric representation of high dimension low sample size
data.Journal of the Royal Statistical Society - Series B, 2005. forthcoming.

T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer, New
York, 2001.

X. He. Quantile curves without crossing.The American Statistician, 51(2):186–192, may 1997.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation fornonorthogonal problems.
Technometrics, 12:55–67, 1970.

P. J. Huber.Robust Statistics. John Wiley and Sons, New York, 1981.

R. Koenker.Quantile Regression. Cambridge University Press, 2005.

R. Koenker and G. Bassett. Regression quantiles.Econometrica, 46(1):33–50, 1978.

R. Koenker, P. Ng, and S. Portnoy. Quantile smoothing splines.Biometrika, 81:673–680, 1994.

1263

TAKEUCHI , LE, SEARS AND SMOLA

Q. V. Le, A. J. Smola, and T. G̈artner. Simpler knowledge-based support vector machines. InProc.
Intl. Conf. Machine Learning, 2006.

E. Mammen, J. S. Marron, B. A. Turlach, and M. P. Wand. A general projection framework for
constrained smoothing.Statistical Science, 16(3):232–248, August 2001.

S. Mendelson. A few notes on statistical learning theory. In S. Mendelsonand A. J. Smola, editors,
Advanced Lectures on Machine Learning, number 2600 in LNAI, pages 1–40. Springer, 2003.

D. Ruppert and R. J. Carroll.Semiparametric Regression. Wiley, 2003.

B. Scḧolkopf and A. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Scḧolkopf, R. C. Williamson, A. J. Smola, and J. Shawe-Taylor. Single-class support vector
machines. In J. Buhmann, W. Maass, H. Ritter, and N. Tishby, editors,Unsupervised Learning,
Dagstuhl-Seminar-Report 235, pages 19–20, 1999.

B. Scḧolkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vectoralgorithms.
Neural Computation, 12:1207–1245, 2000.

A. J. Smola and B. Scḧolkopf. On a kernel-based method for pattern recognition, regression,ap-
proximation and operator inversion.Algorithmica, 22:211–231, 1998.

A. J. Smola, T. Frieß, and B. Schölkopf. Semiparametric support vector and linear programming
machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors,Advances in Neural Information
Processing Systems 11, pages 585–591, Cambridge, MA, 1999. MIT Press.

I. Takeuchi and T. Furuhashi. Non-crossing quantile regressions by SVM. In Proc. International
Joint Conference on Neural Networks, 2004.

M. Tipping. Sparse Bayesian learning and the relevance vector machine.Journal of Machine
Learning Research, 1:211–244, 2001.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for function approximation,
regression estimation, and signal processing. In M. C. Mozer, M. I. Jordan, and T. Petsche,
editors,Advances in Neural Information Processing Systems 9, pages 281–287, Cambridge, MA,
1997. MIT Press.

V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer, Berlin, 1982.

S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty. SimpleSVM. In Tom Fawcett and Nina
Mishra, editors,Proc. Intl. Conf. Machine Learning, Washington DC, 2003. AAAI press.

G. Wahba.Spline Models for Observational Data, volume 59 ofCBMS-NSF Regional Conference
Series in Applied Mathematics. SIAM, Philadelphia, 1990.

R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization bounds for regularization networks
and support vector machines via entropy numbers of compact operators. IEEE Transaction on
Information Theory, 47(6):2516–2532, 2001.

1264

Journal of Machine Learning Research 7 (2006) 1265–1281 Submitted 7/06; Published 7/06

The Interplay of Optimization and Machine Learning Research

Kristin P. Bennett BENNEK@RPI.EDU

Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, NY 12018, USA

Emilio Parrado-Hern ández EMIPAR@TSC.UC3M .ES

Department of Signal Processing and Communications
University Carlos III de Madrid
Legańes (Madrid), 28911, Spain

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract

The fields of machine learning and mathematical programmingare increasingly intertwined. Op-
timization problems lie at the heart of most machine learning approaches. The Special Topic on
Machine Learning and Large Scale Optimization examines this interplay. Machine learning re-
searchers have embraced the advances in mathematical programming allowing new types of models
to be pursued. The special topic includes models using quadratic, linear, second-order cone, semi-
definite, and semi-infinite programs. We observe that the qualities of good optimization algorithms
from the machine learning and optimization perspectives can be quite different. Mathematical pro-
gramming puts a premium on accuracy, speed, and robustness.Since generalization is the bottom
line in machine learning and training is normally done off-line, accuracy and small speed im-
provements are of little concern in machine learning. Machine learning prefers simpler algorithms
that work in reasonable computational time for specific classes of problems. Reducing machine
learning problems to well-explored mathematical programming classes with robust general pur-
pose optimization codes allows machine learning researchers to rapidly develop new techniques.
In turn, machine learning presents new challenges to mathematical programming. The special issue
include papers from two primary themes: novel machine learning models and novel optimization
approaches for existing models. Many papers blend both themes, making small changes in the
underlying core mathematical program that enable the develop of effective new algorithms.

Keywords: machine learning, mathematical programming, convex optimization

1. Introduction

The special topic on “Large Scale Optimization and Machine Learning” focuses on the core op-
timization problems underlying machine learning algorithms. We seek to examine the interaction
of state-of-the-art machine learning and mathematical programming, soliciting papers that either
enhanced the scalability and efficiency of existing machine learning models or that promoted new
uses of mathematical programming in machine learning. The special topic was anoff-shoot of the
PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning)Network of Excel-
lence Workshop on “Machine Learning, SVMs and Large Scale Optimization”, held in Thurnau,
Germany from March 16 to 18, 2005.

c©2006 Kristin P. Bennett and Emilio Parrado-Hernández.

BENNETT AND PARRADO-HERNÁNDEZ

Optimization lies at the heart of machine learning. Most machine learning problems reduce
to optimization problems. Consider the machine learning analyst in action solving aproblem for
some set of data. The modeler formulates the problem by selecting an appropriate family of models
and massages the data into a format amenable to modeling. Then the model is typicallytrained by
solving a core optimization problem that optimizes the variables or parameters ofthe model with
respect to the selected loss function and possibly some regularization function. In the process of
model selection and validation, the core optimization problem may be solved many times. The
research area of mathematical programming intersects with machine learning through these core
optimization problems. On one hand, mathematical programming theory supplies a definition of
what constitutes an optimal solution – the optimality conditions. On the other hand, mathematical
programming algorithms equip machine learning researchers with tools for training large families
of models.

In general, a mathematical program is a problem of the form

mins f (s)
subject to g(s) ≤ 0

h(s) = 0
s∈ Ω

. (1)

The variabless∈ Ω are determined so as to minimize the objective functionf possibly subject to in-
equalityg(s)≤ 0 and equality constraintsh(s) = 0. Examples of the setΩ include then-dimensional
real numbers,n-dimensional integers, and the set of positive semi-definite matrices. Convexity plays
a key role in mathematical programming. Convex programs minimize convex optimization func-
tions subject to convex constraints ensuring that every local minimum is always a global minimum.
In general, convex problems are much more tractable algorithmically and theoretically. The com-
plexity of nonconvex problems can grow enormously. General nonconvex programs are NP-hard.
However, local solutions of such problems may be quite useful in machine learning problems, e.g.
(Dempster et al., 1977; Bennett and Mangasarian, 1993; Bradley et al.,1997; Bradley and Man-
gasarian, 1998). Global optimization addresses the issue of nonconvexoptimization. Integer or
discrete optimization considers nonconvex problems with integer constraints.

A taxonomy of mathematical programs exists based on the types of objectives and constraints.
There are now many flavors of mathematical programs: linear, quadratic, semi-definite, semi-
infinite, integer, nonlinear, goal, geometric, fractional, etc. For example, linear programs have a
linear objective and linear constraints. A more complete description of these problems can be ob-
tained from the mathematical programming glossary (www.cudenver.edu/∼hgreenbe/glossary/) and
the NEOS optimization guide (www-fp.mcs.anl.gov/otc/Guide/). Each flavor of mathematical pro-
gram is a different research area in itself with extensive theory and algorithms. Very brief descrip-
tions of the mathematical programs used in this special issue can be found in theAppendix. Good
sources for theory and algorithms concerning nonlinear programming are(Nocedal and Wright,
1999), (Bertsekas, 2004), and (Bazaraa et al., 2006). An introduction to convex optimization in-
cluding semi-definite programming can be found in (Boyd and Vandenberghe, 2004). Semi-infinite
programming theory and algorithms are covered in (Goberna and López, 1998). Information about
integer programming can be found in (Nemhauser and Wolsey, 1999).

We observe that the relationship between available mathematical programming models and ma-
chine learning models has been increasingly coupled. The adaptation of mathematical program-
ming models and algorithms has helped machine learning research advance. Researchers in neural

1266

CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

networks went from backpropagation in (Rummelhart et al., 1986) to exploring the use of various
unconstrained nonlinear programming techniques such as discussed in (Bishop, 1996). The fact that
backpropagation worked well in turn stimulated mathematical programmers to work on stochastic
gradient descent to better understand its properties, as in (Mangasarian and Solodov, 1994). With
the advent of kernel methods (Cortes and Vapnik, 1995), mathematical programming terms such as
quadratic program, Lagrange multipliers and duality are now very familiar to well-versed machine
learning students. Machine learning researchers are designing novelmodels and methods to ex-
ploit more branches of the mathematical programming tree with a special emphasison constrained
convex optimization. The special topic reflects the diversity of mathematical programming models
being employed in machine learning. We see how recent advances in mathematical programming
have allowed rich new sets of machine learning models to be explored without initial worries about
the underlying algorithm. In turn, machine learning has motivated advances inmathematical pro-
gramming: the optimization problems arising from large scale machine learning anddata mining
far exceed the size of the problem typically reported in the mathematical programming literature.

This special topic investigates two majors themes in the interplay of machine learning (ML) and
mathematical programming (MP).

The first theme contains the extension of well-known optimization methods to new learning
models and paradigms. A wide range of convex programming methods is used tocreate novel mod-
els for problems such as uncertain and missing data, and hypothesis selection. Also, methods are
developed for introducing constraints into the learning model in order to incorporate domain knowl-
edge into graphical models and to enforce nonnegativity and sparsity in dimensionality reduction
methods.

The second theme collects works aimed at solving existing machine learning models more effi-
ciently. As data set size grows, off-the-shelf optimization algorithms become inadequate. Methods
that exploit the properties of learning problems can outperform generic mathematical program-
ming algorithms. Many of the included papers deal with well-known convex optimization problems
present in ML tools such as the quadratic and linear programs at the core of the ubiquitous support
vector machines (SVM) in either primal or dual forms. Tree re-weighted belief propagation is used
to solve LP relaxations of large scale real-world belief nets. We see that thekey to top perfor-
mance is creating algorithms that exploit the structure of the problem and pay careful attention to
algorithmic and numeric issues.

Many of the papers cross boundaries of both themes. They make small changes in the underlying
models that enable the development of powerful new algorithms. Novel methods are developed for
multi-kernel, ranking, graph-based clustering, and structured learning. The resulting algorithms
decompose the problem into convex subproblems that can be more readily solved.

To summarize, in this special issue we see novel approaches to machine learning models that
require solution of continuous optimization problems including: unconstrained, quadratic, linear,
second-order cone, semi-definite, and semi-infinite convex programs. We first examine the inter-
play of machine learning and mathematical programming to understand the desirable properties
of optimization methods used for training a machine learning model. We observe that the desir-
able properties of an optimization algorithm from a machine learning perspective can differ quite
markedly from those typically seen in mathematical programming papers. Then we will examine
the papers within and across the two themes and discuss how they contribute tothe state of the art.

1267

BENNETT AND PARRADO-HERNÁNDEZ

2. Interplay of Optimization and Machine Learning

The interplay of optimization and machine learning is complicated by the fact that machine learning
mixes modeling and methods. In that respect, ML is much like operations research (OR). Mathe-
matical programming/optimization is historically a subfield of OR. OR is concerned with modeling
a system. Mathematical programming is concerned with analyzing and solving themodel. Both
OR and ML analysts address real world problems by formulating a model, deriving the core opti-
mization problem, and using mathematical programming to solve it. According to (Radin, 1998) an
OR analyst must trade off tractability – “the degree to which the model admits convenient analysis”
and validity – “the degree to which inferences drawn from the model hold for real systems”. So at
a high level the OR and ML analysts face the same validity and tractability dilemmas and it is not
surprising that both can exploit the same optimization toolbox.

In ML, generalization is the most essential property used to validate a novelapproach. For a
practical ML problem, the ML analyst might pick one or more families of learningmodels and
an appropriate training loss/regularization function, and then search foran appropriate model that
performs well according to some estimate of the generalization error based on the given training
data. This search typically involves some combination of data preprocessing, optimization, and
heuristics. Yet every stage of the process can introduce errors that can degrade the quality of the
resulting inductive functions. We highlight three sources of such errors. The first source of error
is the fact that the underlying true function and error distribution are unknown, thus any choice of
data representation, model family and loss functions may not be suitable for the problem and thus
introduce inappropriate bias. The second source of error stems from the fact that only a finite amount
of (possibly noisy) data is available. Thus even if we pick appropriate lossfunctions, models, and
out-of-sample estimates, the method may still yield inappropriate results. The thirdsource of error
stems from the difficulty of the search problem that underlies the given modeling problem. Reducing
the problem to a convex optimization by appropriate choices of loss and constraints or relaxations
can greatly help the search problem. Note that in many cases the ML models aremade convex by an
appropriate definition of the system boundaries that treats parameters as fixed. For example, ridge
regression for a fixed ridge parameter is a convex unconstrained quadratic program. The generalized
cross-validation method (Golub and von Matt, 1997) treats the ridge parameter as within the system
boundary, and thus requires the solution of a nonconvex problem.

Consider tractability of a given model expressed as an optimization problem. Both ML and MP
seek algorithms that efficiently compute “appropriate” solutions. The issuesthat make an algorithm
more efficient – complexity, memory usage, etc. – are the same for both communities. But there
is a large gap between what are considered an appropriate solutions in thetwo communities. In
MP, “appropriate” solutions are the ones that solve the model with a high degree of accuracy as
measured by the optimality conditions. As in ML, MP has large suites of benchmark problems.
A benchmark study, typically would address both the speed of the algorithms as measured, for
example, by performance profiles (Dolan and Moré, 2002). The quality of the solution would be
measured by the objective value, a measure of the violation of the constraints, and a measure of
the violations of the Karush-Kuhn-Tucker optimality conditions. Note that all of these metrics of
solution quality are rarely reported in the ML literature. In MP, great care may be taken to make
sure that solutions of equivalent accuracy are compared (see for example (Dolan and Moré, 2002)).

In ML, appropriateness is a much harder question due to the sources of modeling errors de-
scribed above. A typical benchmarking study reports generalization errors and possibly compu-

1268

CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

tation times. Little or no attention is paid to how well the underlying optimization problem was
solved by any of the metrics typically used in mathematical programming. Convergence tolerances
are rarely reported and if they are, they typically are quite large (10−2 to 10−6) relative to those
seen in optimization papers. In machine learning the optimization problems being solved are only
rough approximations of the real problem of finding a model that generalizes well. The ML modeler
may change the problem formulation and algorithms, as long as generalization isnot compromised.
The papers in section 6 of this special topic illustrate how minor model reformulations can lead to
significant improvements in algorithms. In general, it does not make much senseto require a ML
model to converge to a high accuracy solution. When early stopping is usedas a form of regular-
ization, then the algorithm may never need to reach the solution. In this specialtopic (Keerthi et al.,
2006) and (Taskar et al., 2006b) develop algorithms relying on early stopping and find that they offer
advantages over alternative parametric approaches. Thus the desirable goal of a machine learning
algorithm is to find a somewhat accurate solution efficiently. An optimization algorithm that has
a poor asymptotic convergence rate may work quite well for ML. Ill-conditioning of the objective
is typically viewed as a negative aspect of a model in MP, but ill-conditioning of the loss function
and the resulting slow convergence of gradient methods may prevent overfitting. Thus not only is
“good” optimization not necessary, but “bad” optimization algorithms can leadto better machine
learning models.

In the ML community, Occam’s razor appears to apply to algorithms as well; simpleralgorithms
are considered to be better. MP seeks robust optimization algorithms that findvery accurate solu-
tions to a broad class of functions with a premium for decreases in both theoretical complexity and
empirical computation time. The emphasis is on solving the same size problems faster. This leads to
complex algorithms. The effort to implement a simplex method for linear programmingmatching a
state-of-art commercial solver such as CPLEX would be immense. The ML analyst’s computational
needs are different. An algorithm that solves the problem with good generalization in a reasonable
amount of time is a good algorithm. Incremental speed increases are not so interesting. Simplicity
of the algorithms is considered to be a significant plus. Scalability becomes a bigger issue as data set
sizes grow. A general purpose solver is usually not the most scalable choice because it was designed
to robustly solve a wide range of problems to high accuracy. However, theML optimization can be
tailored to exploit the structure of the optimization model. Robustness and ill-conditioning are not
big issues since the algorithm need only be effective for a narrow class of functions and constraints
and high accuracy solutions are frequently unnecessary.

To summarize, desirable properties of an optimization algorithm from the ML perspective are

• good generalization,

• scalability to large problems,

• good performance in practice in terms of execution times and memory requirements,

• simple and easy implementation of algorithm,

• exploitation of problem structure

• fast convergence to an approximate solution of model,

• robustness and numerical stability for class of machine learning models attempted,

• theoretically known convergence and complexity.

1269

BENNETT AND PARRADO-HERNÁNDEZ

3. New Machine Learning Models Using Existing Optimization Methods

The special topic papers include novel machine learning models based on existing primarily convex
programs such as linear, second order cone, and semi-definite programming. The reader unfamiliar
with the basic convex programs can see their definitions in the Appendix. In these papers, the
authors develop novel modeling approaches to uncertainty, hypothesis selection, incorporation of
domain constraints, and graph clustering, and they use off-the-shelf optimization packages to solve
the models.

3.1 Dealing with Uncertainty Using Second Order Cone Programming

The paper “Second Order Cone Programming Approaches for Handling Missing and Uncertain
Data” (Shivaswamy et al., 2006) presents an extension to SVM that deals with situations where the
observations are not complete or present uncertainty. The SVM Quadratic Program (QP) problem is
cast into a more convenient Second Order Cone Program (SOCP) and uncertainty is represented as
probabilistic constraints (SVM slack variables turn out to be random variables). They also come up
with an interesting geometrical interpretation of their method as every data pointbeing the center of
an ellipsoid and the points within this ellipsoid being assigned to the class of the center. The study
is extended to multiclass classification and regression.

3.2 Convex Models for Hypothesis Selection

Two papers address hypothesis selection. (Zhang et al., 2006) looks at pruning an ensemble of
classifiers constructed from a pool of already trained classifiers. Thegoal is to make the performance
of the smaller group equivalent to that of the whole pool, thus saving storage and computational
resources. Traditionally, this selection process has been carried out using heuristics or by using
greedy search. In (Bergkvist et al., 2006), the goal is to identify a smallsubset of hypotheses that
exclude the true targets with a given error probability.

The first paper, “Ensemble Pruning Via Semi-Definite Programming” (Zhanget al., 2006),
presents an optimization for pruning classification ensembles. The selection of the classifiers is
based on a trade-off between their individual accuracies and the disparity of their predictions. This
trade-off determines a quadratic integer program, i.e. a QP where the variables have to be integer
numbers. The authors in (Zhang et al., 2006) propose a chain of transformations of the quadratic
integer program towards a convex semi-definite program (SDP). Experimental results show that this
approach beats the state-of-the-art greedy search methods. In addition, the scheme forms the basis
of a powerful framework for sharing classifiers in a distributed learningenvironment, which enables
the attack of large scale problems.

In the second paper, “Linear Programs for Hypotheses Selection in Probabilistic Inference Mod-
els”, Bergkvist et al. (2006) introduce an LP for hypothesis selection inprobabilistic inference prob-
lems motivated by a protein structure prediction problem. The model optimizes the expected weight
of excluded hypotheses for a given error probability bound. The dual variables of the LP represent
worst-case distributions of the hypotheses. The authors employ generic off-the-shelf LP optimizers
but hypothesize that more efficient algorithms which exploit the problem structure may exist.

4. Models with Side Constraints

The next two papers look at traditional machine learning models with additionalconstraints.

1270

CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

Niculescu et al. (2006), in “Bayesian Network Learning with Parameter Constraints”, use con-
straints to incorporate domain knowledge into Bayesian networks. The paper examines the cases
for parameter sharing and conjugate constrained Dirichlet priors. Theyemploy existing optimiza-
tion algorithms to solve the resulting models. Addition of constraints improves generalization.
Real-world results are presented for hidden process models applied to fMRI brain imaging. They
formally prove that introducing constraints reduces variance.

Non-negative matrix factorisation (NMF) is a very attractive feature selection technique because
it favors sparsity and data representations based on parts of the problem. However, it also poses a
difficult nonconvex problem that is commonly solved via gradient descent.The paper “Learning
Sparse Representations by Non-Negative Matrix Factorization and SCOP” (Heiler and Schn̈orr,
2006) presents an iterative algorithm to perform a sparse non-negative matrix factorization. They
exploit the biconvex nature of Euclidean NMF and the reverse-convex structure of the corresponding
sparsity constraints to derive an efficient optimization algorithm. This way, thestrongly non-convex
NMF is solved through the iterative application of a series of convex SOCP problems.

4.1 SDP Methods for Graph Clustering

The paper “Fast SDP Relaxations of Graph Cut Clustering, Transduction, and Other Combinatorial
Problems” (De Bie and Cristianini, 2006) proposes an SDP relaxation to the normalized cut prob-
lem. The normalized cut problem arises when one wishes to partition a data setwhere similarity
relationships among instances are defined. The mathematical formulation of thisproblem leads
to an intractable combinatorial optimization problem. Spectral relaxation has been used to avoid
this intractability. In spectral relaxation, the combinatorial optimization is cast onto a more simple
eigendecomposition problem that gives the subsets of data. The new approach in (De Bie and Cris-
tianini, 2006) consists of an SDP relaxation of the combinatorial problem thatturns out to be tighter
than the spectral one, although at the expenses of a larger computationalburden. Moreover, they
also present a scheme to develop a cascade of SDP relaxations that allowscontrol of the trade-off
between computational cost and accuracy. This study is extended to applications in semi-supervised
learning.

5. Refining the Classics: Improvements in Algorithms for Widely Ssed Models

Widely used methods such as SVM and Bayesian networks have well-accepted core optimization
problems and algorithms. The demand for the ability to learn with massive amounts of data is
increasing. The immediate answer to this demand from the optimization and machine learning
communities is to try to come up with more efficient implementations of these solid and reliable
optimization methods.

5.1 Optimization Approaches for Dual SVMs

The SVM formulations for classification, regression, ranking, and novelty detection require the
solutions of large dense QPs or LPs. These QP and LP problems were initiallysolved by general-
purpose solvers. Now the demand for more scalable and easier to implement algorithms makes
novel algorithms for SVMs an active and dynamic research area.

The primary challenges in solving the LP and QP arises from the linear inequality constraints. If
the set of constraints that are active, i.e. satisfied at equality, are knownthen the problems reduce to

1271

BENNETT AND PARRADO-HERNÁNDEZ

the solution of a set of linear equations. The inactive constraints have no effect on the final solution
since they are satisfied as strict inequalities. Thus identification of the activeconstraints, or active
set, represents a key step in LP and QP algorithms. One of the most common ways of solving these
large QPs and LPs is to use some active set strategy. An active set strategy estimates the active set,
solves the problem with respect to the estimated active set, uses the result to update the active set
by adding and dropping constraints, and then repeats until an optimal solution is found. In SVMs,
active set methods have a clear machine learning interpretation. For examplein SVM classification,
the active set in the primal corresponds to data points that are on the margin or in error. In the dual
SVM formulation, there is a Lagrangian multiplier associated with each point. In the dual, the active
set is determined by whether each Lagrangian multiplier is at bound or not.

The paper “An Efficient Implementation of an Active Set Method for SVMs”(Scheinberg, 2006)
adapts “traditional” active set methods to the special structure of SVMs. Traditional active set
methods were not thought to be tractable for large scale SVMs, but the paper concludes that they
are competitive with popular methods such as SVMlight (Joachims, 1999). SVMlight is an example
of a restricted active set method in which only a few variables are allowed to vary at each iteration.
The restricted active set method in SVMLight decomposes the QP into subproblems, each identified
by a group of variables that form an active set. Only the variables in the active set will be updated
through the solution of the subproblem. These subproblems are solved untilall the optimality
conditions are met. These methods have the disadvantage of slow convergence when close to the
optimal solution. The full active set in this paper avoids this problem. When full active sets are used,
there is a corresponding speedup in the convergence of the optimization method. The paper provides
a careful discussion of the details necessary for efficient implementation,active set selection, and
warm starts (very valuable for cross-validation). The computational results find that the full active
set method performs faster that SVMlight. This difference is most marked for higher accuracy
solutions. The full active set method offers a speed scalability tradeoff,it performs faster that SVM-
Light but may reach memory limitations sooner since it requires storage of a matrix of the size of
the active set.

Reduced active set methods are taken to the extreme result in the popular sequential minimal
optimization (SMO) method (Platt, 1999). In SMO, all variables except for a subset of two samples
are fixed at each iteration. With the many subsets, the variable selection methodbecomes a key as-
pect in the convergence speed of the algorithm. The paper “Maximum-Gain Working Set Selection
for SVMs” (Glasmachers and Igel, 2006) describes a new strategy to select the working set based
on a greedy maximization of the progress in each single iteration. The algorithmuses precalculated
information, which means no increment of the computational burden. The experiments show sig-
nificant run time reductions over the broadly used SMO-based LIBSVM (Fan et al., 2005), so that
full sets can be used, with a corresponding speedup in the convergence of the optimization method.

The paper “Parallel Software for Training Large Scale Support Vector Machines on Multipro-
cessor Systems” (Zanni et al., 2006) develops a multiprocessor solver for the standard SVM QP.
Recent work in MP is used to develop a parallel gradient-projection-based decomposition technique
for handling subproblems of moderate size. The subproblems and gradient calculations are done
in parallel. Convergence results prove the algorithm converges to an optimal solution of the origi-
nal QP. In practice, thanks to a large working set size, the algorithm converges in a few iterations.
Details on how to fully exploit multiprocessors using strategies such as parallel kernel caching are
provided. Results are reported for SVMs trained on millions of data points.

1272

CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

The paper “Incremental Support Vector Learning: Analysis, Implementation and Applications”
(Laskov et al., 2006) aims at the software implementation of an efficient incremental learning algo-
rithm for SVMs. The authors examine incremental SVM learning in two scenarios: active learning
and limited resource learning. They propose a new storage strategy, simultaneously column-wise
and row-wise, combined with a smarter organization of the computations for theminor iteration in
terms of gaxpy-type matrix-vector products. This algorithm drops the training time of an incremen-
tal SVM by a factor of 5 to 20.

5.2 Optimization Approaches for Primal SVMs

In SVMs and other kernel methods, the computational cost of predicting a novel instance is directly
related to the number of nonzero components or support vectors in the prediction function. Thus
methods with a reduced number of support vectors are needed. One approach to doing this is to
optimize the SVM in the primal form while directing invoking the representer theorem to allow
generalization of kernels. In these direct or primal methods, the predictionfunction is assumed to
consist of a linear combination of basis functions formed by the kernel. Prior work has established
that sparse and reduced sparse or reduced complexity SVM functions can be achieved by either
introducing one-norm regularization or by introducing early stopping strategies.

With respect to greedy construction methods, the paper “Building SupportVector Machines with
Reduced Classifier Complexity” (Keerthi et al., 2006) contains a very efficient algorithm to develop
a compact support vector machine. The efficiency of the method relies on both a primal method
approach to the optimization and a cheap and accurate selection criterion forkernel basis functions.
The experimental work presents a wide and systematic comparison with state-of-the-art column
generation methods. This comparison points out the excellent capabilities of the algorithm in terms
of compression in the number of basis functions, as well as a classification accuracy comparable to
that of the full SVM.

Primal or direct kernel SVM models formulated with absolute value type lossesand one-norm
regularization produce LP core optimization problems. The one-norm enforces sparsity with the
degree of sparsity controllable by a tradeoff parameter. Robust general purpose LP optimization
tools that exploit advanced numerical analysis are available that can reliably and accurately solve
massive problems. But these codes have several drawbacks from machine learning perspective: they
are expensive to buy, they are complicated to implement, they do not exploit problem structure, and
finally they are designed to find highly accurate solutions while in machine learning this may not be
necessary. Thus alternative efficient and easy to implement LP algorithms for LP SVM type models
are sorely needed.

The paper “Exact 1-Norm Support Vector Machines Via Unconstrained Convex Differentiable
Minimization” (Mangasarian, 2006) introduces a Newton method for exactly solving the 1-norm
SVM problem. It shows that the general LP problem can be recast as anunconstrained undiffer-
entiable piecewise quadratic function using a dual exterior penalty function. Unlike prior penalty
formulations like (Fung and Mangasarian, 2004), the penalty parameter is finite. The author in-
troduces a generalized Newton method for solving the revised problem. Theresulting algorithm
outperforms CPLEX, a widely used commercial LP package.

1273

BENNETT AND PARRADO-HERNÁNDEZ

5.3 LP Relaxations for Belief Propagation

The paper “Linear Programming Relaxations and Belief Propagation – An Empirical Study” (Yanover
et al., 2006) introduces a very efficient method to find the most probable configuration of a graphical
model by relaxing the corresponding integer program to a LP. The bad news is that the resulting LP
has a large number of constraints and variables and it cannot be solved on desktop machines using
commercial LP solvers. Fortunately the Tree-Reweighted Belief Propagation (TRBP) algorithm can
be used to solve the LP. Results show that the special purpose TRBP LP solver outperforms CPLEX
and can be used to solve large scale problems that are not tractable with CPLEX. The CPLEX model
represents the graph as a matrix while TRBP directly represents the graph.

6. New Algorithms Starting from Reformulated Models

The special issue also illustrates how small reformulations of the model can yieldmuch better
algorithms. In the final four papers, we see how existing formulations are reformulated to admit
new types of algorithms. In (Sonnenburg et al., 2006) and (Shalev-Shwartz and Singer, 2006),
the revised formulations and novel algorithms can more effectively exploit special structure thus
reducing the problem to a series of familiar, more easily solved problems.

6.1 Large Scale Multi-Kernel Learning Via Semi-Infinite Programming

The success of a kernel method is highly dependent on the choice of kernel. The multi-kernel learn-
ing (MKL) strategy is to consider a suite of kernels and let the algorithm decide on the choice of ker-
nel. The paper “Large Scale Multiple Kernel Learning” (Sonnenburg et al., 2006) proposes a novel
semi-infinite linear program (SILP) for the problem of learning with multiple kernels. Semi-infinite
linear programs have a finite number of variables, a linear objective, and an infinite number of linear
constraints. For SVM classification, the SILP solution is also optimal for the MKL quadratically
constrained quadratic program in (Bach et al., 2004). The SILP is solved using a column generation
method which alternates between solving a restricted master problem and an LP. The restricted mas-
ter problem is solved using the corresponding off-the-shelf single kernel learning algorithms for the
given loss. The LP is solved by a generic LP solver. The algorithm is veryeffective at seeking an
approximate solution to the SILP. The authors show how the method can be extended to a variety of
loss functions. Discussion of valuable details and variations of the algorithmneeded for large scale
problems are provided. Large scale results are achieved using parallelalgorithms. They provide
results for problems with up to 10 million data points and 20 kernels.

6.2 Better Ranking by Exploiting Structure

General purpose optimizers frontiers can be pushed forward in particular cases by exploiting prob-
lem structure. Often optimization problems can be cast onto simpler ones provided that the objective
function follow certain structure. This is the case in the paper “Efficient Learning of Label Rank-
ing by Soft Projection onto Polyhedra” (Shalev-Shwartz and Singer, 2006). The authors develop a
fast and frugal algorithm for learning rankings by comparing the predicted graph with the feedback
graph resulting in a QP with linear constraints. The algorithm decomposes the problem into a series
of soft projections that can be efficiently solved using an iterative algorithm. The algorithm covers a
large class of ranking and classification problems including multiclass and basic SVMs. It reduces
to SOR in the classification case (Mangasarian and Musicant, 1999).

1274

CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

6.3 Max Margin Methods for Structured Output

Two of the papers tackled maximum margin methods for outputs defined on graphs by reformulating
the problem and developing algorithms that could exploit the special structure. The first looks at
hierarchical classification and the second looks at methods for more general structured data.

Maximum margin classification methods have focused on binary output problems. These meth-
ods have succesfully adapted to multicategory classification by analyzing theproblem as a collection
of binary problems (Rifkin and Klautau, 2004). However, emerging scenarios where the output is
modeled by a vector demand a more careful analysis since their binarization involves (i) an expo-
nential number of subproblems and (ii) the loss of the information encoded in the structured output.
In this sense, (Taskar et al., 2006a) proposes an interesting combinationof graphical models and
maximum margin classifiers where the former allows use of the structured output information and
the latter provides a reliable classification technology. Tractability from the optimization point of
view is achieved through the grouping of the variables of the optimization problem into marginals
defined by the graphical model.

The paper “Kernel-Based Learning of Hierarchical Multilabel Classification Models” (Rousu
et al., 2006) provides a more efficient framework for scenarios wherethe vector output describes
a hierarchical relationship. Their formulation requires the solution of a large scale quadratic pro-
gram. This method’s efficiency relies on a decomposition of the core probleminto single variable
subproblems and the use of a gradient-based approach. Moreover, the optimization is enhanced by
a dynamic program that computes the best update directions in the feasible set.

The paper “Structured Prediction, Dual Extragradient and Bregman Projections” (Taskar et al.,
2006b) proposes simple scalable maximimum margin algorithms for structured output models in-
cluding Markov networks and combinatorial models. The problem is to take training data of in-
stances labeled with desired structured outputs and a parametric scoring function and learn the pa-
rameters so that the highest scoring outputs match as closely as possible the desired outputs. Prior
maximum margin approaches produced QP models (Taskar et al., 2005). Bythinking of the prob-
lem one level up as a convex concave saddle point model, the authors cancapitalize on the recent
advances in optimization on extragradient methods (Nesterov, 2003). Theextragradient approach
produces a simple algorithm consisting of a gradient and projection step. For the class of models
considered, the projection requires solution of dynamic program or network flow models for which
very efficient algorithms exist. The method is regularized by early stopping.Interestingly the path
of the extragradient algorithm corresponds closely to the parametric solution path of the regularized
margin methods in their experiments. This demonstrates the interplay of the optimization algorithm
and regularization: the path of the optimization algorithm is part of the regularization and there is
no need to accurately solve the model.

7. Conclusion

Research in ML and research in MP have become increasingly coupled. ML researchers are making
fuller use of the branches of the MP modeling tree. In this issue we see MP researchers using
convex optimization methods including linear, nonlinear, saddle point, semi-infinite, second order
cone, and semi-definite programming models. The availability of general MP models, along with
robust general purpose solvers, provide tools for ML researchers to explore new ML problems. The
resulting ML models challenge the capacity of general purpose solvers resulting in the development
of novel special purpose algorithms that exploit problem structure. These special purpose solvers

1275

BENNETT AND PARRADO-HERNÁNDEZ

do not necessarily possess the traits associated with good optimization algorithms. Tractability and
scalability are valued in both ML and MP communities. Typically, MP demands that algorithms find
high accuracy solutions and that they be robustness across wide classes of problems. In contrast,
ML algorithm need to find good solutions to narrow classes of problems with special structure.
Models may be reformulated to allow better algorithms provided that generalization is improved
or at least not compromised. High accuracy is not required because ofthe inherent inaccuracies
in the machine learning models and the fact that inaccurate solutions are deliberately sought as a
form of regularization, for example as in early stopping. Also, ML puts moreof a premium on
algorithms that are easily implemented and understood at the expense of performance/complexity
improvements that are typically studied in mathematical programming. In this specialtopic large
scale problems were successfully tackled by methods that exploited both the novel MP models
and their special structure and state-of-the-art MP methods. The special issue illustrates the many
forms of convex programs that can be used in ML. But we expect the interplay of MP and ML will
increase as more branches of the MP tree are incorporated into ML and thedemands of large scale
ML models exceed the capacity of existing solvers.

Acknowledgments

We would like to acknowledge support for this project from the IST Programme of the European
Community under the PASCAL Network of Excellence IST2002-506788. We thank the authors
contributing to this special topic for their helpful comments on this introduction. The efforts of the
many anonymous reviewers of this special topic are also much appreciated.

Appendix: Standard Convex Programs

This section reviews the basic convex optimization mathematical programming modelsused in this
special issue.

Quadratic Programming
Quadratic programming is used extensively in machine learning and statistics. The use of the least
squares loss function in methods such as ridge regression and the 2-norm regularization in most
support vector machine models both lead to quadratic programming models. A quadratic program
(QP) has a quadratic objective with linear constraints.

Based on (Nocedal and Wright, 1999), we provide a brief review of quadratic programming and
the reader can see (Nocedal and Wright, 1999) for more details. The general quadratic program can
be stated as

mins
1
2s′Qs+c′s

subject to ais≤ bi i ∈ I
a js= b j j ∈ ε

(2)

where the HessianQ is an×n symmetric matrix, I andε are finite sets of indices andai , i ∈ I ∪ ε
aren×1 vectors. IfQ is positive semi-definite, i.e.s′Qs≥ 0 for anys, then the problem is convex.
For convex QP, any local solution is also a global solution. A QP can always be solved or shown to
be infeasible in a finite number of iterations. The following necessary and sufficient Karush-Kuhn-
Tucker (KKT) optimality conditions of QP are formed with the use of Lagrangian multipliersαi for

1276

CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

the inequality constraints andβ j for the equality constraints:

Primal Feasibility ai
′s≤ bi i ∈ I

a j
′s= b j j ∈ ε

Dual Feasibility Qs+∑i∈I aiαi +∑ j∈ε a jβ j = 0
αi ≥ 0 i ∈ I

Complementarity αi(ai
′s−b j) = 0 i ∈ I

(3)

Note that if there are no inequality constraints (I= /0), then a KKT point can be found by simply
solving a system of linear equations.

Problems with inequality constraints represent more of a challenge. Two families of QP methods
prevail: interior point methods and active-set methods. We focus on the latter since active set
algorithms are a key component of this special topic. The optimal active set isthe set of constraints
satisfied as equalities at the optimal solutions. Active set methods work by making educated guesses
as to the active set and solving the resulting equality constrained QP. If the guesses are wrong, the
method uses gradient and Lagrangian multiplier information to determine constraints to add to or
subtract from the active set.

Classical SVMs and the many subsequent variations require the solution ofa QP problem.

Linear Programming
Linear programming optimizes a linear function subject to linear constraints. Since linear functions
and constraints are convex, an LP is always a convex program. Linearprogramming can be thought
of as a special case of the QP with the HessianQ equal to 0. The general linear program can be
stated as

mins c′s
subject to ais≤ bi i ∈ I

a js= b j j ∈ ε
(4)

Interior point methods and simplex methods (active set methods) are both widely used within gen-
eral purpose LP solvers.

Second-Order Cone Programming
The second-order cone program (SOCP) problems have a linear objective, second-order cone con-
straints, and possibly additional linear constraints:

mins c′s
subject to ||Ris+di ||2 ≤ ais+bi i ∈ C

a js= b j j ∈ ε
(5)

whereRi ∈ Rni×n anddi ∈ Rni . Consult (Boyd and Vandenberghe, 2004) Chapter 4 for an intro-
duction to SOCPs and their application to learning type problems. SOCPs are most often solved
using interior point algorithms. See (Mittelmann, 2003) for a benchmark of general purpose SOCP
algorithms.

Semidefinite Programming
Semidefinite programs (SDPs) are the generalization of linear programs to matrices. In standard

1277

BENNETT AND PARRADO-HERNÁNDEZ

form an SDP minimizes a linear function of a matrix subject to linear equality constraints and a
matrix nonnegativity constraint:

minS 〈C,S〉
subject to 〈A i ,S〉 = bi i ∈ I

S� 0
(6)

whereS, C, andA i are inRn×n andbi ∈ R. HereS� 0 meansS must be positive semidefinite
and〈C,S〉 = trace(CS). SDPs are most commonly solved via interior programming methods. A
comparison of SDP codes can be found in (Mittelmann, 2003).

Semi-infinite Programming
Semi-infinite linear programs (SILPs) are linear programs with infinitely many constraints. A SILP
minimizes a linear objective subject to an infinite number of linear constraints:

mins
1
2c′s

subject to as≤ 0 a∈ A
bs= 0 b ∈ B

(7)

whereA andB are sets (possibly infinite) ofn vectors. Reviews of semi-infinite programming can
be found in (Hettich and Kortanek, 1993) and (Reemtsen and Ruckmann, 1998), while the book
(Goberna and Ĺopez, 1998) gives extensive coverage of the topic.

References

F. R. Bach, G. R. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO
algorithm. InProceedings of the Twenty-first International Conference on MachineLearning,
2004.

M. Bazaraa, H. Sherali, and C. Shetty.Nonlinear Programming Theory and Algorithms. Wiley,
2006.

K. P. Bennett and O. L. Mangasarian. Bilinear separation of two sets in n-space.Computational
Optimization & Applications, 2:207–227, 1993.

A. Bergkvist, P. Damaschke, and M. Lüthi. Linear programs for hypotheses selection in probabilistic
inference models.Journal of Machine Learning Research, 7:1339–1355, 2006.

D. P. Bertsekas.Nonlinear Programming. Athena Scientific, Cambridge, 2004.

C. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, Oxford, 1996.

S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, Cambridge,
2004.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector
machines. In J. Shavlik, editor,Machine Learning Proceedings of the Fifteenth International
Conference(ICML ’98), pages 82–90, San Francisco, California, 1998. Morgan Kaufmann.

1278

CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

P. S. Bradley, O. L. Mangasarian, and W. N. Street. Clustering via concave minimization. In M. C.
Mozer, M. I. Jordan, and T. Petsche, editors,Advances in Neural Information Processing Systems
-9-, pages 368–374, Cambridge, MA, 1997. MIT Press.

C. Cortes and V. Vapnik. Support-vector networks.Machine Learning, 20(3):273–297, 1995.

T. De Bie and N. Cristianini. Fast SDP relaxations approaches of graph cut clustering, transduction
and other combinatorial problems.Journal of Machine Learning Research, 7:1409–1436, 2006.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm.Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

E. Dolan and J. Moŕe. Benchmarking optimization software with performance profiles.Mathemat-
ical Programming, 91(2):201–213, 2002.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for
training support vector machines.Journal of Machine Learning Research, 5(Dec):1889–1918,
2005.

G. Fung and O. L. Mangasarian. A feature selection newton method for support vector machine
classification.Computational Optimization and Applications, 28(2):185–202, 2004.

T. Glasmachers and C. Igel. Maximum-gain working set selection for SVMs.Journal of Machine
Learning Research, 7:1437–1466, 2006.

M. A. Goberna and M. A. Ĺopez.Linear Semi-Infinite Optimization. John Wiley, New York, 1998.

G. H. Golub and U. von Matt. Generalized cross-validation for large scaleproblems. Journal of
Computational and Graphical Statistics, 6(1):1–34, 1997.

M. Heiler and C. Schn̈orr. Learning sparse representations by non-negative matrix factorization and
sequential cone programming.Journal of Machine Learning Research, 7:1385–1407, 2006.

R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods and application.SIAM
Review, 3:380–429, 1993.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola,
editors,Advances in Kernel Methods – Support Vector Learning, pages 169 –184. MIT Press,
Cambridge, MA, 1999.

S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classi-
fier complexity.Journal of Machine Learning Research, 7:1493–1515, 2006.

P. Laskov, C. Gehl, S. Krüger, and K.-R. M̈uller. Incremental support vector learning: Analysis,
implementation and applications.Journal of Machine Learning Research, 7:1909–1936, 2006.

O. L. Mangasarian. Exact 1-norm support vector machines via unconstrained convex differentiable
minimization.Journal of Machine Learning Research, 7:1517–1530, 2006.

O. L. Mangasarian and D. Musicant. Success overrelaxation for support vector machines.IEEE
Transaction on Neural Networks, 10(5):1032–1037, 1999.

1279

BENNETT AND PARRADO-HERNÁNDEZ

O. L. Mangasarian and M. V. Solodov. Serial and parallel backpropagation convergence via non-
monotone perturbed minimization.Optimization Methods and Software, 4(2):103–116, 1994.

H.D. Mittelmann. An independent benchmarking of SDP and SOCP solvers.Mathematical Pro-
gramming, 95(2):407–430, 2003.

G. Nemhauser and L. Wolsey.Integer and Combinatorial Optimization. Wiley, 1999.

Y. Nesterov. Dual extrapolation and its application to solving variational inequalities and related
problems. Core, Catholic University of Louven, 2003.

R. S. Niculescu, T. M. Mitchell, and R. B. Rao. Bayesian network learningwith parameter con-
straints.Journal of Machine Learning Research, 7:1357–1383, 2006.

J. Nocedal and S. J. Wright.Numerical Optimization. Springer, New York, 1999.

J. C. Platt. Fast training of support vector machines using sequential minimaloptimization. In
B. Schlkopf, C. Burges, and A. Smola, editors,Advances in Kernel Methods - Support Vector
Learning, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

R. L. Radin.Optimization in Operations Research. Prentice-Hall, New Jersey, 1998.

R. Reemtsen and J. J. Ruckmann.Semi-infinite programming. Kluwer Academic, 1998.

R. Rifkin and A. Klautau. In defense of one-vs-all classification.Journal of Machine Learning
Research, 5(Jan):101–141, 2004.

J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-based learning of hierarchical
multilabel classification models.Journal of Machine Learning Research, 7:1601–1626, 2006.

D. Rummelhart, G. Hinton, and R. Williams. Learning internal representations by error propagation.
In D. Rummelhart and J. McClelland, editors,Parallel Distributed Processing, pages 318–362,
Cambridge, 1986. MIT Press.

K. Scheinberg. An efficient implementation of an active set method for SVMs. Journal of Machine
Learning Research, 7:2237–2257, 2006.

S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto poly-
hedra.Journal of Machine Learning Research, 7:1567–1599, 2006.

P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola. Second order cone programming approaches
for handling missing and uncertain data.Journal of Machine Learning Research, 7:1283–1314,
2006.

S. Sonnenburg, G. R̈atsch, C. Scḧafer, and B. Scḧolkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7:1531–1565, 2006.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction models: a
large margin approach. InInternational Conference on Machine Learning, 2005.

B. Taskar, C. Guestrin, V. Chatalbashev, and D. Koller. Max-margin markov networks.Journal of
Machine Learning Research, pages 1627–1653, 2006a.

1280

CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured prediction,dual extragradient and Bregman
projections.Journal of Machine Learning Research, 7:1627–1653, 2006b.

C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propagation- an
empirical study.Journal of Machine Learning Research, 7:1887–1907, 2006.

L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale support vector
machines on multiprocessor systems.Journal of Machine Learning Research, 7:1467–1492,
2006.

Y. Zhang, S. Burer, and W. N. Street. Ensemble pruning via semi-definite programming.Journal of
Machine Learning Research, 7:1315–1338, 2006.

1281

Journal of Machine Learning Research 7 (2006) 1283–1314 Submitted 7/05; Published 7/06

Second Order Cone Programming Approaches
for Handling Missing and Uncertain Data

Pannagadatta K. Shivaswamy PANNAGA@CS.COLUMBIA .EDU

Computer Science
Columbia University
New York, 10027, USA

Chiranjib Bhattacharyya CHIRU@CSA.IISC.ERNET.IN
Department of Computer Science and Automation
Indian Institute of Science
Bangalore, 560 012, India

Alexander J. Smola ALEX .SMOLA @NICTA .COM.AU

Statistical Machine Learning Program
National ICT Australia and ANU
Canberra, ACT 0200, Australia

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract
We propose a novel second order cone programming formulation for designing robust classifiers
which can handle uncertainty in observations. Similar formulations are also derived for designing
regression functions which are robust to uncertainties in the regression setting. The proposed for-
mulations are independent of the underlying distribution,requiring only the existence of second or-
der moments. These formulations are then specialized to thecase of missing values in observations
for both classification and regression problems. Experiments show that the proposed formulations
outperform imputation.

1. Introduction

Denote by(x,y)∈X×Y patterns with corresponding labels. The typical machine learning formula-
tion only deals with the case where(x,y) are givenexactly. Quite often, however, this is not the case
— for instance in the case of missing values we may be able (using a secondary estimation proce-
dure) to estimate the values of the missing variables, albeit with a certain degreeof uncertainty. In
other cases, the observations maybe systematically censored. In yet other cases the data may repre-
sent an entire equivalence class of observations (e.g. in optical character recognition all digits, their
translates, small rotations, slanted versions, etc. bear the same label). It istherefore only natural to
take the potential range of such data into account and design estimators accordingly. What we pro-
pose in the present paper goes beyond the traditional imputation strategy in the context of missing
variables. Instead, we integrate the fact that some observations are notcompletely determined into
the optimization problem itself, leading to convex programming formulations.

In the context of this paper we will assume that the uncertainty is only in the patterns x, e.g.
some of its components maybe missing, and the labelsy are known precisely whenever given.
We first consider the problem of binary classification where the labelsy can take two values,Y =

c©2006 Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya and Alexander J. Smola.

SHIVASWAMY , BHATTACHARYYA AND SMOLA

{1,−1}. This problem was partially addressed in (Bhattacharyya et al., 2004b),where a second
order cone programming (SOCP) formulation was derived to design a robust linear classifier when
the uncertainty was described by multivariate normal distributions. Another related approach is
the Total Support Vector Classification (TSVC) of Bi and Zhang (2004)who, starting from a very
similar premise, end up with a non-convex problem with corresponding iterative procedure.

One of the main contributions of this paper is to generalize the results of Bhattacharyya et al.
(2004b) by proposing a SOCP formulation for designing robust binary classifiers for arbitrary distri-
butions having finite mean and covariance. This generalization is acheivedby using a multivariate
Chebychev inequality (Marshall and Olkin, 1960). We also show that the formulation achieves
robustness by requiring that for every uncertain datapoint an ellipsoid should lie in the correct half-
space. This geometric view immediately motivates various error measures whichcan serve as per-
formance metrics. We also extend this approach to the multicategory case. Next we consider the
problem of regression with uncertainty in the patternsx. Using Chebyshev inequalities two SOCP
fromulations are derived, namelyClose to Meanformulation andSmall Residualformulation, which
give linear regression functions robust to the uncertainty inx. This is another important contribu-
tion of this paper. As in the classification case the formulations can be interpreted geometrically
suggesting various error measures. The proposed formulations are then applied to the problem of
patterns having missing values both in the case of classification and regression. Experiments con-
ducted on real world data sets show that the proposed formulations outperform imputations. We
also propose a way to extend the proposed formulations to arbitrary feature spaces by using kernels
for both classification and regression problems.

Outline: The paper is organised as follows: Section 2 introduces the problem of classification
with uncertain data. In section 3 we make use of Chebyshev inequalities for multivariate random
variable to obtain an SOCP which is one of the main contribution of the paper. Wealso show that
same formulation could be obtained by assuming that the underlying uncertaintycan be modeled
by an ellipsoid. This geometrical insight is exploited for designing various error measures. A
similar formulation is obtained for a normal distribution. Instead of an ellipsoid one can think of
more general sets to describe uncertainty. One can tackle such formulations by constraint sampling
methods. These constraint sampling methods along with other extensions are discussed in section
4. The other major contribution is discussed in section 5. Again using Chebyshev inequalities
two different formulations are derived for regression in section 5 for handling uncertainty inx. As
before the formulations motivate various error measures which are useful for comparison. In section
6 we specialize the formulations to the missing value problem both in the case of classification and
regression. In section 7 nonlinear prediction functions are discussed.To compare the performance
of the formulations numerical experiments were performed on various realworld datasets. The
results are compared favourably with the imputation based strategy, details are given in section 8.
Finally we conclude in section 9.

2. Linear Classification by Hyperplanes

Assume that we haven observations(xi ,yi) drawn iid (independently and identically distributed)
from a distribution overX× Y, wherexi is the ith pattern andyi is the corresponding label. In
the following we will briefly review the SVM formulation when the observations are known with
certainty and then consider the problem of uncertain observations.

1284

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

2.1 Classification with Certainty

For simplicity assume thatY = {±1} andX = R
m with a finitem. For linearly separable datasets

we can find a hyperplane〈w,x〉+ b = 0 1 which separates the two classes and the corresponding
classification rule is given by

f (x) = sgn(〈w,x〉+b) .

One can compute the parameters of the hyperplane(w,b) by solving a quadratic optimization prob-
lem (see Cortes and Vapnik (1995))

minimize
w,b

1
2
‖w‖2 (1a)

subject toyi (〈w,xi〉+b)≥ 1 for all 1≤ i ≤ n, (1b)

where‖w‖ is the euclidean norm.2 In many cases, such separation is impossible. In this sense the
constraints (1b) are hard. One can still construct a hyperplane by relaxing the constraints in (1). This
leads to the following soft margin formulation withL1 regularization (Bennett and Mangasarian,
1993; Cortes and Vapnik, 1995):

minimize
w,b,ξ

1
2
‖w‖2 +C

n

∑
i=1

ξi (2a)

subject toyi (〈w,xi〉+b)≥ 1−ξi for all 1≤ i ≤ n (2b)

ξi ≥ 0 for all 1≤ i ≤ n. (2c)

The above formulation minimizes an upper bound on the number of errors. Errors occur when
ξi ≥ 1. The quantityCξi is the “penalty” for any data pointxi that either lies within the margin on
the correct side of the hyperplane (ξi ≤ 1) or on the wrong side of the hyperplane (ξi > 1).

One can re-formulate (2) as an SOCP by replacing the‖w‖2 term in the objective (2a) by a
constraint which upper bounds‖w‖ by a constant W. This yields

minimize
w,b,ξ

n

∑
i=1

ξi (3a)

subject toyi (〈w,xi〉+b)≥ 1−ξi for all 1≤ i ≤ n (3b)

ξi ≥ 0 for all 1≤ i ≤ n (3c)

‖w‖ ≤W. (3d)

Instead ofC the formulation (3) uses a direct bound on‖w‖, namelyW. One can show that for
suitably chosenC andW the formulations (2) and (3) give the same optimal values of(w,b,ξ). Note
that (3d) is a second order cone constraint (Lobo et al., 1998).3 With this reformulation in mind we
will, in the rest of the paper, deal with (2) and, with slight abuse of nomenclature, discuss SOCPs
where the transformation from (2) to (3) is implicit.

1. 〈a,b〉 denotes the dot product betweena,b∈ X. ForX = R
m,〈a,b〉= a⊤b. The formulations discussed in the paper

holds for arbitrary Hilbert spaces with a suitably defined dot product〈., .〉.
2. The Euclidean norm for elementx∈ X is defined as‖x‖=

√

〈x,x〉 whereX is a Hilbert space.
3. Second order cones are given by inequalities inw which take the form‖Σw+c‖ ≤ 〈w,x〉+b. In this casec = 0 and

the cone contains a ray in the direction of−w, b determines the offset from the origin, andΣ determines the shape of
the cone.

1285

SHIVASWAMY , BHATTACHARYYA AND SMOLA

2.2 Classification Under Uncertainty

So far we assumed that the(xi ,yi) pairs are known with certainty. In many situations this may not
be the case. Suppose that instead of the pattern(xi ,yi) we only have a distribution overxi , that isxi

is a random variable. In this case we may replace (2b) by a probabilistic constraint

Pr
xi
{yi (〈w,xi〉+b)≥ 1−ξi} ≥ 1−κi for all 1≤ i ≤ n. (4)

In other words, we require that the random variablexi lies on the correct side of the hyperplane with
probability greater thanκi . For high values ofκi , which is a user defined parameter in(0,1], one
can obtain a good classifier with a low probability of making errors.

Unless we make some further assumptions or approximations on (4) it will be rather difficult to
solve it directly. For this purpose the following sections describe various approaches on how to deal
with the optimization. We begin with the assumption that the second moments ofxi exist. In this
case we may make use of Chebyshev inequalities (Marshall and Olkin, 1960) to obtain a SOCP.

2.3 Inequalities on Moments

The key tool are the following inequalities, which allow us to bound probabilitiesof misclassifi-
cation subject to second order moment constraints onx. Markov’s inequality states that ifξ is a
random variable,h : R→ [0,∞) anda is some positive constant then

Pr{h(ξ)≥ a} ≤ E [h(ξ)]

a
.

Consider the functionh(x) = x2. This yields

Pr{|ξ| ≥ a} ≤ E
[

ξ2
]

a2 . (5)

Moreover, consideringh(x) = (x−E[x])2 yields the Chebyshev inequality

Pr{|ξ−E(ξ)| ≥ a} ≤ Var [ξ]

a2 . (6)

Denote by ¯x,Σ mean and variance of a random variablex. In this case the multivariate Chebyshev in-
equality (Marshall and Olkin, 1960; Lanckriet et al., 2002; Boyd and Vandenberghe, 2004) is given
by

sup
x∼(x,Σ)

Pr{〈w,x〉 ≤ t}= (1+d2)−1 whered2 = inf
x|〈x,w〉≤t

(x−x)⊤Σ−1(x−x) . (7)

This bound always holds for a family of distributions having the same secondorder moments and
in the worst case equality is attained. We will refer to the distribution corresponding to the worst
case as theworst distribution. These bounds will be used to turn the linear inequalities used in
Support Vector Machine classification and regression into inequalities which take the uncertainty of
the observed random variables into account.

3. Classification

The main results of our work for the classification problem are presented inthis section. Second
order cone programming solutions are developed which can handle uncertainty in the observations.

1286

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

3.1 Main Result

In order to make progress we need to specify properties of (4). Several settings come to mind and
we will show that all of them lead to an SOCP.

Robust Formulation Assume that for eachxi we only know its mean ¯xi and varianceΣi . In this
case we want to be able to classify correctly even for theworst distributionin this class.
Denote byx∼ (µ,Σ) a family of distributions which have a common mean and covariance,
given byµ andΣ respectively. In this case (4) becomes

inf
xi∼(x̄i ,Σi)

Pr
xi

(yi (〈xi ,w〉+b)≥ 1−ξi)≥ 1−κi . (8)

This means that even for the worst distribution we still classifyxi correctly with high proba-
bility 1−κi .

Normal Distribution Equally well, we might assume thatxi is, indeed, distributed according to
a normal distribution with mean ¯xi and varianceΣi . This should allow us to provide tighter
bounds, as we have perfect knowledge on howxi is distributed. In other words, we would like
to solve the classification problem, where (4) becomes

Pr
xi∼N(x̄i ,Σi)

(yi (〈xi ,w〉+b)≥ 1−ξi)≥ 1−κi . (9)

Using a Gaussian assumption on the underlying data allows one to use readily available tech-
niques like EM (Dempster et al., 1977; Schneider, 2001) to impute the missing values.

It turns out that both (8) and (9) lead to the same optimization problem.

Theorem 1 The classification problem with uncertainty, as described in (4) leads to the following
second order cone program, when using constraints (8), (9):

minimize
w,b,ξ

1
2
‖w‖2 +C

n

∑
i=1

ξi (10a)

subject to yi (〈w, x̄i〉+b)≥ 1−ξi + γi

∥

∥

∥

∥

Σ
1
2
i w

∥

∥

∥

∥

for all 1≤ i ≤ n (10b)

ξi ≥ 0 for all 1≤ i ≤ n, (10c)

whereΣ 1
2 is a symmetric square matrix and is the matrix square root ofΣ = Σ 1

2 Σ 1
2 .

More specifically, the following formula forγi hold:

• In the robust casēxi , Σi correspond to the presumed means and variances and

γi =
√

κi/(1−κi). (11)

• In the normal distribution case, again̄xi ,Σi correspond to mean and variance. Moreoverγi is
given by the functional inverse of the normal CDF, that is

γi = φ−1(κi) whereφ(u) :=
1√
2π

Z u

−∞
e−

s2
2 ds. (12)

1287

SHIVASWAMY , BHATTACHARYYA AND SMOLA

Note that forκi < 0.5 the functional inverse of the Gaussian cumulative distribution function be-
comes negative. This means that in those cases the joint optimization problem isnonconvex, as the
second order cone constraint enters as aconcavefunction. This is the problem that Bi and Zhang
(2004) study. They find an iterative procedure which will converge to alocal optimum. On the other
hand, wheneverγi ≥ 0 we have aconvexproblem with unique minimum value.

As expectedφ−1(κi) <
√

κi
1−κi

. What this means in terms of our formulation is that, by making

Gaussian assumption we only scale down the size of the uncertainty ellipsoid withrespect to the
Chebyshev bound.

Formulation (10) can be solved efficiently using various interior point optimization methods
(Boyd and Vandenberghe, 2004; Lobo et al., 1998; Nesterov and Nemirovskii, 1993) with freely
available solvers, such as SeDuMi (Sturm, 1999) making them attractive for large scale missing
value problems.

3.2 Proof of Theorem 1

Robust Classification We can restate (8) as

sup
x∼(xi ,Σi)

Pr
x
{yi (〈w,x〉+b)≤ 1−ξi} ≤ κi .

See that it is exactly equivalent to (8) and using Eq. (7) we can write

sup
x∼(xi ,Σi)

Pr
x
{yi (〈w,x〉+b)≥ 1−ξi}= (1+d2)−1≤ κi , (13a)

where,d2 = inf
x|yi(〈x,w〉+b)≤1−ξi

(x−xi)
⊤Σ−1

i (x−xi) . (13b)

Now we solve (13b) explicitly. In casexi satisfiesyi (〈w,xi〉+b)≥ 1−ξi then clearly the infimum in
(13b) is zero. If not,d2 is just the distance of the meanxi from the hyperplaneyi (〈w,xi〉+b)= 1−ξi ,
that is

d2 =
yi (〈w,xi〉+b−1+ξi)

√

w⊤Σiw
. (14)

The expression ford2 in (14) when plugged into the requirement11+d2 ≤ κi gives (10b) whereγi is
given as in (11) thus proving the first part.

Normal Distribution Since projections of a normal distributions are themselves normal we may
rewrite (9) as a scalar probabilistic constraint. We have

Pr

{

zi−zi

σzi

≥ yib+ξi−1−zi

σzi

}

≤ κi , (15)

wherezi := −yi 〈w,xi〉 is a normal random variable with mean ¯zi and varianceσ2
zi

:= w⊤Σiw. Con-
sequently(zi − z̄i)/σzi is a random variable with zero mean and unit variance and we can compute
the lhs of (15) by evaluating the cumulative distribution functionφ(x) for normal distributions. This
makes (15) equivalent to the condition

φ
(

σ−1
zi

(yib+ξi−1−zi)
)

≥ κi ,

which can be solved for the argument ofφ.

1288

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

3.3 Geometric Interpretation and Error Measures

The constraint (10b) can also be derived from a geometric viewpoint. Assume thatx takes values in
an ellipsoid with center ¯x, metricΣ and radius4 γ, that is

x∈ E(x̄,Σ,γ) :=
{

x|(x− x̄)⊤Σ−1(x− x̄)≤ γ2
}

. (16)

The robustness criteria can be enforced by requiring that that we classify x correctly for allx ∈
E(x̄,Σ,γ), that is

y(〈x,w〉+b)≥ 1−ξ for all x∈ E(x̄,Σ,γ). (17)

In the subsequent section we will study other constraints than ellipsoid sets for x.

Lemma 2 The optimization problem

minimize
x

〈w,x〉 subject to x∈ E(x̄,Σ,γ)

has its minimum at̄x− γ
(

w⊤Σw
)− 1

2 Σw with minimum value〈x̄,w〉− γ
(

w⊤Σw
)

1
2 . Moreover, the

maximum of(〈w,x〉−〈w, x̄〉) subject to x∈ E(x̄,Σ,γ) is given byγ
∥

∥

∥
Σ 1

2 w
∥

∥

∥
.

Proof We begin with the second optimization problem. Substitutingv := Σ− 1
2 (x− x̄) one can see

that the problem is equivalent to maximizing〈w,Σ 1
2 v〉 subject to‖v‖ ≤ γ. The latter is maximized

for v = γΣ 1
2 w/

∥

∥

∥
Σ 1

2 w
∥

∥

∥
with maximum valueγ

∥

∥

∥
Σ 1

2 w
∥

∥

∥
. This proves the second claim.

The first claim follows from the observation that maximum and minimum of the second objec-
tive function match (up to a sign) and from the fact that the first objective function can be obtained
form the second by a constant offset〈w, x̄〉.
This means that for fixedw the minimum of the lhs of (17) is given by

yi (〈x̄i ,w〉+b)− γi

√

w⊤Σiw. (18)

The parameterγ is a function ofκ, and is given by (11) in the general case. For the normal case
it is given by (12). We will now use this ellipsoidal view to derive quantities which can serve as
performance measures on a test set.

Worst Case Error: given an uncertainty ellipsoid, we can have the following scenarios:

1. The centroid is classified correctly and the hyperplane does not cut the ellipsoid: The error is
zero as all the points within the ellipsoid are classified correctly.

2. The centroid is misclassified and the hyperplane does not cut the ellipsoid: Here the error is
1 as all the points within the ellipsoid are misclassified.

3. The hyperplane cuts the ellipsoid. Here the worst case error is one aswe can always find
points within the uncertainty ellipsoid that get misclassified.

4. Note that we could as well dispose ofγ by transformingΣ← γ−2Σ. The latter, however, leads to somewhat inconve-
nient notation.

1289

SHIVASWAMY , BHATTACHARYYA AND SMOLA

Figure 1 illustrates these cases. It shows a scenario in which there is uncertainty in two of the
features. Figure corresponds to those two dimensions. It shows three ellipsoids corresponding to
the possible scenarios.

To decide whether the ellipsoid,E(µ,Σ,γ), intersects the hyperplane,w⊤x+b = 0, one needs to
compute

z=
w⊤µ+b√

w⊤Σw
.

If |z| ≤ γ then the hyperplane intersects the ellipsoid, see (Bhattacharyya et al., 2004a). For an
uncertain observation, i.e. given an ellipsoid, with the labely, the worst case error is given by

ewc(E) =

{

1 if yz< γ
0 otherwise.

Expected Error The previous measure is a pessimistic one. A more optimistic measure could be
the expected error. We find out the volume of the ellipsoid on the wrong side of the hyperplane and
use the ratio of this volume to the entire volume of the ellipsoid as the expected error measure. When
the hyperplane doesn’t cut the ellipsoid, expected error is either zero or one depending on whether
the ellipsoid lies entirely on the correct side or entirely on the wrong side of thehyperplane. In some
sense, this measure gives the expected error for each sample when there is uncertainty. In figure 1
we essentially take the fraction of the area of the shaded portion of the ellipsoidas the expected error
measure. In all our experiments, this was done by generating large numberof uniformly distributed
points in the ellipsoid and then taking the fraction of the number of points on the correct side of the
hyperplane to the total number of points generated.

4. Extensions

We now proceed to extending the optimization problem to a larger class of constraints. The fol-
lowing three modifications come to mind: (a) extension to multiclass classification, (b) extension of
the setting to different types of set constraints, and (c) the use of constraint sampling to deal with
nontrivial constraint sets

4.1 Multiclass Classification

An obvious and necessary extension of above optimization problems is to deal with multiclass clas-
sification. Giveny∈ Y one solves the an optimization problem maximizing the multiclass margin
(Collins, 2002; R̈atsch et al., 2002; Taskar et al., 2003):

minimize
w,ξ

n

∑
i=1

ξi (19a)

subject to〈wyi ,xi〉−max
y6=yi

〈wy,xi〉 ≥ 1−ξi andξi ≥ 0 for all 1≤ i ≤ n (19b)

|Y|

∑
i=1

‖wyi‖2≤W2. (19c)

Herewi are the weight vectors corresponding to each class. Taking square roots of (19c) yields a
proper SOCP constraint onw∈ R

d×|Y|. Note that instead of (19b) we could also state|Y|−1 linear

1290

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

−2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

Correctly Classified

Misclassified

Misclassified
Correctly Classified

Hyperplane

Class +1

Class +1

Class −1

Figure 1: Three scenarios occurring when classifying a point: One of the unshaded ellipsoids lies
entirely on the ”correct” side of the hyperplane, the other lies entirely on the”wrong”
side of the hyperplane. The third, partially shaded ellipsoid has parts on either sides. In
the worst case we count the error for this pattern as one whereas in the expected case we
count the error as the fraction of the volume (in this case area) on the ”wrong” side as the
error

inequalities onwi according to each(yi ,y) combination. The latter allows us apply a reasoning
analogous to that of Theorem 1 (we skip the proof as it is identical to that ofSection 3.2 with small
modifications for a union bound argument). This yields:

minimize
w,b,ξ

1
2

|Y|

∑
i=1

‖wi‖2 +C
n

∑
i=1

ξi (20a)

subject to(〈wyi −wy, x̄i〉)≥ 1−ξi + γi

∥

∥

∥

∥

Σ
1
2
i (wyi −wy)

∥

∥

∥

∥

for 1≤ i ≤ n,y 6= yi (20b)

ξi ≥ 0 for 1≤ i ≤ n. (20c)

The key difference between (10) and (20) is that we have a set of|Y| −1 second order cone con-
straints per observation.

4.2 Set Constraints

The formulations presented so far can be broadly understood in the context of robust convex op-
timization (see Ben-Tal and Nemirovski (1998, 2001)). In the following wediscuss a few related
formulations which were proposed in the context of pattern classification. This subsection lists types
of the constraint set and the kind of optimization problems used for solving SVM for the underlying
constraint sets.

1291

SHIVASWAMY , BHATTACHARYYA AND SMOLA

Note that we may rewrite the constraints on the classification as follows:

yi (〈x,w〉+b)≥ 1−ξi for all x∈ Si . (21)

Here the setsSi are given bySi = E(x̄i ,Σi ,γi). This puts our optimization setting into the same cate-
gory as the knowledge-based SVM (Fung et al., 2002) and SDP for invariances (Graepel and Herbrich,
2004), as all three deal with the above type of constraint (21), but the setSi is different. More to the
point, in (Graepel and Herbrich, 2004)Si = S(bi ,β) is a polynomial inβ which describes the set of
invariance transforms ofxi (such as distortion or translation). (Fung et al., 2002) defineSi to be a
polyhedral “knowledge” set, specified by the intersection of linear constraints.

By the linearity of (21) it follows that if (21) holds forSi then it also holds for coSi , the convex
hull of Si . Such considerations suggest yet another optimization setting: instead of specifying a
polyhedral setSi by constraints we can also specify it by its vertices. Depending onSi such a
formulation may be computationally more efficient.

In particular ifSi is the convex hull of a set of generatorsxi j as in

Si = co{xi j for 1≤ j ≤mi}.

We can replace (21) by

yi (〈w,xi j 〉+b)≥ 1−ξi for all 1≤ j ≤mi .

In other words, enforcing constraints for the convex hull is equivalent to enforcing them for the
verticesof the set. Note that the index ranges overj rather thani. Such a setting is useful e.g. in the
case of range constraints, where variables are just given by intervalboundaries. Table 1 summarizes
the five cases. Clearly all the above constraints can be mixed and matched. More central is the
notion of stating the problems via (21) as a starting point.

Table 1: Constraint sets and corresponding optimization problems.
Name SetSi Optimization Problem
Plain SVM {xi} Quadratic Program
Knowledge Based SVM Polyhedral set Quadratic Program
Invariances trajectory of polynomial Semidefinite Program
Normal Distribution E(xi ,Σi ,γi) Second Order Cone Program
Convex Hull co{xi j ∀ 1≤ j ≤mi} Quadratic Program

4.3 Constraint Sampling Approaches

In the cases of Table 1 reasonably efficient convex optimization problems can be found which allow
one to solve the domain constrained optimization problem. That said, the optimizationis often
quite costly. For instance, the invariance based SDP constraints of Graepel and Herbrich (2004) are
computationally tractable only if the number of observations is in the order of tens to hundreds, a
far cry from requirements of massive datasets with thousands to millions of observations.

Even worse, the setS may not be finite and it may not be convex either. This means that
the optimization problem, while convex, will not be able to incorporateS efficiently. We could,
of course, circumscribe an ellipsoid forS by using a largeγ to obtain a sufficient condition. This

1292

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

approach, however, would typically lead to overly pessimistic classifiers. An alternative is constraint
sampling, as proposed by (de Farias and Roy, 2004; Calafiore and Campi, 2004).

Let f : R
d→R andc : R

d×R
m→R

l be convex functions, withΩ⊆R
d being a closed convex

set andS⊆ R
l . Consider the following optimization problem which is an instance of well known

semi-infinite program

minimize
θ∈Ω

f (θ) subject toc(θ,x)≤ 0 for all x∈ S. (22)

Depending onS the problem may have infinite number of constraints, and is in general intractable
for arbitrary f andc. The constraint sampling approach for such problems proceeds by first impos-
ing a probability distribution overSand then obtainingN independent observations,x1, . . . ,xN from
the setSby sampling. Finally one solves the finite convex optimization problem

minimize
θ∈Ω

f (θ) subject toc(θ,xi)≤ 0 for all 1≤ i ≤ N. (23)

The idea is that by satisfyingN constraints there is a high probability that an arbitrary constraint
c(x,θ) is also satisfied. LetθN be the solution of (23). Note that sincexi are random variablesθN, is
also a random variable. The choice ofN is given by a theorem due to Calafiore and Campi (2004).

Theorem 3 Let ε,β ∈ (0,1) and letθ ∈ R
d be the decision vector then

Pr{V(θN)≤ ε} ≥ 1−β where V(θN) = Pr{c(θN,x) > 0|x∈ S}

holds if

N≥ 2
[

dε−1 logε−1 + ε−1 logβ−1 +d
]

,

provided the set{x∈ S|c(θN,x) > 0} is measurable.

Such a choice ofN guarantees that the optimal solutionθN of the sampled problem (23) isε level
feasible solution of the robust optimization problem (22) with high probability. Specializing this
approach for the problem at hand would require drawingN independent observations from the set
Si , for each uncertain constraint, and replacing the SOCP constraint byN linear constraints of the
form

y(w⊤x j
i +b)≥ 1 for all j ∈ {1, . . .N}.

The choice ofN is given by Theorem 3. Clearly the resulting problem is convex and has finite
number of constraints. More importantly this makes the robust problem same asthe standard SVM
optimization problem but with more number of constraints.

In summary the advantage with the constraint sampling approach is one can stillsolve a robust
problem by using a standard SVM solver instead of an SOCP. Another advantage is the approach
easily carries over to arbitrary feature spaces. The downside of Theorem 3 is thatN depends linearly
on thedimensionalityof w. This means that for nonparametric setting tighter bounds are required.5

5. Such bounds are subject to further work and will be reported separately.

1293

SHIVASWAMY , BHATTACHARYYA AND SMOLA

5. Regression

Beyond classification the robust optimization approach can also be extended to regression. In this
case one aims at finding a functionf : X→ Y such that some measure of deviationc(e) between the
observations and predictions, wheree(f (x),y) := f (x)−y, is small. For instance we penalize

c(e) = 1
2e2 LMS Regression (l2) (24a)

c(e) = |e| Median Regression (l1) (24b)

c(e) = max(0, |e|− ε) ε-insensitive Regression (24c)

c(e) =

{

|e|− σ
2 if |e| ≤ σ

1
2σe2 otherwise

Huber’s robust regression (24d)

The ℓ1 and ℓ2 losses are classical. Theε-insensitive loss was proposed by Vapnik et al. (1997),
the robust loss is due to Huber (1982). Typically one does not minimize the empirical average
over these losses directly but rather one minimizes the regularized risk whichis composed of the
empirical mean plus a penalty term onf controlling the capacity. See e.g. (Schölkopf and Smola,
2002) for further details.

Relatively little thought has been given so far to the problem whenx may not be well determined.
Bishop (1995) studies the case wherex is noisy and he proves that this has a regularizing effect on
the estimate. Our aim is complementary: we wish to find robust estimators which do not change
significantly whenx is only known approximately subject to some uncertainty. This occurs, e.g.
when some coordinates ofx are missing.

The basic tool for our approach are the Chebyshev and Gauss-Markov inequalities respectively
to bound the first and second moment ofe(f (x),y). These inequalities are used to derive two
SOCP formulations for designing robust estimators useful for regression with missing variables.
Note that no distribution assumptions are made on the underlying uncertainty, except that the first
and the second moments are available. Our strategy is similar to (Chandrasekaran et al., 1998;
El Ghaoui and Lebret, 1997) where the worst case residual is limited in presence of bounded uncer-
tainties.

5.1 Penalized Linear Regression and Support Vector Regression

For simplicity the main body of our derivation covers the linear setting. Extensionto kernels is
discussed in a later section Section 7. In penalized linear regression settingsone assumes that there
is a function

f (x) = 〈w,x〉+b, (25)

which is used to minimize a regularized risk

minimize
w,b

n

∑
i=1

c(ei) subject to‖w‖ ≤W andei = f (xi)−yi . (26)

HereW > 0. As long asc(ei) is a convex function, the optimization problem (26) is a convex
programming problem. More specifically, for the three loss functions of (24a) we obtain a quadratic
program. Forc(e) = 1

2e2 we obtain Gaussian Process regression estimators (Williams, 1998), in
the second case we obtain nonparametric median estimates (Le et al., 2005), and finally c(e) =
max(0, |e|− ε) yieldsε-insensitive SV regression (Vapnik et al., 1997).

1294

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

Eq. (26) is somewhat nonstandard insofar as the penalty on‖w‖ is imposed via the constraints
rather than via a penalty in the objective directly. We do so in order to obtain second order cone
programs for the robust formulation more easily without the need to dualize immediately. In the fol-
lowing part of the paper we will now seek means of bounding or estimatingei subject to constraints
onxi .

5.2 Robust Formulations for Regression

We now discuss how to handle uncertainty inxi . Assume thatxi is a random variable whose first
two moments are known. Using the inequalities of Section 2.3 we derive two formulations which
render estimates robust to the stochastic variations inxi .

Denote by ¯x := E [x] the expected value ofx. One option of ensuring robustness of the estimate
is to require that the prediction errors are insensitive to the distribution overx. That is, we want that

Pr
x
{|e(f (x),y)−e(f (x̄),y)| ≥ θ} ≤ η, (27)

for some confidence thresholdθ and some probabilityη. We will refer to (27) as a “close to mean”
(CTM) requirement. An alternative is to require that the residualξ(f (x),y) be small. We make use
of a probabilistic version of the constraint|e(f (x),y)| ≤ ξ+ ε , that is equivalent to

Pr
x
{|e(f (x),y)| ≥ ξ+ ε} ≤ η. (28)

This is more geared towards good performance in terms of the loss function,as we require the
estimator to be robust only in terms of deviations which lead tolarger estimation error rather than
requiring smoothness overall. We will refer to (28) as a “small residual” (SR) requirement. The
following theorem shows how both quantities can be bounded by means of theChebyshev inequality
(6) and modified markov inequality (5).

Theorem 4 (Robust Residual Bounds)Denote by x∈ R
n a random variable with mean̄x and co-

variance matrixΣ. Then for w∈ R
n and b∈ R a sufficient condition for (27) is

∥

∥

∥
Σ

1
2 w
∥

∥

∥
≤ θ
√

η, (29)

whereΣ 1
2 is the matrix square root ofΣ. Moreover, a sufficient condition for (28) is

√

w⊤Σw+(〈w, x̄〉+b−y)2≤ (ξ+ ε)
√

η. (30)

Proof To prove the first claim note that forf as defined in (25),E(e(f (x),y)) = e(f (x̄),y) which
means thate(f (x),y)−e(f (x̄),y) is a zero-mean random variable whose variance is given byw⊤Σw.
This can be used with Chebyshev’s inequaltiy (6) to bound

Pr
x
{|e(f (x),y)−e(f (x̄),y)| ≥ θ} ≤ w⊤Σw

θ2 . (31)

Hencew⊤Σw≤ θ2η is a sufficient condition for (27) to hold. Taking square roots yields (29). To
prove the second part we need to compute the second order moment ofe(f (x),y). The latter is
computed easily by the bias-variance decomposition as

E
[

e(f (x),y)2]= E
[

(e(f (x),y)−e(f (x̄),y))2
]

+e(f (x̄),y)2

= w⊤Σw+(〈w, x̄〉+b−y)2 . (32)

1295

SHIVASWAMY , BHATTACHARYYA AND SMOLA

Using (5), we obtain a sufficient condition for (28)

w⊤Σw+(〈w, x̄〉+b−y)2≤ (ξ+ ε)2η. (33)

As before, taking the square root yields (30).

5.3 Optimization Problems for Regression

The bounds obtained so far allow us to recast (26) into a robust optimizationframework. The key
is that we replace the equality constraintei = f (xi)− yi by one of the two probabilistic constraints
derived in the previous section. In the case of (27) this amounts to solving

minimize
w,b,θ

n

∑
i=1

c(ei)+D
n

∑
i=1

θi (34a)

subject to‖w‖ ≤W andθi ≥ 0 for all 1≤ i ≤ n (34b)

〈x̄i ,w〉+b−yi = ei for all 1≤ i ≤ n (34c)

‖Σ
1
2
i w‖ ≤ θi

√
ηi for all 1≤ i ≤ n, (34d)

where (34d) arises from Prxi {|e(f (xi),yi)−e(f (x̄i),yi)| ≥ θi} ≤ ηi . HereD is a constant determin-
ing the degree of uncertainty that we are going to accept large deviations.Note that (34) is aconvex
optimization problem for all convex loss functionsc(e). This means that it constitutes a general
robust version of the regularized linear regression problem and that all adjustments including the
ν-trick can be used in this context. For the special case ofε-insensitive regression (34) specializes
to an SOCP. Using the standard decomposition of the positive and negative branch of f (xi)−yi into
ξi andξ∗i Vapnik et al. (1997) we obtain

minimize
w,b,ξ,ξ∗,θ

n

∑
i=1

(ξi +ξ∗i)+D
n

∑
i=1

θi (35a)

subject to‖w‖ ≤W andθi ,ξi ,ξ∗i ≥ 0 for all 1≤ i ≤ n (35b)

〈x̄i ,w〉+b−yi ≤ ε+ξi andyi−〈x̄i ,w〉−b≤ ε+ξ∗i for all 1≤ i ≤ n (35c)

‖Σ
1
2
i w‖ ≤ θi

√
ηi for all 1≤ i ≤ n. (35d)

In the same manner, we can use the bound (30) for (28) to obtain an optimization problem which
minimizes the regression error directly. Note that (28) already allows for a margin ε in the regression
error. Hence the optimization problem becomes

minimize
w,b,ξ

n

∑
i=1

ξi (36a)

subject to‖w‖ ≤W andξi ≥ 0 for all 1≤ i ≤ n (36b)
√

w⊤Σiw+(〈w, x̄i〉+b−yi)2≤ (ξi + ε)
√

ηi for all 1≤ i ≤ n. (36c)

Note that (36) is an SOCP. In our experiments we will refer to (35) as the “close-to-mean” (CTM)
formulation and to (36) as the “small-residual” (SR) formulation.

1296

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

5.4 Geometrical Interpretation and Error Measures

The CTM formulation can be motivated by a similar geometrical interpretation to the one in the
classification case, using an ellipsoid with centerx, shape and size determined byΣ andγ.

Theorem 5 Assume that xi is uniformly distributed inE(xi ,Σi ,
1√
ηi

) and let f be defined by (25). In
this case (35d) is a sufficient condition for the following requirement:

|e(f (xi),y)−e(f (xi),y)| ≤ θi ∀xi ∈ Ei whereEi := E

(

xi ,Σi ,η
− 1

2
i

)

. (37)

Proof Since f (x) = 〈w,x〉+ b, left inequality in (37) amounts to| 〈w,xi〉− 〈w,xi〉 | ≤ θi . The in-
equality holds for allxi ∈ Ei if maxxi∈Ei | 〈w,xi〉− 〈w,xi〉 | ≤ θi . Application of Lemma 2 yields the
claim.

A similar geometrical interpretation can be shown for SR. Motivated from this we define the fol-
lowing error measures.

Robustness Error: from the geometrical interpretation of CTM it is clear thatγ‖Σ 1
2 w‖ is the maxi-

mum possible difference betweenx and any other point inE(x,Σ,γ), since a small value of this
quantity means smaller difference betweene(f (xi),yi)) ande(f (x̄i),yi)), we callerobust(Σ,γ)
therobustness errormeasure for CTM

erobust(Σ,γ) = γ‖Σ 1
2 w‖. (38)

Expected Residual: from (32) and (33) we can infer that SR attempts to bound the expectation of
the square of the residual. We denote byeexp(Σ, x̄) an error measure for SR where,

eexp(x̄,Σ) =

√

w⊤Σw+(e(f (x̄),y))2. (39)

Worst Case Error: since both CTM and SR are attempting to boundw⊤Σw and e(f (xi),yi) by
minimizing a combination of the two and since the maximum of|e(f (x),y)| overE(x,Σ,γ) is
|e(f (x̄),y)|+ γ‖Σ 1

2 w‖ (see Lemma 2) we would expect this worst case residualw(x̄,Σ,γ) to
be low for both CTM and SR. This measure is given by

eworst(x̄,Σ,γ) = |e(f (x̄),y)|+ γ‖Σ 1
2 w‖. (40)

6. Robust Formulation For Missing Values

In this section we discuss how to apply the robust formulations to the problem of estimation with
missing values. While we use a linear regression model to fill in the missing values, the linear
assumption is not really necessary: as long as we have information on the first and second moments
of the distribution we can use the robust programming formulation for estimation.

6.1 Classification

We begin by computing the sample mean and covariance for each class from the available observa-
tions, using a linear model and Expectation Maximization (EM) (Dempster et al.,1977) to take care
of missing variables wherever appropriate:

1297

SHIVASWAMY , BHATTACHARYYA AND SMOLA

Let (x,y) have partsxm andxa, corresponding to missing and available components respectively.
With meanµ and covarianceΣ for the classy and with decomposition

µ=

[

µa

µm

]

andΣ =

[

Σaa Σam

Σ⊤am Σmm

]

, (41)

we can now find the imputed means and covariances. They are given by

E [xm] = µm+ΣmaΣ−1
aa (xa−µa) (42)

andE
[

xmx⊤m
]

−E [xm]E [xm]⊤ = Σmm−ΣmaΣ−1
aa Σ⊤ma. (43)

In standard EM fashion one begins with initial estimates for mean and covariance, uses the latter
to impute the missing values for the entire class of data and iterates by re-estimatingmean and
covariance until convergence.

Optimization Problem Without loss of generality, suppose that the patterns 1 toc are complete
and that patternsc+1 ton have missing components. Using the above model we have the following
robust formulation:

minimize
w,b,ξ

n

∑
i=1

ξi (44a)

subject toyi (〈w,xi〉+b)≥ 1−ξi for all 1≤ i ≤ c (44b)

yi (〈w,xi〉+b)≥ 1−ξi + γi

∥

∥

∥

∥

Σ
1
2
i w

∥

∥

∥

∥

for all c+1≤ i ≤ n (44c)

‖w‖ ≤W and ξi ≥ 0 for all 1≤ i ≤ n, (44d)

wherexi denotes the pattern with the missing values filled in and

Σi =

[

0 0
0 Σmm−ΣmaΣ−1

aa Σam

]

according to the appropriate class labels. By appropriately choosingγi ’s, we can control the degree
of robustness to uncertainty that arises out of imputation. The quantitiesγi ’s are defined only for the
patterns with missing components.

Prediction After determiningw andb by solving (44) we predict the labely of the patternx by
the following procedure.

1. If x has no missing values use it for step 4.

2. Fill in the missing valuesxm in x using the parameters (mean and the covariance) of each
class, call the resulting patternsx+ andx− corresponding to classes+1 and−1 respectively.

3. Find the distancesd+,d− of the imputed patterns from the hyperplane, that is

d± :=
(

w⊤x±+b
)(

w⊤Σ±w
)− 1

2
.

HereΣ± are the covariance matrices ofx+ andx−. These values tell which class gives a better
fit for the imputed pattern. We choose that imputed sample which has higher distance from
the hyperplane as the better fit: if|d+|> |d−| usex+, otherwise usex− for step 4.

4. Calculatey = sgn
(

w⊤x+b
)

.

1298

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

6.2 Regression

As before we assume that the firstc training samples are complete and the remaining training sam-
ples have missing values. After using the same linear model an imputation strategyas above we
now propose to use the CTM and SR formulations to exploit the covariance information to design
robust prediction functions for the missing values.

Once the missing values are filled in, it is straightforward to use our formulation. The CTM
formulation for the missing values case takes the following form

minimize
w,b,θ,ξ,ξ∗

n

∑
i=1

(ξi +ξ∗i)+D
n

∑
i=c+1

θi (45a)

subject to〈w,xi〉+b−yi ≤ ε+ξi , yi−〈w,xi〉−b≤ ε+ξ∗i for all 1≤ i ≤ c (45b)

〈w,xi〉+b−yi ≤ ε+ξi , yi−〈w,xi〉−b≤ ε+ξ∗i for all c+1≤ i ≤ n (45c)
∥

∥

∥

∥

Σ
1
2
i w

∥

∥

∥

∥

≤ θi
√

ηi for all c+1≤ i ≤ n (45d)

θi ≥ 0 for all c+1≤ i ≤ n and ξi ,ξ∗i ≥ 0 for all 1≤ i ≤ n (45e)

‖w‖ ≤W.

Only partially available data have the constraints (45d). As before, quantities θi ’s are defined only
for patterns with missing components. A similar SR formulation could be easily obtained for the
case of missing values:

minimize
w,b,ξ,ξ∗

c

∑
i=1

(ξi +ξ∗i)+
n

∑
i=c+1

ξi

subject to〈w,xi〉+b−yi ≤ ε+ξi , yi−〈w,xi〉−b≤ ε+ξ∗i for all 1≤ i ≤ c
√

w⊤Σiw+(〈w,xi〉+b−yi)2≤ (ε+ξi)
√

ηi for all c+1≤ i ≤ n

ξ∗i ≥ 0 for all 1≤ i ≤ c and ξi ≥ 0 for all 1≤ i ≤ n

‖w‖ ≤W.

7. Kernelized Robust Formulations

In this section we propose robust formulations for designing nonlinear classifiers by using kernel
function. Note that a kernel function is a functionK : Ω×Ω→ R, whereK obeys the Mercer
conditions (Mercer, 1909). We also extend these ideas to nonlinear regression functions.

1299

SHIVASWAMY , BHATTACHARYYA AND SMOLA

7.1 Kernelized Formulations for Classification

The dual of the formulation (44), is given below (for a proof, please see Appendix A).

maximize
λ,δ,β,u

n

∑
i=1

λi−Wδ, (47a)

subject to
n

∑
i=1

λiyi = 0, (47b)

‖
c

∑
i=1

λiyixi +
n

∑
i=c+1

λiyi(xi + γiΣ
1
2T
i ui)‖ ≤ δ, (47c)

λi +βi = 1 for all 1≤ i ≤ n (47d)

‖ui‖ ≤ 1 for all c+1≤ i ≤ n (47e)

λi ,βi ,δ≥ 0 for all 1≤ i ≤ n. (47f)

The KKT conditions can be stated as (see Appendix A)
c

∑
i=1

λiyixi +
n

∑
i=c+1

λiyi(xi + γiΣ
1
2
i ui) = δun+1 (48a)

n

∑
i=1

λiyi = 0,δ≥ 0 (48b)

λi +βi = 1, βi ≥ 0, λi ≥ 0, βiλi = 0 for all 1≤ i ≤ n (48c)

λi(yi(〈w,xi〉+b)−1+ξi) = 0 for all 1≤ i ≤ c (48d)

λ j(y j(
〈

w,x j
〉

+b)−1+ξ j − γ j(Σ
1
2
j u j)) = 0 for all c+1≤ j ≤ n (48e)

δ(〈w,un+1〉−W) = 0. (48f)

The KKT conditions of the problem give some very interesting insights:

1. Whenγi = 0 c+1≤ i ≤ n the method reduces to standard SVM expressed as an SOCP as it
is evident from formulation (47).

2. Whenγi 6= 0 the problem is still similar to SVM but instead of a fixed pattern the solution

chooses the vectorxi +γiΣ
1
2
i ui from the uncertainty ellipsoid. Which vector is chosen depends

on the value ofui . Figure (2) has a simple scenario to show the effect of robustness on the
optimal hyperplane.

3. The unit vectorui maximizesu⊤i Σ
1
2
i w and henceui has the same direction asΣ

1
2
i w.

4. The unit vectorun+1 has the same direction asw. From (48a), for arbitrary data, one obtains
δ > 0, which implies〈w,un+1〉 = W due to (48f). Substituting forun+1 in (48a) gives the
following expression forw,

w =
W
δ

(

c

∑
i=1

λiyixi +
n

∑
i=c+1

λiyi

(

xi + γiΣ
1
2
i ui

)

)

. (49)

This expression forw is very similar to the expression obtained in the standard SVM. The vectorw
has been expressed as a combination of complete patterns and vectors from the uncertainty ellipsoid
of the incomplete patterns.

1300

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Nominal
Hyperplane

Robust
Hyperplane

Figure 2: Circles and stars represent patterns belonging to the two classes. The ellipsoid around the
pattern denotes the uncertainty ellipsoid. Its shape is controlled by the covariance matrix
and the size byγ. The vertical solid line represents the optimal hyperplane obtained by
nominal SVM while the thick dotted line represents the optimal hyperplane obtained by
the robust classifier

Kernelized Formulation It is not simple to solve the dual (47) as a kernelized formulation. The
difficulty arises from the fact that the constraint containing the dot products of the patterns (47c)

involves terms such as

(

xi + γiΣ
1
2
i ui

)T(

x j + γ jΣ
1
2
j u j

)

for some i and j. Asu’s are unknown, it is

not possible to calculate the value of the kernel function directly. Hence wesuggest a simple method
to solve the problem from the primal itself.

When the shape of the uncertainty ellipsoid for a pattern with missing values is determined by
the covariance matrix of the imputed values, any point in the ellipsoid is in the spanof the patterns
used in estimating the covariance matrix. This is because the eigenvectors of the covariance matrix
span the entire ellipsoid. The eigenvectors of a covariance matrix are in the span of the patterns from
which the covariance matrix is estimated. Since eigenvectors are in the span ofthe patterns and they
span the entire ellipsoid, any vector in the ellipsoid is in the span of the patterns from which the
covariance matrix is estimated.

The above fact and the equation to constructw from the dual variables (49) implyw is in the
span of the imputed data (all the patterns: complete and the incomplete patterns withmissing values
imputed). Hence,w = ∑c

i=1 αixi +∑n
i=c+1 αixi .

Now, consider the constraint

yi (〈w,xi〉+b)≥ 1−ξi .

It can be rewritten as,

yi

(〈(

c

∑
l=1

αl xl +
n

∑
l=c+1

αl xl

)

,xi

〉

+b

)

≥ 1−ξi .

1301

SHIVASWAMY , BHATTACHARYYA AND SMOLA

We replace the dot product in the above equation by a kernel function to get

yi
(〈

α, K̃(xi)
〉

+b
)

≥ 1−ξi ,

whereK̃(xi)
T = [K(x1,xi), . . . ,K(xc,xi),K(xc+1,xi), . . . ,K(xn,xi)] andα⊤ = [α1, . . . ,αn]. The obser-

vationxi is either a complete pattern or a pattern with missing values filled in. Now, we consider the
uncertainty inK̃(xi) to obtain the non-linear version of our formulation that can be solved easily.
When we consider the uncertainty iñK(xi) the probabilistic constraint takes the form

Pr
(

yi
(〈

α, K̃ (xi)
〉

+b
)

≥ 1−ξi
)

≥ κi . (50)

As in the original problem we now treatK̃ (xi) as a random variable. The equation (50) has the same
structure as the probabilistic constraint of Section 3. Following the same stepsas in Section 3, it
can be shown that the above probabilistic constraint is equivalent to

yi
(〈

α, K̃ (xi)
〉

+b
)

≥ 1−ξi +

√

κi

1−κi

√

αTΣk
i α,

whereΣk
i and K̃ (xi) are the covariance and the mean ofK̃ (xi) (in K̃-space). In view of this, the

following is the non-linear version of the formulation:

minimize
α,b,ξ

n

∑
i=1

ξi (51a)

subject toyi
(〈

α, K̃(xi)
〉

+b
)

≥ 1−ξi for all 1≤ i ≤ c (51b)

yi
(〈

α, K̃(x j)
〉

+b
)

≥ 1−ξ j + γ j

∥

∥

∥

∥

Σk1
2

j α
∥

∥

∥

∥

for all c+1≤ j ≤ n (51c)

‖α‖ ≤W ξi ≥ 0 for all 1≤ i ≤ n. (51d)

The constraint (51d) follows from the fact that we are now doing linear classification inK̃-space.
The constraint is similar to the constraint‖w‖ ≤W which we had in the linear versions.

Estimation of Parameters A point to be noted here is thatΣk
j defines the uncertainty iñK(x j).

In the original lower dimensional space we had a closed form formula to estimate the covariance
for patterns with missing values. However, now we face a situation where weneed to estimate the
covariance inK̃-space. A simple way of doing this is to assume spherical uncertainty inK̃-space.
Another way of doing this is by a nearest neighbour based estimation. To estimate the covariance
of K̃(xi), we first find outk nearest neighbours ofxi and then we estimate the covariance from
K̃(xi1), . . . , K̃(xik) wherexi1, . . . ,xik are the nearest neighbours ofxi .

It is straight forward to extend this more general result (51) to the missing value problem fol-
lowing the same steps as in (6).

Classification Onceα’s are found, given a test patternt its class is predicted in the following way:
If the pattern is incomplete, it is first imputed using the way it was done during training. However,
this can be done in two ways, one corresponding to each class as the classis unknown for the pattern.
In that case the distance of each imputed pattern from the hyperplane is computed from

h1 =
αTK̃(t)+b
√

αTΣ1α
and h2 =

αTK̃(t)+b
√

αTΣ2α
,

1302

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

whereΣ1 andΣ2 are the covariances obtained by the same strategy as during training. Higher of
the above two is selected as it gives a better fit for the pattern. The prediction for the pattern is
the prediction of its centroid (i.e. the prediction for the centroid which gives abetter fit). Let
h = max(|h1|, |h2|), if h = |h1| theny = sgn(h1) elsey = sgn(h2) wherey is the prediction for the
pattern t. In case the pattern is complete, there is no ambiguity we can give sgn(αTK̃(t)+b) as the
prediction.

7.2 Kernelized Robust Formulations for Regressions

As discussed for the case of classification we derive nonlinear regressions functions by using thẽK.
We fit a hyperplane(α,b) in theK̃ whereα = [α1,α2, . . . ,αn]. Wheneverx is a random variable we
considerK̃(x) as a random variable with meañK(x) and with either unit covariance or a covariance
estimated from nearest neighbours in theK̃-space. Instead of finding(w,b) we resort to finding
(α,b) whereα plays the role ofw but in theK̃-space. Essentially, we just have to replacew by α
andxi by K̃xi and the covariance by the estimate covariance in theK̃-space. Given these facts, we
get the following kernelized version of the Close To Mean formulation:

minimize
α,b,θ,ξ,ξ∗

n

∑
i=1

(ξi +ξ∗i)+D
n

∑
i=1

θi

subject to
〈

α, K̃(xi)
〉

+b−yi ≤ ε+ξi for all 1≤ i ≤ n

yi−
〈

α, K̃(xi)
〉

−b≤ ε+ξ∗i for all 1≤ i ≤ n
√

α⊤Σk
i α≤ θi

√
ηi for all 1≤ i ≤ n

‖α‖ ≤W and θi ,ξi ,ξ∗i ≥ 0 for all 1≤ i ≤ n.

Similarly, the kernelized version of formulation SR is given by,

minimize
α,b,ξ

n

∑
i=1

ξi

subject to
√

α⊤Σk
i α+(

〈

α, K̃(xi)
〉

+b−yi)2≤ (ε+ξi)
√

ηi for all 1≤ i ≤ n

‖α‖ ≤W and ξi ≥ 0 for all 1≤ i ≤ n.

In the above formulations,Σk
i is the estimate covariance in thẽK-space. If the patterns 1 throughc

are complete and the patternsc+1 throughn have missing values, then assumingηi = 1 andΣk
i = 0

for i from 1 throughc, would make the above formulations directly applicable to the case.

8. Experiments

In this section we empirically test the derived formulations for both classification and regression
problems which have missing values in the observations. In all the cases interior point method was
used to solve SOCP using the commercially avilable Mosek solver.

8.1 Classification

We consider the classification case first. Consider a binary classification problem with training
data having missing values. The missing values are filled in by imputation and subsequently a

1303

SHIVASWAMY , BHATTACHARYYA AND SMOLA

SVM classifier was trained on the complete data to obtain thenominal classifier. We compared the
proposed formulations with the nominal classifiers by performing numerical experiments on real life
data bench mark datasets. We also use a non-linear separable data set to show that the kernelized
version works when the linear version breaks down. In our formulationswe will assume thatγ j = γ.

For evaluating the results of robust classifier we used the worst case error and the expected error
along with the actual error. A test pattern with no missing values can be directlyclassified. In case
it has missing values, we first impute the missing values and then classify the pattern. We refer to
the error on a set of patterns using this approach the actual error.

We first consider the problem of classifying OCR data where missing valuescan occur more
frequently. Specifically we consider the classification problem between thetwo digits ’3’ and ’8’.
We have used the UCI (Blake and Merz, 1998) OCR data set, A data set is generated by deleting
75% of the pixels from 50% of the training patterns. Missing values were thenimputed using linear
regression. We trained a SVM on this imputed data, to obtain the nominal classifier. This was
compared with the robust classifier trained with different values ofγ, corresponding to different
degrees of confidence as stated in (11).

The error rates of the classifiers were obtained on the test data set by randomly deleting 75%
of the pixels from each pattern. We then repeated 10 such iterations and obtained the average
error rates. Figure 3 shows some of the digits that were misclassified by the nominal classifier but
were correctly classified by the robust classifier. The effectivenessof our formulation is evident
from these images. With only partial pixels available, our formulation did better than the nominal
classifier. Figure 4 show the different error rates obtained on this OCR data set. In all the three
measures, the robust classifier outperformed the nominal classifier.

Figure 3: In all images the left image shows a complete digit, the right image showsthe digit after
randomly deleting 75% of the pixels. The first five are ’3’ while the next fiveare ’8’.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.4

OCR digits

γ

A
ct

ua
l E

rr
or

Nominal
Robust

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.4

γ

E
xp

ec
te

d
E

rr
or

OCR digits

Nominal
Robust

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γ

W
or

st
 C

as
e

OCR digits

Nominal
Robust

Figure 4: Error rates againstγ with linear classifier on the OCR data.

1304

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

Here we report the error rates using three measures we defined for three other UCI data sets
(Blake and Merz (1998)), Heart, Ionosphere and Sonar. Linear version of our formulation was
used. Experiments were done with low noise (50% patterns with missing values)and high noise
(90% patterns with missing values). The data sets were divided in the ratio 9:1,the larger set was
used for training the nominal and robust classifiers while the smaller set wasused as test data set.
50% of the feature values (chosen at random) were deleted from 50% ofthe training patterns (in the
low noise case) and 90% of the training patterns (in the high noise case). Linear regression based
model was used to fill in the missing values. Nominal classifier and robust classifiers with different
values ofγ were trained using each such data set. Error rates were obtained for thetest data set after
deleting 50% of the feature values from each test pattern. The error rates reported here are over ten
such randomized iterations.

The error rates as a function ofγ are plotted in Figures 5,6 and 7. In case of actual error, the
plots also show a horizontal line labeled ’clean’ which is the error rate on theactual data set without
any missing values. In this case, we did not delete any feature values fromthe data set. Nominal
classifiers were trained and testing was also done on complete test samples. Our aim was to see how
close our robust classifier could get near the error rates obtained using the complete data set.

It can be seen that the robust classifier, with suitable amount of robustness comes very close
to the error rates on the clean data set. Amongst the three error measures the worst case error, the
last column of Figure 7, brings out the advantage of the robust classifierover the nominal classifier.
Clearly with increasingγ the robust formulation gives dividends over the nominal classifier.

We also did experiments to compare the kernelized version of the formulation over the linear
formulation. For this purpose, we generated a dataset as follows. The positive class was obtained by
generating uniformly distributed points in a hypershpere inR

5 of unit radius centered at the origin.
The negative class was obtained by generating uniformly distributed points ina annular band of
thickness one, with the inner radius two, centered around the origin. In summary

y =

{

1 ‖x‖ ≤ 1
−1 2≤ ‖x‖ ≤ 3,

wherex∈ R
5. An illustration of how such a dataset looks in two dimensions is given in the leftof

Figure 8. Hundred patterns were generated for each class. The data set was divided in the ratio 9:1.
The larger part was used for training, the smaller part for testing. Threerandomly chosen values
were deleted from the training data set. The missing values were filled in using linear regression
based strategy. We trained a classifier for different values ofγ. Actual Error was found out for both
the kernelized version and the linear version of the formulation. The resultsreported here are over
ten such randomized runs. Gaussian kernel(K(x,y) = exp(−q‖x−y‖2)) was used in the case of
kernelized formulation. The parameterq was chosen by cross validation. Spherical uncertainty was
assumed iñK-space for samples with missing values in case of kernelized robust formulations.

Figure 8 shows actual error rates with linear nominal, linear robust, kernelized nominal and
kernelized robust. It can be seen that the linear classifier has broken down, while the kernelized
classifier has managed a smaller error rate. It can also be observed thatthe robust kernelized classi-
fier has the least error rate.

8.2 Regression

Given a regression problem with training data having missing values in the observations we obtained
thenominal regressionfunction by training a Support Vector Regression(SVR) formulation overthe

1305

SHIVASWAMY , BHATTACHARYYA AND SMOLA

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.28

0.36
Heart − Low Noise

γ

A
c
tu

a
l
E

rr
o

r

Nominal
Robust
Clean

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.28

0.36

γ

E
x
p

e
c
te

d
 E

rr
o

r

Heart − Low Noise

Nominal
Robust

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36
Heart − Low Noise

γ

W
o

rs
t
C

a
s
e

Nominal
Robust

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.28

0.36
Heart − High Noise

γ

A
c
tu

a
l
E

rr
o

r

Nominal
Robust
Clean

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.28

0.36

γ

E
x
p

e
c
te

d
 E

rr
o

r

Heart − High Noise

Nominal
Robust

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.28

0.36

γ

W
o

rs
t
C

a
s
e

Heart − High Noise

Nominal
Robust

Figure 5: Error rates as a function ofγ for Heart. Patterns in the top row contained 50% missing
variables, even ones 90%. From left to right — actual error, expectederror, and worst
case error.

imputed data. The obtained regression function will be called the nominal SVR.In this section we
compare our formulations with nominal SVR on a toy dataset and one real world dataset in the
linear setting. We also compared the kernelized formulations with the linear formulations.

The first set of results is on a toy data set consisting of 150 observations. Each observation
consisted(y,x) pair where

y = w⊤x+b, w⊤ = [1,2,3,4,5], b =−7.

Patternsx were generated from a Gaussian distribution with mean,µ = 0, and randomly chosen
covariance matrix,Σ. The results are reported for the following choice ofΣ:

0.1872 0.1744 0.0349 −0.3313 −0.2790
0.1744 0.4488 0.0698 −0.6627 −0.5580
0.0349 0.0698 0.1140 −0.1325 −0.1116
−0.3313 −0.6627 −0.1325 1.3591 1.0603
−0.2790 −0.5580 −0.1116 1.0603 0.9929

.

Missing values were introduced by randomly choosing 50% of the examples and deleting 2 of
the entries example selected at random for each chosen example. The datawas divided in the ratio
9:1, the larger one was used for training and the smaller one was used for testing. The results re-
ported here are the average over ten such randomly partitioned training and test data. After imputing

1306

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.14

0.16

0.18

0.2

0.22

0.24

0.26
Ion − Low Noise

γ

A
c
tu

a
l
E

rr
o

r

Nominal
Robust
clean

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.14

0.16

0.18

0.2

0.22

0.24

0.26
Ion − Low Noise

γ

E
x
p

e
c
te

d
 E

rr
o

r

Nominal
Robust

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.14

0.16

0.18

0.2

0.22

0.24

0.26
Ion − Low Noise

γ

W
o

rs
t
C

a
s
e

Nominal
Robust

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3
Ion − High Noise

γ

A
c
tu

a
l
E

rr
o

r

Nominal
Robust
clean

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3
Ion − High Noise

E
x
p

e
c
te

d
 E

rr
o

r

γ

Nominal
Robust
clean

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
Ion − High Noise

γ

W
o

rs
t
C

a
s
e

Nominal
Robust

Figure 6: Error rates as a function ofγ for Ionosphere. Patterns in the top row contained 50%
missing variables, even ones 90%. From left to right — actual error, expected error, and
worst case error.

the missing values using a linear regression model, training data was used with different formula-
tions. The first row of Figure 9 shows robustness error (38), worstcase error (40) for CTM and
expected residual (39) and worst case error (40) for SR. The second row gives the results on UCI
Blake and Merz (1998) boston data set with the same test methodology. The performance of our
formulation over nominal regression is evident.

To validate our kernelized formulation, 150 samples inR
5 were randomly generated as in the

above case. For eachx, the output is given byy = cTφ(x)− c0, see footnote.6 The mappingφ(x)
is such that a hyperplane inR15 is actually a quadratic curve inR5. Randomly generatedc andc0

were used in this mapping. 40% of the values were deleted at random from 50% and 20% of the
training samples for CTM and SR, they were filled in using the linear regression model. A Gaussian
kernelK(a,b) = exp(−γ‖a−b‖2) with kernel parameterγ = 0.1 was used. Figure 10 shows the
test errors per sample on 10 runs with different randomly deleted values.Test error is the error rate
on a test set with missing values filled in. Essentially, we calculate∑n

i=1e(f (xi ,yi)) for all the test
samples where the missing values are filled in using the training data set parameters using a linear

6. Letx = [x1,x2, . . . ,x5]. The mappingφ : R
5→ R

15 is defined by

φ(x) = [x2
1x2

2 x2
3 x2

4 x2
5

√
2x1x2

√
2x1x3

√
2x1x4

√
2x1x5

√
2x2x3

√
2x2x4

√
2x2x5

√
2x3x4

√
2x3x5

√
2x4x5]

⊤.

1307

SHIVASWAMY , BHATTACHARYYA AND SMOLA

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.3

0.32

0.34

0.36

0.38

0.4

0.42

γ

A
c
tu

a
l
E

rr
o

r

Sonar − Low Noise

Nominal
Robust
Clean

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.3

0.32

0.34

0.36

0.38

0.4

0.42
Sonar − Low Noise

γ

E
x
p

e
c
te

d
 E

rr
o

r

Nominal
Robust

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42
Sonar − Low Noise

γ

W
o

rs
t
C

a
s
e

Nominal
Robust

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.3

0.4

0.5

γ

A
c
tu

a
l
E

rr
o

r

Sonar − High Noise

Nominal
Robust
clean

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.4

γ

E
xp

e
ct

e
d

 E
rr

o
r

Sonar − High Noise

Nominal
Robust

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.4

Sonar − High Noise

γ

W
o

rs
t
C

a
se

Nominal
Robust

Figure 7: Error rates as a function ofγ for Sonar. Patterns in the top row contained 50% missing
variables, even ones 90%. From left to right — actual error, expectederror, and worst
case error.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Non−linear Separable data

Positive Class
Negative Class

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

0.5

0.6

γ

A
ct

ua
l E

rr
or

Linear Vs Kernelized

Kernelized Robust
Kernelized Nominal
Linear Robust
Linear Nominal

Figure 8: The left figure shows how the data set looks in two dimensions, theright figure gives the
actual error rate for linear and kernelized formulations for the robust and nominal cases.

regression model. Essentially it is the absolute residual for imputed mean test data. The figures
show that the kernelized version of the robust formulation does a better jobthan the linear version
when the underlying function is non-linear.

1308

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

CTM D=0.5
CTM D=1
Nominal

1 − η

R
o

b
u

s
tn

e
s
s

E

r
r
o

r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

8

10

12

14

16

18

20

CTM D=0.5
CTM D=1
Nominal

1 − η

W
o

r
s
t
C

a
s
e

 E

r
r
o

r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

SR
Nominal

1 − η

E
x
p

e
c
te

d
 r

e
s
id

u
a

l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

SR
Nominal

1 − η

W
o

r
s
t
C

a
s
e

 E

r
r
o

r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CTM D=0.1
CTM D=0.5
Nominal

1 − η

R
o

b
u

s
tn

e
s
s

E
r
r
o

r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

CTM D=0.1
CTM D=0.5
Nominal

1 − η

W
o

r
s
t

C
a

s
e

 E
r
r
o

r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

SR
Nominal

1 − η

 E
x
p

e
c
te

d

 R
e

s
id

u
a

l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

SR
Nominal

1 − η

W
o

r
s
t
C

a
s
e

 E

r
r
o

r

Figure 9: Top row — toy data set, Bottom row — Boston Housing estimation problem; From left
to right: robustness (CTM), worst case error (CTM), expected residual (SR), and worst
case error (SR). All graphs describe the error as a function of the robustnessη.

9. Conclusions

In this paper we have proposed SOCP formulations for designing robustlinear prediction functions
which are capable of tackling uncertainty in the patterns both in classification and regression setting.
The formulations are applicable to any uncertainty distribution provided the first two moments are
computable. When applied to the missing variables problem the formulations outperform the impu-
tation based classifiers and regression functions. We have also proposed a way to design nonlinear
prediction functions by using regression setting.

The robustness in the context of classification can be geometrically interpreted as requiring that
all points in the ellipsoid occur on one side of the hyperplane. Instead of having an ellipsoidal un-
certainty one can have situations where the uncertainty is described by arbitrary sets. The constraint
sampling approaches can serve as useful alternatives for such problems. Future work will consist in
examining this approach for the problem at hand.

1309

SHIVASWAMY , BHATTACHARYYA AND SMOLA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18
Linear CTM
Kernelized CTM

1 − η

 T
es

t E
rr

or

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Linear CTM
Kernelized CTM

1 − η

 T
es

t E
rr

or

Figure 10: Linear vs. nonlinear regression. Left: CTM formulation, right: SR formulation.

Acknowledgments

CB was partly funded by MHRD (Grant number F26-11/2004). National ICT Australia is funded
through the Australian Government’sBacking Australia’s Abilityinitiative, in part through the Aus-
tralian Research Council. AS was supported by grants of the ARC. We thank Laurent ElGhaoui,
Michael Jordan, Gunnar R̈atsch, and Frederik Schaffalitzky for helpful discussions and comments.

Appendix A. Dual of the SOCP

The Lagrangian of (44) is given by

L(w,ξ,b,λ,β,δ) =
n

∑
i=1

ξi−
n

∑
i=1

βiξi−
c

∑
i=1

λi
(

yi
(

wTxi +b
)

−1+ξi
)

−
n

∑
j=c+1

λ j

(

y j(w
Tx j +b)−1+ξ j − γ j‖Σ

1
2
j w‖

)

+δ(‖w‖−W) (54)

βi ,λi ,δ≥ 0.

Recall that for anyx∈ R
n the relationship‖x‖2 = max‖x‖≤1x⊤y holds. This can be used to handle

terms like

∥

∥

∥

∥

Σ
1
2
j w

∥

∥

∥

∥

and‖w‖ leading to a modified Lagrangian given as follows

L1(w,ξ,b,λ,β,δ,u) =
n

∑
i=1

ξi−
n

∑
i=1

βiξi−
c

∑
i=1

λi
(

yi
(

wTxi +b
)

−1+ξi
)

−
n

∑
j=c+1

λ j

(

y j(w
Tx j +b)−1+ξ j − γ j

(

Σ
1
2
j w

)T

u j

)

+δ
(

wTun+1−W
)

.

(55)

The LagrangianL1 has the same optimal value asL when maximized with respect tou’s subject to
the constraints‖ui‖ ≤ 1 for all c+1≤ i ≤ n+1. Note that theu’s are defined only for patterns with

1310

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

missing values andun+1 is defined for the constraint‖w‖ ≤W. Therefore

L1(w,ξ,b,λ,β,δ) = max
u

L(w,ξ,b,λ,β,δ,u) subject to‖ui‖ ≤ 1 for all i ∈ {c+1, . . .n+1} .

By definition, solving (44) is equivalent to finding the saddle-point of the LagrangianL1. By virtue
of the above reasoning and due to convexity we obtain

minimize
w,b,ξ

maximize
λ,δ,β

L(w,ξ,b,λ,β,δ) (56a)

=minimize
w,b,ξ

maximize
λ,δ,β,‖u‖≤1

L1(w,ξ,b,λ,β,δ,u) (56b)

=maximize
λ,δ,β,‖u‖≤1

minimize
w,b,ξ

L1(w,ξ,b,λ,β,δ,u) . (56c)

Eq (56c) now enables us to eliminate the primal variables to give the dual. Taking partial derivatives
of L with respect tow,b, andξ yields

∂wL(w,ξ,b,λ,β,δ,u) =−
c

∑
i=1

λiyixi−
n

∑
j=c+1

λ j

(

y jx j − γiΣ j
1
2Tu j

)

+δun+1 (57a)

∂ξi
L(w,ξ,b,λ,β,δ,u) = 1−λi−βi (57b)

∂bL(w,ξ,b,λ,β,δ,u) =
n

∑
i=1

λiyi . (57c)

Changing the sign ofu j for c+1≤ i ≤ n does not matter since the optimal value of maximization
of bothw⊤u j and−w⊤u j over‖u j‖ ≤ 1 are the same. Substituting−u j in (57a) byy ju j and then
equating (57a) , (57b) and (57c) to zero gives

c

∑
i=1

λiyixi +
n

∑
j=c+1

λy j

(

x j + γiΣ j
1
2Tu j

)

= δun+1 (58a)

1−λi−βi = 0 (58b)
n

∑
i=1

λiyi = 0. (58c)

Substituting (58a), (58b) and (58c) in (55) subject to the relevant constraints yields the dual stated
as follows

maximize
u,λ,β,δ

n

∑
i=1

λi−Wδ (59a)

subject to
n

∑
i=1

λiyi = 0 (59b)

c

∑
i=1

λiyixi +
n

∑
j=c+1

λ jy j

(

x j + γiΣ j
1
2Tu j

)

= δun+1 (59c)

λi +βi = 1 for all 1≤ i ≤ n (59d)

‖ui‖ ≤ 1 for all c+1≤ i ≤ n+1 (59e)

λi ,βi ,δ≥ 0 for all 1≤ i ≤ n. (59f)

1311

SHIVASWAMY , BHATTACHARYYA AND SMOLA

For arbitrary dataδ > 0, which when plugged into (58a), gives

un+1 =
∑c

i=1 λiyixi +∑n
j=c+1 λ jy j

(

x j + γiΣ j
1
2Tu j

)

δ

and hence the dual (47) follows.

References

A. Ben-Tal and A. Nemirovski. Robust convex optimization.Math. Oper. Res., 23(4):769–805,
1998.

A. Ben-Tal and A. Nemirovski.Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications. SIAM, 2001.

K. P. Bennett and O. L. Mangasarian. Multicategory separation via linearprogramming.Optimiza-
tion Methods and Software, 3:27 – 39, 1993.

C. Bhattacharyya, L. R. Grate, M. I. Jordan, L. El Ghaoui, and SairaI. Mian. Robust sparse hy-
perplane classifiers: application to uncertain molecular profiling data.Journal of Computational
Biology, 11(6):1073 – 1089, 2004a.

C. Bhattacharyya, K. S. Pannagadatta, and A. J. Smola. A second order cone programming formu-
lation for classifying missing data. InAdvances in Neural Information Processing Systems (NIPS
17), 2004b.

J. Bi and T. Zhang. Support vector classification with input data uncertainty. In Lawrence K. Saul,
Yair Weiss, and Ĺeon Bottou, editors,Advances in Neural Information Processing Systems 17,
2004.

C. M. Bishop. Training with noise is equivalent to Tikhonov regularization.Neural Computation,
7:108 – 116, 1995.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

G. Calafiore and M. C. Campi. The scenario approach to robust controldesign. Technical report,
Universita di Brescia, 2004. submitted.

S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed. ParameterEstimation in the Presence of
Bounded Data Uncertainties.SIAM J. Matrix Anal. Appl., 19(1):235–252, 1998.

M. Collins. Discriminative training methods for hidden markov models. InProceedings of the
Conference on Empirical Methods in Natural Language Processing, 2002.

C. Cortes and V. Vapnik. Support vector networks.Machine Learning, 20:273–297, 1995.

1312

http://www.ics.uci.edu/~mlearn/MLRepository.html

SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

D. Pucci de Farias and B. Van Roy. On constraint sampling in the linear programming approach
to approximate dynamic programming.Mathematics of Operations Research, 29(3):462–478,
2004.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Society B, 39(1):1 – 22, 1977.

L. El Ghaoui and H. Lebret. Robust solutions to least-squares problemswith uncertain data.SIAM
J. Matrix Anal. Appl., 18(4):1035–1064, 1997.

G. Fung, O. L. Mangasarian, and J. W. Shavlik. Knowledge-based support vector machine classi-
fiers. InAdvances in Neural Information Processing Systems 15, volume 15. MIT Press, 2002.

T. Graepel and R. Herbrich. Invariant pattern recognition by semidefinite programming machines.
In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors,Advances in Neural Infor-
mation Processing Systems 16. MIT Press, 2004.

P. J. Huber.Robust statistics. John Wiley, 1982.

G. R. G. Lanckriet, L. E. Ghaoui, C. Bhattacharrya, and M. I. Jordan. A robust minimax approach
to classification.Journal of Machine Learning Research, 3:555–582, 2002.

Q. V. Le, T. Sears, and A. J. Smola. Nonparametric quantile regression.Technical report, National
ICT Australia, June 2005. Available at http://sml.nicta.com.au/∼quoc.le.

M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone program-
ming. Linear Algebra and its Applications, 284(1 - 3):193 – 228, 1998.

A. W. Marshall and I. Olkin. Multivariate chebyshev inequalities.Annals of Mathematical Statistics,
31(4):1001–1014, 1960.

J. Mercer. Functions of positive and negative type and their connectionwith the theory of integral
equations.Philosophical Transactions of the Royal Society, London, A 209:415 – 446, 1909.

Y. Nesterov and A. Nemirovskii.Interior Point Algorithms in Convex Programming. Number 13 in
Studies in Applied Mathematics. SIAM, Philadelphia, 1993.

G. Rätsch, S. Mika, and A. J. Smola. Adapting codes and embeddings for polychotomies. InNeural
Information Processing Systems, volume 15. MIT Press, 2002.

T. Schneider. Analysis of incomplete climate data: Estimation of mean values and covariance
matrices and imputation of missing values.Journal of Climate, 14:853 – 871, 2001.

B. Scḧolkopf and A. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11/12(1 - 4):625 – 653, 1999.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. InSebastian Thrun, Lawrence
Saul, and Bernhard Schölkopf, editors,Advances in Neural Information Processing Systems 16,
2003.

1313

SHIVASWAMY , BHATTACHARYYA AND SMOLA

V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for function approximation,
regression estimation, and signal processing. In M. C. Mozer, M. I. Jordan, and T. Petsche,
editors,Advances in Neural Information Processing Systems 9, pages 281 – 287, Cambridge,
MA, 1997. MIT Press.

C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction
and beyond. In M. I. Jordan, editor,Learning and Inference in Graphical Models, pages 599 –
621. Kluwer Academic, 1998.

1314

Journal of Machine Learning Research 7 (2006) 1315–1338 Submitted 8/05; Revised 4/06; Published 7/06

Ensemble Pruning Via Semi-definite Programming

Yi Zhang yi-zhang-2@uiowa.edu

Samuel Burer samuel-burer@uiowa.edu

W. Nick Street nick-street@uiowa.edu

Department of Management Sciences
University of Iowa
Iowa City, IA 52242-1944, USA

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract

An ensemble is a group of learning models that jointly solve a problem. However, the
ensembles generated by existing techniques are sometimes unnecessarily large, which can
lead to extra memory usage, computational costs, and occasional decreases in effectiveness.
The purpose of ensemble pruning is to search for a good subset of ensemble members that
performs as well as, or better than, the original ensemble. This subset selection problem
is a combinatorial optimization problem and thus finding the exact optimal solution is
computationally prohibitive. Various heuristic methods have been developed to obtain an
approximate solution. However, most of the existing heuristics use simple greedy search
as the optimization method, which lacks either theoretical or empirical quality guarantees.
In this paper, the ensemble subset selection problem is formulated as a quadratic integer
programming problem. By applying semi-definite programming (SDP) as a solution tech-
nique, we are able to get better approximate solutions. Computational experiments show
that this SDP-based pruning algorithm outperforms other heuristics in the literature. Its
application in a classifier-sharing study also demonstrates the effectiveness of the method.
Keywords: ensemble pruning, semi-definite programming, heuristics, knowledge sharing

1. Introduction

Ensemble methods are gaining more and more attention in the machine-learning and data-
mining communities. By definition, an ensemble is a group of learning models whose pre-
dictions are aggregated to give the final prediction. It is widely accepted that an ensemble
is usually better than a single classifier given the same amount of training information.
A number of effective ensemble generation algorithms have been invented during the past
decade, such as bagging (Breiman, 1996), boosting (Freund and Schapire, 1996), arcing
(Breiman, 1998) and random forest (Breiman, 2001). The effectiveness of the ensemble
methods relies on creating a collection of diverse, yet accurate learning models.

Two costs associated with ensemble methods are that they require much more memory
to store all the learning models, and it takes much more computation time to get a prediction
for an unlabeled data point. Although these extra costs may seem to be negligible with a
small research data set, they may become serious when the ensemble method is applied to
a large scale real-world data set. In fact, a large scale implementation of ensemble learning
can easily generate an ensemble with thousands of learning models (Street and Kim, 2001;

c©2006 Yi Zhang, Samuel Burer and Nick Street.

Zhang, Burer and Street

Chawla et al., 2004). For example, ensemble-based distributed data-mining techniques
enable large companies (like WalMart) that store data at hundreds of different locations
to build learning models locally and then combine all the models for future prediction and
knowledge discovery. The storage and computation time will become non-trivial under such
circumstances.

In addition, it is not always true that the larger the size of an ensemble, the better it is.
For example, the boosting algorithm focuses on those training samples that are misclassified
by the previous classifier in each round of training and finally squeezes the training error
to zero. If there is a certain amount of noise in the training data, the boosting ensemble
will overfit (Opitz and Maclin, 1999; Dietterich, 2000). In such cases, it will be better to
reduce the complexity of the learning model in order to correct the overfitting, like pruning
a decision tree. For a boosting ensemble, selecting a subset of classifiers may improve the
generalization performance.

Ensemble methods have also been applied to mine streaming data (Street and Kim,
2001; Wang et al., 2003). The ensemble classifiers are trained from sequential chunks of the
data stream. In a time-evolving environment, any change in the underlying data-generating
pattern may make some of the old classifiers obsolete. It is better to have a screening process
that only keeps classifiers that match the current form of the drifting concept. A similar
situation occurs when classifiers are shared among slightly different problem domains. For
example, in a peer-to-peer spam email filtering system, each email user can introduce spam
filters from other users and construct an ensemble-filter. However, because of the difference
of interest among email users, sharing filters indiscriminately is not a good solution. The
sharing system should be able to pick filters that fit the individuality of each user.

All of the above reasons motivate the appearance of various ensemble pruning algo-
rithms. A straightforward pruning method is to rank the classifiers according to their
individual performance on a held-out test set and pick the best ones (Caruana et al., 2004).
This simple approach may sometimes work well but is theoretically unsound. For example,
an ensemble of three identical classifiers with 95% accuracy is worse than an ensemble of
three classifiers with 67% accuracy and least pairwise correlated error (which is perfect!).
Margineantu and Dietterich (1997) proposed four approaches to prune ensembles generated
by Adaboost. KL-divergence pruning and Kappa pruning aim at maximizing the pairwise
difference between the selected ensemble members. Kappa-error convex hull pruning is a
diagram-based heuristic targeting a good accuracy-divergence trade-off among the selected
subset. Back-fitting pruning is essentially enumerating all the possible subsets, which is
computationally too costly for large ensembles. Prodromidis et al. invented several pruning
algorithms for their distributed data mining system (Prodromidis and Chan, 2000; Chan
et al., 1999). One of the two algorithms they implemented is based on a diversity measure
they defined, and the other is based on class specialty metrics. The major problem with
the above algorithms is that when it comes to optimizing some criteria of the selected sub-
set, they all resort to greedy search, which is on the lower end of optimization techniques
and usually without either theoretical or empirical quality guarantees. Kim et al. used an
evolutionary algorithm for ensemble pruning and it turned out to be effective (Kim et al.,
2002). A similar approach can also be found in (Zhou et al., 2001).

Unlike previous heuristic approaches, we formulate the ensemble pruning problem as a
quadratic integer programming problem to look for a subset of classifiers that has the opti-

1316

Ensemble Pruning Via Semi-definite Programming

mal accuracy-diversity trade-off. Using a state-of-the-art semi-definite programming (SDP)
solution technique, we are able to get a good approximate solution efficiently, although the
original problem is NP-hard. In fact, SDP is not new to the machine learning and data
mining community. It has been used for problems such as feature selection (d’Aspremont
et al., 2004) and kernel optimization (Lanckriet et al., 2004). Our new SDP-based ensemble
pruning method is tested on a number of UCI repository data sets with Adaboost as the
ensemble generation technique and compares favorably to two other metric-based pruning
algorithms: diversity-based pruning and Kappa pruning. The same subset selection pro-
cedure is also applied to a classifier sharing study. In that study, classifiers trained from
different but closely related problem domains are pooled together and then a subset of
them is selected and assigned to each problem domain. Computational results show that
the selected subset performs as well as, and sometimes better than, including all elements
of the ensemble.

Ensemble pruning can be viewed as a discrete version of weight-based ensemble op-
timization. The more general weight-based ensemble optimization aims to improve the
generalization performance of the ensemble by tuning the weight on each ensemble mem-
ber. If the prediction target is continuous, derivative methods can be applied to obtain
the optimal weight on each ensemble model (Krogh and Vedelsby, 1995; Zhou et al., 2001;
Hashem, 1997). In terms of classification problems, approximate mathematical programs
are built to look for good weighting schemes (Demiriz et al., 2002; Wolpert, 1992; Mason
et al., 1999). Those optimization approaches are effective in performance enhancement
according to empirical results and are sometimes able to significantly reduce the size the
ensemble when there are many zeros in the weights (Demiriz et al., 2002). However, size-
reduction is not explicitly built into those programs and there is thus no control over the
final size of the ensemble. The proposed ensemble pruning method distinguishes from the
above methods by explicitly constraining the weights to be binary and using a cardinality
constraint to set the size of the final ensemble. The goal of ensemble pruning is to contain
the size of the ensemble without compromising its performance, which is subtly different
from that of general weight-based ensemble optimization.

The rest of the paper is organized as follows. Section 2 describes the pruning algorithm
in detail, including the mathematical formulation and the solution technique. Section 3
shows the experimental results on the UCI repository data sets and compares our method
with other pruning algorithms. Section 4 is devoted to the algorithm’s application in a
classifier-sharing case study with a direct marketing data set. Section 5 concludes the
paper.

2. Problem Formulation and Solution Technique

As the literature has shown, a good ensemble should be composed of classifiers that are
not only accurate by themselves, but also independent of each other (Krogh and Vedelsby,
1995; Margineantu and Dietterich, 1997; Breiman, 2001), or in other words, they should
make different errors. Some previous work has demonstrated that making errors in an
uncorrelated manner leads to a low error rate (Hansen and Salamon, 1990; Perrone and
Cooper, 1993). The individual accuracy and pairwise independence of classifiers in an
ensemble are often referred to as strength and divergence of the ensemble. Breiman (2001)

1317

Zhang, Burer and Street

showed that the generalization error of an ensemble is loosely bounded by ρ̄
s2 , where ρ̄ is

the average correlation between classifiers and s is the overall strength of the classifiers. For
continuous prediction problems, there are even closed-form representations for the ensemble
generalization performance based on individual error and diversity. Krogh and Vedelsby
(Krogh and Vedelsby, 1995) showed that for a neural network ensemble, the generalization
error

E = Ē − Ā,

where Ē is the weighted average of the error of the individual networks and Ā is the variance
among the networks. Zhou et al. (2001) give another form,

E =
∑
i,j

Cij ,

where

Cij =
∫

p(x)
(

fi(x)− d(x)
)(

fj(x)− d(x)
)

dx,

p(x) is the density of input x, fi(x) is the output of the ith network and d(x) is the true
output. Note that Cii is the error of the ith network and Cij, i 6=j is a pairwise correlation-like
measurement.

The problem is that the more accurate the classifiers are, the less different they become.
Therefore, there must be a trade-off between the strength and the divergence of an ensem-
ble. What we are looking for is a subset of classifiers with the best trade-off so that the
generalization performance can be optimized.

In order to get the mathematical formulation of the ensemble pruning problem, we need
to represent the error structure of the existing ensemble in a nice way. Unlike the case of
continuous prediction, there is no exact closed-form representation for the ensemble error
in terms of strength and diversity for a discrete classification problem. However, we are still
able to obtain some approximate metrics following the same idea. From the error analysis
of continuous problems, we notice that the ensemble error can be represented by a linear
combination of the individual accuracy terms and pairwise diversity terms. Therefore, if
we are able to find strength and diversity measurements for a classification ensemble, a
linear combination of them should serve as a good approximation of the overall ensemble
error. Minimizing this approximate ensemble error function will be the objective of the
mathematical programming formulation.

First, we record the misclassifications of each classifier on the training set in the error
matrix P as follows:

Pij =0, if jth classifier is correct on data point i,
Pij =1, otherwise.

(1)

Let G = P T P . Thus, the diagonal term Gii is the total number of errors made by classifier
i and the off-diagonal term Gij is the number of common errors of classifier pair i and j.
To put all the elements of the G matrix on the same scale, we normalize them by

G̃ii =
Gii

N
,

G̃ij, i 6=j =
1
2

(
Gij

Gii
+

Gij

Gjj

)
,

(2)

1318

Ensemble Pruning Via Semi-definite Programming

where N is the number of training points. After normalization, all elements of the G̃ matrix
are between 0 and 1. G̃ii is the error rate of classifier i and G̃ij measures the overlap of
errors between classifier pair i and j. Note that Gij

Gii
is the conditional probability that

classifier j misclassifies a point, given that classifier i does. Taking the average of Gij

Gii
and

Gij

Gjj
as the off-diagonal elements of G̃ makes the matrix symmetric. The constructed G̃

matrix captures both the strength (diagonal elements) and the pairwise divergence (off-
diagonal elements) of the ensemble classifiers. It is self-evident that for a good ensemble, all
elements of the G̃ matrix should be small. Intuitively,

∑
i G̃ii measures the overall strength

of the ensemble classifiers and
∑

ij, i 6=j G̃ij measures the diversity. A combination of these
two terms,

∑
ij G̃ij should be a good approximation of the ensemble error. The diversity

term defined here is ad hoc. We have noticed that there exist many other heuristic pairwise
measurements for ensemble diversity. For instance, the disagreement measure (Ho, 1998),
κ statistic (Fleiss, 1981), Yule’s Q statistic (Yule, 1900), and so on. However, we found
that the choice of the diversity measurement did not make a significant difference in terms
of performance according to our computational experiments. Therefore, we stick to our
definition because of its simplicity and intuitive appeal.

Now we can formulate the subset selection problem as a quadratic integer programming
problem. Essentially, we are looking for a fixed-size subset of classifiers, with the sum of
the corresponding elements in the G̃ matrix minimized. The mathematical programming
formulation is as follows,

min
x

xT G̃x

s.t.
∑

i

xi = k,

xi ∈ {0, 1}.

(3)

The binary variable xi represents whether the ith classifier will be chosen. If xi = 1, which
means that the ith classifier is included in the selected set, its corresponding diagonal and
off-diagonal elements will be counted in the objective function. Note that the cardinality
constraint

∑
i xi = k is mathematically important because without it, there is only one

trivial solution to the problem with none of the classifiers picked. In addition, it gives us
control over the size of the selected subset.

This quadratic integer programming problem is a standard 0-1 optimization problem,
which is NP-hard in general. Fortunately, we found that this formulation is close to that
of the so-called “max cut with size k” problem (written MC-k), in which one partitions the
vertices of an edge-weighted graph into two sets, one of which has size k, so that the total
weight of edges crossing the partition is maximized. The MC-k problem can be formulated
as

max
y

1
2

∑
i<j

wij(1− yiyj)

s.t.
∑

i

yi = Nv − 2k,

yi ∈ {−1, 1}.

(4)

1319

Zhang, Burer and Street

where Nv is the number of the vertices in the graph.
Roughly speaking, this optimization involves partitioning the vertices via the assignment

of yi = 1 or yi = −1 to each vertex i in the graph (subject to the size requirement)
and minimizing the sum

∑
ij wijyiyj , where wij is the edge weight between vertices i and

j. Notice that the interaction term yiyj equals −1 when i and j are in different sets
of the partition, which, in the context of the minimization described, contributes to the
maximization of edges crossing the partition. The MC-k problem is known to have a very
good approximate solution algorithm based on semi-definite programming (SDP). The key
point of the SDP approximation algorithm is to relax each binary variable yi ∈ {−1, 1}
into a unit vector. Therefore, if we are able to transform the ensemble pruning formulation
so that it fits into the framework of MC-k, we may obtain a good solution for the ensemble
pruning problem.

The above MC-k formulation (4) is equivalent to

min
y

yT Wy

s.t.
∑

i

yi = Nv − 2k,

yi ∈ {−1, 1}.

(5)

where W is the edge-weight matrix, with wi,i = 0. If we compare this formulation with that
of the ensemble pruning problem, the only barrier that prevents the application of the SDP
approximation algorithm on the ensemble pruning problem is the difference in the possible
values of the binary variable. Specifically, in ensemble pruning, xi ∈ {0, 1} and in MC-k,
yi ∈ {−1, 1}. Therefore, we need to make a transformation of variables for the ensemble
pruning problem. Let

xi =
vi + 1

2
, (6)

and vi ∈ {−1, 1}. Now the objective function becomes

1
4
(v + e)T G̃(v + e), (7)

where e is a column vector of all 1s. The cardinality constraint
∑

i xi = k can be rewritten
into quadratic form

xT Ix = k, (8)

where I is the identity matrix. After variable transformation, this constraint becomes

(v + e)T I(v + e) = 4k. (9)

A variable expansion trick can be applied to put both the transformed objective function
and the cardinality constraint back into a nice quadratic form. We expand the variable
vector v = (v1, v2, ..., vn) into v = (v0, v1, v2, ..., vn), and let v0 = 1. We then construct a
new matrix

H(n+1)×(n+1) =
(

eT G̃e eT G̃

G̃e G̃

)
. (10)

1320

Ensemble Pruning Via Semi-definite Programming

Thus the objective function is equivalent to vT Hv (dropping the coefficient). We use the
same trick to construct a matrix D

D(n+1)×(n+1) =
(

n eT

e I

)
, (11)

so that the cardinality constraint becomes vT Dv = 4k.
After this whole transformation, the problem formulation becomes

min
v

vT Hv

s.t. vT Dv = 4k,

v0 = 1,

vi ∈ {−1, 1}, ∀i 6= 0,

(12)

with which we will show later that the SDP relaxation applicable to the MC-k formula-
tion (5) (Goemans and Williamson, 1995; Han et al., 2002) may also be applied here.

It is important to keep in mind that the equivalence of our pruning problem and MC-
k, established through the transformations (4–5) and (6–12), is an equivalence between
optimal solution sets, not optimal values. Said differently, the optimal solutions of our
problem are in one-to-one correspondence with the optimal solutions of MC-k via the given
transformations, but the optimal values of the two problems are not equal. In particular,
even though we can interpret (12) as an instance of MC-k with nonnegative weights on
the complete graph, the objective function of (12) does not measure the total weight of
cut edges. Instead, it more closely measures the total weight of un-cut edges (which is
consistent with minimization) and, further, differs by a scaling as well as the inclusion of
a constant term, which is based on the diagonal entries of H. These differences in the
objective functions are byproducts of the transformations employed.

Given that our problem is equivalent to MC-k (in terms of optimal solutions), it is
worthwhile to ask what is known about MC-k. Based on the seminal work of Goemans
and Williamson (1995) for the maximum cut problem with no size restriction, the papers of
Feige and Langberg (2001) and Han, Ye, and Zhang (2002) demonstrate an approximation
algorithm for instances of MC-k with nonnegative edge weights. The approximation algo-
rithm is based on solving a SDP relaxation of MC-k and applying a simple-to-implement
randomization scheme.

Because the objective function of our problem does not precisely match the objective
of MC-k (even though the two problems are equivalent through optimal solutions), the ap-
proximation guarantee for MC-k—which is with respect to its objective function—does not
necessarily transform into a guarantee for our problem. In fact, it seems extremely difficult
to derive directly any approximation guarantees for our problem. SDP-based approximation
approaches have proven most successful for problems in maximization form due to technical
details concerning how an SDP relaxes a binary quadratic program, and unfortunately, our
problem is in minimization form.

Nevertheless, we feel that the strong connection of our problem with MC-k justifies the
following heuristic procedure: (i) transform an instance of our problem into an instance of
MC-k; (ii) use the SDP-based approximation algorithm to obtain a good solution of the

1321

Zhang, Burer and Street

MC-k instance; and (iii) transform back to a solution of our problem. Further, it is not
difficult to see that the above three steps are equivalent to the more direct approach of
relaxing (12) as an SDP and applying the randomization scheme of Feige and Langberg
(2001) and Han, Ye, and Zhang (2002). In other words, it is not explicitly necessarily to
convert to an instance of MC-k first.

For completeness, we now return our attention to the SDP relaxation itself. Problem (12)
is equivalent to

min
v

H • vvT

s.t. D • vvT = 4k,

v0 = 1,

vi ∈ {−1, 1}, ∀i 6= 0,

(13)

where A •B =
∑

i,j AijBij .
To construct the relaxation, we first note that the constraint v0 = 1 can be relaxed to

v0 ∈ {−1, 1} without changing the problem since −v is feasible for the remaining constraints
if and only if v is and since H • vvT = H • (−v)(−v)T . Next, we rewrite the constraints
vi ∈ {−1, 1}, i = 0, 1, . . . , n as the single, collective constraint diag(vvT) = e to arrive at
the following formulation:

min
v

H • vvT

s.t. D • vvT = 4k,

diag(vvT) = e.

(14)

We next substitute V = vvT , and note that V can be expressed as vvT if and only if V � 0
with rank(V) = 1, which gives us

min
V

H • V

s.t. D • V = 4k,

diag(V) = e

V � 0, rank(V) = 1.

(15)

Although this problem is written in a different form, it is completely equivalent to our
original 0-1 quadratic problem.

The SDP relaxation is now obtained by dropping the rank constraint, which yields the
following (convex) SDP:

min
V

H • V

s.t. D • V = 4k,

diag(V) = e

V � 0.

(16)

Now the original NP-hard problem (3) is relaxed into a convex SDP problem which
can be solved to any preset precision in polynomial time. We solve the SDP relaxation
using the publicly available package SDPLR (Burer and Monteiro, 2003; SDPLR) and have
implemented the approximation algorithm described in (Han et al., 2002).

1322

Ensemble Pruning Via Semi-definite Programming

3. Computational Experiments

The SDP-based ensemble pruning algorithm is tested on sixteen UCI repository data sets
(Blake and Merz, 1998): Autompg, Bupa, Cmc, Crx, Glass, Haberman, Housing, Cleveland-
heart-disease, Hepatitis, Ion, Pima, Sonar, Vehicle, WDBC, Wine and WPBC. Some of the
data sets do not originally depict two-class problems so we did some transformation on the
dependent variables to get binary class labels. Specifically in our experiments, the Autompg
data is labeled by whether the mileage is greater than 25mpg, the Housing data by whether
the value of the house exceeds $25, 000, and the Cleveland-heart-disease by the presence or
absence of the disease. Vehicle and Wine are multi-class problems so we set the problem
as separating one class pair each time, resulting in a total of 24 data sets. All data points
with missing values are removed.

It has been shown that the pruning effect is more striking on a diverse ensemble
(Margineantu and Dietterich, 1997). Boosting-like algorithms usually generate diverse clas-
sifiers by concentrating on widely different parts of the training samples at each round of
training. So we use Adaboost to create the original ensemble for pruning. The unpruned
C4.5 decision tree is used as the base classifier training algorithm (Quinlan, 1993). One hun-
dred decision trees are built for each data set following the standard Adaboost procedure. If
the training error reaches zero before the number of trees gets 100, the Adaboost process is
repeated (with different random seeds). Note that the accuracy of all the classifiers created
by Adaboost is higher than 50%.

Two existing metric-based ensemble pruning algorithms, diversity-based pruning and
kappa pruning, are picked as the benchmarks because the objectives of the these two al-
gorithms are somewhat close to that of the new algorithm. In addition, these two algo-
rithms can prune the ensemble to any pre-set size, which makes a fair comparison possible.
Diversity-based pruning tries to maximize the sum of pairwise diversity of the selected
subset of classifiers (Prodromidis and Stolfo, 1998). Pairwise diversity is defined as the
proportion of the training points on which the two classifiers disagree. The greedy search
starts with the most accurate classifier and adds the classifier that improves the objective
most at each round. Kappa-pruning, invented by Margineantu and Dietterich (Margineantu
and Dietterich, 1997), attempts to minimize the sum of pairwise similarity of the selected
subset. A κ statistic is used to measure the pairwise similarity,

κ =
θ1 − θ2

1− θ2

where θ1 is the proportion of points on which the two classifiers agree with each other on
the training set, and θ2 is the probability that the two classifiers agree purely by chance.
The κ statistics among all pairs are calculated and ranked from low to high. The greedy
search picks classifier pairs from the ranked pair list until the pre-set size of the pruned
ensemble is met.

The performance of the three algorithms on the 24 data sets are listed in Table 3. Here,
the size of the pruned ensemble is 25. Empirical research suggests that, in most cases,
most or all of the generalization gain in a well-constructed ensemble comes from the first
25 classifiers added (Breiman, 1996; Opitz and Maclin, 1999). The result is averaged over
five ten-fold cross-validations. The number in the parentheses is the standard deviation
over the five runs. A win-loss-tie summarization based on mean value and t test (95%

1323

Zhang, Burer and Street

dataset SDP-25 Div-25 Kappa-25 No Pruning
autompg 10.35(0.62) 13.88(0.83) 11.91(1.52) 10.71(0.70)

bupa 30.52(1.43) 35.87(1.25) 38.39(2.65) 30.32(0.43)
cmc 32.82(0.87) 41.70(1.66) 43.66(1.37) 34.50(1.19)
crx 13.88(0.46) 22.40(3.41) 21.78(4.44) 13.58(0.85)

glass 12.53(1.12) 17.30(2.88) 16.39(2.76) 11.29(0.70)
haberma 32.73(2.21) 38.63(1.30) 38.88(3.09) 34.56(1.74)
heart 20.13(2.19) 28.09(2.73) 27.81(4.09) 20.40(2.39)

hepatit 15.81(1.17) 19.83(2.66) 16.86(2.00) 14.71(1.84)
housing 11.03(0.61) 12.37(0.91) 12.21(1.59) 10.67(0.66)

ion 7.46(2.17) 10.94(5.13) 14.02(10.61) 9.85(7.72)
iris 12.20(9.47) 15.00(7.84) 19.60(8.44) 13.40(11.01)
pima 25.34(0.67) 31.31(3.78) 30.24(2.90) 25.06(0.78)
sonar 21.43(1.68) 26.24(4.32) 25.24(2.31) 18.96(1.13)
wdbc 3.38(0.34) 3.51(0.59) 3.76(0.76) 2.88(0.30)

wine1-2 2.92(0.64) 6.15(3.17) 12.62(18.45) 11.85(18.82)
wine1-3 1.11(0.76) 1.27(0.50) 2.58(1.01) 1.31(0.47)
wine2-3 3.05(0.75) 4.56(2.50) 5.67(6.27) 2.86(3.54)
wpbc 24.06(2.51) 32.35(1.88) 29.54(3.52) 24.04(2.79)

vehicle1-2 41.15(2.62) 42.32(1.01) 45.17(4.65) 41.40(1.28)
vehicle1-3 1.07(0.42) 3.67(3.79) 9.26(12.11) 3.21(3.24)
vehicle1-4 4.52(0.36) 6.47(1.24) 6.18(2.42) 3.84(0.21)
vehicle2-3 2.25(0.55) 7.34(4.01) 11.99(7.06) 5.82(4.36)
vehicle2-4 5.00(1.28) 10.33(3.26) 13.57(12.65) 5.96(4.35)
vehicle3-4 1.15(0.11) 0.96(0.41) 1.39(1.63) 0.67(0.39)

Absolute W-L-T 23-1-0 24-0-0 12-12-0
Significant W-L-T 9-0-15 8-0-16 2-0-22

Table 1: Comparison of SDP pruning, Diversity-based pruning, Kappa-pruning and original
ensembles, by % error and (standard deviation)

significance level) is attached at the bottom of the table. Note that simple majority voting
is used to combine the predictions of the ensembles. Prodromidis et al. (Prodromidis and
Stolfo, 1998; Prodromidis and Chan, 2000) built a higher level classifier (meta-classifier)
to aggregate the output of the pruned ensembles. There has been other research in this
direction (Wolpert, 1992; Bennett et al., 2000; Mason et al., 1999; Grove and Schuurmans,
1998). However, there is so far no strong evidence that such a meta-classifier is generally
better than simple majority voting.

Table 3 shows that the performance of the SDP-based pruning is better than that of the
other two algorithms for most of the data sets involved in the computational experiments.
Also, although only a quarter of the classifiers are left, the error of the pruned ensemble by
SDP-based pruning is statistically the same as that of the original ensemble. In addition, we
may conclude that the SDP-based pruning is more stable in terms of accuracy, by looking
at the error standard deviation of the three algorithms. The error fluctuation range of the
other two algorithms is often much larger, which might explain why the SDP-based pruning
is sometimes not statistically better.

1324

Ensemble Pruning Via Semi-definite Programming

There are several possible reasons why the SDP-based pruning outperforms the other
two. First, the optimization procedure of the SDP-based pruning is better than greedy
search. Although greedy search may produce optimal solutions in some cases, it may also
perform badly when the problem is ill-conditioned, which is not a rare case for ensemble
pruning. On the other hand, while the SDP approximation algorithm may not be able find
optimal solutions all the time, it can provide a relatively good solution in most cases. There-
fore, the SDP-based pruning turns out to be better on average and more stable. Second, the
definition of divergence of the SDP-based pruning is subtly different from that of the two
others. SDP-based pruning only considers the correlation between errors while the other
two define pair-wise correlation based on all the data points. In fact, we want the classifiers
to agree with each other when they make correct predictions. The divergence we need is
indeed the divergence of the way they commit errors. Hence, the error-based divergence
definition is more closely related to generalization performance. Finally, the objective func-
tion of the SDP-based pruning may reflect a better trade-off between individual accuracy
and pair-wise divergence. As a matter of fact, the other two algorithms do not explicitly
include individual accuracy in their objective functions. The diversity-based pruning starts
the search with the most accurate classifier, and both favor more accurate classifiers when
the diversity measures tie. For a systematically constructed ensemble, the individual accu-
racy of each classifier is not critical as long as its accuracy is over 50% and there are enough
of classifiers in the ensemble. However, for a pruned ensemble, with the initial structure
broken and a large portion of the members removed, the importance of individual accuracy
may increase. Therefore, the individual strength of the classifiers should be appropriately
considered in ensemble pruning. Although our way of including individual accuracy in the
objective may not be perfect, it may contribute to the improvement of performance.

The improved performance comes with a price: more computation time. Table 3 shows
the time it takes to solve the pruning problem with increasing size of the original ensemble.
The size of the pruned ensemble is fixed at 25. The timing test was conducted on an AMD
1.2GHz computer with 1G memory. As we mentioned before, with the SDP relaxation
heuristic, the pruning problem can be solved in polynomial time. This can be verified
by looking at the linearity of the log log plot of time vs. size of the original ensemble, as
illustrated in Figure 1. Selecting 25 classifiers from an original ensemble with 3000 classifiers
will take roughly a day, which is within the reasonable region for most applications. If each
classifier (a decision tree, e.g.) is trained with 1000 points, such an ensemble learning
procedure would be able to handle a dataset with 3,000,000 points. Therefore, we may
cautiously conclude that the SDP-based ensemble pruning method is applicable to large
scale data mining problems. Note that our subset selection routine is coded partly in
MATLAB. If it were coded in C, it would have been much faster.

4. Selective Sharing of Classifiers Among Related Problem Domains: A
Case Study

We have so far demonstrated the effectiveness of the SDP-based pruning algorithm based on
small research data sets. As mentioned before, ensemble pruning is more relevant to large-
scale data mining implementations. Therefore, we wish to demonstrate that the SDP-based
pruning algorithm is also effective and efficient under real-world conditions. We imple-

1325

Zhang, Burer and Street

Size Time (s) Size Time (s)
100 3 1500 4889
200 36 2000 23255
400 113 2500 42419
800 713 3000 83825

Table 2: Computation time of SDP-based pruning

102 103 104
100

101

102

103

104

105

size of ensemble (log)

so
lvi

ng
 ti

m
e

(lo
g)

Figure 1: Timing test of SDP-based ensemble pruning

1326

Ensemble Pruning Via Semi-definite Programming

mented the pruning algorithm in the following case study, where classifiers from different
but closely-related problem domains are pooled together and a subset of them is then se-
lected for each problem domain. This case study involves a much larger data set than the
UCI sets used in the above experiments, and an original ensemble with a larger number
of more divergent classifiers. The results of the study verify the algorithm’s performance
in real-world applications, and show one type of situation where ensemble pruning can be
particularly useful.

As we know, ensemble methods not only improve classification accuracy, but also pro-
vide a way to share knowledge. If the data for a problem domain are distributed at different
locations, classifiers can be trained locally and then combined to create an ensemble. This
centralized ensemble gathers information from each site and can potentially be more pow-
erful for further predictions. Now the questions is, if we are working with several different
but closely related problem domains, is sharing classifiers among those domains still a good
idea?

The essence of sharing classifiers is sharing common knowledge among different but
closely related problem domains. A famous example of the research in this direction is the
multi-task neural network (Caruana, 1997). Each problem domain is assigned one or more
output nodes, while sharing some of the input and mid-layer nodes with other problem
domains. Although this method is sometimes successful, it has several limitations. First,
it requires that the data be at the central location for training. Second, the training speed
becomes a big issue if the size of the data is large. The classifier-sharing strategy may avoid
both of the drawbacks. Since the classifiers can be trained locally, the data need not be
centralized. Moreover, one can use efficient algorithms like decision trees to train classifiers,
so computation time becomes less of a problem.

The prerequisite for sharing classifiers among different problem domains is that the
data schema for each problem domain should be identical, or at least very similar. It
ensures that the classifiers trained on one problem domain can also be applied to other
problem domains, although the accuracy can possibly be low. Sometimes, this requires
transformation of variables to satisfy this condition. It is in fact hard to tell a priori whether
sharing classifiers among different problem domains will improve the overall performance.
The success of this strategy depends on the connections among the problem domains and the
self-completeness of information within each problem domain. However, with a screening
process (ensemble pruning) that will be described later, the chance that sharing classifiers
will eventually downgrade the overall performance is minimal.

The cross-domain classifier-sharing strategy is tested on a publicly available marketing
data set. To address the concern that sharing classifiers blindly sometimes may do harm to
some of the problem domains if there exist conflicting elements among them, we apply the
SDP-based pruning algorithm to select a good subset of classifiers from the entire ensemble
for each problem domain.

The data set is a catalog marketing data set from the Direct Marketing Association
(DMEF Academic Data Set Three, Specialty Catalog Company, Code 03DMEF). The de-
pendent variables are the customers’ responses to a particular promotion held by a catalog
company. There are 19 different categories of products involved in the promotion, which
correspond to 19 response variables. Unfortunately, the identities of the product categories
are not available. The data mining problem we try to solve is to predict which categories

1327

Zhang, Burer and Street

Category %Pos Category %Pos
1 0.14 11 0.13
2 0.27 12 0.05
3 0.04 13 0.44
4 0.92 14 2.65
5 0.12 15 1.70
6 0.83 16 2.09
7 0.44 17 0.65
8 0.37 18 0.31
9 0.64 19 1.17
10 0.02

Table 3: Percentage of positive points (response rate) of 19 categories.

of products a customer is going to buy based on the available historical and demographic
data. We decomposed this task into 19 separate binary classification problems, building
one model for each category and predicting whether the customer is going to buy from that
category. Note that this whole task cannot be treated as a classification problem with 19
classes because one customer can buy products from any number of categories, including
zero, so the class assignment for each individual is not exclusive. This kind of problem is
sometimes referred to as “multi-label” classification problem and is more often seen in the
text-mining domain (McCallum, 1999; Shen et al., 2004).

Table 4 shows the percentage of positive points, or response rate, of each category. A
positive point for a category represents a customer that buys one or more products from
that category. It can be seen from the table that for most categories, the response rate is
lower than one percent, which makes the data set highly skewed toward the non-buyers. A
common way to deal with unbalanced data is to create training data sets with a balanced
class distribution through sampling (Fan et al., 2004).

For each category, twenty five training sets with 400 positive points and 400 negatives
are bootstrapped from the original training data. A C4.5 decision tree is then built based
on each training set. In total, twenty-five decision trees are obtained for each category.
These twenty-five trees are grouped together to create an ensemble for future predictions.
This bagging-like approach is a standard way to solve such marketing problems and often
very powerful. However, it does not work well on the marketing data set used in this study.
For example, the lift curve for Category 10 is almost a 45 degree line, which implies that
the ensemble learned hardly anything useful from the training sets. Our explanation is that
the number of distinctive positive points in the training sets for Category 10 is too small.
As shown in Table 4, the original response rate for category 10 is only 0.02%, so there is
simply not enough information to build a decent classifier.

To improve the performance of the ensembles built by the original bagging approach,
extra useful information is necessary. Sharing classifiers among different categories is our
proposed solution. We cite two reasons to support this proposition. First, we are dealing
with customers from the same catalog company. It is reasonable to expect that those
customers who did place orders should share some common properties and those properties
should be reflected in the classifiers belonging to those categories with relatively higher

1328

Ensemble Pruning Via Semi-definite Programming

response rate. If these classifiers can be included into the ensembles of those categories
without enough positive points, they may help hit the targets and improve the overall
performance. Second, the purchase patterns of some different categories may be similar.
For example, people are more likely to buy clothes when there are discount coupons. This
may also be true for shoes. Therefore, a marketing model for clothes that stresses the
importance of discount coupons may also work for shoes although they belong to different
product categories.

A naive way of sharing classifiers is to pool all the classifiers from the 19 categories
into one big ensemble and use it for every category. However, there exist risks behind this
sharing-all strategy. Specifically, when there are strikingly conflicting concepts among the
problem domains, mixing classifiers blindly will degrade the effectiveness of the ensemble
method. Therefore, it is safer to bring in the SDP-based screening process that is able to
select a subset of classifiers for each problem domain. Unlike the experiments on the UCI
data sets, here we use a held-out tuning set for each subset selection process since there is a
large amount of data. Therefore, the P matrix in (1) is constructed based on classification
results on the tuning set instead of the training set. Each tuning set reflects the original
class distribution. Note that there are 19 categories in the marketing data, so there will
be 19 tuning sets and the subset selection process will be repeated 19 times, once for each
category.

There is still one more problem with the current setup of the G̃ matrix. Since the tuning
data sets here reflect the original class distributions, which are highly biased towards non-
buyers, the resulting G̃ matrix will reflect the performance of the ensemble on the negative
points while almost ignoring the influence of the positive points. It is necessary to balance
the influence of the positive points and the negative points on G̃. To achieve this goal, we
define a third Ĝ matrix as a convex combination of the G̃ matrix on the positive points and
the G̃ matrix on the negative points in the tuning set,

Ĝ = λG̃pos + (1− λ)G̃neg.

Note that G̃pos is computed based only on the positive points in the tuning set and G̃neg

only on the negative points, using formulas (1) and (2). In the following computational
experiments, λ is set to 0.5.

The original data schema for each category is identical: same independent variables
(purchase history, promotions and demographic information) and a binary dependent vari-
able indicating whether the customer buys products from this category. However, we found
that some of the independent variables are category-specific. For example, there are 19
variables each representing whether there is a discount for each category. Intuitively, the
discount variable for Category i is more informative to the prediction problem for Category
i than for other categories. There is likely a split on the discount variable for Category i in
the decision trees for Category i. Since this discount variable is probably (not absolutely)
not relevant to other categories, the decision trees induced on Category i are less likely
to be useful for other categories. To make the decision trees more interchangeable among
different categories, we did some transformations on those category-specific variables. In
the data set for Category i, a copy of each category-specific variable related to Category
i is appended to the end of the data schema and labeled as “xxxx-for-this-category”. The
values of the original category-specific variables for this Category i (which already have

1329

Zhang, Burer and Street

Cat. Non-sharing Naive-Sharing Selective-sharing
1 77.69(4.08) 82.93(1.21) 82.31(2.22)
2 76.89(2.03) 80.45(0.47) 77.71(5.81)
3 63.95(1.69) 84.79(1.15) 83.02(5.52)
4 82.38(1.13) 80.93(0.40) 77.94(3.15)
5 73.31(4.35) 82.06(0.95) 80.38(1.57)
6 80.45(0.60) 80.32(0.42) 78.20(2.58)
7 79.79(1.41) 81.20(0.65) 79.72(4.73)
8 75.96(0.43) 78.67(0.46) 76.71(1.51)
9 81.72(0.78) 81.33(0.58) 79.04(2.55)
10 52.67(9.71) 74.82(3.55) 72.33(6.29)
11 68.62(6.54) 80.46(1.58) 76.74(2.55)
12 57.11(5.56) 78.76(2.81) 75.42(3.56)
13 79.45(0.97) 78.56(0.52) 77.03(2.30)
14 83.50(0.26) 81.41(0.30) 81.25(2.74)
15 97.34(0.16) 93.05(1.58) 97.06(0.35)
16 97.63(0.07) 93.51(1.33) 97.66(0.13)
17 82.86(0.85) 84.82(0.61) 83.80(0.40)
18 85.60(1.05) 87.37(0.73) 88.01(0.35)
19 91.27(0.23) 89.69(0.82) 91.16(0.55)

Comparison Selective
vs. other

11-8-0 4-15-0 Abs.W-L-T
3-0-16 3-1-15 Sig.W-L-T

Table 4: AUCs of non-sharing, naive-sharing and selective-sharing ensembles

copies) are then set to be uniform for each record so that there will be no splits on these
variables in the decision trees. The splits, if necessary, will be made on those newly ap-
pended variables. After transformation, each category has the same number of appended
category-specific variables related only to itself so the data schema of each category is still
identical and the tree splits on the category-specific variables are more meaningful across
categories. For instance, if there is a rule induced on a category like “if there is a discount
on this category, the customer is going to buy products from this category”, it is reasonably
applicable to other categories. Therefore, the interchangeability of trees among categories
is increased.

Since the original bagging approach builds ensembles of 25 classifiers, here we set the
size of the selected ensemble to be 25 as well for a fair comparison. Another reason to
set the size of the selected ensemble equal to that of the original ensemble is that for each
category, there are at least 25 relevant classifiers: those that are trained on its own data. In
fact, we have experimented with other sizes such as 50, but it didn’t result in any significant
difference for this particular problem.

Table 4 lists the AUCs (Area Under the ROC Curve) of three methods: original bagging
(non-sharing), naive-sharing and selective-sharing, on each category. Summaries based on
mean value and paired t tests (95% significance level) are attached at the bottom of the
table.

1330

Ensemble Pruning Via Semi-definite Programming

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

20

25

30

35

40

Category

%
 d

iff
er

en
ce

Figure 2: % Difference of AUCs of selective-sharing ensemble and the original bagging en-
sembles on 19 categories, AUCsel−AUCorig

AUCorig

The results show that selective sharing of classifiers does improve the AUCs for almost
half of the categories. Especially for those categories without enough positive information,
the rise in AUC is substantial (Figure 2). The overall performance of the ensembles produced
by selective-sharing is almost as good as the naive-sharing ensemble. For Categories 15, 16
and 19, it is even statistically better. Note that the selected ensembles use only 25 classifiers
each as compared to 475 for the naive-sharing ensemble. There are two implications of this
result. First, the ensemble pruning process is quite effective. Second, the reason that the
including-all ensemble is better than the individual bagging ensembles is not simply because
it’s larger. There is truly useful additional information in the including-all ensemble that
can be singled out by the pruning process.

Moreover, the selective sharing is a conservative version of sharing classifiers, hence it
should be more robust. If there were wildly conflicting concepts among the categories,
the selective-sharing would have performed better. In fact, the selective-sharing ensembles
of Categories 15 and 16 do outperform the including-all ensemble by throwing away bad
classifiers, as expected.

It is also interesting to look at the classifier sharing structure among different categories.
Table 4 provides a list of statistics that summarizes the sharing structure, averaged over the
same five runs in Table 4. The “Prior” column shows the response rate for each category.
The “Used” column is the total number of classifiers trained on this category used for
all categories. The “Used Own” column is the total number of classifiers trained on this
category used for this category. The “Most Used” column shows the most common training
category for the classifiers for each ensemble. Finally, HI index is the Herfindahl index

1331

Zhang, Burer and Street

Category Prior Used Used Most HI
(%) Own Used index

1 0.14 2 1 13 0.16
2 0.27 0 0 14 0.27
3 0.04 0 0 6 0.16
4 0.92 12 1 17 0.25
5 0.12 1 0 17 0.27
6 0.83 17 0 14 0.35
7 0.44 9 0 14 0.35
8 0.37 14 1 14 0.67
9 0.64 22 3 14 0.29
10 0.02 1 0 19 0.33
11 0.13 3 0 19 0.57
12 0.05 2 0 19 0.47
13 0.44 18 0 19 0.67
14 2.65 80 7 14 0.30
15 1.70 11 0 19 0.33
16 2.09 14 1 19 0.35
17 0.65 94 9 19 0.34
18 0.31 24 2 19 0.49
19 1.17 150 18 19 0.63

Table 5: Statistics of classifier sharing structure

(Rose and Engel, 2002), which is computed by the following formula:

HIi =
C∑

j=1

(
nij

Ne
)2

where nij is the number of classifiers trained on jth category used for ith category, and Ne

is the size of the pruned ensemble which is 25 in this case. The smaller the HI index, the
more diverse the ensemble, in terms of original training categories. From our observation,
the classifier sharing structure is reasonably stable for most of the categories over the five
runs. For instance, classifiers from Categories 14, 17 and 19 are always the top three used
classifiers in the selected ensembles, the most used column seldom varies among different
runs, etc.

There are a few things that one can tell after studying these numbers.

• The most surprising fact shown by the table is that for most categories, the classifiers
trained on the category are seldom chosen for its own ensemble. Only Categories 14,
17 and 19 used a reasonable number of their own classifiers. However, the performance
of the pruned ensembles are close to that of the original bagging ensembles as shown
in Table 4. This may imply that some of the categories are closely related therefore
their classifiers are highly interchangeable through combination.

• The higher the original response rate for each category, the more times its classifiers
are used by other categories. Figure 3 plots the number of times its classifiers are used

1332

Ensemble Pruning Via Semi-definite Programming

versus the original response rate for each category. The slope of the linear regression
is 24.00 with p value 0.053, which verifies the conjecture that the classifiers trained on
categories with more positive information may well capture the general properties of
the potential customers and are thus widely used by other categories. The fact that
the p value is slightly below the 95% significance level implies that the response rate
is not the sole factor that decides the popularity of the classifiers.

• Categories 15, 16 and 17 are the major outliers from the above rule. Categories 15
and 16 have relatively high response rate, but their classifiers are seldom used, even
hardly used in their own ensembles. The including-all ensemble performs badly on
these two categories. On the other hand, the pruned ensembles perform almost as
well as the original bagging ensembles. Our explanation is that these two categories
are a little different from the main trend. However, these two categories are somehow
closely related to a subset of categories so that a combination of classifiers from those
categories may still predict these two categories well. It is unclear why their own
classifiers are so rarely used for their own categories. One guess is that the original
bagging ensemble members for these two categories are not good individually, though
they perform well as a group. So the pruning algorithm throws them away because
they are not strong enough by themselves. Category 17 is an outlier from the other
side. It has relatively low response rate, but its classifiers are the second most used.
This indicates that despite the low response rate, the classifiers trained on Category
17 are still good or often provide information that is complementary to that provided
from other categories. In addition, there is a subset of categories in which category 17
may be a good representative. This subset includes Categories 4 and 5 because these
two categories used many classifiers from Category 17, as shown in the “Most Used”
column of Table 4.

• Classifiers from categories with response rate less than 0.3% are hardly used. Usually,
the including-all ensemble performs pretty well on those categories. It shows that for
those problem domains without enough information, using aggregated information
from all related problem domains may be a good solution.

• Classifiers from Categories 14 and 19 occupy almost half of the classifiers that are
selected. Classifiers from Category 14 dominate pruned ensembles in six categories
while classifiers from Category 19 dominate in nine categories. This might be because
the customers of these two categories well-represent the potential buyers of the whole
catalog. There exists a subtle difference between these two categories. For Category
14, although its classifiers are widely used, there are only 7 selected for its own prob-
lem, while for Category 19, almost all of its own classifiers are selected. There are two
explanations of this phenomenon. First, classifiers of Category 14 captures well only
part of the characteristics of its customers, therefore, it still needs extra information
for its own problem. Second, those classifiers are good but very close to each other.
So the divergence criteria of the subset selection process prevents including too many
of its own classifiers.

• The Herfindahl index shows the homogeneity of the sources of the classifiers in the
pruned ensembles. If a category prefers universal knowledge for its prediction, the

1333

Zhang, Burer and Street

0 0.5 1 1.5 2 2.5 3
0

50

100

150

of

 ti
m

es
 u

se
d

response rate %

Figure 3: Response rate of each category vs. total number of times its classifiers are used
in the selected ensembles

1334

Ensemble Pruning Via Semi-definite Programming

HI index will be low, which means that the pruned ensemble picks classifiers from
many categories. On the other hand, if a category needs specialized knowledge for its
prediction, the HI index will be higher, which implies that the pruned ensemble picks
classifiers only from a small number of categories that share some particular properties
with the category in question. Usually for those categories with small response rate,
the HI index is low, for example Category 1 and Category 3. Categories 8 and 13
have the highest HI index. From the “Most Used” column, we know that Category 8
used classifiers mostly from Category 14. So it can be inferred that Category 8 and
category 14 are closely related. For the same reason, the customers of Category 13
may share some special properties with that of Category 19.

These pieces of information might make more sense if we knew what these categories
were. Unfortunately, this knowledge is currently unavailable. The information gained by
studying the classifier sharing structure may help improve the mailing and promotion strat-
egy of the catalog company. For instance, customers that buy products from Categories 14,
17 and 19 seem to capture the main trend of the customer base, so they are likely the core
customers of the company and may need extra attention. Customers of Category 14 and 8
seem to be similar from some perspective. Therefore, a promotion strategy that proves to
be successful for Category 14 may also work well for Category 8.

5. Conclusion and Future Work

This paper introduced a new ensemble pruning method to improve efficiency and effec-
tiveness of an existing ensemble. Unlike previous heuristic approaches, we formulate the
ensemble pruning problem as a strict mathematical programming problem and apply SDP
relaxation techniques to obtain a good approximate solution. The computational experi-
ments on the UCI repository data sets show that this SDP-based pruning algorithm performs
better than two other metric-based pruning algorithms. Its application in a classifier shar-
ing study also indicates that this subset selection procedure is effective in picking classifiers
that fit the needs of different problem domains. Besides the peer-to-peer email filtering
problem mentioned before, this method can also be useful when a company is trying to
promote a new product. Usually, there is only limited information about a new product’s
potential customers. However, if the company has good marketing models for its old prod-
ucts, especially those closely related to the new product, selecting some of the old models
based on the limited data of the new product may be a better solution than building models
directly.

There is yet room for improvement in the current version of the algorithm. For example,
there are several parameters in the model that can be fine-tuned, such as the method of
normalization and the relative weight between the diagonal terms and off-diagonal terms.
Another thing that’s worth exploring is whether there exits a nice form of the objective
function so that a “real” optimal subset can be found without enforcing the cardinality
constraint. Under the current setup, removing the cardinality constraint will result in a
trivial solution.

1335

Zhang, Burer and Street

Acknowledgment

Samuel Burer would like to acknowledge support from NSF Grant CCR-0203426 and CCF-
0545514.

References

K.P. Bennett, A. Demiriz, and J. Shawe-Taylor. A column generation algorithm for boost-
ing. In Proc. 17th International Conf. on Machine Learning, pages 65–72. Morgan Kauf-
mann, San Francisco, CA, 2000.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman. Arcing classifiers. Annals of Statistics, 26:801–849, 1998.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

S. Burer and R.D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming (Series B), 95:329–357,
2003.

R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries
of models. In Proceedings of the 21st International Conference on Machine Learning,
pages 18–25, 2004.

P.K. Chan, W. Fan, A. Prodromidis, and S.J. Stolfo. Distributed data mining in credit card
fraud detection. IEEE Intelligent Systems Journal, November/December:67–74, 1999.

N.V. Chawla, L.O. Hall, K.W. Bowyer, and W.P. Kegelmeyer. Learning ensembles from
bites: A scalable and accurate approach. Journal of Machine Learning Research, 5:
421–451, 2004. ISSN 1533-7928.

A. d’Aspremont, L. El Ghaoui, M.I. Jordan, and G. Lanckriet. A direct formulation for
sparse PCA using semidefinite programming. Advances in Neural Information Processing
Systems, 17, 2004.

A. Demiriz, K.P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column
generation. Machine Learning, 46(1-3):225–254, 2002.

T.G. Dietterich. An experimental comparison of three methods for constructing ensembles
of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–
157, 2000. ISSN 0885-6125.

W. Fan, H. Wang, and P.S. Yu. Mining extremely skewed trading anomalies. In Proceedings
of the 9th International Conference on Extending Database Technology, pages 801–810,
2004.

1336

Ensemble Pruning Via Semi-definite Programming

U. Feige and M. Langberg. Approximation algorithms for maximization problems arising
in graph partitioning. Journal of Algorithms, 41:174–211, 2001.

J.L. Fleiss. Statistical Methods for Rates and Proportions. John Wiley & Sons, 1981.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm.
In International Conference on Machine Learning, pages 148–156, 1996. URL
citeseer.nj.nec.com/freund96experiments.html.

M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite prgramming. Journal of ACM, 42:
1115–1145, 1995.

A.J. Grove and D. Schuurmans. Boosting in the limit: Maximizing the margin of learned
ensembles. In AAAI/IAAI, pages 692–699, 1998.

Q. Han, Y. Ye, and J. Zhang. An improved rounding method and semidefinite programming
relaxation for graph partition. Mathematical Programming, pages 509–535, 2002.

L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10):993–1001, 1990. ISSN 0162-8828.

S. Hashem. Optimal linear combinations of neural networks. Neural Networks, 10(4):599–
614, 1997. ISSN 0893-6080.

T.K. Ho. The random subspace method for constructing decision forests. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

Y. Kim, N.W. Street, and F. Menczer. Meta-evolutionary ensembles. In IEEE International
Joint Conference on Neural Networks, pages 2791–2796, 2002.

A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning.
In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information
Processing Systems, volume 7, pages 231–238. The MIT Press, 1995.

G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.I. Jordan. Learning the
kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:
27–72, 2004.

D.D. Margineantu and T.G. Dietterich. Pruning adaptive boosting. In 14th International
Conference on Machine Learning, pages 211–218, 1997.

L. Mason, P. Bartlett, and J. Baxter. Direct optimization of margins improves generalization
in combined classifier. Advances in Neural Information Processing Systems, 11:288–294,
1999.

A. McCallum. Multi-label text classification with a mixture model trained by EM. In
AAAI’99 Workshop on Text Learning, 1999.

D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research, pages 169–198, 1999.

1337

Zhang, Burer and Street

M.P. Perrone and L. N. Cooper. When networks disagree: Ensemble methods for hybrid
neural networks. In R. J. Mammone, editor, Neural Networks for Speech and Image
Processing, pages 126–142. Chapman-Hall, 1993.

A. Prodromidis and P. Chan. Meta-learning in distributed data mining systems: Issues and
approaches. In Advances of Distributed Data Mining. AAAI press, 2000.

A. Prodromidis and S. Stolfo. Pruning meta-classifiers in a distributed data mining system.
In Proc. of the First National Conference on New Information Technologies, pages 151–
160, Athens, Greece, October 1998.

R.J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, San Manteo, CA,
1993.

A.K. Rose and C. Engel. Currency unions and international integration. Journal of Money,
Credit and Banking, 34(4):1067–89, 2002.

SDPLR, 2002. See the website: http://dollar.biz.uiowa.edu/~sburer/software/SDPLR/.

X. Shen, M. Boutell, J. Luo, and C. Brown. Multi-label machine learning and its application
to semantic scene classification. In International Symposium on Electronic Imaging, San
Jose, CA, January 2004.

W.N. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-scale classifica-
tion. In Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-01), pages 377–382, 2001.

H. Wang, W. Fan, P. Yun, and J. Han. Mining concept-drifting data streams using ensemble
classifiers, 2003.

D.H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

G.U. Yule. On the association of attributes in statistics. Philosophical Transactions of the
Royal Society of London, Ser. A, 194:257–319, 1900.

Z. Zhou, J. Wu, Y. Jiang, and S. Chen. Genetic algorithm based selective neural network
ensemble. In 17th International Joint Conference on Artificial Intelligence, pages 797–
802, 2001.

1338

Journal of Machine Learning Research 7 (2006) 1339–1355 Submitted 9/05; Revised 2/06; Published 7/06

Linear Programs for Hypotheses Selection in
Probabilistic Inference Models

Anders Bergkvist ABK @MOLBIO .GU.SE

Department of Molecular Biology
Göteborg University
P.O. Box 462
40530 G̈oteborg, Sweden

Peter Damaschke PTR@CS.CHALMERS.SE

Department of Computer Science and Engineering
Chalmers University
41296 G̈oteborg, Sweden

Marcel L üthi MARCEL.LUETHI@STUD.UNIBAS.CH

Department of Computer Science
University of Basel
4056 Basel, Switzerland

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract
We consider an optimization problem in probabilistic inference: Givenn hypothesesH j , m possi-
ble observationsOk, their conditional probabilitiespk j, and a particularOk, select a possibly small
subset of hypotheses excluding the true target only with some error probabilityε. After specifying
the optimization goal we show that this problem can be solvedthrough a linear program inmnvari-
ables that indicate the probabilities to discard a hypothesis given an observation. Moreover, we can
compute optimal strategies where onlyO(m+n) of these variables get fractional values. The man-
ageable size of the linear programs and the mostly deterministic shape of optimal strategies makes
the method practicable. We interpret the dual variables as worst-case distributions of hypotheses,
and we point out some counterintuitive nonmonotonic behaviour of the variables as a function of
the error boundε. One of the open problems is the existence of a purely combinatorial algorithm
that is faster than generic linear programming.
Keywords: probabilistic inference, error probability, linear programming, cycle-free graphs, net-
work flows

1. Introduction

Suppose that we are given one ofm possibleobservations Ok, k = 1, . . . ,m, andn hypotheses Hj ,
j = 1, . . . ,n, each of which might have caused the observedOk. Moreover we know the conditional
probabilitiespk j = P(Ok|H j) to observeOk if H j is the true hypothesis, also called thetarget. Since
exactly oneOk is observed, thepk j must satisfy∑m

k=1 pk j = 1 for every j. The pk j may come from
background knowledge of causal relations, or they may be estimated fromstatistical data.

Our aim is to devise a strategy that, for any observedOk, selects a subset of hypotheses so as
to minimize two conflicting parameters at the same time: the probability to discard (that is, not
to select) the target, and the size of the selection. We imagine that the selected hypotheses are

c©2006 Anders Bergkvist, Peter Damaschke and Marcel Lüthi.

BERGKVIST, DAMASCHKE AND L ÜTHI

then examined closer, in order to identify the target, whereas we would come back to discarded
hypotheses only if we missed the target in our selection. In Section 2 we will state this problem
formally as an optimization problem, namely, the minimization of the expected weight ofexcluded
hypotheses, given an error probability bound for each target. We thinkthat the problem is very
fundamental and its optimization view could be interesting for any setting where one has to guess
hypotheses from data with known conditional distributions.

An obvious application scenario is diagnosis. The probabilities of various syndromes caused
by any disease may be known from a database. In each particular case with a given syndrome, one
wants to narrow down the set of suspects, that is, of possible diseases tobe examined more carefully.
But the true hypothesis should, with high probability, not be discarded in thebeginning. See the
discussion by Szolovits et al. (1988) which refers, however, to complexand structured models rather
than “atomic” hypotheses and data.

Our particular motivation however came from a protein structure prediction project. Proteins
are sequences of residues, each residue being derived from one of 20 possible amino acids. The
3D structure of the protein backbone is uniquely determined by its torsion angles. Since it is dif-
ficult and costly to determine them experimentally, various methods have been developed to infer
torsion angles and other structure elements from easier measurable, correlated data, partly with help
of sequence homology. Nuclear magnetic resonance (NMR) chemical shifts of nuclei in the amino
acids are certain spectroscopic data influenced by the local molecular conformation, see Beger and
Bolton (1997); Cornilescu et al. (1999); Wang and Jardetzky (2002); Xu and Case (2002) for more
background information. Due to the correlations, it is a natural idea to infertorsion angles from
measured chemical shifts. Torsion angle restraints that are narrow but still contain the (unknown)
true torsion angle values in the majority of cases are important for correct 3D structure reconstruc-
tion of whole protein sequences. Since the correlations are complicated andcan hardly be put in
a neat formula, we have chosen a statistical approach based on large samples of data. That is, the
“local” task of predicting single torsion angle restraints leads to instances ofthe optimization prob-
lem as considered here: Our hypotheses are torsion angles, our observations are measured chemical
shifts, both discretized in finitely many intervals, and thepk j are estimated from a database. Our
raw data are scatterplots of chemical shift vs. torsion angle values from public databases. The dis-
cretization is done in a preprocessing phase, with the aim to partition the scatterplot into a coarse
grid where the data points in each rectangle are approximately evenly distributed (so that further
splitting would be meaningless). The current partitioning heuristic is described by Christin (2006).
Then, we apply different prediction heuristics to the discretized scatterplots, that is, point count
matrices. The role of optimization in this application is discussed after the main partof the paper,
in Section 7. We have to treat in a semi-automated way a huge number of probleminstances: for 6
different nuclei, 20 different amino acids, and 2 torsion angles we get nearly 240 data sets. (A few
are empty.) Actually, the number of instances is a multiple of this number when we consider several
error probability bounds and their combinations, maybe several discretizations, different sources of
raw data, etc. In this sense our application is large-scale, even though thesingle problem instances
are not. On the contrary, we need to reduce every instance to some efficiently solvable optimization
problem in order to keep the project feasible. In this paper we will show several beneficial properties
of the optimization problem that comply with this goal:

• We end up with a linear program inmnvariables, which is a manageable size (see Section 2).
Note that, since a selection rule conditional on the observation can be randomized, the possi-

1340

L INEAR PROGRAMS FORHYPOTHESESSELECTION

ble strategies are described in the first place by variables for the probabilities of all 2n subsets
of hypotheses. However, by the nature of our objective function and by linearity of expec-
tation, we actually need only variables for the probability to exclude any singlehypothesis
under any observation.

• We can always find an optimal solution where at most min{m,n}+ n of the mn variables
are strictly between 0 and 1 (Section 4). We conjecture that the actual number of fractional
variables is even somewhat smaller. Hence, most decisions are deterministic,which greatly
simplifies the practical use of our approach.

• The linear program formulation is quite flexible. We can work, for example, with larger error
probabilities for hypotheses that are unlikely to appear as target, or hardto discriminate from
others. We will also assign a weightw j to every hypothesisH j . Our goal is then to minimize
the total weight of selected hypotheses, under given error probability constraints. The weights
are just coefficients that do not complicate the problem to solve, but give us further modelling
options (see below).

• It is easy to combine predictions from several unrelated observations, iftheir conditional dis-
tributions are available for the considered set of hypotheses. This can further reduce the se-
lected set of hypotheses, for prescribed bounds on the error probability. Since most variables
in optimal strategies are 0 or 1, the necessary calculations are fast (Section 6).

• Since the predictors are just linear programs, it is straightforward to implement the approach
using standard software packages.

Regarding the weights, in the simplest case allw j are equal. Otherwise, weightw j may be
used, for example, to indicate the time needed to verify or falsifyH j , so that the total weight of the
selected set corresponds to the time to actually identify the target. In the diagnosis example, weights
may also be proportional to time or costs to check the hypotheses, however we may divide each by a
factor for the seriousness of the disease. In interval prediction applications like protein torsion angle
prediction, it is sensible to choose the weight of each interval proportional to the interval length.

In Section 3 we also connect a game-theoretic interpretation of the problem tosome Lagrange
dual giving the worst-case probability distribution of hypotheses (in the sense that the achievable
exlusiveness is minimized). We discuss the use of the dual optimum. Moreoverwe disprove in
Section 4 the tempting conjecture that the exclusion probabilities in optimal strategies are always
monotone in the error bounds. Such counterintuitive behaviour suggeststhat our optimization prob-
lem does not exhibit a simple structure that would also allow a simpler algorithm. Despite the fact
that linear programs are a standard task being well solvable in practice, it would be interesting to
devise a faster, purely combinatorial algorithm for our special class. This would speed up applica-
tions with massive sets of instances. We must leave this as an open question. Hints may come from
some relationship to flow problems in lossy networks (briefly discussed in Section 5) for which such
algorithms exist.

We are not aware of earlier work where optimization has been used for inference in such frame-
works. A number of other machine learning tasks, for example, in classification and neural net-
work training, have been cast as linear programs, as in Bennett (1992); Bennett and Mangasarian
(1992a,b, 1993); Bradley (1998); Glover (1990). Damaschke (2004) studied target search problems

1341

BERGKVIST, DAMASCHKE AND L ÜTHI

in finite probabilistic inference models with the goal to minimize the expected searchtime, when
switching between the hypotheses (preemptive scheduling of verification jobs) is possible.

One may compare our optimization to very common and simple heuristic inference rules such
as the maximum likelihood (ML) and the maximum a-posteriori (MAP) rule: For anobservedOk,
ML selects the desired number of hypothesesH j with the highestpk j. MAP proceeds similarly
with the posterior probabilities of theH j , for prior probabilities given along with thepk j, whereas
ML ignores prior probabilities. Both ML and MAP can easily exclude some potential targetsH j

completely even though they appear considerably often. This happens ifpk j is not among the top
values for anyk. In our approach we explicitly take care of the probabilities to wrongly discard the
target (below denotedε j). Similarly to ML we do not make explicit use of prior probabilities, but we
can, for example, assign higherε j to rareH j . Finally we optimize the specificity of our hypotheses
selection for the desired prescribed error bounds.

2. Hypothesis Selection by Linear Programs

Now we treat our problem more formally. Recall thatpk j is the (known) probability to observeOk

if H j is the target. Based on an observedOk, a player wants to discard a set of hypotheses that
should have large weight but should not contain the target. Astrategyσ is completely characterized
by a probability distribution on the set of subsets (power set) of{H1, . . . ,Hn}, depending onOk. It
specifies the probability to discard any set. This is in fact the most general form of a strategy, since
the selection can be randomized, and the player does not learn more than just Ok. Next, we also
make our optimization goal explicit.

Definition 1 Consider a fixed strategyσ. Theerror probabilityof σ for target Hj is the probability
to discard the target. Theexclusivenessof σ for any fixed target Hj is the expected total weight of
the hypotheses discarded byσ. (Here, randomness comes from the choice of Ok according to the
pk j and fromσ’s randomized choices.) Finally, the exclusiveness ofσ is defined to be the worst
(smallest) exclusiveness for all Hj .

HYPOTHESISSELECTION WITH ERROR BOUNDS is the following problem: Given an m×n
matrix P= (pk j) and error probabilitiesε j for all H j , devise a strategy with maximum exclusiveness.

Comments:
(1) By defining the exclusiveness as the minimum over all hypotheses we optimize the guaran-

teed exclusiveness (in the sense of an expectation in the long run), independently of the frequencies
of hypotheses which may be unknown or subject to changes: In the diagnosis example, the rela-
tive frequencies of diseases can vary a lot in time, and in torsion angle prediction, the distribution
of angles in a protein under consideration is not known in advance. We avoid the explicit use of
questionable prior probabilities.

(2) In the simplest case, allε j may be equal to some global error probabilityε. However, we
also allow individual error probabilities. This will not make our problem morecomplicated, but it
gives us the option to assign higher error probabilities to certain hypotheses, and thus to raise the
exclusiveness. The choice of theε j is up to the application, but, generally speaking, higherε j are
advisable ifH j is considered unlikely, or if the vector of thepk j for H j (jth column ofP) is in the
convex hull of other columns ofP, so that none of theOk is characteristic forH j alone.

(3) For entries withpk j = 0 we would immediately discard hypothesisH j upon observation
Ok. Alternatively we may forbid zero entries and consider only instances with positive conditional

1342

L INEAR PROGRAMS FORHYPOTHESESSELECTION

probabilities. In applications, typically thepk j are estimated from statistical data, and instead of
settingpk j = 0 in the absence of cases, it is common in statistical learning methods to apply some
correction rules that yield small positive values.

Note that a strategy is described by as many asm2n variables. However, for maximizing exclu-
siveness we actually need onlymnvariables, and this makes the approach feasible. Namely, letxk j

be the probability thatσ discards hypothesisH j if Ok has been observed. LetX be them×n matrix
X = (xk j). Matrix X is well-defined, andX is uniquely determined byσ. (The converse is not true:
The sameX can be “realized” by many differentσ, we come back to this point later.)

Theorem 2 Matrix X of an optimal strategy forHYPOTHESISSELECTION WITH ERRORBOUNDS

is the solution to the linear program written below.

maxu (1)

∀ j :
m

∑
k=1

pk jxk j ≤ ε j (2)

∀ j :
m

∑
k=1

pk j

n

∑
i=1

wixki ≥ u (3)

∀k, j : 0≤ xk j ≤ 1 (4)

Proof The left-hand side of (2) is obviously the probability to discardH j if H j is the target. The
left-hand side of (3) is the exclusiveness forH j , hence (3) says that the exclusiveness for everyH j

is at least someu that is maximized in (1). That is, we are maximizing the exclusiveness of the
strategy as desired. Constraint (4) just ensures that thexk j are probabilities.

Corollary 3 We can compute an optimal strategyσ for HYPOTHESISSELECTION WITH ERROR

BOUNDS through a linear program in only mn variables.

In particular, it follows that the problem has polynomial time complexity inn,m. We remark
that, because of (3), the exclusiveness actually depends only on the weighted sum of variables in
each row ofX, defined byxk := ∑n

i=1wixki. Corollary 3 needs some discussion. Strategyσ is not
uniquely determined byX, but it is easy to obtain someσ. To mention only two natural options: We
may take a random numberrand uniformly from interval[0,1] and discard allH j with xk j ≥ rand,
or we may discard theH j independently with probabilitiesxk j. This arbitrariness is not an issue
here. Firstly, allσ with the sameX have also the same exclusiveness. Thus we will henceforth
consider the exclusion probabilitiesxk j as the strategy variables. Accordingly, we also call a matrix
X a strategy. Secondly, we will show later that there always exist optimal strategies where only a
limited number of variables inX is fractional, so that most decisions are in fact deterministic.

Some applications may prefer hypotheses of some guaranteed weight for every Ok (although
this can be rather unnatural, especially when rows ofP contain very different numbers of safely
discarded small entriespk j). Then, a similar linear program where constraint (3) is replaced with
∀ j : ∑n

i=1wixki ≥ u can be applied.

1343

BERGKVIST, DAMASCHKE AND L ÜTHI

3. Game-theoretic Interpretation, Knapsack Strategies, and the Dual

Our linear program from Theorem 2 is equivalent to a matrix game between aplayer who selects
hypotheses and an adversary (“Nature”) which tries to make a successful choice as difficult as
possible. More precisely, the player can choose a strategyX that respects (2) and (4), the adversary
chooses a hypothesis, and the payoff to the player is exclusivenessu in (3). The set of possible
strategiesX is infinite, but we can turn the game into an equivalent finite game, by observing that
(a) exclusiveness is linear inX, and (b) all feasibleX build a polytope with finitely many vertices.
Hence it suffices to consider only these vertices as the player’s pure strategies, all otherX are convex
linear combinations of them. Claim (a) is obvious from the left-hand side of (3), and (b) is clear
since theX form a (bounded) feasible region of a linear program. The adversary’s mixed strategies
can be interpreted as prior probabilitiesq j of the H j . In the following, q = (q1, . . . ,qn) denotes
a vector of prior probabilities. By von Neumann’s minmax theorem, there existsa pairX∗,q∗ of
optimal mixed strategies for both opponents, and the expected payoff forX∗,q∗ is the value of the
game.

For the moment assume that the player knowsq = (q1, . . . ,qn). The optimal solutions againstq
are easy to characterize by means of the following definitions. In every column j of X we set up an
instance of the fractional knapsack problem, with capacityε j and itemsk= 1, . . . ,mhaving sizespk j

and utilitiesw j ∑n
i=1 pkiqi ; see Martello and Toth (1990) for an introduction to knapsack problems.

Note that the fractional knapsack problem is trivially solved by a greedy algorithm: Start fromxk j :=
0 for all k, and then setxk j := 1 for k with decreasing utility-to-size ratiork j := w j ∑n

i=1 pkiqi/pk j,
until the capacity is exhausted. The lastxk j > 0 can be fractional. (Possible division by 0 does not
cause problems, cf. Comment (3) below Definition 1. Ifpk j = 0, we getrk j = ∞ and alsoxk j = 1.
If the wholekth row ofP is zero, we can even ignore it right from the beginning.)

Now, we call a matrixX a knapsack strategy against prior qif each column ofX is an optimal
solution to the fractional knapsack problem introduced above.

Proposition 4 The optimal strategies X against a prior q are exactly the knapsack strategies against
that prior q. In particular, if X∗ is optimal then X∗ is a knapsack strategy against every optimal q∗.

Proof The first assertion is obvious, since the utility termw j ∑n
i=1 pkiqi is the coefficient ofxk j in

the exclusiveness. Letq∗ be any optimal strategy of the adversary. A player’s strategy achieving
the value of the game must be optimal under priorq∗. But since the latter strategies are knapsack
strategies againstq∗, the second assertion follows.

We remark that the converse cannot be concluded: A knapsack strategy against the optimalq∗

is not necessarily optimal in the whole game, since it may be worse against other priors. Optimality
requires an additional condition that we can get from duality theory of linear programs. The fact
that a worst-case priorq∗ corresponds to a certain Lagrangian dual might be an interesting structural
property in itself:

Proposition 5 When we dualize constraints (3), then the vector of the n Lagrange multipliersλ j ≥ 0
in the dual optimal solution is a worst-case prior q∗.

1344

L INEAR PROGRAMS FORHYPOTHESESSELECTION

Proof The Lagrange function is given by

L(X,u,λ) = u+
n

∑
j=1

λ j

(

m

∑
k=1

pk j

n

∑
i=1

wixki −u

)

.

For any fixed vectorλ = (λ1, . . . ,λn), the Lagrangian subproblemθ(λ) = maxX,uL(X,u,λ) can be
separated foru andX:

θ(λ) = max
u

u(1−
n

∑
j=1

λ j)+max
X

n

∑
j=1

λ j

m

∑
k=1

pk j

n

∑
i=1

wixki.

The Lagrangian dual is minλ θ(λ). We observe that∑n
j=1 λ j ≥ 1, otherwiseθ(λ) is unbounded.

Since theX term is increasing in theλ j , and the same matricesX give the maximum when vectorλ
is multiplied with any positive factor,θ(λ) attains its minimum for someλ with ∑n

j=1 λ j = 1. Thus
the Lagrangian dual simplifies to

min
λ

θ(λ) = min
λ

max
X

n

∑
j=1

λ j

m

∑
k=1

pk j

n

∑
i=1

wixki

subject to∑n
j=1 λ j = 1 and the original constraints (2),(4). Note also thatθ(λ) is precisely the ex-

clusiveness for priorλ, thusλ = q∗.

Theorem 6 (X,q) is a pair of optimal solutions if and only if: X is a knapsack strategy against q,
and X has its lowest exclusiveness for all Hj where qj > 0.

Proof As we have dualized constraints (3), we get from the complementary slackness conditions
that(X,q) is optimal if and only ifX has optimal exclusiveness againstq, and the following alter-
native holds true for everyj: Variableq j is zero, or the slackness in constraint (3) is zero, which
means thatX’s exclusiveness for targetH j is exactlyu (and not larger). Together with Proposition
4 the criterion follows.

Note that this optimality criterion can be checked inO(mn) time for givenX andq: One just
has to solve the fractional knapsack instances for all columnsj and to compare the left-hand sides
of constraints (3). Since optimality is that easy to check, and the Lagrangiansubproblem (fractional
knapsack) is trivial, a gradient descent method for the Lagrangian dual is efficient in every step.
Therefore it would be interesting to study whether some gradient descentheuristic approachesq∗

already in a few iterations. This would be valuable for applications with many instances like our
torsion angle prediction project.

Calculatingq∗ appears to be useful also in another respect: Although we did not explicitlyuse
prior probabilities of theH j , we know in general whichH j appear frequently or rarely. Now, ifq∗j is
large for some rare hypothesisH j , this indicates thatX∗ has been optimized for an unlikely distribu-
tion of targets. (Recall thatX∗ has the worst exclusiveness even for allH j with positiveq∗j .) We may
then drop constraint (3) for such indicesj and optimize again, in order to raise the exclusiveness for
the more frequent targets only. Such modifications are natural and easy toimplement, and they may
improve the global results in, for example, protein structure prediction. Thishas to be tested more
extensively within the particular applications.

1345

BERGKVIST, DAMASCHKE AND L ÜTHI

4. Structural Properties of Optimal Solutions

In the following we consider, for simplicity, a special case of our linear program from Theorem 2
where allε j are equal to someε. Regarding the dependency ofu from this parameter we have:

Proposition 7 For any fixed likelihood matrix P, the optimal exclusiveness u is a monotone increas-
ing and concave function inε.

Proof Monotonicity: Parameterε appears only in constraints (2). If one raisesε then, obviously,
the set of feasible solutions becomes only larger, and since we have a maximization problem, the
optimalu increases.

Concavity:Consider the(mn+2)-dimensional space with themnvariablesxk j and, additionally,
ε andu as coordinates. LetF be the feasible region of our linear program in this space, that is, the
set of(mn+2)-vectors that fulfill constraints (2),(3),(4). Clearly,F is convex. Hence the projection
F |ε,u of F to theε vs. u plane is convex, too. (F |ε,u is the set of all pairs(ε,u) for which there
exist values of thexk j so that the constraints are satisfied.) Remember that we have to maximizeu
for a givenε. Geometrically this means to take the point at the upper boundary ofF |ε,u at abscissa
ε. SinceF |ε,u is convex, the upper boundary is the graph of a (piecewise linear) concave function.
(Figure 1.)

6

-�
�
�
�
�

�
������u

ε

Figure 1. u is monotone and concave inε. The graph limits the the feasible region from above.

One might expect that also every single variablexk j in the strategy matrixX is monotone in the
error boundε, but this is not true in general. A small example demonstrates the reason. Recall the
notationspk j for the probability to observeOk given H j , the weighted row sumsxk := ∑n

i=1wixki,
and the utility-to-size ratiosrk j := w j ∑n

i=1 pkiqi/pk j from the fractional knapsack problems.

Example 1 Suppose that all hypotheses have unit weights wj = 1. Consider the following matrix P
of conditional probabilities pk j:

P =

[

0.1 0.5 0.8
0.9 0.5 0.2

]

.

First let ε = 0.1. For the prior (q1,q2,q3) = (1,0,0) it is easy to check that any knapsack solution
has exclusiveness u= 0.73. Moreover, against this prior, every knapsack solution with x1 ≥ x2

1346

L INEAR PROGRAMS FORHYPOTHESESSELECTION

satisfies the criterion in Theorem 6. Hence

X∗ =

[

0.73+x 0 0
0.03−x 0.2 0.5

]

with 0≤ x≤ 0.03 (arbitrary) is optimal, and(1,0,0) is a worst prior. This in turn implies that every
optimal X must be a knapsack solution against(1,0,0). In particular, x22 = 0.2 is enforced.

Now letε = 0.2 instead. Then, every knapsack solution against(1,0,0) has x1 < x2, so that
prior (0,0,1) would be worse. But, similarly, every knapsack solution against(0,0,1) has x1 > x2,
so that prior(1,0,0) would be worse. It follows that x1 = x2 holds in every optimal X, and that an
optimal q∗ differs from these two priors. But each prior except the mentioned two gives r11 > r21

and r23 > r13, which determines column 1 and 3 of X∗ uniquely. Together with x1 = x2 this finally
yields (matrix entries rounded to three decimals):

X∗ =

[

1 0.256 0
0.111 0.144 1

]

.

Note that x22 is smaller than before! The explanation is that x11 reached 1, thus only x21 could
increase, and x22 decreased in favour of x12, in order to keep x1 and x2 balanced.

Next we consider arbitrary individual error boundsε j again. As announced, we show that our
linear programs from Theorem 2 have optimal solutions where only a minority ofthemnvariables
xk j is fractional, that is, properly between 0 and 1. It means that these selection strategies are to a
large extent deterministic, which makes them much easier to handle in practice.

Theorem 8 Any optimal solution being a vertex of the feasible region has at most2n fractional
variables.

Proof Some optimal solutionX of a linear program is always a vertex of the feasible region. Con-
straints (4) describe the hypercube inmn-dimensional space where all vertices have coordinates 0
or 1. Furthermore, the number of binding constraints in a vertexX is at least the dimensionmn, but
only one of any two constraintsxk j ≥ 0, xk j ≤ 1 can be binding. Thus, in a vertexX with more than
2n fractional coordinates, more than 2n other constraints must be binding. Since we have only 2n
constraints (2),(3), the assertion follows.

We can also say something about thepositionsof fractional entries in optimal strategy matrices
X and get a better bound in case thatm≤ n. Let B(X) be the bipartite graph with verticesrk for
all rows k, and verticesc j for all columns j, where an edge betweenrk andc j exists iff xk j is a
fractional value.

Theorem 9 There exists an optimal solution X with cycle-free B(X), and thus at most m+ n−1
fractional entries.

Proof Suppose thatB(X) contains a cycleC with verticesr1,c1, r2,c2, . . . , r l ,cl (in this cyclic order).
That is, edgesr ici , cir i+1 andcl r1 exist, where 2l is the length of the cycle. Note that the indexing of

1347

BERGKVIST, DAMASCHKE AND L ÜTHI

rows and columns inX is arbitrary, hence we may rename them such that, without loss of generality,
indices inC are 1,2, . . . , l as defined above.

Let d be some real number that we fix later. We change the matrix entries corresponding to the
edges inC by the following procedure. First, defined11 = d and replacex11 with x11−d11. Define
d21 = p11

p21
d11 and replacex21 with x21 + d21. Obviously, the error bound constraint (2) remains

valid for column j = 1. Next, defined22 = w1
w2

d21 and replacex22 with x22−d22. The effect is that
xk := ∑n

i=1wixki remains unchanged for rowk = 2. We walk the cycleC and continue in this way.
The general step is: Definedii = wi−1

wi
di,i−1 and replacexii with xii −dii , then definedi+1,i = pii

pi+1,1
dii

and replacexi+1,i with xi+1,i +di+1,1. Following this scheme we finally we updatex1l , according to
l +1 modl = 1.

Note that all these changes neither affect the left-hand sides of constraints (2) nor the weighted
row sumsxk defined above, withx1 as the only exception. Ifx1 has not decreased, constraints (3)
remain satisfied, too. Ifx1 has decreased, we use−d instead ofd, so thatx1 now increases. Since
all xk j on edges ofC are fractional, constraints (4) also remain valid for small enough|d|. Hence we
get a new feasible solution for anyd which has the suitable sign and small enough absolute value.
Finally we adjust ourd so that some entry inC becomes exactly 0 or 1.

Hence we can destroy some cycleC of fractional entries. Since the optimal valueu is monotone
in thexk, the new solutionX is no worse. Applying the same procedure repeatedly we destroy all
such cycles. Since every step also properly decreases the number of fractional entries, the process
terminates with anX as desired. Since a cycle-free graph has fewer edges than vertices,the bound
m+n−1 follows.

We remark that this proof gives also a polynomial algorithm that computes a cycle-free optimal
solution.

The 3×2 instances from Example 1 admit optimal solutions withn = 3 fractional entries.
An obvious question is whether our combinatorial bounds are already tight. More precisely:

Given numbersm,n, let f (m,n) denote the largest number such that there exists anm×n instance
P of HYPOTHESISSELECTION WITH ERROR BOUNDS where every optimal solutionX needs at
least f (m,n) fractional variables. We have shownf (m,n) ≤ min{m,n}+n, and it is trivial to give
general examples where the number of fractional variables must ben, so that f (m,n) ≥ n. On
the other hand, note that the “fractional knapsack” property of optimal solutions does not imply
f (m,n) ≤ n: Knapsack solutions are not always unique and may allow several fractional variables
in a columnj (namely if severalrk j are equal), and since a knapsack solution against a dual optimal
q∗ is not necessarily already optimal, we may have to take a solution with more fractional variables.
We must leave the exactf (m,n) as an open problem.

5. Is There a Faster Algorithm?

In this more informal section we briefly discuss another open problem: to devise a purely combina-
torial algorithm for our class of linear programs that is faster than a generic linear program solver.
We point out two ways, but also the reasons why these attempts have not been successful so far.

(1) Example 1 in the previous section shows (besides non-monotonicity of thexk j in the error
bounds) that, in an optimal solution, thexk j in a row k are in general not simply filled up to 1 in
increasing order of thepk j. This is an effect of the columnwise error constraints. Nevertheless,
intuition tells that largerxk j are mostly assigned to smallerpk j. Exceptions are structurally limited,

1348

L INEAR PROGRAMS FORHYPOTHESESSELECTION

due to the following discussion. Let us call two matrix entries in the same row or column amonotone
pair if the values of these entries inX andP stand in thesamerelation (larger or smaller). For an
input P and a strategyX, define a directed graphC(X) whose vertices are the columns, with a
directed arc fromi to j if pki > pk j andxki > xk j holds for somek. The directed graphR(X) whose
vertices are rows is defined similarly. By an argument similar to the proof of Theorem 9 we can
show the existence of an optimal solutionX whereB(X) is cycle-free and alsoC(X) andR(X) are
free ofdirectedcycles. Hence there is some topological order of the rows and columns such that all
monotone pairs in rows and columns decrease in the same direction, for example, to the right and
downwards, respectively. However this does not limit thenumberof monotone pairs. Moreover,
the topological orders are not obvious fromP, and even if we knew them, we could not compute
the optimalX from them in a simple way. In summary, the observation above did not lead us toan
efficient algorithm.

(2) Another idea is a reduction to flow problems in bipartite lossy networks. For that problem
which has many other applications in transportation and finance (for example, currency exchange),
purely combinatorial polynomial-time algorithms have been given by Tardos and Wayne (1998);
Wayne (2002). However, the idea works only for a variant of HYPOTHESIS SELECTION WITH

ERRORBOUNDS with “observation-wise” exclusiveness demands instead of a global exclusiveness
objective: Recall again the weighted row sumsxk := ∑n

i=1wixki. For given parametersε j andyk

for all j and k, respectively, we may raise the following existence problem: Is there a solution
X with error probabilities at mostε j for all H j , andxk ≥ yk for all Ok? This problem is easily
seen to be a flow problem in a bipartite lossy network with arc capacities 1 and gain factors 1/pk j;
see Tardos and Wayne (1998); Wayne (2002) for the definitions. In contrast, a reduction from
HYPOTHESISSELECTION WITH ERROR BOUNDS does not seem to exist, for the intuitive reason
that flow variables cannot be “copied” in order to “participate” in several linear combinations of
the xk. Still, algorithmic techniques similar to those used for flows in lossy networks mightbe
applicable. We have to leave this subject for future research.

6. Combining Data

Suppose that we have several matricesP(1),P(2), . . . of conditional probabilities for the same set
of hypotheses but for different types of observations, such as different groups of symptomes in
diagnosis, or chemical shifts of several nuclei in protein torsion angle prediction. We do not assume
that the joint distribution of vectors of observations is known: Since the number of vectors is the
product ofm(1),m(2), . . ., there may be not enough cases in the database that would allow meaningful
probability estimates for all these vectors. Still, combining these data sets can further narrow down
the selected hypotheses (if the observations “complement each other” well), and at the same time
preserve guaranteed error bounds. For ease of presentation we describe the method for two matrices,
but it can be readily extended to any number.

Proposition 10 Let P and P′ be the conditional probability matrices of size m× n and m′ × n,
respectively, andε j ,ε′j the error bounds of two instances ofHYPOTHESISSELECTION WITH ERROR

BOUNDS for the same set of hypotheses Hj , j = 1, . . . ,n. Furthermore let X and X′ be strategies for
these two instances that respect the given error bounds. For any pair of observations Ok,O′

l from
both instances (where k= 1, . . . ,m and l= 1, . . . ,m′), we define for all Hj the exclusion probabilities
xk j + x′l j − xk jx′l j . Then the resulting mm′×n matrix is a strategy for combined observations with
upper boundε j + ε′j on the probability to wrongly discard target Hj .

1349

BERGKVIST, DAMASCHKE AND L ÜTHI

Proof In fact, the combined strategy is designed so that we discard anyH j if at least one of the pre-
dictorsX or X′ does. The decision to discard a hypothesis is taken independently in both instances.
Hence, ifOk,O′

l are observed, we keepH j with probability

(1−xk j)(1−x′l j) = 1− (xk j +x′l j −xk jx
′
l j).

On the other hand, since the probability of a union of events is at most the sumof probabilities of
the single events, we discard targetH j with at mostthe probabilityε j + ε′j .

Proposition 10 gives only a guarantee on the error probabilities. However, concavity of exclu-
siveness (see Proposition 7) suggests that combining two predictors with half error bound in general
improves the exclusiveness. For concrete instances and a desired totalerror probability we may try
various partitions into summands, with some resonable step length, and take the combination that
works best. We also remark that, since by Theorem 8 and 9 most strategy variablesxk j,x′l j are 0 or
1, the calculations are fast.

If severalP(i) are available (for example, in our protein structure application, the chemicalshifts
of 6 nuclei, and also from neighbored residues), then exhaustive search is expensive, but we may
choose to combine only the most informative data, that is, only thoseP(i) with largest exclusiveness.

Finally, a deliberately very simple, symmetric toy example with two hypotheses of equal weight
illustrates the principle of combining predictions.

Example 2

P =

[

1 0.5
0 0.5

]

P′ =

[

0.5 1
0.5 0

]

We chooseε = 0.2 for both hypotheses in both instances. Then the optimal solutions for the
separate instances are, rather obviously:

X =

[

0.2 0.4
1 0

]

X′ =

[

0.4 0.2
0 1

]

.

In the first instance, the exclusiveness is only 0.6 if H1 is the target (since always O1 is observed),
and for H2 we get exclusiveness 0.8 (average of both rows), the second instanceis symmetric. If
we use the information from both instances, we can improve the exclusiveness for the sameε = 0.2.
First we optimize both instances separately, but now with half error bound0.1:

X =

[

0.1 0.2
1 0

]

X′ =

[

0.2 0.1
0 1

]

.

For the four combinations(k, l) = (1,1),(1,2),(2,1),(2,2) we compute new exclusion proba-
bilities as specified above:

0.28 0.28
0.1 1
1 0.1
1 1

.

Since target H1 causes the pair of observations(1,1) or (1,2), each with probability0.5, the
exclusiveness is0.5· (0.56+1.1) = 0.83, and target H2 yields the same exclusiveness by symmetry.
This is considerably better than the worst case above, and even slightly larger than the best case
above.

1350

L INEAR PROGRAMS FORHYPOTHESESSELECTION

7. Application Note: Protein Torsion Angle Prediction

We studied properties of a class of linear programs for hypotheses selection in probabilistic infer-
ence which is hopefully of fundamental interest. We were led to the problem class by a concrete
challenge: a project where we are comparing different methods for predicting protein torsion angles
from NMR chemical shifts, see Section 1. Characteristic features of our scatterplot data are large
empty regions with almost no data points, in them clouds of data points with a varietyof shapes and
different densities. Optimization assists in the creation of a predictor:

Any prediction heuristic has to take a measured chemical shift value and output predicted torsion
angle values. In a statistical approach it is sensible to precompute the predictions, based on the
sampled data. The actual application is then a simple table look-up, done by an auxiliary program.
The main relevant question for spectroscopists is the achievable confidence when predicting torsion
angle intervals of a prescribed length (error probability vs. exclusiveness, in our terminology).
Then they can make their specific decisions using this tradeoff. Besides theactual predictions, the
optimization results also quantify how informative the chemical shifts of different nuclei (or their
combinations) are for this purpose.

Basic heuristics working purely “row-wise” (MAP, ML, or similar) do not pay attention to error
probabilities for specific hypothesis intervals and easily discard certain torsion angles completely,
despite a considerable frequency of occurrence. Hence such heuristics generate systematically mis-
leading predictions when these neglected ranges of torsion angles appear. Even worse, they can
appear more frequently in a protein under consideration than in the database: Recall that the scatter-
plots are sampled from a large collection of various proteins so that we knowonly average torsion
angle frequencies. A more even distribution of errors to different torsion angles gives more robust-
ness against varying torsion angle frequencies. We can also expect that the global structure recon-
struction process itself works smoother if the local restraints have balanced errors: Most wrong
sequences of torsion angles, that is, sequences with errors injected, are already geometrically im-
possible, which gives us a chance to correct such occasional errors.1 Since the precise effects are
hard to know beforehand, free parametersε j seem to be a valuable feature.

A simple MAP heuristics, for example, would take the measured chemical shift value and select
the torsion angle ranges (columns) with highest point densities in the row containing the measured
value. Other preferences may be taken into account, for instance, one interval is easier to handle as
a restraint than a union of several intervals. In either case, a selection yields a matrixX and a vector
of error probabilitiesε j which are typically low (high) in densely (sparsely) populated columns.
Now we can adjust error probabilities for individual torsion angle intervals in any desired direction
and re-optimize.

As an illustration we discuss an arbitrary example (point count matrix) from the real data: As-
partic Acid, nucleusCα, and torsion angleφ, partitioned into homogeneous regions using the method
from Christin (2006):

1. As a linguistic analogy, typos scattered in a text can be erased promptly,whereas systematic errors make words
unrecognizable, or even smuggle in other words that fit in the context but were not intended.

1351

BERGKVIST, DAMASCHKE AND L ÜTHI

1 0 7 12 4 1 1 0
0 0 0 19 18 1 2 0
5 4 22 212 116 16 4 0
2 3 21 90 32 3 5 0

10 6 38 93 28 7 39 3
98 86 304 193 39 11 63 5
34 43 86 27 4 0 7 3
22 60 67 18 1 1 2 2
3 12 19 6 4 0 2 0

[

40 30 30 20 15 80 45 100
]

.

The bottom line gives the torsion angle interval lengths in degrees, that is, our weights. The
frequencies of hypotheses in the database are (in percent, rounded):

[

8.5 10.5 27.5 33.0 12.0 2.0 6.0 0.5
]

.

Suppose we want to predict torsion angle intervals of about 60 degreesand start with a naive
MAP heuristic that takes the intervals of exactly 60 degrees with maximum densityin each row.
It leads to the following matrixX (entries indicate the discarded fractions of intervals, values are
rounded):

1 1 0.17 0 0 1 1 1
1 1 1 0 0 0.69 1 1
1 1 0.17 0 0 1 1 1
1 1 0.17 0 0 1 1 1
1 1 0.17 0 0 1 1 1
1 0.67 0 0 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1

[

100.0 33.0 2.5 7.5 19.5 99.0 100.0 100.0
]

.

The bottom line indicates the error boundsε j in percent (rounded). For the prior probabilities
from the database, the overall error probability would be about 26%. Optimization with the sameε j

yields only marginal changes:

1 1 0 0 0 1 1 1
1 1 1 0 0 0.69 1 1
1 1 0.18 0 0 1 1 1
1 1 0.16 0 0 1 1 1
1 1 0.17 0 0 1 1 1
1 0.67 0 0 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0.06 1 1 1 1 1

.

1352

L INEAR PROGRAMS FORHYPOTHESESSELECTION

Columns 6 and 8 are completely discarded, which is reasonable because only 2.5% of cases
are to be expected in the corresponding large intervals. The separate cluster in column 7 which
appeared with 6% is always discarded, too. We may accept this error when we prefer a single
predicted interval to a union of two (see the remark above). The most relevant part is the dense
region in columns 1 to 5. Observe that also column 1 is completely discarded, even though it
contains a considerable cluster of points. This makes up for 8.5 of the 26% total error. Let us reduce
ε1 and see how this affects the predictions. For instance, after changingε1 to 0.4, optimization
(followed by raising some sporadicxk j < 1 to 1 whenpk j is small) yields thisX:

1 1 0 0 0 1 1 1
1 1 1 0 0 0.69 1 1
1 1 0 0 0 1 1 1
0.76 0 0 0 0 1 1 1
1 1 0 0 0 1 1 1
0.26 0.7 0 0.03 1 1 1 1
0.16 0 0.16 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1

.

We remark that the optimal dual solution moved fromq3 = 1 toq1 = 1. The (expected) length of
predicted intervals increased to 84 degrees. On the other hand, the global error went down to 21%,
and we can afford to raise the very small initialε3. For instance, withε3 = 0.2 we are back to the
initial total error of 26%, now with an expected hypothesis length of 77 degrees and the following
X:

1 1 0 0 0 1 1 1
1 1 1 0 0 0.69 1 1
1 1 0 0 0 1 1 1
1 0.06 0 0 0 1 1 1
1 1 0 0 0 1 1 1
0.46 0.7 0 0 1 1 1 1
0 0 1 1 1 1 1 1
0.16 0 0.4 1 1 1 1 1
1 0 0 1 1 1 1 1

.

Interestingly, this step pressed the predictions in rows 7,8 more to the lower left corner, while
x61 became higher again. The apparent reason is that, in row 6, the element in column 1 has strong
competitors in columns 3 and 4. Hence it is not predicted definitely, even though p61 > p71, p81. The
result in row 6 suggests to choose either columns 1-2 or 3-4. In order to avoid predicting intervals
of excessive lengths in some rows, we may cut the longest intervals down,for example, at the end
with the smallest increase of error. In our example, the longest predicted interval, with 93 degrees,
appears in row 4. Changingx42 to 1 increasesε2 marginally to 0.345 but shortens this interval to 65
degrees. In row 8 we may cut at column 3, etc.

This example merely served to demonstrate that desirable improvements can be made after
quick manual checking, while the main calculations are left to any linear programming tool. For
processing hundreds of instances with different desired interval lengths we fix the initialε j (sub-
ject to a proportional factor which is used for the error vs. exclusiveness tradeoff) also by other

1353

BERGKVIST, DAMASCHKE AND L ÜTHI

plausible heuristics:ε j proportional to the weight-by-frequency ratio, equalε j , and combinations
of them. However, since no simple automatic rule seems to be satisfactory forall diverse shapes of
scatterplots (apparently bad examples exist for each), some minor intervention as shown above is
required.

Acknowledgments

The first author has been supported by the Knut and Alice Wallenberg Foundation, Carl Tryggers
Foundation, and Assar Gabrielsson Foundation. The second author has been partially supported by
the Swedish Research Council (Vetenskapsrådet), grant no. 621-2002-4574.

We thank the anonymous referees for their helpful suggestions.

References

R. D. Beger and P. H. Bolton. Proteinφ andψ dihedral restraints determined from multidimen-
sional hypersurface correlations of backbone chemical shifts and their use in the determination
of protein tertiary structures.Journal of Biomolecular NMR, 10:129–142, 1997.

K. P. Bennett. Decision tree construction via linear programming. InProceedings of the 4th Midwest
AI and Cognitive Science Sociecty Conference, pages 97–101, 1992.

K. P. Bennett and O. L. Mangasarian. Neural network training via linearprogramming. InAdvances
in Optimization and Parallel Computing, pages 56–67. North-Holland, 1992a.

K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly
inseparable sets.Optimization Methods and Software, 1:23–34, 1992b.

K. P. Bennett and O. L. Mangasarian. Multicategory separation via linearprogramming.Optimiza-
tion Methods and Software, 3:27–39, 1993.

P. S. Bradley.Mathematical Programming Approaches to Machine Learning and Data Mining. PhD
thesis, University of Wisconsin, 1998.

C. Christin. Scatterplot partitioning algorithm for LETA-NMR. Master’s thesis, International Mas-
ter’s Programme in Bioinformatics, Chalmers University, Göteborg (Sweden), 2006.

G. Cornilescu, F. Delaglio, and A. Bax. Protein backbone angle restraints from searching a database
for chemical shift and sequence homology.Journal of Biomolecular NMR, 13:289–302, 1999.

P. Damaschke. Scheduling search procedures.Journal of Scheduling, 7:349–364, 2004.

F. Glover. Improved linear programming models for discriminant analysis.Decision Sciences, 21:
771–785, 1990.

S. Martello and P. Toth.Knapsack Problems: Algorithms and Computer Implementations. Wiley,
1990.

P. Szolovits, R. S. Patil, and W. B. Schwartz. Artificial intelligence in medical diagnosis.Annals of
Internal Medicine, 108:80–87, 1988.

1354

L INEAR PROGRAMS FORHYPOTHESESSELECTION

E. Tardos and K. D. Wayne. Simple generalized maximum flow algorithms. InProceedings of the
6th Integer Programming and Combinatorial Optimization Conference, Lecture Notes in Com-
puter Science, volume 1412, pages 310–324, 1998.

Y. Wang and O. Jardetzky. Probability-based protein secondary structure identification using com-
bined NMR chemical-shift data.Protein Science, 11:852–861, 2002.

K. D. Wayne. A polynomial combinatorial algorithm for generalized minimum costflow. Mathe-
matical Operations Research, 27:445–459, 2002.

X. P. Xu and D. A. Case. Probing multiple effects on15N, 13Cα, 13Cβ and13C’ chemical shifts in
peptides using density functional theory.Biopolymers, 65:408–423, 2002.

1355

Journal of Machine Learning Research 7 (2006) 1357–1383 Submitted 10/05; Revised 5/06; Published 7/06

Bayesian Network Learning with Parameter Constraints

Radu Stefan Niculescu STEFAN.NICULESCU@SIEMENS.COM

Computer Aided Diagnosis and Therapy Group
Siemens Medical Solutions
51 Valley Stream Parkway
Malvern, PA, 19355, USA

Tom M. Mitchell TOM.MITCHELL @CMU.EDU

Center for Automated Learning and Discovery
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, 15213, USA

R. Bharat Rao BHARAT.RAO@SIEMENS.COM

Computer Aided Diagnosis and Therapy Group
Siemens Medical Solutions
51 Valley Stream Parkway
Malvern, PA, 19355, USA

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract

The task of learning models for many real-world problems requires incorporating domain knowl-
edge into learning algorithms, to enable accurate learningfrom a realistic volume of training data.
This paper considers a variety of types of domain knowledge for constraining parameter estimates
when learning Bayesian networks. In particular, we consider domain knowledge that constrains the
values or relationships among subsets of parameters in a Bayesian network with known structure.

We incorporate a wide variety of parameter constraints intolearning procedures for Bayesian
networks, by formulating this task as a constrained optimization problem. The assumptions made
in module networks, dynamic Bayes nets and context specific independence models can be viewed
as particular cases of such parameter constraints. We present closed form solutions or fast iterative
algorithms for estimating parameters subject to several specific classes of parameter constraints,
including equalities and inequalities among parameters, constraints on individual parameters, and
constraints on sums and ratios of parameters, for discrete and continuous variables. Our methods
cover learning from both frequentist and Bayesian points ofview, from both complete and incom-
plete data.

We present formal guarantees for our estimators, as well as methods for automatically learning
useful parameter constraints from data. To validate our approach, we apply it to the domain of
fMRI brain image analysis. Here we demonstrate the ability of our system to first learn useful
relationships among parameters, and then to use them to constrain the training of the Bayesian
network, resulting in improved cross-validated accuracy of the learned model. Experiments on
synthetic data are also presented.

Keywords: Bayesian networks, constrained optimization, domain knowledge

c©2006 Radu Stefan Niculescu, Tom Mitchell and Bharat Rao.

NICULESCU, M ITCHELL AND RAO

1. Introduction

Probabilistic models have become increasingly popular in the last decade because of their ability
to capture non-deterministic relationships among variables describing many real world domains.
Among these models, graphical models have received significant attention because of their ability
to compactly encode conditional independence assumptions over random variables and because of
the development of effective algorithms for inference and learning based on these representations.

A Bayesian network (Heckerman, 1999) is a particular case of a graphical model that compactly
represents the joint probability distribution over a set of random variables. It consists of two com-
ponents: a structure and a set of parameters. The structure is a directedacyclic graph with one
node per variable. This structure encodes the cocal Markov assumption: a variable is conditionally
independent of its non-descendants in the network, given the value of itsparents. The parameters
describe how each variable relates probabilistically to its parents. A Bayesiannetwork encodes a
unique joint probability distribution, which can be easily computed using the chain rule.

When learning Bayesian networks, the correctness of the learned network of course depends
on the amount of training data available. When training data is scarce, it is useful to employ var-
ious forms of prior knowledge about the domain to improve the accuracy of learned models. For
example, a domain expert might provide prior knowledge specifying conditional independencies
among variables, constraining or even fully specifying the network structure of the Bayesian net-
work. In addition to helping specify the network structure, the domain expert might also provide
prior knowledge about the values of certain parameters in the conditional probability tables (CPTs)
of the network, or knowledge in the form of prior distributions over these parameters. While pre-
vious research has examined a number of approaches to representing and utilizing prior knowledge
about Bayesian network parameters, the type of prior knowledge that can be utilized by current
learning methods remains limited, and is insufficient to capture many types of knowledge that may
be readily available from experts.

One contribution of our previous work (Niculescu, 2005) was the development of a general
framework to perform parameter estimation in Bayesian networks in the presence of any parame-
ter constraints that obey certain differentiability assumptions, by formulating this as a constrained
maximization problem. In this framework, algorithms were developed from both afrequentist and
a Bayesian point of view, for both complete and incomplete data. The optimizationmethods used
by our algorithms are not new and therefore this general learning approach has serious limitations
given by these methods, especially given arbitrary constraints. However, this approach constitutes
the basis for the efficient learning procedures for specific classes ofparameter constraints described
in this paper. Applying these efficient methods allows us to take advantage ofparameter constraints
provided by experts or learned by the program, to perform more accurate learning of very large
Bayesian networks (thousands of variables) based on very few (tens) examples, as we will see later
in the paper.

The main contribution of our paper consists of efficient algorithms (closed form solutions, fast
iterative algorithms) for several classes of parameter constraints which current methods can not
accommodate. We show how widely used models including hidden Markov models, dynamic
Bayesian networks, module networks and context specific independence are special cases of one
of our constraint types, described in subsection 4.3. Our framework is able to represent parame-
ter sharing assumptions at the level of granularity of individual parameters. While prior work on
parameter sharing and Dirichlet priors can only accommodate simple equality constraints between

1358

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

parameters, our work extends to provide closed form solutions for classes of parameter constraints
that involve relationships between groups of parameters (sum sharing, ratio sharing). Moreover, we
provide closed form maximum likelihood estimators when constraints come in the form of several
types of inequality constraints. With our estimators come a series of formal guarantees: we formally
prove the benefits of taking advantage of parameter constraints to reducethe variance in parameter
estimators and we also study the performance in the case when the domain knowledge represented
by the parameter constraints might not be entirely accurate. Finally, we present a method for au-
tomatically learning parameter constraints, which we illustrate on a complex task ofmodelling the
fMRI brain image signal during a cognitive task.

The next section of the paper describes related research on constraining parameter estimates for
Bayesian networks. Section 3 presents the problem and describes our prior work on a framework
for incorporating parameter constraints to perform estimation of parametersof Bayesian networks.
Section 4 presents the main contribution of this paper: very efficient ways (closed form solutions,
fast iterative algorithms) to compute parameter estimates for several importantclasses of parameter
constraints. There we show how learning in current models that use parameter sharing assumptions
can be viewed as a special case of our approach. In section 5, experiments on both real world and
synthetic data demonstrate the benefits of taking advantage of parameter constraints when compared
to baseline models. Some formal guarantees about our estimators are presented in section 6. We
conclude with a brief summary of this research along with several directionsfor future work.

2. Related Work

The main methods to represent relationships among parameters fall into two main categories: Dirich-
let priors and their variants (including smoothing techniques) and parametersharing of several kinds.

In Geiger and Heckerman (1997), it is shown that Dirichlet priors are theonly possible priors
for discrete Bayes nets, provided certain assumptions hold. One can thinkof a Dirichlet prior
as an expert’s guess for the parameters in a discrete Bayes net, allowing room for some variance
around the guess. One of the main problems with Dirichlet priors and related models is that it
is impossible to represent even simple equality constraints between parameters(for example the
constraint:θ111 = θ121 whereθi jk = P(Xi = xi j |Parents(Xi) = paik)) without using priors on the
hyperparameters of the Dirichelet prior, in which case the marginal likelihood can no longer be
computed in closed form, and expensive approximate methods are requiredto perform parameter
estimation. A second problem is that it is often beyond the expert’s ability to specify a full Dirichlet
prior over the parameters of a Bayesian network.

Extensions of Dirichlet priors include Dirichlet tree priors (Minka, 1999)and dependent Dirich-
let priors (Hooper, 2004). Although these priors allow for more correlation between the parameters
of the model than standard Dirichlet priors, essentially they face the same issues. Moreover, in
the case of dependent Dirichlet priors, parameter estimators can not be computed in closed form,
although Hooper (2004) presents a method to compute approximate estimators,which are linear
rational fractions of the observed counts and Dirichlet parameters, by minimizing a certain mean
square error measure. Dirichlet priors can be considered to be part of a broader category of methods
that employ parameter domain knowledge, called smoothing methods. A comparison of several
smoothing methods can be found in Zhai and Lafferty (2001).

A widely used form of parameter constraints employed by Bayesian networks is parameter
sharing. Models that use different types of parameter sharing include: dynamic Bayesian networks

1359

NICULESCU, M ITCHELL AND RAO

(Murphy, 2002) and their special case hidden Markov models (Rabiner, 1989), module networks
(Segal et al., 2003), context specific independence models (Boutilier etal., 1996) such as Bayesian
multinetworks, recursive multinetworks and dynamic multinetworks (Geiger andHeckerman, 1996;
Pena et al., 2002; Bilmes, 2000), probabilistic relational models (Friedman etal., 1999), object ori-
ented Bayes nets (Koller and Pfeffer, 1997), Kalman filters (Welch and Bishop, 1995) and bilinear
models (Tenenbaum and Freeman, 2000). Parameter sharing methods constrain parameters to share
the same value, but do not capture more complicated constraints among parameters such as in-
equality constraints or constraints on sums of parameter values. The abovemethods are restricted
to sharing parameters at either the level of sharing a conditional probabilitytable (CPT) (module
networks, HMMs), at the level of sharing a conditional probability distribution within a single CPT
(context specific independence), at the level of sharing a state-to-state transition matrix (Kalman
filters) or at the level of sharing a style matrix (bilinear models). None of the prior models allow
sharing at the level of granularity of individual parameters.

One additional type of parameter constraints is described byprobabilistic rules. This kind of
domain knowledge was used in Rao et al. (2003) to assign values to certain parameters of a Bayesian
network. We are not aware of probabilistic rules being used beyond thatpurpose for estimating the
parameters of a Bayesian network.

3. Problem Definition and Approach

Here we define the problem and describe our previous work on a general optimization based ap-
proach to solve it. This approach has serious limitations when the constraints are arbitrary. How-
ever, it constitutes the basis for the very efficient learning proceduresfor the classes of parameter
constraints described in section 4. While the optimization methods we use are notnew, applying
them to our task allows us to take advantage of expert parameter constraintsto perform more ac-
curate learning of very large Bayesian networks (thousands of variables) based on very few (tens)
examples, as we will see in subsection 5.2. We begin by describing the problem and state several
assumptions that we make when deriving our estimators.

3.1 The Problem

Our task here is to perform parameter estimation in a Bayesian network wherethe structure is known
in advance. To accomplish this task, we assume a data set of examples is available. In addition, a
set of parameter equality and/or inequality constraints is provided by a domainexpert. The equality
constraints are of the formgi(θ) = 0 for 1≤ i ≤ m and the inequality constraints are of the form
h j(θ) ≤ 0 for 1≤ j ≤ k, whereθ represents the set of parameters of the Bayesian network.

Initially we will assume the domain knowledge provided by the expert is correct. Later, we
investigate what happens if this knowledge is not completely correct. Next we enumerate several
assumptions that must be satisfied for our methods to work. These are similar tocommon assump-
tions made when learning parameters in standard Bayesian networks.

First, we assume that the examples in the training data set are drawn independently from the un-
derlying distribution. In other words, examples are conditionally independent given the parameters
of the graphical model.

Second, we assume that all the variables in the Bayesian network can take on at least two
different values. This is a safe assumption since there is no uncertainty in arandom variable with

1360

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

only one possible value. Any such variables in our Bayesian network canbe deleted, along with all
arcs into and out of the nodes corresponding to those variables.

When computing parameter estimators in the discrete case, we additionally assumethat all
observed counts corresponding to parameters in the Bayesian network are strictly positive. We
enforce this condition in order to avoid potential divisions by zero, which may impact inference
negatively. In the real world it is expected there will be observed countswhich are zero. This
problem can be solved by using priors on parameters, that essentially have the effect of adding a
positive quantity to the observed counts and essentially create strictly positive virtual counts.

Finally, the functionsg1, . . . ,gm and h1, . . . ,hk must be twice differentiable, with continuous
second derivatives. This assumption justifies the formulation of our problem as a constrained max-
imization problem that can be solved using standard optimization methods.

3.2 A General Approach

In order to solve the problem described above, here we briefly mention our previous approach
(Niculescu, 2005) based on already existing optimization techniques. The idea is to formulate our
problem as a constrained maximization problem where the objective function iseither the data
log-likelihood logP(D|θ) (for maximum likelihood estimation) or the log-posterior logP(θ|D) (for
maximum aposteriori estimation) and the constraints are given bygi(θ) = 0 for 1≤ i ≤ m and
h j(θ)≤ 0 for 1≤ j ≤ k. It is easy to see that, applying the Karush-Kuhn-Tucker conditions theorem
(Kuhn and Tucker, 1951), the maximum must satisfy a system with the same number of equations
as variables. To solve this system, one can use any of several already existing methods (for example
the Newton-Raphson method (Press et al., 1993)).

Based on this approach, in Niculescu (2005) we develop methods to perform learning from both
a frequentist and a Bayesian point of view, from both fully and partially observable data (via an
extended EM algorithm). While it is well known that finding a solution for the system given by the
KKT conditions is not enough to determine the optimum point, in Niculescu (2005)we also discuss
when our estimators meet the sufficiency criteria to be optimum solutions for the learning problem.
There we also describe how to useconstrained conjugate parameter priorsfor the MAP estimation
and Bayesian model Averaging. A sampling algorithm was devised to address the challenging issue
of computing the normalization constant for these priors. Furthermore, procedures that allow the
automatic learning of useful parameter constraints were also derived.

Unfortunately, the above methods have a very serious shortcoming in the general case. With a
large number of parameters in the Bayesian network, they can be extremely expensive because they
involve potentially multiple runs of the Newton-Raphson method and each such run requires several
expensive matrix inversions. Other methods for finding the solutions of a system of equations can
be employed, but, as noted in Press et al. (1993), all these methods have limitations in the case
when the constraints are arbitrary, non-linear functions. The worst case happens when there exists
a constraint that explicitly uses all parameters in the Bayesian network.

Because of this shortcoming and because the optimization methods we use to derive our algo-
rithms are not new, we choose not to go into details here. We mention them to show how learning
in the presence of parameter constraints can be formulated as a general constrained maximization
problem. This general framework also provides the starting point for the efficient learning methods
for the particular classes of parameter constraints presented in the next section.

1361

NICULESCU, M ITCHELL AND RAO

4. Parameter Constraints Classes

In the previous section we mentioned the existence of general methods to perform parameter learn-
ing in Bayesian networks given a set of parameter constraints. While thesemethods can deal with
arbitrary parameter constraints that obey several smoothness assumptions, they can be very slow
since they involve expensive iterative and sampling procedures.

Fortunately, in practice, parameter constraints usually involve only a small fraction of the total
number of parameters. Also, the data log-likelihood can be nicely decomposed over examples,
variables and values of the parents of each variable (in the case of discrete variables). Therefore,
the maximum likelihood optimization problem can be split into a set of many independent, more
manageable, optimization subproblems, which can either be solved in closed form or for which very
efficient algorithms can be derived. For example, in standard maximum likelihood estimation of the
parameters of a Bayesian network, each such subproblem is defined over one single conditional
probability distribution. In general, in the discrete case, each optimization subproblem will span its
own set of conditional probability distributions. The set of maximum likelihood parameters will be
the union of the solutions of these subproblems.

This section shows that for several classes of parameter constraints thesystem of equations
given by the Karush-Kuhn-Tucker theorem can be solved in an efficient way (closed form or fast
iterative algorithm). In some of these cases we are also able to find a closed form formula for the
normalization constant of the corresponding constrained parameter prior.

4.1 Parameter Sharing within One Distribution

This class of parameter constraints allows asserting that specific user-selected parameters within a
single conditional probability distribution must be shared. This type of constraint allows represent-
ing statements such as:“Given this combination of causes, several effects are equally likely.”Since
the scope of this constraint type does not go beyond the level of a single conditional probability
distribution within a single CPT, the problem of maximizing the data likelihood can be split into a
set of independent optimization subproblems, one for each such conditional probability distribution.
Let us consider one of these subproblems (for a variableX and a specific valuePA(X) = pa of the
parents). Assume the parameter constraint asserts that several parameters are equal by asserting that
the parameterθi appears inki different positions in the conditional distribution. Denote byNi the
cumulative observed count corresponding toθi . The cumulative observed count is the sum of all the
observed counts corresponding to theki positions whereθi appears in the distribution. LetN = ∑i Ni

be the sum of all observed counts in this conditional probability distribution i.e. the total number of
observed cases withPA(X) = pa.

At first it may appear that we can develop maximum likelihood estimates forθi and the other
network parameters using standard methods, by introducing new variablesthat capture the groups
of shared parameters. To see that this is not the case, consider the following example. Assume a
variableX with values{1,2,3,4} depends onY. Moreover, assume the parameter constraint states
that P(X = 1|Y = 0) = P(X = 2|Y = 0) andP(X = 3|Y = 0) = P(X = 4|Y = 0). Then one can
introduce variableX12 which is 1 ifX ∈ {1,2} and 0 otherwise. This variable is assumed dependent
on Y and added as a parent ofX. It is easy to see thatP(X|X12 = 0,Y = 0) must be equal to the
distribution on{1,2,3,4} that assigns half probability to each of 3 and 4. Therefore, ifY takes only
one value, the task of finding maximum likelihood estimators with parameter sharingis reduced to
the one of finding standard maximum likelihood estimators forX12|Y = 0. However, ifY takes only

1362

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

one value, then we can safely remove it as a parent ofX. WhenY can take two values, 0 and 1,
assume the expert states the additional assumption thatP(X = 1|Y = 1) = P(X = 3|Y = 1) = P(X =
4|Y = 1). Now we need to introduce a new variableX134 that depends onY and add it as a parent of
X. There must be an edge betweenX12 andX134 because, otherwise, the structural assumption that
X12 andX134 are conditionally independent givenY is obviously not true. AssumingX12 is the parent
of X134, the constraints given by the expert need to be modelled in the distributionP(X134|X12,Y)
instead. Not only did we fail to encode the constraints in the new structure, but we also complicated
the problem by adding two nodes in our network. A similar argument holds for all discrete types of
parameter constraints presented in this section.

Below we present closed form solutions for the maximum likelihood estimators from complete
data and for the normalization constant for the corresponding constrained Dirichlet priors used to
perform maximum aposteriori estimation. These priors are similar to the standard Dirichlet priors,
but they assign zero probability over the space where the expert’s constraints are not satisfied. The
normalization constant for the constrained Dirichlet prior can be computed over the scope of a
certain constraint and then all such constants are multiplied to obtain the normalization constant
for the prior over the whole set of parameters of the Bayesian network. We also present an EM
algorithm to approach learning from incomplete data under this type of parameter sharing.

4.1.1 MAXIMUM L IKELIHOOD ESTIMATION FROM COMPLETE DATA

Theorem 1 The maximum likelihood estimators for the parameters in the above conditionalprob-
ability distribution are given by:

θ̂i =
Ni

ki ·N

Proof The problem of maximizing the data log-likelihood subject to the parameter sharing con-
straints can be broken down in subproblems, one for each conditional probability distribution. One
such subproblem can be restated as:

P : argmax{h(θ) | g(θ) = 0}

whereh(θ) = ∑i Ni logθi andg(θ) = (∑i ki ·θi)−1 = 0

When all counts are positive, it can be easily proved thatP has a global maximum which is
achieved in the interior of the region determined by the constraints. In this case the solution ofP
can be found using Lagrange multipliers. Introduce Lagrange multiplierλ for the constraint inP.
Let LM(θ,λ) = h(θ)−λ ·g(θ). Then the point which maximizesP is among the solutions of the
system∇LM(θ,λ) = 0. Let (θ̂,λ) be a solution of this system. We have: 0= ∂LM

∂θi
= Ni

θi
−λ ·ki for

all i. Therefore,ki · θ̂i = Ni
λ . Summing up for all values ofi, we obtain:

0 =
∂LM
∂λ

= (∑
i

ki · θ̂i)−1 = (∑
i

Ni

λ
)−1 =

N
λ
−1

From the last equation we compute the value ofλ = N. This gives us:̂θi = Ni
ki ·N

. The fact that̂θ
is the set of maximum likelihood estimators follows because the objective functionis concave and
because the constraint is a linear equality.

1363

NICULESCU, M ITCHELL AND RAO

4.1.2 CONSTRAINED DIRICHLET PRIORS

From a Bayesian point of view, each choice of parameters can occur witha certain probability.
To make learning easier, for this type of parameter constraints, we employ conjugate constrained
Dirichlet priors that have the following form for a given conditional probability distribution in the
Bayesian network:

P(θ) =

{

1
Z ∏n

i=1 θαi−1
i if θ ≥ 0,∑ki ·θi = 1

0 otherwise

maximum aposteriori estimation can be now performed in exactly the same way as maximum
likelihood estimation (see Theorem 1), with the only difference that the objective function becomes
P(θ|D) ∝ P(D|θ) ·P(θ). The normalization constantZ can be computed by integration and depends
on the elimination order. Ifθn is eliminated first, we obtain:

Zn =
kn

∏n
i=1kαi

i
·

∏n
i=1 Γ(αi)

Γ(∑n
i=1 αi)

The above normalization should be thought of as corresponding toP(θ1, . . . ,θn−1). If we elimi-
nate a different parameter first when computing the integral, then we obtain adifferent normalization
constant which corresponds to a different(n−1)-tuple of parameters. Note that having different
constants is not an inconsistency, because the corresponding probability distributions overn− 1
remaining parameters can be obtained from each other by a variable substitution based on the con-
straint∑ki ·θi = 1. It is easy to see (Niculescu, 2005) that learning procedures are not affected in
any way by which parameter is eliminated. In the case of no parameter sharing(that iski = 1 for all
i), all these normalization constants are equal and we obtain the standard Dirichlet prior.

4.1.3 MAXIMUM L IKELIHOOD ESTIMATION FROM INCOMPLETEDATA

It can be easily proved that learning with incomplete data can be achieved viaa modified version
of the standard expectation maximization algorithm used to train Bayesian networks, where in the
E-Step the expected counts are estimated and in the M-Step parameters are re-estimated using these
expected counts based on Theorem 1.

Algorithm 1 (Expectation maximization for discrete Bayesian networks) Randomly initialize
the network parameters with a valuêθ0. Repeat the following two steps until convergence is
reached:

E-Step: At iteration t+ 1, use any inference algorithm to compute expected counts E[Ni |θ̂t] and
E[N|θ̂t] for each distribution in the network under the current parameter estimatesθ̂t .

M-Step: Re-estimate the parametersθ̂t+1 using Theorem 1, assuming that the observed counts are
equal to the expected counts given by the E-Step.

4.2 Parameter Sharing in Hidden Process Models

A hidden process model (HPM)is a probabilistic framework for modelling time series data (Hutchin-
son et al., 2005, 2006) which predicts the value of atarget variable Xat a given point in time as the

1364

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

sum of the values of certainhidden processesthat are active. The HPM model is inspired by our
interest in modelling hidden cognitive processes in the brain, given a time series of observed fMRI
images of brain activation. One can think of the observed image featureX as the value of the fMRI
signal in one small cube inside the brain (also called a voxel). A hidden process may be thought
of as a mental process that generates fMRI activity at various locations inthe brain, in response to
an externalstimulus. For example, a“ComprehendPicture”process may describe the fMRI signal
that happens in the brain starting when the subject is presented with a picture. A “ComprehendSen-
tence” process may provide the same characterization for the situation when a subject is reading a
sentence. HPMs assume several cognitive processes may be active atthe some point in time, and
assume in such cases the observed fMRI signal is the sum of the corresponding processes, translated
according to their starting times. Hidden process models can be viewed as a subclass of dynamic
Bayesian networks, as described in Hutchinson et al. (2006).

Formally, ahidden process modelis defined by a collection of time series (also called hidden
processes):P1, . . . ,PK . For each processPk with 1 ≤ k ≤ K, denote byPkt the value of its corre-
sponding time series at timet after the process starts. Also, letXt be the value of the target variable
X at timet. If processPk starts at timetk, then a hidden process model predicts the random variable
Xt will follow the distribution:

Xt ∼ N(∑
k

Pk(t−tk+1),σ2)

whereσ2 is considered to be the variance in the measurement and is kept constant across time. For
the above formula to make sense, we considerPkt = 0 if t < 0. Figure 1 shows an example of a
hidden process model for the fMRI activity in a voxel in the brain during a cognitive task involving
reading a sentence and looking at a picture.

In general HPMs allow modeling uncertainty about the timing of hidden processes, allow un-
certainty about the types of the processes, and allow for multiple instances of the same process to be
active simultaneously (Hutchinson et al., 2006). However, in the treatment and experiments in this
paper we make three simplifying assumptions. We assume the times at which the hidden processes
occur are known, that the types of the processes are known, and thattwo instances of the same types
of process may not be active simultaneously. These three simplifying assumptions lead to a for-
mulation of HPMs that is equivalent to the analysis approach of Dale (1999)based on multivariate
regression within the general linear model.

In a typical fMRI experiment, the subject often performs the same cognitivetask multiple times,
on multiple trials, providing multiple observation sequences of the variableX. In our framework
we denote byXnt the value ofXt during trialn, and bytnk the starting point of processPk during trial
n. Let N be the total number of observations. We can now write:

Xnt ∼ N(∑
k

Pk(t−tnk+1),σ2)

While not entirely necessary for our method to work, we assume thatX is tracked for the same
length of time in each trial. LetT be the length of every such trial (observation). Since we are not
modelling what happens whent > T, we can also assume that each process has lengthT.

The natural constraints of this domain lead to an opportunity to specify prior knowledge in the
form of parameter constraints, as follows: an external stimulus will typically influence the activity in
multiple voxels of the brain during one cognitive task. For example, looking ata picture may activate

1365

NICULESCU, M ITCHELL AND RAO

Figure 1: A hidden process model to model a human subject who is asked to read a sentence and
to look at a picture. In half of the observations, the sentence is presentedfirst, then the
picture is shown. In the other half of the observations, the picture is presented first. The
activity in a given voxelX in the brain is modelled as a hidden process model with two
processes: ”Sentence” (P1) and ”Picture” (P2). Each observation has lengthT = 32 fMRI
snapshots (16 seconds) and the same holds for both processes. This figure shows an
observation where the sentence is presented at timet1 = 1 and the picture is shown at
t2 = 17 (8 seconds aftert1). After time t2, the two processes overlap and the fMRI signal
Xt ′ is the sum of the corresponding values of the two processes plusN(0,σ2) measurement
variance. The blue dotted line represents the fMRI activity that would happen after time
T.

1366

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

many voxels in the visual cortex. The activation in these voxels may be different at each given
point in time. Intuitively, that means the same stimulus may produce different hidden processes
in different voxels. However, certain groups of voxels that are closetogether often have similarly
shaped time series, but with different amplitude. In this case, we believe it is reasonable to assume
that the underlying hidden processes corresponding to these voxels are proportional to one another.
Experiments performed in Section 5 will prove that this assumption will help learnbetter models
than the ones that choose to ignore it.

In the above paragraph we explained intuitively that sometimes it makes senseto share the same
base processes across several time-varying random variables, butallow for different scaling factors.
Formally, we say that time-varying random variablesX1, . . . ,XV share their correspondinghidden
process modelsif there exist base processesP1, . . . ,PK and constantscv

k for 1≤ v≤V such that:

Xv
nt ∼ N(∑

k

cv
k ·Pk(t−tv

nk+1),σ2)

and the values of different variablesXv are independent given the parameters of the model. Hereσ2

represents the variance in measurement which is also shared across these variables.
We now consider how to efficiently perform maximum likelihood estimation of the parameters

of the variablesX1, . . . ,XV , assuming that they share their corresponding hidden process model
parameters as described above. The parameters to be estimated are the base process parametersPkt

where 1≤ k ≤ K and 1≤ t ≤ T, the scaling constantscv
k (one for each variableV and processk)

where 1≤ v≤V and the common measurement varianceσ2. Let P = {Pkt | 1≤ k≤ K, 1≤ t ≤ T}
be the set of all parameters involved in the base processes and letC = {cv

k | 1≤ k≤ K, 1≤ v≤V}
be the set of scaling constants. Subsequently, we will think of these sets ascolumn vectors. Recall
thatN represents the number of observations. After incorporating the parameter sharing constraints
in the log-likelihood function, our optimization problem becomes:

P : argmax l(P,C,σ)

where

l(P,C,σ) = −
NTV

2
· log(2π)−NTV · log(σ)−

1
2·σ2 · ∑

n,t,v
(xv

nt −∑
k

cv
k ·Pk(t−tv

nk+1))
2

It is easy to see that the value of(P,C) that maximizesl is the same for all values ofσ. Therefore,
to maximizel , we can first minimizel ′(P,C) = ∑n,t,v(x

v
nt −∑k cv

k ·Pk(t−tv
nk+1))

2 with respect to(P,C)
and then maximizel with respect toσ based on the minimum point forl ′. One may notice thatl ′ is
a sum of squares, where the quantity inside each square can be seen asa linear function in bothP
andC. Therefore one can imagine an iterative procedure that first minimizes with respect toP, then
with respect toC using the Least Squares method. Once we findM = min l ′(P,C) = l ′(P̂,Ĉ), the
value ofσ that maximizesl is given byσ̂2 = M

NVT. This can be derived in a straightforward fashion
by enforcing ∂l

∂σ(P̂,Ĉ, σ̂) = 0. With these considerations, we are now ready to present an algorithm
to compute maximum likelihood estimators(P̂,Ĉ, σ̂) of the parameters in the shared hidden process
model:

Algorithm 2 (Maximum likelihood estimators in a shared hidden process model) Let X̄ be the
column vector of values xv

nt. Start with a random guess(P̂,Ĉ) and then repeat Steps 1 and 2 until

1367

NICULESCU, M ITCHELL AND RAO

they converge to the minimum of the function l′(P,C).

STEP 1. Write l′(P̂,Ĉ) = ||A · P̂− X̄||2 where A is a NTV by KT matrix that depends on the cur-
rent estimateĈ of the scaling constants. More specifically, each row of A corresponds to one of
the squares from l′ and each column corresponds to one of the KT parameters of the base pro-
cesses (the column number associated with such a parameter must coincide with its position in
column vector P). Minimize with respect tôP using ordinary Least Squares to get a new estimate
P̂ = (AT ·A)−1 ·AT · X̄ .

STEP 2.Write l′(P̂,Ĉ) = ||B·Ĉ− X̄||2 where B is a NTV by KV matrix that depends on the current
estimateP̂ of the base processes. More specifically, each row of B corresponds to one of the squares
from l′ and each column corresponds to one of the KV scaling constants (the column number as-
sociated with such a constant must coincide with its position in column vector C). Minimize with
respect toĈ using ordinary Least Squares to get a new estimateĈ = (BT ·B)−1 ·BT · X̄ .

STEP 3.Once convergence is reached by repeating the above two steps, letσ̂2 = l ′(P̂,Ĉ)
NVT .

It might seem that this is a very expensive algorithm because it is an iterative method. However,
we found that when applied to fMRI data in our experiments, it usually converges in 3-5 repetitions
of Steps 1 and 2. We believe that the main reason why this happens is because at each partial step
during the iteration we compute a closed form global minimizer on eitherP̂ or Ĉ instead of using
a potentially expensive gradient descent algorithm. In Section 5 we will experimentally prove the
benefits of this algorithm over methods that do not take advantage of parameter sharing assumptions.

One may suspect that it is easy to learn the parameters of the above model because it is a
particular case of bilinear model. However, this is not the case. In the bilinear model representation
(Tenenbaum and Freeman, 2000), the style matrices will correspond to process parametersP and
the content vectors will correspond to scaling constants. It is easy to seethat in our case the style
matrices have common pieces, depending on when the processes started in each example. Therefore,
the SVD method presented in Tenenbaum and Freeman (2000) that assumesindependence of these
style matrices is not appropriate in our problem.

4.3 Other Classes of Parameter Constraints

In the above subsections we discussed efficient methods to perform parameter estimation for two
types of parameter constraints: one for discrete variables and one for continuous variables. These
methods bypass the need for the potentially expensive use of methods suchas Newton-Raphson.
There are a number of additional types of parameter constraints for whichwe have developed closed
form maximum likelihood and maximum aposteriori estimators: equality and inequalityconstraints,
on individual parameters as well as on sums and ratios of parameters, fordiscrete and continuous
variables. Moreover, in some of these cases, we were able to compute the normalization constant
in closed form for the corresponding constrained priors, which allows us to perform parameter
learning from a Bayesian point of view. All these results can be found in Niculescu (2005). We
briefly describe these types of parameter constraints below, and providereal-world examples of
prior knowledge that can be expressed by each form of constraint.

1368

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

• Constraint Type 1: Known Parameter values, Discrete.Example: If a patient has a heart
attack (Disease = “Heart Attack”), then there is a 90% probability that the patient will expe-
rience chest pain.

• Constraint Type 2: Parameter Sharing, One Distribution, Discrete.Example: Given a com-
bination of risk factors, several diseases are equally likely.

• Constraint Type 3: Proportionality Constants, One Distribution, Discrete.Example: Given a
combination of risk factors, disease A is twice as likely to occur as disease B.

• Constraint Type 4: Sum Sharing, One Distribution, Discrete.Example: A patient who is a
smoker has the same chance of having a Heart Disease (Heart Attack or Congestive Heart
Failure) as having a Pulmonary Disease (Lung Cancer or Chronic Obstructive Pulmonary
Disease).

• Constraint Type 5: Ratio Sharing, One Distribution, Discrete.Example: In a bilingual corpus,
the relative frequencies of certain groups of words are the same, eventhough the aggregate
frequencies of these groups may be different. Such groups of wordscan be: “words about
computers” (“computer”, “mouse”, “monitor”, “keyboard” in both languages) or “words
about business”, etc. In some countries computer use is more extensive than in others and one
would expect the aggregate probability of “words about computers” to bedifferent. However,
it would be natural to assume that the relative proportions of the “words about computers” are
the same within the different languages.

• Constraint Type 6: General Parameter Sharing, Multiple Distributions, Discrete. Example:
The probability that a person will have a heart attack given that he is a smoker with a family
history of heart attack is the same whether or not the patient lives in a pollutedarea.

• Constraint Type 7: Hierarchical Parameter Sharing, Multiple Distributions, Discrete.Exam-
ple: The frequency of severalinternational words(for instance “computer”) may be shared
across both Latin languages (Spanish, Italian) and Slavic languages (Russian, Bulgarian).
Other Latin words will have the same frequency only across Latin languages and the same
holds for Slavic Languages. Finally, other words will be language specific (for example names
of country specific objects) and their frequencies will not be shared withany other language.

• Constraint Type 8: Sum Sharing, Multiple Distributions, Discrete.Example: The frequency
of nouns in Italian is the same as the frequency of nouns in Spanish.

• Constraint Type 9: Ratio Sharing, Multiple Distributions, Discrete.Example: In two different
countries (A and B), the relative frequency of Heart Attack to Angina Pectoris as the main
diagnosis is the same, even though the the aggregate probability of Heart Disease (Heart
Attack and Angina Pectoris) may be different because of differences inlifestyle in these
countries.

• Constraint Type 10: Inequalities between Sums of Parameters, One Distribution, Discrete.
Example: The aggregate probability mass of adverbs is no greater than the aggregate proba-
bility mass of the verbs in a given language.

1369

NICULESCU, M ITCHELL AND RAO

• Constraint Type 11: Upper Bounds on Sums of Parameters, One Distribution, Discrete.Ex-
ample: The aggregate probability of nouns in English is no greater than 0.4.

• Constraint Type 12: Parameter Sharing, One Distribution, Continuous.Example: The stock
of computer makerDELL as a Gaussian whose mean is a weighted sum of the stocks of soft-
ware makerMicrosoft (MSFT)and chip makerIntel (INTL). Parameter sharing corresponds
to the statement thatMSFTandINTL have the same importance (weight) for predicting the
value of stockDELL.

• Constraint Type 13: Proportionality Constants, One Distribution, Continuous. Example:
Suppose we also throw in the stock of a Power Supply maker (PSUPPLY) in the linear mix
in the above example. The expert may give equal weights to INTL and MSFT, but five times
lower to PSUPPLY.

• Constraint Type 14: Parameter Sharing for Hidden Process Models.Example: Several neigh-
boring voxels in the brain exhibit similar activation patterns, but with different amplitudes
when a subject is presented with a given stimulus.

Note that general parameter sharing (Constraint Type 6) encompassesmodels including HMMs,
dynamic Bayesian networks, module networks and context specific independence as particular
cases, but allows for much finer grained sharing, at the level of individual parameters, across dif-
ferent variables and across distributions of different lengths. Briefly, this general parameter sharing
allows for a group of conditional probability distributions to share some parameters across all dis-
tributions in the group, but not share the remaining parameters. This type ofparameter constraint is
described in more detail in Niculescu et al. (2005) where we demonstrate our estimators on a task
of modelling synthetic emails generated by different subpopulations.

It is also important to note that different types of parameter constraints canbe mixed together
when learning the parameters of a Bayesian network as long as the scopesof these constraints do
not overlap.

5. Experiments

In this section we present experiments on both synthetic and real world data. Our experiments
demonstrate that Bayesian network models that take advantage of prior knowledge in the form of
parameter constraints outperform similar models which choose to ignore this kind of knowledge.

5.1 Synthetic Data - Estimating Parameters of a Discrete Variable

This section describes experiments involving one of the simplest forms of parameter constraint:
parameter sharing within one distribution, presented in subsection 4.1. The purpose of these ex-
periments is purely demonstrative and a more complicated scenario, on real world data, will be
presented in subsection 5.2.

5.1.1 EXPERIMENTAL SETUP

Here, our task is to estimate the set of parameters of a Bayesian network which consists of one
discrete variableX. We assume that prior knowledge is available that the distribution ofX shares
certain parameters. Without loss of generality, we consider that the parameter constraint states that

1370

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

the parameters to estimate are given byθ = {θ1, . . . ,θn} whereθi appears inki ≥ 1 known places in
the distribution ofX.

Our synthetic data set was created as follows: first, we randomly generated a distributionT (the
”true distribution”) that exhibits parameter sharing. This distribution described a variableX with 50
values, which had a total of roughly 50% shared parameters i.e.∑ki>1ki ≈ ∑ki=1ki . Each distinct
parameter appeared at most 5 times. We start with an empty distribution and generate a uniformly
random parameterv between 0 and 1. Then we generate a random integers between 2 and 5 and
sharev in the firsts places of the distribution. We continue to generate shared parameters until we
reach 25 (50% of 50 parameters). After that, we generate the rest of parameters uniformly randomly
between 0 and 1. After all 50 parameters are obtained using this procedure, we normalize to yield a
valid probability distribution. Once this distribution was generated, we sampled itto obtain a data
set of 1000 examples which were used subsequently to perform parameter estimation.

In our experiments we compare two models that estimate the parameters of distribution T over
X. One is a standard Bayesian network (STBN) that is learned using standard Bayesian networks
maximum likelihood estimators with no parameter sharing. The second model (PDKBN) is a
Bayesian network that is learned using the results in 4.1 assuming the correct parameter sharing
was specified by an oracle. While STBN needs to estimate∑n

i=1ki parameters, PDKBN only needs
to estimaten parameters. To deal with potentially zero observed counts, we used priors on the
parameters of the two models and then performed maximum aposteriori estimation.For STBN
we introduced a Dirichlet count of 2 for each parameter while for PDKBN we used a constrained
Dirichlet count ofki + 1 for each distinct parameterθi in the network. The role of these priors is
simply to assure strictly positive counts.

5.1.2 RESULTS AND DISCUSSION

We performed parameter estimation for the STBN and PDKBN models, varying the number of
examples in the training set from 1 to 1000. Since we were using synthetic data, we were able to
assess performance by computing KL(T,STBN) and KL(T,PDKBN), the KLdivergence from the
true distributionT.

Figure 2 shows a graphical comparison of the performance of the two models. It can be seen
that our model (PDKBN) that takes advantage of parameter constraints consistently outperforms the
standard Bayesian network model which does not employ such constraints. The difference between
the two models is greatest when the training data is most sparse. The highest observed difference
between KL(T,STBN) and KL(T,PDKBN) was 0.05, which was observed when the two models
were trained using 30 examples. As expected, when the amount of training data increases, the
difference in performance between the two models decreases dramatically.

Training Examples KL(T,PDKBN) Examples needed by STBN
5 0.191 16
40 0.094 103
200 0.034 516
600 0.018 905
650 0.017 > 1000

Table 1: Equivalent training set size so that STBN achieves the same performance as PDKBN.

1371

NICULESCU, M ITCHELL AND RAO

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

Training Set Size

K
L(

T
,*

)

PDKBN
STBN

Figure 2: KL divergence of PDKBN and STBN with respect to correct model T.

To get a better idea of how beneficial the prior knowledge in these parameter constraints can be
in this case, let us examine“how far STBN is behind PDKBN”. For a model PDKBN learned from
a data set of a given size, this can be measured by the number of examples that STBN requires in
order to achieve the same performance. Table 1 provides these numbers for several training set sizes
for PDKBN. For example, STBN uses 16 examples to achieve the same KL divergence as PDKBN
at 5 examples, which is a factor of 3.2 (the maximum observed) increase in the number of training
samples required by STNB. On average, STBN needs 1.86 times more examples to perform as well
as PDKBN.

As mentioned previously, this subsection was intended to be only a proof of concept. We next
provide experimental results on a very complex task involving several thousand random variables
and prior knowledge in the form of parameter constraints across many conditional probability dis-
tributions.

5.2 Real World Data - fMRI Experiments

As noted earlier, functional magnetic resonance imaging (fMRI) is a technique for obtaining three-
dimensional images of activity in the brain, over time. Typically, there are ten to fifteen thousand
voxels (three dimensional pixels) in each image, where each voxel covers a few tens of millimeters
of brain tissue. Due to the nature of the signal, the fMRI activation observable due to neural activity
extends for approximately 10 seconds after the neural activity, resultingin a temporally blurred
response (see Mitchell et al. (2004) for a brief overview of machine learning approaches to fMRI
analysis).

This section presents a generative model of the activity in the brain while a human subject
performs a cognitive task, based on the hidden process model and parameter sharing approach dis-
cussed in section 4.2. In this experiment involving real fMRI data and a complex cognitive task,
domain experts were unable to provide parameter sharing assumptions in advance. Therefore, we

1372

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

have developed an algorithm to automatically discover clusters of voxels thatcan be more accurately
learned with shared parameters. This section describes the algorithm for discovering these param-
eter sharing constraints, and shows that training under these parameter constraints leads to hidden
process models that far outperform the baseline hidden process models learned in the absence of
such parameter constraints.

5.2.1 EXPERIMENTAL SETUP

The experiments reported here are based on fMRI data collected in a studyof sentence and picture
comprehension (Carpenter et al., 1999). Subjects in this study were presented with a sequence of
40 trials. In 20 of these trials, the subject was first presented with a sentence for 4 seconds, such as
“The plus sign is above the star sign.”, then a blank screen for 4 seconds, and finally a picture such
as

+
*

for another 4 seconds. During each trial, the subject was required to press a “yes” or “no” button
to indicate whether the sentence correctly described the picture. During theremaining 20 trials the
picture was presented first and the sentence presented second, usingthe same timing.

In this data set, the voxels were grouped into 24 anatomically defined spatial regions of interest
(ROIs), each voxel having a resolution of 3 by 3 by 5 millimeters. An image of the brain was taken
every half second. For each trial, we considered only the first 32 images (16 seconds) of brain
activity. The results reported in this section are based on data from a singlehuman subject (04847).
For this particular subject, our data set tracked the activity of 4698 different voxels.

We model the activity in each voxel by a hidden process model with two processes, correspond-
ing to the cognitive processes of comprehending aSentenceor a Picture. The start time of each
processes is assumed to be known in advance (i.e., we assume the processbegins immediately upon
seeing the sentence or picture stimulus). We further assume that the activity indifferent voxels
is independent given the hidden processes corresponding to these voxels. Since the true under-
lying distribution of voxel activation is not known, we use the average log-likelihood score (the
log-likelihood of the test data divided by the number of test examples) to assess performance of the
trained HPMs. Because data is scarce, we can not afford to keep a large held-out test set. Instead,
we employ a leave-two-out cross-validation approach to estimate the performance of our models.

In our experiments we compare three HPM models. The first modelStHPM, which we consider
a baseline, consists of a standard hidden process model learned independently for each voxel. The
second modelShHPMis a hidden process model, shared for all the voxels within an ROI. In other
words, all voxels in a specific ROI share the same shape hidden processes, but with different am-
plitudes (see Section 4.2 for more details).ShHPMis learned using Algorithm 2. The third model
(HieHPM) also learns a set of shared hidden process models, but instead of assuming a priori that
a particular set of voxels should be grouped together, it chooses thesevoxel groupings itself, using
a nested cross-validation hierarchical approach to both come up with a partition of the voxels in
clusters that form a shared hidden process model. The algorithm is as follows:

Algorithm 3 (Hierarchical Partitioning and Hidden Process Models learning)

1373

NICULESCU, M ITCHELL AND RAO

STEP 1.Split the 40 examples into a set containing 20 folds F= {F1, . . . ,F20}, each fold containing
one example where the sentence is presented first and one example where the picture is presented
first.

STEP 2. For all 1≤ k ≤ 20, keep fold Fk aside and learn a model from the remaining folds using
Steps 3-5.

STEP 3. Start with a partition of all voxels in the brain by their ROIs and mark all subsets asNot
Final.

STEP 4. While there are subsets in the partition that areNot Final, take any such subset and try
to split it using equally spaced hyperplanes in all three directions (in our experiments we split each
subset into 4 (2 by 2) smaller subsets. If the cross-validation average log score of the model learned
from these new subsets using Algorithm 2 (based on folds F\Fk) is lower than the cross-validation
average log score of the initial subset for folds in F\Fk, then mark the initial subset asFinal and
discard its subsets. Otherwise remove the initial subset from the partition andreplace it with its
subsets which then mark asNot Final.

STEP 5. Given the partition computed by STEPS 3 and 4, based on the 38 data points in F\Fk,
learn a hidden process model that is shared for all voxels inside each subset of the partition. Use
this model to compute the log score for the examples/trials in Fk.

STEP 6. In Steps 2-4 we came up with a partition for each fold Fk. To come up with one single
model, compute a partition using STEPS 3 and 4 based on all 20 folds, then, based on this partition
learn a model as in STEP 5 using all 40 examples. The average log scoreof this last model can be
estimated by averaging the numbers obtained in STEP 5.

5.2.2 RESULTS AND DISCUSSION

We estimated the performance of our three models using the average log score, based on a leave
two out cross-validation approach, where each fold contains one example in which the sentence is
presented first, and one example in which the picture is presented first.

Our first set of experiments, summarized in Table 2, compared the three models based on their
performance in the visual cortex (CALC). This is one of the ROIs activelyinvolved in this cognitive
task and it contains 318 voxels. The training set size was varied from 6 examples to all 40 examples,
in multiples of two. Sharing the parameters of hidden process models proved very beneficial and
the impact was observed best when the training set size was the smallest. With an increase in the
number of examples, the performance ofShHPMstarts to degrade because it makes the biased
assumption that all voxels in CALC can be described by a single shared hidden process model.
While this assumption paid off with small training set size because of the reduction in variance, it
definitely hurt in terms of bias with larger sample size. Even though the bias wasobvious in CALC,
we will see in other experiments that in certain ROIs, this assumption holds and inthose cases the
gains in performance may be quite large.

As expected, the hierarchical modelHieHPM performed better than bothStHPMandShHPM
because it takes advantage of shared hidden process models while not making the restrictive as-

1374

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

Training No Sharing All Shared Hierarchical Cells
Trials (StHPM) (ShHPM) (HieHPM) (HieHPM)

6 -30497 -24020 -24020 1
8 -26631 -23983 -23983 1
10 -25548 -24018 -24018 1
12 -25085 -24079 -24084 1
14 -24817 -24172 -24081 21
16 -24658 -24287 -24048 36
18 -24554 -24329 -24061 37
20 -24474 -24359 -24073 37
22 -24393 -24365 -24062 38
24 -24326 -24351 -24047 40
26 -24268 -24337 -24032 44
28 -24212 -24307 -24012 50
30 -24164 -24274 -23984 60
32 -24121 -24246 -23958 58
34 -24097 -24237 -23952 61
36 -24063 -24207 -23931 59
38 -24035 -24188 -23921 59
40 -24024 -24182 -23918 59

Table 2: The effect of training set size on the average log score of the three models in the visual
cortex (CALC) region.

sumption of sharing across entire ROIs. The largest difference in performance betweenHieHPM
andStHPM is observed at 6 examples, in which caseStHPMbasically fails to learn a reasonable
model while the highest difference betweenHieHPM andShHPMoccurs at the maximum number
of examples, presumably when the bias ofShHPM is most harmful. As the number of training
examples increases, bothStHPMandHieHPM tend to perform better and better and one can see
that the marginal improvement in performance obtained by the addition of two new examples tends
to shrink as both models approach convergence. While with an infinite amountof data, one would
expectStHPMandHieHPM to converge to the true model, at 40 examples,HieHPM still outper-
forms the baseline modelStHPMby a difference of 106 in terms of average log score, which is an
improvement ofe106 in terms of data likelihood.

Probably the measure that shows best the improvement ofHieHPMover the baselineStHPMis
the number of examples needed byStHPMto achieve the same performance asHieHPM. It turns
out that on average,StHPMneeds roughly 2.9 times the number of examples needed byHieHPM
in order to achieve the same level of performance in the visual cortex (CALC).

The last column of Table 2 displays the number of clusters of voxels in whichHieHPM parti-
tioned CALC. As can be seen, at small sample sizeHieHPMdraws its performance from reductions
in variance by using only one cluster of voxels. However, as the number ofexamples increases,
HieHPM improves by finding more and more refined partitions. This number of sharedvoxel sets
tends to stabilize around 60 clusters once the number of examples reaches 30, which yields an av-

1375

NICULESCU, M ITCHELL AND RAO

erage of more than 5 voxels per cluster given that CALC is made of 318 voxels. For a training set
of 40 examples, the largest cluster has 41 voxels while many clusters consist of only one voxel.

ROI Voxels No Sharing All Shared Hierarchical Cells
(StHPM) (ShHPM) (HieHPM) Hierarchical

CALC 318 -24024 -24182 -23918 59
LDLPFC 440 -32918 -32876 -32694 11

LFEF 109 -8346 -8299 -8281 6
LIPL 134 -9889 -9820 -9820 1
LIPS 236 -17305 -17187 -17180 8
LIT 287 -21545 -21387 -21387 1

LOPER 169 -12959 -12909 -12909 1
LPPREC 153 -11246 -11145 -11145 1
LSGA 6 -441 -441 -441 1
LSPL 308 -22637 -22735 -22516 4

LT 305 -22365 -22547 -22408 18
LTRIA 113 -8436 -8385 -8385 1

RDLPFC 349 -26390 -26401 -26272 40
RFEF 68 -5258 -5223 -5223 1
RIPL 92 -7311 -7315 -7296 11
RIPS 166 -12559 -12543 -12522 20
RIT 278 -21707 -21720 -21619 42

ROPER 181 -13661 -13584 -13584 1
RPPREC 144 -10623 -10558 -10560 1
RSGA 34 -2658 -2654 -2654 1
RSPL 252 -18572 -18511 -18434 35

RT 284 -21322 -21349 -21226 24
RTRIA 57 -4230 -4208 -4208 1
SMA 215 -15830 -15788 -15757 10

All Brain 4698 -352234 -351770 -350441 299

Table 3: Per ROI performance (average log score) of the three models when learned using all 40
examples.

The second set of experiments (see Table 3) describes the performance of the three models
for each of the 24 individual ROIs of the brain, and trained over the entire brain. While we have
seen thatShHPMwas biased in CALC, we see here that there are several ROIs where it makes
sense to characterize all of its voxels by a single shared hidden processmodel. In fact, in most of
these regions,HieHPMfinds only one cluster of voxels. Actually,ShHPMoutperforms the baseline
modelStHPMin 18 out of 24 ROIs whileHieHPM outperformsStHPMin 23 ROIs. One may ask
how StHPMcan possibly outperformHieHPM on a ROI, sinceHieHPM may also represent the
case when there is no sharing. The explanation is that the hierarchical approach can get stuck in a
local maximum of the data log-likelihood over the search space if it cannot improve by splitting at

1376

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

Figure 3: Parameter sharing found using modelHieHPM. Slice five of the brain is showed here.
Shared neighboring voxels have the same color.

a specific step, since it is a greedy process that does not look beyond that split for a finer grained
partition. Fortunately, this problem appears to be rare in these experiments.

Over the whole brain,HieHPMoutperformsStHPMby a factor 1792 in terms of log likelihood
while ShHPMoutperformsStHPMonly by a factor of 464. The main drawback of theShHPMis
that it also makes a very restrictive sharing assumption and therefore we suggestHieHPM as the
recommended approach. Next we give the reader a feel of what the learnedHieHPM model looks
like.

As mentioned above,HieHPM automatically learns clusters of voxels that can be represented
using a shared hidden process model. Figure 3 shows the portions of these learned clusters in slice
five of the eight vertical slices that make up the 3D brain image captured by thefMRI scanner.
Neighboring voxels that were assigned byHieHPM to the same cluster are pictured with the same
color. Note that there are several very large clusters in this picture. Thismay be because of the
fact that it makes sense to represent an entire ROI using a single sharedhidden process model if
the cognitive process does not activate voxels in this ROI. However, large clusters are also found in
areas like CALC, which we know is directly involved in visual processing.

In Figure 4 we can see the learnedSentencehidden process for the voxels in the visual cor-
tex (CALC). Again, the graphs corresponding to voxels that belong to thesame cluster have been
painted in the same color, which is also the same as the color used in Figure 3. Tomake these
graphs readable, we only plotted the base process, disregarding the scaling (amplitude) constants
corresponding to each voxel within a given cluster (consult Section 4.2 for more details about shared

1377

NICULESCU, M ITCHELL AND RAO

hidden process models).

Figure 4: Per voxel baseSentenceprocesses in the visual cortex (CALC).

To summarize, this subsection presented experiments training different generative models for
the fMRI signal during a cognitive task, all based on hidden Process models. We demonstrated
experimentally that parameter sharing for hidden Process models (as defined in Section 4.2) can
greatly benefit learning, and that it is possible to automatically discover useful parameter sharing
constraints in this domain using our hierarchical partitioning algorithm.

6. Formal Guarantees

Taking advantage of parameter constraints can be beneficial to learning because, intuitively, it has
the effect of lowering the variance in parameter estimators by shrinking the degrees of freedom of
the model. In this section we provide a formal proof of this fact. In order for our proof to work,
we make the assumption that the true distribution factors according to the givenBayesian network
structure and that it obeys the parameter constraints provided by the expert. The second interesting
result presented in this section will give theoretical guarantees in the casewhen the constraints
provided by the expert are not entirely accurate. While we only investigatethis issue for one type
of constraint, parameter sharing within one distribution (introduced in subsection 4.1), we believe
similar formal guarantees describe all other types of parameter constraintspresented in this paper.

6.1 Variance Reduction by Using Parameter Constraints

Assume we want to learn a Bayesian network in the case when a domain expert provides parameter
constraints specifying that certain parameters appear multiple times (are shared) within a conditional
probability distribution. Each conditional probability distribution in the Bayesiannetwork can have
its own such constraints. Also, the case when all parameters are distinct within one such distribution
may be seen as a particular case of parameter sharing within one distribution,where each parameter
is shared exactly once.

1378

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

There are two ways to perform maximum likelihood parameter learning in the above Bayesian
network. First, one may choose to ignore the constraints given by the expert and compute standard
maximum likelihood estimators. A second option is to incorporate the constraints in the learning
method, in which case we can use the results described in subsection 4.1. One would intuitively
expect that taking advantage of the constraints provided by the expert would reduce the variance
in parameter estimates when compared to the first approach. In Niculescu (2005) we prove the
following result:

Theorem 2 Assuming a domain expert can specify parameter sharing assumptions that take place
inside the conditional probability distributions of a Bayesian network, the maximum likelihood es-
timators that use this domain knowledge as computed with Theorem 1 have lower variance than
standard maximum likelihood estimators computed ignoring the domain knowledge. More specif-
ically, for one parameterθi jk that is shared s≥ 1 times within P(Xi |PAi = paik), denote bŷθML

i jk

the maximum likelihood estimator that ignores domain knowledge and byθ̂PS
i jk the maximum likeli-

hood estimator that uses the parameter sharing assumptions specified bythe expert. We have the
following identity:

Var[θ̂ML
i jk]−Var[θ̂PS

i jk] = θi jk · (1−
1
s
) ·E[

1
Nik

|Nik 6= 0] ≥ 0

6.2 Performance with Potentially Inaccurate Constraints

Sometimes it may happen that the parameter constraints provided by an expertare not completely
accurate. In all our methods so far, we assumed that the parameter constraints are correct and
therefore errors in domain knowledge can prove detrimental to the performance of our learned
models. In this section we investigate the relationship between the true, underlying distribution of
the observed data and the distribution estimated using our methods based on parameter constraints.
In particular, we come up with an upper bound on how well our estimated modelcan perform given
a set of potentially incorrect parameter constraints.

Assume an expert provides a set of potentially incorrect parameter sharing assumptions as de-
scribed in subsection 4.1. In other words, for each conditional probability distribution c in the
Bayesian network, the expert is stating that parameterθic is shared inkic given positions. We denote
by Nic the cumulative observed count corresponding to the presumably sharedparameterθic and by
Nc the cumulative observed count corresponding to the conditional distribution c. Essentially, we
follow the notations in subsection 4.1, to which we add an additional index corresponding to the
conditional probability distribution that a parameter belongs to.

Let us introduce the notion oftrue probabilistic counts (TPC). SupposeP is the true distribution
from which data is sampled. If, for example, the expert states thatθic is the shared parameter that
describes the set{P(X = x1|PA(X) = pa), . . . ,P(X = xkic |PA(X) = pa)}, let TPCic = ∑kic

i=1P(X =
xi ,PA(X) = pa). Let P∗ be the distribution that factorizes according to the structure provided by the
expert and has parameters given by theorem 1 where the observed counts are replaced by thetrue
probabilistic counts.

Theorem 3 P∗ is the closest distribution to P (in terms of KL(P, ·)) that factorizes according to the
given structure and obeys the expert’s parameter sharing assumptions.

1379

NICULESCU, M ITCHELL AND RAO

Proof Let Q be such a distribution. MinimizingK(P,Q) is equivalent to maximizing∑d P(d) ·
logQ(d). Let θ be the set of parameters that describe this distributionQ. After breaking the log-
arithms into sums of logarithms based on the factorization given by the providedstructure, our
optimization problem reduces to the maximization of∑TPCic · logθic. This is exactly the objective
function used in theorem 1. This is equivalent to the fact thatP∗(see the definition above) minimizes
KL(P, ·) out of all the distributions that factorize according to the given structure and obey the ex-
pert’s sharing assumptions.

Theorem 4 With an infinite amount of data, the distribution̂P given by the maximum likelihood
estimators in Theorem 1 converges to P∗ with probability 1.

Proof Assume the number of data points in a data set sampled fromP is denoted byn. According
to the law of large numbers, we havelimn→∞

Nic
n = TPCic. This implies thatP̂ converges toP∗ with

probability 1.

Corollary 5 If the true distribution P factorizes according to the given structure and if the param-
eter sharing provided by the expert is completely accurate, then the distribution P̂ given by the
estimators computed in Theorem 1 converges to P with probability 1.

Again, we mention that we analyzed the formal guarantees presented in this section using only
one type of parameter constraints. We are confident that these results can be extended to all other
types of constraints for which we computed closed form solutions.

7. Conclusions and Future Work

Building accurate models from limited training data is possible only by using some form of prior
knowledge to augment the data. In this paper we have demonstrated both theoretically and experi-
mentally that the standard methods for parameter estimation in Bayesian networkscan be naturally
extended to accommodate parameter constraints capable of expressing a wide variety of prior do-
main knowledge.

We mentioned our previous work on methods for incorporating general parameter constraints
into estimators for the parameters of a Bayesian network, by framing this task as a constrained
optimization problem. In the general case, solving the resulting optimization problem may be very
difficult. Fortunately, in practice the optimization problem can often be decomposed into a set of
many smaller, independent, optimization subproblems. We have presented parameter estimators for
several types of constraints, including constraints that force various types of parameter sharing, and
constraints on sums and other relationships among groups of parameters. Subsection 4.3 provides a
comprehensive list of the parameter constraint types we have studied, along with brief examples of
each. We considered learning with both discrete and continuous variables, in the presence of both
equality and inequality constraints. While for most of these types of parameterconstraints we can
derive closed form maximum likelihood estimators, we developed a very efficient iterative algorithm
to perform the same task for shared hidden process models. In many of these cases, for discrete
variables, we are also able to compute closed form normalization constants for the corresponding

1380

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

constrained parameter priors, allowing one to perform closed form MAP and Bayesian estimation
when the data is complete.

The general parameter sharing domain knowledge type (Constraint Type6 defined in subsection
4.3) encompasses models including HMMs, dynamic Bayesian networks, module networks and
context specific independence as particular cases, but allows for muchfiner grained sharing, at the
parameter level, across different variables and across distributions ofdifferent lengths. It is also
important to note that one can combine different types of parameter constraints when learning the
parameters of a Bayesian network as long as the scopes of these constraints do not overlap.

Experimental results using an fMRI brain imaging application demonstrate that taking advan-
tage of parameter constraints can be very beneficial for learning in this high-dimensional, sparse-
data domain. In the context of this application we developed methods to automatically discover pa-
rameter sharing constraints. Using these methods our program discovered clusters of voxels whose
parameters can be shared. Our results showed that the impact of these learned parameter constraints
can be equivalent to almost tripling the size of the training set on this task. Experiments on synthetic
data demonstrated the same beneficial effect of incorporating parameter constraints.

A basic theoretical result is that the estimators taking advantage of a simple form of parameter
sharing achieve variance lower than that achieved by estimators that ignore such constraints. We
conjecture that similar results hold for other types of parameter constraints,but their proof is left as
future work. In addition, we proved that even when the asserted parameter constraints turn out to
be incorrect, given an infinite amount of training data our maximum likelihood estimators converge
to the best describable distribution; that is, the distribution closest in terms of KL distance from the
true distribution, among all distributions that obey the parameter constraints and factor according to
the given structure.

We see many useful directions for future work. In this paper we have considered only how to
take advantage of deterministic parameter constraints when the structure of the Bayesian network
is known in advance. It would be interesting to investigate methods to incorporate probabilistic
constraints in learning algorithms for Bayesian networks. A second direction to explore is to also
use parameter constraints to perform structure learning. This might be achieved by specifying an
initial set of parameter constraints, then at each step of the hill climbing duringstructure search
performing a change of variable to adapt the constraints to the new parameterization of the network.
Finally, we would like to extend our results to undirected graphical models, to theextent that it is
intuitive to acquire domain knowledge from an expert about the much harder to interpret parameters
of such models.

Acknowledgments

We would like to thank the following people for their useful comments and suggestions during the
development of this research: John Lafferty, Andrew Moore, Russ Greiner, Zoubin Ghahramani,
Sathyakama Sandilya and Balaji Krishnapuram. As a student at Carnegie Mellon University, Radu
Stefan Niculescu was sponsored the National Science Foundation undergrant nos. CCR-0085982
and CCR-0122581, by the Darpa PAL program under contract NBCD030010, and by a generous
gift from Siemens Medical Solutions.

1381

NICULESCU, M ITCHELL AND RAO

References

J. Bilmes. Dynamic bayesian multinets. InProceedings of UAI, pages 38–45, 2000.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in bayesian
networks. InProceedings of 12th UAI, pages 115–123, 1996.

P. A. Carpenter, M. A. Just, T. A. Keller, W. F. Eddy, and K. R. Thulborn. Time course of fMRI-
activation in language and spatial networks during sentence comprehension. NeuroImage, 10:
216–224, 1999.

A. M. Dale. Optimal experimental design for event-related fMRI.Human Brain Mapping, 8:109–
114, 1999.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Proceedings of 16th IJCAI, pages 1300–1307, 1999.

D. Geiger and D. Heckerman. Knowledge representation and inferencein similarity networks and
bayesian multinets.Artificial Intelligence, 82:45–74, 1996.

D. Geiger and D. Heckerman. A characterization of the dirichlet distributionthrough global and
local parameter independence.The Annals of Statistics, 25:1344–1369, 1997.

D. Heckerman. A tutorial on learning with bayesian networks. In M. Jordan, editor,Learning in
Graphical Models. MIT Press, Cambridge, MA, 1999.

P. Hooper. Dependent dirichlet priors and optimal linear estimators for belief net parameters. In
AUAI Press, editor,Proceedings of the 20th Annual Conference on Uncertainty in Artificial In-
telligence (UAI-04), pages 251–259, 2004.

R. Hutchinson, T.M. Mitchell, and I. Rustandi. Learning to identify overlapping and hidden cogni-
tive processes from fMRI data. In11th Conference on Human Brain Mapping, June 2005.

R. Hutchinson, T.M. Mitchell, and I. Rustandi. Hidden process models. Technical Report CS-
CALD-05-116, Carnegie Mellon University, February 2006.

D. Koller and A. Pfeffer. Object oriented bayesian networks. InProceedings of 13th UAI, pages
302–313, 1997.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. InProceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, pages 481–492. University of California
Press, 1951.

T. Minka. The dirichlet-tree distribution. This unpublished paper is availableonline at
http://research.microsoft.com/∼minka/papers/dirichlet/minka-dirtree.pdf, 1999.

T. Mitchell, R. Hutchinson, M. Just, S. Newman, R. S. Niculescu, F. Pereira, and X. Wang. Learning
to decode cognitive states from brain images.Machine Learning, 57(1-2):145–175, 2004.

K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis,
UC Berkeley, 2002.

1382

BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

R. S. Niculescu. Exploiting parameter domain knowledge for learning in bayesian networks. Tech-
nical Report CMU-TR-05-147, Carnegie Mellon University, 2005.

R. S. Niculescu, T. Mitchell, and R. B. Rao. Parameter related domain knowledge for learning in
graphical models. InProceedings of SIAM Data Mining conference, 2005.

J. M. Pena, J. A. Lozano, and P. Larranaga. Learning recursivebayesian multinets for data clustering
by means of constructive induction.Machine Learning, 47(1):63–89, 2002.

W. H. Press, S. A. Teukolsky, and W. T. Vetterling.Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, 1993.

R. L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

R. B. Rao, S. Sandilya, R. S. Niculescu, C. Germond, and H. Rao. Clinical and financial out-
comes analysis with existing hospital patient records. InProceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 416–425, 2003.

E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Friedman. Learning module networks. InProceed-
ings of 19th UAI, pages 525–534, 2003.

J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models.Neural
Computation, 12(6):1247–1283, 2000.

G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report TR 95-041, Uni-
versity of North Carolina, 1995.

C. Zhai and J. Lafferty. A study of smoothing methods for language modelsapplied to ad hoc
information retrieval. InProceedings of SIGIR, pages 334–342, 2001.

1383

