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Abstract
We study the problem of finding an optimal kernel from a prescribed convex set of kernelsK for
learning a real-valued function by regularization. We establish for a wide variety of regularization
functionals that this leads to a convex optimization problem and, for square loss regularization, we
characterize the solution of this problem. We show that, althoughK may be an uncountable set, the
optimal kernel is always obtained as a convex combination ofat mostm+2 basic kernels, wherem
is the number of data examples. In particular, our results apply to learning the optimal radial kernel
or the optimal dot product kernel.

1. Introduction

A widely used approach to estimate a function from empirical data consists in minimizing a regu-
larization functional in a Hilbert spaceH of real–valued functionsf : X → IR, whereX is a set.
Specifically, regularization estimatesf as aminimizerof the functional

Q(Ix( f ))+µΩ( f )

whereµ is a positive parameter,Ix( f ) = ( f (x j) : j ∈ INm) is thevectorof values of f on theset
x = {x j : j ∈ INm} and INm = {1, . . . ,m}. This functional trades offempirical error, measured by the
functionQ : IRm → IR+, with smoothnessof the solution, measured by the functionalΩ : H → IR+.
The empirical error depends upon a finite set{(x j ,y j) : j ∈ INm} ⊂ X × IR of input-output examples
and the functionQ depends ony but we suppress it in our notation since it is fixed throughout our
discussion. In particular, one often considers the case thatQ is defined, forv = (v j : j ∈ INm) ∈ IRm,
asQ(v) = ∑ j∈INm

V(v j ,y j) whereV : IR× IR → IR+ is a prescribedloss function.
In this paper we assume thatH is a reproducing kernel Hilbert space(RKHS) HK with kernel

K and chooseΩ( f ) = 〈 f , f 〉, where〈·, ·〉 is the inner product inHK , although some of the ideas we
develop may be relevant in other circumstances. This leads us to study the variational problem

Qµ(K) := inf
{

Q(Ix( f ))+µ〈 f , f 〉 : f ∈ HK
}

. (1)

c©2005 Charles Micchelli and Massimiliano Pontil.
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We recall that an RKHS is a Hilbert space of real-valued functions everywhere defined onX such
that, for everyx∈ X , the point evaluation functional defined, forf ∈ H , by Lx( f ) := f (x) is con-
tinuous onH (Aronszajn, 1950). This implies thatH admits a reproducing kernelK : X ×X → IR
such that, for everyx∈ X , K(x, ·) ∈ H and f (x) = 〈 f ,K(x, ·)〉. In particular, forx, t ∈ X , K(x, t) =
〈K(x, ·),K(t, ·)〉 implying that them×mmatrixKx := (K(xi ,x j) : i, j ∈ INm) is symmetric and posi-
tive semi-definite foranyset of inputsx ⊆ X .

Often RKHS’s are introduced through the notion offeature mapΦ : X → W , whereW is a
Hilbert space with inner product denoted by(·, ·). A feature map gives rise to the linear space of all
functions f : X → IR which are a linear combination of features whose norm is taken to be the norm
of its coefficients. That is, forw∈ W , f = (w,Φ) and〈 f , f 〉 = (w,w). This space is an RKHS with
kernelK defined, forx, t ∈ X , asK(x, t) = (Φ(x),Φ(t)). Using these equations, the regularization
functional in (1) can be rewritten as a functional ofw.

Regularization in an RKHS has a number of attractive features, including theavailability of
effective error bounds and stability analysis relative to perturbations ofthe data (see, for example,
Bousquet and Elisseeff, 2002; Cucker and Smale, 2002; Mukherjee et al., in press; Scovel and
Steinwart, 2004; Smale and Zhou, 2003; Vapnik, 1998; Ying and Zhou, 2004; Zhang, 2004; Zhou,
2002). Moreover, one can show that iff is a minimizer of the above functional it has the form

f (x) = ∑
j∈INm

c jK(x j ,x), x∈ X (2)

for some real vectorc= (c j : j ∈ INm) of coefficients (see, for example, De Vito et al., 2005; Girosi,
1998; Kimeldorf and Wahba, 1971; Micchelli and Pontil, 2005; Schölkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004). This result is known in Machine Learning astherepresenter theorem.
Although it is simple to prove, this result is remarkable as it makes the variationalproblem (1)
amenable for computations.

If Q is convex, the unique minimizer of problem (1) can be found by replacingf by the right
hand side of equation (2) in equation (1) and then optimizing with respect to thevector c. For
example, whenQ is the square error defined forv = (v j : j ∈ INm) ∈ IRm asQ(v) = ∑ j∈INm

(v j −y j)
2

the functional in the right hand side of (1) is a quadratic in the vectorc and its minimizer is obtained
by solving a linear system of equations.

Because of their simplicity and generality, kernels and associated RKHS’s play an increasingly
important role in Machine Learning, Pattern Recognition and their applications. This was initiated
with the introduction of support vector machines (see, for example, Vapnik, 1998), and continued
with the development of many other kernel-based learning algorithms (see, for example, Scḧolkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004, and referencestherein). As kernels can
be defined on any input space, kernel-based methods have been successfully applied to learning
functions defined on complex data structures, ranging from images, text data, speech data, biological
data, among others.

Despite this great success, there still remain important problems to be addressed concerning
kernel methods in Machine Learning. When the kernel is fixed, an immediate concern with problem
(1) is thechoice of the regularization parameter µ. This is typically solved by means of cross
validation or generalized cross validation (see, for example, Hastie, Tibshirani and Friedman, 2002;
Wahba, 1990) or by means of regularization path methods (see, for example, Bach, Thibaux and
Jordan, 2004; Hastie et al., 2004; Pontil and Verri, 1998). But, how is the kernel chosen? Indeed,
a challenging and central problem is thechoice of the kernelitself. As we said before, whenH
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is constructed as linear combinations of features associated to the kernelK, they can provide some
guideline for the choice of the kernel. Thus, the choice of the kernel is tiedto the problem of
choosing a representation of the input. This choice can make a significant difference in practice. For
example, techniques such as radial basis functions can perform poorlyif the parameter of the radial
kernel is not tuned to the given data. A similar circumstance occurs for translation invariant kernels
modeled by Gaussian mixtures. When the number of parameters is large crossvalidation encounters
severe computational limitations. To overcome this problem, easily computable approximations to
the leave-one-out error have been derived (Chapelle et al., 2002; Wahba, 1990). Nonetheless, these
methods are usually non-convex and may lead to undesirable local minima.

In this paper, we propose a method for finding a kernel function which belongs to acompact
andconvexsetK . Our method is based on the minimization of the functional in equation (1), that
is, we consider the variational problem

inf{Qµ(K) : K ∈ K }. (3)

This problem shares some similarities with recent progress in the context of kernel–based methods
(Bach, Lanckriet and Jordan, 2004; Bousquet and Herrmann, 2003; Cristianini et al., 2002; Grae-
pel, 2002; Lanckriet et al., 2002, 2004; Lee et al., 2004; Lin and Zhang, 2003; Herbster, 2001;
Ong, Smola and Williamson, 2003; Wu, Ying and Zhou, 2004; Zhang, Yeungand Kwok, 2004). In
particular, the third and fifth papers motivated our work. In contrast to thepoint of view of these
papers, our setting applies to convex combinations of kernels parameterized by a compact set, a cir-
cumstance which is relevant for applications. We also wish to emphasize that although we focus on
learning methods based on the minimization of the functional (1), the ideas whichwe present here
may prove useful for learning kernels or feature representations using different forms of regulariza-
tion such as entropy regularization (Jaakkola, Meila and Jebara, 1999), kernel density estimation
(see, for example, Vapnik, 1998), or one-class SVM (Tax and Duin, 1999) as well as in other Ma-
chine Learning frameworks such as those arising in Bayesian learning where a kernel is seen as the
covariance of a Gaussian process, (see, for example, Wahba, 1990; Williams and Rasmussen, 1996)
or in online learning, (see, for example, Herbster, 2001).

In Section 2 we establish the existence of a solution to problem (3), show thatthe functionalQµ

is convexin K, and observe that, althoughK may be an uncountable set, the optimal kernel is always
obtained as a convex combination of at mostm+2 basic kernels (see below), wherem is the number
of training data. The simplest case of our setup is a set of convex combinations of finitely many
kernels{K j : j ∈ INn}. For example eachK j could be a Gaussian, a polynomial kernel, or simply
a kernel consisting of only one feature. In all of these cases our method will seek the optimal
convex combination of these kernels. Another example included in our framework is learning the
optimal radial kernel or the optimal polynomial kernel in which case the space K is the convex
hull of a prescribed set of kernels parameterized by alocally compactset. In Section 3 we study
square loss regularization and provide improvements and simplifications of theresults in Section
2. In particular, we discuss the connection to minimal norm interpolation and establish necessary
and sufficient conditions for a kernel to be optimal. Finally, in Section 4 we comment on previous
work, present some numerical simulations based on our analysis and discuss some extensions of our
framework.
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2. Optimal Convex Combination of Kernels

Let X be a set. By akernelwe mean a symmetric functionK : X ×X → IR such that for every finite
set of inputsx = {x j : j ∈ INm} ⊆ X and everym∈ IN, them×mmatrixKx := (K(xi ,x j) : i, j ∈ INm)
is positive semi-definite. We letL(IRm) be the set ofm×m positive semi-definite matrices and
L+(IRm) the subset of positive definite ones. Also, we useA(X ) for the set of all kernels on the
setX andA+(X ) for the subset of kernelsK such that, for each inputx, Kx ∈ L+(IRm). We also
occasionally refer to the set ofall symmetricm×mmatrices and useS(IRm) to denote them.

According to Aronszajn and Moore (see Aronszajn, 1950), every kernel has associated to it an
(essentially)uniqueHilbert spaceHK with inner product〈·, ·〉 such thatK is its reproducing kernel.
This means that for everyf ∈ HK andx∈ X , 〈 f ,Kx〉 = f (x), whereKx is the functionK(x, ·).

Let D := {(x j ,y j) : j ∈ INm} ⊂ X × IR be prescribed data andy the vector(y j : j ∈ INm). For
each f ∈ HK , we introduce theinformation operator Ix( f ) := ( f (x j) : j ∈ INm) of values of f on
the setx := {x j : j ∈ INm}. We prescribe a nonnegative functionQ : IRm → IR+ and introduce the
regularization functional

Qµ( f ,K) := Q(Ix( f ))+µ‖ f‖2
K (4)

where‖ f‖2
K := 〈 f , f 〉, µ is a positive constant andQ depends ony but we suppress it in our no-

tation as it is fixed throughout our discussion. A noteworthy special caseof Qµ is thesquare loss
regularizationfunctional given by

Sµ( f ,K) := ‖y− Ix( f )‖2 +µ‖ f‖2
K (5)

where‖ · ‖ is the standard Euclidean norm on IRm. There are many other choices of the functional
Qµ which are important for applications, see the work of Vapnik (1998) for adiscussion.

Associated with the functionalQµ and the kernelK is the variational problem

Qµ(K) := inf{Qµ( f ,K) : f ∈ HK} (6)

which defines a functionQµ : A(X ) → IR+. We remark, in passing, that all of what we say about
problem (6) applies to functionsQ which are bounded from below on IRm as we can merely adjust
the expression (4) by a constant independent off andK. Let us first point out that the infimum in
(6) is achieved, at least whenQ is continuous.

Lemma 1 If Q : IRm → IR+ is continuous and µ is a positive number then the infimum in (6) is
achieved for a function inHK . Moreover, when Q is convex this function is unique.

PROOF. The proof of this fact is straightforward and usesweak compactnessof the unit ball in
HK . The uniqueness of the solution relies on the fact that whenQ is convexQµ is strictly convex
becauseµ is positive. �

The point of view of this paper is that the functional (6) can be used as adesign criterion to
select the kernel K. To this end, we specify an arbitrary convex subsetK of A(X ) and focus on the
problem

Qµ(K ) = inf{Qµ(K) : K ∈ K }. (7)

Recall that the solution of (6) is given in the formf = ∑ j∈INm
c jKx j for some vectorc := (c j : j ∈

INm), (see, for example, De Vito et al., 2005; Girosi, 1998; Kimeldorf and Wahba, 1971; Micchelli
and Pontil, 2005; Scḧolkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). Such a function
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representation for learning the functionf is central for many diverse applications of kernel-based
algorithms in Machine Learning. Moreover, the coefficient vectorc is found as the solution of the
finite dimensionalvariational problem

Qµ(K) := min{Q(Kxc)+µ(c,Kxc) : c∈ IRm}

where(·, ·) is the standard inner product on IRm.
Before we address basic questions concerning the variational problem(7) we describe some

terminology that allows for a precise description of our observations. Every input setx and set of
basic kernelsG on X ×X determines a set ofmatricesin L(IRm), namely

G(x) := {Gx : G∈ G}.

Obviously, it is the set of matricesK (x) that affects the variational problem (7). Note thatG(x)

being a subset ofS(IRm) is identifiable as a set of vectors in IRN, whereN := m(m+1)
2 . As suchG(x)

inherits the standard topology from IRN. That is, convergence of a sequence of matrices inG(x)
means that the respective elements of the matrices converge. For this reason, we useG (the closure
of G ) to mean the set of all kernelsK on X ×X with the property that for eachx ⊆ X , the matrix
Kx ∈ G(x), the closure ofG(x) relative to IRN. We say a set of kernelsG is closed provided that
G = G . Also, we sayG is a compact convex set of kernels whenever for eachx ⊆ X , G(x) is a
compact convex set of matrices inS(IRm). Our next result establishes the existence of the solution
to problem (7).

Lemma 2 If K is a compact and convex subset ofA+(X ) and Q: IRm → IR is continuous then the
minimum of (7) exists.

PROOF. Fix x⊆X , choose a minimizing sequence of kernels{Kn : n∈ IN}, that is, limn→∞ Qµ(Kn)=
Qµ(K ) and a sequence of vectors{cn : n∈ IN} such that

Qµ(K
n) = Q(Kn

x cn)+µ(cn,Kn
x cn).

SinceK is compact there is a subsequence{Kn(`) : ` ∈ IN} such that lim̀→∞ Kn(`)
x = K̃x, for some

kernelK̃ ∈ K . We claim that{cn : n∈ IN} is bounded. Indeed, there is a positive constantρ such
that(cn,Kn

x cn) ≤ ρ. Setan = cn

‖cn‖ so that(an,Kn
x an) ≤ ρ

‖cn‖2 and choose a convergent subsequence

{an(`(q)) : q∈ IN} such that limq→∞ an(`(q)) = a and‖a‖ = 1 for some vectora∈ IRm. If the sequence
{cn : n ∈ IN} is not bounded we conclude that(a, K̃xa) = 0 contradicting our hypothesis thatK̃ ∈
A+(X ). Hence there is a subsequence{cn(`(q)) : q∈ IN} such that limq→∞ cn(`(q)) = c, for somec∈ IRm.
Therefore, we conclude that

Qµ(K ) = Q(K̃xc)+µ(c, K̃xc) ≥ Qµ(K̃)

from which it follows thatQµ(K ) = Qµ(K̃). �

The proof of this lemma requires that all kernels inK are inA+(X ). If we wish to use kernelsK
only in A(X ) we may always modify them by addingany positive multiple of thedelta function
kernel∆ defined, forx, t ∈ X , as

∆(x, t) =

{

1, x = t
0, x 6= t

(8)
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that is, replaceK by K +a∆ wherea is a positive constant.
There are two useful cases of a setK of kernels which are compact and convex. The first is

formed by the convex hull of afinitenumber of kernels inA+(X ). The second example extends this
to a compact Hausdorff spaceΩ, (see, for example, Royden, 1988), and a mappingG : Ω → A+(X ).
For eachω ∈ Ω, the value of the kernelG(ω) at x, t ∈ X is denoted byG(ω)(x, t) and we assume
that the function ofω 7→ G(ω)(x, t) is continuous onΩ for eachx, t ∈ X . When this is the case we
sayG is continuous. We letM (Ω) be the set of allprobability measureson Ω and observe that

K (G) :=

{

Z

Ω
G(ω)dp(ω) : p∈ M (Ω)

}

(9)

is a compact and convex set of kernels inA+(X ). The compactness of the setK (G) is a consequence
of weak∗-compactness of the unit ball of the dual space ofC(Ω), the set of all continuous real-
valued functionsg on Ω with norm‖g‖Ω := max{|g(ω)| : ω ∈ Ω} (Royden, 1988). For example,
we chooseΩ = [a,b], wherea > 0 andG(ω)(x, t) = e−ω‖x−t‖2

, x, t ∈ IRd, ω ∈ Ω, to obtainradial
kernels, or G(ω)(x, t) = eω(x,t), x, t ∈ IRd to obtaindot product kernels. Note that the choiceΩ = INn

corresponds to our first example.
In preparation for the next theorem we need to express the setK (G) in an alternate form. We

have in mind the following basic fact.

Lemma 3 If Ω is a compact Hausdorff space, G: Ω → A+(X ) a continuous map as defined above
andG := {G(ω) : ω ∈ Ω} thenK (G) = coG .

PROOF. First, we shall show thatcoG ⊆ K (G). To this end, we letK ∈ coG andx ⊆ X . By
the definition of convex hull, we obtain, for some sequence of probability measures{p` : ` ∈ IN},
thatKx = lim`→∞

R

Ω Gx(ω)d p̀ (ω) where eachp` is afinite sum of point measures. Since for each
` ∈ IN,

R

Ω Gx(ω)d p̀ (ω) ∈ K (G) andK (G) is closed it follows thatKx ⊆ K (G), that is, we have
established thatcoG ⊆ K (G).

On the other hand, if there is a kernelK ∈ K (G) which does not belong tocoG then there is
an input setx such thatKx /∈ coG(x) while Kx =

R

Ω Gx(ω)dp(ω) for somep ∈ M (Ω). Hence,
there exists a hyperplane which separates the matrixKx from the set of matricescoG(x) (Royden,
1988). This means that there is a linear functionalL on S(IRm) andc∈ IR such thatL(Kx) > c but
L(Gx(ω)) < c for all ω ∈ Ω. We integrate the last inequality overω ∈ Ω relative to the measuredp
and conclude by the linearity ofL thatL(Kx) < c, a contradiction. This concludes the proof. �

Observe that the setG = {G(ω) : ω ∈ Ω} in the above lemma is compact sinceG is continuous
andΩ compact. In general, we wish to point out a useful fact about the kernels in coG whenever
G is acompactset of kernels. To this end, we recall a theorem of Caratheodory (see, for example,
Rockafellar, 1970, Ch. 17).

Theorem 4 If A is a subset ofIRn then every a∈ coA is a convex combination of at most n+ 1
elements of A.

An immediate consequence of the above theorem is the following fact which weshall use later.

Lemma 5 If A is a compact subset ofIRn thencoA is compact and every element in it is a convex
combination of at most n+1 elements of A.
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In particular, we have the following corollary.

Corollary 6 If G is a compact set of kernels onX × X then coG is a compact set of kernels.
Moreover, for each input setx a matrix C∈ coG(x) if and only if there exists a kernel T which is a

convex combination ofat mostm(m+1)
2 +1 kernels inG and Tx = C.

Our next result shows wheneverK is the closed convex hull of a compact set of kernelsG that
the optimal kernel lies in a the convex hull of somefinitesubset ofG .

Theorem 7 If G ⊆ A+(X ) is a compact set of basic kernels,K = coG , Q : IRm→ IR+ is continuous
and µ is a positive number then there existsT ⊆ G containing at most m+2 basic kernels such that
Qµ admit a minimizerK̃ ∈ coT and Qµ(T ) = Qµ(K ).

PROOF. Let (ĉ, K̂) ∈ IRm×K be a minimizer ofQµ, that is, we have that

Qµ(K ) = min{Q(K̂xc)+µ(c, K̂xc) : c∈ IRm} = Q(K̂xĉ)+µ(ĉ, K̂xĉ).

We define the set of vectorsU := {(Kxĉ,(ĉ,Kxĉ)) : K ∈ K } ⊂ IRm+1. Note thatU = coV where
V = {(Gxĉ,(ĉ,Gxĉ)) : G ∈ G} andV is compact sinceG is compact. By Lemma 5 the vector
(K̂xĉ,(ĉ,Kxĉ)) can be written as a convex combination of at mostm+2 vectors inV , that is

(K̂xĉ,(ĉ, K̂xĉ)) = (K̃xĉ,(ĉ, K̃xĉ))

whereK̃ is the convex combination of at mostm+2 kernels inG . Consequently, we have that

Qµ(K ) = Q(K̃xĉ)+µ(ĉ, K̃x, ĉ)

≥ min{Q(K̃xc)+µ(c, K̃xc) : c∈ IRm}

= Qµ(K̃) ≥ Qµ(K )

implying thatQµ(K̂) = Qµ(K̃). �

Note that Theorem 7 asserts theexistenceof aq which isat most m+2, that is, an optimal kernel
is expressed by a convex combination of at mostm+2 kernels.

Note that in the definition ofQµ(K ) we minimize first overf ∈ HK and then overK ∈ K . There
arises the question of what would happen if we interchange these minima. We address this issue
in the case thatK is the convex hull of a finite set of kernels. To this end, we use the notation
L

j∈INn
HK j for the direct sum of the Hilbert spaces{HK j : j ∈ INn}.

Lemma 8 If Kn = {K j : j ∈ INn} is a family of kernels onX ×X and f ∈ L

j∈INn
HK j then

inf{‖ f‖K : K ∈ coKn} = min

{

∑
j∈INn

‖ f j‖K j : f = ∑
j∈INn

f j , f` ∈ HK` , ` ∈ INn

}

. (10)
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As the result is not needed in our subsequent analysis we postpone its proof to the appendix (for
related results, see also, Herbster, 2004; Lin and Zhang, 2003). We note that the expression on the
right hand side of equation (10) is anintermediatenorm for

L

j∈INn
HK j (see Bennett and Sharpley,

1988, p. 97) for a discussion. This lemma suggests a reformulation of our extremal problem (7)
for kernels of the form (9) whereG is expressed in terms of a feature map. Although this fact is
interesting, it is not central to our point of view in this paper and, so, we describe it in the appendix.

Next, we establish that the variational problem (7) is aconvex optimization problem. Specif-
ically, we shall show that if the function mappingQ : IRm → IR is convex then the functional
Qµ : A+(K ) → IR+ is a convex as well. It is curious that this does not seem to follow directly
from thedefinitionof Qµ. We take a sojourn through the notion ofconjugate function. Recall that
the conjugate function ofQ denoted byQ∗ : IRm → IR is defined, for everyv∈ IRm, as

Q∗(v) = sup{(c,v)−Q(c) : c∈ IRm}

and it follows, for everyc∈ IRm, that

Q(c) = sup{(c,v)−Q∗(v) : v∈ IRm}

(see, for example, Rockafellar, 1970; Borwein and Lewis, 2000). A nice recent application of the
conjugate function to linear statistical models appears in (Zhang, 2002).

The proof we present below for the convexity ofQµ : A+(X ) → IR+ is based upon the von
Neumann minimax theorem which we record in the appendix. We begin by introducing for each
r > 0 a functionφr : IR+ → IR+ defined, fort ∈ IR+, as

φr(t) := µ(
1
2µ

√
t − r)2

+− 1
4µ

t

where(z)+ := max(0,z). Note that

lim
r→∞

φr(t) = − 1
4µ

t

pointwise fort > 0. Also, for each fixedt > 0, φr(t) is a non-increasing function ofr and, for each
r > 0, φr is continuously differentiable, decreasing and convex on IR+.

Lemma 9 If K ∈ A(X ), x a set of m distinct points ofX such that Kx ∈ L+(IRm) and Q: IRm → IR
a convex function, then there exists r0 > 0 such that for all r> r0 there holds the formula

Qµ(K) = sup{φr((v,Kxv))−Q∗(v) : v∈ IRm} . (11)

PROOF. By the definition ofQµ we have that

Qµ(K) = min{sup{(Kxc,v)−Q∗(v)+µ(c,Kxc) : v∈ IRm} : c∈ IRm}.

According to Lemma 2 the minimum above exists. Therefore, there is ar0 > 0 such that for all
r > r0 we have that

Qµ(K) = min{sup{(Kxc,v)−Q∗(v)+µ(c,Kxc) : v∈ IRm} : c∈ IRm,(c,Kxc) ≤ r2}.
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By the minimax theorem, see Theorem 22 in the appendix, we conclude that

Qµ(K) = sup{min{(Kxc,v)−Q∗(v)+µ(c,Kxc) : c∈ IRm,(c,Kxc) ≤ r2} : v∈ IRm}.

For eachv∈ IRm, we shall now explicitly compute the minimum of the above expression. To this
end, we letKx := B2 whereB is am×m positive definite matrix, that is,B is the square root ofKx,
and observe that

min{(c,Kxv)+µ(c,Kxc) : (c,Kxc) ≤ r2} = min{µ‖Bc+
1
2µ

Bv‖2− 1
4µ

‖Bv‖2 : ‖Bc‖ ≤ r}.

If the vectorc0 := − 1
2µv has the property that‖Bc0‖ ≤ r, that is,‖Bv‖ ≤ 2µr then the minimum

above is− 1
4µ‖Bv‖2, otherwise‖Bv‖ > 2µr and the triangle inequality says that

‖Bc+
1
2µ

Bv‖ ≥ 1
2µ

‖Bv‖−‖Bc‖ ≥ 1
2µ

‖Bv‖− r.

Since, for the vector ˆc := − vr
‖Bv‖ , we have that

‖Bĉ+
1
2µ

Bv‖ =
1
2µ

‖Bv‖− r

this inequality is sharp. Therefore, we get that

Qµ(K) = sup

{

µ(
1
2µ

‖Bv‖− r)2
+− 1

4µ
‖Bv‖2−Q∗(v) : v∈ IRm

}

and the result follows by the definition ofφr . �

Let us specialize this lemma to the example of the square lossSdefined, forw∈ IRm, asS(w) =
‖y−w‖2. In this case, the conjugate function is given explicitly forv∈ IRm as

S∗(v) = max{(w,v)−‖w−y‖2 : w∈ IRm} =
1
4
‖v‖2 +(y,v).

We shall show later in Lemma 14 by adirectcomputationwithoutthe use of the conjugate function
thatSµ = µ(y,(Kx +µI)−1y). Alternatively, if we formally letr = ∞ in the right hand side of equation
(11) we get

sup

{

− 1
4µ

(v,(Kx +µI)v)− (y,v) : v∈ IRm
}

which by a direct computation equalsµ(y,(Kx + µI)−1y). This suggests that Lemma 9 may even
hold whenr = ∞ and without the hypothesis thatKx ∈ L+(IRm). We shall confirm this with another
version of the von Neumann minimax theorem.

Lemma 10 If K ∈ A(X ), x a set of m distinct points ofX such that Kx ∈ L+(IRm) and Q: IRm→ IR
a convex function, then there holds the formula

Qµ(K) = sup

{

− 1
4µ

(v,Kxv)−Q∗(v) : v∈ IRm
}

.
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PROOF. Theorem 23 applies sinceKx ∈ L+(IRm). Indeed, we letf (c,v) = (Kxc,v)−Q∗(v) +
µ(c,Kxc), A = B = IRm andv0 = 0 then the set{c : c ∈ IRm, f (c,v0) ≤ λ} is compact and all the
hypotheses of Theorem 23 hold. Hence, we may proceed as in the proofof Lemma 9 withr = ∞.

�

To interpret Lemma 9, we say thatA � B wheneverA,B ∈ L(IRm), if B−A is positive semi-
definite. We also say, forK,J ∈ A(X ), thatK � J if Kx � Jx for everyx ⊆ X .

Definition 11 A functionφ : B → IR is said non–decreasing onB ⊆ A(X ) if, for every A,B ∈ B
with A� B it follows thatφ(A) ≤ φ(B). If the reverse inequality holds we sayφ is non–increasing.

Definition 12 A functionφ : B → IR is said convex onB ⊆A(X ) if, for every A,B∈B andλ∈ [0,1]
there holds the inequality

φ(λA+(1−λ)B) ≤ λφ(A)+(1−λ)φ(B). (12)

If the reverse of inequality (12) holds we say that theφ is concave.

Proposition 13 If Q : IRm → IR+ is convex then for every µ> 0 the function Qµ : A+(X ) → IR+ is
convex and non-increasing.

PROOF. The proof of the proposition follows from Lemma 9. Specifically, equation (11) expresses
Qµ as the supremum of a family of functions which are convex and non-increasing onA(X ).

�

We note that the convexity of the functionQµ was already proven by Lanckriet et al. (2004)
for the hinge loss and stated in (Ong, Smola and Williamson, 2003) for differentiable convex loss
functions.

3. Square Regularization

In this section we exclusively study the case of the square loss regularization functionalSµ in equa-
tion (5) and provide improvements and simplifications of our previous results.We begin by deter-
mining theexplicitexpression for this functional which we briefly mentioned earlier after the proof
of Lemma 9.

Lemma 14 For any kernel K, inputsx := {x j : j ∈ INm}, samples y= (y j : j ∈ INm) and positive
constant µ we have that

Sµ(K) = µ(y,(µI +Kx)
−1y) (13)

where I is the m×m identity matrix.

PROOF. We have thatSµ(K) = min{R(c) : c∈ IRm} where for eachc∈ IRm we setR(c) := ‖y−
Kxc‖2 +µ(c,Kxc). We define the vectorw := (µI +Kx)

−1y, observe thatR(w) = (y,µ(µI +Kx)
−1y)

and for every vectorc∈ IRm we have that

R(c) = R(w)+‖Kx(w−c)‖2 +µ(c−w,Kx(c−w)).

With this formula the result follows. �
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From this lemma we conclude, when the matrixKx is in L+(IRm) then limµ→0µ−1Sµ(K) = γ(Kx),
where for everyA ∈ L+(IRm) we setγ(A) := (y,A−1y). The functionγ : L+(IRm) → IR+ has the
alternate form

1
γ(A)

:= min{(c,Ac) : c∈ IRm,(c,y) = 1}, A∈ L+(IRm) (14)

and the unique vector which achieves this minimum is given by

c(A) :=
A−1y

(y,A−1y)
. (15)

A proof of these facts follow directly from the Cauchy-Schwarz inequalityfor the inner product
(u,Av), u,v ∈ IRm. Moreover, this alternate form forγ(A) connects the functionγ to theminimal
norm interpolantin HK to the dataD. Let us explain this connection next.

Recall, for every kernelK on X ×X , that the minimal norm interpolation to the dataD is the
solution to the variational problem

ρ(K) := min{‖ f‖2
K : f ∈ HK , f (x j) = y j , j ∈ INm}. (16)

The following result is well-known (for a proof see, for example, Micchelli and Pontil, 2005).

Proposition 15 If K ∈ A(X ) andx is an input set inX such that the matrix Kx is in L+(IRm) then
the solution of the minimal norm interpolation problem (16) is unique and is given by

f = ∑
j∈INm

c jK(x j , ·)

where the coefficient vector c= (c j : j ∈ INm) solves the linear system of equations Kxc = y and we
have that

ρ(K) = γ(Kx) = (y,K−1
x y). (17)

The functionγ : L+(IRm) → IR+ is continuous. We record additional facts about this function in
the next two lemmas.

Lemma 16 The functionγ is non–increasing and whenever A,B∈ L+(IRm), γ(A) = γ(B) if and only
if A−1y = B−1y.

PROOF. If A� B then for everyc∈ IRm, (c,Ac) ≤ (c,Bc) and it follows that 1
γ(A) ≤

1
γ(B) . Clearly

A−1y = B−1y implies thatγ(A) = γ(B). On the other hand ifγ(A) = γ(B), the inequalities 1
γ(A) ≤

(c(B),Ac(B)) ≤ (c(B),Bc(B)) = 1
γ(B) imply thatc(A) = c(B) and the result follows. �

Lemma 17 The functionγ is convex and the functionγ−1 concave. Moreover, for every A,B ∈
L+(IRm), λ ∈ [0,1], we have that

1
γ(λA+(1−λ)B)

= λ
1

γ(A)
+(1−λ)

1
γ(B)

(18)

if and only if c(A) = c(B) = c(λA+(1−λ)B).
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PROOF. For everyλ ∈ [0,1] we define the matrixDλ = λA+(1−λ)B and for allc∈ IRm for which
(c,y) = 1 note that

(c,Dλc) = λ(c,Ac)+(1−λ)(c,Bc) ≥ λ
1

γ(A)
+(1−λ)

1
γ(B)

. (19)

Consequently, we have that1γ(Dλ) ≥ λ 1
γ(A) +(1−λ) 1

γ(B) , showing thatγ−1 is concave. Alternatively,

equation (14) expressesγ−1(A) as the minimum of a family of functions which are linear in the
matrixA and henceγ−1 is concave. Similarly, using this equation we have that

γ(A) = max
{

(c,Ac)−1 : c∈ IRm,(c,y) = 1
}

thereby expressingγ as a maximum of a family of convex functions.
If (18) holds, we choosec = cλ := c(Dλ) in (19) and conclude by the uniqueness of the vector

c(A) in equation (15) thatcλ = c(A) = c(B). Conversely, when this conclusion holds we have that

1
γ(Dλ)

= λ(cλ,Acλ)+(1−λ)(cλ,Bcλ)

= λ(c(A),Ac(A))+(1−λ)(c(B),Bc(B))

= λ
1

γ(A)
+(1−λ)

1
γ(B)

which concludes the proof. �

Lemma 16 and 17 established that the functionφ : L+(IRm) → IR defined, for somed ∈ IRm and
all A∈ L+(IRm), asφ(A) = (d,A−1d) is non-increasing and convex (see also the work of Marshall
and Olkin, 1979).

Proposition 15 and Lemma 14 connects minimal norm interpolation to square loss regulariza-
tion. This connection allows us in this section to turn our attention to the functionρ : A(X ) → IR+

and consider the variational problem

ρ(K ) := inf{ρ(K) : K ∈ K } (20)

whereK is a prescribed set of kernels. The approach of Lemma 2 applies directly toestablish the
following lemma.

Lemma 18 If K is a compact and convex set of kernels inA+(X ) then the minimum of (20) exists.

Our next result describes the solution of the problem of determiningρ(K ) for the case that
K = coKn whereKn = {K` : ` ∈ INn} is a prescribed finite subset ofA+(X ). In its presentation we
use the notionKx,` for the matrix(K`)x.

Theorem 19 If Kn = {K j : j ∈ INn} ⊂ A+(X ) there exists a kernel̂K = ∑ j∈J λ jK j ∈ coKn, where
J ⊆ INn, card(J) ≤ min(m+1,n) with ∑ j∈J λ j = 1 such that, for every j∈ J, λ j > 0,

(ĉ,Kx, j ĉ) = max{(ĉ,Kx,`ĉ) : ` ∈ INn}, ĉ = c(K̂x),

ρ(K ) = ρ(K̂) = (y, K̂−1
x y)
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and for every c∈ IRm with (c,y) = 1 and every K∈ coKn

(ĉ,Kxĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc). (21)

Inequality (21) expresses the fact that the pair(ĉ, K̂) is asaddle pointfor the minimax problem

ρ̃−1 = min{max{(c,Kxc) : K ∈ coKn} : c∈ IRm,(c,y) = 1} .

The existence of(ĉ, K̂) above implies that the minimum and maximum can be interchanged, that is,

max{min{(c,Kxc) : c∈ IRm,(c,y) = 1} : K ∈ coKn} (22)

= min{max{(c,Kxc) : K ∈ coKn} : c∈ IRm,(c,y) = 1} . (23)

Moreover,anyĉ andK̂ with the properties described in Theorem 19 is a saddle point of this minimax
problem. Indeed, the upper bound in (21) follows from the definition of thevectorĉ and the function
γ defined earlier, see equations (14) and (15). The lower bound followsfrom the fact that for any
K ∈ coKn we have that(ĉ,Kxĉ) ≤ max{(ĉ,Kx,`ĉ) : ` ∈ INn}.

Let us now turn to the existence ofK̂. Note that by equation (14) and Proposition 15 the expres-
sion in (22) is 1/ρ(K ), the reciprocal of the quantity of interest to us. It is the quantity in equation
(23) which we examine in the proof of Theorem 19 and it has been denotedby ρ̃−1. A consequence
of Theorem 19 is that̃ρ = ρ(K ). Certainly, by their definitions it is clear thatρ̃ ≤ ρ(K ).

We now present the proof of Theorem 19.

PROOF. Let c̃ be a solution to problem (23). We define the set

J∗ ≡ J(c̃) :=
{

j : j ∈ INn,(c̃,Kx, j c̃) = max{(c̃,Kx,i c̃) : i ∈ INn}
}

the convex functionϕ : IRm → IR by setting for eachc∈ IRm, ϕ(c) := max{(c,Kx, jc) : j ∈ INn} and
note that by Lemma 24 the directional derivative ofϕ along the “direction”d ∈ IRm, denoted by
ϕ′

+(c;d), is given by
ϕ′

+(c;d) = 2max{(d,Kx, jc) : j ∈ J(c)}.
Sincec̃ is a minimum for (14) we have that

max{(d,Kx, j c̃) : j ∈ J∗} ≥ 0

for everyd ∈ IRm such that(d,y) = 0. LetM be the convex hull of the set of vectorsN := {Kx, j c̃ :
j ∈ J∗} ⊂ IRm. SinceM ⊆ IRm, by the Caratheodory theorem (see, for example, Rockafellar, 1970,
Ch. 17) every vector inM can be expressed as a convex combination of at mostq := min(m+
1, |J∗|) ≤ min(m+ 1,n) elements ofN . We will show thatM intersects the line spanned by the
vectory. Indeed, if these two sets did not intersect then there exists a hyperplane{c : c∈ IRm,(w,c)+
α = 0}, whereα ∈ IR, w∈ IRm, which strictly separates them, that is,

(w, ty)+α > 0, t ∈ IR

and
(w,Kx, j c̃)+α < 0, j ∈ J∗, (24)
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(see, for example, Royden, 1988).
The first condition, fort = 0, implies thatα > 0 and sincet can take any real value we also have

that(w,y) = 0. Consequently, from equation (24) we get that

max{(w,Kx, j c̃) : j ∈ J∗} < 0

which contradicts our hypothesis that ˜c is a minimum. Thus, it must be the case thatt0y∈ M for
somet0 ∈ IR, that is,

t0y = ∑
j∈J

γ jKx, j c̃ (25)

for some subsetJ of J∗ of cardinality at mostq and positive constantsγ j with ∑ j∈J γ j = 1. Taking
the inner product of both sides of equation (25) with ˜c, and recalling the fact that(c̃,y) = 1 we
obtain thatt0 = ρ̃−1. Setting

K̂ := ∑
j∈J

γ jK j

we have from (25) that ˜c = ρ̃−1K̂−1
x y, andρ̃ = (y, K̂−1

x y). Therefore, by Proposition 15 we conclude
thatρ̃ = ρ(K̂) andc̃= ĉ whereĉ is defined in the theorem. In particular, we obtainρ̃ ≥ ρ(K ) and so
by our previous remarks just before the beginning of the proof, we conclude that̃ρ = ρ(K ). �

Recall, that earlier we introduced the classK (G) induced by a continuous mappingG : Ω →
A+(X ) whereΩ is a compact Hausdorff space. Theorem 15 extends to this generality. Noessential
difference occur in the proof. However, the conclusion is striking. Notonly do we characterize the
optimal kernelK̂ ∈ K (G) but we show that it comes from adiscreteprobability measure ˆp∈ M (Ω)
with at most m+1 atoms, that is,K̂ =

R

Ω G(ω)dp̂(ω).

Theorem 20 If Ω is a compact Hausdorff topological space and G: Ω→A+(X ) is continuous then
there exists a kernel̂K =

R

Ω G(ω)dp̂(ω) ∈ K (G) such thatp̂ is a discrete probability measure in
M (Ω) with at most m+1 atoms. Moreover, for any atom̂ω ∈ Ω of p̂, we have that

(ĉ,Gx(ω̂)ĉ) = max{(ĉ,Gx(ω)ĉ) : ω ∈ Ω}, ĉ = c(K̂x),

ρ(K ) = ρ(K̂) = (y, K̂−1
x y)

and for every c∈ IRm with (c,y) = 1 and every K∈ K (G)

(ĉ,Kxĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc).

PROOF. Let c̃ be a solution to problem (23) wherecoKn is replaced byK (G) and define the set

Ω∗ ≡ Ω(c̃) := {τ : τ ∈ Ω,(c̃,Gx(τ)c̃) = max{(c̃,Gx(ω)c̃) : ω ∈ Ω}} .

where we denoted the matrix(G(ω))x by Gx(ω). We define the convex functionϕ : IRm → IR
by setting for eachc ∈ IRm, ϕ(c) := max{(c,Gx(ω)c) : ω ∈ Ω} and note that by Lemma 24 the
directional derivative ofϕ along the “direction”d ∈ IRm, denoted byϕ′

+(c;d), is given by

ϕ′
+(c;d) = 2max{(d,Gx(ω)c) : ω ∈ Ω∗}.

Sincec̃ is a minimum for (14) we have that

max{(d,Gx(ω)c̃) : ω ∈ Ω(c)} ≥ 0
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for everyd∈ IRm such that(d,y) = 0. LetM be the convex hull of the set of vectorsN := {Gx(ω)c̃ :
ω ∈ Ω∗} ⊂ IRm. SinceM ⊆ IRm, by the Caratheodory theorem every vector inM can be expressed
as a convex combination of at mostm+1 elements ofN . We will show thatM intersects the line
spanned by the vectory. Indeed, if these two sets did not intersect then there exist a hyperplane
(w,c)+α = 0, α ∈ IR, w∈ IRm, which strictly separates them, that is,

(w, ty)+α > 0, t ∈ IR

and
(w,Gx(ω)c̃)+α < 0, ω ∈ Ω∗, (26)

(see Royden, 1988).
The first condition, fort = 0, implies thatα > 0 and sincet can take any real value we also have

that(w,y) = 0. Consequently, from equation (26) we get that

max{(w,Gx(ω)c̃) : ω ∈ Ω∗} < 0.

which contradicts our hypothesis that ˜c is a minimum. Thus, it must be the case thatt0y∈ M for
somet0 ∈ IR, that is,

t0y =
Z

Ω
Gx(ω)c̃dp̂(ω) (27)

where p̂ ∈ M (Ω) is a discrete probability measure with at mostm+ 1 atoms. Taking the inner
product of both sides of equation (27) with ˜c, and recalling the fact that(c̃,y) = 1 we obtain that
t0 = ρ̃−1. Setting

K̂ :=
Z

Ω
Gx(ω)dp̂(ω)

we have from (27) that ˜c = ρ̃−1K̂−1y, andρ̃ = (y, K̂−1y). Therefore, by Proposition 15 we conclude
that ρ̃ = ρ(K̂) andc̃ = ĉ whereĉ is defined in the theorem. In particular, we obtainρ̃ ≥ ρ(K ) and
so by our previous remarks we conclude thatρ̃0 = ρ(K ). �

This theorem applies to the Gaussian kernel.

Corollary 21 If a > 0 and N: [a,b] → A+(X ) is defined as

N(ω)(x, t) = e−ω‖x−t‖2
, x, t ∈ IRd, ω ∈ IR+

then there exists a kernelK̂ =
R

Ω N(ω)dp̂(ω) ∈ K (N) such thatp̂ is a discrete probability measure
in M (Ω) with at most m+1 atoms. Moreover, for any atom̂ω ∈ Ω of p̂, we have that

(ĉ,Nx(ω̂)ĉ) = max{(ĉ,Nx(ω)ĉ) : ω ∈ Ω}, ĉ = c(K̂x),

ρ(K (N)) = ρ(K̂) = (y, K̂−1
x y)

and for every c∈ IRm and K∈ K (N) we have that

(ĉ,Kxĉ) ≤ (ĉ, K̂xĉ) ≤ (c, K̂xc).
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We note that, in view of equations (13) and (17), Theorem 19 and Theorem 20 apply directly, up to
an unimportant constantµ, to the square loss functional by merely adding the kernelµ∆ to the class
of kernels considered in these theorems. That is, we minimize the quantity in equation (17) over the
compact convex set of kernels

K̃ = {K̃ : K̃ = K +µ∆, K ∈ K }

where the kernel∆ is defined in equation (8).
An important example of the above construction is to chooseK j to be polynomials on IRd,

namelyK j(x, t) = (x, t) j , x, t ∈ IRd. From a practical point of view we should limit the range of the
index j and therefore Theorem 19 adequately covers this case. On the contrary if we decide to use,
as it is done often, Gaussians, there arises not only how many Gaussiansto choose but also which
ones to choose. This raises the question of looking at thewhole class of radial basis functions
and trying to choose the best kernel amongst this class. To this end, we recall a beautiful result
of Schoenberg (1938). Letϕ be a real–valued function defined on IR+ which we normalize so that
ϕ(0) = 1. We form a kernelK on IRd by setting for eachx, t ∈ IRd K(x, t) = ϕ(‖x−t‖2). Schoenberg
showed thatK is positive definite forany d if and only if there is a probability measurep on IR+

such that

K(x, t) =
Z

IR+

e−σ‖x−t‖2
dp(σ), x, t ∈ IRd.

Note that the set IR+ is not compact and the kernelN(0) is not in A+(IRd). Therefore, on both
accounts Theorem 20 does not apply in this circumstance unless, of course, we impose a positive
lower bound and a finite upper bound on the variance of the Gaussian kernels N(ω). We may
overcome this difficulty by a limiting process which can handle kernel maps onlocally compact
Hausdorff spaces. This will lead us to an extension of Theorem 20 where Ω is locally compact.
However, we only describe our approach in detail for the Gaussian case andΩ = IR+. An important
ingredient in this discussion presented below is thatN(∞) = ∆.

For every` ∈ IN we consider the Gaussian kernel map on the intervalΩ` := [`−1, `] and appeal
to Theorem 20 to produce a sequence of kernelsK̂` =

R

Ω`
N(ω)d p̀ (ω) with the properties described

there. In particular,p` is a discrete probability measure with at mostm+1 atoms, a numberinde-
pendentof `. Let us examine that may happen as` tends towards infinity. Each of the atoms ofp`

as well their corresponding weights have subsequences which converge. Some atoms may converge
to zero while others to infinity. In either case, the Gaussian kernel mapapproaches a limit. There-
fore, we can extract a convergent subsequence{pn` : ` ∈ IN} of probability measures and kernels
{Kn` : `∈ IN} such that lim̀→∞ pn` = p̂, lim`→∞ Kn` = K̂, andK̂ =

R

IR+
N(ω)p̂(ω) with the provision

that p̂ may have atoms at either zero of infinity. In either case, we replace the Gaussian by its limit,
namelyN(0), the identically one kernel, orN(∞), the delta kernel, in the integral which definesK̂.
All of the properties described in Theorem 20 and remarks following it hold for K̂ because of the
simplicity of the objective function for the minimax problem studied there. HenceK̂ is thebest
radial kernel.

4. Discussion

In this final section we comment on two recent papers related to ours, present some numerical
simulations and outline possible extensions of the ideas presented above.
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4.1 Related Works

Lanckriet et al. (2004) address learning kernels in the context of transductive learning, that is, learn-
ing the value of a function at a finite set of test points. In this case the kernel is computed only on
the training and test sets and, so, it is regarded as a matrix. The authors propose different criteria
to find a positive semi-definite kernel matrix and discuss how these can be casted as positive semi-
definite programming problems. For example, they maximize themarginof a binary support vector
machine (SVM) trained with the kernelK, which is the square root of the reciprocal of the quantity
defined by the equation

ρhard(K) = min
{

‖ f‖2
K : y j f (x j) ≥ 1, j ∈ INm

}

. (28)

wherey j ∈ {−1,1} are class labels, (see, for example, Vapnik, 1998). The margin is the maximum
distance of the closed point, relative to a set of labeled points, amongst all separating functions
in the RKHS. These functions are hyperplanes in the space spanned by the features associated to
a Mercer expansion of the kernelK. When the optimal separating hyperplane does not exist, the
standard approach is to relax the separation constraints in problem (28) toobtain the so-called soft
margin SVM,

ρso f t(K) := min

{

∑
j∈INm

ξ j +µ‖ f‖2
K : y j f (x j) ≥ 1−ξ j , ξ j ≥ 0, j ∈ INm, f ∈ HK

}

. (29)

These two problems are related. Indeed, if problem (28) admits a solution, that is, the constraints
are feasible, problem (29) gives the same solution provided the parameterµ is small enough.

Lanckriet et al. (2004) consider the minimization problem (29) whenK is a set of positive
semi-definite matrices which are linear combinations of some prescribed matricesK j , j ∈ INn. In
particular, ifK j are positive semi-definiteK could be the set of convex combination of such matri-
ces. They show thatρso f t(K) is convex inK ∈ K . Our observations in Section 2 confirm that the
margin and the soft margin are convex functions of the kernel. Indeed, problem (29) is equivalent
to the variational problem (1) whenQ is thehinge error functiondefined on IRm by

Q(w) := ∑
j∈INn

(1−y jw j)+, w := (w j : j ∈ INm)

wheret+ := max(0, t), t ∈ IR, (see, for example, Evgeniou, Pontil and Poggio, 2000).
Ong, Smola and Williamson (2003) consider learning a kernel function rather than a kernel

matrix. They choose a setK in the space of kernels which are in a Hilbert space of functions
generated by a so-called hyper-kernel. This is a kernelH : X 2 ×X 2 → IR, whereX 2 = X ×X ,
with the property that, for every(x, t) ∈ X 2, H((x, t),(·, ·)) is a kernel onX ×X . This construction
includes convex combinations of a possibly infinite number or kernels provided they arepointwise
nonnegative. For example Gaussian kernels or polynomial kernels with even degree satisfy this
assumption although those with odd degree, such as linear kernels or otherradial kernels do not.

4.2 Numerical Simulations

In this section we discuss two numerical simulations we carried out to compute a convex combina-
tion of a finite set of kernels{K` : `∈ INn} which minimizes the square loss regularization functional
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µ 10−4 10−3 10−2 0.1 1 10

Method 1 2.41 (1.04) 1.69 (0.68) 0.60 (0.11) 0.27 (0.08) 0.26 (0.05) 3.20 (0.48)
Method 2 1.54 (0.58) 0.91 (0.22) 0.47 (0.08) 0.40 (0.07) 0.61 (0.11) 3.80 (0.58)
Method 3 4.65 (7.81) 0.95 (1.24) 0.21 (0.06) 0.10 (0.05) 0.12 (0.08) 2.40 (0.60)

Table 1: Experiment 1: Average mean square error with its standard deviation (in parenthesis) for methods
1 to 3 for different values of the regularization parameterµ (see text for the description). The unit
measure for the errors is10−3.

Sµ in equation (5). For this purpose, we use an interior point method, that is, we define, for every
λ = (λ` : ` ∈ INn) ∈ IRn, the penalized function

Fν(λ) := Sµ

(

∑
`∈INn

λ`K`

)

−ν ∑
`∈INn

lnλ` (30)

whereν is a positive parameter and solve the variational problem

min

{

Fν(λ) : λ ∈ IRn, ∑
`∈INn

λ` = 1

}

. (31)

Clearly, whenν is small the solution to this problem is close to a minimizer ofSµ, although the
penalty term in (30) forces this solution to be interior to the set{λ : ∑`∈INn

λ` = 1, λ` ≥ 0, ` ∈ INn}.
In order to reach such a minimizer we choose an iteration numberR∈ IN and iteratively compute
the solution to problem (31) for a decreasing sequence of values of the parameterν. Specifically we
set, forr ∈ INR, νr = νAr−1 whereν is the initial value ofν andA∈ (0,1) is some prescribed pa-
rameter. The optimality conditions for problem (31) (see, for example, Rockafellar, 1970; Borwein
and Lewis, 2000) are given by the system ofnon-linearequations

∇Fν −ηe = 0

−(e,λ)+1 = 0

wheree is the vector in IRn all of whose components are one andη ∈ IR is the Lagrange multiplier
associated to the equality constraint in that problem. We solve these equationsby a Newton method
(see, for example, Mangasarian, 1994) which consists in iteratively solving the system oflinear
equations

∇2Fν(λ̂)∆λ −∆ηe = η̂e−∇Fν(λ̂)

−(e,∆λ) = 0

to obtain the vector∆λ ∈ IRm and∆η ∈ IR, whereλ̂ andη̂ are the previous values ofλ andη. We then
update the parameters asλ = λ̂ + α∆λ andη = η̂ + α∆η, where, in order to insure thatλ ∈ [0,1]n,
we have setα := min(1,0.5max{α > 0 : λ̂ + α∆λ ∈ [0,1]}). In our experiments below we choose
R= 5, ν = 10 andA = 0.5.

In both experiments we tried to learn a target functionf : [0,2π]→ IR from a set of its samples. In
the first experiment we fixedf (x) = 1

10(x+2(e−8( 4
3π−x)2 −e−8( π

2−x)2 −e−8( 3
2π−x)2

)), x∈ [0,2π], and,
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Figure 1: Experiment 1: function learned by method 1 (left), method 2 (center) and method 3 (right). Regu-
larization parameter isµ= 0.1, the number of training points is50. Solid line is the target function,
crosses are the sampled points and the dotted line is the method used. The vertical scale has been
reduce

µ 10−4 10−3 10−2 0.1 1 10

Method 1 3.46 (1.39) 3.46( 1.39) 3.45 (1.38) 3.35 (1.35) 2.64 (1.10) 14.1 (10.3)
Method 2 4.46 (1.82) 4.46 (1.79) 3.85 (1.18) 3.78 (1.03) 4.00 (1.02) 62.6 (5.11)
Method 3 0.52 (0.56) 0.51 (0.56) 0.51 (0.55) 0.51 (0.57) 0.53 (0.63) 3.51 (1.47)

Table 2: Experiment 2: Average mean square error with its standard deviation (in parenthesis) for methods
1 to 3 for different values of the regularization parameterµ (see text for the description). The unit
measure for the errors is10−3.

for everyx, t ∈ [0,2π], we setK`(x, t) = (xt)`−1 if `∈{1,2,3} andK`(x, t) = e−ω`(x−t)2
if `∈{4,5,6}

whereω` = 28−5(`−4). We generated a training set of fifty points{(x j ,y j) : j ∈ IN50} ⊂ [0,2π]× IR
obtained by samplingf with noise. Specifically, we choosex j uniformly distributed in the interval
[0,2π] andy j = f (x j) + ε with ε also uniformly sampled in the interval[−0.02,0.02]. We then
computed on a test set of 100 samples the mean square error between the target functionf and the
function learned from the training set for different values of the parameter µ. We compare three
methods.Method 1is our proposed approach,method 2is the average of the kernels, that is we use
the kernelK = 1

n ∑K` andmethod 3is the kernelK = K2 +K5, the “ideal” kernel, that is, the kernel
used to generate the target function. The results are shown in Table 1. Figure 1 shows the function
learned by each method.

In our second experiment we fixedf (x)= sin(x)+ 1
2sin(3x), x∈ [0,2π] andK`(x, t)= sin(`x)sin(`t),

x, t ∈ [0,2π], ` ∈ INn. The set up is similar to that in Experiment 1.Method 1is our proposed ap-
proach,method 2is the average of the kernels andmethod 3is the ideal kernel given byK(x, t) =
2
3 sin(x)sin(t)+ 1

3 sin(3x)sin(3t). The noiseε is now uniformly sampled in the interval[−0.2,0.2].
The results are reported in Table 2. Figure 2 shows the function learned by each method.

4.3 Extensions

We discuss some extensions of the problems studied in this paper. The first one that comes to mind
is obtained by taking the expectation of the functional (4) with respect to a probability measureP
on IRm, that is,

Qav
µ (K) :=

Z

IRm
Qµ(K,y)P(y)dy, K ∈ K (32)
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Figure 2: Experiment 2: function learned by method 1 (left), method 2 (center) and method 3 (right). Regu-
larization parameter isµ= 0.1, the number of training points is50. Solid line is the target function,
crosses are the sampled points and the dotted line is the method used.

where we indicated the dependency ofQµ(K) on y by writing Qµ(K,y). SinceQµ(K,y) is convex
in K for eachy ∈ IRm so isQav

µ (K). We then minimizeQav
µ (K) over K ∈ K . For the square loss

regularization we obtain that

Sav
µ (K) = µ trace((Kx +µI)−1Σ) (33)

whereΣ is the correlation matrix ofP. Minimizing the quantity (33) over a convex classK may
be valuable in image reconstruction and compression where we are provided with a collection of
images and we wish to find a good average representation for them. In this case the inputx = {xi :
i ∈ INm} represents the locations of the image pixels. For gray level images we can assume that
y∈ [0,1]m and therefore we should chooseP to have support on[0,1]m. Thus, if{y` : ` ∈ INn} is a
sample of such images withn < m andΣ is the rankn empirical correlation matrix our goal is to
find a kernel which well-represents this collection on the average.

Another approach is provided by replacing the average in equation (32)with the maximum over
all y with bounded norm, that is, we minimize the functional

Qmax
µ (K) := max{Qµ(K,y) : ‖y‖ ≤ 1}, K ∈ K .

Again, this function is convex inK. In particular, for square loss regularization and the Euclidean
norm on IRm we obtain

max{Sµ(K,y) : ‖y‖ ≤ 1} = max{µ(y,(Kx +µI)−1y) : ‖y‖ ≤ 1} =
µ

λmin(Kx)+µ

whereλmin(Kx) is the smallest eigenvalue of the matrixKx. Consequently, we have that

min{max{Sµ(K,y) : ‖y| ≤ 1} : K ∈ K } =
µ

max{λmin(Kx) : K ∈ K }+µ
.

It is well-known thatλmin(Kx) is a concave function ofKx, (see, for example, Marshall and Olkin,
1979, p. 475). Therefore, our results provide an alternate proof ofthis fact.

We also remark that instead of learning a functionf from function values the information oper-
atorI can be of the formI( f ) = ((g j , f ) : j ∈ INm), f ∈ H , where{g j : j ∈ INm} is a set of prescribed
functions in a Hilbert space, see the work of Micchelli and Pontil (2004) for a discussion. In this
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case, the matrixKx becomes the Gram matrix of these functions. The previous sections considered
the choiceg j = K(x j , ·) and the Gram matrix isKx. This extension has wide applications in inverse
problems, for example for computing the solution of first order integral equations.

Lemma 17 indicates thatQµ : A+(X ) → IR+ is, generally, not strictly convex. We may modify
the functionalQµ with a penalty term which depends on the kernel matrixKx to enforce uniqueness
of the optimal kernel inK . Therefore, we consider the variational problem

min{Qµ(K)+R(Kx)} (34)

whereR is a strictly convex function onL(IRm). In this case, the method of proof of Theorem 7
shows that the optimal kernel can be found as a convex combination of at most 1

2m(m+1) kernels.
For example, we may chooseR(A) = trace(A2), A∈ L(IRm).

The variational problem (34) may be a preferred approach for choosing an optimal kernel. In-
deed, ifQ vanishes at some point in IRm and there is a kernelK ∈ K such that for allt > 0, tK ∈ K
then it follows thatQµ(K ) = 0. This fact follows since limt→∞ Qµ(tK) = 0, by elementary properties
of the norm inHtK . However, if the kernels inK have the property that supK∈G supx∈X K(x,x) < ∞,
that is, they are uniformly bounded, the above circumstance cannot occur. This observation suggests
that our criterion may be free from overfitting. Preliminary experiments with Gaussian kernels con-
firm that overfitting does not occur (Argyriou, Micchelli and Pontil, 2005). We leave for a future
occasion a detailed investigation of this important issue.

As a final comment, let us point out that a kernel map can also be parameterized by matrices.
For example, to eachA∈ L(IRd) we define the linear kernelKA(x, t) = (x,At), x, t ∈ IRd and so our
results apply to any convex compact subset ofL(IRd) for this kernel map. Another example are
Gaussians parameterized by covariancesΣ ∈ L(IRd), that is,

N(Σ)(x, t) =
1

√

det(Σ)(2π)d
e−(x−t,Σ−1(x−t)), x, t ∈ IRd.

For compact convex sets of covariances our results say that Gaussianmixture models give optimal
kernels.

5. Conclusion

The intent of this paper is to enlarge the theoretical understanding of the study of optimal kernels
via the minimization of a regularization functional. Our analysis of this problem builds upon and
extends the work of Lanckriet et al. (2004) and Lin and Zhang (2003). In contrast to the point
of view of these papers, our setting applies to convex combinations of kernels parameterized by a
compact set. Our analysis establishes that the regularization functionalQµ is convex inK and that
any optimizing kernel can be expressed as the convex combination of at most m+2 basic kernels.
We have also provided a detailed characterization of the resulting minimax problem for square loss
regularization. We have only marginally addressed at this stage implementation and algorithms for
the search of optimal kernels. Since the proofs provided in Theorems 19 and 20 are constructive it
should be possible to make use of them to derive practical algorithms for learning an optimal kernel
such as a mixture of Gaussians, see (Argyriou, Micchelli and Pontil, 2005) for some recent results
in this direction. Finally, an important direction which has not been explored in this paper is that of
deriving error bounds, see (Micchelli et al., 2005) for some very recent progress on this.
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Appendix A

The first result we record here is a useful version of the classical von Neumann minimax theorem.

Theorem 22 Let f : A ×B → IR whereA is a compact convex subset of a Hausdorff topological
vector spaceX andB is a convex subset of a vector spaceY . If the function x7→ f (x,y) is convex
and lower semi-continuous for every y∈ B and y7→ f (x,y) is concave for every x∈ A then we have
that

min{sup{ f (x,y) : y∈ B} : x∈ A} = sup{inf{ f (x,y) : x∈ A} : y∈ B} (35)

Theorem 23 Let f : A ×B → IR whereA is a closed convex subset of a Hausdorff topological
vector spaceX andB is a convex subset of a vector spaceY . If the function x7→ f (x,y) is convex
and lower semi-continuous for every y∈ B, y 7→ f (x,y) is concave for every x∈ A and there exists
a y0 ∈ B such that for allλ ∈ IR the set

{x : x∈ A , f (x,y0) ≤ λ}

is compact then there is an x0 ∈ A such that

sup{ f (x0,y) : y∈ B} = sup{inf{ f (x,y) : x∈ A} : y∈ B}

in particular, (35) holds

Theorem 22 is subsumed by Theorem 23 whose proof can be found in (Aubin, 1982, Ch. 7). The
hypothesis of lower semi-continuity means, for allλ ∈ IR andy∈ B, that the set{x : x∈ A , f (x,y)≤
λ} is a closed subset ofA .

The next result concerns differentiation of a “max” function. The version we use comes from
(Micchelli, 1969). LetX be a topological vector space. Ifg is a continuous real-valued function on
X , we define its right derivative atx∈ X in the directiony∈ X by the formula

g′+(x,y) = lim
ε→0+

g(x+ εy)−g(x)
ε

whenever it exists.
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Lemma 24 Let T a compact set and G(t,x) a real-valued function onT ×X such that, for every
x∈ X G(·,x) is continuous onT and, for every t∈ T , G(t, ·) is convex onX . We define the real-
valued convex function g onX by the formula

g(x) := max{G(t,x) : t ∈ T }, x∈ X

and the set
M(x) := {t : t ∈ T ,G(t,x) = g(x)}.

Then the right derivative of g in the direction y∈ X is given by

g′+(x,y) = max{G′
+(t,x,y) : t ∈ M(x)}

where G′+(t,x,y) is the right derivative of G with respect to its second argument in the directiony.

PROOF. We first observe, for everyt ∈ M(x) andλ > 0, that

g(x+λy)−g(x)
λ

≥ G(t,x+λy)−G(t,x)
λ

which, lettingλ → 0+, implies thatg′+(x,y) ≥ G′
+(t,x,y) and, so,

g′+(x,y) ≥ sup{G′
+(t,x,y) : t ∈ M(x)}.

To prove the reverse inequality we use the fact that iff is convex on[0,∞) and f (0) = 0 thenf (λ)/λ
is a nondecreasing function ofλ > 0. In particular, this is true for the function ofλ defined, for every
x,y∈ X , as

g(x+λy)−g(x)
λ

.

Consequently, we obtain, for everyλ > 0 that

g(x+λy)−g(x)
λ

≥ g+(x,y).

Now, we define

h(λ, t) :=
G(t,x+λy)−g(x)

λ
, λ > 0

and observe that, for eacht ∈ T , it is a nondecreasing function ofλ because

h(λ, t) =
G(t,x+λy)−G(t,x)

λ
− g(x)−G(t,x)

λ
.

Therefore, the setsAλ := {t ∈ T : h(λ, t)≥ g′+(x,y)} are nonempty, closed and nested forλ > 0 and,
so, the compactness ofT implies that there exists at0 ∈

T

λ>0Aλ, that is,

G(t0,x+λy) ≥ λg′+(x,y)+g(x), λ > 0.

Thus,t0 ∈ M(x) andg′+(x,y) ≤ G′
+(t0,x,y). �

We now present the proof of Lemma 8 in an extended form. To this end, we letr beanypositive
number and let

corKn :=

{

K : K = ∑
j∈INn

λ jK j , λ` ≥ 0, ` ∈ INn, ∑
j∈INn

λr
j = 1

}

.

Note thatco1Kn = coKn whereKn = {K j : j ∈ INn}.
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Lemma 25 If Kn = {K j : j ∈ INn} is a family of kernels onX ×X and f∈ L

j∈INn
HK j , and s:= 2r

r+1
then

inf{‖ f‖K : K ∈ corKn} = min







(

∑
j∈INn

‖ f j‖s

) 1
s

: f = ∑
j∈INn

f j , f` ∈ HK` , ` ∈ INn







.

PROOF. The first step is to appeal to a result of Aronszajn, (see Aronszajn, 1950, p. 352-3), which
states that for anyf ∈ L

j∈INn
HK j we have forK = ∑ j∈INn

λ jK j , with λ` > 0, ` ∈ INn that

‖ f‖2
K = min

{

∑
j∈INn

‖ f j‖2

λ j
: f = ∑

j∈INn

f j , f` ∈ HK` , ` ∈ INn

}

.

Thus, the lemma follows from the following fact.

Lemma 26 If r > 0, p := 1+ 1
r , and{a j : j ∈ INn} ⊂ IR then

min







(

∑
j∈INn

a2
j

λ j

) 1
2

: λ` ≥ 0, ` ∈ INn, ∑
j∈INn

λr
j ≤ 1







=

(

∑
j∈INn

|a j |
2
p

)
p
2

and the equality occurs for∑ j∈INn
|a j | > 0 at

λ̃ j :=
|a j |

2
r+1

(

∑ j∈INn
|a j |

2r
r+1

) 1
r

. (36)

PROOF. This fact follows from Ḧolder inequality. To this end, we letq = r +1 so that1p + 1
q = 1

and, so, we have that

∑
j∈INn

|a j |
2r
q = ∑

j∈INn

|a j |
2r
q

λ
r
q
j

λ
r
q
j

≤



 ∑
j∈INn

|a j |
2rp
q

λ
rp
q
j





1
p(

∑
j∈INn

λr
j

) 1
q

=

(

∑
j∈INn

a2
j

λ j

) 1
p
(

∑
j∈INn

λr
j

) 1
q

≤
(

∑
j∈INn

a2
j

λ j

) 1
p

.

For the choice (36) equality holds above, thereby completing the proof. �

The proof of Lemma 25 is completed. �
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Abstract
This paper brings together methods from two different disciplines: statistics and machine learn-
ing. We address the problem of estimating the variance of cross-validation (CV) estimators of
the generalization error. In particular, we approach the problem of variance estimation of the CV
estimators of generalization error as a problem in approximating the moments of a statistic. The
approximation illustrates the role of training and test sets in the performance of the algorithm. It
provides a unifying approach to evaluation of various methods used in obtaining training and test
sets and it takes into account the variability due to different training and test sets. For the simple
problem of predicting the sample mean and in the case of smooth loss functions, we show that the
variance of the CV estimator of the generalization error is afunction of the moments of the random
variablesY = Card(Sj

T

Sj ′) andY∗ = Card(Sc
j
T

Sc
j ′), whereSj , Sj ′ are two training sets, andSc

j ,
Sc

j ′ are the corresponding test sets. We prove that the distribution of Y and Y* is hypergeometric
and we compare our estimator with the one proposed by Nadeau and Bengio (2003). We extend
these results in the regression case and the case of absoluteerror loss, and indicate how the methods
can be extended to the classification case. We illustrate theresults through simulation.

Keywords: cross-validation, generalization error, moment approximation, prediction, variance
estimation

1. Introduction

Progress in digital data acquisition and storage technology has resulted in the growth of very large
databases. At the same time, interest has grown in the possibility of tapping these data and of
extracting information from the data that might be of value to the owner of the database. A variety
of algorithms have been developed to mine through these databases with the purpose of uncovering
interesting characteristics of the data and generalizing the findings to other data sets.

One important aspect of algorithmic performance is the generalization error. Informally, the
generalization error is the error an algorithm makes on cases that has never seen before. Thus, the
generalization performance of a learning method relates to its prediction capability on the indepen-
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dent test data. The assessment of the performance of learning algorithmsis extremely important in
practice because it guides the choice of learning methods.

The generalization error of a learning method can be easily estimated via eithercross-validation
or bootstrap. However, providing a variance estimate of the estimator of this generalization error
is a more difficult problem. This is because the generalization error depends on the loss function
involved, and the mathematics needed to analyze the variance of the estimator are complicated.
An estimator of variance of the cross-validation estimator of the generalizationerror is proposed
by Nadeau and Bengio (2003). In a later section of this paper we will discuss this estimator and
compare it with the newly proposed estimator.

In this paper we address estimation of the variance of the cross validation estimator of the
generalization error, using the method of moment approximation. The idea is simple. The cross
validation estimator of the generalization error is viewed as a statistic. As such,it has a distribution.
We then approximate the needed moments of this distribution in order to obtain an estimate of
the variance. We present a framework that allows computation of the variance estimator of the
generalization error for k fold cross validation, as well as the usual random set selection in cross
validation. We address the problem of loss function selection and we show that for a general class
of loss functions, the class of differentiable loss functions with certain tail behavior, and for the
simple problem of prediction of the sample mean, the variance of the cross validation estimator
of the generalization error depends on the expectation of the random variablesY = Card(Sj

T

Sj ′)
andY∗ = Card(Sc

j
T

Sc
j ′). HereSj , Sj ′ are two different training sets drawn randomly from the data

universe andSc
j , Sc

j ′ are their corresponding test sets taken to be the complement ofSj andSj ′ with
respect to the data universe. We then obtain variance estimators of the generalization error for the
k-fold cross validation estimator, and extend the results to the regression case. We also indicate how
the results can be extended to the classification case.

The paper is organized as follows. Section 2 introduces the framework and discusses existing
literature on the problem of variance estimation of the cross validation estimatorsof the generaliza-
tion error. Section 3 presents the moment approximation method for developingthe new estimator.
Section 4 presents computer experiments and compares our estimator with the estimator proposed
by Nadeau and Bengio (2003). Section 5 presents discussion and conclusions.

2. Framework and Related Work

In what follows we describe the framework within which we will work.

2.1 The Framework and the Cross Validation Estimator of the Generalization Error

Let dataX1,X2, · · · ,Xn be collected such that the data universe,Zn
1 = {X1,X2, · · · ,Xn}, is a set of

independent, identically distributed observations which follow an unknown probability distribution,
denoted byF . LetSrepresent a subset of sizen1, n1 < n, taken fromZn

1. This subset of observations
is called a training set; on the basis of a training set a rule is constructed. Thetest set contains all
data that do not belong inS, that is the test set is the setSc = Zn

1\S, the complement ofSwith respect
to the data universeZn

1. Denote byn2 the number of elements in a test set,n2 = n−n1, n2 < n.

Let L : R
p×R → R be a function, and assume thatY is a target variable and̂f (x) is a decision

rule. The functionL(Y, f̂ (X)) that measures the error between the target variable and the prediction
rule is called a loss function.
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As an example, consider the estimation of the sample mean. In this problem the learning algo-
rithm usesf̂ (x) = 1

n1
∑n1

i=1Xi = X̄Sj as a decision rule andL(X̄Sj ,Xi) = (X̄Sj −Xi)
2, Xi ∈Sc

j , the square
error loss, as a loss function. Other typical choices of the loss function include the absolute error
loss,|X̄Sj −Xi | and the 0−1 loss function mainly used in classification.

Our results take into account the variability in both training and test sets. The variance estimate
of the cross validation estimator of the generalization error can be computed under the following
cross validation schemes. The first is what we term ascomplete random selection. When this form
of cross validation is used to compute the estimate of the generalization error ofa learning method,
the training sets, and hence the test sets, are randomly selected from the available data universe. In
thenonoverlapping test set selectioncase, the data universe is divided into k nonoverlapping data
subsets. Each data subset is then used as a test set, with the remaining data acting as a training set.
This is the case of k-fold cross validation.

We now describe in detail the cross validation estimator of the generalization error whose vari-
ance we will study. This estimator is constructed under the complete random selection case.

Let A j be a random set ofn1 distinct integers from{1,2, · · · ,n}, n1 < n. Let n2 = n− n1

be the size of the corresponding complement set. Note here thatn2 is a fixed number and that
Card(A j) = n1 is fixed. LetA1,A2, · · · ,AJ be random index sets sampled independently of each
other and denote byAc

j , the complement ofA j , j = 1,2, · · · ,J. Denote also bySj = {Xl : l ∈ A j},
j = 1,2, · · · ,J. This is the training set obtained by subsamplingZn

1 according to the random index
setA j . Then the corresponding test set isSc

j = {Xl : l ∈ Ac
j}. Now defineL( j, i) = L(Sj ,Xi), where

L is a loss function. Notice thatL is defined by its dependence on the training setSj and the test set
Sc

j . This dependence on the training and test sets is through the statistics that are computed using
the elements of these sets. The usual average test set error is then

µ̂j =
1
n2

∑
i∈Sc

j

L( j, i), (2.1)

The cross validation estimator we will study is defined as

n2
n1

µ̂J =
1
J

J

∑
j=1

µ̂j . (2.2)

This version of the cross validation estimator of the generalization error depends on the value
of J, the size of the training and test sets and the size of the data universe. Theestimator has been
studied by Nadeau and Bengio (2003). These authors provided two estimators of the variance of
n2
n1

µ̂J. In the next section we review briefly the estimators presented by Nadeau and Bengio (2003) as
well as other work on this subject. In a later section we will see that, whenJ is chosen appropriately,
then the Nadeau and Bengio (2003) estimator is close to and performs similarly with the moment
approximation estimator in some of the cases we study.

2.2 Related Work

Related literature for the problem of estimating the variance of the generalization error includes
work by McLachlan (1972, 1973, 1974, 1976) and work by Nadeau and Bengio (2003) and Bengio
and Grandvalet (2004). Here, we briefly review this work.

Let S2
µ̂j

= 1
J−1 ∑J

j=1(µ̂j − n2
n1

µ̂J)
2 be the sample variance of ˆµj , j = 1,2, · · · ,J. Then Nadeau and

Bengio (2003) show that
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E(S2
µ̂j

) =
Var(n2

n1
µ̂J)

(1
J + ρ

1−ρ)
, (2.3)

whereρ is the correlation between ˆµj andµ̂j ′ . Therefore, ifρ is known,

(
1
J

+
ρ

1−ρ
)S2

µ̂j
, (2.4)

is an unbiased estimator of theVar(n2
n1

µ̂J). Nadeau and Bengio (2003) observe that this estimator
depends on the correlationρ between the different ˆµjs which is difficult to estimate. Thus, they
propose an approximation to the correlation,ρ̂ = n2

n , wheren2 is the cardinality of the test set. The
final estimator of the variance ofn2

n1
µ̂J is given as

(
1
J

+
n2

n1
)S2

µ̂j
. (2.5)

Nadeau and Bengio (2003) note that the above suggested estimator is simple but it may have a
positive or negative bias with respect to the actualVar(n2

n1
µ̂J). That is, it will tend to overestimate or

underestimateVar(n2
n1

µ̂J) according to whether̂ρ = n2
n > ρ or ρ̂ < ρ. Therefore, this estimator is not

exactly unbiased.
Nadeau and Bengio (2003) also suggested another estimator of the variance of the cross-validation

estimator of the generalization error. This estimator is unbiased but overestimates theVar(n2
n1

µ̂J). It
is computed as follows. Letn be the size of the data universe and assume, without loss of general-
ity, thatn is even. Randomly split the data set into two, equal size, data subsets. Thencompute the
cross-validation estimator of the generalization error on these two data subsets. Notice that, the size
of the training set is nown′1 = [n

2]−n2 < n1, smaller than the original size of the training set, but the
test set size remains the same. Denote by ˆµ1 the estimatorn2

n′1
µ̂J computed on the first data subset and

µ̂2 the estimatorn2
n′1

µ̂J computed on the second data subset. To obtain an estimator of the variance of
the cross validation estimator of the generalization error compute the sample variance ofµ̂1 andµ̂2.
The splitting process can be repeatedM times and Nadeau and Bengio(2003) recommendM = 10.
The proposed unbiased estimator is then given as

1
2M

M

∑
m=1

(µ̂1,m− µ̂2,m)2. (2.6)

This is an unbiased estimator of theVar(n2
n′1

µ̂J).
Bengio and Grandvalet (2004) showed that there does not exist any unbiased and universal

estimator of the variance of k-fold cross-validation that is valid under all distributions. Here, we
derive estimators of the variance of the k-fold cross validation estimator of the generalization error
that are almost unbiased. However, we also notice that our estimators do depend on the distribution
of the errors and on the knowledge of the learning algorithm.

In a series of impressive papers McLachlan addressed the problem ofestimation of the variance
of the errors of misclassification of the linear discriminant function by developing a technique for
deriving asymptotic expansions of the variances of the errors of misclassification of Anderson’s
classification statistic. McLachlan also established an asymptotic expansion ofthe expectation of the
estimated error rate in discriminant analysis and obtained the distributions of theconditional error
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rate and risk associated with Anderson’s classification statistic in the contextof the two-population
discrimination problem. These derivations were carried out under the assumption of normality for
the population distribution.

Our work has similarities with the work by McLachlan in the sense that we derive approxima-
tions to the moments of the distribution of the cross validation estimator of the generalization error
and use these to obtain a variance estimator. However, we do not assume normality of the underly-
ing mechanism that generated the data.

In what follows, we first present the method of moment approximation for obtaining an estima-
tor of Var(n2

n1
µ̂J). We then study the performance of this estimator and compare it with the Nadeau

and Bengio (2003) estimator.

3. Moment Approximation Estimator for Var(n2
n1µ̂J)

Recall thatn2
n1

µ̂J = 1
J ∑J

j=1 µ̂j = 1
J ∑J

j=1(
1
n2

∑i∈Sc
j
L( j, i)). Thereforen2

n1
µ̂J is a statistic. An estimator

of Var(n2
n1

µ̂J) can thus be obtained by approximating the moments of the statisticn2
n1

µ̂J. A simple
calculation shows that

Var(n2
n1

µ̂J) =
1
J2

J

∑
j=1

Var(µ̂j)+
1
J2 ∑ ∑

j 6= j ′
Cov(µ̂j , µ̂j ′). (3.1)

From the formula we see that if we can approximate the two terms of(3.1) then we can obtain
an estimator for the variance ofn2

n1
µ̂J. To achieve this goal, we need to estimateE(µ̂j), E(µ̂2

j ) and
E(µ̂j µ̂j ′). In the following sections we will develop the theory that allows us to obtain the needed
moment approximations. To illustrate the methodology clearly we treat separatelythe case of simple
mean estimation and the regression case. We further treat separately the case where the loss function
is differentiable from the case of non-differentiable loss functions.

3.1 The Sample Mean Case

We start by analyzing the case of the sample mean. Here, the loss functionL depends onSj through
the statisticsX̄Sj , the sample mean computed using the elements ofSj , and onSc

j by elements
Xi ∈ Sc

j . One of the reasons for presenting the sample mean case separately is because it illustrates
clearly the contribution towards the estimator ofVar(n2

n1
µ̂J) that is due to the variability among the

different training and test sets. A second reason in favor of this case isbecause, under square error
loss, we obtain a “ golden standard” against which we can compare the newempirically computed
variance estimator and the Nadeau and Bengio (2003) estimator. This “golden standard” is the exact
theoretical value of theVar(n2

n1
µ̂J). The obtained results show that the estimator of the variance of

the cross validation estimator of the generalization error of the algorithms that use differentiable
functions of the mean as loss functions, depends on the expectation of the random variablesY =
Card(Sj

T

Sj ′) andY∗ = Card(Sc
j
T

Sc
j ′).

Let the loss functionL( j, i) = L(X̄Sj ;Xi) be differentiable. Below we list the conditions under
which our theory holds.

Assumption 1. The distribution ofL(X̄Sj ,Xi) does not depend on the particular realization ofSj

andi.

1131



MARKATOU , TIAN , BISWAS AND HRIPCSAK

Assumption 2. The loss functionL as a function ofX̄Sj is such that its first four derivatives
with respect to the first argument exist for all values of the variable that belongs inI , whereI is an
interval such thatP(v∈ I) = 1, andv indicates the first argument of the loss function.

Assumption 3. The fourth derivative ofL is such that|L(iv)(X̄Sj ;Xi)| ≤ M(Xi), E[M(Xi)] < ∞.
Assumption 1 is also used by Nadeau and Bengio (2003, p. 244). Assumptions 2 and 3 are

standard in the literature where approximations to the moments of a continuous, real function of the
mean are discussed. See, for example Cramer (1946), Lehmman (1991) and Bickel and Doksum
(2001). The boundedness of the fourth or some higher derivative is necessary for proposition 3.1 to
hold.

Alternative conditions where stronger assumptions on the distributions of thedataXi and weaker
conditions on the functionL are imposed exist in the literature (Khan (2004)). HereL is a loss func-
tion and it seems reasonable to assume boundedness on some of its higher derivatives.

Proposition 3.1 offers an approximation of the expectation ofL(X̄Sj ,Xi).

Proposition 3.1Let X1,X2, · · · ,Xn be independent, identically distributed random variables such
thatE(Xi) = µ, Var(Xi) = σ2 and finite fourth moment. Suppose thatL satisfies assumptions 1, 2
and 3. Then

E[L(X̄Sj ;Xi)] = E[L(µ,Xi)]+
σ2

2n1
E[(L′′(µ,Xi))]+O(

1

n2
1

),

where the remainderRn is such thatE(Rn) is O( 1
n2

1
), that is, there existsn0 andA < ∞ such that

E(Rn) < A
n2

1
,∀n > n0 and allµ. The prime indicates derivative with respect to the first argument of

L.

Proof: We will use a conditional expectation argument. Write

E[L(X̄Sj ;Xi)] = ESj ,i{EZn
1
[L(X̄Sj ;Xi)|Sj , i]}, (3.2)

j = 1,2, · · · ,J andi indicatesXi and is such thati ∈ Sc
j .

Now expandL(X̄Sj ;Xi) with respect toX̄Sj around the meanµ to obtain:

L(X̄Sj ;Xi) = L(µ,Xi)+L′(µ,Xi)(X̄Sj −µ)+
1
2

L′′(µ,Xi)(X̄Sj −µ)2

+
1
6

L′′′(µ,Xi)(X̄Sj −µ)3 +
1
24

L(iv)(µ∗,Xi)(X̄Sj −µ)4. (3.3)

Denote by
Rn = L(iv)(µ∗,Xi)(X̄Sj −µ)4

and
EZn

1
{Rn|Sj , i} = EZn

1
{L(iv)(µ∗,Xi)(X̄Sj −µ)4|Sj , i}, (3.4)

and since by assumption 1 the distribution ofL(iv)(µ∗,Xi)(X̄Sj −µ)4 does not depend on the particular
realization ofSj andi, we obtain

ESj ,i{EZn
1
[L(iv)(µ∗,Xi)(X̄Sj −µ)4|Sj , i]} = E[L(iv)(µ∗,Xi)]E(X̄Sj −µ)4 ≤ M ·E(X̄Sj −µ)4.
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This is because by assumption 3 we haveE[L(iv)(µ∗,Xi)] ≤ E[M(Xi)] < ∞. Now Lemma A.5 of the
appendix guarantees thatE(X̄Sj −µ)4 is of order 1/n2

1. Thus, taking expectations in (3.3) and using
(3.4) we obtain:

E[L(X̄Sj ;Xi)] = ESj ,i{EZn
1
[L(µ,Xi)|Sj , i]}+ESj ,i{EZn

1
[L′(µ,Xi)(X̄Sj −µ)|Sj , i]}

+ ESj ,i{EZn
1
[
1
2

L′′(µ,Xi)(X̄Sj −µ)2|Sj , i]}

+ ESj ,i{EZn
1
[
1
6

L′′′(µ,Xi)(X̄Sj −µ)3|Sj , i]}+O(
1

n2
1

).

By assumption 1 the distribution ofL(µ,Xi) does not depend on the particular realization ofSj and
Xi . Thus

ESj ,i{EZn
1
[L(µ,Xi)|Sj , i]} = EZn

1
[L(µ,Xi)].

Similar to the above arguments produce the approximation to the first moment givenby

E[L(X̄Sj ;Xi)] = E[L(µ,Xi)]+
σ2

2n1
E[(L′′(µ,Xi))]+O(

1

n2
1

).

Remark 1: Note that we do not impose distributional assumptions on the data. The only condi-
tion imposed is that samples come from distributions for which the fourth moment is finite. Many
of the standard families of distributions satisfy this condition.

Remark 2: The requirement of the finiteness of the fourth moment for proposition 3.1 tohold
implies limitations on the data sets on which this estimator can be computed. For example, itmay
be inappropriate to apply these methods to data sets which involve large variations, such as those
from insurance and finance. On the other hand, the results apply to some thick tail distributions,
such as thet-distribution with 5 or more degrees of freedom. Thet5-distribution, for example, is a
thick tail distribution, for which the fourth moment exists.

The following proposition approximates the variance of the lossL(X̄Sj ,Xi).

Proposition 3.2Let assumptions 1, 2 and 3 hold. If in addition the fourth derivative ofL2(X̄Sj ,Xi)
is bounded, then

Var[L(X̄Sj ;Xi)] = Var[L(µ,Xi)]+
σ2

n1
{E[(L′(µ,Xi))

2]+Cov(L(µ,Xi),L
′′(µ,Xi))}+O(1/n2

1),

where the remainder term isO( 1
n2

1
).

Proof: To obtain an expansion of the variance ofL(X̄Sj ;Xi) apply proposition 1 to the function
L2(X̄Sj ;Xi) using the fact that

[L2(µ,Xi)]
′′ =

∂2

∂µ2 [L2(µ;Xi)]

= 2(L′(µ,Xi))
2 +2L(µ,Xi)L

′′(µ,Xi). (3.5)
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Then substituting the expansion forL(X̄Sj ,Xi) and using formula (3.5), proposition 1 and the formula
of conditional variance we obtain:

Var[L(X̄Sj ;Xi)] = Var[L(µ,Xi)]+
σ2

n1
{E[(L′(µ,Xi))

2]+Cov(L(µ,Xi),L
′′(µ,Xi))}+O(1/n2

1).

To prove the above two propositions we use a series of lemmas that guarantee the rate of the
remainder term. These lemmas are presented in the appendix.

We now present a theoretical example that verifies the approximations presented in propositions
1 and 2.

Example. Assume thatL(X̄Sj ,Xi) = (X̄Sj −Xi)
2, the square error loss that is widely used. An

exact calculation of the expectation of(X̄Sj −Xi)
2 produces

E{L(X̄Sj ,Xi)} = Var(X̄Sj )+Var(Xi) = σ2 +
σ2

n1
.

On the other hand, if proposition 3.1 is used, we obtain:

E[L(X̄Sj ,Xi)] = E(Xi −µ)2 +
σ2

n1
= σ2 +

σ2

n1
,

and the two formulas coincide. Notice that in the case of square error loss,the second derivative of
the loss, with respect toµ, is bounded. The terms of order 1/n2

1 do not enter the formula as all higher
order than two derivatives of the quadratic loss are 0. Thus, the approximation formula agrees with
the exact computation.

We next turn to the variance formula. The exact computation is based on the formula

Var[L(X̄Sj ,Xi)] = ESj ,i{VarZn
1
[(X̄Sj −Xi)

2|Sj , i]}+VarSj ,i{EZn
1
[(X̄Sj −Xi)

2|Sj , i]}. (3.6)

Using this formula we obtain the exact variance as

Var[L(X̄Sj ,Xi)] = 2σ4 +
4σ4

n1
+

2σ4

n2
1

. (3.7)

Using the formula given in proposition 3.2 we obtain that the approximate variance is

Var[L( j, i)] = 2σ4 +
4σ4

n1
+O(

1

n2
1

). (3.8)

Comparing these two formulas we see that the variance approximation formula identifies all first
order terms.

The following proposition establishes the approximation formula for the covariance terms that
enter the computation of the variance of the cross validation estimators of the generalization error.

Proposition 3.3 Let Sj , Sj ′ be two training sets drawn independently and at random from the
data universeZn

1, andSc
j , Sc

j ′ the corresponding test sets. LetXi ∈ Sc
j ,Xi′ ∈ Sc

j ′ , D = Sj
T

Sj ′ and
Y = Card(D). Then, if i 6= i′

Cov[L(X̄Sj ,Xi),L(X̄Sj′ ,Xi′)] =
σ2

n2
1

E(Y)(E[L′(µ,Xi)])
2− σ4

4n2
1

(E[L′′(µ,Xi)])
2 +O(

1

n2
1

).
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If i = i′,

Cov[L(X̄Sj ,Xi),L(X̄Sj′ ,Xi′)] = Var(L(µ,Xi))+
σ2

n1
{E[L(µ,Xi)L

′′(ξ, i)]

− E[L(µ,Xi)]E[L′′(µ,Xi)]}+
σ2

n2
1

E(Y)E[L′(µ,Xi)]
2

− σ4

4n2
1

{E[L′′(µ,Xi)]}2 +O(
1

n2
1

),

whereE(Y) is the expectation of the random variableY with respect to its distribution.

This proposition indicates that the variability due to random sampling of the training setsSj is
quantified by the expectation of the random variableY = Card(Sj

T

Sj ′), j 6= j ′, j, j ′ ∈ 1,2, · · · ,J.
SinceSj , Sj ′ are random sets ofn1 elements,Y is such thatmax(0,2n1−n) ≤Y ≤ n1.

An additional random variable that enters the variance estimator of the cross validation esti-
mator of the generalization error isY∗ = Card(Sc

j
T

Sc
j ′), the cardinality of the intersection of two

different test sets. The following two lemmas derive the distribution of these two random variables.

Lemma 3.1LetSj andSj ′ be random sets ofn1 distinct elements fromZn
! and letY =Card(Sj

T

Sc
j),

max(0,2n1−n) ≤Y ≤ n1. Then, the distribution ofY is

P(Y = y) =

(n1
y

)(n−n1
n1−y

)

( n
n1

) ,

a hypergeometric distribution.

Proof. We model the problem as the following 2×n table.

k 1 2 3 · · · n Total
Sj 0 1 1 · · · 0 n1

Sj ′ 1 0 1 · · · 0 n1

a1 a2 a3 · · · an 2n1

In the table we indicate whether thekth component ofZn
1 is sampled into the training setSj or Sj ′

by 1, otherwise we indicate it by 0. Denote byak the sum of the indicators for thekth component in
the populationZn

1 overSj andSj ′ . Then
{

a1 +a2 + · · ·+an = 2n1

0≤ ai ≤ 2 , i = 1, · · · ,n.

Now, P(Y = y) is equivalent toP(#{ai = 2}), i = 1, · · · ,n. GivenY = y, the number of{ai = 1}
is 2n1−2y and the number of{ai = 0} is n−2n1 + y. Since none of these three numbers could
be negative, we obtain the domain of Y asmax(0,2n1−n) ≤ Y ≤ n1. Recall also thatSj , Sj ′ are
sampled independently and each containsn1 elements. GivenY = y, the distribution of the column
totals is fixed; that isai can only take the values 0 ,1 or 2. The number of different tables with the
same column totals is then

(n
y

)( n−y
n1−y

)(n−n1
n1−y

)

. and hence

P(Y = y) =

(n
y

)( n−y
n1−y

)(n−n1
n1−y

)

( n
n1

)( n
n1

) =

(n1
y

)(n−n1
n1−y

)

( n
n1

) ,
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the hypergeometric distribution.

Lemma 3.2Let Sj andSj ′ be two training sets andSc
j andSc

j ′ are their corresponding test sets.
Let Y∗ = Card(Sc

j
T

Sc
j ′), 0≤Y∗ ≤ n−n1. Then

P(Y∗ = y) =

( n1
y−n+2n1

)( n−n1
n−n1−y

)

( n
n1

) =

( n2
n2−y

)( n−n2
n−n2−(n2−y)

)

( n
n−n2

) .

Proof. From the proof of lemma 3.1P(Y∗ = y) = P(#{ai = 0}), {i = 1, · · · ,n}. Moreover,
Y∗ = n−2n1 +Y. Then, the result follows.

Theorem 3.1 provides the estimator of the variance ofn2
n1

µ̂J. We first state the theorem.

Theorem 3.1.The variance of the estimator of the generalization errorn2
n1

µ̂J is given as

Var(n2
n1

µ̂J) =
1
J
Var(µ̂j)+

J−1
J

Cov(µ̂j , µ̂j ′),

where

Var(µ̂j) =
1
n2

[Var[L(µ,Xi)]+
σ2

n1
{E[(L′(µ,Xi))

2]+Cov(L(µ,Xi),L
′′(µ,Xi))}]

+
n2−1

n2

σ2

n1
{E[L′(µ,Xi)]}2 +O(1/n2

1),

Cov(µ̂j , µ̂j ′) = (1− E(Y∗)

n2
2

)
[σ2

n2
1

E(Y)(E[L′(µ,Xi)])
2− σ4

4n2
1

(E[L′′(µ,Xi)])
2 +O(

1

n2
1

)
]

+
E(Y∗)

n2
2

[

Var(L(µ,Xi))+
σ2

n1
{E[L(µ,Xi)L

′′(µ,Xi)]−E[L(µ,Xi)]E[L′′(µ,Xi)]}

+
σ2

n2
1

E(Y)E[L′(µ,Xi)]
2− σ4

4n2
1

{E[L′′(µ,Xi)]}2 +O(
1

n2
1

)
]

,

whereµ= EZn
1
Xi , σ2 = VarZn

1
(Xi).

The above formulas indicate clearly the dependence ofVar(n2
n1

µ̂J) on the first moment of the
random variablesY, Y∗. Since the distribution ofY andY∗ is known, we can substituteE(Y), E(Y∗)
by their corresponding values and simplify the above expressions. Because the distribution ofY, Y∗

is hypergeometricE(Y) =
n2

1
n andE(Y∗) =

n2
2

n . Then

Cov(µ̂j , µ̂j ′) = (1− 1
n
)
[σ2

n
(E[L′(µ,Xi)])

2− σ4

4n2
1

(E[L′′(µ,Xi)])
2 +O(

1

n2
1

)
]

+
1
n

[

Var(L(µ,Xi))+
σ2

n1
{Cov(L(µ,Xi),L

′′(µ,Xi))}

+
σ2

n
E[L′(µ,Xi)]

2− σ4

4n2
1

(E[L′′(µ,Xi)])
2 +O(

1

n2
1

)
]

.
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The final estimator of the variance ofn2
n1

µ̂J is a plug-in estimator and it can be computed using
theorem (3.1). We need to replace the unknown population meanµ and population varianceσ2

by their estimators, the sample mean and sample variance respectively. If it is not convenient to
compute the sample variance and mean based on the data universe we may compute X̄Sj and, if
there are many different training sets, take as an estimator of the sample meanX̄ = 1

J ∑J
j=1 X̄Sj .

Moreover,σ̂2
j = 1

n1−1 ∑n1
l=1(Xl − X̄Sj )

2, thus the variance estimate of the population variance will be

σ̂2 = 1
J ∑J

j=1 σ̂2
j .

Example. In the case of square error loss the approximations to the variance of ˆµj and the
Cov(µ̂j , µ̂j ′) are given as:

Var(µ̂j) =
1
n2

Var[(Xi −µ)2]+
4σ4

n1n2
=

1
n2

E[(xi −µ)4]− σ4

n2
+

4σ4

n1n2
, (3.9)

Cov(µ̂j , µ̂j ′) = (1− 1
n
)(−σ4

n2
1

)+
1
n
(
4σ4

n
− σ4

n2
1

+Var[(Xi −µ)2]). (3.10)

If the data are from aN(0,σ2) then the moment approximation estimator of the variance ofn2
n1

µ̂J

is given by

σ̂4{2(n1 +2)

n1n2

1
J

+(
J−1

J
)[

2(n+2)

n2 − 1

n2
1

]},

whereσ̂ is the sample standard deviation. Thus the estimator of the variancen2
n1

µ̂J is a multiple
of the sample variance and the multiplication factor indicates the dependence ofthe estimator on
n1, n2 andn.

Variance estimator of the k-fold CV estimator of the generalizationerror.
Here we present a variance estimator of the k-fold cross validation estimatorof the general-

ization error of a learning algorithm. Notice that this is a special case of theorem 3.1. Ink-fold
cross validation the data universe is divided intok different non-overlapping test sets, each of which
containsn

k elements. The number of elementsn1, in any given training set, is thenn− n
k = (k−1)n

k .

Therefore,Y = Card(Sj
T

Sj ′) = (k−2)n
k . Theorem 3.1 gives the approximations:

Var(µ̂j) =
k
n
[Var(L(µ,Xi))+

σ2

n
(

k
k−1

){E[(L′(µ,Xi))
2]+Cov(L(µ,Xi),L

′′(µ,Xi))}]

+
n−k

n
σ2

n
k

k−1
{E[L′(µ,Xi)]}2 +O(1/n2

1),

and

Cov(µ̂j , µ̂j ′) =
σ2

n
k(k−2)

(k−1)2 (E[L′(µ,Xi)])
2− σ4

4n2(
k

k−1
)2(E[L′′(µ,Xi)])

2 +O(
1

n2
1

).

Therefore, the variance estimate can be computed using relation (3.1), whereVar(µ̂j) andCov(µ̂j , µ̂j ′)
are replaced by their estimates. These can be obtained by replacingµ, σ2 by their sample estimates
using data from the training sets.
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Now assume that the loss function used is square error. In this case,L′(µ,xi) = 2(µ− xi) and
L′′(µ,xi) = 2. The formulas then for the variance of ˆµj and the covariance between different ˆµjs
simplify as follows:

Var(µ̂j) =
k
n
{Var[(Xi −µ)2]+

4σ4

n
(

k
k−1

)}, (3.11)

Cov(µ̂j , µ̂j ′) = −σ4

n2 (
k

k−1
)2, j 6= j ′. (3.12)

ThenVar(n2
n1

µ̂J) can be estimated by using formula (3.1) and replacingσ2 andVar[(Xi −µ)2] by the
sample variance and an appropriate sample estimate forVar[(Xi −µ)2]. The final approximation of
the variance ofn2

n1
µ̂J is then

Var(n2
n1

µ̂J) =
1
n
{Var[(Xi −µ)2]}+

3kσ4

(k−1)n2 =
1
n

E[(Xi −µ)4]− σ4

n
+

3kσ4

(k−1)n2 .

A simple estimator ofE[(Xi −µ)4] can be computed from the training sample by taking the sample
version of the above expectation,1

n1
∑i∈Sj

(Xi − X̄Sj )
4. To illustrate, if we further assume a normal

population thenVar[(Xi −µ)2] = 2σ4 and the variance estimator ofn2
n1

µ̂J is given as

σ̂4

n
(2+

3k
n(k−1)

),

whereσ̂ is the sample standard deviation.

3.2 The Regression Case

The regression case is another case of fitting means. We consider here the problem of estimat-
ing the variance of the cross validation estimator of the generalization errorn2

n1
µ̂J in the case of

regression. Therefore the data are realizations of random variables(Yi ,Xi), i = 1,2, · · · ,n such that
E(Yi |Xi) = xT

i β. Notice that the explanatory variables here are treated as fixed; this formulation is
known as the fixed design case. The vector of unknown parametersβ is usually estimated by least
squares; denote bŷβ the least square estimator ofβ. Then for a new observation(yi ,xi) ∈ Sc

j denote

by ŷi,Sj = xT
i β̂Sj , whereβ̂Sj indicates the estimator ofβ computed by using the data in the training

setSj . The loss functionL is then dependent on ˆyi,Sj andyi , that isL(ŷi,Sj ,yi).

To derive the estimator ofVar(n2
n1

µ̂J) we need to use the moment approximation method to ob-
tain approximations for the moments of the statisticn2

n1
µ̂J. The idea is the same as in the case of

simple mean estimation. That is, the loss function is expanded with respect to its first argument
and evaluated at the pointE(Yi |Xi) = xT

i β0, whereβ0 is the true parameter value. In other words, as
before, the expansion is evaluated at the true mean.

We list now the assumptions under which our theory holds.

Assumption 1. If Sj is a training set withn1 number of elements

lim
n1→∞

1
n1

(XT
Sj

XSj )
−1 = V
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whereV is finite and positive definite.
Assumption 2. Let xn1k denote thekth row of the design matrixXSj . Then, for eachj =

1,2, · · · ,J,
max

1≤k≤n1

xn1k(XT
Sj

XSj )
−1xn1k → 0

asn1 → ∞.
Notice that this condition is known as the generalized Noether condition.
Under the above conditions

√
n1(β̂Sj −β) converges in distribution to aN(0,σ2V) random vari-

able.

The following proposition establishes an approximation to the expectation of theloss functionL.

Proposition 3.4: Suppose that assumptions 1 and 2 hold. Then

E[L(ŷi,Sj ,yi)] = E[L(xT
i β0,yi)]+

σ2

2
E[L′′(xT

i β0,yi)]tr[(xix
T
i )(XT

Sj
XSj )

−1]+Rn,

where the remainder term is of orderO( 1
n2

1
), and the prime indicates derivative with respect to the

first argument of the loss function.

Proof: First expandL(ŷi,Sj ,yi) with respect to the first argument to obtain:

L(ŷi,Sj ,yi) = L(xT
i β0,yi)+L′(xT

i β0,yi)x
T
i (β̂Sj −β0)

+
1
2

L′′(xT
i β0,yi)(β̂Sj −β0)

Txix
T
i (β̂Sj −β0)+Rn, (3.13)

whereRn indicates the remainder term.
Now

E{L(ŷi,Sj ,yi)} = ESj ,i{EZn
1
[L(ŷi,Sj ,yi)|Sj , i]}

= ESj ,i{EZn
1
[L(xT

i β0,yi)|Sj , i]}+ESj ,i{EZn
1
[L′(xT

i β0,yi)x
T
i |Sj , i]EZn

1
[(β̂Sj −β0)|Sj , i]}

+
1
2

ESj ,i{EZn
1
[L′′(xT

i β0,yi)|Sj , i]EZn
1
[(β̂Sj −β0)

Txix
T
i (β̂Sj −β0)|Sj , i]}

But the expectationEZn
1
[(β̂Sj −β0)|Sj , i] = 0 becauseEZn

1
(β̂Sj |Sj , i) = EZn

1
(β̂Sj ) = β0. Also since the

distribution ofβ̂Sj is asymptoticallyN(β0,σ2(XT
Sj

XSj )
−1), under assumptions 1 and 2 we obtain:

ESj ,i{EZn
1
[(β̂Sj −β0)

Txix
T
i (β̂Sj −β0)|Sj , i]} = EZn

1
[(β̂Sj −β0)

Txix
T
i (β̂Sj −β0)]

= σ2tr[(xix
T
i )(XT

Sj
XSj )

−1],

whereσ2 = VarZn
1
(Xi), the variance of the sample, and tr(A) stands for the trace of the matrix A.

Therefore

E[L(ŷi,Sj ,yi)] = E[L(xT
i β0,yi)]+

σ2

2
E[L′′(xT

i β0,yi)]tr[(xix
T
i )(XT

Sj
XSj )

−1]+Rn,
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where the expectations are taken with respect to the distribution of the data. Moreover,Rn is of
order 1

n2
1
.

Proposition 3.5 establishes the approximation for the variance ofL(ŷi,Sj ,yi).

Proposition 3.5 Suppose that assumptions 1 and 2 hold. ThenVar(L(ŷi,Sj ,yi)) can be approxi-
mated as follows:

Var{L(ŷi,Sj ,yi)} = Var[L(xT
i β0,yi)]}+σ2tr[(xix

T
i )(XT

Sj
XSj )

−1{Cov(L(xT
i β0,yi),

L′′(xT
i β0,yi))+E[L′(xT

i β0,yi)]
2}+Rn,

whereσ2 = VarZn
1
(Yi |Xi) andRn is the remaining term of order1

n2
1
.

Proof: The proof is similar with that of proposition 3.2, in that we apply proposition 3.4 to
L2(ŷi,Sj ,yi) and we use the fact that

[L2(ŷi,Sj ,yi)]
′′ = 2L(ŷi,Sj ,yi)L

′′(ŷi,Sj ,yi)+2[L′(ŷi,Sj ,yi)]
2,

where prime indicates derivative with respect to the first argument of the loss function.

Example. To verify the above approximations we useL(ŷi,Sj ,yi) = (ŷi,Sj −yi)
2, the square error

loss and the case of simple regression, that is

yi = a+bzi + εi = xT
i β+ εi ,

wherexT
i = (1,zi), βT = (a,b) and(yi ,xi) ∈ Sc

j . The notation ˆyi,Sj stands forxT
i β̂Sj .

The exact expectation ofL(ŷi,Sj ,yi) = (xT
i β̂Sj −yi)

2 is given as:

E[L(ŷi,Sj ,yi)] = σ2 +σ2xT
i (XT

Sj
XSj )

−1xi .

The approximate expectation is

E[L(ŷi,Sj ,yi)] = σ2 +σ2tr(xixT
i (XT

Sj
XSj )

−1),

Becausetr(xixT
i (XT

Sj
XSj )

−1) = xT
i (XT

Sj
XSj )

−1xi , the approximation to the expectation agrees with
the exact computation. Similarly we can verify that the approximation of the variance produces the
same result as the exact computation. To illustrate further the formulas assumethatyi ∼ N(xT

i β,σ2),
then the exact calculation gives the variance ofL(ŷi,Sj ,yi),

Var(L(ŷi,Sj ,yi)) = 2σ4 +4σ4xT
i (XT

Sj
XSj )

−1xi +2σ4(xi(XT
Sj

XSj )
−1xi)

2.

The approximation is given by

Var(L(ŷi,Sj ,yi)) = 2σ4 +4σ4xT
i (XT

Sj
XSj )

−1xi +O(
1

n2
1

),

that is they agree up to first order terms.
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To complete the variance approximation of the estimatorn2
n1

µ̂J we need an approximation of the
covariance betweenL(ŷi,Sj ,yi) andL(ŷi′,Sj′ ,yi′). The following proposition expresses the approxi-
mation ofCov(L(ŷi,Sj ,yi),L(ŷi,Sj′ ,yi′)).

Proposition 3.5. Suppose that assumptions 1 and 2 hold. Then forj 6= j ′, j, j ′ ∈ {1,2, · · · ,J}
wheni 6= i′

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj′ ,yi′)) = σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj′
XSj′ )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1xi′

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr((xix

T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )

(XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1).

Wheni = i′,

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj′ ,yi′)) = Var(L(xT
i β0,yi))+

σ2

2
Cov(L(xT

i β0,yi),L
′′(xT

i β0,yi))

(xT
i (XT

Sj′
XSj′ )

−1xi +xT
i (XT

Sj
XSj )

−1xi)

+ σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj′
XSj′ )

−1(XT
1 X1)(XT

Sj
XSj )

−1xi

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr((xix

T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xix
T
i )

(XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1)

+
σ4

4
Var(L′′(xT

i β0,yi))x
T
i (XT

Sj
XSj )

−1xix
T
i (XT

Sj′
XSj′ )

−1xi .

Proposition 3.6. Let Sj be a training set,j = 1,2, · · · ,J. Then fori 6= i′

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj ,yi′)) = σ2(E[L′(xT
i β0,yi)])

2tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1].

The proofs of Proposition 3.5 and Proposition 3.6 can be found in Appendix C.

Remark: If the loss is square error,

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj ,yi′)) = 2σ4tr[(xix
T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1]. (3.14)

To estimate relationship (3.14) we only need to estimateσ. We estimateσ by the residual mean
square error.

Under square error loss, we have

Var(µ̂j) =
1

n2
2

n2

∑
i=1

{2σ4 +4σ4xT
i (XT

Sj
XSj )

−1xi}+
1

n2
2
∑ ∑

i6=i′
2σ4(xT

i (XT
Sj

XSj )
−1xi′)

2, (3.15)
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and

Cov(µ̂j , µ̂j ′) =
1

n2
2

∑i∈Sc
j
∑i′∈Sc

j′

i 6= i′
{2σ4tr{(xix

T
i )(XT

Sj
XSj )

−1

(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )(X

T
Sj′

XSj′ )
−1(XT

1 X1)(XT
Sj

XSj )
−1}}

1

n2
2

∑i∈Sc
j
∑i′∈Sc

j′

i = i′
{2σ4 +4σ4xT

i (XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1)xi

+2σ4tr{(xix
T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xix
T
i )

(XT
Sj′

XSj′ )
−1(XT

1 X1)(XT
Sj

XSj )
−1}} (3.16)

The final estimate is obtained from relation (3.1) whereVar(µ̂j) is estimated by using relation
(3.15),Cov(µ̂j , µ̂j ′) is estimated by using relation (3.16) and replacingσ2 by an estimator of it. To
obtain an estimator ofσ2, we fit the regression model and obtain ˆyi . Thenσ̂2 is the sample variance
of the errorŝεi = yi − ŷi , that is the residual mean square.

Remark: Note that to derive the results above, we used as the distribution of the datathe
conditional distribution ofY given X, in effect treatingX as fixed. Now, assume that instead of
using the conditional distribution as the data distribution, we treatX as random and use the joint
distribution of(X,Y). In this case, the data distribution is

f (x,y) = g(y−xTβ|x)k(x)

whereg(·) is the distribution of the errors andk(·) is the distribution of thexs. We can then derive the
formulas expressing the expectation, variance and covariance terms thatare needed using the joint
distribution of(X,Y). For example,E(β̂) = E(X,Y)[(X

TX)−1XTY] = EX{EY|X[(XTX)−1XTY|X]} =

β0, is still unbiased, andVar(β̂) = EX{VarY(β̂|X)}+VarX{EY(β̂|X)} = σ2EX[(XTX)−1]. Other
adjustments that take into account the distribution ofX are needed. These mainly concentrate on
taking expectations, overX, of terms that are functions of theXs, and can be easily computed from
the data by using bootstrap. As an illustration, under square error loss, the formula in proposition
3.4 becomesE[L(ŷi,Sj ,yi)] = σ2+σ2EX[tr[(xixT

i )(XT
Sj

XSj )
−1]], whereσ2 is the variance of the error

distribution.

4. Simulation Experiments.

We present here simulation experiments that illustrate the performance of the proposed estimators;
moreover, we compare these estimators with the estimator proposed by Nadeauand Bengio (2003).
The simulation experiments compare the proposed estimators with the Nadeau and Bengio estimator
under two different error losses, the square error and the absolute error loss.

4.1 Square Error Loss

We will first describe the experimental setup for the simple mean case.
We generated data sets of sizen = 100 from aN(0,1) distribution in S-plus. For each different

sizen1 of the training setSj we randomly selectn1 data points from the availablen and useSc
j , the

complement ofSj with respect to the generated data universe that contains 100 data points,as a test
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set. We takeJ to be 15 (as recommended by Nadeau and Bengio, 2003), and 50. We thencomputed
S2

µ̂j
= 1

J−1 ∑J
j=1(µ̂j − n2

n1
µ̂J)

2 and the estimator of the variance of the generalization error, given as

(1
J + n2

n1
)S2

µ̂j
.

We also computed the moment approximation estimator given by expressions (3.9) and (3.10).
Notice that we estimateσ2 by using the sample variance, that is,σ̂2 = 1

n−1 ∑n
i=1(Xi − X̄)2. We also

computed the variance estimator ofn2
n1

µ̂J using expression,

1
J

1
n2

Var(X2
i )+

1
J

4σ4

n1n2
+

J−1
J

{1
n
(
4σ4

n
− σ4

n2
1

+Var(X2
i )− (1− 1

n
)
σ4

n2
1

}.

The population varianceσ2 is estimated by using the sample variance averaged over 100 differ-
ent data sets. The termVar(X2

i ) is estimated as follows. LetZi = X2
i , i = 1,2, · · · ,n. We created

a new data universe usingZi and estimatêVar(Zi) = 1
n−1 ∑n

i=1(Zi − Z̄)2, whereZ̄ = 1
n ∑n

i=1Zi , over
100 different data sets.

Table 1 presents the results of the simulation. The first column of the table shows the size of
the test set. The second column reports the value of the Nadeau and Bengioestimator, while the
third column reports its variance. The variance is computed by simply taking the sample variance
of the estimator that was computed over the 100 independent data sets. The fourth column of
the table reports the value of the moment approximation estimator of the variance of the cross
validation estimator of the generalization error, while the fifth column reports thesample variance
of the moment approximation estimator.

n2 NB var(NB) MA var(MA)
10 0.0316 0.000310 0.0328 7.75e-06
15 0.0265 0.000241 0.0282 5.34e-05
20 0.0250 0.000179 0.0259 4.50e-05
25 0.0235 0.000213 0.0245 4.03e-05
30 0.0238 0.000145 0.0236 3.73e-05
35 0.0227 0.000175 0.0229 3.52e-05
40 0.0235 0.000188 0.0224 3.36e-05
45 0.0227 0.000122 0.0219 3.23e-05
50 0.0246 0.000236 0.0216 3.13e-05

Table 1: Simple mean case n=100, J=15. Nadeau-Bengio (NB) and moment approximation (MA)
estimators of the variance of the cross validation estimator of the generalizationerror, and
their sample variances.J = 15, and the results are averages over 100 independent data
sets. The size of the data universe is 100.

We notice that the variance of the moment approximation estimator is at least one order of mag-
nitude smaller than the variance of the Nadeau- Bengio estimator, thereby increasing the accuracy
of the moment estimator.

Figure 1 plots the values of the Nadeau-Bengio and moment approximation estimate of the
variance versus the sample size of the test set. Notice that the curve corresponding to the moment
approximation is smooth. This is in contrast to the behavior of the Nadeau-Bengio estimator, which
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Figure 1: Simple mean case n=100, J=15

seems to fluctuate (this also is indicated by the value of the sample variance associated with the
estimator and reported in table 1.)

n2 NB var(NB) MA var(MA)
10 0.0235 1.24e-04 0.0241 7.75e-06
15 0.0212 8.77e-05 0.0227 3.47e-05
20 0.0211 6.27e-05 0.0220 3.26e-05
25 0.0204 7.50e-05 0.0216 3.13e-05
30 0.0206 7.28e-05 0.0213 3.05e-05
35 0.0203 6.79e-05 0.0211 2.98e-05
40 0.0204 7.94e-05 0.0209 2.93e-05
45 0.0213 8.08e-05 0.0207 2.88e-05
50 0.0206 6.43e-05 0.0206 2.84e-05

Table 2: Simple mean case n=100, J=50. Moment approximation (MA) and Nadeau-Bengio (NB)
estimators of the variance the cross validation estimator of the generalization error and
their sample variances.J = 50, and the results are averages over 100 independent data
sets. The size of the data universe is 100.

1144



VARIANCE OF CROSS-VALIDATION ESTIMATORS OF THEGENERALIZATION ERROR

Table 2 presents the variance estimates of the CV estimators of the generalization error when
J = 50. In this case we notice that the variance of the moment approximation estimatoris about half
of the variance of the Nadeau-Bengio estimator.

size of the test set
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Figure 2: Simple mean case n=100, J=50

Figure 2 shows a plot of Nadeau-Bengio and moment approximation estimate ofthe variance as
a function of the size of the test set. The larger variance of the Nadeau-Bengio estimator that was
reported in table 2 can also be seen again in Figure 2.

Table 3 presents the values of the two variance estimators as well as their variance when the data
universe has sizen= 1000, for the caseJ = 15 andJ = 50. We notice that the performance, in terms
of variance, of the moment approximation estimator is, in both cases, superiorto the performance
of the Nadeau-Bengio estimator, always having variance that is smaller thanthe NB variance by one
order of magnitude.

To address the problem of bias we computed the exact (and theoretical) value of the variance
estimator ofn2

n1
µ̂J. Therefore, we computed, using formula (3.1),Var(n2

n1
µ̂J) under square error loss

and under the assumption of aN(0,1) distribution. The distributional assumption is used to obtain
the theoretical value. This is done only for the purpose of comparison and inorder to allow a bias
computation to be carried out without having to estimate higher order moments. Inpractice, the
distribution of the population from which the data arise is not known, and higher order moments
need to be estimated from the data.

The exact theoretical value ofVar(µ̂j) is

Var(µ̂j) =
2
n2

{1+
2
n1

+
n2

n2
1

}.
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n2 NB var(NB) MA var(MA)
J=15
100 0.00319 1.61e-06 0.00319 7.75e-06
150 0.00291 1.22e-06 0.00275 5.42e-08
200 0.00252 9.62e-07 0.00253 4.58e-08
250 0.00244 8.21e-07 0.00239 4.11e-08
300 0.00240 9.02e-07 0.00230 3.81e-08
350 0.00214 9.27e-07 0.00224 3.60e-08
400 0.00232 7.21e-07 0.00219 3.45e-08
450 0.00217 5.70e-07 0.00216 3.33e-08
500 0.00206 8.24e-07 0.00213 3.24e-08

J=50
100 0.00241 3.20e-07 0.00235 5.90e-08
150 0.00225 2.82e-07 0.00222 3.54e-08
200 0.00225 3.68e-07 0.00215 3.33e-08
250 0.00216 2.43e-07 0.00211 3.21e-08
300 0.00213 1.96e-07 0.00209 3.12e-08
350 0.00216 2.83e-07 0.00207 3.07e-08
400 0.00211 2.70e-07 0.00205 3.02e-08
450 0.00218 2.36e-07 0.00204 2.99e-08
500 0.00206 2.18e-07 0.00203 2.96e-08

Table 3: Simple mean case n=1000, J=15 and J=50. Moment approximation (MA) and Nadeau-
Bengio (NB) estimators of the variance of the cross validation estimator of the generaliza-
tion error under random selection, and their sample variances. The size of the data universe
is n = 1000 andJ = 15 and 50.

Using theorem 3.1 the approximation to the value ofVar(µ̂j) is

Var(µ̂j) =
2
n2

{1+
2
n1

+O(
1

n2
1

)}.

The same theorem provides the approximation toCov(µ̂j , µ̂j ′) as follows:

Cov(µ̂j , µ̂j ′) =
2
n
(1+

2
n
)+O(

1

n2
1

).

The exact theoretical computation of the covariance provides us with the formula

Cov(µ̂j , µ̂j ′) =
2
n
(1+

2
n
)+

2
n1

(
1
n1

− 1
n
).

Using these expressions we computed the exact value of the variance ofn2
n1

µ̂J for the square error
loss. This computation allows us to get a sense of the bias of the moment approximation and
Nadeau-Bengio estimators. Table 4 presents the results for the case where the data universe is 100
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n2 Exact Variance Bias of MA estimator Bias of NB estimator
10 0.0327 0.0001 -0.0011
15 0.0282 0 -0.0017
20 0.0259 0 -0.0009
25 0.0246 -0.0001 -0.0011
30 0.0237 -0.0001 0.0001
35 0.0232 -0.0003 -0.0005
40 0.0227 -0.0003 0.0008
45 0.0223 -0.0004 0.0004
50 0.0222 -0.0006 0.0024

Table 4: Bias of MA and NB estimators. Bias of MA of NB estimators for the caseof the simple
mean. The data universe has size 100, J=15. The bias is calculated as theexpectation of
the estimator minus the exact value.

andJ = 15. We observe that the moment approximation estimator has a very small bias, consistently
smaller than the bias of the Nadeau-Bengio estimator. Notice that when the sizesof the training and
test sets are equal (n1 = n2 = 50) the bias of the Nadeau-Bengio estimator is four times higher, in
absolute value, than that of the moment approximation estimator.

At this point, we remind the reader that the Nadeau-Bengio estimator given in (2.5) is generally
applicable. The proposed estimators take advantage of information about the data and the learning
algorithm. Hence, it is not completely surprising that they perform better thanthe Nadeau Bengio
estimator in terms of variance and bias.

For comparison reasons, after a referee’s suggestion, we computed the second estimator pro-
posed by Nadeau and Bengio(2003) and given by (2.6). Table 5 presents the values of the estima-
tors of the variance given by (2.5) and (2.6) and the moment approximation estimator. Expressions
(3.9) and (3.10) were used to obtain the needed variance and covariance terms. The size of the data
universe is 50, 100, 500 and 1000, the size of the test set is taken to be 10, 20, 100 and 200 and J
is either 15 or 50. ¿From table 5 we see that the estimator given by (2.6) is indeed conservative; its
value is almost twice as big as the value of either the cheap to compute Nadeau and Bengio esti-
mator given by (2.5) and the moment approximation estimator. It is interesting to notice that, when
the training set size is the same with the training set size used to compute (2.5) andthe moment
approximation estimator, the value of (2.6) is comparable to the value of the othertwo estimators.
This observation indicates the importance of the size of the training set in the computation of the
variance of the cross-validation estimators of the generalization error.

To exemplify the fact that the framework we propose allows one to compute thevariance estima-
tor of the k-fold cross validation estimator of the generalization error we computed the variance of
leave-one-out cross validation (LOOCV) estimator of the generalization error, the 4-fold, the 5-fold
and the 10-fold in the case of square error loss and when the data universe consisted of 100 data
points generated from a N(0,1) distribution. The case was prediction of simple mean. We did the
same when the data universe consisted of 1000 normal data points. Table 6presents the moment ap-
proximation variance estimators together with their variance and the corresponding NB estimators.
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Sample Size Training Set Size J NB MA NB(Conserv.)
50 10 15 0.0539 0.0537 0.0988
100 10 15 0.0314 0.0328 0.0542
50 20 15 0.0458 0.0462 0.1213
100 20 15 0.0257 0.0259 0.0456
50 10 50 0.0443 0.0456 0.0836
100 10 50 0.0236 0.0241 0.0420
50 20 50 0.0421 0.0430 0.1131
100 20 50 0.0218 0.0220 0.0467
500 100 15 0.0052 0.0051 0.0081
1000 100 15 0.0032 0.0032 0.0050
500 200 15 0.0044 0.0044 0.0082
1000 200 15 0.0025 0.0025 0.0041
500 100 50 0.0044 0.0043 0.0078
1000 100 50 0.0023 0.0023 0.0040
500 200 50 0.0042 0.0041 0.0081
1000 200 50 0.0022 0.0022 0.0040

Table 5: Comparison among three estimators. Values of NB, MA and the conservative NB estimates
for the case of the simple mean. The universe sample size is 50, 100, 500 and 1000.

k-fold MA Variance NB Variance
4-fold 0.02096 0.00003302 0.0417 0.001262

n=100 5-fold 0.02093 0.00003293 0.04516 0.0009909
10-fold 0.02089 0.0000328 0.04426 0.0005567
LOOCV 0.02086 0.0000327 0.04141 0.0002177
4-fold 0.002 3.02E-08 0.00423 1.308E-05

n=1000 5-fold 0.002 3.02E-08 0.00412 8.60E-06
10-fold 0.002 3.02E-08 0.00405 3.74E-06
LOOCV 0.002 3.02E-08 0.00398 2.00E-07

Table 6: Variance estimators for k-fold CV. Moment approximation and Nadeau-Bengio variance
estimators for k-fold cross-validation estimators of the generalization errorand their vari-
ances.

When the data universe is 100 the 4-fold cross validation divides it into 4 non-overlapping test
sets each containing 25 data points. Similarly, we define 5-fold and 10-fold cases. We notice that
the variance estimation of LOOCV is not appreciably better than that of the other cross validation
estimators. In fact, the slight advantage of the LOOCV diminishes when the datauniverse is large
and the size of the test set becomes large. For illustration purposes we present the NB estimator
and its variance. The value of the NB estimator is twice as large as the value of the moment
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approximation estimator. However, note that Nadeau and Bengio (2003) donot discuss the case
of k-fold cross validation.

K MSE Var Bias
4 0.02123 0.02098 0.002283
10 0.02099 0.02091 0.002224

Table 7: Comparison between 10-fold and 4-fold Cross Validation Under Simple Mean Case. MA
estimator is used to estimate the variance of the cross -validation estimator of the general-
ization error. The results reported in the table are averages over 100 different data sets.

To understand the effect of the loss function in the performance of the methods we used the
mean squared error (MSE) to compare the estimators as well as their variance. Table 7 presents
the values of the MSE and the variance, as well as the bias for the 4-fold and 10-fold estimators of
variance for the simple mean case. We see that the reduction in variance between the 4-fold and 10-
fold CV variance estimator is not appreciably different. This difference ismore pronounced when
the corresponding MSE are compared. Overall it appears that the 10-fold cross validation differs
from the 4-fold cross validation an order of magnitude less when the comparison between the two
is made on the basis of variance than when the comparison is made on the basis of MSE.

4.2 Absolute Error Loss

The previous theory was developed for loss functions that are differentiable. One loss that is not
differentiable at the mean is the absolute error loss. However, we are ableto apply the above theory
in the case of the absolute error loss because we can replace|X̄Sj −Xi | by the equivalent function
√

(X̄Sj −Xi)2 +d, whered is a small positive number. The function[(X̄Sj −Xi)
2 + d]1/2 replaces

the absolute error loss and is differentiable everywhere. We used = 1
n and 1

n2
and computed the

Nadeau-Bengio estimate and the moment approximation estimate for the sizes of thedata universe
of 100 and 500. Notice that the Nadeau-Bengio estimate was computed usingL(X̄Sj ,Xi) = |Xi −X̄Sj |,
while the moment approximation estimator uses the loss functionL(X̄Sj ,Xi) = [(Xi − X̄Sj )

2 +d]1/2,
which is almost the same with the absolute error loss. We generate data from aN(0,5) distribution
in S-plus and usedJ = 15.

Table 8 shows the values of the Nadeau-Bengio and moment approximation estimators together
with their sample variances. Notice thatd = 1

n was used in the first computation of the moment
approximation estimator, wheren is the size of the data universe, andd = 1

n2
, wheren2 is the size

of the test set was used in the second computation. The table reports resultsthat are averaged over
100 different data sets.

The first observation we make is that the effect ofd on the moment approximation estimator and
its sample variance is almost undetectable, as the values of the estimator and its sample variance
(averaged over 100 different data sets) do not change with d being1

n or 1
n2

. Secondly, we see that the
variance of the Nadeau-Bengio estimator is larger than the variance of the moment approximation
estimator by one order of magnitude.
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n2 NB estimator var(NB) MA estimator var(MA)
d = 1

n
10 0.0287 1.16e-04 0.0293 1.43e-05
15 0.0271 1.25e-04 0.0252 1.06e-05
20 0.0256 7.93e-05 0.0231 8.93e-06
25 0.0224 7.72e-05 0.0219 7.98e-06
30 0.0218 8.77e-05 0.0210 7.36e-06
35 0.0207 7.53e-05 0.0204 6.92e-06
40 0.0208 6.52e-05 0.0199 6.58e-06
45 0.0191 6.14e-05 0.0194 6.30e-06
50 0.0205 7.07e-05 0.0191 6.06e-06

d = 1
n2

10 0.0287 1.16e-04 0.0291 1.43e-05
15 0.0271 1.25e-04 0.0251 1.06e-05
20 0.0256 7.93e-05 0.0231 8.92e-06
25 0.0224 7.72e-05 0.0218 7.97e-06
30 0.0218 8.77e-05 0.0210 7.36e-06
35 0.0207 7.53e-05 0.0204 6.91e-06
40 0.0208 6.52e-05 0.0199 6.58e-06
45 0.0191 6.14e-05 0.0194 6.30e-06
50 0.0205 7.07e-05 0.0191 6.06e-06

Table 8: Absolute Error Loss Case n=100, J=15. Nadeau-Bengio (NB) and moment approximation
(MA) estimators and their corresponding variance estimates. Data are N(0,5) and J=15.
The loss function is absolute error.

Table 9 presents the Nadeau-Bengio and moment approximation estimators butnow the value of
J = 50. Notice that, in contrast with the square error loss case, the Nadeau-Bengio estimator has a
higher variance than the moment approximation estimator. Its variance is still an order of magnitude
higher than the variance of the moment approximation estimator.

Table 10 presents the two estimators and their corresponding sample variances when the size of
the data universe is 500. The population is still N(0,5) andd = 1/n. Notice that forJ = 15 the NB
estimate has larger, by two orders of magnitude, variance than the moment approximation estimator,
while J = 50 it still maintains a larger than the moment approximation estimator variance, only this
time by one order of magnitude.

4.3 Regression

In the regression case the data generation was done as follows. The model adopted was simple
regression, that isyi = α+βxi +εi , i = 1,2, · · · ,n, whereεi are independent, mean 0 and variance 1,
normal random variables. The parametersα, β were set to equal 2 and 3 respectively. The explana-
tory variable was generated from a uniform distribution with range [0,10].Finally, we generated the
errors from a N(0,1) distribution andyi = 2+3xi + εi , i = 1,2, · · · ,100. We generated 100 different
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n2 NB var(NB) MA var(MA)
d = 1

n
10 0.0208 3.18e-05 0.0216 7.77e-06
15 0.0209 2.48e-05 0.0203 6.89e-06
20 0.0206 2.92e-05 0.0197 6.46e-06
25 0.0189 2.30e-05 0.0193 6.19e-06
30 0.0199 2.41e-05 0.0190 6.00e-06
35 0.0191 2.45e-05 0.0187 5.86e-06
40 0.0192 2.49e-05 0.0185 5.73e-06
45 0.0188 3.16e-05 0.0184 5.61e-06
50 0.0195 2.56e-05 0.0182 5.50e-06

d = 1
n2

10 0.0208 3.18e-05 0.0214 7.75e-06
15 0.0209 2.48e-05 0.0202 6.88e-06
20 0.0206 2.92e-05 0.0196 6.45e-06
25 0.0189 2.30e-05 0.0192 6.19e-06
30 0.0199 2.41e-05 0.0190 6.00e-06
35 0.0191 2.45e-05 0.0187 5.86e-06
40 0.0192 2.49e-05 0.0185 5.73e-06
45 0.0188 3.16e-05 0.0183 5.61e-06
50 0.0195 2.56e-05 0.0182 5.50e-06

Table 9: Absolute Error Loss Case n=100, J=50. Nadeau-Bengio (NB) and moment approximation
(MA) estimators and their sample variance. Data areN(0,5) and J=50. The loss function
is absolute error.

data sets; for each data set, and for each value ofn2, n1 we computed the Nadeau-Bengio and the
moment approximation estimator and then average those over the 100 different data sets.

Tables 11 and 12 present the two estimators together with their corresponding sample variances
and for values of J equal to 15 and 50. Notice that the moment approximation estimator has variance
that is at least one order of magnitude smaller than the variance of Nadeau-Bengio estimator.

Table 13 computes the NB and moment approximation variance estimators of the generalization
error when the size of the data universe is 500. We see that the moment approximation estimator
still maintains a variance of an order of magnitude lower than the NB estimator.

We also computed the variance estimators for k-fold cross validation estimatorsof the gener-
alization error in the regression case. Table 14 shows the value of the momentapproximation and
Nadeau-Bengio estimator and their sample variances computed over 100 different data sets of size
100.

Again, the advantage of LOOCV in this case is questionable. Moreover, given the fact that 4-
fold cross validation saves a lot of computing time it seems to be preferable to use (recall that 4-fold
CV assigns 25% of the data points in the test set).
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n2 NB var(NB) MA var(MA)
J = 15

50 0.00651 8.31e-06 0.00588 1.09e-07
75 0.00527 3.19e-06 0.00506 8.04e-08
100 0.00455 3.23e-06 0.00465 6.79e-08
125 0.00459 2.62e-06 0.00440 6.09e-08
150 0.00428 3.10e-06 0.00424 5.64e-08
175 0.00420 2.55e-06 0.00412 5.33e-08
200 0.003971 2.41e-06 0.00403 5.10e-08
225 0.00390 1.83e-06 0.00396 4.92e-08
250 0.00361 2.03e-06 0.00390 4.78e-08

J = 50
50 0.00456 1.05e-06 0.00433 5.90e-08
75 0.00402 6.61e-07 0.00409 5.25e-08
100 0.00406 9.03e-07 0.00396 4.93e-08
125 0.00404 7.45e-07 0.00389 4.75e-08
150 0.00396 7.16e-07 0.00384 4.62e-08
175 0.00388 8.07e-07 0.00380 4.54e-08
200 0.00377 5.23e-07 0.00377 4.47e-08
225 0.00377 5.67e-07 0.00375 4.41e-08
250 0.00365 6.26e-07 0.00373 4.36e-08

Table 10: Absolute Error Loss Case n=500,d = 1
n. Nadeau-Bengio (NB) and moment approxima-

tion (MA) estimators and their sample variance. The size of the data universeis 500.

4.4 Classification

In this section we briefly indicate how these results can possibly be extendedto the classification
case. We present some ideas that appear promising in treating this case anda very limited simulation
experiment in the simplest case, where the prediction rule is based on the meanof the training set.
The results presented here are promising; however, we would like to stress that a more detailed
study than the one presented here, is required to understand the performance of these methods in
classification.

Recall that a central requirement on the loss function is to be differentiable. In the classification
case the loss function is an indicator function and hence it is discontinuous at one point. The idea
is to replace the discontinuous function by a continuous, differentiable function that is close to the
original loss function. We approximate therefore the indicator function by apolynomial of order
3. Let the data be(xi ,gi), i = 1, · · · ,n, wherexi indicates the data value, andgi indicates the group
membership. Assume that there are only two groups in the population; thengi = 1 if xi belongs in
group 1 andgi = 2 if xi belongs in group 2. Moreover, assume that group 1 has smaller mean than
group 2. The prediction rule we use states that ifX̄Sj −Xk > 0 thenXk belongs in group 1, otherwise
it belongs in group 2. Therefore, ˆgk is either 1 or 2 depending on whetherX̄Sj −Xk is greater than 0
or less than or equal to 0. The loss function is thenI(gk 6= ĝk).
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n2 NB var(NB) MA var(MA)
10 0.0327 0.000493 0.0326 1.14e-04
15 0.0293 0.000366 0.0284 8.44e-05
20 0.0259 0.000184 0.0260 7.21e-05
25 0.0242 0.000199 0.0247 6.29e-05
30 0.0235 0.000168 0.0238 5.74e-05
35 0.0226 0.000176 0.0232 5.66e-05
40 0.0235 0.000144 0.0227 5.35e-05
45 0.0249 0.000255 0.0223 5.16e-05
50 0.0233 0.000142 0.0221 5.06e-05

Table 11: Regression case n=100, J=15. Moment approximation (MA) and Nadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generalizationerror and
their sample variances in the regression case. The value ofJ is 15, and the results are
averages over 100 independent data sets. The size of the data universe is 100.
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Figure 3: Regression case n=100, J=15

We can write this loss function as a function ofzk = x̄Sj −xk, δk = I(gk = 1) and two continuous
differentiable functionsLk1 andLk2. Thus

I(gk 6= ĝk) = δkLk1 +(1−δk)Lk2,
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n2 NB var(NB) MA var(MA)
10 0.0253 1.84e-04 0.0242 6.00e-05
15 0.0233 1.29e-04 0.0229 5.41e-05
20 0.0228 1.24e-04 0.0222 5.06e-05
25 0.0223 1.15e-04 0.0218 4.92e-05
30 0.0219 1.07e-04 0.0215 4.79e-05
35 0.0222 1.10e-04 0.0213 4.70e-05
40 0.0215 1.00e-04 0.0212 4.63e-05
45 0.0231 1.31e-04 0.0211 4.60e-05
50 0.0231 9.56e-05 0.0210 4.54e-05

Table 12: Regression case n=100, J=50. Moment approximation (MA) and Nadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generalizationerror and
their sample variances in the regression case. The value ofJ is 50, and the results are
averages over 100 independent data sets. The size of the data universe is 100.

n2 NB var(NB) MA var(MA)
50 0.00653 7.64e-06 0.00643 8.94e-07
75 0.00563 4.80e-06 0.00555 6.71e-07
100 0.00498 4.10e-06 0.00511 5.92e-07
125 0.00470 3.86e-06 0.00483 5.02e-07
150 0.00495 4.35e-06 0.00464 4.54e-07
175 0.00469 3.57e-06 0.00452 4.32e-07
200 0.00450 2.42e-06 0.00443 4.16e-07

Table 13: Regression case n=500, J=15. Moment approximation (MA) and Nadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generalizationerror and
their sample variances in the regression case. The value ofJ is 15, and the results are
averages over 100 independent data sets. The size of the data universe is 500.

where

Łk1 =







1 ,zk < −h
2
h3 z3

k + 3
h2 z2

k ,−h≤ zk < 0
0 ,zk ≥ 0

Łk2 =







0 ,zk < 0
− 2

h3 z3
k + 3

h2 z2
k ,0≤ zk < h.

1 ,zk ≥ h

The needed terms then can be easily computed. For example, we can compute expectation of
the above loss function as

E{E(δkLk1 +(1−δk)Lk2|δk)} = P(δk = 1)E(Lk1|δk = 1)+P(δk = 0)E(Lk2|δk = 0)
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Figure 4: Regression case n=100, J=50

k-fold MA Variance NB Variance
4-fold 0.02132 0.0000357 0.04854 0.00227
5-fold 0.02135 0.0000358 0.04634 0.00121
10-fold 0.02138 0.0000359 0.04493 0.00062
LOOCV 0.02139 0.0000359 0.04323 0.00023

Table 14: Variance estimators in regression. Variance estimators of k-foldcross-validation estima-
tor of the generalization error and their sample variances, in regression.

and the termsP(δk = 1), P(δk = 0) are computed from the data. Similarly, we can compute from
the data all terms that involve variance and covariance terms.

Table 15 presents the results obtained from a small scale simulation. Data were generated in
Splusfrom two groups of normal distributions; these wereN(3,1) andN(1,1). Group membership
is assigned by generating a Bernoulli(0.6) random variable. If the value of 1 is obtained then the data
point is generated from aN(1,1) distribution, otherwise it is generated from aN(3,1). The training
set used 80% of the available data points. For example, whenn = 200 the training set contains 160
elements and thusn2 = 40. The value ofh in constructing theLk1, Lk2 functions was taken to be 0.1.

Table 15 shows the moment approximation variance estimator and NB estimator forvarious
values of the data universe. For illustration reasons we present the values of the MA estimator for
both cases when normality is assumed and when is not. We see that the moment approximation
estimator (computed without any distributional assumption) is very competitive.
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Table 15: Simple Classification Example

n MA.Free MA.Normal NB
200 0.0008355 0.0008275 0.0009240
2000 0.00008593 0.00008273 0.00010028
20000 0.000008603 0.000008299 0.000008815

Table 15. Moment approximation (MA) and Nadeau-Bengio (NB) estimators of the variance
of the cross validation estimator of the generalization error and their samplevariances in the
simple classification case. The value ofJ is 15, MA.Free denote the MA estimator without
distribution assumption and MA.Normal denote the MA estimator under normal distribution.
The results are averages over 100 independent data sets. 80 percent of the data are used as
training data; h used here is 0.1

5. Discussion and Conclusion

We presented a method for deriving variance estimators of the cross validation estimator of the
generalization error in the cases of smooth loss functions and the absolute error loss. The approx-
imation we propose illustrates clearly the role of the training and test sets in the estimation of the
variance of the generalization error. We also provide a unifying framework, under which we can
obtain variance estimators of the estimators of the generalization error for both, complete random
sampling and non-random test set selection.

We compared the moment approximation estimators with an estimator proposed by Nadeau and
Bengio (2003). The results indicate that the moment approximation estimators perform better in
terms of both, variance and bias, than the Nadeau and Bengio (2003) estimator. The new estimators
use additional information from both the data and the learning algorithm. On the other hand, the
Nadeau and Bengio estimator is computationally simpler than the moment approximationestima-
tor for general loss functions, as it does not require the computation of the derivatives of the loss
function. In the case of non-random test set selection, the Nadeau-Bengio estimator is not appro-
priate to use. The moment approximation estimator in this case is a reasonable estimator and can
be computed. It is interesting to notice that the results indicate against use of the leave-one-out
cross validation (LOOCV). Its slight advantage is terms of variance, overthe other forms of cross-
validation quickly diminishes as the size of the universe, and hence the size of the test set of other
cross validation schemes increases. Overall, a test set that use 25% of the available data seems to
be a reasonable compromise in selecting among the various forms of k-fold cross validation.

We presented results for general differential loss functions and for absolute error loss. We also
indicated possible extensions of this methodology to the classification problem and discussed briefly
a very simple version of the classification problem. An extensive study of thisproblem will be the
subject of a different paper. Finally, we would like to indicate here that themethods presented here
can similarly apply to SVM loss function as well as the kernel regression.
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Appendix A.

Here we present a series of lemmas that guarantee that the remainder term inthe approximations
for the case of sample mean.

Before we state these we need the following definitions.
Definition 1. Let (Ω,F ,P ) be a probability space. We say that a random variableX belongs in

theLp space ifE|X|p < ∞, p > 0.
Definition 2. A sequence of random numbersRn is said to beO(1/kn) if ∃ M andn0 such that

|knRn| < M, ∀n > n0, or, equivalently,knRn is bounded.
Lemma A.1 Let X, Y be independent random variables andX +Y ∈ Lr for somer ∈ (0,∞).

ThenX ∈ Lr andY ∈ Lr .
Proof. For a largeλ0 > 0,∀λ > λ0

P(|X| > λ) ≤ 2P(|X| > λ, |Y| < λ
2
)

≤ 2P(|X +Y| > λ
2
),

If E|X|r < +∞, thenE|X|r =
Z ∞

0
P[|X|r > λ]dλ. Hence, ifX +Y ∈ Lr ,

Z

λ≥λ0

P(|X|r > λ) =
Z

λ≥λ0

P(|X| > λ
1
r )dλ

≤ 2
Z

λ≥λ0

P(|X +Y| > λ 1
r

2
)dλ

= 2
Z

λ≥λ0

P(|X +Y|r >
λ
2r )dλ < ∞.

Thus,E|X|r < ∞. The proof forE|Y|r < ∞ is similar.
Lemma A.2 If 0 < r ′ < r andE|X|r < ∞, thenE|X|r ′ < ∞.

Proof. Write
(E|X|r ′)r/r ′ ≤ E(|X|r ′)r/r ′ = E|X|r < ∞,

and the proof is obtained by Jensen’s inequality.

Lemma A.3 If E|X̄n|p < ∞, thenE|X1|p < +∞, wherep∈ Z+, andX̄n =
1
n

n

∑
i=1

Xi is the sample

mean.
Proof. We will use transfinite induction. Forn = 1 andn = 2, it is trivial sinceX̄n = X1. For

n = 2, X̄2 = 1
2(X1 + X2) and use lemma 1 to obtain the result, relying on the fact thatX1, X2 are

identically distributed. Suppose now that forn ≤ k−1 the result holds. We will prove it true for
n = k. Write

E(|X̄k|p) = E(|1
k

k

∑
i=1

Xi |p) = E(|1
k
(
k−1

∑
i=1

Xi +Xk)|p).
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Thus

E|X̄k|p = E|1
k

Xk +
k−1

k
X̄k−1|p,

and using lemma 1, we obtainE(|Xk|) < ∞.
Lemma A.4 Let n > 2k anda1,a2, · · · ,an be such that

a1 +a2 + · · ·+an = 2k
ai ∈ Z,ai ≥ 0,ai 6= 1

}

(1)

a1 +a2 + · · ·+an = 2k−1
ai ∈ Z,ai ≥ 0,ai 6= 1

}

(2)

Then the number of solutions for (1) and (2), denoted byAn(2k) andAn(2k−1) respectively,
satisfyAn(2k) = O(nk), andAn(2k−1) = O(nk−1) .
Proof. The maximal order of theAn(2k) comes from the{(2, · · · ,2),(0, · · · ,0)}, where(2, · · · ,2)

is a k-tuple. There are

(

n
k

)

solutions for (1) of this form. The order isO(nk), because

(

n
k

)

=
n(n−1) · · ·(n−k+1)

k!
= O(nk).

The maximal order of theAn(2k− 1) comes from the{(2, · · · ,2,3),(0, · · · ,0)}, where the k-

tuple(2,2, · · · ,2,3) hask−1 elements equal to 2. There are

(

n
k−1

)

solutions of (2) of this form.

The order isO(nk−1) because

(

n
k−1

)

=
n(n−1) · · ·(n−k+2)

(k−1)!
= O(nk−1).

Lemma A.5 Let X1,X2, · · · ,Xn be independent identically distributed random variables with
E(Xi) = µ, andk is a positive integer. ThenE(X̄ −µ)2k−1 andE(X̄ −µ)2k, if they exist, are both
O(1/nk).
Proof. Without loss of generality, we supposeE(X) = µ= 0, then

E(X̄2k
n ) =

1
n2k E(

n

∑
i=1

Xi)
2k =

O(nk)

n2k = O(n−k),

E(X̄n)
2k−1 =

1
n2k−1E(

n

∑
i=1

Xi)
2k−1 =

O(nk−1)

n2k−1 = O(n−k).

Appendix B.

Here we present the set up we use for the linear regression case and lemmas that guarantee the
validity of the obtained results.

The Gauss-Markov set up for a linear model definesyi = xT
i β + εi , wherey1,y2, · · · ,yn are

observable response variables andX = (xi j ) is an n1 × p matrix of known constants. Moreover
ε1,ε2, · · · ,εn are unobservable random variables that follow a probability distributionF , and are
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such thatE(εi) = 0 andVar(εi) = σ2, ε1,ε2, · · · ,εn are independent. The least square solution is
β̂ = (XTX)−1XTY, whereY is ann1×1 vector, so thatEβ̂ = β andVar(β̂) = σ2(XTX)−1.

Consider an arbitrary linear combinationUn = λT(β̂−β), λ ∈ R
P. ThenU = λT(XTX)−1XTεi

with c = λT(XTX)−1XT . To obtain the asymptotic distribution ofU all is needed is to verify thatc
satisfies the regularity condition of Hajek-Sidak central limit theorem.

We need first the following definition.
Definition(Convergence in distribution). A sequence{Tn} of random variables with distributions
{Fn} is said to converge in distribution (or in law) to a (possible degenerate) random variableT with
a distribution functionF , if for everyε > 0, there existsn0 = n0(ε), n0 ∈ Z+ such that at every point
of continuityx of F

|Fn(x)−F(x)| < ε,

for all n≥ n0.

Hajek-Sidak Central Limit Theorm (Sen and Singer, 1993). Let{Yn} be a sequence of inde-
pendent, identically distributed random variables with meanµ and varianceσ2 finite; let {Cn} be a
sequence of real vectors. Then ifCn = (cn1,cn2, · · · ,cnn)

T and

max1≤i≤nc2
ni

∑n
i=1c2

ni

→ 0, as n→ +∞

it follows that

Zn =
∑n

i=1cni(Yi −µ)
√

σ2 ∑n
i=1c2

ni

D→ Z

where Z is aN(0,1) random variable.

The following theorem completes the proof of the asymptotic distribution of the least squares
estimator.

Cramer-Wold Theorem (Sen and Singer, 1993). LetX1,X2, · · · be random vectors inRp; then

Xn
D→ X if and only if, for every fixedλ ∈ Rp we haveλTXn

D→ λTX.

Remark: We note here that the generalized Noether condition (assumption 2) can bemodified to
extend the asymptotic normality result to the heteroscedastic model, that is, the model whereE(ε) =
σ2

i , i = 1,2, · · · ,n1. Also notice that the normality of the least squares estimators is not obtained
under normality of the errors. Assumptions 1 and 2 of section 3.2 together withthe finiteness of the
second moment of the, otherwise unknown, error distribution suffices for these results to hold.

The following lemmas that are listed without proof are used to arrive at the given form of the
covariance terms.

Lemma B.1Let U be distributed as aN(0,V) random variable. Then

Var(UTAU) = 2tr(AV)2

whereA is a known matrix.
Lemma B.2Let U be distributed as aN(µ,V) random variable. Then
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(i) E(UTAU) = tr(AV)+µTAµ,

(ii) Cov(U,UTAU) = 2VAµ,

(iii) Cov(UTPU,UTQU) = 2tr[PVQV]+4µTPVQµ.

The following lemmas are used in establishing the equivalence of the different cases in the
computation of the covariance terms. The first lemma, the well-know Holder’s inequality, is stated
without proof.

Lemma B.3 Denote by||X||p = E1/p(|X|p), p > 0, whereX is a random variable, thep-norm
of X. Then, ifX, Y are measurable functions on a probability space forp > 1, p′ > 1 , 1

p + 1
p′ = 1

E|XY| ≤ ||X||p · ||Y||p′ .

The special case wherep = p′ = 2 is known as Schwarz’s inequality.

Lemma B.4 Let Sj , Sj ′ be training sets andSc
j , Sc

j ′ their corresponding test sets. Assume that

for (yi ,xi) ∈ Sc
j , (yi ,xi) ∈ Sj , for somei ∈ {1,2, · · · ,n2}. Assume thatE([L′(xT

i′ β0,yi′)]
2) < ∞, and

E[L4(xT
i′ β0,yi′)] < ∞,

sup||β̂Sj′ −β0||≤k/
√

n1
|E[L(xiβ0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)]

− E[L(xiβ0,yi)]E[L′(xT
i′ β0,yi′)]E[xT

i′ (β̂Sj′ −β0)]| = o(1)

Proof Write

|E[L(xiβ0,yi)L
′(xT

i′ β0,yi′)x
T
i′ (β̂Sj′ −β0)]−E[L(xiβ0,yi)]E[L′(xT

i′ β0,yi′)]E[xT
i′ (β̂Sj′ −β0)]|

≤ |E[L(xiβ0,yi)L
′(xT

i′ β0,yi′)x
T
i′ (β̂Sj′ −β0)]|+ |E[L(xiβ0,yi)]E[L′(xT

i′ β0,yi′)]E[xT
i′ (β̂Sj′ −β0)]

≤ E{|L(xiβ0,yi)x
T
i′ (β̂Sj′ −β0)||L′(xT

i′ β0,yi′)|}+ |E[L(xiβ0,yi)]||E[L′(xT
i′ β0,yi′)]||E[xT

i′ (β̂Sj′ −β0)]

Using lemma A2.3 and the fact thatE[xT
i′ (β̂Sj′ −β0)] = 0 the above relationship becomes:

|E[L(xiβ0,yi)L
′(xT

i′ β0,yi′)x
T
i′ (β̂Sj′ −β0)]−E[L(xiβ0,yi)]E[L′(xT

i′ β0,yi′)]E[xT
i′ (β̂Sj′ −β0)]|

≤
√

E([L(xT
i′ β0,yi′)]2)

√

E[L2(xT
i β0,yi)(β̂Sj′ −β0)xi′xT

i′ (β̂Sj′ −β0)]

Apply once more Lemma A2.3 on

E[L2(xT
i β0,yi)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)]

≤
√

E[L4(xT
i β0,yi)

√

E[(β̂Sj′ −β0)xi′xT
i′ (β̂Sj′ −β0)]
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Thus

sup||β̂Sj′ −β0||≤k/
√

n1
|E[L(xiβ0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)]

−E[L(xiβ0,yi)]E[L′(xT
i′ β0,yi′)]E[xT

i′ (β̂Sj′ −β0)]|

≤ sup||β̂Sj′ −β0||≤k/
√

n1
M · 4

√

E[(β̂Sj′ −β0)xi′xT
i′ (β̂Sj′ −β0)]2

≤ M · 4

√

[(
p

∑
l=1

xi′,l )2 k2

p2n1
]2

≤ 1√
n1

[
Mk

p
(

p

∑
l=1

xi′,l )]

≤ c√
n1

wherec = Mk
p (∑p

l=1xi′,l ) < ∞.

Lemma B.5 Let Sj ,Sj ′ be two training sets andSc
j , Sc

j ′ be their corresponding test sets. Under

the assumption thatE[L′′(xT
i β0,yi)] is finite and for some(yi ,xi) ∈ Sc

j , (yi ,xi) ∈ Sj ′ .

sup||β̂Sj′ −β0||≤k/
√

n1
|E[L(xT

i β0,yi)L
′′(xT

i′ β0,yi′)(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]

−E[L(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]| = o(1)

Proof. Write

|E[L(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)]

−E[L(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]|

≤ |E[L(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)]|

+|E[L(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]|

The first term of the above relationship gives:

|E[L(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)]|

≤ E|{L(xT
i β0,yi)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)}L′′(xT

i′ β0,yi′)|

≤
√

E[L′′(xT
i′ β0,yi′)2]

√

E[L2(xT
i β0,yi)((β̂Sj′ −β0)xi′xT

i′ (β̂Sj′ −β0)2)]

≤ c
n1

wherec is a constant. The second term is

|E[L(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]|

≤ E[|L(xT
i β0,yi)L

′′(xT
i′ β0,yi′)|]E[xT

i′ (β̂Sj′ −β0)]
2

≤ |E[|L(xT
i β0,yi)|]E[|L′′(xT

i′ β0,yi′)|]
c1

n1

≤ c∗

n1
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wherec∗ is a constant. Thus the lemma is proved. Similarly we can prove that the terms, in the
computation of covariance, where(yi ,xi) ∈ Sj ′ and/or(yi′ ,xi′) ∈ Sj can be replaced and treated as
the case where(yi ,xi) /∈ Sj ′ and/or(yi′ ,xi′) /∈ Sj in the neighborhood of the true value ofβ0.

Lemma B.6Suppose

x =

(

u
v

)

∼ MVN

((

0
0

)

,

(

Σ11 Σ12

Σ21 Σ22

))

whereu is q×1 vector,v is (p−q)×1 vector,a is a knownq×1 vector,B is known(p−q)×(p−q)
matrix.
Then

E(aTuvTBv) = 0.

Proof: Using conditional probability argument, we have

E(aTuvTBv) = Eu{Ev|u[a
TuvTBv]}

= Eu{aTuEv|u[v
TBv]}

= Eu{aTu[tr(BΣ22·1)− (Σ21Σ−1
11 u)TB(Σ21Σ−1

11 u)]}
= Eu{aTu(Σ21Σ−1

11 u)TB(Σ21Σ−1
11 u)}

= Eu{aTuuTΣ−1
11 Σ12B(Σ21Σ−1

11 u)}
= Eu{aTuuTCu)}
= aTEu{uuTCu}
= aT{Cov(u,uTCu)+EuE(uTCu)}
= aT2Σ22C ·0+0

= 0

wherec = Σ−1
11 Σ12BΣ21Σ−1

11 . We use the property that ifx is N(µ,V), thencov(x,xTAx) = 2vAµ.
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Appendix C.

Proof of Proposition 3.5: To obtain the approximation given above we need first an approximation
for the productL(ŷi,Sj ,yi)L(ŷi′,Sj′ ,yi′). Using expansion (3.13) we obtain:

L(ŷi,Sj ,yi)L(ŷi′,Sj′ ,yi′) = L(xiβ0,yi)L(xT
i′ β0,yi′)+L(xiβ0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj −β0)

+
1
2

L(xiβ0,yi)L
′′(xT

i′ β0,yi′)x
T
i′ (β̂Sj′ −β0)

Txi′x
T
i′ (β̂Sj′ −β0)

+ L′(xiβ0,yi)x
T
i (β̂Sj −β0)L(xT

i′ β0,yi′)

+ L′(xiβ0,yi)x
T
i (β̂Sj −β0)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)

+
1
2

L(xT
i β0,yi)x

T
i (β̂Sj −β0)L

′(xT
i′ β0,yi′)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)

+
1
2

L(xT
i′ β0,yi′)L

′′(xT
i β0,yi)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

+
1
2

L′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)L

′′(xT
i β0,yi)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

+
1
4

L′′(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

(β̂Sj′ −β0)
Txi′x

T
i′ (β̂Sj′ −β0)+Rn. (1)

We need the expectation, over everything random, of relationship (1). Assume first thati 6= i′.
Recall that(yi ,xi) ∈ Sc

j and(yi′ ,xi′) ∈ Sc
j ′ and(yi ,xi) is independent of(yi′ ,xi′). Then the first term of

the above expansion is

E[L(xiβ0,yi)]E[L(xT
i′ β0,yi′)] = (E[L(xiβ0,yi)])

2. (2)

(If L(xT
i β,yi) = (xT

i β0−yi)
2 = ε2

i and theE(ε2
i ) = σ2).

We need now

E{L(xT
i β0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)} (3)

Notice that all expectations here are conditional onX, that is, we treat the fixed design case.
To evaluate this expectation we need to distinguish between two cases. The first corresponding to
(yi ,xi) /∈ Sj ′ . In this case (3) equals 0. The second corresponds to(yi ,xi) ∈ Sj ′ . Lemma B.4 of the
appendix proves that (3) can be replaced by

E[L(xT
i β0,yi)]E[L′(xT

i′ β0,yi′)]E[xT
i′ (β̂Sj′ −β0)] = 0. (4)

Therefore the second term is 0. Similarly, the expectation of the third term is

σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xi′x

T
i′ )(X

T
Sj′

XSj′ )
−1], (5)

in both cases, when(yi ,xi) /∈ Sj ′ and when(yi ,xi) ∈ Sj ′ .
The expectation of the fourth term of relationship (1) is 0. To evaluate the expectation of the fifth

term we distinguish four cases:(i)(yi ,xi) /∈ Sj ′ and(yi′ ,xi′) /∈ Sj , (ii) (yi ,xi) /∈ Sj ′ and(yi′ ,xi′) ∈ Sj ,
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(iii) (yi ,xi) ∈ Sj ′ and(yi′ ,xi′) /∈ Sj , (iv) (yi ,xi) ∈ Sj ′ but (yi′ ,xi′) ∈ Sj . Lemma B.6 of the appendix
allows in case (ii), (iii) and (iv), the replacement of the correct value of the expectation by the value
obtained from expression (6) given below. Thus, the expectation of thefifth term is:

E[L′(xT
i β0,yi)]E[L′(xT

i′ β0,yi′)]x
T
i Cov(β̂Sj , β̂Sj′ )xi′ . (6)

SinceSj
T

Sj ′ 6= Ø, and assuming theXSj , XSj′ have that upperk× p part common, relationship
(.6) can be written as

σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1xi′ ,

whereX1 is of dimensionk× p, k = Card(Sj
T

Sj ′), andσ2 is the population variance. To compute
the expectation of the sixth term we again distinguish between case (i), (ii), (iii)and (iv) as above.
However, all cases reduce to the case (i). For this expectation we have from lemma B.6,

1
2
(E[L′(xT

i β0,yi)])E[L′′(xT
i′ β0,yi′)]E[xT

i (β̂Sj −β0)(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)] = 0. (7)

For the expectation of the seventh term we distinguish two cases: (i)(yi′ ,xi′) /∈ Sj and (ii)
(yi′ ,xi′) ∈ Sj . Both cases can be treated using the following expression for the expectation of the
seventh term:

σ2

2
E[L(xT

i′ β0,yi′)](E[L′′(xT
i β0,yi)])E[(β̂Sj −β0)xix

T
i (β̂Sj −β0)]

=
σ2

2
E[L(xT

i′ β0,yi′)](E[L′′(xT
i β0,yi)])tr[(xix

T
i )(XT

Sj
XSj )

−1]. (8)

The expectation of the eighth term is treated as the expectation of the sixth term, therefore it is
given by relationship (7). For the expectation of last term we distinguish thefour different cases
that are listed above. In this case again all different cases can be treated as case (i). Therefore the
expectation of the ninth term is

1
4

E[L′′(xT
i β0,yi)]

2E[(β̂Sj −β0)
Txix

T
i (β̂Sj −β0)(β̂Sj′ −β0)

Txi′x
T
i′ (β̂Sj′ −β0)]

(9)

But

E[(β̂Sj −β0)
Txix

T
i (β̂Sj −β0)(β̂Sj′ −β0)

Txi′x
T
i′ (β̂Sj′ −β0)]

= 2tr[(xix
T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1]

+σ4tr[(xix
T
i )(XT

Sj
XSj )

−1] · tr[(xi′x
T
i′ )(X

T
Sj′

XSj′ )
−1]. (10)

Therefore the covariance is given as

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj′ ,yi′)) = σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1xi′

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr((xix

T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )

(XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1).
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Note that, whenL is the square error loss the covariance is given as

2σ4tr{(xix
T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1}.

Wheni = i′, the covariance is given as

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj′ ,yi′)) = Var(L(xT
i β0,yi))+

σ2

2
Cov(L(xT

i β0,yi),L
′′(xT

i β0,yi))

(xT
i (XT

Sj′
XSj′ )

−1xi +xT
i (XT

Sj
XSj )

−1xi)

+ σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj′
XSj′ )

−1(XT
1 X1)(XT

Sj
XSj )

−1)xi

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr((xix

T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xix
T
i )

(XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1)

+
σ4

4
Var(L′′(xT

i β0,yi))x
T
i (XT

Sj
XSj )

−1xix
T
i (XT

Sj′
XSj′ )

−1xi .

Note that, whenL is the square error loss the covariance is given as

2σ4 +4σ4xT
i (XT

Sj′
XSj′ )

−1(XT
1 X1)(XT

Sj
XSj )

−1)xi

+2σ4tr{(xix
T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1}

Proof of Proposition 3.6: Write:

L(ŷi,Sj ,yi)L(ŷi′,Sj ,yi′) = L(xiβ0,yi)L(xT
i′ β0,yi′)+L(xiβ0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj −β0)

+
1
2

L(xiβ0,yi)L
′′(xT

i′ β0,yi′)(β̂Sj −β0)
Txi′x

T
i′ (β̂Sj −β0)

+ L′(xiβ0,yi)L(xT
i′ β0,yi′)x

T
i (β̂Sj −β0)

+ L′(xiβ0,yi)x
T
i (β̂Sj −β0)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj −β0)

+
1
2

L′(xT
i β0,yi)L

′′(xT
i′ β0,yi′)x

T
i (β̂Sj −β0)(β̂Sj −β0)xi′x

T
i′ (β̂Sj −β0)

+
1
2

L(xT
i′ β0,yi′)L

′′(xT
i β0,yi)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

+
1
2

L′(xT
i′ β0,yi′)L

′′(xT
i β0,yi)x

T
i′ (β̂Sj −β0)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

+
1
4

L′′(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

(β̂Sj −β0)
Txi′x

T
i′ (β̂Sj −β0)+Rn. (11)
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We need to evaluate the expectation of relation (11). We have

E{L(ŷi,Sj ,yi)L(ŷi′,Sj ,yi′)}

= (E[L(xT
i β0,yi)])

2 +
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xi′x

T
i′ )(X

T
Sj

XSj )
−1]

+ σ2E[L′(xT
i β0,yi)])

2tr[(xix
T
i )(XT

Sj
XSj )

−1]

+
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xix

T
i )(XT

Sj
XSj )

−1]

+
1
2

E[L′(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[xT
i (β̂Sj −β0)(β̂Sj −β0)xi′x

T
i′ (β̂Sj −β0)]

+
1
2

E[L′(xT
i′ β0,yi′)]E[L′′(xT

i β0,yi)]E[xT
i′ (β̂Sj −β0)(β̂Sj −β0)xix

T
i (β̂Sj −β0)]

+
1
4
(E[L′′(xT

i β0,yi)])
2E[(β̂Sj −β0)xix

T
i (β̂Sj −β0)(β̂Sj −β0)xi′x

T
i′ (β̂Sj −β0)].

Now,
(

xT
i (β̂Sj −β0)

xT
i′ (β̂Sj −β0)

)

∼ MVN(

(

0
0

)

,Σ) (12)

where

Σ = σ2

(

xT
i (XT

Sj
XSj )

−1xi xT
i (XT

Sj
XSj )

−1xi′

xT
i′ (X

T
Sj

XSj )
−1xi xT

i′ (X
T
Sj

XSj )
−1xi′

)

.

Notice here that we do not assume normality of the errors. The assumption ofnormality for the error
distribution is too restrictive. Instead, assumptions A1 and A2 establish the asymptotic distribution
of the least squares estimators as the size of the training setn1 becomes larger and larger. That
guarantees that (12) holds. Therefore,

E{L(ŷi,Sj ,yi)L(ŷi′,Sj ,yi′)}

= (E[L(xT
i β0,yi)])

2 +
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xi′x

T
i′ )(X

T
Sj

XSj )
−1]

+ σ2E[L′(xT
i β0,yi)])

2tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xix

T
i )(XT

Sj
XSj )

−1]

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

4
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1]tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

= (E[L(xT
i β0,yi)])

2 +
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)](tr[(xix

T
i )(XT

Sj
XSj )

−1]

+ tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1])+σ2E[L′(xT

i β0,yi)])
2tr[(xi′x

T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

4
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1]tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1].
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Therefore,

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj ,yi′)) = σ2(E[L′(xT
i β0,yi)])

2tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1].
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Abstract

We present a family of positive definite kernels on measures,characterized by the fact that the value
of the kernel between two measures is a function of their sum.These kernels can be used to derive
kernels on structured objects, such as images and texts, by representing these objects as sets of
components, such as pixels or words, or more generally as measures on the space of components.
Several kernels studied in this work make use of common quantities defined on measures such
as entropy or generalized variance to detect similarities.Given an a priori kernel on the space
of components itself, the approach is further extended by restating the previous results in a more
efficient and flexible framework using the “kernel trick”. Finally, a constructive approach to such
positive definite kernels through an integral representation theorem is proved, before presenting
experimental results on a benchmark experiment of handwritten digits classification to illustrate
the validity of the approach.

Keywords: kernels on measures, semigroup theory, Jensen divergence,generalized variance,
reproducing kernel Hilbert space

1. Introduction

The challenge of performing classification or regression tasks over complex and non vectorial ob-
jects is an increasingly important problem in machine learning, motivated by diverse applications
such as bioinformatics or multimedia document processing. The kernel methodapproach to such
problems (Scḧolkopf and Smola, 2002) is grounded on the choice of a proper similarity measure,
namely a positive definite (p.d.) kernel defined between pairs of objects ofinterest, to be used
alongside with kernel methods such as support vector machines (Boser et al., 1992). While natural
similarities defined through dot-products and related distances are availablewhen the objects lie in
a Hilbert space, there is no standard dot-product to compare strings, texts, videos, graphs or other
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structured objects. This situation motivates the proposal of various kernels, either tuned and trained
to be efficient on specific applications or useful in more general cases.

One possible approach to kernel design for such complex objects consists in representing them
by sets of basic components easier to manipulate, and designing kernels on such sets. Such basic
components can typically be subparts of the original complex objects, obtained by exhaustive enu-
meration or random sampling. For example, a very common way to represent atext for applications
such as text classification and information retrieval is to break it into words and consider it as a
bag of words, that is, a finite set of weighted terms. Another possibility is to extract all fixed-length
blocks of consecutive letters and represent the text by the vector of counts of all blocks (Leslie et al.,
2002), or even to add to this representation additional blocks obtained by slight modifications of the
blocks present in the text with different weighting schemes (Leslie et al., 2003). Similarly, a grey-
level digitalized image can be considered as a finite set of points ofR

3 where each point(x,y, I)
stands for the intensityI displayed on the pixel(x,y) in that image (Kondor and Jebara, 2003).

Once such a representation is obtained, different strategies have beenadopted to design kernels
on these descriptions of complex objects. When the set of basic componentsis finite, this repre-
sentation amounts to encode a complex object as a finite-dimensional vector ofcounters, and any
kernel for vectors can be then translated to a kernel for complex objectthrough this feature represen-
tation (Joachims, 2002, Leslie et al., 2002, 2003). For more general situations, several authors have
proposed to handle such weighted lists of points by first fitting a probability distribution to each
list, and defining a kernel between the resulting distributions (Lafferty andLebanon, 2002, Jebara
et al., 2004, Kondor and Jebara, 2003, Hein and Bousquet, 2005). Alternatively, Cuturi and Vert
(2005) use a parametric family of densities and a Bayesian framework to define a kernel for strings
based on the mutual information between their sets of variable-length blocks,using the concept of
mutual information kernels (Seeger, 2002). Finally, Wolf and Shashua (2003) recently proposed a
formulation rooted in kernel canonical correlation analysis (Bach and Jordan, 2002, Melzer et al.,
2001, Akaho, 2001) which makes use of the principal angles between thesubspaces generated by
the two sets of points to be compared when considered in a feature space.

We explore in this contribution a different direction to kernel design for weighted lists of basic
components. Observing that such a list can be conveniently representedby a molecular measure
on the set of basic components, that is a weighted sum of Dirac measures, or that the distribution
of points might be fitted by a statistical model and result in a density on the same set, we formally
focus our attention on the problem of defining a kernel between finite measures on the space of basic
components. More precisely, we explore the set of kernels between measures that can be expressed
as a function of their sum, that is:

k(µ,µ′) = ϕ(µ+µ′). (1)

The rationale behind this formulation is that if two measures or sets of pointsµ andµ′ overlap, then
it is expected that the sumµ+ µ′ is more concentrated and less scattered than if they do not. As a
result, we typically expectϕ to quantify the dispersion of its argument, increasing when it is more
concentrated. This setting is therefore a broad generalization of the observation by Cuturi and Vert
(2005) that a valid kernel for strings, seen as bags of variable-lengthblocks, is obtained from the
compression rate of theconcatenationof the two strings by a particular compression algorithm.

The set of measures endowed with the addition is an Abelian semigroup, and the kernel (1)
is exactly what Berg et al. (1984) call asemigroup kernel. The main contribution of this paper
is to present several valid positive definite (p.d.) semigroup kernels for molecular measures or

1170



SEMIGROUPKERNELS ONMEASURES

densities. As expected, we prove that several functionsϕ that quantify the dispersion of measures
through their entropy or through their variance matrix result in valid p.d. kernels. Using entropy to
compare two measures is not a new idea (Rao, 1987) but it was recently restated within different
frameworks (Hein and Bousquet, 2005, Endres and Schindelin, 2003,Fuglede and Topsøe, 2004).
We introduce entropy in this paper slightly differently, noting that it is a semigroup negative definite
function defined on measures. On the other hand, the use of generalizedvariance to derive a positive
definite kernel between measures as proposed here is new to our knowledge. We further show how
such kernels can be applied to molecular measures through regularization operations. In the case of
the kernel based on the spectrum of the variance matrix, we show how it can be applied implicitly
for molecular measures mapped to a reproducing kernel Hilbert space when a p.d. kernel on the
space of basic components is provided, thanks to an application of the “kernel trick”.

Besides these examples of practical relevance, we also consider the question of characterizing
all functionsϕ that lead to a p.d. kernel through (1). Using the general theory of semigroup kernels
we state an integral representation of such kernels and study the semicharacters involved in this
representation. This new result provides a constructive characterization of such kernels, which we
briefly explore by showing that Bayesian mixtures over exponential modelscan be seen as natural
functionsϕ that lead to p.d. kernels, thus making the link with the particular case treated by Cuturi
and Vert (2005).

This paper is organized as follows. We first introduce elements of measurerepresentations of
weighted lists and define the semigroup formalism and the notion of semigroup p.d. kernel in Sec-
tion 2. Section 3 contains two examples of semigroup p.d. kernels, which are however usually
not defined for molecular measures: the entropy kernel and the inversegeneralized variance (IGV)
kernel. Through regularization procedures, practical applications ofsuch kernels on molecular mea-
sures are proposed in Section 4, and the approach is further extendedby kernelizing the IGV through
an a priori kernel defined itself on the space of components in Section 5. Section 6 contains the gen-
eral integral representation of semigroup kernels and Section 7 makes thelink between p.d. kernels
and Bayesian posterior mixture probabilities. Finally, Section 8 contains an empirical evaluation of
the proposed kernels on a benchmark experiment of handwritten digits classification.

2. Notations and Framework: Semigroup Kernels on Measures

In this section we set up the framework and notations of this paper, in particular the idea of semi-
group kernel on the semigroup of measures.

2.1 Measures on Basic Components

We model the space of basic components by a Hausdorff space(X ,B,ν) endowed with its Borel
σ-algebra and a Borel dominant measureν. A positive Radon measureµ is a positive Borel measure
which satisfies(i)µ(C) < +∞ for any compact subsetC ⊆ X and (ii)µ(B) = sup{µ(C)|C ⊆ B,C
compact} for anyB∈ B (see for example Berg et al. (1984) for the construction of Radon measures
on Hausdorff spaces). The set of positive bounded (i.e.,µ(X ) < +∞) Radon measures onX is de-
noted byMb

+(X ). We introduce the subset ofMb
+(X ) of molecular (or atomic) measures Mol+(X ),

namely measures such that

supp(µ)
def
= {x∈ X |µ(U) > 0, for all open subsetU s.t. x∈U}

1171



CUTURI, FUKUMIZU AND VERT

is finite, and we denote byδx ∈ Mol+(X ) the molecular (Dirac) measure of weight 1 onx. For
a molecular measureµ, anadmissible baseof µ is a finite listγ of weighted points ofX , namely
γ = (xi ,ai)

d
i=1, wherexi ∈ X andai > 0 for 1≤ i ≤ d, such thatµ= ∑d

i=1aiδxi . We write in that case
|γ| = ∑d

i=1ai and l(γ) = d. Reciprocally, a measureµ is said to be the image measure of a list of
weighted elementsγ if the previous equality holds. Finally, for a Borel measurable functionf ∈ R

X

and a Borel measureµ, we writeµ[ f ] =
R

X f dµ.

2.2 Semigroups and Sets of Points

We follow in this paper the definitions found in Berg et al. (1984), which we now recall. AnAbelian
semigroup(S ,+) is a nonempty setS endowed with anassociativeandcommutative composition
+ and a neutral element 0. Referring further to the notations used in Berg etal. (1984), note that we
will only use auto-involutive semigroups in this paper, and will hence not discuss other semigroups
which admit different involutions.

A function ϕ : S → R is called apositive definite(resp.negative definite, n.d.) function on the
semigroup(S,+) if (s, t ) 7→ ϕ(s+ t) is a p.d. (resp. n.d.) kernel onS × S . The symmetry of the
kernel being ensured by the commutativity of+, the positive definiteness is equivalent to the fact
that the inequality

N

∑
i, j=1

cic j ϕ(xi +x j) ≥ 0

holds for anyN ∈ N,(x1, . . . ,xN) ∈ SN and(c1 . . . ,cn) ∈ R
N. Using the same notations, and adding

the additional condition that∑n
i=1ci = 0 yields the definition of negative definiteness asϕ satisfying

now
N

∑
i, j=1

cic j ϕ(xi +x j) ≤ 0.

Hence semigroup kernels are real-valued functionsϕ defined on the set of interestS , the similarity
between two elementss, t of S being just the value taken by that function on their composition,
namelyϕ(s+ t).

Recalling our initial goal to quantify the similarity between two complex objects through finite
weighted lists of elements inX , we note that(P (X ),∪) the set of subsets ofX equipped with the
usual union operator∪ is a semigroup. Such a semigroup might be used as a feature representation
for complex objects by mapping an object to the set of its components, forgetting about the weights.
The resulting representation would therefore be an element ofP (X ). A semigroup kernelk on
P (X ) measuring the similarity of two sets of pointsA,B ∈ P (X ) would use the value taken by
a given p.d. functionϕ on their union, namelyk(A,B) = ϕ(A∪B). However we put aside this
framework for two reasons. First, the union composition is idempotent (i.e., for all A in P (X ), we
haveA∪A= A) which as noted in Berg et al. (1984, Proposition 4.4.18) drastically restricts the class
of possible p.d. functions. Second, such a framework defined by sets would ignore the frequency (or
weights) of the components described in lists, which can be misleading when dealing with finite sets
of components. Other problematic features would include the fact thatk(A,B) would be constant
whenB⊂ A regardless of its characteristics, and that comparing sets of very different sizes should
be difficult.

In order to overcome these limitations we propose to represent a list of weighted pointsz =
(xi ,ai)

d
i=1, where for 1≤ i ≤ d we havexi ∈ X andai > 0, by its image measureδz = ∑d

i=1aiδxi , and
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focus now on the Abelian semigroup(Mb
+(X ),+) to define kernels between lists of weighted points.

This representation is richer than the one suggested in the previous paragraph in the semigroup
(P (X ),∪) to consider the merger of two lists. First it performs the union of the supports;second
the sum of such molecular measures also adds the weights of the points common to both measures,
with a possible renormalization on those weights. Two important features of theoriginal list are
however lost in this mapping: the order of its elements and the original frequency of each element
within the list as a weighted singleton. We assume for the rest of this paper thatthis information is
secondary compared to the one contained in the image measure, namely its unordered support and
theoverall frequency of each point in that support. As a result, we study in the following sections
p.d. functions on the semigroup(Mb

+(X ),+), in particular on molecular measures, in order to define
kernels on weighted lists of simple components.

X

θ(δz)

θ(δz′ )θ(δz+δz′ )

δz δz′

Figure 1: Measure representations of two listsz andz′. Each element ofz (resp. z′) list is repre-
sented by a black circle (resp. a white square), the size of which represents the associated
weight. Five measures of interest are represented: the image measuresδz andδz′ of those
weighted finite lists, the smoothed density estimatesθ(δz) andθ(δz′) of the two lists of
points, and the smoothed density estimateθ(δz+δz′) of the union of both lists.

Before starting the analysis of such p.d. functions, it should however bepointed out that several
interesting semigroup p.d. kernels on measures are not directly applicable tomolecular measures.
For example, the first function we study below is only defined on the set of absolutely continuous
measures with finite entropy. In order to overcome this limitation and be able to process complex
objects in such situations, it is possible to think about alternative strategies to represent such objects
by measures, as illustrated in Figure 1:

• The molecular measuresδz andδz′ as the image measures corresponding to the two weighted
sets of points ofz andz′, where dots and squares represent the different weights applied on
each points;

• Alternatively, smoothed estimates of these distributions obtained for example bynon-parametric
or parametric statistical density estimation procedures, and represented byθ(δz) andθ(δz′)
in Figure 1. Such estimates can be considered if a p.d. kernel is only defined for absolutely
continuous measures. When this mapping takes the form of estimation among a given family
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of densities (through maximum likelihood for instance) this can also be seen asa prior belief
assumed on the distribution of the objects;

• Finally, a smoothed estimate of the sumδz+ δz′ corresponding to the merging of both lists,
represented byθ(δz+δz′), can be considered. Note thatθ(δz+δz′) might differ fromθ(δz)+
θ(δz′).

A kernel between two lists of points can therefore be derived from a p.d.function on(Mb
+(X ),+)

in at least three ways:

k(z,z′) =











ϕ(δz+δz′), usingϕ directly on molecular measures,

ϕ(θ(δz)+θ(δz′)) , usingϕ on smoothed versions of the molecular measures,

ϕ(θ(δz+δz′)) , evaluatingϕ on a smoothed version of the sum.

The positive definiteness ofϕ on Mb
+(X ) ensures positive definiteness ofk only in the first two

cases. The third expression can be seen as a special case of the firstone, where we highlight the
usage of a preliminary mapping on the sum of two measures; in that caseϕ ◦ θ should in fact be
p.d. on(Mb

+(X ),+), or at least(Mol+(X ),+). Having defined the set of representations on which
we will focus in this paper, namely measures on a set of components, we propose in the following
section two particular cases of positive definite functions that can be computed through an addition
between the considered measures. We then show how those quantities can be computed in the case
of molecular measures in Section 4.

3. The Entropy and Inverse Generalized Variance Kernels

In this section we present two basic p.d. semigroup kernels for measures,motivated by a common
intuition: the kernel between two measures should increase when the sum ofthe measures gets
more “concentrated”. The two kernels differ in the way they quantify the concentration of a mea-
sure, using either its entropy or its variance. They are therefore limited to a subset of measures,
namely the subset of measures with finite entropy and the subset of sub-probability measures with
non-degenerated variance, but are extended to a broader class of measures, including molecular
measures, in Section 4.

3.1 Entropy Kernel

We consider the subset ofMb
+(X ) of absolutely continuous measures with respect to the dominant

measureν, and identify in this section a measure with its corresponding density with respect to ν.
We further limit the subset to the set of non-negative valuedν-measurable functions onX with finite
sum, such that

Mh
+(X )

def
= { f : X → R

+| f is ν-measurable, |h( f )| < ∞, | f | < ∞}

where we write for any measurable non-negative valued functiong,

h(g)
def
= −

Z

X
glngdν,
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(with 0 ln0= 0 by convention) and|g|def
=

R

X gdν, consistently with the notation used for measures.
If g is such that|g| = 1, h(g) is its differential entropy. Using the following inequalities,

(a+b) ln(a+b) ≤ alna+blnb+(a+b) ln2, by convexity ofx 7→ xlnx,

(a+b) ln(a+b) ≥ alna+blnb,

we have that(Mh
+(X ),+) is an Abelian semigroup since forf , f ′ in Mh

+(X ) we have thath( f + f ′)
is bounded by integrating pointwise the inequalities above, the boundedness of | f + f ′| being also
ensured. Following Rao (1987) we consider the quantity

J( f , f ′)
def
= h(

f + f ′

2
)− h( f )+h( f ′)

2
, (2)

known as theJensen divergence(or Jensen-Shannon divergence) betweenf and f ′, which as noted
by Fuglede and Topsøe (2004) can be seen as a symmetrized version of the Kullback-Leibler (KL)
divergenceD, since

J( f , f ′) =
1
2

D( f || f + f ′

2
)+

1
2

D( f ′|| f + f ′

2
).

The expression of Equation (2) fits our framework of devising semigroupkernels, unlike the direct
use of the KL divergence (Moreno et al., 2004) which is neither symmetric nor negative definite. As
recently shown in Endres and Schindelin (2003) andÖsterreicher and Vajda (2003),

√
J is a metric

on Mh
+(X ) which is a direct consequence ofJ’s negative definiteness proven below, through Berg

et al. (1984, Proposition 3.3.2) for instance. The Jensen-Divergence was also recently reinterpreted
as a special case of a wider family of metrics onMb

+(X ) derived from a particular family of Hilber-
tian metrics onR+ as presented in Hein and Bousquet (2005). The comparison between twoden-
sities f , f ′ is in that case performed by integrating pointwise the squared distanced2( f (x), f ′(x))
between the two densities overX , using ford a distance chosen among a suitable family of metrics
in R+ to ensure that the final value is independent of the dominant measureν. The considered
family for d is described in Fuglede and Topsøe (2004) through two parameters, a family of which
the Jensen Divergence is just a special case as detailed in Hein and Bousquet (2005). The latter
work shares with this paper another similarity, which lies in the “kernelization” of such quanti-
ties defined on measures through a prior kernel on the space of components, as will be reviewed
in Section 5. However, of all the Hilbertian metrics introduced in Hein and Bousquet (2005), the
Jensen-Divergence is the only one that can be related to the semigroup framework used throughout
this paper.

Note finally that a positive definite kernelk is said to be infinitely divisible if− lnk is a negative
definite kernel. As a consequence, any positive exponentiationkβ,β > 0 of an infinitely divisible
kernel is a positive definite kernel.

Proposition 1 h is a negative definite function on the semigroup Mh
+(X ). As a consequence e−h

is a positive definite function on Mh+(X ) and its normalized counterpart, kh
def
= e−J is an infinitely

divisible positive definite kernel on Mh+(X )×Mh
+(X ).

Proof It is known that the real-valued functionr : y 7→ −ylny is n.d. onR+ as a semigroup endowed
with addition (Berg et al., 1984, Example 6.5.16). As a consequence the function f 7→ r ◦ f is n.d.
on Mh

+(X ) as a pointwise application ofr since r ◦ f is integrable w.r.tν. For any real-valued
n.d. kernelk and any real-valued functiong, we have trivially that(y,y′) 7→ k(y,y′)+ g(y)+ g(y′)

1175



CUTURI, FUKUMIZU AND VERT

remains negative definite. This allows first to prove thath( f+ f ′

2 ) is also n.d. through the identity

h( f+ f ′

2 ) = 1
2h( f + f ′)+ ln2

2 (| f |+ | f ′|). Subtracting the normalization factor1
2(h( f )+h( f ′)) gives

the negative definiteness ofJ. This finally yields the positive definiteness ofkh as the exponential of
the negative of a n.d. function through Schoenberg’s theorem (Berg et al., 1984, Theorem 3.2.2).

Note that onlye−h is a semigroup kernel strictly speaking, sincee−J involves a normalized sum
(through the division by 2) which is not associative. While bothe−h ande−J can be used in practice
on non-normalized measures, we name more explicitlykh = e−J theentropy kernel, because what
it indeed quantifies whenf and f ′ are normalized (i.e., such that| f | = | f ′| = 1) is the difference of
the average of the entropy off and f ′ from the entropy of their average. The subset of absolutely
continuousprobability measures on(X ,ν) with finite entropies, namely

{

f ∈ Mh
+(X ), s.t.| f | = 1

}

is not a semigroup since it is not closed by addition, but we can nonethelessdefine the restriction ofJ
and hencekh on it to obtain a p.d. kernel on probability measures inspired by semigroup formalism.

3.2 Inverse Generalized Variance Kernel

We assume in this subsection thatX is an Euclidian space of dimensionn endowed with Lebesgue’s
measureν. Following the results obtained in the previous section, we propose under these re-
strictions a second semigroup p.d. kernel between measures which uses generalized variance. The
generalized variance of a measure, namely the determinant of its variance matrix, is a quantity ho-
mogeneous to a volume inX . This volume can be interpreted as a typical volume occupied by a
measure when considering only its second order moments, making it hence a useful quantification
of its dispersion. Besides being easy to compute in the case of molecular measures, this quantity is
also linked to entropy if we consider that for normal lawsN (m,Σ) the following relation holds:

1√
detΣ

∝ e−h(N (m,Σ)).

Through this observation, we note that considering the Inverse of the Generalized Variance (IGV)
of a measure is equivalent to considering the value taken bye−2h on its maximum likelihood normal
law. We will put aside this interpretation in this section, before reviewing it with more care in
Section 7.

Let us define the variance operator on measuresµ with finite first and second moment ofMb
+(X )

as
Σ(µ)

def
= µ[xx>]−µ[x]µ[x]>.

Note thatΣ(µ) is always a positive semi-definite matrix whenµ is a sub-probability measure, that is
when|µ| ≤ 1, since

Σ(µ) = µ[(x−µ[x])(x−µ[x])>]+ (1−|µ|)µ[x]µ[x]>.

We call detΣ(µ) the generalized variance of a measureµ, and say a measureµ is non-degeneratedif
detΣ(µ) is non-zero, meaning thatΣ(µ) is of full rank. The subset ofMb

+(X ) of such measures with
total weight equal to 1 is denoted byMv

+(X ); Mv
+(X ) is convex through the following proposition:

Proposition 2 Mv
+(X )

def
=
{

µ∈ Mb
+(X ) : |µ| = 1,detΣ(µ) > 0

}

is a convex set, and more generally
for λ ∈ [0,1), µ′ ∈ Mb

+(X ) such that|µ′| = 1 and µ∈ Mv
+(X ), (1−λ)µ+λµ′ ∈ Mv

+(X ).
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Proof We use the following identity,

Σ
(

(1−λ)µ+λµ′
)

= (1−λ)Σ(µ)+λΣ(µ′)+λ(1−λ)
(

µ[x]−µ′[x]
)(

µ[x]−µ′[x]
)>

,

to derive thatΣ((1− λ)µ+ λµ′) is a (strictly) positive-definite matrix as the sum of two positive
semi-definite matrices and a strictly positive definite matrixΣ(µ).

Mv
+(X ) is not a semigroup, since it is not closed under addition. However we will work in this

case on the mean of two measures in the same way we used their standard addition in the semigroup
framework ofMb

+(X ).

Proposition 3 The real-valued kernel kv defined on elements µ,µ′ of Mv
+(X ) as

kv(µ,µ′) =
1

detΣ(µ+µ′
2 )

is positive definite.

Proof Let y be an element ofX . For anyN ∈ N, anyc1, ...,cN ∈ R such that∑i ci = 0 and any
µ1, ...,µN ∈ Mv

+(X ) we have

∑
i, j

cic jy
>Σ(

µi +µj

2
)y = ∑

i, j

cic jy
>
(

1
2

µi [xx>]+
1
2

µj [xx>]−

1
4

(

µi [x]µi [x]
> +µj [x]µj [x]

> +µj [x]µi [x]
> +µi [x]µj [x]

>
)

)

y

= −1
4 ∑

i, j

cic jy
>
(

µj [x]µi [x]
> +µi [x]µj [x]

>
)

y

= −1
2

(

∑
i

ciy
>µi [x]

)2

≤ 0,

making thus the functionµ,µ′ 7→ y>Σ(µ+µ′

2 )y negative-definite for anyy∈ X . Using again Schoen-

berg’s theorem (Berg et al., 1984, Theorem 3.2.2) we have thatµ,µ′ 7→ e−y>Σ( µ+µ′
2 )y is positive defi-

nite and so is the sum 1
(2π)

n
2

R

X e−y>Σ( µ+µ′
2 )yν(dy) which is equal to 1/

√

detΣ(µ+µ
2 ) ensuring thus the

positive-definiteness ofkv as its square.

Both entropy and IGV kernels are defined on subsets ofMb
+(X ). Since we are most likely to use

them on molecular measures or smooth measures (as discussed in Section 2.2),we present in the
following section practical ways to apply them in that framework.

4. Semigroup Kernels on Molecular Measures

The two positive definite functions defined in Sections 3.1 and 3.2 cannot beapplied in the general
case to Mol+(X ) which as exposed in Section 2 is our initial goal. In the case of the entropy
kernel, molecular measures are generally not absolutely continuous with respect toν (except on
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finite spaces), and they have therefore no entropy; we solve this problem by mapping them into
Mh

+(X ) through a smoothing kernel. In the case of the IGV, the estimates of variances might be
poor if the number of points in the lists is not large enough compared to the dimension of the
Euclidean space; we perform in that case a regularization by adding a unit-variance correlation
matrix to the original variance. This regularization is particularly important to pave the way to the
kernelized version of the IGV kernel presented in the next section, when X is not Euclidian but
simply endowed with a prior kernelκ.

The application of both the entropy kernel and the IGV kernel to molecular measures requires a
previous renormalization to set the total mass of the measures to 1. This technical renormalization
is also beneficial, since it allows a consistent comparison of two weighted lists even when their
size and total mass is very different. All molecular measures in this section, and equivalently all
admissible bases, will hence be supposed to be normalized such that their total weight is 1, and
Mol1+(X ) denotes the subset of Mol+(X ) of such measures.

4.1 Entropy Kernel on Smoothed Estimates

We first define the Parzen smoothing procedure which allows to map molecularmeasures onto
measures with finite entropy:

Definition 4 Let κ be a probability kernel onX with finite entropy, i.e., a real-valued function
defined onX 2 such that for any x∈X , κ(x, ·) : y 7→ κ(x,y) satisfiesκ(x, ·)∈Mh

+(X ) and|κ(x, ·)|= 1.
Theκ-Parzen smoothed measure of µ is the probability measure whose densitywith respect toν is
θκ(µ), where

θκ :Mol1+(X ) −→ Mh
+(X )

µ 7→ ∑
x∈suppµ

µ(x)κ(x, ·).

Note that for any admissible base(xi ,ai)
d
k=1 of µ we have thatθκ(µ) = ∑d

i=1aiκ(xi , ·). Once this
mapping is defined, we use the entropy kernel to propose the following kernel on two molecular
measuresµ andµ′,

kκ
h(µ,µ′) = e−J(θκ(µ),θκ(µ′)).

As an example, letX be an Euclidian space of dimensionn endowed with Lebesgue’s measure,
andκ the isotropic Gaussian RBF kernel on that space, namely

κ(x,y) =
1

(2πσ)
n
2
e−

‖x−y‖2

2σ2 .

Given two weighted listsz and z′ of components inX , θκ(δz) and θκ(δz′) are thus mixtures of
Gaussian distributions onX . The resulting kernel computes the entropy ofθκ(δz) andθκ(δz′) taken
separately and compares it with that of their mean, providing a positive definite quantification of
their overlap.

4.2 Regularized Inverse Generalized Variance of Molecular Measures

In the case of a molecular measureµ defined on an Euclidian spaceX of dimensionn, the variance
Σ(µ) is simply the usual empirical estimate of the variance matrix expressed in an orthonormal basis
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of X :

Σ(µ) = µ[xx>]−µ[x]µ[x]> =
d

∑
i=1

aixix
>
i −

(

d

∑
i=1

aixi

)(

d

∑
i=1

aixi

)>

,

where we use an admissible baseγ = (xi ,ai)
d
i=1 of µ to give a matrix expression ofΣ(µ), with all

pointsxi expressed as column vectors. Note that this matrix expression, as would beexpected from
a function defined on measures, does not depend on the chosen admissible base. Given such an
admissible base, letXγ = [xi ]i=1..d be then× d matrix made of all column vectorsxi and∆γ the
diagonal matrix of weights ofγ taken in the same order(ai)1≤ı≤d. If we write Id for the identity
matrix of rankd and

�
d,d for thed×d matrix composed of ones, we have for any baseγ of µ that:

Σ(µ) = Xγ(∆γ −∆γ
�

d,d∆γ)X
>
γ ,

which can be rewritten as

Σ(µ) = Xγ(Id −∆γ
�

d,d)∆γ(Id −
�

d,d∆γ)X
>
γ ,

noting that(∆γ
�

d,d)
2 = ∆γ

�
d,d since trace∆γ = 1.

The determinant ofΣ(µ) can be equal to zero when the size of the support ofµ is smaller than
n, the dimension ofX , or more generally when the linear span of the points in the support ofµ
does not cover the whole spaceX . This problematic case is encountered in Section 5 when we
consider kernelized versions of the IGV, using an embedding ofX into a functional Hilbert space
of potentially infinite dimension. Mapping an element of Mol1

+(X ) into Mv
+(X ) by adding to it any

element ofMv
+(X ) through Proposition 2 would work as a regularization technique; for an arbitrary

ρ ∈ Mv
+(X ) and a weightλ ∈ [0,1) we could use the kernel defined as

µ,µ′ 7→ 1

detΣ
(

λµ+µ′
2 +(1−λ)ρ

) .

We use in this section a different strategy inspired by previous works (Fukumizu et al., 2004,
Bach and Jordan, 2002) further motivated in the case of covariance operators on infinite dimensional
spaces as shown by Cuturi and Vert (2005). The considered regularization consists in modifying
directly the matrixΣ(µ) by adding a small diagonal componentηIn whereη > 0 so that its spectrum
never vanishes. When considering the determinant of such a regularized matrix Σ(µ)+ ηIn this is
equivalent to considering the determinant of1

η Σ(µ) + In up to a factorηn, which will be a more

suitable expression in practice. We thus introduce the regularized kernelkη
v defined on measures

(µ,µ′) ∈ Mb
+(X ) with finite second moment as

kη
v (µ,µ′)

def
=

1

det
(

1
η Σ
(

µ+µ′
2

)

+ In
) .

It is straightforward to prove that the regularized functionkη
v is a positive definite kernel on the

measures ofMb
+(X ) with finite second-order moments using the same proof used in Proposition 3.

If we now introduce
Kγ

def
=
[

x>i x j

]

1≤i, j≤d
,
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for thed×d matrix of dot-products associated with the elements of a baseγ, and

K̃γ
def
=

[

(xi −
d

∑
k=1

akxk)
>(x j −

d

∑
k=1

akxk)

]

1≤i, j≤d

= (Id −
�

d,d∆γ)Kγ(Id −∆γ
�

d,d),

for its centered expression with respect to the mean ofµ, we have the following result:

Proposition 5 Let X be an Euclidian space of dimension n. For any µ∈ Mol1+(X ) andanyadmis-
sible baseγ of µ we have

det

(

1
η

K̃γ∆γ + Il(γ)

)

= det

(

1
η

Σ(µ)+ In

)

.

Proof We omit the references toµ and γ in this proof to simplify matrix notations, and write
d = l(γ). Let X̃ be then×d matrix [xi −∑d

j=1a jx j ]i=1..d of centered column vectors enumerated in
γ, namelyX̃ = X(Id −∆

�
d,d). We have

Σ = X̃∆X̃>,

K̃∆ = X̃>X̃∆.

Through the singular value decomposition ofX̃∆ 1
2 , it is straightforward to see that the non-zero

elements of the spectrums of matricesK̃∆,∆ 1
2 X̃>X̃∆ 1

2 andΣ are identical. Thus, regardless of the
difference betweenn andd, we have

det

(

1
η

K̃∆+ Id

)

= det

(

1
η

∆
1
2 X̃>X̃∆

1
2 + Id

)

= det

(

1
η

X̃∆X̃> + In

)

= det

(

1
η

Σ+ In

)

,

where the addition of identity matrices only introduces an offset of 1 for all eigenvalues.

Given two measuresµ,µ′ ∈Mol1+(X ), the following theorem can be seen as a regularized equivalent

of Proposition 3 through an application of Proposition 5 toµ′′ = µ+µ′

2 .

Theorem 6 Let X be an Euclidian space. The kernel kη
v defined on two measures µ,µ′ of Mol1+(X )

as

kη
v (µ,µ′) =

1

det
(

1
η K̃γ∆γ + Il(γ)

) ,

whereγ is any admissible base ofµ+µ′

2 , is p.d. and independent of the choice ofγ.

Given two objectsz,z′ and their respective molecular measuresδz andδz′ , the computation of the

IGV for two such objects requires in practice an admissible base ofδz+δz′
2 as seen in Theorem 6. This

admissible base can be chosen to be of the cardinality of the support of the mixture ofδz andδz′ , or
alternatively be the simple merger of two admissible bases ofzandz′ with their weights divided by
2, without searching for overlapped points between both lists. This choicehas no impact on the final
value taken by the regularized IGV-kernel and can be arbitrated by computational considerations.

If we now take a practical look at the IGV’s definition, we note that it can beapplied but to cases
where the component spaceX is Euclidian, and only if the studied measures can be summarized
efficiently by their second order moments. These limitations do not seem very realistic in practice,
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sinceX may not have a vectorial structure, and the distribution of the components maynot even
be well represented by Gaussians in the Euclidian case. We propose to bypass this issue and intro-
duce the usage of the IGV in a more flexible framework by using the kernel trick on the previous
quantities, since the IGV of a measure can be expressed only through the dot-products between the
elements of the support of the considered measure.

5. Inverse Generalized Variance on the RKHS Associated witha Kernel κ

As with many quantities defined by dot-products, one is tempted to replace the usual dot-product
matrix K̃ of Theorem 6 by an alternative Gram-matrix obtained through a p.d. kernelκ defined
on X . The advantage of such a substitution, which follows the well known “kernel trick” princi-
ple (Scḧolkopf and Smola, 2002), is multiple as it first enables us to use the IGV kernel on any
non-vectorial space endowed with a kernel, thus in practice on any component space endowed with
a kernel; second, it is also useful whenX is a dot-product space where a non-linear kernel can
however be used (e.g., using Gaussian kernel) to incorporate into the IGV’s computation higher-
order moment comparisons. We prove in this section that the inverse of the regularized generalized
variance, computed in Proposition 5 through the centered dot-product matrix K̃γ of elements of any
admissible baseγ of µ, is still a positive definite quantity if we replacẽKγ by a centered Gram-matrix
K̃γ, computed through an a priori kernelκ on X , namely

Kγ = [κ(xi ,x j)]1≤i, j≤d

K̃γ = (Id −
�

d,d∆γ)Kγ(Id −∆γ
�

d,d).

This substitution follows also a general principle when considering kernelson measures. The “ker-
nelization” of a given kernel defined on measures to take into account a prior similarity on the
components, when computationally feasible, is likely to improve its overall performance in classifi-
cation tasks, as observed in Kondor and Jebara (2003) but also in Heinand Bousquet (2005) under
the “Structural Kernel” appellation. The following theorem proves that thissubstitution is valid in
the case of the IGV.

Theorem 7 Let X be a set endowed with a p.d. kernelκ. The kernel

kη
κ(µ,µ′) =

1

det
(

1
η K̃γ∆γ + Il(γ)

) , (3)

defined on two elements µ,µ′ in Mol1+(X ) is positive definite, whereγ is anyadmissible base ofµ+µ′

2 .

Proof LetN∈N, µ1, ..,µN ∈Mol1+(X ) and(ci)
N
i=1∈R

N. Let us now study the quantity∑N
i=1cic j k

η
κ(µi ,µj).

To do so we introduce by the Moore-Aronszajn theorem (Berlinet and Thomas-Agnan, 2003, p.19)
the reproducing kernel Hilbert spaceΞ with reproducing kernelκ indexed onX . The usual mapping
from X to Ξ is denoted byφ, that isφ : X 3 x 7→ κ(x, ·). We define

Y
def
= supp

(

N

∑
i=1

µi

)

⊂ X ,

the finite set which numbers all elements in the support of theN considered measures, and

ϒdef
= spanφ(Y ) ⊂ Ξ,
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the linear span of the elements in the image ofY throughφ. ϒ is a vector space whose finite
dimension is upper-bounded by the cardinality ofY . Endowed with the dot-product inherited from
Ξ, we further have thatϒ is Euclidian. Given a molecular measureµ∈Mol1+(Y ), letφ(µ) denote the
image measure ofµ in ϒ, namelyφ(µ) = ∑x∈Y µ(x)δφ(x). One can easily check that any admissible

baseγ = (xi ,ai)
d
i=1 of µ can be used to provide an admissible baseφ(γ)def

= (φ(xi),ai)
d
i=1 of φ(µ).

The weight matrices∆γ and∆φ(γ) are identical and we further havẽKγ = K̃φ(γ) by the reproducing
property, whereK̃ is defined by the dot-product of the Euclidian spaceϒ induced byκ. As a
result, we have thatkη

κ(µi ,µj) = kη
v (φ(µi),φ(µj)) wherekη

v is defined on Mol1+(ϒ), ensuring the
non-negativity

N

∑
i=1

cic j k
η
κ(µi ,µj) =

N

∑
i=1

cic j k
η
v (φ(µi),φ(µj)) ≥ 0

and hence positive-definiteness ofkη
κ .

As bserved in the experimental section, the kernelized version of the IGV ismore likely to be suc-
cessful to solve practical tasks since it incorporates meaningful information on the components. Be-
fore observing these practical improvements, we provide a general study of the family of semigroup
kernels onMb

+(X ) by casting the theory of integral representations of positive definite functions on
a semigroup (Berg et al., 1984) in the framework of measures, providing new results and possible
interpretations of this class of kernels.

6. Integral Representation of Positive Definite Functions on a Set of Measures

In this section we study a general characterization ofall p.d. functions on the whole semigroup
(Mb

+(X ),+), including thus measures which are not normalized. This characterization is based on
a general integral representation theorem valid for any semigroup kernel, and is similar in spirit to
the representation of p.d. functions obtained on Abelian groups through Bochner’s theorem (Rudin,
1962). Before stating the main results in this section we need to recall basic definitions of semichar-
acters and exponentially bounded function (Berg et al., 1984, chap. 4).

Definition 8 A real-valued functionρ on an Abelian semigroup(S,+) is called asemicharacterif
it satisfies the following properties:

(i) ρ(0) = 1

(ii) ∀s, t ∈ S,ρ(s+ t) = ρ(s)ρ(t).

It follows from the previous definition and the fact thatMb
+(X ) is2-divisible(i.e.,∀µ∈Mb

+(X ),∃µ′ ∈
Mb

+(X ) s.t. µ = 2µ′) that semicharacters are nonnegative valued since it suffices to write that
ρ(µ) = ρ(µ

2)2. Note also that semicharacters are trivially positive definite functions onS. We de-
note byS∗ the set of semicharacters onMb

+(X ), and byŜ⊂ S∗ the set of bounded semicharacters.
S∗ is a Hausdorff space when endowed with the topology inherited fromR

S having the topology
of pointwise convergence. Therefore we can consider the set of Radon measures onS∗, namely
Mb

+(S∗).

Definition 9 A function f : Mb
+(X ) → R is calledexponentially boundedif there exists a function

α : Mb
+(X ) → R+ (called anabsolute value) satisfyingα(0) = 1 and α(µ+ µ′) ≤ α(µ)α(µ′) for
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µ,µ′ ∈ Mb
+(X ), and a constant C> 0 such that:

∀µ∈ Mb
+(X ), f (µ) ≤Cα(µ).

We can now state two general integral representation theorems for p.d. functions on semigroups (Berg
et al., 1984, Theorems 4.2.5 and 4.2.8). These theorems being valid on any semigroup, they hold in
particular on the particular semigroup(Mb

+(X ),+).

Theorem 10 • A functionϕ : Mb
+(X ) → R is p.d. and exponentially bounded if and only if it

has an integral representation:

ϕ(s) =
Z

S∗
ρ(s)dω(ρ),

with ω ∈ Mc
+(S∗) (the set of Radon measures on S∗ with compact support).

• A functionϕ : Mb
+(X )→ R is p.d. and bounded if and only if it has an integral representation

of the form:

ϕ(s) =
Z

Ŝ
ρ(s)dω(ρ),

with ω ∈ M+(Ŝ).
In both cases, if the integral representation exists, then there is uniqueness of the measureω in

M+(S∗).

In order to make these representations more constructive, we need to study the class of (bounded)
semicharacters on(Mb

+(X ),+). Even though we are not able to provide a complete characterization,
even of bounded semicharacters, the following proposition introduces a large class of semicharac-
ters, and completely characterizes thecontinuoussemicharacters. For matters related to continuity
of functions defined onMb

+(X ), we will consider the weak topology ofMb
+(X ) which is defined in

simple terms through theportmanteautheorem (Berg et al., 1984, Theorem 2.3.1). Note simply that
if µn converges toµ in the weak topology then for anyboundedmeasurable and continuous function
f we have thatµn[ f ]→ µ[ f ]. We further denote byC(X ) the set of continuous real-valued functions
on X and byCb(X ) its subset of bounded functions. Both sets are endowed with the topology of
pointwise convergence. For a functionf ∈ R

X we write ρ f for the functionµ 7→ eµ[ f ] when the
integral is well defined.

Proposition 11 A semicharacterρ : Mb
+(X ) → R is continuous on(Mb

+(X ),+) endowed with the
weak topology if and only if there exists f∈Cb(X ) such thatρ = ρ f . In that case,ρ is a bounded
semicharacter on Mb+(X ) if and only if f ≤ 0.

Proof For a continuous and bounded functionf , the semicharacterρ f is well-defined. If a sequence
µn in Mb

+(X ) converges toµ weakly, we haveµn[ f ] → µ[ f ], which implies the continuity ofρ f .
Conversely, supposeρ is weakly continuous. Definef : X → [−∞,∞) by f (x) = logρ(δx). If a
sequencexn converges tox in X , obviously we haveδxn → δx in the weak topology, and

ρ(δxn) → ρ(δx),
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which means the continuity off . To see the boundedness off , assume the contrary. Then, we can
find xn ∈ X such that either of 0< f (xn)→ ∞ or 0> f (xn)→−∞ holds. Letβn = | f (xn)|. Because
the measure1

βn
δxn converges weakly to zero, the continuity ofρ means

ρ
(

1
βn

δxn

)

→ 1,

which contradicts with the factρ( 1
βn

δxn) = e
1

βn
f (xn) = e±1. Thus,ρ f is well-defined, weakly contin-

uous onMb
+(X ) and equal toρ on the set of molecular measures. It is further equal toρ on Mb

+(X )
through the denseness of molecular measures inMb

+(X ), both in the weak and the pointwise topol-
ogy (Berg et al., 1984, Proposition 3.3.5). Finally suppose now thatρ f is bounded and that there
existsx in X such thatf (x) > 0. By ρ f (nδx) = en f(x) which diverges withn we see a contradiction.
The converse is straightforward.

Let ω be a bounded nonnegative Radon measure on the Hausdorff space ofcontinuous real-valued
functions onX , namelyω ∈ Mb

+(C(X )). Given such a measure, we first define the subsetMω of
Mb

+(X ) as
Mω = {µ∈ Mb

+(X ) | sup
f∈suppω

µ[ f ] < +∞}.

Mω contains the null measure and is a semigroup.

Corollary 12 For any bounded Radon measureω ∈ Mb
+(C(X )), the following functionϕ is a

p.d. function on the semigroup(Mω,+):

ϕ(µ) =
Z

C(X )
ρ f (µ) dω( f ). (4)

If suppω ⊂Cb(X ) thenϕ is continuous on Mω endowed with the topology of weak convergence.

Proof For f ∈ suppω, ρ f is a well defined semicharacter onMω and hence positive definite. Since

ϕ(µ) ≤ |ω| sup
f∈suppω

µ[ f ]

is bounded,ϕ is well defined and hence positive definite. Suppose now that suppω ⊂ Cb(X ) and
let µn be a sequence ofMω converging weakly toµ. By the bounded convergence theorem and
continuity of all considered semicharacters (since all considered functions f are bounded) we have
that:

lim
n→∞

ϕ(µn) =
Z

C(X )
lim
n→∞

ρ f (µn) dω( f ) = ϕ(µ).

and henceϕ is continuous w.r.t the weak topology.

When the measureω is chosen in such a way that the integral (4) is tractable or can be approximated,
then a valid p.d. kernel for measures is obtained; an example involving mixtures over exponential
families is provided in Section 7.

Before exploiting this constructive representation, a few remarks shouldbe pointed out. When
using non-bounded functions (as is the case when using expectation or second-order moments of
measures) the continuity of the integralϕ is left undetermined to our knowledge, even when its
existence is ensured. However, whenX is compact we have thatC(X )=Cb(X ) and hence continuity
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on Mω of any functionϕ constructed through corollary 12. Conversely, there exist continuous
p.d. functions on(Mb

+(X ),+) that can not be represented in the form (4). Although any continuous
p.d. function can necessarily be represented as an integral of semicharacters by Theorem 10, the
semicharacters involved in the representation are not necessarily continuous as in (4). An example of
such a continuous p.d. function written as an integral of non-continuous semicharacters is exposed in
Appendix A. It is an open problem to our knowledge to fully characterize continuous p.d. functions
on (Mb

+(X ),+).

7. Projection on Exponential Families through Laplace’s Approximation

The constructive approach presented in corollary 12 can be used in practice to define kernels by
restricting the spaceC(X ) to subspaces where computations are tractable. A natural way to do so is
to consider a vector space of finite dimensions of C(X ), namely the span of a free family ofs non-
constant functionsf1, ..., fs of C(X ), and define a measure on that subspace by applying a measure
on the weights associated with each function. The previous integral representation (4) would then
take the form:

ϕ(µ) =
Z

Θ
eµ[∑s

i=1 θi fi ] ω(dθ),

whereω is now a bounded measure on a compact subsetΘ ⊆ R
s andµ is such thatµ[ fi ] < +∞ for

1≤ i ≤ s. The subspace ofC(X ) considered in this section is however slightly different, in order to
take advantage of the natural benefits of exponential densities generated by all functionsf1, ..., fs.
Following Amari and Nagaoka (2001, p.69), this requires the definition of the cumulant generating
function ofν with respect tof1, ..., fs as

ψ(θ)
def
= logν[e∑s

i=1 θi fi ],

such that for eachθ ∈ Θ,

pθ
def
= exp

(

s

∑
i=1

θi fi −ψ(θ)

)

ν,

is a probability density, which defines an exponential family of densities onX asθ varies inΘ.
Rather than the direct span of functionsf1, ..., fs on Θ, this is equivalent to considering the hyper-
surface{∑s

i=1 θi fi −ψ(θ)} in span{ f1, .., fs,−1}. This yields the following expression:

ϕ(µ) =
Z

Θ
eµ[∑s

i=1 θi fi−ψ(θ)] ω(dθ).

Following the notations of Amari and Nagaoka (2001) theη-parameters (or expectation parameters)
of µ are defined as

η̂i
def
=

1
|µ|µ[ fi ], 1≤ i ≤ s,

andθ̂ stands for theθ-parameters of̂η. We assume in the following approximations thatθ̂ ∈ Θ and
recall two identities (Amari and Nagaoka, 2001, Chapters 3.5 & 3.6):

χ(θ)
def
=

s

∑
i=1

θiηi −ψ(θ) = −h(θ), the dual potential,

D(θ||θ′) = ψ(θ)+χ(θ′)−
s

∑
i=1

θiη′
i , the KL divergence,
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where we used the abbreviationsh(θ) = h(pθ) andD(θ||θ′) = D(pθ||pθ′). We can then write

µ[
s

∑
i=1

θi fi −ψ(θ)] = |µ|
(

s

∑
i=1

θiη̂i −ψ(θ)

)

= |µ|
(

s

∑
i=1

θ̂iη̂i −ψ(θ̂)+
s

∑
i=1

(θi − θ̂i)η̂i +ψ(θ̂)−ψ(θ)

)

= −|µ|
(

h(θ̂)+D(θ̂||θ)
)

,

to obtain the following factorized expression,

ϕ(µ) = e−|µ|h(θ̂)
Z

Θ
e−|µ|D(θ̂||θ)ω(dθ). (5)

The quantitye−|µ|h(θ̂) was already evoked in Section 3.2 when multivariate normal distributions
were used to express the IGV kernel. WhenX is an Euclidian space of dimensionn, this is indeed
equivalent to definings = n+ n(n+ 1)/2 base functions, more preciselyfi = xi and fi j = xix j ,
and dropping the integral of Equation (5). Note that such functions are not bounded and thatMω
corresponds here to the set of measures with finite first and second order moments.

The integral of Equation (5) cannot be computed in a general case. Theuse of conjugate priors
can however yield exact calculations, such as in the setting proposed by Cuturi and Vert (2005).
In their workX is a finite set of short sequences formed over an alphabet, functionsfi are all pos-
sible indicator functions ofX andω is an additive mixture of Dirichlet priors. The kernel value
is computed through a factorization inspired by the context-tree weighting algorithm (Willems
et al., 1995). In the general case a numerical approximation can also be derived using Laplace’s
method (Dieudonńe, 1968) under the assumption that|µ| is large enough. To do so, first notice that

∂D(θ̂||θ)

∂θi
|θ= θ̂ =

∂ψ
∂θi

|θ= θ̂ −η̂i = 0,

∂D(θ̂||θ)

∂θi∂θ j
=

∂ψ
∂θi∂θ j

= gi j (θ),

whereGθ = [gi j (θ)] is the Fisher information matrix computed inθ and hence a p.d. matrix. The
following approximation then holds:

ϕ(µ) ∼
|µ|→∞

e−|µ|h(θ̂)
Z

Rs
ω(θ̂)e−

|µ|
2 (θ−θ̂)>Gθ̂(θ−θ̂)dθ = e−|µ|h(θ̂)

(

2π
|µ|

)
s
2 ω(θ̂)
√

detGθ̂

which can be simplified by choosingω to be Jeffrey’s prior (Amari and Nagaoka, 2001, p.44),
namely

ω(dθ) =
1
V

√

detGθ dθ, whereV =
Z

Θ

√

detGθ dθ.

Up to a multiplication byV this provides an approximation ofϕ by ϕ̃ as

ϕ(µ) ∼
|µ|→∞

ϕ̃(µ)
def
= e−|µ|h(θ̂)

(

2π
|µ|

)
s
2

.
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The η-coordinates ofµ are independent of the total weight|µ|, henceϕ̃(2µ) = ϕ̃(µ)2( |µ|
4π )

s
2 . This

identity can be used to propose a renormalized kernel for two measures as

k(µ,µ′)
def
=

ϕ̃(µ+µ′)
√

ϕ̃(2µ)ϕ̃(2µ′)
=

e−(|µ+µ′|)h(pµ+µ′ )

e−|µ|h(pµ)−|µ′|h(pµ′ )

(

2
√

|µ||µ′|
|µ|+ |µ′|

)
s
2

.

wherepµ stands forpθ̂µ
. Whenµ andµ′ are normalized such that their total weight coincides and is

equal toβ, we have that

k(µ,µ′) = e
−2β

(

h(pµ′′ )−
h(pµ)+h(pµ′ )

2

)

, (6)

whereµ′′ = µ+ µ′. From Equation (6), we see thatβ can be tuned in practice and thought of as a
width parameter. It should be large enough to ensure the consistency of Laplace’s approximation
and thus positive definiteness, while not too large at the same time to avoid diagonal dominance
issues. In the case of the IGV kernel this tradeoff can however be putaside since the inverse of the
IGV is directly p.d. as was proved in Proposition 3. However and to our knowledge this assertion
does not stand in a more general case when the functionsf1, ..., fs are freely chosen.

8. Experiments on Images of the MNIST Database

We present in this section experimental results and discussions on practical implementations of
the IGV kernels on a benchmark experiment of handwritten digits classification. We focus more
specifically on the kernelized version of the IGV and discuss its performance with respect to other
kernels. The entropy kernel performed very poorly in the series of experiments presented here,
besides requiring a time consuming Monte Carlo computation, which is why we do not consider
it in this section. We believe however that in more favourable cases, notablywhen the considered
measures are multinomials, the entropy kernel and its structural variants (Hein and Bousquet, 2005)
may provide good results.

8.1 Linear IGV Kernel

Following the previous work of Kondor and Jebara (2003), we have conducted experiments on 500
and 1000 images (28× 28 pixels) taken from the MNIST database of handwritten digits (black
shapes on a white background), with 50 (resp. 100) images for each digit. To each imagez we
randomly associate a set ofd distinct points which are black (intensity superior to 190) in the
image. In this case the set of components is{1, ..,28}× {1, ..,28} which we map onto points
with coordinates between 0 and 1, thus definingX = [0,1]2. The linear IGV kernel as described
in Section 3.2 is equivalent to using the linear kernelκ((x1,y1),(x2,y2)) = x1x2 + y1y2 on a non-
regularized version of the kernelized-IGV. It also boils down to fitting Gaussian bivariate-laws on
the points and measuring the similarity of two measures by performing variance estimation on the
samples taken first separately and then together. The resulting variancescan be diagonalized to
obtain three diagonal variance matrices, which can be seen as performingPCA on the sample,

Σ(µ) =

(

Σ1,1 0
0 Σ2,2

)

, Σ(µ′) =

(

Σ′
1,1 0
0 Σ′

2,2

)

, Σ(µ′′) =

(

Σ′′
1,1 0
0 Σ′′

2,2

)

.
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and the value of the kernel is computed through

kv(µ,µ′) =

√

Σ1,1Σ2,2 Σ′
1,1Σ′

2,2

Σ′′
1,1Σ′′

2,2
.

This ratio is for instance equal to 0.3820 for two handwritten digits in the case shown in Figure 2.
The linear IGV manages a good discrimination between ones and zeros. Indeed, ones are shaped
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Σ1,1 = 0.0552 Σ′
1,1 = 0.0441 Σ′′

1,1 = 0.0497
Σ2,2 = 0.0013 Σ′

2,2 = 0.0237 Σ′′
2,2 = 0.0139

Figure 2: Weighted PCA of two different measures and their mean, with their first principal com-
ponent shown. Below are the variances captured by the first and second principal compo-
nents, the generalized variance being the product of those two values.

as sticks, and hence usually have a strong variance carried by their first component, followed by
a weak second component. On the other hand, the variance of zeros is more equally distributed
between the first and second axes. When both weighted sets of points areunited, the variance
of the mean of both measures has an intermediary behaviour in that respect,and this suffices to
discriminate numerically both images. However this strategy fails when using numbers which are
not so clearly distinct in shape, or more precisely whose surface cannot be efficiently expressed in
terms of Gaussian ellipsoids. To illustrate this we show in Figure 3 the Gram matrix of the linear
IGV on 60 images, namely 20 zeros, 20 ones and 20 twos. Though images ofones can be efficiently
discriminated from the two other digits, we clearly see that this is not the case between zeros and
twos, whose support may seem similar if we try to capture them through Gaussian laws. In practice,
the results obtained with the linear IGV on this particular task where so unadapted to the learning
goal that the SVM’s trained based on that methodology did not converge inmost cases, which is
why we discarded it.

8.2 Kernelized IGV

Following previous works (Kondor and Jebara, 2003, Wolf and Shashua, 2003) and as suggested in
the initial discussion of Section 5, we use in this section a Gaussian kernel ofwidth σ to incorporate
a prior knowledge on the pixels, and equivalently to define the reproducing kernel Hilbert spaceΞ
by using

κ((x1,y1),(x2,y2)) = e−
(x1−x2)2+(y1−y2)2

2σ2 .
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0 1 2

0

1

2

Figure 3: Normalized Gram matrix computed with the linear IGV kernel of twenty images of “0”,
“1” and “2” displayed in that order. Darker spots mean values closer to 1, showing that
the restriction to “0” and “1” yields good separation results, while “0” and “2” can hardly
be discriminated using variance analysis.

As pointed out by Kondor and Jebara (2003), the pixels are no longer seen as points but rather as
functions (Gaussian bells) defined on the components space[0,1]2. To illustrate this approach we
show in Figure 4 the first four eigenfunctions of three measuresµ1, µ0 and µ1+µ0

2 built from the
image of a handwritten “1” and “0” with their corresponding eigenvalues, as well as for images of
“2” and “0” in Figure 5.

Settingσ, the width ofκ, to define the functions contained in the RKHSΞ is not enough to fully
characterize the values taken by the kernelized IGV. We further need to defineη, the regularization
parameter, to control the weight assigned to smaller eigenvalues in the spectrum of Gram matrices.
Both parameters are strongly related, since the value ofσ controls the range of the typical eigen-
values found in the spectrum of Gram matrices of admissible bases, whereas η acts as a scaling
parameter for those eigenvalues as can be seen in Equation (3). Indeed, using a very smallσ value,
which meansΞ is only defined by peaked Gaussian bells around each pixels, yields diagonally dom-
inant Gram matrices very close to the identity matrix. The resulting eigenvalues for K̃ ∆ are then
all very close to1

d , the inverse of the amount of considered points. On the contrary, a largevalue
for σ yields higher values for the kernel, since all points would be similar to each other and Gram
matrices would turn close to the matrix

�
d,d with a single significant eigenvalue and all others close

to zero. We address these issues and study the robustness of the final output of the k-IGV kernel in
terms of classification error by doing preliminary experiments where bothη andσ vary freely.

8.3 Experiments on the SVM Generalization Error

To study the behaviour and the robustness of the IGV kernel under different parameter settings, we
used two ranges of values forη andσ:
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0.276 0.168 0.184

0.169 0.142 0.122

0.124 0.119 0.0934

0.0691 0.0962 0.0886

Figure 4: The four first eigenfunctions of respectively three empiricalmeasuresµ1 (first column),
µ0 (second column) andµ1+µ0

2 (third column), displayed with their corresponding eigen-
values, usingη = 0.01 andσ = 0.1.
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0.146 0.168 0.142

0.141 0.142 0.122

0.127 0.119 0.103

0.119 0.0962 0.0949

Figure 5: Same representation as in Figure 4, withµ2, µ0 and µ2+µ0
2 .
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η ∈ 10−2×{0.1,0.3,0.5,0.8,1,1.5,2,3,5,8,10,20}
σ ∈ {0.05,0.1,0.12,0.15,0.18,0.20,0.25,0.3}.

For each kernelkη
κ defined by a (σ,η) couple, we trained 10 binary SVM classifiers (each one

trained to recognize each digit versus all other digits) on a training fold of our 500 images dataset
such that the proportion of each class was kept to be one tenth of the total size of the training
set. Using then the test fold, our decision for each submitted image was determined by the highest
SVM score proposed by the 10 trained binary SVM’s. To determine train and test points, we led a
3-fold cross validation, namely randomly splitting our total dataset into 3 balanced subsets, using
successively 2 subsets for training and the remaining one for testing (thatis roughly 332 images for
training and 168 for testing). The test error was not only averaged on those cross-validations folds
but also on 5 different fold divisions. All the SVM experiments in this experimental section were
run using the spider1 toolbox. Most results shown here did not improve by choosing differentsoft
marginC parameters, we hence just setC = ∞ as suggested by default by the authors of the toolbox.

102 η

σ

0.1 0.3 0.5 0.8 1 1.5 2 3 5 8 10 20

0.05

0.1

0.12

0.15

0.18

0.2

0.25

0.3

e < 19.5 % 

e < 22 % 

e < 22 % 

Figure 6: Average test error (displayed as a grey level) of differentSVM handwritten character
recognition experiments using 500 images from the MNIST database (each seen as a set
of 25 to 30 randomly selected black pixels), carried out with 3-fold (2 for training, 1 for
test) cross validations with 5 repeats, where parametersη (regularization) andσ (width
of the Gaussian kernel) have been tuned to different values.

The error rates are graphically displayed in Figure 6 using a grey-scaleplot. Note that for this
benchmark the best testing errors were reached using aσ value of 0.12 with anη parameter within
0.008 and 0.02, this error being roughly 19.5%. All values below and on the right side of this zone

1. seehttp://www.kyb.tuebingen.mpg.de/bs/people/spider/
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are below 32.5%, which is the value reached on the lower right corner. All standard deviations with
respect to multiple cross-validations of those results were inferior to 2.3%, the whole region under
22% being under a standard deviation of 1%. Those preliminary tests show that the IGV kernel
has an overall robust performance within what could be considered asa sound range of values for
bothη andσ. Note that the optimal range of parameter found in this experiment only appliesto the
specific sampling procedure that was used in this case (25 to 30 points), andmay not be optimal for
larger matrices. However the stability observed here led us to discarding further tuning ofσ andη
when the amount of sampled points is different. We simply appliedσ = 0.1 andη = 0.01 for the
remaining of the experimental section.

As in Kondor and Jebara (2003), we also compared the results obtained with the k-IGV to
the standard RBF kernel performed on the images seen as binary vectorsof {0,1}28×28 further
normalized so that their components sums up to 1. Using the same range forσ that was previously

tested, we applied the formulak(z,z′) = e−
‖z−z′‖

2σ2 . Since the RBF kernel is grounded on the exact
overlapping between two images we expect it to perform poorly with few pixels and significantly
better whend grows, while we expect the k-IGV to capture more quickly the structure of the images
with fewer pixels through the kernelκ. This is illustrated in Figure 7 where the k-IGV outperforms
significantly the RBF kernel, reaching with a sample of less than 30 points a performance the RBF
kernel only reaches above 100 points. Taking roughly all black points inthe images, by setting
d = 200 for instance, the RBF kernel error is still 17.5%, an error the IGV kernel reaches with
roughly 35 points.

Finally, we compared the kernelized-version of the Bhattacharrya kernel (k-B) proposed in Kon-
dor and Jebara (2003), the k-IGV, the polynomial kernel and the RBF kernel by using a larger
database of the first 1,000 images in MNIST (100 images for each of the 10 digits), selecting ran-
domlyd = 40,50,60,70 and 80 points and performing the cross-validation methodology previously
detailed. The polynomial kernel was performed seeing the images as binaryvectors of{0,1}28×28

and applying the formulakb,d(z,z′) = (z· z′ + b)d. We followed the observations of Kondor and
Jebara (2003) concerning parameter tuning for the k-B kernel but found out that it performed better
using the same set of parameters used for the k-IGV. The results presented in Table 1 of the k-IGV
kernel show a consistent improvement over all other kernels for this benchmark of 1000 images,
under all sampling schemes.

We did not use the kernel described by Wolf and Shashua (2003) in ourexperiments because
of its poor scaling properties for a large amount of considered points. Indeed, the kernel proposed
by Wolf and Shashua (2003) takes the form of the product ofd cosines values whered is the
cardinality of the considered sets of points, thus yielding negligible values in practice whend is
large as in our case. Their SVM experiments were limited to 6 or 7 points while we mostly con-
sider lists of more than 40 points here. This problem of poor scaling which in practice produces a
diagonal-dominant kernel led us to discarding this method in our comparison.All semigroup ker-
nels presented in this paper are grounded on statistical estimation, which makes their values stable
under variable sizes of samples through renormalization, a property shared with the work of Kondor
and Jebara (2003). Beyond a minimal amount of points needed to performsound estimation, the
size of submitted samples influences positively the accuracy of the k-IGV kernel. A large sample
size can lead however to computational problems since the value of the k-IGV-kernel requires not
only the computation of the centered Gram-matrixK and a few matrix multiplications, but also
the computation of a determinant, an operation which can quickly become prohibitive since it has a
complexity ofO(d2.3) whered is the size of the considered Gram matrix. Although we did not opti-
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Figure 7: Average test error with RBF (σ = 0.2) and k-IGV (σ = 0.1 andη = 0.01) kernels led on
90 different samplings of 500 images. The curves show an overall trendthat both kernels
perform better when they are given more points to compute the similarity betweentwo
images. If we considerd = 200, the RBF kernel error is 0.175, that is 17.5%, a threshold
the IGV kernel reaches with slightly more than 35 points. Each sampling corresponds to
a different amount of sampled pointsd, those samplings being ordered increasingly with
d. Each sampling has been performed independently which explains the bumpiness of
those curves.
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mize the computations of both k-B and k-IGV kernels (by storing precomputedvalues for instance
or using numerical approximations in the computation of the determinant), this computational cost
in the case of a naive implementation, illustrated by the running times displayed in Table 1, remains
an issue that needs to be addressed in practical applications.

Sample Size
Gaussian Polynomial k-B k-IGV
σ = 0.1 b = 10;d = 4 η = 0.01;σ = 0.1 η = 0.01;σ = 0.1

40 pixels 32.2 (1) 31.3 (1.5) 19.1 (1500) 16.2 (1000)
50 ” 28.5 (1) 26.3 (1.5) 17.1 (2500) 14.7 (1400)
60 ” 24.5 (1) 22.0 (1.5) 15.8 (3600) 14.6 (2400)
70 ” 22.2 (1) 19.5 (1.5) 15.1 (4100) 13.1 (2500)
80 ” 20.3 (1) 17.4 (1.5) 14.5 (5500) 12.8 (3200)

Table 1: SVM Error rate in percents of different kernels used on a benchmark test of recognizing
digits images, where only 40 to 80 black points where sampled from the originalimages.
The 1,000 images where randomly split into 3 balanced sets to perform crossvalidation (2
for training and 1 for testing), the error being first averaged over 5 such splits, the whole
process being repeated again over 3 different random samples of points. Running times
are indicated in minutes.

9. Conclusion

We presented in this work a new family of kernels between measures. Such kernels are defined
through prior functions which should ideally quantify the concentration of ameasure. Once such
a function is properly defined, the kernel computation goes through the evaluation of the function
on the two measures to be compared and on their mixture. As expected when dealing with con-
centration of measures, two intuitive tools grounded on information theory and probability, namely
entropy and variance, prove to be useful to define such functions. Their expression is however
still complex in terms of computational complexity, notably for the k-IGV kernel. Computational
improvements or numerical simplifications should be brought forward to ensure a feasible imple-
mentation for large-scale tasks involving tens of thousands of objects.

An attempt to define and understand the general structure of p.d. functions on measures was
also presented, through a representation as integrals of elementary functions known as semicharac-
ters. We are investigating further theoretical properties and characterizations of both semicharacters
and positive definite functions on measures. The choice of alternative priors on semicharacters to
propose other meaningful kernels, with convenient properties on molecular measures for instance, is
also a subject of future research. As for practical applications, thesekernels can be naturally applied
on complex objects seen as molecular measures. We also expect to perform further experiments to
measure the performance of semigroup kernels on a diversified sample ofchallenging tasks, in-
cluding cases where the space of components is not a vector space, notably when the considered
measures are multinomials on a finite component space endowed with a kernel.
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Appendix A : an Example of Continuous Positive Definite Function Given by
Noncontinuous Semicharacters

Let X be the unit interval[0,1] hereafter. For anyt in X , a semicharacter onMb
+(X ) is defined by

ρht (µ) = eµ([0,t]),

whereht(x) = I[0,t](x) is the index function of the interval[0, t]. Note thatρht is not continuous for
t ∈ [0,1) by Proposition 11.

Forµ∈Mb
+(X ), the functiont 7→µ([0, t)) is bounded and non-decreasing, thus, Borel-measurable,

since the discontinuous points are countable at most. A positive definite function onMb
+(X ) is de-

fined by

ϕ(µ) =
Z 1

0
ρht (µ)dt.

This function is continuous, while it is given by the integral of noncontinuous semicharacters.

Proposition The positive definite functionϕ is continuous and exponentially bounded.

Proof Supposeµn converges toµweakly inMb
+(X ). We writeFn(t) = µn([0, t]) andF(t) = µ([0, t]).

Becauseµn andµ are finite measures, the weak convergence means

Fn(t) → F(t)

for any continuous point ofF . Since the set of discontinuous points ofF is at most countable,
the above convergence holds almost everywhere onX with Lebesgue measure. From the weak
convergence, we haveFn(1) → F(1), which means there existsM > 0 such that supt∈X ,n∈N Fn(t) <
M. By the bounded convergence theorem, we obtain

lim
n→∞

ϕ(µn) = lim
n→∞

Z 1

0
eFn(t)dt =

Z 1

0
eF(t)dt = ϕ(µ).

For the exponential boundedness, by taking an absolute valueα(µ) = eµ(X), we have

|ϕ(µ)| ≤
Z 1

0
α(µ)dt = α(µ).
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Abstract

When acquiring an image of a paper document, the image printedon the back page sometimes
shows through. The mixture of the front- and back-page images thus obtained is markedly nonlin-
ear, and thus constitutes a good real-life test case for nonlinear blind source separation.

This paper addresses a difficult version of this problem, corresponding to the use of “onion
skin” paper, which results in a relatively strong nonlinearity of the mixture, which becomes close
to singular in the lighter regions of the images. The separation is achieved through the MISEP
technique, which is an extension of the well known INFOMAX method. The separation results
are assessed with objective quality measures. They show an improvement over the results obtained
with linear separation, but have room for further improvement.

Keywords: ICA, blind source separation, nonlinear mixtures, nonlinear separation, image mix-
ture, image separation

1. Introduction

When an image of a paper document is acquired, e.g. through scanning, photographing or photo-
copying, the image printed on the back page sometimes shows through. This is normally due to
partial transparency of the paper, and results in the acquisition of a mixtureof the images from the
front and back pages. It is usually possible to obtain two different mixtures, by acquiring both sides
of the document. This is a situation that seems suited for handling by blind source separation (BSS)
techniques. The main difficulty is that the images that are acquired are nonlinear mixtures of the
original images printed on each of the sides of the paper. This is, therefore, an interesting test case
for nonlinear BSS methods, with potential application in scanners, photocopiers and in document
processing in general.

This paper addresses a difficult instance of this problem, in which the paper that is used is of the
“onion skin” type. This creates a mixture that has a relatively strong nonlinearity, and that is close
to singular in the lighter parts of the images. For separation we use MISEP, which is a nonlinear
independent component analysis (ICA) technique (Almeida, 2003b). MISEP is a generalization of
the well known INFOMAX technique of linear ICA (Bell and Sejnowski, 1995), extending it in
two directions: (1) being able to handle nonlinear mixtures, and (2) using output nonlinearities that
adapt to the statistical distributions of the extracted components.

c©2005 Lúıs Henrique Martins Borges de Almeida.
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Besides the separation itself, an important practical issue in this specific situation is the align-
ment of the two mixture images. One might think that, by an appropriate translation and rotation,
the images from the two sides of the document could be brought into good alignment with each
other. It was found, however, that scanners normally introduce slightgeometrical distortions that
make it necessary to use local alignment techniques to obtain an image alignmentthat is adequate
for separation. That alignment issue is also addressed in this paper, because it is an important step
of the image processing that needs to be done.

Published results concerning nonlinear BSS in real-life problems are still very few. To the au-
thor’s knowledge, and apart from an earlier version of the present work (Almeida and Faria, 2004),
the only published report of blind source separation of a real-life nonlinear mixture in which the
recovery of the original sources can be confirmed is (Haritopoulos et al., 2002). Some other appli-
cations of nonlinear ICA to real-life data, e.g. (Lappalainen and Honkela,2000; Lee and Batzoglou,
2003), do not provide means to confirm whether real sources were recovered.

This manuscript’s structure is as follows: Section 2 provides a brief overview of nonlinear
separation methods. Section 3 presents a short summary of the MISEP method, to outline its basic
principles and to set the notation. Section 4 describes the experimental conditions, including image
printing, acquisition and alignment. Section 5 presents the experimental results, which are assessed
with objective measures of separation quality. Section 6 concludes.

In the printed version of this paper some of the details of some images may be lost due to the
printing process. However, the paper is freely available online, and in theelectronic online ver-
sion one can zoom in on the images (scatter plots and images of sources, mixtures and separated
components) to better view the details. In the pdf version (∼ 7 MB) the images are encoded in
JPEG format and therefore show some artifacts, which become noticeable on close inspection. The
postscript version shows the images without artifacts, but correspondsto a larger file (∼ 14 MB).
The two versions are available at
http://www.lx.it.pt/ ∼lbalmeida/papers/AlmeidaJMLR05.pdf , and
http://www.lx.it.pt/ ∼lbalmeida/papers/AlmeidaJMLR05.ps.zip .

The source and mixture images used in this paper are available online at
http://www.lx.it.pt/ ∼lbalmeida/ica/seethrough .
The separation routines that were used to produce the results are available at
http://www.lx.it.pt/ ∼lbalmeida/ica/seethrough/code/jmlr05 .

2. Overview of Nonlinear ICA Methods

In this section we provide a short overview of some of the main nonlinear ICAmethods. This
overview is necessarily very brief, and the reader is referred to an overview paper (Jutten and
Karhunen, 2004) for more complete information.

It is interesting to note that one of the very early works on ICA (Schmidhuber, 1992) already
proposed a nonlinear method. Although being based on an interesting principle (minimization of
predictability of each extracted component by the other components) it was rather impractical and
computationally heavy.

The essential uniqueness of the solution of linear ICA (Comon, 1994), together with the greater
simplicity of linear separation and with the fact that many naturally occurring mixtures are essen-
tially linear, led to a quick development of linear ICA. The work on nonlinear ICA probably was
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slowed down mostly by its inherent ill-posedness and by its greater complexity,but development
of nonlinear methods has continued steadily (e.g. Burel, 1992; Deco and Brauer, 1995; Marques
and Almeida, 1999; Palmieri et al., 1999; Theis et al., 2003). The methods thathave received the
strongest attention in recent years are very briefly outlined in the next paragraphs.

Ensemble learning (Lappalainen and Honkela, 2000) is a Bayesian method and, as such, uses
prior distributions as a form of regularization, to handle the ill-posedness problem. It is computa-
tionally heavy, but has produced some interesting results, including an extension to the separation
of nonlinearly mixed dynamical processes (Valpola and Karhunen, 2002).

Kernel-based nonlinear ICA (Harmeling et al., 2003) essentially consists oflinear ICA per-
formed on a high-dimensional space that is a nonlinear transformation of theoriginal space of mix-
ture observations. In the form in which it was presented in the cited reference, it used the temporal
structure of the signals to perform the linear ICA operation. This apparentlyhelped it to effectively
deal with the ill-posedness problem, and allowed it to yield some impressive results on artificial,
strongly nonlinear mixtures. The method seems to be quite tractable, in computational terms.

MISEP (Almeida, 2003b) is an extension of INFOMAX (Bell and Sejnowski,1995) into the
nonlinear domain. It uses regularization to deal with the ill-posedness problem, and is computation-
ally tractable. It is described in more detail in the next section, since it is the method used in the
present paper.

A special class of methods that deserves mention deals with nonlinear mixtureswhich are con-
strained so as to make the result of ICA essentially unique, as in linear ICA. The most representative
class corresponds to the so-called post-nonlinear (PNL) mixtures (Taleband Jutten, 1999). These
are linear mixtures followed by component-wise invertible nonlinearities. The interest of this class
resides both in its unique separability and in the fact that it corresponds to well identified practical
situations: linear mixtures observed by nonlinear sensors. PNL mixtures and their extensions have
had a considerable development (see Jutten and Karhunen, 2004, forreferences).

3. Overview of the MISEP Method

MISEP (Almeida, 2003b) is a generalization of the INFOMAX method of linear ICA (Bell and
Sejnowski, 1995). We recall that the latter method, although initially introducedunder a principle
of maximum information preservation, was later shown to be interpretable as a maximum likelihood
method (Pearlmutter and Parra, 1996), and also as a method based on the minimization of the mutual
information (MI) of the extracted components (Hyvärinen and Oja, 2000). We briefly recall the
latter interpretation, albeit using a reasoning different from the one given in that reference.

If Y is a vector with random componentsYi , we define the mutual information of the components
of Y as

I(Y) = ∑
i

H(Yi)−H(Y) (1)

where, for continuous variables, as is the case here,H denotes Shannon’s differential entropy

H(X) = −

Z

p(x) logp(x)dx. (2)

In this equationp(x) is the probability density of the scalar random variableX (we denote proba-
bility density functions byp(·), the function’s argument clarifying which random variable is being
considered; this is a slight abuse of notation, but helps to keep expressions simpler and does not cre-
ate any confusion). A similar definition holds forH(X), whereX is a random vector, the difference
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being that the random variable is now multidimensional and the integral in (2) becomes a multiple
integral, encompassing the whole domain ofX.

Mutual information is a good measure of statistical dependence.I(Y) measures the amount
of information that is shared among the random variablesYi . It is always positive, except if these
variables are mutually statistically independent, in which case it is zero.I(Y) is also equal to the
Kullback-Leibler divergence between the product of the marginal densities, ∏i p(yi) and the true
joint density, p(y). These two densities are equal if and only if the componentsYi are mutually
independent.

Minimization of the mutual information of the extracted components is therefore a good crite-
rion for independent component analysis. An interesting and useful property of mutual information,
that we shall use ahead, is that if we apply invertible, possibly nonlinear, transformations to the ran-
dom variables,Zi = ψi(Yi), the mutual information doesn’t change:I(Z) = I(Y).

INFOMAX uses a network with the structure depicted in Fig. 1. BlockF performs the sepa-
ration proper, the separated components beingyi . F is linear, corresponding just to a product by a
matrix. The blocksψi are auxiliary, being used only during the training phase. Each of these blocks
performs an invertible, increasing transformationzi = ψi(yi), whose counter-domain is the interval
(0,1).

 

 

F 

o 1 

ψ 2 o 2 

ψ 1 
y 1 

y 2 

z 1 

z 2 

Figure 1: Network structure used in INFOMAX and in MISEP. In INFOMAX, F is an adaptive
linear block, and theψi are fixed a priori. In MISEP,F can be nonlinear, and bothF and
ψi are adaptive.

If we choose eachψi as the cumulative distribution function (CDF) of the correspondingYi , it is
easy to see that each of theZi will be uniformly distributed in(0,1), resulting inp(zi) = 1 for zi in
that interval, andH(Zi) = 0. Therefore,

I(Y) = I(Z)

= ∑
i

H(Zi)−H(Z)

= −H(Z). (3)

Mutual information is hard to minimize directly, but (3) shows that, under the stated conditions, this
minimization is equivalent to the maximization of the output entropyH(Z), a maximization which
is much easier to achieve. INFOMAX works by optimizingF such thatH(Z) is maximized. We
won’t go into the details here, but the reader can consult (Bell and Sejnowski, 1995) or (Hyv̈arinen
and Oja, 2000) for a deeper discussion.

As said above, MISEP extends INFOMAX in two directions. The first is being able to deal with
nonlinear mixtures. This is achieved by allowing blockF, in Fig. 1, to be nonlinear. We have often
implemented this block by means of a multilayer perceptron (MLP), but essentiallyany adaptive
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nonlinear structure can be used. For example, a radial basis function network has been used in
(Almeida, 2003a), and a specialized structure in (Almeida and Faria, 2004).

The second direction in which MISEP extends INFOMAX, is by making the output transforma-
tionsψi adaptive. As we have seen above, eachψi should correspond to the CDF of the correspond-
ing extracted source, for the maximization of the output entropy to correspond to the minimization
of the mutual information of the extracted components. The a-priori choice of the ψi functions in
INFOMAX can be seen as a user-made, prior assumption about the distributions of the sources. In
MISEP theψi blocks are adaptive, being implemented by means of adequately constrainedMLPs.
It can be shown that maximization of the output entropyH(Z) leads each of these blocks to estimate
the corresponding CDF, while simultaneously leadingF to minimize the mutual informationI(Y)
(Almeida, 2003b). Therefore, maximizing the output entropy simultaneously adapts theψi blocks
and leads to the minimization of the mutual informationI(Y).

An issue that has frequently been discussed is whether nonlinear blind source separation, based
on ICA, is feasible in practice. This debate has to do with the fact that nonlinear ICA, with no
additional constraints, is an ill-posed problem, having an infinite number of solutions that are not
related to one another in any simple way (Darmois, 1953; Hyvärinen and Pajunen, 1999; Marques
and Almeida, 1999). Therefore we cannot expect that, just by extracting independent components,
one will be able to recover the original sources that were nonlinearly mixed. This is to be contrasted
with the situation in linear ICA/BSS in which, under very mild constraints, there exists essentially
only one solution (Comon, 1994). In linear ICA, if independent components are extracted, they
must correspond to the original sources, apart from possible scaling and permutation. This author
has argued that in the nonlinear case, when the mixture is not too strongly nonlinear, adequate
regularization should allow the handling of the ill-posedness of nonlinear ICA, still allowing the
approximate recovery of the sources. The nonlinearities considered in this paper would be classified
by the author as of “medium intensity”. As we shall see below, approximate source recovery was
possible, and the indetermination of nonlinear ICA didn’t lead to inadequate separation.

4. Experimental Setup

In this section we describe the experimental setup, including details of image printing, acquisition
and preprocessing

4.1 Source Images

We used five image mixtures as test cases. The corresponding pairs of source images are shown in
Figs. 2 and 3. The main properties of these image pairs are as follows:

1. In the first pair, each image consists of 25 uniform bars with intensities that are uniformly
spaced between black and white, and are randomly ordered. The first image has vertical bars,
and the second image is just the first one rotated by 90o. Thus, by construction, the intensities
of the two images are independent, and each of the images has an intensity distribution which
is close to uniform.

2. The second pair consists of images of natural scenes with a relatively high degree of variability
and relatively small details. This causes a strong “mixing” of intensities, and the two sources
are approximately independent from each other. However, the small details tend to make
image superposition (due to imperfect separation) hard to notice visually.
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Figure 2: The first three pairs of source images, before printing. The images have been cropped, and
one image in each pair has been horizontally flipped, to correspond to its position in the
acquired images. Each image was then reduced in resolution and aligned to correspond,
as well as possible, to the acquired images.
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Figure 3: The fourth and fifth pairs of source images, before printing. One image in the last pair has
been horizontally flipped. In the fourth pair no flipping has been performed, in order to
keep the text’s readability. Note, however, that the right-hand image of thatpair appears
flipped in the mixtures shown ahead.
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3. The third pair consists of an image of a natural scene, on one side of thepaper, and an image
of printed text (Times New Roman, 12-point font) on the other side. Since thetext has many
large changes of intensity in very small areas, a good “mixing” of the intensities from both
images takes place, and the two sources are approximately independent.

4. The fourth pair consists of printed text on both sides of the paper, with afew graphs on one
of the sides. Once again, the intensities from the two sides of the paper are well mixed,
and therefore approximately independent. The peculiarity of this pair is that,since printed
text has a much larger area of white than of black, only a very small percentage of pixels is
simultaneously dark on both sides of the paper. This has some influence on the separation
results that are obtained, as we shall see.

5. The fifth pair consists of images of natural scenes that have large areas with quasi-uniform
intensity. This causes a relatively weak mixing of intensities, making the intensities from the
two sides of the paper non-independent. This fact has some impact on the separation results,
as we shall see. The large, relatively uniform areas of the images make imperfect separation
easier to notice visually than in case 2 above.

The leftmost columns of Figs. 4 and 5 illustrate the joint distributions of the sourceimages.
These plots deserve some comments. First of all we should note that, for the joint distributions of
the two sources of each pair to be meaningful, the source images had to be adjusted in resolution
and aligned, so as to be in the same relative position as in the acquired mixtures.For that pur-
pose each source image was reduced in resolution to the same size as the corresponding acquired
mixture images, and was then aligned with the corresponding separated component from nonlinear
separation (see Section 4.3 for the alignment procedure and Section 5.2 for the nonlinear separation
procedure). Both the resizing and the alignment procedures involved bicubic interpolation of the
pixel intensities. The result of such interpolation is visible in the edges of the bars and of the text
characters, in Figs. 2 and 3, which show the source images after resizingand alignment.

Some more comments are useful for a better understanding of the source distributions:

• The “grid” look of the first scatter plot reflects the fact that each of the source images had
only 25 equally spaced intensities. Some intermediate intensities also appear in theplot due
to the intensity interpolation performed in the resizing and alignment processes.

• The second scatter plot shows that, in this case, the two sources are almostindependent from
each other. The plot shows some evidence of saturation in the lightest intensities of the right-
hand source image (vertical axis of the scatter plot). Since this saturation is inthe source
image, before printing, it should have no significant influence on the mixtureand separation
processes.

• The third and fourth scatter plots also show that the corresponding source pairs are approxi-
mately independent. The distributions of the sources that are images of text show that a very
large percentage of their pixels is white. The non-white pixels show a continuous distribution,
instead of just a black level, due to the interpolation performed in the resizing and alignment
processes. The interpolation effect is much more noticeable here than in thefirst image pair
because, the character sizes being much smaller than the widths of the bars,many pixels fell
on black-white edges, and only a very small percentage fell completely withinblack regions
of the characters.
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Figure 4: Scatter plots of the first three image pairs. From left to right: source images, acquired
images, linear separation and nonlinear separation. The three rows correspond to the
three pairs of images of Fig. 2. In each scatter plot, the horizontal axis corresponds to
intensities from the left-hand image and the vertical axis to intensities from the right-hand
image. The scale of each plot ranges from black (left/bottom) to white (right/top). Each
scatter plot shows 5000 randomly selected points from the correspondingpair of images.
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Figure 5: Scatter plots of the fourth and fifth image pairs. From left to right: source images, ac-
quired images, linear separation and nonlinear separation. The two rows correspond to
the two pairs of images of Fig. 3.

• The fifth scatter plot clearly shows that the sources of this pair are not independent. The plot
shows some evidence of intensity quantization in the darkest levels of the left-hand source
image (horizontal axis of the scatter plot), and of saturation in the lightest intensities of the
same image. Since the quantization and saturation are in the source image, before printing,
they should have no significant influence on the mixture and separation processes.

4.2 The Mixture Process: Printing and Acquisition

The images from each pair were printed on opposite faces of a sheet of onion skin paper. Printing
was done with a 1200 dpi laser printer, using the printer’s default halftoning system. Both faces
of the sheet of onion skin paper were then scanned with a desktop scanner at a resolution of 100
dpi. This low resolution was chosen on purpose, so that the printer’s halftoning grid would not be
apparent in the scanned images. The scanner’s “descreening” option(whose purpose is to minimize
the visibility of the halftoning grid) was turned on.

We tried to keep the printing and acquisition processes as symmetrical as possible: the two
source images in each pair were handled in an identical way, and the two acquired mixture images
in each pair were also handled in an identical way. This implied disabling the scanner’s “automatic
image adjustment” feature, which adjusts the acquired image’s brightness, contrast and gamma
value in a manner that is not specified in the scanner’s documentation.

The second column of scatter plots of Figs. 4 and 5 shows the joint distributions of the mixture
components (after alignment, which is discussed in the next section). The shapes of the mixture
distributions show that the mixtures are nonlinear. This is especially clear in thefirst image pair,
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in which the joint distribution of the sources is approximately uniform within a square. A linear
mixture process would have resulted in a mixture uniformly distributed within a parallelogram. The
observed distribution has a shape that is far from a parallelogram and that is non-uniform, being
more dense toward darker intensities than toward lighter ones. Both facts indicate that the mixture
is nonlinear. The deviation from a parallelogram shape gives an idea of the amount of nonlinearity.

The mixture distribution, in the first pair, shows no traces of the discrete intensity levels that
were present in the source images. This is due to noise introduced by the mixture process. This
noise comes from three sources, at least: (1) the printing process, with the halftoning to reproduce
grayscale levels; (2) the noise from the scanning process (from othertests of the same scanner this
noise appears to be rather weak, essentially amounting to the intensity quantization into 256 levels),
and (3) inhomogeneity of the onion skin paper (from our experience this appears to be the strongest
source of noise). Later we’ll have the possibility to have a better idea of thetotal amount of noise
introduced by the mixture process.

On close inspection, the mixture scatter plots show that the points are arranged on a square grid.
This is a result of the intensity quantization performed by the scanner.

4.3 Preprocessing

In the preprocessing stage, in each pair of acquired images one of them was first horizontally flipped,
so that both images would have the same orientation. Then the images of each pair were aligned
with each other by hand. In preliminary tests we found that even a very careful alignment, using
translation, rotation and shear operations on the whole images, could not perform a good simulta-
neous alignment of all parts of the images. This was probably due to slight geometrical distortions
introduced by the scanner. It indicated that an automatic, local alignment was needed. The use of
the automatic local alignment relaxed the demands placed on the initial manual alignment.

In the alignment procedure that was finally adopted, the first step consisted just of a manual
displacement of one of the images by an integer number of pixels in each direction, so that the two
images would be coarsely aligned with each other. In a second step an automatic, local alignment
was performed. For this, the resolution of both images was first increasedby a factor of 4 in
each direction, using bicubic interpolation. Then, one of the images was divided into 100× 100
pixel squares (corresponding to 25×25 pixels in the original image), and for each square the best
displacement was found, based on the maximum of the cross-correlation withthe other image. The
whole image was then rebuilt, based on these optimal displacements, and its resolution was reduced
by a factor of 4. In this way a local alignment with a resolution of 1/4 pixel was achieved. Note
that, although the alignment consisted only of local translations, it did handle the small rotations
and shears that occur in problems of this kind, because these deformations consist just of different
displacements for different points of the image. The fact that we used the same displacement for
each 25×25 subimage caused only a negligible misalignment, relative to the true displacement that
would be appropriate for each pixel.

There is a large variety of image alignment methods described in the literature, varying due to
such aspects as the kinds of images to be aligned, the purpose of the alignment, etc. The reader can
find an overview, somewhat oriented toward medical images, in (Maintz, 1998). The method that
we used was designed specifically for handling the problem we needed to solve, but bears strong
resemblances to some of the methods mentioned in that overview, and we make noclaims to its
originality.
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As a final preprocessing step, the intensity range of each pair of images was normalized to the
interval[0,1], 0 corresponding to the darkest pixel in the image pair and 1 to the lightest one. Figures
6 and 7 show the acquired images after preprocessing.2

As said above, we tried to keep the processing of both images in each pair assymmetrical as
possible. An obvious asymmetry is due to the fact that only one image in each pair was modified
in the alignment procedure. We used a high quality intensity interpolation method (bicubic) in the
alignment procedure, so as to affect the image’s quality as little as possible. The separation results
that we present ahead, based on a symmetry constraint, seem to confirm that the mixture process
was kept very close to symmetrical, despite the asymmetry in the alignment procedure.

5. Separation Results

One of the main purposes of the work reported in this paper was to assess the viability and the
advantage of performing nonlinear source separation, in a real-life nonlinear mixture problem, by
means of an ICA-based separation system. Therefore we used sourceseparation by linear ICA as a
baseline for comparison. The next sections present the results of separation by linear and nonlinear
ICA, followed by an assessment of the results with objective quality measures.

The mixture process that we used was as symmetrical as possible, so that anexchange of the
source images should result just in a corresponding exchange of the mixture images (apart from
noise). Therefore we applied symmetry constraints to the separation systems, as detailed ahead.

5.1 Linear Separation

The linear ICA method that we used was MISEP with a linearF block, which corresponds to
INFOMAX with adaptive nonlinearities. Eachψ block was formed by an MLP with a single input
and a single output, and with a hidden layer of 20 sigmoidal units. The output unit of each of these
MLPs was linear, and there were no “shortcut” connections between inputand output. The training
set consisted of 5000 pairs of intensities, from randomly chosen pixel pairs of the acquired images.
TheF block was initialized with the identity matrix, and training was performed during 200epochs,
which were sufficient for convergence. TheF block was constrained to be symmetrical. Symmetry
was not enforced on theψ blocks because the distributions of the two sources were, in general,
different from each other.

For each image pair, ten runs of the separation were made. These differed from one another in
the selection of the 5000 pairs of pixels used to form the training set, and in therandom initialization
of the weights of theψ MLPs. The results of the ten runs were very similar to one another. Figures8
and 9 show the results that were best, according to quality measureQ2 (see Section 5.3). We see that
a reasonable degree of separation was achieved in all cases, but someinterference remained. The
scatter plots in Figs. 4 and 5 (third column) show that, although a certain amountof separation was
achieved, the nonlinear character of the mixture could not be undone by linear ICA, as expected.
Note: The arrangement of the scatter plots’ points into lines (and, in fact, intoa grid-like structure,
although that is less apparent) is a result of the intensity quantization performed by the scanner.

2. All images of mixtures and of separation results displayed in this paper were adjusted in brightness and contrast so
as to saturate the 1% brightest and 1% darkest pixels. This is a procedurethat is commonly used for better display
of images. This adjustment was performed for image display only: not for image separation and also not for the
computation of quality measures.
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Figure 6: The first three pairs of acquired images, after preprocessing.
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Figure 7: The fourth and fifth pairs of acquired images, after preprocessing.
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Figure 8: “Best” results of linear separation: first three image pairs.
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Figure 9: “Best” results of linear separation: fourth and fifth image pairs.
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5.2 Nonlinear Separation

For nonlinear separation we used MISEP with a nonlinearF block. This block consisted of a
multilayer perceptron with two inputs, two outputs and a hidden layer of 40 sigmoidal units. The
output units were linear, and the hidden units were divided into two groups of 20, each group being
connected to one of the output units. This MLP also had direct, “shortcut” connections between
inputs and outputs. Since the output units were linear, the block could implementlinear separation
exactly, by setting the weights of the hidden layer’s connections to zero.

As noted above, regularization plays an important role in dealing with the ill-posedness of non-
linear ICA. In our case regularization was achieved by three means: (i) initializing theF network to
perform an identity mapping, (ii) constraining that network to be symmetrical, and (iii) constraining
that network to be linear during the first 100 training epochs (by keeping the output weights of the
hidden layer equal to zero during those epochs). Training was stoppedat 400 epochs. At that point
the progress of the optimization was in general very slow. As a test, in a few cases the optimization
was extended to a much larger number of epochs, without any significant change in the separation
results. Therefore the exact stopping point that was chosen doesn’tappear to have had any signifi-
cant influence on the results. Theψ blocks had the same structure as in the linear separation case.
Each 400-epoch training run took approximately 9 minutes on a 1.6 GHz Pentium-M (Centrino)
processor.

For each image pair, ten runs of the separation were made, with different random selections of
the 5000 pixel pairs forming the training set, and with different random initializations of the MLPs’
weights (excluding, of course, those weights that were initially set to the identity matrix or to zero).
Figures 10 and 11 show the best results that were obtained (“best” according to quality measure
Q2). The scatter plots corresponding to these separations are shown in the rightmost column of
Figs. 4 and 5. Figures 12 and 13 show the worst separation results that were obtained (“worst”
again according toQ2).

5.3 Measures of Separation Quality

The images shown in the previous section give an idea of the separation quality, but their evaluation
is rather subjective. It depends on the viewer, as well as on other factors such as the conditions
under which the images were printed or are viewed. Furthermore, a reasonable amount of image
superposition can pass unnoticed in regions in which the “main” image has muchvariability. For
these reasons we decided to also use objective measures of separation quality, which are not sensitive
to such effects.

Experience with objective quality measures for nonlinear source separation is still very limited.
This led us to compute four different quality measures. The fisrt, that we denote byQ1, was simply
the signal to noise ratio (SNR) of the extracted component relative to the corresponding source.3 We
should note that, in a nonlinear separation context, the SNR, besides being sensitive to incomplete
source separation and to noise, is also sensitive to any nonlinear transformation of the intensity scale
that may be caused by the mixture and separation processes. It is well known that, in linear separa-
tion, the sources are recovered with unknown scale factors. In nonlinear ICA-based separation, each
recovered source may be subject to an unknown nonlinear, invertible transformation. MeasureQ1

gives a global indication of the distortion of the extracted component relative to the corresponding

3. For the computation of all quality measures we used the resized and aligned source images.
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Figure 10: “Best” results of nonlinear separation: first three image pairs.
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Figure 11: “Best” results of nonlinear separation: fourth and fifth image pairs.
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Figure 12: “Worst” results of nonlinear separation: first three image pairs.
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Figure 13: “Worst” results of nonlinear separation: fourth and fifth imagepairs.
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source, including any nonlinear transformation of the intensity scale, besides including incomplete
separation and noise.

Due to the possible presence of a nonlinear transformation of the intensity scale, our other three
quality measures were defined so as to be invariant to such transformations. The second quality
measure,Q2, was a signal to noise ratio, modified so that it had the invariance property mentioned
above. It was given by

Q2 =
variance ofS
variance ofN

, (4)

whereS was the source image andN was the noise that was present in the extracted component.
This noise was computed as

N = f (Y)−S, (5)

Y being the extracted component, andf being a nonlinear, monotonic transformation chosen so that
Q2 was maximal. In other terms, we chose a nonlinear, monotonic transformation ofthe intensity
scale of the extracted component that made it become as close as possible to the corresponding
source in SNR terms, and then used its SNR as the quality measure. The optimalf (·) was computed
in table form. This was possible because the number of intensity levels in each image is finite, since
each image has a finite number of pixels.

The other two measures that we used were information-theoretic:

• Q3 was the mutual information between each extracted component and the corresponding
source. The mutual information was estimated from a set of 5000 randomly selected pixel
pairs, chosen independently from those forming the training set, and was computed using the
I (1) estimator described in (Kraskov et al., 2004), withk = 3 (k is the nearest neighbor order
used in that estimation algorithm; its recommended range, given in that reference, is between
2 and 4).

• Q4 was the mutual information between each extracted component and the opposite source,
computed in the same manner as forQ3.

Note that other quality measures could easily be envisaged. For example,Q4−Q3 would be a
measure similar in spirit to the well known Amari index (Amari et al., 1996), butbased on mutual
information, to account for nonlinearities, and using a difference insteadof a quotient due to its
logarithmic character.

Another kind of measure that might come to mind would be similar toQ4 (indicating the amount
of interference, from the “wrong” source, that is present in the extracted component) but measured
in terms of SNR instead of mutual information. Such a measure would not have made much sense,
however, because in a nonlinear context the interference can be “positive” in some parts of the image
and “negative” in other parts. These positive and negative parts wouldtend to cancel out. Therefore
such a measure could sometimes indicate a misleadingly low amount of interference. In a measure
like Q4, based on mutual information, such positive and negative interferencesdo not cancel out,
but instead have a cumulative effect.

As a reference for assessing the amount of separation achieved by thevarious methods, we
show in Table 1 the values of the quality measures for the mixture components after preprocessing,
without any separation.

The mean values of the quality measures for each of the ten-run series of separations are shown
in Table 2. Note that forQ1, Q2 andQ3 higher values are best, while forQ4 lower values are best.
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No separation
Image pair Quality measure source 1 source 2

Q1 1.9 1.9
1 Q2 6.2 6.2

Q3 1.21 1.23
Q4 0.48 0.49
Q1 -1.7 6.0

2 Q2 3.7 8.9
Q3 1.11 1.34
Q4 0.56 0.60
Q1 -4.5 6.6

3 Q2 3.8 8.1
Q3 0.38 1.65
Q4 1.35 0.12
Q1 0.9 -2.3

4 Q2 5.6 3.3
Q3 0.56 0.29
Q4 0.23 0.43
Q1 9.6 -6.4

5 Q2 11.7 2.7
Q3 1.85 1.07
Q4 0.86 1.18

Table 1: Values of the objective quality measures for the unseparated mixture components. In this
and in the following tableQ1 andQ2 are given in dB andQ3 andQ4 in bits.
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Linear separation Nonlinear separation
Image pair Quality measure source 1 source 2 source 1 source 2

Q1 9.0 8.7 13.8 13.1
1 Q2 11.9 11.6 14.7 14.2

Q3 2.03 1.96 2.45 2.39
Q4 0.48 0.46 0.23 0.26
Q1 5.2 10.5 9.3 13.9

2 Q2 8.1 12.9 11.0 15.0
Q3 1.56 1.78 1.83 1.95
Q4 0.37 0.53 0.24 0.40
Q1 4.5 11.2 6.2 11.2

3 Q2 7.8 12.4 9.1 13.8
Q3 0.80 1.99 0.85 2.11
Q4 0.36 0.18 0.09 0.15
Q1 5.8 3.4 6.0 3.7

4 Q2 8.8 6.7 9.1 7.1
Q3 0.74 0.48 0.75 0.51
Q4 0.11 0.16 0.11 0.16
Q1 13.4 6.6 14.2 6.4

5 Q2 14.7 7.9 15.3 7.8
Q3 2.13 1.34 2.19 1.29
Q4 0.71 0.46 0.56 0.49

Table 2: Objective quality results. The results shown are the average foreach of the sets of ten test
runs. For each pair (linear and nonlinear, for the same source), the best result is shown
in bold if the difference was significant at the 95% confidence level. ForQ1, Q2 andQ3

higher results are better, while forQ4 lower results are better.

The cases in which the difference between linear and nonlinear separation was significant at the
95% confidence level are shown in bold in the table.

The measure that seemed to correlate best with our subjective evaluation ofseparation quality
wasQ2, and this is why we chose it for the selection of the “best” and “worst” examples shown
in Sections 5.1 and 5.2. The next best wasQ1. Q4, which was intended to measure the amount
of interference from the “wrong” source, was the one which correlated worst with our subjective
quality evaluation.

5.4 Assessment of the Results

For the first three image pairs, both the objective quality measures and our subjective evaluation
showed a clear advantage of nonlinear separation over linear separation. Even the worst results of
nonlinear separation seemed to be better, in general, than the best results of linear separation. Com-
parison of the third and fourth columns of scatter plots (Figs. 4 and 5) also confirms the advantage
of nonlinear separation. This advantage was not so clear, however, for the fourth and fifth image
pairs. We discuss now why we think this was so.
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For the fourth image pair, most objective quality measures still show an advantage of nonlinear
separation, but this advantage is very small, and our subjective evaluationshowed the results of
linear and nonlinear separation to be very similar in quality. This is also confirmed by comparing
the corresponding scatter plots in Figs. 4 and 5. In this image pair, most pixelsare white in at least
one of the sources. The source scatter plot is dominated by two lines of points, located on the top
and right-hand edges of the plot. This has the consequence that, with the specific mixture that was
involved in the problem under study, linear ICA was able to perform a rather good separation. We
see from the scatter plot of the linearly separated components that the lower-left area, corresponding
to simultaneously dark pixels on both sources, was left unfilled by linear ICA. But this represented
a rather small percentage of pixels, and had little impact on the overall separation quality.

We also see, from the rightmost scatter plot, that nonlinear separation also left the lower-left
area unfilled. This may seem to be due to an incomplete optimization, but we tried extending the
optimization to a much larger number of epochs without any significant changein the results. It
is possible that the result shown corresponds to a local optimum. By playing with the network
structure, with the initial conditions and with the constraints, we were sometimes able to get a result
in which the lower left area of the scatter plot was filled. However, this made very little difference
in the subjective or objective quality of the separation.

The results for the fifth image pair show that one of the sources was best separated by the linear
method, while the other was best separated by the nonlinear one. But the differences between the
two methods were rather small, even though most of them were statistically significant. Nonlinear
separation apparently suffered a negative impact from the fact that thesources were not independent
from each other and we were using independence as the separation criterion. The nonlinear separa-
tion network had many more degrees of freedom than the linear one, and used them to try to make
the extracted components more independent from each other. In doing soit impaired the separation
of one of the sources, instead of improving it, since the actual sources were not independent.

An important aspect of the results that we obtained is that, although the mixture process was
nonlinear, and nonlinear separation could, in principle, introduce an arbitrary nonlinear transforma-
tion in each separated component, the total amount of nonlinearity introducedby the mixture and
separation processes was relatively small. This is clear from the separation images that were shown
(which were only normalized in brightness and contrast, as mentioned above) and from the values
of the Q1 measure. We also illustrate this, in a more clear form, in Fig. 14. This figure shows a
scatter plot of the first extracted component versus the correspondingsource, for the “average” case
of the first image pair (the “average” case was chosen as the one whosevalue ofQ2 was closest to
the average for the ten runs).

From our experience, there were two factors that were important in achieving this low level of
nonlinearity. One was the fact that we linearly “primed” the separation network, by constraining it to
be linear during the first 100 epochs. The other factor was that we gavea great amount of flexibility
to theψ networks, by implementing them with a large number of hidden units. In previoustests
in which these networks had only 6 hidden units, the separation results, as measured byQ2, Q3

or Q4 were not very different from those presented here, but there oftenwas a significant amount
of nonlinearity introduced in the extracted components. This seems to have been caused by theF
block trying to compensate for the limitations of theψ networks which could not, by themselves,
make the distribution of eachZi close to uniform.

There are some other aspects of the results, and of the experience that we gained in studying
this problem, that are worth discussing. One of them has to do with the amount of noise introduced
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Figure 14: Scatter plot of the first extracted component versus the corresponding source, in an “av-
erage” run of nonlinear separation of the first image pair. Horizontal axis: source; verti-
cal axis: extracted component.

by the mixture process. We can take advantage of the fact that the sourceimages that contain
text have a large percentage of purely white pixels, which show up as strong, very thin lines in
the corresponding scatter plots in the first column of Figs. 4 and 5, for having an idea of the
amount of noise present in the mixtures and in the separated components. After the mixture, and
also after linear or nonlinear separation, these lines appear broadenedin the scatter plots, looking
like fuzzy dark bands. The widths of these bands give an idea of the amount of noise that was
introduced by the mixing, or by the mixing plus separation. In the separation results the noise
represents a significant percentage of the whole intensity range. Note that the separation process
does not, by itself, introduce any noise. However, since it essentially consists of performing a
weighted difference between the two mixture components, it does increase the amount of noise that
is present, in relative terms.

Another interesting aspect has to do with understanding the “scale” of the quality measures
based on mutual information (especially ofQ3 since, as we’ve already said,Q4 seemed to be less
meaningful). We were surprised by the relatively low values of mutual information between source
and extracted component, even when the images looked well separated andQ2 indicated relatively
high SNR values after compensation of nonlinearities. For natural scene images, the mutual infor-
mation between source and extracted component was roughly around 2 bits, while for text images
it was below 1 bit. We can also observe from Table 2 that, for each sourceimage, a change of 1 dB
in SNR (i.e. inQ2) corresponded, approximately, to a change of 0.1 bit inQ3. Small changes in the
value of mutual information seem to be much more significant than we expected before performing
these tests.
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An important aspect of the mixture process, that we have not mentioned so far, is that it didn’t
seem to be a purely point-wise process. The intensity of each source imageat each point appeared
to affect the observed mixture intensities in a small neighborhood of that point. This is especially
noticeable by closely examining the separation results in the cases in which the image to be sup-
pressed was a text image. The cause of this phenomenon probably was some lateral diffusion of
light inside the paper. The effect was relatively weak at the scanning resolution that we used, but
should become more pronounced at higher resolutions. A more perfect separation system should
take this into account. However, non-point-wise nonlinear ICA is still essentially an unstudied topic,
and is beyond the scope of this paper.

Another important aspect has to do with the use of the symmetry constraint. We were careful
in ensuring that, both during scanning and in the preprocessing stage, both sides of the paper were
handled in the same way. This allowed us to use a symmetry constraint in the separation networks.
Such symmetry conditions in the mixture can probably be obtained when using a system like our
desktop scanner, in which the paper has to be flipped, and the same set ofsensors is used to acquire
both sides. However, industrial scanners, which are used to digitize large quantities of documents,
normally acquire both sides of the document at the same time, using two different sets of sensors.
Such scanners often are strongly non-symmetric. In such cases the symmetry constraint couldn’t
probably be used, or would have to be used only in an initial part of the training, after which it
would have to be relaxed. We had no access to images from such scanners, and therefore couldn’t
assess what degree of separation would be achievable with them.

Still regarding a possible application to an actual scanning or photocopyingdevice, there are two
other aspects worth mentioning. One is that it doesn’t seem to be possible to have a fixed separator,
optimized at the factory for a specific device. This is because the mixture depends at least on the
paper being used, and possibly also on the printing ink, halftoning process and other similar factors.
It seems possible, however, to develop a physical model of the mixture process, with a small number
of parameters, and then to find (algebraically or by approximate means) a parameterized inverse
system. Its parameters may then be estimated through an ICA criterion. MISEP seems suited for
this task, since it can use essentially any parameterized nonlinear system in theF block.

Another practical aspect has to do with the possible warping (existence ofripples) in the doc-
ument being processed. We found that even very weak ripples, barelynoticeable in the scanned
images, would result in very strong light and dark bands in the separated images, both with linear
and with nonlinear separation. This was, of course, a situation in which the mixture was spatially
variant, and could not be adequately undone by a spatially invariant system. In our case we solved
the problem by applying a very strong pressure to the cover of the scanner while scanning the
documents, in order to eliminate the ripples. This might become an important issue ina practical
application.

6. Conclusion

We showed an application of ICA to nonlinear source separation in a real-life problem of practical
interest. One of the main issues that have been discussed in the last few years, concerning nonlinear
ICA, is whether its inherent ill-posedness can be handled in practical situations. Our results show
that it can, at least in this specific problem. We should say, however, thatit took quite a bit of
experimentation to find a set of conditions that could be used for all image pairs, yielding a good
separation with relatively little variability in the separation results. In an earlier work (Almeida
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and Faria, 2004) we had not yet been able to achieve an adequate formof regularization, without
resorting to anF block with a specialized form.

We presented comparisons of MISEP-based nonlinear ICA with linear ICA, one of the main pur-
poses being to demonstrate the feasibility and the advantage of nonlinear source separation through
ICA in a practical situation. It would also be very interesting to compare the nonlinear separation
results presented here with those obtained with other nonlinear separation methods, such as ensem-
ble learning (Lappalainen and Honkela, 2000), kernel-based nonlinear ICA (Harmeling et al., 2003)
or geometric ICA (Theis et al., 2003). That comparison would have been outside the scope of the
present paper. First of all, it would have involved a very large amount of additional work. Further-
more, the results obtained with a specific method are often much better if the methodis tuned by
someone experienced in its use. We have a reasonable amount of experience in using MISEP, but
virtually no experience with any of the other methods. To enable comparisonswe chose to make
our test data, as well as our separation routines, available online (see theend of Section 4.3).

Future work will address several different issues, among which we can mention:

• The development of separation criteria that are more adequate for this problem than statistical
independence. We have seen that, in this problem, the images to be separatedmay happen
not to be independent. In such a case the quality of separation suffers.A more adequate
separation criterion would not cause such degradation and might also be able to overcome
much of the ill-posedness of nonlinear ICA, decreasing the dependenceon regularization.

• The use of the spatial redundancy of images to reduce the ill-posedness of the problem, hope-
fully achieving separation with less dependence on regularization. Some published results
(Harmeling et al., 2003) suggest that the use of signal structure may help toseparate nonlin-
ear mixtures with much reduced ill-posedness. That may make kernel-basednonlinear ICA a
good candidate for handling this problem.

• The study of models of the mixture process that involve relatively few parameters. It seems
possible to develop physically based and/or empirical models that depend ona few parameters
(such as paper transparency and reflectivity, among others). Havingfew parameters, such
models may have no ill-posedness, and may also be able to easily handle non-symmetrical
systems.
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Abstract

We show several high-probability concentration bounds forlearning unigram language models.
One interesting quantity is the probability of all words appearing exactlyk times in a sample of size
m. A standard estimator for this quantity is the Good-Turing estimator. The existing analysis on

its error shows a high-probability bound of approximatelyO
(

k√
m

)

. We improve its dependency

on k to O
(

4√k√
m + k

m

)

. We also analyze the empirical frequencies estimator, showing that with high

probability its error is bounded by approximatelyO
(

1
k +

√
k

m

)

. We derive a combined estimator,

which has an error of approximatelyO
(

m− 2
5

)

, for anyk.

A standard measure for the quality of a learning algorithm isits expected per-word log-loss.
The leave-one-out method can be used for estimating the log-loss of the unigram model. We show

that its error has a high-probability bound of approximately O
(

1√
m

)

, for any underlying distribu-

tion.
We also bound the log-loss a priori, as a function of various parameters of the distribution.

Keywords: Good-Turing estimators, logarithmic loss, leave-one-outestimation, Chernoff bounds

1. Introduction and Overview

Natural language processing (NLP) has developed rapidly over the last decades. It has a wide range
of applications, including speech recognition, optical character recognition, text categorization and
many more. The theoretical analysis has also advanced significantly, though many fundamental
questions remain unanswered. One clear challenge, both practical and theoretical, concerns deriving
stochastic models for natural languages.

Consider a simple language model, where the distribution of each word in the text is assumed
to be independent. Even for such a simplistic model, fundamental questions relating sample size to
the learning accuracy are already challenging. This is mainly due to the factthat the sample size is
almost always insufficient, regardless of how large it is.

To demonstrate this phenomena, consider the following example. We would like toestimate
the distribution of first names in the university. For that, we are given the names list of a graduate
seminar: Alice, Bob, Charlie, Dan, Eve, Frank, two Georges, and two Henries. How can we use this
sample to estimate the distribution of students’ first names? An empirical frequency estimator would

c©2005 Evgeny Drukh and Yishay Mansour.
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assign Alice the probability of 0.1, since there is one Alice in the list of 10 names, while George,
appearing twice, would get estimation of 0.2. Unfortunately, unseen names, such as Michael, will
get an estimation of 0. Clearly, in this simple example the empirical frequencies are unlikely to
estimate well the desired distribution.

In general, the empirical frequencies estimate well the probabilities of popular names, but are
rather inaccurate for rare names. Is there a sample size, which assuresus that all the names (or
most of them) will appear enough times to allow accurate probabilities estimation? The distribution
of first names can be conjectured to follow the Zipf’s law. In such distributions, there will be a
significant fraction of rare items, as well as a considerable number of non-appearing items, in any
sample of reasonable size. The same holds for the language unigram models, which try to estimate
the distribution of single words. As it has been observed empirically on many occasions (Chen,
1996; Curran and Osborne, 2002), there are always many rare words and a considerable number
of unseen words, regardless of the sample size. Given this observation, a fundamental issue is to
estimate the distribution the best way possible.

1.1 Good-Turing Estimators

An important quantity, given a sample, is the probability mass of unseen words(also called “the
missing mass”). Several methods exist for smoothing the probability and assigning probability
mass to unseen items. The almost standard method for estimating the missing probability mass
is the Good-Turing estimator. It estimates the missing mass as the total number of unique items,
divided by the sample size. In the names example above, the Good-Turing missing mass estimator
is equal 0.6, meaning that the list of the class names does not reflect the true distribution, to put
it mildly. The Good-Turing estimator can be extended for higher orders, that is, estimating the
probability of all names appearing exactlyk times. Such estimators can also be used for estimating
the probability of individual words.

The Good-Turing estimators dates back to World War II, and were published first in 1953 (Good,
1953, 2000). It has been extensively used in language modeling applications since then (Katz, 1987;
Church and Gale, 1991; Chen, 1996; Chen and Goodman, 1998). However, their theoretical con-
vergence rate in various models has been studied only in the recent years(McAllester and Schapire,
2000, 2001; Kutin, 2002; McAllester and Ortiz, 2003; Orlitsky et al., 2003). For estimation of the
probability of all words appearing exactlyk times in a sample of sizem, McAllester and Schapire

(2000) derive a high probability bound on Good-Turing estimator error of approximatelyO
(

k√
m

)

.

One of our main results improves the dependency onk of this bound to approximatelyO
(

4√k√
m + k

m

)

.

We also show that the empirical frequencies estimator has an error of approximatelyO
(

1
k +

√
k

m

)

,

for large values ofk. Based on the two estimators, we derive a combined estimator with an error of

approximatelyO
(

m− 2
5

)

, for anyk. We also derive a weak lower bound ofΩ
(

4√k√
m

)

for an error of

any estimator based on an independent sample.

Our results give theoretical justification for using the Good-Turing estimatorfor small values of
k, and the empirical frequencies estimator for large values ofk. Though in most applications the
Good-Turing estimator is used for very small values ofk, for examplek ≤ 5, as by Katz (1987) or
Chen (1996), we show that it is fairly accurate in a much wider range.

1232



CONCENTRATION BOUNDS FORUNIGRAM LANGUAGE MODELS

1.2 Logarithmic Loss

The Good-Turing estimators are used to approximate the probability mass of allthe words with a
certain frequency. For many applications, estimating this probability mass is notthe main optimiza-
tion criteria. Instead, a certain distance measure between the true and the estimated distributions
needs to be minimized.

The most popular distance measure used in NLP applications is theKullback-Leibler (KL) di-
vergence. For a true distributionP = {px}, and an estimated distributionQ = {qx}, both over some
setX, this measure is defined as∑x px ln px

qx
. An equivalent measure, up to the entropy ofP, is the

logarithmic loss(log-loss), which equals∑x px ln 1
qx

.
Many NLP applications use the value oflog-lossto evaluate the quality of the estimated dis-

tribution. However, thelog-losscannot be directly calculated, since it depends on the underlying
distribution, which is unknown. Therefore, estimatinglog-lossusing the sample is important, al-
though the sample cannot be independently used for both estimating the distribution and testing it.
The hold-out estimation splits the sample into two parts: training and testing. The training part
is used for learning the distribution, whereas the testing sample is used for evaluating the average
per-word log-loss. The main disadvantage of this method is the fact that it uses only part of the
available information for learning, whereas in practice one would like to use all the sample.

A widely used general estimation method is calledleave-one-out. Basically, it performs aver-
aging all the possible estimations, where a single item is chosen for testing, andthe rest are used
for training. This procedure has an advantage of using the entire sample,and in addition it is rather
simple and usually can be easily implemented. The existing theoretical analysis ofthe leave-one-
out method (Holden, 1996; Kearns and Ron, 1999) shows general high probability concentration
bounds for the generalization error. However, these techniques are not applicable in our setting.

We show that theleave-one-outestimation error for thelog-loss is approximatelyO
(

1√
m

)

,

for any underlying distribution and a general family of learning algorithms. It gives a theoretical
justification for effective use ofleave-one-outestimation for thelog-loss.

We also analyze the concentration of thelog-loss itself, not based of an empirical measure.
We address the characteristics of the underlying distribution affecting thelog-loss. We find such a
characteristic, defining a tight bound for thelog-lossvalue.

1.3 Model and Semantics

We denote the set of all words asV, andN = |V|. Let P be a distribution overV, wherepw is the
probability of a wordw∈V. Given a sampleSof sizem, drawn i.i.d. usingP, we denote the number
of appearances of a wordw in SascS

w, or simplycw, when a sampleS is clear from the context.1 We
defineSk = {w∈V : cS

w = k}, andnk = |Sk|.
For a claimΦ regarding a sampleS, we write∀δSΦ[S] for P(Φ[S]) ≥ 1− δ. For some error

bound functionf (·), which holds with probability 1− δ, we write Õ( f (·)) for O
(

f (·)
(

ln m
δ
)c)

,
wherec > 0 is some constant.

1.4 Paper Organization

Section 2 shows several standard concentration inequalities, together withtheir technical applica-
tions regarding the maximum-likelihood approximation. Section 3 shows the errorbounds for the

1. Unless mentioned otherwise, all further sample-dependent definitions depend on the sampleS.
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k-hitting mass estimation. Section 4 bounds the error for the leave-one-out estimation of the loga-
rithmic loss. Section 5 shows the bounds for the a priori logarithmic loss. Appendix A includes the
technical proofs.

2. Concentration Inequalities

In this section we state several standard Chernoff-style concentration inequalities. We also show
some of their corollaries regarding the maximum-likelihood approximation ofpw by p̂w = cw

m .

Lemma 1 (Hoeffding, 1963) Let Y= Y1, . . . ,Yn be a set of n independent random variables, such
that Yi ∈ [bi ,bi +di ]. Then, for anyε > 0,

P

(∣

∣

∣

∣

∣

∑
i

Yi −E

[

∑
i

Yi

]∣

∣

∣

∣

∣

> ε

)

≤ 2 exp

(

− 2ε2

∑i d
2
i

)

.

The next lemma is a variant of an extension of Hoeffding’s inequality, by McDiarmid (1989).

Lemma 2 Let Y= Y1, . . . ,Yn be a set of n independent random variables, and f(Y) such that any
change of Yi value changes f(Y) by at most di , that is

sup
∀ j 6=i,Yj=Y′

j

(| f (Y)− f (Y′)|) ≤ di .

Let d= maxi di . Then,

∀δY : | f (Y)−E[ f (Y)]| ≤ d

√

nln 2
δ

2
.

Lemma 3 (Angluin and Valiant, 1979) Let Y= Y1, . . . ,Yn be a set of n independent random vari-
ables, where Yi ∈ [0,B]. Let µ= E [∑i Yi ]. Then, for anyε > 0,

P

(

∑
i

Yi < µ− ε

)

≤ exp

(

− ε2

2µB

)

,

P

(

∑
i

Yi > µ+ ε

)

≤ exp

(

− ε2

(2µ+ ε)B

)

.

Definition 4 (Dubhashi and Ranjan, 1998) A set of random variables Y1, . . . ,Yn is called “nega-
tively associated”, if it satisfies for any two disjoint subsets I and J of{1, . . . ,n}, and any two
non-decreasing, or any two non-increasing, functions f from R|I | to R and g from R|J| to R:

E[ f (Yi : i ∈ I)g(Yj : j ∈ J)] ≤ E[ f (Yi : i ∈ I)]E[g(Yj : j ∈ J)].

The next lemma is based on thenegative associationanalysis. It follows directly from Theorem
14 and Proposition 7 of Dubhashi and Ranjan (1998).
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Lemma 5 For any set of N non-decreasing, or N non-increasing functions{ fw : w ∈ V}, any
Chernoff-style bound on∑w∈V fw(cw), pretending that cw are independent, is valid. In particular,
Lemmas 1 and 2 apply for{Y1, ...,Yn} = { fw(cw) : w∈V}.

The next lemma shows an explicit upper bound on the binomial distribution probability.2

Lemma 6 Let X∼ Bin(n, p) be a sum of n i.i.d. Bernoulli random variables with p∈ (0,1). Let
µ = E[X] = np. For x∈ (0,n], there exists some function Tx = exp

(

1
12x +O

(

1
x2

))

, such that∀k ∈
{0, . . . ,n}, we have P(X = k) ≤ 1√

2πµ(1−p)

Tn
TµTn−µ

. For integral values of µ, the equality is achieved

at k= µ. (Note that for x≥ 1, we have Tx = Θ(1).)

The next lemma deals with the number of successes in independent trials.

Lemma 7 (Hoeffding, 1956) Let Y1, . . . ,Yn ∈ {0,1} be a sequence of independent trials, with pi =
E[Yi ]. Let X= ∑i Yi be the number of successes, and p= 1

n ∑i pi be the average trial success proba-
bility. For any integers b and c such that0≤ b≤ np≤ c≤ n, we have

c

∑
k=b

(

n
k

)

pk(1− p)n−k ≤ P(b≤ X ≤ c) ≤ 1.

Using the above lemma, the next lemma shows a general concentration bound for a sum of
arbitrary real-valued functions of a multinomial distribution components. We show that with a
small penalty, any Chernoff-style bound pretending the components beingindependent is valid.3

We recall thatcS
w, or equivalentlycw, is the number of appearances of the wordw in a sampleSof

sizem.

Lemma 8 Let{c′w ∼ Bin(m, pw) : w∈V} be independent binomial random variables. Let{ fw(x) :
w∈V} be a set of real valued functions. Let F= ∑w fw(cw) and F′ = ∑w fw(c′w). For anyε > 0,

P(|F −E [F ]| > ε) ≤ 3
√

m P
(∣

∣F ′−E
[

F ′]∣
∣> ε

)

.

The following lemmas provide concentration bounds for maximum-likelihood estimation of pw

by p̂w = cw
m . The first lemma shows that words with “high” probability have a “high” count in the

sample.

Lemma 9 Let δ > 0, andλ ≥ 3. We have∀δS:

∀w∈V, s.t. mpw ≥ 3ln 2m
δ , |mpw−cw| ≤

√

3mpw ln
2m
δ

;

∀w∈V, s.t. mpw > λ ln 2m
δ , cw >

(

1−
√

3
λ

)

mpw.

2. Its proof is based on Stirling approximation directly, though local limit theorems could be used. This form of bound
is needed for the proof of Theorem 30.

3. Thenegative associationanalysis (Lemma 5) shows that a sum of monotone functions of multinomialdistribution
components must obey Chernoff-style bounds pretending that the components are independent. In some sense, our
result extends this notion, since it does not require the functions to be monotone.
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The second lemma shows that words with “low” probability have a “low” countin the sample.

Lemma 10 Let δ ∈ (0,1), and m> 1. Then,∀δS: ∀w∈ V such that mpw ≤ 3ln m
δ , we have cw ≤

6ln m
δ .

The following lemma derives the bound as a function of the count in the sample (and not as a
function of the unknown probability).

Lemma 11 Let δ > 0. Then,∀δS:

∀w∈V, s.t. cw > 18ln4m
δ , |mpw−cw| ≤

√

6cw ln
4m
δ

.

The following is a general concentration bound.

Lemma 12 For anyδ > 0, and any word w∈V, we have

∀δS,
∣

∣

∣

cw

m
− pw

∣

∣

∣<

√

3ln 2
δ

m
.

The following lemma bounds the probability of words that do not appear in the sample.

Lemma 13 Let δ > 0. Then,∀δS:

∀w /∈ S, mpw < ln
m
δ

.

3. K-Hitting Mass Estimation

In this section our goal is to estimate the probability of the set of words appearing exactlyk times
in the sample, which we call “thek-hitting mass”. We analyze the Good-Turing estimator, the
empirical frequencies estimator, and a combined estimator.

Definition 14 We define the k-hitting mass Mk, its empirical frequencies estimator̂Mk, and its
Good-Turing estimator Gk as4

Mk = ∑
w∈Sk

pw M̂k =

(

k
m

)

nk Gk =

(

k+1
m−k

)

nk+1.

The outline of this section is as follows. Definition 16 slightly redefines thek-hitting mass and
its estimators. Lemma 17 shows that this redefinition has a negligible influence. Then, we analyze
the estimation errors using the concentration inequalities from Section 2.

Lemmas 20 and 21 bound the expectation of the Good-Turing estimator error,following McAllester
and Schapire (2000). Lemma 23 bounds the deviation of the error, using the negative association
analysis. A tighter bound, based on Lemma 8, is achieved at Theorem 25. Theorem 26 analyzes the
error of the empirical frequencies estimator. Theorem 29 refers to the combined estimator. Finally,
Theorem 30 shows a weak lower bound for thek-hitting mass estimation.

4. The Good-Turing estimator is usually defined as( k+1
m )nk+1. The two definitions are almost identical for small values

of k, as their quotient equals 1− k
m. Following McAllester and Schapire (2000), our definition makes the calculations

slightly simpler.
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Definition 15 For any w∈ V and i∈ {0, · · · ,m}, we define Xw,i as a random variable equal 1 if
cw = i, and 0 otherwise.

The following definition concentrates on words whose frequencies are close to their probabili-
ties.

Definition 16 Let α > 0 and k> 3α2. We define Ik,α =
[

k−α
√

k
m , k+1+α

√
k+1

m

]

, and Vk,α = {w∈V :

pw ∈ Ik,α}. We define:

Mk,α = ∑
w∈Sk∩Vk,α

pw = ∑
w∈Vk,α

pwXw,k,

Gk,α =
k+1
m−k

|Sk+1∩Vk,α| =
k+1
m−k ∑

w∈Vk,α

Xw,k+1,

M̂k,α =
k
m
|Sk∩Vk,α| =

k
m ∑

w∈Vk,α

Xw,k.

By Lemma 11, for large values ofk the redefinition coincides with the original definition with
high probability:

Lemma 17 For δ > 0, let α =
√

6ln 4m
δ . For k > 18ln4m

δ , we have∀δS: Mk = Mk,α, Gk = Gk,α,

andM̂k = M̂k,α.

Proof By Lemma 11, we have

∀δS, ∀w : cw > 18ln4m
δ , |mpw−cw| ≤

√

6cw ln
4m
δ

= α
√

cw.

This means that any wordw with cw = k has

k−α
√

k
m

≤ pw ≤ k+α
√

k
m

<
k+1+α

√
k+1

m
.

Thereforew ∈ Vk,α, completing the proof forMk and M̂k. Sinceα <
√

k, any wordw with
cw = k+1 has

k−α
√

k
m

<
k+1−α

√
k+1

m
≤ pw ≤ k+1+α

√
k+1

m
,

which yieldsw∈Vk,α, completing the proof forGk.

Since the minimal probability of a word inVk,α is Ω
(

k
m

)

, we derive:

Lemma 18 Let α > 0 and k> 3α2. Then,|Vk,α| = O
(

m
k

)

.
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Proof We haveα <
√

k√
3
. Any wordw∈Vk,α haspw ≥ k−α

√
k

m > k
m

(

1− 1√
3

)

. Therefore,

|Vk,α| <
m
k

1

1− 1√
3

= O
(m

k

)

,

which completes the proof.

Using Lemma 6, we derive:

Lemma 19 Let α > 0 and3α2 < k≤ m
2 . Let w∈Vk,α. Then, E[Xw,k] = P(cw = k) = O

(

1√
k

)

.

Proof Sincecw ∼ Bin(m, pw) is a binomial random variable, we use Lemma 6:

E[Xw,k] = P(cw = k) ≤ 1
√

2πmpw(1− pw)

Tm

TmpwTm(1−pw)
.

For w ∈ Vk,α, we havempw = Ω(k), which implies Tm
TmpwTm(1−pw)

= O(1). Sincepw ∈ Ik,α and

3α2 < k≤ m
2 , we have

1
√

2πmpw (1− pw)
≤ 1

√

2π
(

k−α
√

k
)(

1−
(

k+1+α
√

k+1
m

))

<
1

√

2πk
(

1− 1√
3

)(

1− k+1
m

(

1+ 1√
3

))

<
1

√

2πk
(

1− 1√
3

)(

1−
(

1
2 + 1

m

)

(

1+ 1√
3

))

= O

(

1√
k

)

,

which completes the proof.

3.1 Good-Turing Estimator

The following lemma, directly based on the definition of the binomial distribution, was shown in
Theorem 1 of McAllester and Schapire (2000).

Lemma 20 For any k< m, and w∈V, we have

pwP(cw = k) =
k+1
m−k

P(cw = k+1)(1− pw).

The following lemma bounds the expectations of the redefinedk-hitting mass, its Good-Turing
estimator, and their difference.
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Lemma 21 Let α > 0 and 3α2 < k < m
2 . We have E[Mk,α] = O

(

1√
k

)

, E[Gk,α] = O
(

1√
k

)

, and

|E[Gk,α]−E[Mk,α]| = O
(√

k
m

)

.

Lemma 22 Let δ > 0, k∈ {1, . . . ,m}. Let U⊆V, such that|U | = O
(

m
k

)

. Let{bw : w∈U}, such
that∀w∈U,bw ≥ 0 and maxw∈Ubw = O

(

k
m

)

. Let Xk = ∑w∈U bwXw,k. We have∀δS:

|Xk−E[Xk]| = O





√

k ln 1
δ

m



 .

Proof We defineYw,k = ∑i≤k Xw,i be random variable indicatingcw ≤ k and Zw,k = ∑i<k Xw,i =
Yw,k−Xw,k be random variable indicatingcw < k. LetYk = ∑w∈U bwYw,k andZk = ∑w∈U bwZw,k. We
have

Xk = ∑
w∈U

bwXw,k = ∑
w∈U

bw [Yw,k−Zw,k] = Yk−Zk.

Both Yk andZk, can be bounded using the Hoeffding inequality. Since{bwYw,k} and{bwZw,k}
are monotone with respect to{cw}, Lemma 5 applies for them. This means that the concentra-
tion of their sum is at least as tight as if they were independent. Recalling that|U | = O

(

m
k

)

and
maxw∈Ubw = O

(

k
m

)

, and using Lemma 2 forYk andZk, we have

∀ δ
2 S, |Yk−E[Yk]| = O

(

k
m

√

m
k ln 1

δ

)

,

∀ δ
2 S, |Zk−E[Zk]| = O

(

k
m

√

m
k ln 1

δ

)

.

Therefore,

|Xk−E[Xk]| = |Yk−Zk−E[Yk−Zk]|

≤ |Yk−E[Yk]|+ |Zk−E[Zk]| = O





√

k ln 1
δ

m



 ,

which completes the proof.

Using thenegative associationnotion, we can show a preliminary bound for Good-Turing esti-
mation error:

Lemma 23 For δ > 0 and18ln8m
δ < k < m

2 , we have∀δS:

|Gk−Mk| = O





√

k ln 1
δ

m



 .
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Proof Let α =
√

6ln 8m
δ . By Lemma 17, we have

∀ δ
2 S, Gk = Gk,α ∧ Mk = Mk,α. (1)

By Lemma 21,

|E[Gk−Mk]| = |E[Gk,α −Mk,α]| = O

(√
k

m

)

. (2)

By Definition 16,Mk,α = ∑w∈Vk,α pwXw,k andGk,α = ∑w∈Vk,α

(

k+1
m−k

)

Xw,k+1. By Lemma 18, we
have|Vk,α| = O

(

m
k

)

. Therefore, using Lemma 22 withk for Mk,α, and withk+1 for Gk,α, we have

∀ δ
4 S, |Mk,α −E[Mk,α]| = O

(
√

k ln 1
δ

m

)

, (3)

∀ δ
4 S, |Gk,α −E[Gk,α]| = O

(
√

k ln 1
δ

m

)

. (4)

Combining Equations (1), (2), (3), and (4), we have∀δS:

|Gk−Mk| = |Gk,α −Mk,α|
≤ |Gk,α −E[Gk,α]|+ |Mk,α −E[Mk,α]|+ |E[Gk,α]−E[Mk,α]|

= O





√

k ln 1
δ

m



+O

(√
k

m

)

= O





√

k ln 1
δ

m



 ,

which completes the proof.

Lemma 24 Letδ > 0, k> 0. Let U⊆V. Let{bw : w∈U} be a set of weights, such that bw ∈ [0,B].
Let Xk = ∑w∈U bwXw,k, and µ= E[Xk]. We have

∀δS, |Xk−µ| ≤ max

{
√

4Bµln

(

6
√

m
δ

)

,2Bln

(

6
√

m
δ

)

}

.

Proof By Lemma 8, combined with Lemma 3, we have

P(|Xk−µ| > ε) ≤ 6
√

m exp

(

− ε2

B(2µ+ ε)

)

≤ max

{

6
√

m exp

(

− ε2

4Bµ

)

,6
√

m exp
(

− ε
2B

)

}

, (5)
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where Equation (5) follows by consideringε ≤ 2µ andε > 2µ separately. The lemma follows sub-

stitutingε = max

{√

4Bµln
(

6
√

m
δ

)

,2Bln
(

6
√

m
δ

)

}

.

We now derive the concentration bound on the error of the Good-Turingestimator.

Theorem 25 For δ > 0 and18ln8m
δ < k < m

2 , we have∀δS:

|Gk−Mk| = O





√√
k ln m

δ
m

+
k ln m

δ
m



 .

Proof Let α =
√

6ln 8m
δ . Using Lemma 17, we have∀ δ

2 S: Gk = Gk,α, andMk = Mk,α. Recall that

Mk,α = ∑w∈Vk,α pwXw,k andGk,α = ∑w∈Vk,α
k+1
m−kXw,k+1. Both Mk,α andGk,α are linear combinations

of Xw,k andXw,k+1, respectively, where the coefficients’ magnitude isO
(

k
m

)

, and the expectation, by

Lemma 21, isO
(

1√
k

)

. By Lemma 24, we have

∀ δ
4 S, |Mk,α −E[Mk,α]| = O

(
√√

k ln m
δ

m +
k ln m

δ
m

)

, (6)

∀ δ
4 S, |Gk,α −E[Gk,α]| = O

(
√√

k ln m
δ

m +
k ln m

δ
m

)

. (7)

Combining Equations (6), (7), and Lemma 21, we have∀δS:

|Gk−Mk| = |Gk,α −Mk,α|
≤ |Gk,α −E[Gk,α]|+ |Mk,α −E[Mk,α]|+ |E[Gk,α]−E[Mk,α]|

= O





√√
k ln m

δ
m

+
k ln m

δ
m

+

√
k

m



= O





√√
k ln m

δ
m

+
k ln m

δ
m



 ,

which completes the proof.

3.2 Empirical Frequencies Estimator

In this section we bound the error of the empirical frequencies estimatorM̂k.

Theorem 26 For δ > 0 and18ln8m
δ < k < m

2 , we have

∀δS, |Mk− M̂k| = O





√
k
(

ln m
δ
) 3

2

m
+

√

ln m
δ

k



 .
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Proof Let α =
√

6ln 8m
δ . By Lemma 17, we have∀ δ

2 S: M̂k = M̂k,α, andMk = Mk,α. Let V−
k,α =

{w∈Vk,α : pw < k
m}, andV+

k,α = {w∈Vk,α : pw > k
m}. Let

X− = ∑
w∈V−

k,α

(

k
m
− pw

)

Xw,k, X+ = ∑
w∈V+

k,α

(

pw−
k
m

)

Xw,k,

and letX? specify eitherX− or X+. By the definition, forw∈Vk,α we have
∣

∣

k
m− pw

∣

∣= O
(

α
√

k
m

)

.

By Lemma 18,|Vk,α| = O
(

m
k

)

. By Lemma 19, forw∈Vk,α we haveE[Xw,k] = O
(

1√
k

)

. Therefore,

|E[X?]| ≤ ∑
w∈Vk,α

∣

∣

∣

∣

k
m
− pw

∣

∣

∣

∣

E[Xw,k] = O

(

m
k

α
√

k
m

1√
k

)

= O
(α

k

)

. (8)

Both X− andX+ are linear combinations ofXw,k, where the coefficients areO
(

α
√

k
m

)

and the

expectation isO
(α

k

)

. Therefore, by Lemma 24, we have

∀ δ
4 S: |X?−E[X?]| = O

(
√

α4

m
√

k
+

α3
√

k
m

)

. (9)

By the definition ofX− andX+, Mk,α − M̂k,α = X+ −X−. Combining Equations (8) and (9), we
have∀δS:

|Mk− M̂k| = |Mk,α − M̂k,α| = |X+−X−|
≤ |X+−E[X+]|+ |E[X+]|+ |X−−E[X−]|+ |E[X−]|

= O

(
√

α4

m
√

k
+

α3
√

k
m

+
α
k

)

= O





√
k
(

ln m
δ
) 3

2

m
+

√

ln m
δ

k



 ,

since
√

ab= O(a+b), and we usea = α3
√

k
m andb = α

k .

3.3 Combined Estimator

In this section we combine the Good-Turing estimator with the empirical frequencies to derive a
combined estimator, which is uniformly accurate for all values ofk.

Definition 27 We defineM̃k, a combined estimator for Mk, by

M̃k =

{

Gk k≤ m
2
5

M̂k k > m
2
5 .
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Lemma 28 (McAllester and Schapire, 2000) Let k∈ {0, . . . ,m}. For anyδ > 0, we have

∀δS: |Gk−Mk| = O





√

ln 1
δ

m

(

k+ ln
m
δ

)



 .

The following theorem shows that̃Mk has an error bounded bỹO
(

m− 2
5

)

, for anyk. For smallk,

we use Lemma 28. Theorem 25 is used for 18 ln8m
δ < k≤ m

2
5 . Theorem 26 is used form

2
5 < k < m

2 .
The complete proof also handlesk ≥ m

2 . The theorem refers tõMk as a probability estimator, and
does not show that it is a probability distribution by itself.

Theorem 29 Let δ > 0. For any k∈ {0, . . . ,m}, we have

∀δS, |M̃k−Mk| = Õ
(

m− 2
5

)

.

The following theorem shows a weak lower bound for approximatingMk. It applies to estimat-
ing Mk based on a different independent sample. This is a very “weak” notation, sinceGk, as well
asM̂k, are based on the same sample asMk.

Theorem 30 Suppose that the vocabulary consists ofm
k words distributed uniformly (that is pw =

k
m), where1� k� m. The variance of Mk is Θ

(√
k

m

)

.

4. Leave-One-Out Estimation of Log-Loss

Many NLP applications use log-loss as the learning performance criteria. Since the log-loss depends
on the underlying probabilityP, its value cannot be explicitly calculated, and must be approximated.
The main result of this section, Theorem 32, is an upper bound on the leave-one-out estimation of
the log-loss, assuming a general family of learning algorithms.

Given a sampleS= {s1, . . . ,sm}, the goal of a learning algorithm is to approximate the true
probabilityP by some probabilityQ. We denote the probability assigned by the learning algorithm
to a wordw by qw.

Definition 31 We assume that any two words with equal sample frequency are assignedequal prob-
abilities in Q, and therefore denote qw by q(cw). Let the log-loss of a distribution Q be

L = ∑
w∈V

pw ln
1
qw

= ∑
k≥0

Mk ln
1

q(k)
.

Let the leave-one-out estimation, q′
w, be the probability assigned to w, when one of its instances

is removed. We assume that any two words with equal sample frequency are assigned equal leave-
one-out probability estimation, and therefore denote q′

w by q′(cw). We define the leave-one-out
estimation of the log-loss as averaging the loss of each sample word, whenit is extracted from the
sample and pretended to be the test sample:
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Lleave−one = ∑
w∈V

cw

m
ln

1
q′w

= ∑
k>0

knk

m
ln

1
q′(k)

.

Let Lw = L(cw) = ln 1
q(cw) , and L′w = L′(cw) = ln 1

q′(cw) . Let the maximal loss be

Lmax= max
k

max
{

L(k),L′(k+1)
}

.

In this section we discuss a family of learning algorithms, that receive the sample as an input.
Assuming an accuracy parameterδ, we require the following properties to hold:

1. Starting from a certain number of appearances, the estimation is close to thesample frequency.
Specifically, for someα,β ∈ [0,1],

∀k≥ ln

(

4m
δ

)

, q(k) =
k−α
m−β

. (10)

2. The algorithm is stable when a single word is extracted from the sample:

∀m, 2≤ k≤ 10ln4m
δ ,

∣

∣L′(k+1)−L(k)
∣

∣= O

(

1
m

)

, (11)

∀m, ∀S s.t. nS
1 > 0, k∈ {0,1},

∣

∣L′(k+1)−L(k)
∣

∣= O

(

1

nS
1

)

. (12)

An example of such an algorithm is the following leave-one-out algorithm (weassume that the
vocabulary is large enough so thatn0 +n1 > 0):

qw =

{

N−n0−1
(n0+n1)(m−1) cw ≤ 1

cw−1
m−1 cw ≥ 2.

Equation (10) is satisfied byα = β = 1. Equation (11) is satisfied fork≥ 2 byL(k)−L′(k+1) =
ln
(

m−1
m−2

)

= O
(

1
m

)

. Equation (12) is satisfied fork≤ 1:

|L′(1)−L(0)| =
∣

∣

∣

∣

ln

(

N−n0−1
N−n0−2

m−2
m−1

)∣

∣

∣

∣

= O

(

1
N−n0

+
1
m

)

= O

(

1
n1

)

,

|L′(2)−L(1)| =
∣

∣

∣

∣

ln

(

n0 +n1 +1
n0 +n1

m−2
m−1

)∣

∣

∣

∣

= O

(

1
n0 +n1

+
1
m

)

= O

(

1
n1

)

.

The following is the main theorem of this section. It bounds the deviation between the between
the true loss and theleave one outestimate. This bound shows that for a general family of learning
algorithms, leave-one-out technique can be effectively used to estimate thelogarithmic loss, given
the sample only. The estimation error bound decreases roughly in proportion to the square root of
the sample size, regardless of the underlying distribution.
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Theorem 32 For a learning algorithm satisfying Equations (10), (11), and (12), andδ > 0, we
have:

∀δS, |L−Lleave−one| = O

(

Lmax

√

(ln m
δ )4 ln

ln m
δ

δ
m

)

.

The proof of Theorem 32 bounds the estimation error separately for the high-probability and
low-probability words. We use Lemma 20 (McAllester and Schapire, 2000) tobound the estimation
error for low-probability words. The expected estimation error for the high-probability words is
bounded elementarily using the definition of the binomial distribution (Lemma 33). Finally, we use
McDiarmid’s inequality (Lemma 2) to bound its deviation.

The next lemma shows that the expectation of the leave-one-out method is a good approximation
for the per-word expectation of the logarithmic loss.

Lemma 33 Let 0 ≤ α ≤ 1, and y≥ 1. Let Bn ∼ Bin(n, p) be a binomial random variable. Let
fy(x) = ln(max(x,y)). Then,

0≤ E

[

p fy(Bn−α)− Bn

n
fy(Bn−α−1)

]

≤ 3p
n

.

Proof For a real valued functionF (hereF(x) = fy(x−α)), we have:

E

[

Bn

n
F(Bn−1)

]

=
n

∑
x=0

(

n
x

)

px(1− p)n−x x
n

F(x−1)

= p
n

∑
x=1

(

n−1
x−1

)

px−1(1− p)(n−1)−(x−1)F(x−1)

= pE[F(Bn−1)] ,

where we used
(n

x

)

x
n =

(n−1
x−1

)

. SinceBn ∼ Bn−1 +B1, we have:

E

[

p fy(Bn−α)− Bn

n
fy(Bn−α−1)

]

= p(E[ fy(Bn−1 +B1−α)]−E[ fy(Bn−1−α)])

= pE

[

ln
max(Bn−1 +B1−α,y)

max(Bn−1−α,y)

]

≤ pE

[

ln
max(Bn−1−α+B1,y+B1)

max(Bn−1−α,y)

]

= pE

[

ln(1+
B1

max(Bn−1−α,y)
)

]

≤ pE

[

B1

max(Bn−1−α,y)

]

.

SinceB1 andBn−1 are independent, we get
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pE

[

B1

max(Bn−1−α,y)

]

= pE[B1]E

[

1
max(Bn−1−α,y)

]

= p2E

[

1
max(Bn−1−α,y)

]

= p2
n−1

∑
x=0

(

n−1
x

)

px(1− p)n−1−x 1
max(x−α,y)

= p2
n−1

∑
x=0

(

n−1
x

)

px(1− p)n−1−x 1
x+1

x+1
max(x−α,y)

≤ p
n

max
x

(

x+1
max(x−α,y)

)n−1

∑
x=0

(

n
x+1

)

px+1(1− p)n−(x+1)

≤ 3p
n

(1− (1− p)n) <
3p
n

. (13)

Equation (13) follows by the following observation:x+1≤ 3(x−α) for x≥ 2, andx+1≤ 2y

for x≤ 1. Finally, pE
[

ln max(Bn−1−α+B1,y)
max(Bn−1−α,y)

]

≥ 0, which implies the lower bound of the lemma.

The following lemma boundsn2 as a function ofn1.

Lemma 34 Let δ > 0. We have∀δS: n2 = O
((
√

mln 1
δ +n1

)

ln m
δ

)

.

Theorem 32 Proof Let yw =
(

1−
√

3
5

)

pwm−2. By Lemma 9, withλ = 5, we have∀ δ
2 S:

∀w∈V : pw >
3ln 4m

δ
m

,
∣

∣pw− cw
m

∣

∣≤
√

3pw ln 4m
δ

m (14)

∀w∈V : pw >
5ln 4m

δ
m

, cw > yw +2≥ (5−
√

15) ln 4m
δ > ln 4m

δ . (15)

Let VH =
{

w∈V : pw >
5ln 4m

δ
m

}

andVL = V \VH . We have

|L−Lleave−one| ≤
∣

∣

∣

∣

∣

∑
w∈VH

(

pwLw−
cw

m
L′

w

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
w∈VL

(

pwLw−
cw

m
L′

w

)

∣

∣

∣

∣

∣

. (16)

We start by bounding the first term of Equation (16). By Equation (15), we have∀w∈VH ,cw >
yw +2 > ln 4m

δ . Equation (10) implies thatqw = cw−α
m−β , thereforeLw = ln m−β

cw−α = ln m−β
max(cw−α,yw) , and

L′
w = ln m−1−β

cw−1−α = ln m−1−β
max(cw−1−α,yw) . Let

ErrH
w =

cw

m
ln

m−β
max(cw−1−α,yw)

− pw ln
m−β

max(cw−α,yw)
.

We have
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∣

∣

∣

∣

∣

∑
w∈VH

(cw

m
L′

w− pwLw

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
w∈VH

ErrH
w + ln

m−1−β
m−β ∑

w∈VH

cw

m

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑
w∈VH

ErrH
w

∣

∣

∣

∣

∣

+O

(

1
m

)

. (17)

We bound
∣

∣∑w∈VH
ErrH

w

∣

∣ using McDiarmid’s inequality. As in Lemma 33, letfw(x)= ln(max(x,yw)).
We have

E
[

ErrH
w

]

= ln(m−β)E
[cw

m
− pw

]

+E
[

pw fw(cw−α)− cw

m
fw(cw−1−α)

]

.

The first expectation equals 0, the second can be bounded using Lemma 33:

∣

∣

∣

∣

∣

∑
w∈VH

E
[

ErrH
w

]

∣

∣

∣

∣

∣

≤ ∑
w∈VH

∣

∣

∣E
[

pw fw(cw−α)− cw

m
fw(cw−1−α)

]∣

∣

∣

≤ ∑
w∈VH

3pw

m
= O

(

1
m

)

. (18)

In order to use McDiarmid’s inequality, we bound the change of∑w∈VH
ErrH

w as a function of a
single change in the sample. Suppose that a wordu is replaced by a wordv. This results in decrease
for cu, and increase forcv. Recalling thatyw = Ω(mpw), the change ofErrH

u , as well as the change
of ErrH

v , is bounded byO
(

lnm
m

)

, as follows:

The change ofpu ln m−β
max(cu−α,yu)

would be 0 ifcu−α ≤ yu. Otherwise,

∣

∣

∣

∣

pu ln
m−β

max(cu−1−α,yu)
− pu ln

m−β
max(cu−α,yu)

∣

∣

∣

∣

≤ pu[ln(cu−α)− ln(cu−1−α)] = pu ln

(

1+
1

cu−1−α

)

= O

(

pu

cu

)

.

Sincecu≥ yu = Ω(mpu), the change is bounded byO( pu
cu

)= O( 1
m). The change ofcu

m ln m−β
max(cu−1−α,yu)

would beO( lnm
m ) if cu−1−α ≤ yu. Otherwise,

∣

∣

∣

∣

cu−1
m

ln
m−β

max(cu−2−α,yu)
− cu

m
ln

m−β
max(cu−1−α,yu)

∣

∣

∣

∣

≤ cu−1
m

∣

∣

∣

∣

ln
m−β

max(cu−2−α,yu)
− ln

m−β
max(cu−1−α,yu)

∣

∣

∣

∣

+
1
m

ln
m−β

max(cu−1−α,yu)

≤ cu−1
m

ln

(

1+
1

cu−2−α

)

+
lnm
m

= O

(

lnm
m

)

.

The change ofErrH
v is bounded in a similar way.
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By Equations (17) and (18), and Lemma 2, we have∀ δ
16S:

∣

∣

∣

∣

∣

∑
w∈VH

(cw

m
L′

w− pwLw

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑
w∈VH

ErrH
w −E

[

∑
w∈VH

ErrH
w

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E

[

∑
w∈VH

ErrH
w

]∣

∣

∣

∣

∣

+O

(

1
m

)

≤ O

(

lnm
m

√

mln
1
δ

+
1
m

+
1
m

)

= O





√

(lnm)2 ln 1
δ

m



 . (19)

Next, we bound the second term of Equation (16). By Lemma 10, we have∀ δ
4 S:

∀w∈V s.t. pw ≤
3ln 4m

δ
m

, cw ≤ 6ln 4m
δ . (20)

Let b = 5ln 4m
δ . By Equations (14) and (20), for anyw such thatpw ≤ b

m, we have

cw

m
≤ max







pw +

√

3pw ln 4m
δ

m
,
6ln 4m

δ
m







≤
(5+

√
3∗5) ln 4m

δ
m

<
2b
m

.

Therefore∀w∈VL, we havecw < 2b. LetnL
k = |VL∩Sk|, GL

k−1 = k
m−k+1nL

k , andML
k = ∑w∈VL∩Sk

pw.
We have

∣

∣

∣

∣

∣

∑
w∈VL

(cw

m
L′

w− pwLw

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2b

∑
k=1

knL
k

m
L′(k)−

2b−1

∑
k=0

ML
k L(k)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2b

∑
k=1

knL
k

m−k+1
L′(k)−

2b−1

∑
k=0

ML
k L(k)

∣

∣

∣

∣

∣

+
2b

∑
k=1

knL
kL′(k)

(

1
m−k+1

− 1
m

)

=

∣

∣

∣

∣

∣

2b

∑
k=1

GL
k−1L′(k)−

2b−1

∑
k=0

ML
k L(k)

∣

∣

∣

∣

∣

+O

(

bLmax

m

)

=

∣

∣

∣

∣

∣

2b−1

∑
k=0

GL
kL′(k+1)−

2b−1

∑
k=0

ML
k L(k)

∣

∣

∣

∣

∣

+O

(

bLmax

m

)

≤
2b−1

∑
k=0

GL
k |L′(k+1)−L(k)|+

2b−1

∑
k=0

|GL
k −ML

k |L(k)+O

(

bLmax

m

)

. (21)

The first sum of Equation (21) is bounded using Equations (11) and (12), and Lemma 34:
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2b−1

∑
k=0

GL
k |L′(k+1)−L(k)|

=
2b−1

∑
k=2

GL
k |L′(k+1)−L(k)|+G0|L′(1)−L(0)|+G1|L′(2)−L(1)|. (22)

The first term of Equation (22) is bounded by Equation (11):

2b−1

∑
k=2

GL
k |L′(k+1)−L(k)| ≤

2b−1

∑
k=2

GL
k ·O

(

1
m

)

= O

(

1
m

)

. (23)

The other two terms are bounded using Lemma 34. Forn1 > 0, we have∀ δ
16S, n2 = O

(

b
(
√

mln 1
δ +n1

))

.

By Equation (12), we have

G0|L′(1)−L(0)|+G1|L′(2)−L(1)|

≤ n1

m
·O
(

1
n1

)

+
2n2

m−1
·O
(

1
n1

)

= O



b

√

ln 1
δ

m



 . (24)

Forn1 = 0, Lemma 34 results inn2 = O
(

b
√

mln 1
δ

)

, and Equation (24) transforms into

G1|L′(2)−L(1)| ≤ 2n2Lmax

m−1
= O



bLmax

√

ln 1
δ

m



 . (25)

Equations (22), (23), (24), and (25) sum up to

2b−1

∑
k=0

GL
k |L′(k+1)−L(k)| = O



bLmax

√

ln 1
δ

m



 . (26)

The second sum of Equation (21) is bounded using Lemma 28 separately for everyk < 2b with
accuracy δ

16b. Since the proof of Lemma 28 also holds forGL
k andML

k (instead ofGk andMk), we

have∀ δ
8 S, for everyk < 2b, |GL

k −ML
k |= O

(

b
√

ln b
δ

m

)

. Therefore, together with Equations (21) and

(26), we have

∣

∣

∣

∣

∣

∑
w∈VL

(cw

m
L′

w− pwLw

)

∣

∣

∣

∣

∣

≤ O



bLmax

√

ln 1
δ

m



+
2b−1

∑
k=0

L(k)O



b

√

ln b
δ

m



+O

(

bLmax

m

)

= O



Lmax

√

b4 ln b
δ

m



 . (27)
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The proof follows by combining Equations (16), (19), and (27).

5. Log-Loss A Priori

Section 4 bounds the error of the leave-one-out estimation of the log-loss.It shows that the log-loss
can be effectively estimated, for a general family of learning algorithms.

Another question to be considered is the log-loss distribution itself, without theempirical esti-
mation. That is, how large (or low) is it expected to be, and which parametersof the distribution
affect it.

We denote the learning error (equivalent to the log-loss) as the KL-divergence between the true
and the estimated distribution. We refer to a general family of learning algorithms, and show lower
and upper bounds for the learning error.

The upper bound (Theorem 39) can be divided to three parts. The first part is the missing mass.
The other two build a trade-off between a threshold (lower thresholds leads to a lower bound), and
the number of words with probability exceeding this threshold (fewer wordslead to a lower bound).
It seems that this number of words is a necessary lower bound, as we show at Theorem 35.

Theorem 35 Let the distribution be uniform:∀w∈V : pw = 1
N , with N� m. Also, suppose that the

learning algorithm just uses maximum-likelihood approximation, meaning qw = cw
m . Then, a typical

learning error would beΩ(N
m).

The proof of Theorem 35 bases on the Pinsker inequality (Lemma 36). It first shows a lower
bound forL1 norm between the true and the expected distributions, and then transforms itto the
form of the learning error.

Lemma 36 (Pinsker Inequality) Given any two distributions P and Q, we have

KL(P||Q) ≥ 1
2
(L1(P,Q))2.

Theorem 35 Proof We first show thatL1(P,Q) concentrates nearΩ
(
√

N
m

)

. Then, we use Pinsker

inequality to show lower bound5 of KL(P||Q).
First we find a lower bound forE[|pw−qw|]. Sincecw is a binomial random variable,σ2[cw] =

mpw(1− pw) = Ω
(

m
N

)

, and with some constant probability,|cw−mpw|> σ[cw]. Therefore, we have

E[|qw− pw|] =
1
m

E[|cw−mpw|]

≥ 1
m

σ[cw]P(|cw−mpw| > σ[cw]) = Ω
(

1
m

√

m
N

)

= Ω
(

1√
mN

)

E

[

∑
w∈V

|pw−qw|
]

= Ω
(

N
1√
mN

)

= Ω

(

√

N
m

)

.

5. This proof does not optimize the constants. Asymptotic analysis of logarithmic transform of binomial variables by
Flajolet (1999) can be used to achieve explicit values forKL(P||Q).
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A single change in the sample changesL1(P,Q) by at most 2
m. Using McDiarmid inequality

(Lemma 2) onL1(P,Q) as a function of sample words, we have∀ 1
2 S:

L1(P,Q) ≥ E[L1(P,Q)]−|L1(P,Q)−E[L1(P,Q)]|

= Ω

(

√

N
m

)

−O

(√
m

m

)

= Ω

(

√

N
m

)

.

Using Pinsker inequality (Lemma 36), we have

∀ 1
2 S, ∑

w∈V

pw ln
pw

qw
≥ 1

2

(

∑
w∈V

|pw−qw|
)2

= Ω
(

N
m

)

,

which completes the proof.

Definition 37 Let α ∈ (0,1) andτ ≥ 1. We define an (absolute discounting) algorithm Aα,τ, which
“removes” α

m probability mass from words appearing at mostτ times, and uniformly spreads it
among the unseen words. We denote by n1...τ = ∑τ

i=1ni the number of words with count between1
andτ. The learned probability Q is defined by :

qw =







αn1...τ
mn0

cw = 0
cw−α

m 1≤ cw ≤ τ
cw
m τ < cw.

The α parameter can be set to some constant, or to make the missing mass match the Good-
Turing missing mass estimator, that isαn1...τ

m = n1
m .

Definition 38 Given a distribution P, and x∈ [0,1], let Fx = ∑w∈V:pw≤x pw, and Nx = |{w ∈ V :
pw > x}|. Clearly, for any distribution P, Fx is a monotone function of x, varying from 0 to 1, and
Nx is a monotone function of x, varying from N to0. Note that Nx is bounded by1x .

The next theorem shows an upper bound for the learning error.

Theorem 39 For anyδ > 0 andλ > 3, such thatτ < (λ−
√

3λ) ln 8m
δ , the learning error of Aα,τ is

bounded∀δS by

0≤ ∑
w∈V

pw ln

(

pw

qw

)

≤ M0 ln

(

n0 ln 4m
δ

αn1...τ

)

+
λ ln 8m

δ
1−α





√

3ln 8
δ

m
+M0





+
α

1−α
Fλ ln 8m

δ
m

+

√

3ln 8
δ

m
+

3λ ln 8m
δ

2(
√

λ−
√

3)2m
Nλ ln 8m

δ
m

.
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The proof of Theorem 39 bases directly on Lemmas 40, 41, and 43. We can rewrite this bound
roughly as

∑
w∈V

pw ln

(

pw

qw

)

≤ Õ

(

M0 +
λ√
m

+
Nλ

m

m

)

.

This bound implies the characteristics of the distribution influencing the log-loss. It shows
that a “good” distribution can involve many low-probability words, given that the missing mass
is low. However, the learning error would increase if the dictionary included many mid-range-
probability words. For example, if a typical word’s probability werem− 3

4 , the bound would become

Õ
(

M0 +m− 1
4

)

.

Lemma 40 For anyδ > 0, the learning error for non-appearing words can be bounded with high
probability by

∀δS, ∑
w/∈S

pw ln

(

pw

qw

)

≤ M0 ln

(

n0 ln m
δ

αn1...τ

)

.

Proof By Lemma 13, we have∀δS, the real probability of any non-appearing word does not exceed
ln m

δ
m . Therefore,

∑
w/∈S

pw ln

(

pw

qw

)

= ∑
w/∈S

pw ln

(

pw
m
α

n0

n1...τ

)

≤ ∑
w/∈S

pw ln

(

ln m
δ

m
m
α

n0

n1...τ

)

= M0 ln

(

n0 ln m
δ

αn1...τ

)

,

which completes the proof.

Lemma 41 Letδ > 0, λ > 0. Let VL =
{

w∈V : pw ≤ λ ln 2m
δ

m

}

, and V′
L = VL ∩S. The learning error

for V ′
L can be bounded with high probability by

∀δS, ∑
w∈V ′

L

pw ln

(

pw

qw

)

≤
λ ln 2m

δ
1−α





√

3ln 2
δ

m
+M0



+
α

1−α
Fλ ln 2m

δ
m

.

Proof We use ln(1+x) ≤ x.

∑
w∈V ′

L

pw ln
pw

qw
≤ ∑

w∈V ′
L

pw
pw−qw

qw
.

For any appearing wordw, qw ≥ 1−α
m . Therefore,

1252



CONCENTRATION BOUNDS FORUNIGRAM LANGUAGE MODELS

∑
w∈V ′

L

pw
pw−qw

qw
≤ m

1−α ∑
w∈V ′

L

pw(pw−qw)

=
m

1−α

[

∑
w∈V ′

L

pw

(

pw−
cw

m

)

+ ∑
w∈V ′

L

pw

(cw

m
−qw

)

]

≤ m
1−α

∣

∣

∣

∣

∣

∑
w∈V ′

L

pw

(

pw−
cw

m

)

∣

∣

∣

∣

∣

+
m

1−α ∑
w∈V ′

L

pw
α
m

≤ m
1−α

λ ln 2m
δ

m

∣

∣

∣

∣

∣

∑
w∈V ′

L

(

pw−
cw

m

)

∣

∣

∣

∣

∣

+
α

1−α ∑
w∈V ′

L

pw

≤
λ ln 2m

δ
1−α

∣

∣

∣

∣

∣

∑
w∈V ′

L

(

pw−
cw

m

)

∣

∣

∣

∣

∣

+
α

1−α
Fλ ln 2m

δ
m

. (28)

We apply Lemma 12 onvL, the union of words inVL. Let pvL = ∑w∈VL
pw andcvL = ∑w∈VL

cw.
We have∀δS:

∣

∣

∣

∣

∣

∑
w∈V ′

L

(

pw−
cw

m

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
w∈VL

(

pw−
cw

m

)

− ∑
w∈VL\S

(

pw−
cw

m

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑
w∈VL

(

pw−
cw

m

)

∣

∣

∣

∣

∣

+ ∑
w∈VL\S

pw

≤
∣

∣

∣pvL −
cvL

m

∣

∣

∣+M0

≤

√

3ln 2
δ

m
+M0. (29)

The proof follows combining Equations (28) and (29).

Lemma 42 Let0 < ∆ < 1. For any x∈ [−∆,∆], we haveln(1+x) ≥ x− x2

2(1−∆)2 .

Lemma 43 Let δ > 0, λ > 3, such thatτ < (λ−
√

3λ) ln 4m
δ . Let the high-probability words set be

VH =
{

w∈V : pw >
λ ln 4m

δ
m

}

, and V′
H =VH ∩S. The learning error for V′H can be bounded with high

probability by

∀δS, ∑
w∈V ′

H

pw ln

(

pw

qw

)

≤

√

3ln 4
δ

m
+

3λ ln 4m
δ

2(
√

λ−
√

3)2m
Nλ ln 4m

δ
m

.
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Proof

∑
w∈V ′

H

pw ln

(

pw

qw

)

= ∑
w∈V ′

H

pw ln

(

pw
cw
m

)

+ ∑
w∈V ′

H

pw ln

( cw
m

qw

)

= ∑
w∈V ′

H

pw ln

(

mpw

cw

)

+ ∑
w∈V ′

H ,cw≤τ
pw ln

(

cw

cw−α

)

. (30)

Using Lemma 9 withλ, we have∀ δ
2 S:

∀w∈VH ,
∣

∣

∣pw−
cw

m

∣

∣

∣≤

√

3pw ln 4m
δ

m
, (31)

∀w∈VH , cw ≥ (λ−
√

3λ) ln
4m
δ

.

This means that for a reasonable choice ofτ (meaningτ < (λ−
√

3λ) ln 4m
δ ), the second term of

Equation (30) is 0, andV ′
H = VH . Also,

∣

∣

∣

∣

cw
m − pw

pw

∣

∣

∣

∣

≤ 1
pw

√

3pw ln 4m
δ

m
≤
√

m

λ ln 2m
δ

3ln 2m
δ

m
=

√

3
λ
.

Therefore, we can use Lemma 42 with∆ =
√

3
λ :

∑
w∈V ′

H

pw ln

(

mpw

cw

)

= − ∑
w∈VH

pw ln

(

1+
cw
m − pw

pw

)

≤ − ∑
w∈VH

pw







cw
m − pw

pw
− 1

2
(

1−
√

3
λ

)2

( cw
m − pw

pw

)2







= ∑
w∈VH

(

pw−
cw

m

)

+
λ

2
(√

λ−
√

3
)2 ∑

w∈VH

( cw
m − pw

)2

pw
. (32)

We apply Lemma 12 on thevH , the union of all words inVH . Let pvH = ∑w∈VH
pw andcvH =

∑w∈VH
cw. The bound on the first term of Equation (32) is:

∀ δ
2 S,

∣

∣

∣

∣

∣

∑
w∈VH

(

pw−
cw

m

)

∣

∣

∣

∣

∣

=
∣

∣

∣pvH − cvH

m

∣

∣

∣≤

√

3ln 4
δ

m
. (33)

Assuming that Equation (31) holds, the second term of Equation (32) can also be bounded:
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∑
w∈VH

( cw
m − pw

)2

pw
≤ ∑

w∈VH

1
pw

3pw ln 4m
δ

m
=

3ln 4m
δ

m
Nλ ln 4m

δ
m

. (34)

The proof follows by combining Equations (30), (32), (33) and (34).
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Appendix A. Technical Proofs

A.1 Concentration Inequalities

Lemma 6 Proof We use Stirling approximationΓ(x+1) =
√

2πx
(

x
e

)x
Tx, where

Tx = exp

(

1
12x

+O

(

1
x2

))

.

P(X = k) =

(

n
k

)

pk(1− p)n−k

≤ Γ(n+1)

Γ(µ+1)Γ(n−µ+1)

(µ
n

)µ
(

n−µ
n

)n−µ

=

√
2πn

√
2πµ
√

2π(n−µ)

nn

µµ(n−µ)n−µ

µµ

nµ

(n−µ)n−µ

nn−µ

Tn

TµTn−µ

=
1√
2πµ

√

n
n−µ

Tn

TµTn−µ

=
1

√

2πµ(1− p)

Tn

TµTn−µ
.

Clearly, for integral values ofµ, the equality is achieved atk = µ.

Lemma 8 Proof Let m′ = ∑w∈V c′w. Using Lemma 7 form′ with b = c = E[m′] = m, the prob-
ability P(m′ = m) achieves its minimum when∀w ∈ V, pw = 1

N . Under this assumption, we have
m′ ∼ Bin(mN, 1

N). Using Lemma 6, we have
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P
(

m′ = m
)

=
1

√

2πmN1
N

(

1− 1
N

)

TmN

TmTmN−m
≥ 1

3
√

m
.

Therefore, for any distribution{pw : w∈V}, we have

P(m′ = m) ≥ 1
3
√

m
.

Obviously,E[F ′] = ∑wE[ fw(c′w)] = E[F]. Also, the distribution of{c′w} given thatm′ = m is
identical to the distribution of{cw}, therefore the distribution ofF ′ given thatm′ = m is identical to
the distribution ofF . We have

P(|F ′−E[F ′]| > ε) = ∑
i

P(m′ = i)P(|F ′−E[F ′]| > ε|m′ = i)

≥ P(m′ = m)P(|F ′−E[F ′]| > ε|m′ = m)

= P(m′ = m)P(|F −E[F]| > ε)

≥ 1
3
√

m
P(|F −E[F]| > ε),

which completes the proof.

Lemma 44 For anyδ > 0, and a word w∈V, such that pw ≥ 3ln 2
δ

m , we have

P





∣

∣

∣
pw−

cw

m

∣

∣

∣
>

√

3pw ln 2
δ

m



≤ δ.

Proof The proof follows by applying Lemma 3, substitutingε =
√

3mpw ln 2
δ . Note that for 3 ln2

δ ≤
mpw we haveε ≤ mpw:

P





∣

∣

∣
pw−

cw

m

∣

∣

∣
≥

√

3pw ln 2
δ

m



 = P(|mpw−cw| ≥ ε)

≤ 2exp

(

− ε2

2E[cw]+ ε

)

≤ 2exp

(

−
3mpw ln 2

δ
3mpw

)

= δ,

which completes the proof.
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Lemma 9 Proof There are at mostmwords with probabilitypw ≥ 3ln 2m
δ

m . The first claim follows
using Lemma 44 together with union bound over all these words (with accuracy δ

m for each word).

Using the first claim, we derive the second. We show a lower bound forcw
m , using

ln 2m
δ

m < 1
λ pw:

cw

m
≥ pw−

√

3pw ln 2m
δ

m
> pw− pw

√

3
λ

=

(

1−
√

3
λ

)

pw.

The final inequality follows from simple algebra.

Lemma 10 Proof Let b = 3ln(m
δ ). Note thatδ ∈ [0,1] andm> 1 yieldb > 2. First, suppose that

there are up tom words withpw ≤ b
m. For each such word, we apply Lemma 3 oncw, with ε = b.

We have:

P
(

cw > 6ln
m
δ

)

≤ P(cw > mpw + ε) ≤ exp

(

− b2

2mpw +b

)

≤ δ
m

.

Since we assume that there are up tom such words, the total mistake probability isδ.
Now we assume the general case, that is, without any assumption on the number of words. Our

goal is to reduce the problem to the former conditions, that is, to create a setof sizemof words with
probability smaller thanb

m.
We first createm empty setsv1, . . . ,vm. Let the probability of each setvi , pvi , be the sum of the

probabilities of all the words it includes. Let the actual count ofvi , cvi , be the sum of the sample
counts of all the wordsw it includes.

We divide all the wordsw between these sets in a bin-packing-approximation manner. We sort
the wordsw in decreasing probability order. Then, we do the following loop: insert thenext word
w to the setvi with the currently smallestpvi .

We claim thatpvi ≤ b
m for eachvi at the end of the loop. If this inequality does not hold, then

some wordw made this “overflow” first. Obviously,pw must be smaller thanb2m, otherwise it would
be one of the first2m

b < m words ordered, and would enter an empty set. Ifpw < b
2m and it made

an “overflow”, then the probability of each set at the momentw was entered must exceedb2m, since
w must have entered the lightest set available. This means that the total probability of all words
entered by that moment was greater thanm b

2m > 1.

Applying the case ofmwords to the setsv1, . . . ,vm, we have∀δS: for everyvi , cvi ≤ 2b. Also, if
the count of each setvi does not exceed 2b, so does the count of each wordw∈ vi . That is,

P

(

∃w : pw ≤ b
m

,cw > 2b

)

≤ P

(

∃vi : pvi ≤
b
m

,cvi > 2b

)

≤ δ,

which completes the proof.
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Lemma 11 Proof By Lemma 9 with someλ > 3 (which will be set later), we have∀ δ
2 S:

∀w : pw ≥
3ln 4m

δ
m

, |mpw−cw| ≤
√

3mpw ln
4m
δ

, (35)

∀w : pw >
λ ln 4m

δ
m

, cw >

(

1−
√

3
λ

)

mpw. (36)

By Equation (35), for any wordwsuch that
3ln 4m

δ
m ≤ pw≤ λ ln 4m

δ
m , we havecw≤mpw+

√

3mpw ln 4m
δ ≤

(

λ+
√

3λ
)

ln 4m
δ . By Lemma 10, we have

∀ δ
2 S, ∀w s.t. pw ≤ 3ln 4m

δ
m , cw ≤ 6ln

4m
δ

.

It means that for anyw : mpw ≤ λ ln 4m
δ , we havecw ≤

(

λ+
√

3λ
)

ln 4m
δ . This means that for

any w such thatcw >
(

λ+
√

3λ
)

ln 4m
δ , we havempw > λ ln 4m

δ . By Equation (36), this means

mpw ≤ 1
1−
√

3
λ
cw, and by Equation (35):

|mpw−cw| ≤
√

3mpw ln
4m
δ

≤
√

√

√

√

3cw ln 4m
δ

1−
√

3
λ

=

√

3cw

√
λ ln 4m

δ√
λ−

√
3

.

Substitutingλ = 12 results in

∀δS: ∀w s.t. cw > 18ln4m
δ , |mpw−cw| ≤

√

6cw ln
4m
δ

,

which completes the proof.

Lemma 12 Proof If pw ≥ 3ln 2
δ

m , we can apply Lemma 44. We have

∀δS,
∣

∣

∣

cw

m
− pw

∣

∣

∣
≤

√

3pw ln 2
δ

m
≤

√

3ln 2
δ

m
.

Otherwise, we can apply Lemma 10. We have:

∀δS,
∣

∣

∣

cw

m
− pw

∣

∣

∣
≤ max

{

pw,
cw

m

}

≤
6ln m

δ
m

≤

√

3ln 2
δ

m
,

which completes the proof.
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Lemma 13 Proof Let b = ln m
δ . We note that there are at mostm

b words with probabilitypw ≥ b
m.

P

(

∃w : cw = 0, pw ≥ b
m

)

≤ ∑
w:pw≥ b

m

P(cw = 0)

= ∑
w:pw≥ b

m

(1− pw)m ≤ m
b

(

1− b
m

)m

< me−b = δ,

which completes the proof.

A.2 K-Hitting Mass Estimation

Lemma 21 Proof We have∑w∈Vk,α pw ≤ 1. Using Lemma 19, we boundP(cw = k) andP(cw =
k+1):

E[Mk,α] = ∑
w∈Vk,α

pwP(cw = k) = O

(

1√
k

)

|E[Gk,α]−E[Mk,α]| =

∣

∣

∣

∣

∣

∑
w∈Vk,α

[

k+1
m−k

P(cw = k+1)− pwP(cw = k)

]

∣

∣

∣

∣

∣

= ∑
w∈Vk,α

pw
k+1
m−k

P(cw = k+1) = O

(√
k

m

)

. (37)

Equation (37) follows by Lemma 20. By Lemma 18, we have|Vk,α| = O
(

m
k

)

:

E[Gk,α] =
k+1
m−k ∑

w∈Vk,α

P(cw = k+1) = O

(

k
m

m
k

1√
k

)

= O

(

1√
k

)

,

which completes the proof.

Theorem 29 Proof The proof is done by examining four cases ofk. Fork≤ 18ln8m
δ , we can use

Lemma 28. We have

∀δS, |M̃k−Mk| = |Gk−Mk| = O

(
√

ln 1
δ

m

(

k+ ln m
δ
)

)

= Õ
(

1√
m

)

.

For 18ln8m
δ < k≤ m

2
5 , we can use Theorem 25. We have

∀δS, |M̃k−Mk| = |Gk−Mk| = O

(
√√

k ln m
δ

m +
k ln m

δ
m

)

= Õ
(

m− 2
5

)

.
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Form
2
5 < k < m

2 , we can use Theorem 26. We have

∀δS, |M̃k−Mk| = |M̂k−Mk| = O

(√
k(ln m

δ )
3
2

m +

√
ln m

δ
k

)

= Õ
(

m− 2
5

)

.

Fork≥ m
2 , letα =

√

6ln 8m
δ . By Lemma 17, we have∀ δ

2 S, Mk = Mk,α ∧ M̂k = M̂k,α. By Lemma

18, |Vk,α| = O
(

m
k

)

= O(1). Let c be the bound on|Vk,α|. Using Lemma 12 for eachw∈Vk,α with
accuracyδ

2c, we have

∀ δ
2 S, ∀w∈Vk,α,

∣

∣

∣

cw

m
− pw

∣

∣

∣
= O





√

ln 1
δ

m



 .

Therefore, we have∀δS:

|M̃k−Mk| = |M̂k,α −Mk,α| ≤ ∑
w∈Vk,α

∣

∣

∣

∣

k
m
− pw

∣

∣

∣

∣

Xw,k = O





√

ln 1
δ

m



= Õ

(

1√
m

)

,

which completes the proof.

Theorem 30 Proof First, we show that for any two wordsu andv, Cov(Xu,k,Xv,k) = Θ
(

k
m2

)

. Note
that{cv|cu = k} ∼ Bin

(

m−k, k
m−k

)

. By Lemma 6, we have:

P(cu = k) = P(cv = k) =
1

√

2πk
(

1− k
m

)

Tm

TkTm−k
, (38)

P(cv = k|cu = k) =
1

√

2πk
(

1− k
m−k

)

Tm−k

TkTm−2k
.

UsingTx = Θ(1) for x≥ k, we have

Cov(Xu,k,Xv,k)

= E[Xu,kXv,k]−E[Xu,k]E[Xv,k]

= P(cu = k)[P(cv = k|cu = k)−P(cv = k)]

=
1

2πk
√

(

1− k
m

)

Tm

TkTm−k





1
√

(

1− k
m−k

)

Tm−k

TkTm−2k
− 1
√

(

1− k
m

)

Tm

TkTm−k





= Θ
(

1
k

)





1
√

(

1− k
m−k

)

Tm−k

Tm−2k
− 1
√

(

1− k
m

)

Tm

Tm−k
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= Θ
(

1
k

)





Tm−k

Tm−2k





1
√

(

1− k
m−k

)

− 1
√

(

1− k
m

)





+
1

√

(

1− k
m

)

(

Tm−k

Tm−2k
− Tm

Tm−k

)



 . (39)

We can bound the first term of Equation (39):

1
√

(

1− k
m−k

)

− 1
√

(

1− k
m

)

=







√

1− k
m−

√

1− k
m−k

√

(

1− k
m−k

)(

1− k
m

)













√

1− k
m +

√

1− k
m−k

√

1− k
m +

√

1− k
m−k







= Θ
(

1− k
m
−1+

k
m−k

)

= Θ
(

k2

m2

)

. (40)

SinceTx = exp
(

1
12x +O

(

1
x2

))

= 1+ 1
12x +O

(

1
x2

)

for x≥ m−2k (note thatk� m), we have

Tm−k

Tm−2k
− Tm

Tm−k
=

T2
m−k−TmTm−2k

Tm−2kTm−k

=
1

Tm−2kTm−k

[

1
6(m−k)

− 1
12m

− 1
12(m−2k)

+O

(

1
m2

)]

= −Θ
(

k2

m3

)

+O

(

1
m2

)

. (41)

Combining Equations (39), (40), and (41), we have

Cov(Xu,k,Xv,k) = Θ
(

1
k

)[

Θ
(

k2

m2

)

−Θ
(

k2

m3

)

+O

(

1
m2

)]

= Θ
(

k
m2

)

.

Now we show thatσ2[Xw,k] = Θ
(

1√
k

)

. By Equation (38), we have

σ2[Xw,k] = P(cw = k)(1−P(cw = k)) = Θ
(

1√
k

)(

1−Θ
(

1√
k

))

= Θ
(

1√
k

)

.

Now we find a bound forσ2[Mk].

σ2[Mk] = σ2
[

∑
w

pwXw,k

]

= ∑
w

p2
wσ2[Xw,k]+ ∑

u6=v

pupvCov(Xu,k,Xv,k)

=
m
k

(

k
m

)2

Θ
(

1√
k

)

+
m
k

(m
k
−1
)

(

k
m

)2

Θ
(

k
m2

)

= Θ

(√
k

m

)

,
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which completes the proof.

A.3 Leave-One-Out Estimation of Log-Loss

Lemma 34 Proof Using Lemma 9, we have∀ δ
2 : n2 = |U ∩S2| andn1 = |U ∩S1|, whereU = {w∈

V : mpw ≤ cln m
δ }, for somec > 0. Letn′2 = |U ∩S2| andn′1 = |U ∩S1|. Let b = ln m

δ .
First, we show thatE[n′2] = O(bE[n′1]).

E[n′2] = ∑
w∈U

(

m
2

)

p2
w(1− pw)m−2

= ∑
w∈U

mpw(1− pw)m−1
[

m−1
2

pw

1− pw

]

= ∑
w∈U

mpw(1− pw)m−1O(b) = O(bE[n′1]).

Next, we bound the deviation ofn′1 andn′2. A single change in the sample changesn′1, as well
asn′2, by at most 1. Therefore, using Lemma 2 forn′1 andn′2, we have

∀ δ
4 S: n′1 ≥ E[n′1]−O

(

√

mln
1
δ

)

,

∀ δ
4 S: n′2 ≤ E[n′2]+O

(

√

mln
1
δ

)

.

Therefore,

n′2 ≤ E[n′2]+O

(

√

mln
1
δ

)

= O

(

bE[n′1]+

√

mln
1
δ

)

= O

(

b

(

n′1 +

√

mln
1
δ

))

,

which completes the proof.

A.4 Log-Loss A Priori

Theorem 39 Proof The KL-divergence is of course non-negative. By Lemma 40, we have

∀ δ
4 S, ∑

w/∈S

pw ln

(

pw

qw

)

≤ M0 ln

(

n0 ln 4m
δ

αn1...τ

)

. (42)

By Lemma 41 withλ, we have∀ δ
4 S:
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∑
w∈S:pw≤

λ ln 8m
δ

m

pw ln

(

pw

qw

)

≤
λ ln 8m

δ
1−α





√

3ln 8
δ

m
+M0



+
α

1−α
Fλ ln 8m

δ
m

. (43)

By Lemma 43 withλ, we have∀ δ
2 S:

∑
w∈S:pw>

λ ln 8m
δ

m

pw ln

(

pw

qw

)

≤

√

3ln 8
δ

m
+

3λ ln 8m
δ

2(
√

λ−
√

3)2m
Nλ ln 8m

δ
m

. (44)

The proof follows by combining Equations (42), (43), and (44).

Lemma 42 Proof Let f (x) = x2

2(1−∆)2 −x+ ln(1+x). Then,

f ′(x) =
x

(1−∆)2 −1+
1

1+x
,

f ′′(x) =
1

(1−∆)2 −
1
.
(1+x)2

Clearly, f (0) = f ′(0) = 0. Also, f ′′(x) ≥ 0 for anyx∈ [−∆,∆]. Therefore,f (x) is non-negative
in the range above, and the lemma follows.

References

D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltonian circuitsand matchings.
Journal of Computer and System Sciences, 18:155–193, 1979.

S. F. Chen.Building Probabilistic Models for Natural Language. PhD thesis, Harvard University,
1996.

S. F. Chen and J. Goodman. An empirical study of smoothing techniques forlanguage modeling.
Technical Report TR-10-98, Harvard University, 1998.

K. W. Church and W. A. Gale. A comparison of the enhanced Good-Turing and deleted estimation
methods for estimating probabilities of English bigrams.Computer Speech and Language, 5:
19–54, 1991.

J. R. Curran and M. Osborne. A very very large corpus doesn’t always yield reliable estimates. In
Proceedings of the Sixth Conference on Natural Language Learning, pages 126–131, 2002.

D. P. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence.Random Structures
and Algorithms, 13(2):99–124, 1998.

1263



DRUKH AND MANSOUR

P. Flajolet. Singularity analysis and asymptotics of Bernoulli sums.Theoretical Computer Science,
215:371–381, 1999.

I. J. Good. The population frequencies of species and the estimation of population parameters.
Biometrika, 40(16):237–264, 1953.

I. J. Good. Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the
naval Enigma.Journal of Statistical Computation and Simulation, 66(2):101–112, 2000.

W. Hoeffding. On the distribution of the number of successes in independent trials. Annals of
Mathematical Statistics, 27:713–721, 1956.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

S. B. Holden. PAC-like upper bounds for the sample complexity of leave-one-out cross-validation.
In Proceesings of the Ninth Annual ACM Workshop on Computational Learning Theory, pages
41–50, 1996.

S. M. Katz. Estimation of probabilities from sparse data for the language model component of a
speech recognizer.IEEE Transactions on Acoustics, Speech and Signal Processing, 35(3):400–
401, 1987.

M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross-
validation.Neural Computation, 11(6):1427–1453, 1999.

S. Kutin. Algorithmic Stability and Ensemble-Based Learning. PhD thesis, University of Chicago,
2002.

D. McAllester and L. Ortiz. Concentration inequalities for the missing mass and for histogram
rule error. Journal of Machine Learning Research, Special Issue on LearningTheory, 4(Oct):
895–911, 2003.

D. McAllester and R. E. Schapire. On the convergence rate of Good-Turing estimators. InPro-
ceedings of the Thirteenth Annual Conference on Computational Learning Theory, pages 1–6,
2000.

D. McAllester and R. E. Schapire. Learning theory and language modeling. In Seventeenth Inter-
national Joint Conference on Artificial Intelligence, 2001.

C. McDiarmid. On the method of bounded differences. InSurveys in Combinatorics, pages 148–
188. London Math. Soc. Lectures Notes 141, Cambridge University Press, 1989.

A. Orlitsky, N. P. Santhanam, and J. Zhang. Always Good Turing: Asymptotically optimal proba-
bility estimation.Science, 302(Oct):427–431, 2003.

1264



Journal of Machine Learning Research 6 (2005) 1265–1295 Submitted 10/03; Revised 4/04; Published 9/05

An MDP-Based Recommender System∗

Guy Shani SHANIGU@CS.BGU.AC.IL
Computer Science Department
Ben-Gurion University
Beer-Sheva, Israel 84105

David Heckerman HECKERMA@MICROSOFT.COM

Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA

Ronen I. Brafman BRAFMAN@CS.BGU.AC.IL
Computer Science Department
Ben-Gurion University
Beer-Sheva, Israel 84105

Editor: Craig Boutilier

Abstract
Typical recommender systems adopt a static view of the recommendation process and treat it as

a prediction problem. We argue that it is more appropriate toview the problem of generating
recommendations as a sequential optimization problem and,consequently, that Markov decision
processes (MDPs) provide a more appropriate model for recommender systems. MDPs introduce
two benefits: they take into account the long-term effects ofeach recommendation and the expected
value of each recommendation. To succeed in practice, an MDP-based recommender system must
employ a strong initial model, must be solvable quickly, andshould not consume too much memory.
In this paper, we describe our particular MDP model, its initialization using a predictive model, the
solution and update algorithm, and its actual performance on a commercial site. We also describe
the particular predictive model we used which outperforms previous models. Our system is one
of a small number of commercially deployed recommender systems. As far as we know, it is the
first to report experimental analysis conducted on a real commercial site. These results validate the
commercial value of recommender systems, and in particular, of our MDP-based approach.
Keywords: recommender systems, Markov decision processes, learning, commercial applications

1. Introduction

In many markets, consumers are faced with a wealth of products and information from which they
can choose. To alleviate this problem, many web sites attempt to help users by incorporating a
recommender system(Resnick and Varian, 1997) that provides users with a list of items and/or web-
pages that are likely to interest them. Once the user makes her choice, a newlist of recommended
items is presented. Thus, the recommendation process is a sequential process. Moreover, in many
domains, user choices are sequential in nature – for example, we buy a book by the author of a
recent book we liked.

∗. Parts of this paper appeared in the proceedings of UAI’02 under the title“An MDP-Based Recommender System,”
and the proceedings of ICAPS’03 under the title “Recommendation as a Stochastic Sequential Decision Problem.”

c©2005 Guy Shani, Ronen I. Brafman and David Heckerman.
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The sequential nature of the recommendation process was noticed in the past (Zimdars et al.,
2001). Taking this idea one step farther, we suggest that recommendationis not simply a sequential
prediction problem, but rather, a sequential decision problem. At each point the Recommender
System makes a decision: which recommendation to issue. This decision shouldtake into account
the sequential process involved and the optimization criteria suitable for the recommender system,
such as the profit generated from selling an item. Thus, we suggest the use of Markov decision
processes (MDP) (Puterman, 1994), a well known stochastic model of sequential decisions.

With this view in mind, a more sophisticated approach to recommender systems emerges. First,
one can take into account the utility of a particular recommendation – for example, we might want
to recommend a product that has a slightly lower probability of being bought, but generates higher
profits. Second, we might suggest an item whose immediate reward is lower, but leads to more
likely or more profitable rewards in the future.

These considerations are taken into account automatically by any good or optimal policy gen-
erated for an MDP model of the recommendation process. In particular, anoptimal policy will take
into account the likelihood of a recommendation to be accepted by the user, theimmediate value to
the site of such an acceptance, and the long-term implications of this on the user’s future choices.
These considerations are taken with the appropriate balance to ensure thegeneration of the maximal
expected reward stream.

For instance, consider a site selling electronic appliances faced with the option to suggest a
video camera with a success probability of 0.5, or a VCR with a probability of 0.6.The site may
choose the camera, which is less profitable, because the camera has accessories that are likely to
be purchased, whereas the VCR does not. If a video-game console is another option with a smaller
success probability, the large profit from the likely future event of sellinggame cartridges may tip
the balance toward this latter choice. Similarly, when the products sold are books, by recommending
a book for which there is a sequel, we may increase the likelihood that this sequel will be purchased
later.

Indeed, in our implemented system, we observed less obvious instances of such sequential
behavior: users who purchased novels by the well-known science fiction author, Roger Zelazny,
who uses many mythological themes in his writing, often later purchase books on Greek or Hindu
mythology. On the other hand, users who buy mythology books do not appear to buy Roger Zelazny
novels afterwards.

The benefits of an MDP-based recommender system discussed above are offset by the fact
that the model parameters are unknown. Standard reinforcement learning techniques that learn
optimal behaviors will not do – they take considerable time to converge and their initial behavior
is random. No commercial site will deploy a system with such behavior. Thus, we must find ways
for generating good initial estimates for the MDP parameters. The approachwe suggest initializes a
predictive model of user behavior using data gathered on the site prior to the implementation of the
recommender system. We then use the predictive model to provide initial parameters for the MDP.

Our initialization process can be performed usinganypredictive model. In this paper we suggest
a particular model that outperforms previous approaches. The predictive model we describe is
motivated by our sequential view of the recommendation process, but constitutes an independent
contribution. The model can be thought of as ann-gram model (Chen and Goodman, 1996) or,
equivalently, a (first-order) Markov chain in which states correspondto sequences of events. In this
paper, we emphasize the latter interpretation due to its natural relationship with an MDP. We note
that Su et al. (2000) have described the use of simplen-gram models for predicting web pages.
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Their methods, however, yield poor performance on our data, probablybecause in our case, due to
the relatively limited data set, the use of the enhancement techniques discussed below is needed.

Validating recommender system algorithms is not simple. Most recommender systems, such
as dependency networks (Heckerman et al., 2000), are tested on historical data for their predictive
accuracy. That is, the system is trained using historical data from sites that do not provide recom-
mendations, and tested to see whether the recommendations conform to actualuser behavior. We
present the results of a similar test with our system showing it to perform better than the previous
leading approach.

However, predictive accuracy is not an ideal measure, as it does nottest how user behavior is
influenced by the system’s suggestions or what percentage of recommendations are accepted by
users. To obtain this data, one must employ the system at a real site with real users, and compare the
performance of this site with and without the system (or with this and other systems). The extent
to which such experiments are possible is limited, as commercial site owners are unlikely to allow
experiments which can degrade the performance or the “look-and-feel”of their systems. However,
we were able to perform a certain set of experiments using our commercial system at the online
bookstore Mitos (www.mitos.co.il) by running two models simultaneously on different users: one
based on a predictive model and one based on an MDP model. We were alsoable, for a short period,
to compare user behavior with and without recommendations. These results,which to the best of
our knowledge are among the first reports of online performance in a commercial site, are reported
in Section 6, providing very encouraging validation to recommender systems ingeneral, and to our
sequential optimization approach in particular.

The main contributions of this paper are: (1) A novel approach to recommender systems based
on an MDP model together with appropriate initialization and solution techniques.(2) A novel
predictive model that outperforms previous predictive models. (3) One of a small number of com-
mercial applications based on MDPs. (4) The first (to the best of our knowledge) experimental
analysis of a commercially deployed recommender system.

We note that the use of MDPs for recommender systems was previously suggested by Bohnen-
berger and Jameson (2001). They used an MDP to model the process ofa consumer navigating
within an airport. The state of this MDP was the consumer’s position and rewards were obtained
when the consumer entered a store or bought an item. Recommendations wereissued on a palm-top,
suggesting routes and stores to visit. However, the MDP model was hand-coded and experiments
were conducted with students rather than real users.

The paper is structured as follows. In Section 2 we review the necessarybackground on rec-
ommender systems, MDPs, and reinforcement learning. In Section 3 we describe the predictive
model we constructed whose goal is to accurately predict user behaviorin an environment without
recommendations. In Section 4 we present our empirical evaluation of the predictive model. In Sec-
tion 5 we explain how we use this predictive model as a basis for a more sophisticated MDP-based
model for the recommender system. In Section 6 we provide an empirical evaluation of the actual
recommender system based on data gathered from our deployed system. We conclude the paper in
Section 7 discussing our current and future work.

2. Background

In this section we provide the necessary background on recommender systems,N-gram models, and
MDPs.
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2.1 Recommender Systems

Early in the 1990s, when the Internet became widely used as a source of information,information
explosionbecame an issue that needed addressing. Many web sites presenting a wide variety of
content (such as articles, news stories, or items to purchase) discovered that users had difficulties
finding the items that interested them out of the total selection.Recommender Systems(Resnick and
Varian, 1997) help users limit their search by supplying a list of items that mightinterest a specific
user. Different approaches were suggested for supplying meaningful recommendations to users and
some were implemented in modern sites (Schafer et al., 2001). Traditional datamining techniques
such as association rules were tried at the early stages of the developmentof recommender systems.
Initially, they proved to be insufficient for the task, but more recent attemptshave yielded some
successful systems (Kitts et al., 2000).

Approaches originating from the field ofinformation retrieval (IR)rely on thecontentof the
items (such as description, category, title, author) and therefore are known ascontent-based rec-
ommendations(Mooney and Roy, 2000). These methods use some similarity score to match items
based on their content. Based on this score, a list of items similar to the ones the user previously se-
lected can be supplied.Knowledge-basedrecommender systems (Burke, 2000) go one step farther
by using deeper knowledge about the user and the domain. In particular,the user is able to introduce
explicit information about her preferences. Thus, for instance, the user could specify interest in Thai
cuisine, and the system might suggest a restaurant serving some other south-Asian cuisine.

Another possibility is to avoid using information about the content, but rather use historical
data gathered from other users in order to make a recommendation. These methods are widely
known ascollaborative filtering (CF)(Resnick et al., 1994), and we discuss them in more depth
below. Finally, some systems try to create hybrid models that combine collaborative filtering and
content-based recommendations (Balabanovic and Shoham, 1997; Burke, 2002).

2.2 Collaborative Filtering

The collaborative filtering approach originates in human behavior: peoplesearching for an inter-
esting item they know little of, such as a movie to rent at the video store, tend to rely on friends
to recommend items they tried and liked. The person asking for advice is using a(small) commu-
nity of friends that know her taste and can therefore make good predictions as to whether she will
like a certain item. Over the net however, a larger community that can recommenditems to our
user is available, but the persons in this large community know little or nothing about each other.
Conceptually, the goal of a collaborative filtering engine is to identify those users whose taste in
items is predictive of the taste of a certain person (usually called aneighborhood), and use their
recommendations to construct a list of items interesting for her.

To build a user’s neighborhood, these methods rely on a database of past users interactions with
the system. Early systems usedexplicit ratings. In such systems, users grade items (e.g., 5 stars to
a great movie, 1 star to a horrible one) and then receive recommendations.1 Later systems shifted
toward implicit ratings. A common approach assumes that people like what they buy. A binary
grading method is used when a value of 1 is given to items the user has boughtand 0 to other items.
Many modern recommender systems successfully implement this approach. Claypool et al. (2001)
have suggested the use of other implicit grading methods through a special web browser that keeps
track of user behavior such as the time spent looking at the web page, the scrolling of the page by

1. An example of such a system can be found at http://www.movielens.umn.edu/.
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t Xt−2 Xt−1 Xt

1 – – x1

2 – x1 x2

3 x1 x2 x3

4 x2 x3 x4

Table 1: An auto-regressive transformation of the sequencex1,x2,x3,x4 for k = 2.

the user, and movements of the mouse over the page. Their evaluation, however, failed to establish
a method of rating that gave results consistently better than the binary method mentioned above.

As described in Breese et al. (1998), collaborative filtering systems areeither memory based
or model based. Memory-based systems work directly with user data. Given the selections of a
given user, a memory-based system identifies similar users and makes recommendations based on
the items selected by these users. Model-based systems compress such user data into a predictive
model. Examples of model-based collaborative filtering systems are Bayesiannetworks (Breese
et al., 1998) and dependency networks (Heckerman et al., 2000). In this paper, we consider model-
based systems.

2.3 The Sequential Nature of the Recommendation Process

Most recommender systems work in a sequential manner: they suggest items tothe user who can
then accept one of the recommendations. At the next stage a new list of recommended items is
calculated and presented to the user. This sequential nature of the recommendation process, where
at each stage a new list is calculated based on the user’s past ratings, willlead us naturally to our
reformulation of the recommendation process as a sequential optimization process.

There is yet another sequential aspect to the recommendation process. Namely, optimal rec-
ommendations may depend not only on previous items pruchased, but also onthe order in which
those items are purchased. Zimdars et al. (2001) recognized this possibledependency and sug-
gested the use of an auto-regressive model (ak-order Markov chain) to represent it. They divided
a sequence of transactionsX1, . . . ,XT (for example, product purchases, web-page views) into cases
(Xt−k, . . . ,Xt−1,Xt) for t = 1, . . . ,T as shown in Table 1. They then built a model (in particular, a
dependency network) to predict the last column given the other columns, under the assumption that
the cases were exchangeable. Our model will also incorporate this sequential view.

2.4 N-gram Models

N-gram models originate in the field of language modeling. They are used to predict the next
word in a sentence given the lastn− 1 words. In the simplest form of the model, probabilities
for the next word are estimated via maximum likelihood; and many methods exist for improv-
ing this simple approach including skipping, clustering, and smoothing. Skippingassumes that
the probability of the next wordxi depends on words other than just the previousn−1. A sepa-
rate model is built using skipping and then combined with the standardn-gram model. Clustering
is an approach that groups some states together for purposes of predicting next states. For ex-
ample, we can group items such a basketball, football, and volleyball into a “sports ball” class.
Such grouping helps to address the problem of data sparsity. Smoothing is ageneral name for
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methods that modify the estimates of probabilities to achieve higher accuracy byadjusting zero
or low probabilities upward. One type of smoothing is finite mixture modeling, whichcombines
multiple models via a convex combination. In particular, givenk component models forxi given
a prior sequenceX—pM1(xi |X), . . . , pMk(xi |X)—we can define thek-component mixture model
p(xi |X) = π1 · pM1(xi |X)+ · · ·+ πk · pMk(xi |X), where∑k

i=1 πi = 1 are its mixture weights. Details
of these and other methods are given in Chen and Goodman (1996).

2.5 MDPs

An MDP is a model for sequential stochastic decision problems. As such, it iswidely used in
applications where an autonomous agent is influencing its surrounding environment through actions
(for example, a navigating robot). MDPs (Bellman, 1962) have been known in the literature for quite
some time, but due to some fundamental problems discussed below, few commercial applications
have been implemented.

An MDP is by definition a four-tuple:〈S,A,Rwd, tr〉, whereS is a set of states,A is a set of
actions,Rwd is a reward function that assigns a real value to each state/action pair, andtr is the
state-transition function, which provides the probability of a transition between every pair of states
given each action.

In an MDP, the decision-maker’s goal is to behave so that some function ofits reward stream is
maximized – typically the average reward or the sum of discounted reward. An optimal solution to
the MDP is such a maximizing behavior. Formally, a stationary policy for an MDPπ is a mapping
from states to actions, specifying which action to perform in each state. Given such an optimal
policy π, at each stage of the decision process, the agent need only establish what states it is in and
execute the actiona = π(s).

Various exact and approximate algorithms exist for computing an optimal policy. Below we
briefly review the algorithm known aspolicy-iteration(Howard, 1960), which we use in our imple-
mentation. A basic concept in all approaches is that of thevalue function. The value function of
a policyπ, denotedVπ, assigns to each states a value which corresponds to the expected infinite-
horizon discounted sum of rewards obtained when usingπ starting froms. This function satisfies
the following recursive equation:

Vπ(s) = Rwd(s,π(s))+ γ ∑
sj∈S

tr(s,π(s),sj)V
π(sj) (1)

where 0< γ < 1 is the discount factor.2 An optimalvalue function, denotedV∗, assigns to each state
s its value according to an optimal policyπ∗ and satisfies

V∗(s) = max
a∈A

[Rwd(s,a))+ γ ∑
sj∈S

tr(s,a,sj)V
∗(sj)]. (2)

To find aπ∗ andV∗ using the policy-iteration algorithm, we search the space of possible poli-
cies. We start with an initial policyπ0(s) = argmax

a∈A
Rwd(s,a). At each step we compute the value

2. We use discounting mostly for mathematical convenience. True discounting of reward would have to take into account
the actual time in which each book is purchased, which does not seem worth the extra effort involved.

1270



AN MDP-BASED RECOMMENDERSYSTEM

function based on the former policy and update the policy given the new value function:

Vi(s) = Rwd(s,πi(s))+ γ ∑
sj∈S

tr(s,πi(s),sj)Vi(sj), (3)

πi+1(s) = argmax
a∈A

[Rwd(s,a)+ γ ∑
sj∈S

tr(s,a,sj)Vi(sj)]. (4)

These iterations will converge to an optimal policy (Howard, 1960).
Solving MDPs is known to be a polynomial problem in the number of states (via a reduction to

linear programming (Puterman, 1994)). It is usually more natural to represent the problem in terms
of states variables, where each state is a possible assignment to these variables and the number of
states is hence exponential in the number of state variables. This well known“curse of dimension-
ality” makes algorithms based on an explicit representation of the state-spaceimpractical. Thus, a
major research effort in the area of MDPs during the last decade has been on computing an optimal
policy in a tractable manner using factored representations of the state space and other techniques
(for example Boutilier et al. (2000); Koller and Parr (2000)). Unfortunately, these recent methods
do not seem applicable in our domain in which the structure of the state space isquite different –
that is, each state can be viewed as an assignment to a very small number of variables (three in the
typical case) each with very large domains. Moreover, the values of the variables (describing items
bought recently) are correlated. However, we were able to exploit the special structure of our state
and action spaces using different techniques. In addition, we introduceapproximations that exploit
the fact that most states – that is, most item sequences – are highly unlikely to occur (a detailed
explanation will follow in Section 3).

MDPs extend the simpler Markov chain (MC) model – a well known model of dynamic systems.
A Markov chain is simply an MDP without actions. It contains a set of states and a stochastic
transition function between states. In both models the next state does not depend on any states other
than the current state.

In the context of recommender systems, if we equate actions with recommendations, then an
MDP can be used to model user behavior with recommendations – as we show below – whereas an
MC can be used to model user behavior without recommendations. Markov chains are also closely
related ton-gram models. In a bi-gram model, the choice of the next word depends probabilistically
on the previous word only. Thus, a bi-gram is simply a first-order Markovchain whose states
correspond to words. Ann-gram is an−1-order Markovian model in which the next state depends
on the previousn− 1 states. Such variants of MDP-models are well known. A non-first-order
Markovian model can be converted into a first-order model by making eachstate include information
related to the previousn−1 states. More general transformation techniques that attempt to reduce
the size of the state space have been investigated in the literature (for example, see Bacchus et al.
(1996); Thíebaux et al. (2002)).

3. The Predictive Model

Our first step is to construct a predictive model of user purchases, that is, a model that can predict
what item the user will buy next. This model does not take into account its influence on the user, as
it does not model the recommendation process and its effects. Nonetheless, we shall use a Markov
chain, with an appropriate formulation of the state space, as our model. In Section 4 we shall
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show that our predictive model outperforms previous models, and in Section 5 we shall intialize our
MDP-based recommender system using this predictive model.

3.1 The Basic Model

A Markov chain is a model of system dynamics – in our case, user “dynamics.” To use it, we need
to formulate an appropriate notion of a user state and to estimate the state-transition function.
States. The states in our MC model represent the relevant information that we haveabout the user.
This information corresponds to previous choices made by users in the form of a set of ordered
sequences of selections. We ignore data such as age or gender, although it could be beneficial.3

Thus, the set of states contains all possible sequences of user selections. Of course, this formulation
leads to an unmanageable state space with the usual associated problems—data sparsity and MDP
solution complexity. To reduce the size of the state space, we consider only sequences of at mostk
items, for some relatively small value ofk. We note that this approach is consistent with the intuition
that the near history (for example, the current user session) often is more relevant than selections
made less recently (for example, past user sessions). These sequences are represented as vectors of
sizek. In particular, we use〈x1, . . . ,xk〉 to denote the state in which the user’s lastk selected items
werex1, . . . , xk. Selection sequences withl < k items are transformed into a vector in whichx1

throughxk−l have the valuemissing. The initial state in the Markov chain is the state in which every
entry has the valuemissing.4 In our experiments, we used values ofk ranging from 1 to 5.
The Transition Function. The transition function for our Markov chain describes the proba-
bility that a user whosek recent selections werex1, . . . ,xk will select the itemx′ next, denoted
trMC(〈x1,x2, . . . ,xk〉,〈x2, . . . ,xk,x′〉). Initially, this transition function is unknown to us; and we
would like to estimate it based on user data. As mentioned, a maximum-likelihood estimatecan be
used:

trMC(〈x1,x2,x3〉,〈x2,x3,x4〉) =
count(〈x1,x2,x3,x4〉)

count(〈x1,x2,x3〉)
(5)

wherecount(〈x1,x2, ...,xk〉) is the number of times the sequencex1,x2, ...,xk was observed in the
data set. This model, however, still suffers from the problem of data sparsity (for example, see
Sarwar et al. (2000a)) and performs poorly in practice. In the next section, we describe several
techniques for improving the estimate.

3.2 Some Improvements

We experimented with several enhancements to the maximum-likelihoodn-gram model on data
different from that used in our formal evaluation. The improvements described and used here are
those that were found to work well.

One enhancement is a form ofskipping(Chen and Goodman, 1996), and is based on the ob-
servation that the occurrence of the sequencex1,x2,x3 lends some likelihood to the sequencex1,x3.
That is, if a person boughtx1,x2,x3, then it is likely that someone will buyx3 afterx1. The particular

3. Those user attributes could be incorporated into our model by adding state variables. Attributes with large domains,
such as age, can be joined into a (small) number of groups (for example, age groups) to avoid an explosion of the
state space. Our similarity and clustering methods (see below) can be adapted to share training data between states
with different, but related, attribute values (such as age group 25-30 and age group 30-40).

4. To accommodate systems that collect explicit rather than implicit ratings,each itemxi would be replaced by an
item-rating element – for example,xi =high.
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skipping model that we found to work well is a simple additive model. First, the count for each
state transition is initialized to the number of observed transitions in the data. Then, given a user se-
quencex1,x2, ...,xn, we add the fractional count 1/2( j−(i+3)) to the transition from〈xi ,xi+1,xi+2〉 to
〈xi+1,xi+2,x j〉, for all i +3 < j ≤ n. This fractional count corresponds to a diminishing probability
of skipping a large number of transactions in the sequence. We then normalize the counts to obtain
the transition probabilities:

trMC(s,s′) =
count(s,s′)

∑s′ count(s,s′)
(6)

wherecount(s,s′) is the (fractional) count associated with the transition froms to s′.
A second enhancement is a form of clustering that we have not found in the literature. Motivated

by properties of our domain, the approach exploits similarity of sequences.For example, the state
〈x,y,z〉 and the state〈w,y,z〉 are similar because some of the items appearing in the former appear
in the latter as well. The essence of our approach is that the likelihood of transition from s to s′

can be predicted by occurrences fromt to s′, wheres andt are similar. In particular, we define the
similarity of statessi andsj to be

sim(si ,sj) =
k

∑
m=1

δ(sm
i ,sm

j ) · (m+1) (7)

whereδ(·, ·) is the Kronecker delta function andsm
i is themth item in statesi . This similarity is

arbitrary up to a constant. In addition, we define thesimilarity countfrom states to s′ to be

simcount(s,s′) = ∑
si

sim(s,si) · tr
old
MC(si ,s

′) (8)

wheretrold
MC(si ,s′) is the original transition function, with or without skipping (we shall compare the

models created with and without the benefit of skipping). The new transition probability froms′ to
s is then given by5

trMC(s,s′) =
1
2

trold
MC(s,s′)+

1
2

simcount(s,s′)

∑s′′ simcount(s,s′′)
(9)

A third enhancement is the use of finite mixture modeling.6 Similar methods are used inn-
gram models, where—for example—a trigram, a bigram, and a unigram are combined into a single
model. Our mixture model is motivated by the fact that larger values ofk lead to states that are more
informative whereas smaller values ofk lead to states on which we have more statistics. To balance
these conflicting properties, we mixk models, where theith model looks at the lasti transactions.
Thus, fork = 3, we mix three models that predict the next transaction based on the last transaction,
the last two transactions, and the last three transactions. In general, we can learn mixture weights
from data. We can even allow the mixture weights to depend on the given case(and informal
experiments on our data suggest that such context-specificity would improve predictive accuracy).
Nonetheless, for simplicity, we useπ1 = · · · = πk = 1/k in our experiments. Because our primary
model is based on thek last items, the generation of the models for smaller values entails little
computational overhead.

5. We examined several weighing techniques and the one described yielded the best results. The use of more complex
techniques as well as attempts to learn the proper weights resulted in very minor changes.

6. Note that Equation 9 is also a simple mixture model.
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4. Evaluation of the Predictive Model

Before incorporating our predictive model into an MDP-based recommender system, we evaluated
the accuracy of the predictive model. Our evaluation used data corresponding to user behavior
on a web site (without recommendation) and employed the evaluation metrics commonly used in
the collaborative filtering literature. In Section 6 we evaluate the MDP-basedapproach using an
experimental approach in which recommendations on an e-commerce site are manipulated by our
algorithms.

4.1 Data Sets

We base our evaluations on real user transactions from the Israeli online bookstoreMitos(www.mitos.co.il).
Two data sets were used: one containing user transactions (purchases) and one containing user
browsing paths obtained from web logs. We filtered out items that were bought/visited less than
100 times and users who bought/browsed no more than one item as is commonly done when eval-
uating predictive models (for example, Zimdars et al. (2001)). We were left with 116 items and
10820 users in the transactions data set, and 65 items and 6678 users in the browsing data set.7 In
our browsing data, no cookies were used by the site. If the same user visited the site with a new IP
address, then we would treat her as a new user. Also, activity on the sameIP address was attributed
to a new user whenever there were no requests for two hours. These data sets were randomly split
into a training set (90% of the users) and a test set (10% of the users).

The rational for removing items that were rarely bought is that they cannotbe reliably predicted.
This is a conservative approach which implies, in practice, that a rarely visited item will not be
recommended by the system, at least initially.

We evaluated predictions as follows. For every user sequencet1, t2, .., tn in the test set, we
generated the following test cases:

〈t1〉,〈t1, t2〉, ...,〈tn−k, tn−k+1, ..., tn−1〉 (10)

closely following tests done by Zimdars et al. (2001). For each case, we then used our various mod-
els to determine the probability distribution forti giventi−k, ti−k+1, ..., ti−1 and ordered the items by
this distribution. Finally, we used theti actually observed in conjunction with the list of recom-
mended items to compute a score for the list.

4.2 Evaluation Metrics

We used two scores: Recommendation Score (RC) (Microsoft, 2002) andExponential Decay Score
(ED) (Breese et al., 1998) with slight modifications to fit into our sequential domain.

4.2.1 RECOMMENDATION SCORE

For this measure of accuracy, a recommendation is deemed successful if the observed itemti is
among the topm recommended items (m is varied in the experiments). The scoreRC is the percent-
age of cases in which the prediction is successful. A score of 100 means that the recommendation
was successful in all cases. This score is meaningful for commerce sitesthat require a short list of
recommendations and therefore care little about the ordering of the items in the list.

7. There are more items and users in the transaction data set since we used transactions over one year, whereas browsing
data was collected only during one week.
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4.2.2 EXPONENTIAL DECAY SCORE

This measure of accuracy is based on the position of the observedti on the recommendation list,
thus evaluating not only the content of the list but also the order of items in it. The underlying
assumption is that users are more likely to select a recommendation near the top of the list. In
particular, it is assumed that a user will actually see themth item in the list with probability

p(m) = 2−(m−1)/(α−1),(m≥ 1) (11)

whereα is the half-life parameter—the index of the item in the list with probability 0.5 of being
seen. The score is given by

100·
∑c∈C p(m= pos(ti |c))

|C|
(12)

whereC is the set of all cases,c = ti−k, ti−k+1, ..., ti−1 is a case, andpos(ti |c) is the position of the
observed itemti in the list of recommended items forc. We usedα = 5 in our experiments in order
to be consistent with the experiments of Breese et al. (1998) and Zimdars etal. (2001). The relative
performance of the models was not sensitive toα.

4.3 Comparison Models

4.3.1 COMMERCE SERVER 2000 PREDICTOR

A model to which we compared our results is thePredictor tool developed by Microsoft as a part
of Microsoft Commerce Server 2000, based on the models of Heckerman et al. (2000). This tool
builds dependency-network models in which the local distributions are probabilistic decision trees.
We used these models in both a non-sequential and sequential form. Thesetwo approaches are
described in Heckerman et al. (2000) and Zimdars et al. (2001), respectively. In the non-sequential
approach, for every item, a decision tree is built that predicts whether the item will be selected
based on whether the remaining items were or were not selected. In the sequential approach, for
every item, a decision tree is built that predicts whether the item will be selected next, based on the
previousk items that were selected. The predictions are normalized to account for the fact that only
one item can be predicted next. Zimdars et al. (2001) also use a “cache” variable, but preliminary
experiments showed it to decrease predictive accuracy. Consequently, we did not use the cache
variable in our formal evaluation.

These algorithms appear to be the most competitive among published work. Thecombined
results of Breese et al. (1998) and Heckerman et al. (2000) show that(non-sequential) dependency
networks are no less accurate than Bayesian-network or clustering models, and about as accurate
asCorrelation, the most accurate (but computationally expensive) memory-based method.Sarwar
et al. (2000b) apply dimensionality reduction techniques to the user rating matrix, but their approach
fails to be consistently more accurate than Correlation. Only the sequential algorithm of Zimdars
et al. (2001) is more accurate than the non-sequential dependency network to our knowledge.

We built five sequential models 1≤ k≤ 5 for each of the data sets. We refer to the non-sequential
Predictor models as Predictor-NS, and to the Predictor models built using the data expansion meth-
ods with a history of lengthk as Predictor-k.
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(a) Transactions data set.

(b) Browsing data set.

Figure 1: Exponential decay score for different models.

4.3.2 UNORDEREDMCS

We also evaluated a non-sequential version of our predictive model, where sequences such as〈x,y,z〉
and〈y,z,x〉 are mapped to the same state. If our assumption about the sequential nature of recom-
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mendations is incorrect, then we should expect this model to perform better than our MC model,
as it learns the probabilities using more training data for each state, gatheringall the ordered data
into one unordered set. Skipping, clustering, and mixture modeling were included as described in
section 2. We call this model UMC (Unordered Markov chain).

(a) Transactions data set.

4.4 Variations of the MC Model

In order to measure how eachn-gram enhancement influenced predictive accuracy, we also evalu-
ated models that excluded some of the enhancements. In reporting our results, we refer to a model
that uses skipping and similarity clustering with the terms SK and SM, respectively. In addition, we
use numbers to denote which mixture components are used. Thus, for example, we use MC 123 SK
to denote a Markov chain model learned with three mixture components—a bigram, trigram, and
quadgram—where each component employs skipping but not clustering.

4.5 Experimental Results

Figure 1(a) and figure 1(b) show the exponential decay score for thebest models of each type
(Markov chain, Unordered Markov chain, Non-Sequential Predictormodel, and Sequential Predic-
tor Model). It is important to note thatall the MC models using skipping, clustering, and mixture
modelling yielded better results thanevery one ofthe Predictor-k models and the non-sequential
Predictor model. We see that the sequence-sensitive models are better predictors than those that
ignore sequence information. Furthermore, the Markov chain predicts best for both data sets.

Figure 2(a) and Figure 2(b) show the recommendation score as a functionof list length (m).
Once again, sequential models are superior to non-sequential models, and the Markov chain models
are superior to the Predictor models.

1277



SHANI , BRAFMAN AND HECKERMAN

(b) Browsing data set.

Figure 2: Recommendation score for different models.

(a) Transactions data set. (b) Browsing data set.

Figure 3: Exponential decay score for different Markov chain versions.

Figure 3(a) and Figure 3(b) show how different versions of the Markov chain performed under
the exponential decay score in both data sets. We see that multi-component models out-perform
single-component models, and that similarity clustering is beneficial. In contrast, we find that skip-
ping is only beneficial for the transactions data set. Perhaps users tend tofollow the same paths
in a rather conservative manner, or site structure does not allow users to“jump ahead”. In either
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case, once recommendations are available in the site (thus changing the site structure), skipping
may prove beneficial.

5. An MDP-Based Recommender Model

The predictive model we described above does not attempt to capture the short and long-term effect
of recommendations on the user, nor does it try to optimize its behavior by takinginto account such
effects. We now move to an MDP model that explicitly models the recommendation process and
attempts to optimize it. The predictive model plays an important role in the construction of this
model.

We assume that we are given a set of cases describing user behavior within a site that does
not provide recommendations, as well as a probabilistic predictive model ofa user acting without
recommendations generated from this data. The set of cases is needed to support some of the
approximations we make, and in particular, the lazy initialization approach we take. The predictive
model provides the probability the user will purchase a particular itemx given that her sequence of
past purchases isx1, . . . ,xk. We denote this value byPrpred(x|x1, . . . ,xk), wherek = 3 in our case.
It is important to stress that the approach presented here is independentof the particular technique
by which the above predictive value is approximated. Naturally, in our implementation we used the
predictive model developed in Section 3, but there are other ways of constructing such a model (for
example, Zimdars et al. (2001); Kadie et al. (2002)).

5.1 Defining the MDP

Recall that to define an MDP, we need to provide a set of states, actions, transition function, and a
reward function. We now describe each of these elements. The states of the MDP for our recom-
mender system arek-tuples of items (for example, books, CDs), some prefix of which may contain
null values corresponding to missing items. This allows us to model shorter sequences of purchases.

The actions of the MDP correspond to a recommendation of an item. One can consider multiple
recommendations but, to keep our presentation simple, we start by discussingsingle recommenda-
tions.

Rewards in our MDP encode the utility of selling an item (or showing a web page) as defined by
the site. Because the state encodes the list of items purchased, the reward depends on the last item
defining the current state only. For example, the reward for state〈x1,x2,x3〉 is the reward generated
by the site from the sale of itemx3. In this paper, we use net profit for reward.

The state following each recommendation is determined by the user’s response to that recom-
mendation. When we recommend an itemx′, the user has three options:

• Accept this recommendation, thus transferring from state〈x1,x2,x3〉 into 〈x2,x3,x′〉

• Select some non-recommended itemx′′, thus transferring the state〈x1,x2,x3〉 into 〈x2,x3,x′′〉.

• Select nothing (for example, when the user terminates the session), in whichcase the system
remains in the same state.

Thus, the stochastic element in our model is the user’s actual choice. The transition function for the
MDP model:

tr1
MDP(〈x1,x2,x3〉,x

′,〈x2,x3,x
′′〉) (13)
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is the probability that the user will select itemx′′ given that itemx′ is recommended in state
〈x1,x2,x3〉. We writetr1

MDP to denote that only single item recommendations are used.

5.1.1 INITIALIZING trMDP

Proper initialization of the transition function is an important implementation issue in our system.
Unlike traditional model-based reinforcement learning algorithms that learn the proper values for
the transition function and hence an optimal policy online, our system needs tobe fairly accurate
when it is first deployed. A for-profit e-commerce8 site is unlikely to use a recommender system
that generates irrelevant recommendations for a long period, while waiting for it to converge to an
optimal policy. We therefore need to initialize the transition function carefully. We can do so based
on any good predictive model, making the following assumptions:

• A recommendation increases the probability that a user will buy an item. This probability
is proportional to the probability that the user will buy this item in the absence ofrecom-
mendations. This assumption is made by most collaborative filtering models dealingwith
e-commerce sites.9 We denote the proportionality constant for recommendationr in states
by αs,r , whereαs,r > 1.

• The probability that a user will buy an item that was not recommended is lower than the
probability that she will buy when the system issues no recommendations at all,but still
proportional to it. We denote the proportionality constant for recommendationr in states by
βs,r , whereβs,r < 1.

To allow for a simpler representation of the equations, for a states= 〈x1, ...,xk〉 and a recommen-
dationr let us uses· r to denote the states′ = 〈x2, ...,xk, r〉. We usetrpredict(s,s· r) to denote the
probability that the user will chooser next, given that its current state issaccording to the predictive
model in which recommendations are not considered, that is,Prpred(r|s). Thus, withαs,r andβs,r

constant oversandr and equal toα andβ, respectively, we have

tr1
MDP(s, r,s· r) = α · trpredict(s,s· r), (14)

the probability that a user will buyr next if it was recommended;

tr1
MDP(s, r ′,s· r) = β · trpredict(s,s· r), r ′ 6= r, (15)

the probability that a user will buyr if something else was recommended; and

tr1
MDP(s, r,s) = 1− tr1

MDP(s, r,s· r)− ∑
r ′ 6=r

tr1
MDP(s, r,s· r ′), (16)

the probability that a user will not buy any new item afterr was recommended. We do not see a
reason to stipulate a particular relationship betweenα andβ, although we must have

tr1
MDP(s, r,s· r)+ ∑

r ′ 6=r

tr1
MDP(s, r ′,s· r) < 1. (17)

8. We use the term e-commerce, although our system, and recommender systems in general, can be used in content sites
and other applications.

9. Actually CF models do not refer to the presence of recommendations,but using such systems to generate recommen-
dations to users in commercial applications has the underlying assumption that the recommendation will increase the
likelihood that a user will purchase an item.
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The exact values ofαs,r andβs,r should be chosen carefully. Choosingαs,r andβs,r to be con-
stants over all states and recommendations (sayα = 2, β = 0.5) might cause the sum of transition
probabilities in the MDP to exceed 1. The approach we took was motivated by Kitts et al. (2000),
who showed that theincreasein the probability of following a recommendation is large when one
recommends items having highlift , defined to bepr(x|h)

pr(x) . Thus, it is not unreasonable to assume that
this increase in probability is proportional to lift:

pr(r|s, r)− pr(r|s, r ′) ∼ γ
p(r|s)
p(r)

(18)

wherep(r) is the prior probability of buyingr. Fixing αs,r to be a little larger than 1 as follows:

αs,r =
γ+ p(r)

p(r)
(19)

whereγ is a very small constant (we useγ = 1
1000), and solving forβs,r , we obtain

βs,r =
1−∑r ′ αs,r ′ p(s· r ′|s)

(n−1) p(s· r|s)
+αs,r . (20)

If βs,r is negative, we set it to a very small positive value and normalize the probabilities afterwards.
There are a few things to note abouttr1

MDP(s, r ′,s· r), the probability that a user will buyr if
something else was recommended, and its representation. First, sincetr1

MDP(s, r ′,s· r) = βs,r ·tr(s,s·
r), the MDP’s initial transition probability does not depend onr ′ because our initialization is based
on data that was collected without the benefit of recommendations. Of course, if one has access to
data that reflects the effect of recommendations (prpredict(s· r|s, r)), one can use it to provide a more
accurate initial model. Next, note that we can represent this transition function concisely using at
most two values for every state-item pair: the probability that an item will be selected in a state
when it is recommended (that is,pr(s· r|s, r)) and the probability that an item will be selected when
it is not recommended (that is,pr(s· r|s, r ′)). Because the number of items is much smaller than the
number of states, we obtain significant reduction in the space requirements of the model.

5.1.2 GENERATING MULTIPLE RECOMMENDATIONS

When moving to multiple recommendations, we make the assumption that recommendations are
independent. Namely we assume that for every pair of sets of recommendeditems,R,R′, we have
that

(r ∈ R∧ r ∈ R′)∨ (r /∈ R∧ r /∈ R′) =⇒ trMDP(s,R,s· r) = trMDP(s,R′,s· r) (21)

This assumption might prove to be false. It seems reasonable that, as the list of recommendations
grows, the probability of selecting any item decreases. Another more subtleexample is the case
where the system “thinks” that the user is interested in an inexpensive cooking book. It can then
recommend a few very expensive cooking books and one is reasonablypriced (but in no way cheap)
cooking book. The reasonably priced book will seem like a bargain compared to the expensive ones,
thus making the user more likely to buy it.

Nevertheless, we make this assumption so as not to be forced to create a larger action space
where actions are ordered combinations of recommendations. Taking the simple approach for rep-
resenting the transition function we defined above, we still keep only two values for every state–item
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pair:
trMDP(s, r ∈ R,s· r) = tr1

MDP(s, r,s· r), (22)

the probability thatr will be bought if it appeared in the list of recommendations; and

trMDP(s, r /∈ R,s· r) = tr1
MDP(s, r ′,s· r) for all r ′ 6= r, (23)

the probability thatr will be bought if it did not appear in the list.
As before,trMDP(s, r /∈ R,s· r) does not depend onr, and will not depend onR in the discussion

that follows. We note again, that these values are merely reasonable initial values and are adjusted
by our system based on actual user behavior, as we shall discuss.

5.2 Solving the MDP

Having defined the MDP, we now consider how to solve it in order to obtain anoptimal policy. Such
a policy will, in effect, tell us what item to recommend given any sequence of user purchases. For
the domains we studied, we found policy iteration (Howard, 1960)—with a fewapproximations to
be described—to be a tractable solution method. In fact, on tests using real data, we found that
policy iteration terminates after a few iterations. This stems from the special nature of our state
space and the approximations we make, as we now explain.

Our state space enjoys a number of features that lead to fast convergence of the policy iteration
algorithm:

Directionality. Transitions in our state space seem to have inherent directionality: First, a state
representing a short sequence cannot follow a state representing a longer sequence. Second, the
success of the sequential prediction model indicates that typically, ifx is likely to follow y, y is
less likely to followx – otherwise, the sequencex,y andy,x would have similar probabilities, and
we could simply use sets. Thus, loops, which in principle could occur in our MDP model because
we maintain only a limited amount of history, are not very likely. Indeed, an examination of the
loops in our state space graph reveals them to be small and scarce. Moreover, in the web site
implementation, it is easy enough to filter out items that were already bought by the user from our
list of recommendations. It is well-known that directionality can be used to reduce the running time
of MDP solution algorithm (for example, Bonet and Geffner (2003)).

Insensitivity to k. We have also found that the computation of an optimal policy is not heav-
ily sensitive to variations ink—the number of past transactions we encapsulate in a state. Ask
increases, so does the number of states, but the number of positive entries in our transition matrix
remains similar. Note that, at most, a state can have as many successors as there are items. When
k is small, the number of observed successors for a state can be large. When k grows, however, the
number of successors decreases considerably. Table 2 demonstratesthis relation in our implemented
model.

Despite these properties of the state space, policy evaluation still requires much effort given the
large state and action space we have to deal with. To alleviate this problem we resort to a number
of approximations.

Ignoring Unobserved States.The vast majority of states in our models do not correspond to
sequences that were observed in our training set because most combinations of items are extremely
unlikely. For example, it is unlikely to find adjacent purchases of a science-fiction and a gardening
book. We leverage this fact to save both space and computation time. First, wemaintain transition
probabilities only for states for which a transition occurred in our training data. These transitions
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k Number of states Average number of successors

1 16,859 15.56
2 79,640 11.98
3 89,221 3.92

Table 2: The number of initialized states and the average number of state successors for different
values ofk.

correspond to pairs of states of the forms ands· r. Thus, the number of transitions required per
state is bounded by the number of items rather than by an amount exponential ink in the worst case.
The non-zero transitions are stored explicitly, and as can be inferred from Table 2, their number
is much smaller than the total number of entries in the explicit transition matrix. And while much
memory is still required, in Section 6.2, we show that these requirements are not too large for
modern computers to handle.

Moreover, we do not compute a policy choice for a state that was not encountered in our training
data. When the value of such a state is needed for the computation of an optimalpolicy of some
observed state, we simply use its immediate reward. That is, if the sequence〈x,y,z〉 did not appear
in the training data, we do not calculate a policy for it and assume its value to beR(z)—the reward
for the last item in the sequence. Note that given the skipping and clusteringmethods we use, the
probability of making a transition from some (observed) sequence〈w,x,y〉 to 〈w,x,y〉 is not zero
even though〈x,y,z〉 was never observed. This approximation, although risky in general MDPs, is
motivated by the fact that in our initial model, for each state there is a relativelysmall number of
items that are likely to be selected; and the probability of making a transition into an un-encountered
state is very low. Moreover, the reward (that is, profit) does not change significantly across different
states, so, there are no “hidden treasures” in the future that we could miss.

When a recommendation must be generated for a state that was not encountered in the past,
we compute the value of the policy for this state online. This requires us to estimatethe transition
probabilities for a state that did not appear in our training data. We handle such new states in the
same manner that we handled states for which we had sparse data in the initial predictive model
– that is, using the techniques of skipping, clustering, and finite mixture of unigram, bigram, and
trigrams described in Section 3.2.

Using the Independence of Recommendations.One of the basic steps in policy iteration is
policy determination. At each iteration, we compute the best action for each state s – that is, the
action satisfying:

argmax
R

[Rwd(s)+ γ∑s′∈Str(s,R,s′)Vi(s′)] =

argmax
R

[Rwd(s)+ γ(∑r∈RtrMDP(s, r ∈ R,s· r)Vi(s· r)+

∑r 6∈RtrMDP(s, r /∈ R,s· r)Vi(s· r))]

(24)

wheretr(s, r ∈ R,s· r) andtr(s, r /∈ R,s· r) follow the definitions above.
The above equation requires maximization over the set of possible recommendations for each

state. The number of possible recommendations isnκ, wheren is the number of items andκ is the
number of items we recommend each time. To handle this large action space, we make use of our
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independence assumption. Recall that we assumed that the probability that auser buys a particular
item depends on her current state, the item, and whether or not this item is recommended. It does
not depend on the identity of the other recommended items. The following method uses this fact to
quickly generate an optimal set of recommendations for each state.

Let us define∆(s, r) – the additional value of recommendingr in states:

∆(s, r) = (tr(s, r ∈ R,s· r)− tr(s, r /∈ R,s· r))V(s· r). (25)

Now define
Rs,κ

max∆ = {r1, . . . , rκ|∆(s, r1) ≥ . . . ≥ ∆(s, rκ) and
∀r 6= r i(i = 1, . . . ,κ),∆(s, rκ) ≥ ∆(s, r)}.

(26)

Rs,κ
max∆ is the set ofκ items that have the maximal∆(s, r) values.

Theorem 1 Rs,κ
max∆ is the set that maximizes Vi+1(s) – that is,

Vi+1(s) =
Rwd(s)+ γ(∑r∈Rs,κ

max∆
tr(s, r ∈ R,s· r)Vi(s· r)+

∑r /∈Rs,κ
max∆

tr(s, r /∈ R,s· r)Vi(s· r)).
(27)

Proof Let us assume that there exists some other set ofκ recommendationsR 6= Rs,κ
max∆ that maxi-

mizesVi+1(s). For simplicity, we shall assume that all∆ values are different. If that is not the case,
thenRshould be a set of recommendations not equivalent toRs,κ

max∆. Let r be an item inRbut not in
Rs,κ

max∆, andr ′ be an item inRs,κ
max∆ but not inR. Let R′ be the set we get when we replacer with r ′ in

R. We need only show thatVi+1(s,R) < Vi+1(s,R′):

Vi+1(s,R′)−Vi+1(s,R) =

Rwd(s)+∑s′ tr(s,R,s′)Vi(s′)− (Rwd(s)+∑s′ tr(s,R
′,s′)Vi(s′)) =

∑r ′′∈Rtr(s, r ′′ ∈ R,s· r ′′)Vi(s· r)+∑r ′′ /∈Rtr(s, r ′′ /∈ R,s· r ′′)Vi(s· r ′′)−

∑r ′′∈R′ tr(s, r ′′ ∈ R′,s· r ′′)Vi(s· r)−∑r ′′ /∈R′ tr(s, r ′′ /∈ R′,s· r ′′)Vi(s· r ′′) =

tr(s, r ∈ R,s· r)Vi(s· r)− tr(s, r ′ /∈ R,s· r ′)Vi(s· r ′)−

(tr(s, r ′ ∈ R′,s· r)Vi(s· r)− tr(s, r /∈ R′,s· r ′)Vi(s· r)) =

∆(s, r)−∆(s, r ′) > 0

(28)

To computeVi+1(s) we therefore need to compute all∆(s, r) and findRs,κ
max∆, making the compu-

tation ofVi+1(s) independent of the number of subsets (or even worse—ordered subsets) ofκ items.
The complexity of finding an optimal policy when recommending multiple items at each stage un-
der our assumptions remains the same as the complexity of computing an optimal policy for single
item recommendations.
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By construction, our MDP optimizes site profits. In particular, the system does not recommend
items that are likely to be bought whether recommended or not, but rather recommends items whose
likelihood of being purchased isincreasedwhen they are recommended. Nonetheless, when rec-
ommendations are based solely on lift, it is possible that many recommendations will be made for
which the absolute probability of a purchase (or click) is small. In this case, ifrecommendations
are seldom followed, users might start ignoring them altogether, making the overall benefit zero.
Our model does not capture such effects. One way to remedy this possible problem is to alter the
reward function so as to provide a certain immediate reward for the acceptance of a recommenda-
tion. Another way to handle this problem is to recommend a book with a large MDP score only if
the probability of buying it passes some threshold. We did not find it necessary to introduce these
modifications in our current system.

5.3 Updating the Model Online

Once the recommender system is deployed with its initial model, we need to update the model
according to actual observations. One approach is to use some form of reinforcement learning—
methods that improve the model after each recommendation is made. Although such models need
little administration to improve, the implementation requires many calls and computations bythe
recommender system online, which will lead to slower responses—an undesirable result. A simpler
approach is to perform off-line updates at fixed time intervals. The site need only keep track of the
recommendations and the user selections and, say, once a week use thosestatistics to build a new
model and replace it with the old one. This is the approach we used.

In order to re-estimate the transition function the following counts are obtainedfrom the recently
collected statistics:

• cin(s, r,s· r)—the number of times ther recommendation was accepted in states.

• cout(s, r,s· r)—the number of times the user took itemr in states even though it was not
recommended,

• ctotal(s,s· r)—the number of times a user took itemr while being in states, regardless of
whether it was recommended or not.

We compute the new counts and the new approximation for the transition functionat timet +1
based on the counts and probabilities at timet as follows:

ct+1
in (s, r,s· r) = ct

in(s, r,s· r)+count(s, r,s· r), (29)

ct+1
total(s,s· r) = ct

total(s, r,s· r)+count(s,s· r), (30)

ct+1
out (s, r,s· r) = ct

out(s, r,s· r)+count(s,s· r)−count(s, r,s· r), (31)

tr(s, r ∈ R,s· r) =
ct+1

in (s, r,s· r)

ct+1
total(s,s· r)

, (32)

tr(s, r /∈ R,s· r) =
ct+1

out (s, r,s· r)

ct+1
total(s,s· r)

. (33)

Note that at this stage the constantsαs,r andβs,r no longer play a role—they were used only to
generate the initial model. We still need to define how the counts at timet = 0 are initialized. We
showed in section 5.1.1 how the transition functiontr is initialized, and now we define:
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c0
in(s, r,s· r) = ξs · tr(s, r,s· r), (34)

c0
out(s, r,s· r) = ξs · tr(s, r,s· r), (35)

c0
total(s,s· r) = ξs, (36)

whereξs is proportional to the number of times the states was observed in the training data (in
our implementation we used 10· count(s)). This initialization causes states that were observed
infrequently to be updated faster than states that were observed frequently and in whose estimated
transition probabilities we have more confidence.10

To ensure convergence to an optimal solution, the system must obtain accurate estimates of the
transition probabilities. This, in turn, requires that for each states and for every recommendation
r, we observe the response of users to a recommendation ofr in states sufficiently many times.
If at each state the system always returns the best recommendations only,then most values for
count(s, r,s· r) would be 0, because most items will not appear among the best recommendations.
Thus, the system needs to recommend non-optimal items occasionally in order toget counts for
those items. This problem is widely known in computational learning as theexploration versus
exploitation tradeoff(for some discussion of learning rate decay and exploration vs. exploitationin
reinforcement learning, see, for example Kaelbling et al. (1996) and Sutton and Barto (1998)). The
system balances the need to explore unobserved options in order to improve its model and the desire
to exploit the data it has gathered so far in order to get rewards.

One possible solution is to select some constantε, such that recommendations whose expected
value isε-close to optimal will be allowed—for example, by following a Boltzmann distribution:

Pr(choose(r i)) =
expV(s·r i)

τ

∑n
j=1expV(s·r j )

τ

(37)

with an ε cutoff—meaning that only items whose value is withinε of the optimal value will be
allowed. The exact value ofε can be determined by the site operators. The price of such a conser-
vative exploration policy is that we are not guaranteed convergence to an optimal policy. Another
possible solution is to show the best recommendation on the top of the list, but show items less
likely to be purchased as the second and third items on the list. In our implementation we use a list
of three recommendations where the first one is always the optimal one, butthe second and third
items are selected using the Boltzman distribution without a cutoff.

We also had to equip our system to change with frequent changes (for example, addition and
removal of items). When new items are added, users will start buying them and positive counts for
them will appear. At this stage, our system adds new states for these new items, and the transition
function is expanded to express the transitions for these new states. Of course, prior to updating
the model, the system is not able to recommend those new items (the well-known “cold start” prob-
lem (Good et al., 1999) in recommender systems). In our implementation, when the first transition to
a states· r is observed, its probability is initialized to 0.9 the probability of the most likely next item
in stateswith ξs = 10. This approach causes the new items to be recommended quite frequently.

One possible approach to handling removed items is to do nothing to our system, inwhich
case the transition probabilities slowly decay to zero. Using this approach, however, we may still

10. This approach is similar to assigning an independent learning rate foreach state and decaying it based on the amount
of observed data.
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insert deleted items into the list of recommended items – an undesirable feature. Consequently,
in our Mitos implementation, items are programmatically removed from the model duringoffline
updates. Another solution that we have implemented but not evaluated is to useweighted data and
to exponentially decay the weights in time, thus placing more weight on more recently observed
transitions.

6. Evaluation of the MDP Recommender Model

The main thesis of this work is that (1) recommendation should be viewed as a sequential optimiza-
tion problem, and (2) MDPs provide an adequate model for this view. This is to be contrasted with
previous systems which used predictive models for generating recommendations. In this section,
we present an empirical validation of our thesis. We compare the performance of our MDP-based
recommender system (denoted MDP) with the performance of a recommendersystem based on our
predictive model (denoted MC) as well as other variants.

Our studies were performed on the online book store Mitos (www.mitos.co.il) from August,
2002 till April, 2004. During our evaluations, approximately 5000− 6000 different users visited
theMitos site daily. Of those, around 900 users inserted items into their basket, thus entering our
data-set.11 On average, each customer inserted 1.97 items into the shopping basket. Over 15,000
items were available for purchase on the site.

Users received recommendations when adding items to the shopping cart.12 The recommen-
dations were based on the lastk items added to the cart ordered by the time they were added. An
example is shown in Figure 4 where the three book covers at the bottom are the recommended items.
Every time a user was presented with a list of recommendations on either page,the system stored
the recommendations that were presented and recorded whether the userpurchased a recommended
item. Cart deletions were rare and ignored. Once every two or three weeks, a process was run to
update the model given the data that was collected over the latest time period.13

We compared the MDP and MC models both in terms of their value or utility to the site as well
as their computational costs.

6.1 Utility Performance

Our first set of results is based on the assumption that the transition functionwe learn for our
MDP using data collectedwith recommendations, provides the the best available model of user
behavior under recommendation. Under this assumption, we can measure the effect of different
recommendation policies. An important caveat is that the states in our MDP correspond to truncated
(that is, lastk) user sequences. Thus, the model does not exclude repeated purchases of the same
item. Despite this shortcoming, we proceeded with the evaluation.

As discussed above, a predictive model can answer queries in the formPr(x|h)—the probability
that itemx will be purchased given user historyh. Recommender systems may employ differ-
ent strategies when generating recommendations using such a predictive model. Assuming that an
MDP formalizes the recommendation problem well, we may use the learned MDP model to evaluate
these strategies. The evaluation of the quality of different possible policiesfor the MDP, each corre-

11. We do not supply accurate numbers for number of users and actual profits due to the request of the site owners.
12. Users also received recommendations when looking at the description of a book, but these recommendations where

based only on the user’s visit to the current page and not on her cart.
13. The update process was executed by the site administrator manually and therefore the update interval varies.
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Figure 4: Recommendations in the shopping cart web page.

sponding to a popular approach to recommending, may shed light on the preferred recommendation
strategy.

The MDP model was built using data gathered while the model was running in thesite with
incremental updates (as described above) for almost a year. We compared four policies, where the
first policy uses information about the effect of recommendations, and theremaining policies are
based on the predictive model solely:

• Optimal – recommends items based on optimal policy for the MDP.

• Greedy – recommends items that maximizePr(x|h) ·R(x) (wherePr(x|h) is the probability
of buying itemx given user historyh, andR(x) is the value ofx to the site – for example, net
profit).

• Most likely – recommends items that maximizePr(x|h).

• Lift – recommends items that maximizePr(x|h)
Pr(x) , wherePr(x) is the prior probability of buying

itemx.

To evaluate the different policies we ran a simulation of the interaction of a user with the system.
During the simulation the system generated a list of recommended itemsR, from which the simu-
lated user selected the next item, using the distributiontr(s,R,s· x)—the probability that the next
selected item isx given the current states and the recommendation listR, simulating the purchase
of x by the user. The length of user session was taken from the learned distribution of user session
length in the actual site. We ran the simulation for 10,000 iterations for each policy, and calculated
the average accumulated reward for user session.
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Policy Value

Optimal 118.5
Greedy 116.1
Most Likely 117.0
Lift 112.8

Table 3: Performance of different policies.

The results are presented in Table 3. The calculated value for each policyis the sum of dis-
counted profit in (New Israeli Shekels) averaged over all states. We used a weighted average, where
the weight of each state was the probability of observing it. Obviously, an optimal policy results in
the highest value. However, the differences are small, and it appears that one can use the predictive
model alone with very good results.

Next, we performed an experiment to compare the performance of the MDP-based system with
that of the MC-based system. In this experiment, each user entering the site was assigned a randomly
generated cart-id. Based on the last bit of this cart-id, the user was provided with recommendations
by the MDP or MC. Reported mean profits were calculated for each user session (a single visit to
the site). Data gathered in both cases was used to update both models.14

The deployed system was built using three mixture components, with history length ranging
from one to three for both the MDP model and the MC model. Recommendations from the different
mixture components were combined using an equal (0.33) weight. We used the policy-iteration
procedure and approximations described in Section 5 to compute an optimal policy for the MDP.
Our model encoded approximately 25,000 states in the two top mixture components (k = 2, k = 3).
The reported results were gathered after the model was running in the site with incremental updates
(as described above) for almost a year.

During the testing period, 50.7% of the users who made at least one purchase were shown
MDP-based recommendations and the other 49.3% of these users were shown MC-based recom-
mendations. For each user, we computed the average site profit per session for that user, leaving
out of consideration the first purchase made in each session. The firstitem was excluded as it
was bought without the benefit of recommendations, and is therefore irrelevant to the comparison
between the recommender systems.15

The average site profit generated by the users was 28% higher for the MDP group.16 We used
a permutation test (see, for example, Yeh (2000)) to see how likely it would be for a difference
this large to emerge if there were in fact no systematic difference in the effectiveness of the two
recommendation methods.17 We randomly generated 10000 permutations of the assignments of

14. We update the MC model by recording the transition without consideringthe recommendation used.
15. This is not entirely accurate as the site also provides recommendationsfor items in the book description page. We

do not present here any experimental results for those recommendations and do not model their effect on the user,
but we note that a user that received MDP recommendations in the cart page, got MDP recommendations in the book
description page; users who got MC recommendations in the basket gotMC recommendations in the description
page as well.

16. We are not at liberty to provide accurate numbers.
17. We used a permutation test to establish the validity of our results, as this test is non-parametric, and does not require

any prior assumptions about the distribution of the data, and is quite robustto noise in the data. We used the one-tailed
version of the test as the directional hypothesis that the MDP recommender is better than the MC recommender has
been theoretically motivated above.
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session profits to users, for each permutation computing the ratio of averagesession profits between
the MDP and the MC groups. With only 8% of these random assignments was theratio as large as
(or larger than) 1.282. Therefore, the better performance of the MDP recommender is statistically
significant withp = 0.08 by a one-tailed permutation test.

There are two possible sources for the observed improvement—the MDP maybe generating
more sales or sales of more expensive items. In our experiment, the average number of items
bought per user session was 6.8% in favor of the MDP-based recommender (p= 0.15), whereas the
average price of items was 4% higher in favor of the MDP-based recommender (p = 0.04). Thus,
both effects may have played a role.

In our second and last experiment, we compared site performance with andwithout a recom-
mender system. Ideally, we would have liked to assign users randomly to an experience with and
without recommendations. This option was ruled-out by the site owner because it would have led to
a non-uniform user experience. Fortunately, the site owner was willing to remove the recommender
system from the site for one week. Thus, we were able to compare averageprofits per user session
during two consecutive weeks – one with recommendations and one without recommendations.18

We found that, when the recommender system was not in use, average site profit dropped 17%
(p = 0.0). Although, we cannot rule out the possibility that this difference is due toother factors
(for example, seasonal effects or special events), these result arequite encouraging.

Overall, our experiments support the claims concerning the added value ofusing recommenda-
tions in commercial web sites and the validity of the MDP-based model for recommender systems.

6.2 Computational Analysis

In this section, we compare computational costs of the MDP-based and the Predictor recommender
system.

Our comparison uses the transaction data set and corresponding models described in Section 4.
In addition to using the full data set, we measured costs associated with smaller versions of the data
in which transactions among only the the topN items were considered, in order to demonstrate the
effect of the size of the data-set on performance.

N = 15231 N = 2661 N = 1142 N = 354 N = 86

MDP 112 63 58 41 16
Predictor-NS 3504 631 177 80 25

Table 4: Required time (seconds) for model building.

First, let us consider the time it takes to make a recommendation. Recommendation time is
typically the most critical of computational costs. If recommendation latency is noticeable, no
reasonable site administrator will use the recommender system. Table 5 shows the number of rec-
ommendations generated per second by the recommender system. The resultsshow that the MDP
model is faster. This result is due to the fact that, with the MDP model, we do almost no com-
putations online. While predicting, the model simply finds the proper state and returns the state’s
pre-calculated list of recommendations.

18. We display recommendations between 3/27/2003 and 4/3/2003, and without recommendations from 3/19/2003 to
3/26/2003.

1290



AN MDP-BASED RECOMMENDERSYSTEM

N = 15231 N = 2661 N = 1142 N = 354 N = 86

MDP 250 277 322 384 1030
Predictor-NS 23 74 175 322 1000

Table 5: Recommendations per second.

The price paid for faster recommendation is a larger memory footprint. Table 6shows the
amount of memory needed to build and store a model in megabytes. The MDP model requires more
memory to store than the Predictor model, due to the structured representation of the Predictor
model using a collection of decision trees.

Finally, we consider the time needed to build a new model. This computational costis perhaps
the least important parameter when selecting a recommender system, as model building is an off-
line task executed at long time intervals (say once a week at most) on a machine that does not affect
the performance of the site. That being said, as we see in Table 4, the MDP model has the smallest
build times.

N = 15231 N = 2661 N = 1142 N = 354 N = 86

MDP 138 74 55.7 33.3 11.4
Predictor-NS 50.1 26 25 22.3 18

Table 6: Required memory (megabytes) for building a model and generating recommendations.

Overall the MDP-based model is quite competitive with the Predictor model. It provides the
fastest recommendations at the price of more memory use, and builds models more quickly.

7. Discussion

This paper describes a new model for recommender systems based on an MDP. Our work presents
one of a few examples of commercial systems that use MDPs, and one of the first reports of the
performance of commercially deployed recommender system. Our experimental results validate
both the utility of recommender systems and the utility of the MDP-based approachto recommender
systems.

To provide the kind of performance required by an online commercial site, we used various
approximations and, in particular, made heavy use of the special properties of our state space and
its sequential origin. Whereas the applicability of these techniques beyond recommender systems is
not clear, it represents an interesting case study of a successful real system. Moreover, the sequential
nature of our system stems from the fact that we need to maintain history of past purchases in order
to obtain a Markovian state space. The need to record facts about the past in the current state
arises in various domains, and has been discussed in a number of paperson handling non-first-order
Markov reward functions (see, for example, Bacchus et al. (1996) or Thiébaux et al. (2002)).

Another interesting technique is our use of off-line data to initialize a model thatcan provide
adequate initial performance.

In the future, we hope to improve our transition function on those states that are seldom encoun-
tered using generalization techniques, such as skipping and clustering, that are similar to the ones
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we employed in the predictive Markov chain model. Other potential improvementsare the use of a
partially observable MDP to model the user. As a model, this is more appropriatethan an MDP, as
it allows us to explicitly model our uncertainty about the true state of the user (Boutilier, 2002).

In fact, our current model can be viewed as approximating a particular POMDP by using a finite
– rather than an unbounded – window of past history to define the current state. Of course, the com-
putational and representational overhead of POMDPs are significant, and appropriate techniques for
overcoming these problems must be developed.

Weaknesses of our predictive (Markov chain) model include the use ofad hocweighting func-
tions for skipping and similarity functions and the use of fixed mixture weights. Although the
recommendations that result from our current model are (empirically) useful for ranking items, we
have noticed that the model probability distributions are not calibrated. Learning the weighting
functions and mixture weights from data should improve calibration. In addition, in informal ex-
periments, we have seen evidence that learning case-dependent mixtureweights should improve
predictive accuracy.

Our predictive model should also make use of relations between items that canbe explicitly
specified. For example, most sites that sell items have a large catalogue with hierarchical struc-
ture such as categories or subjects, a carefully constructed web structure, and item properties such
as author name. Finally, our models should incorporate information about users such as age and
gender.
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Abstract

This paper is concerned with the construction and analysis of a universal estimator for the regression
problem in supervised learning. Universal means that the estimator does not depend on any a priori
assumptions about the regression function to be estimated.The universal estimator studied in this
paper consists of a least-square fitting procedure using piecewise constant functions on a partition
which depends adaptively on the data. The partition is generated by a splitting procedure which
differs from those used in CART algorithms. It is proven thatthis estimator performs at the optimal
convergence rate for a wide class of priors on the regressionfunction. Namely, as will be made
precise in the text, if the regression function is in any one of a certain class of approximation spaces
(or smoothness spaces of order not exceeding one – a limitation resulting because the estimator uses
piecewise constants) measured relative to the marginal measure, then the estimator converges to the
regression function (in the least squares sense) with an optimal rate of convergence in terms of the
number of samples. The estimator is also numerically feasible and can be implemented on-line.

Keywords: distribution-free learning theory, nonparametric regression, universal algorithms,
adaptive approximation, on-line algorithms

c©2005 Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore and Vladimir Temlyakov.



BINEV, COHEN, DAHMEN , DEVORE AND TEMLYAKOV

1. Introduction

This paper addresses the problem of using empirical samples to derive probabilistic or expectation
error estimates for the regression function of some unknown probability measureρ on a product
spaceZ := X×Y. It will be assumed here thatX is a bounded domain of IRd andY = IR. Given the
dataz = {z1, . . . ,zm}⊂Z of m independent random observationszi = (xi ,yi), i = 1, . . . ,m, identically
distributed according toρ, we are interested in estimating theregression function fρ(x) defined as
the conditional expectation of the random variabley atx:

fρ(x) :=
Z

Y

ydρ(y|x)

with ρ(y|x) the conditional probability measure onY with respect tox. In this paper, it is assumed
that this probability measure is supported on an interval[−M,M] :

|y| ≤ M,

almost surely. It follows in particular that| fρ| ≤ M almost everywhere with respect toρX.
We denote byρX the marginal probability measure onX defined by

ρX(S) := ρ(S×Y).

We shall assume thatρX is a Borel measure onX. We have

dρ(x,y) = dρ(y|x)dρX(x).

It is easy to check thatfρ is the minimizer of the risk functional

E( f ) :=
Z

Z

(y− f (x))2dρ, (1)

over f ∈ L2(X,ρX) where this space consists of all functions fromX toY which are square integrable
with respect toρX. In fact one has

E( f ) = E( fρ)+‖ f − fρ‖2,

where
‖ · ‖ := ‖ · ‖L2(X,ρX). (2)

Our objective is therefore to find anestimator fz for fρ based onz such that the quantity‖ fz − fρ‖
is small.

A common approach to this problem is to choose an hypothesis (ormodel) classH and then to
define fz, in analogy to (1), as the minimizer of the empirical risk

fz = fz,H := argmin
f∈H

Ez( f ), with Ez( f ) :=
1
m

m

∑
i=1

(yi − f (xi))
2. (3)

Typically, H = Hm depends on a finite numberN = N(m) of parameters. In many cases, the number
N is chosen using an a priori assumption onfρ. In other procedures, the numberN is adapted to the
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data and thereby avoids any a priori assumptions. We shall be interested inestimators of the latter
type.

The usual way of evaluating the performance of the estimatorfz is by studying its convergence
either in probability or in expectation, i.e. the rate of decay of the quantities

Prob{‖ fρ − fz‖ ≥ η}, η > 0 or E(‖ fρ − fz‖2) (4)

as the sample sizem increases. Here both the expectation and the probability are taken with respect
to the product measureρm defined onZm. An estimation of the above probability will automatically
give an estimate in expectation by integrating with respect toη. Estimates for the decay of the
quantities in (4) are usually obtained under certain assumptions (calledpriors) on fρ.

It is important to note that the measureρX which appears in the norm (2) is unknown and that
we want to avoid any assumption on this measure. This type of regression problem is referred to as
distribution-free. A recent survey on distribution free regression theory is provided in the book by
Györfy et al. (2002), which includes most existing approaches as well as the analysis of their rate
of convergence in the expectation sense.

Priors on fρ are typically expressed by a condition of the typefρ ∈ Θ whereΘ is a class of
functions that necessarily must be contained inL2(X,ρX). If we wish the error, as measured in
(4), to tend to zero as the numberm of samples tends to infinity then we necessarily need thatΘ
is a compact subset ofL2(X,ρX). There are three common ways to measure the compactness of
a setΘ: (i) minimal coverings, (ii) smoothness conditions on the elements ofΘ, (iii) the rate of
approximation of the elements ofΘ by a specific approximation process. In the learning problem,
each of these approaches has to deal with the fact thatρX is unknown.

To describe approach (i), for a given Banach spaceB which containsΘ, we define the entropy
numberεn(Θ,B), n = 1,2. . . as the minimalε such thatΘ can be covered by at most 2n balls of
radiusε in B. The setΘ is compact inL2(X,ρX) if and only if εn(Θ,L2(X,ρX)) tends to zero as
n→ ∞. One can therefore quantify the level of compactness ofΘ by an assumption on the rate of
decay ofεn(Θ,L2(X,ρX)). A typical prior condition would be to assume that the entropy numbers
satisfy

εn(Θ,B) ≤Cn−r , n = 1,2, · · · (5)

for somer > 0.
Coverings and entropy numbers have a long history in statistics for deriving optimal bounds for

the rate of decay in statistical estimation (see e.g. Birgé and Massart, 2001). Several recent works
(Cucker and Smale, 2001; DeVore et al., 2004b; Konyagin and Temlyakov, 2004b) have used this
technique to bound the error for the regression problem in learning. It has been communicated to us
by Lucien Birǵe that one can derive from one of his forthcoming papers (Birgé, 2004) that for any
classΘ satisfying (5) withB = L2(X,ρX), there is an estimatorfz satisfying

E(‖ fρ − fz‖2) ≤Cm− 2r
2r+1 , m= 1,2, . . . (6)

wheneverfρ ∈ Θ. Lower bounds which match (6) have been given by DeVore et al. (2004b) using
a slightly different type of entropy.

The estimators constructed using this approach are made throughε nets and are more of theo-
retical interest (in giving the best possible bounds) but are not practical sinceρX is unknown and
therefore theseε nets are also unknown. Another deficiency in this approach is that the estimator
typically requires the knowledge of the prior classΘ. One would like to avoid knowledge ofΘ in
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the construction of an estimator since we do not knowfρ and hence would generally not have any
information aboutΘ. One can also useε nets to give bounds for Prob(‖ fρ − fz‖). This is one of the
main points in the paper by Cucker and Smale (2001) and is carried further inseveral other papers
(see DeVore et al., 2004b; Konyagin and Temlyakov, 2004a,b).

One way to circumvent the problem of not knowing the marginalρX is to use coverings in the
spaceC(X) of continuous functions equipped with the uniform norm‖·‖L∞ rather than inL2(X,ρX),
since a good covering forΘ in C(X) gives bounds for the covering inL2(X,ρX) independently of
ρX. In this approach one would assume thatΘ satisfies (5) forB = C(X) and then build estimators
which satisfy (6) usingε nets forC(X). Again this does not lead to practical estimators. But the
main deficiency of this approach is that the assumption thatΘ is a compact subset ofC(X) is too
severe and does not give a full spectrum of compact subsets ofL2(X,ρX).

Concerning (ii), it is well known that whenρX is the Lebesgue measure, the unit ball of the
Sobolev spaceWr(Lp) is a compact set ofL2 under the condition thatsd > 1

p − 1
2. We recall that

whenr is an integer,Wr(Lp) consists of allLp functions which distributional derivatives of order
|α| ≤ r are also inLp. It is a Banach space when equipped with the norm

‖ f‖Wr (Lp) := sup
|α|≤r

‖Dα f‖Lp.

Similar remarks hold for Sobolev spaces with non-integerr, as well as for the Besov spacesBr
q(Lp)

which offer a more refined description of the notion ofr-differentiability inLp. We refer to DeVore
(1998) for the precise definition of such spaces.

However, there is no general approach to defining smoothness spaceswith respect to general
Borel measuresρX which precludes the direct use of classification according to (ii). One wayto
circumvent this is to define smoothness inC(X), that is systematically use the spacesWr(L∞), but
then this suffers from the same deficiency of not giving a full array of compact subsets inL2(X,ρX).

The classification of compactness according to approximation properties (iii)begins with a spe-
cific method of approximation and then defines the classesΘ in terms of a rate of approximation by
the specified method. The simplest example is to take a sequence(Sn) of linear spaces of dimension
n and defineΘ as the class of all functionsf in L2(X,ρX) which satisfy

inf
g∈Sn

‖ f −g‖ ≤Cαn

whereC is a fixed constant and(αn) is a sequence of positive real numbers tending to zero. Natural
choices for this sequence areαn = n−r , wherer > 0. Classes defined in such a way will not give
a full spectrum of compact subsets inL2(X,ρX). But this deficiency can be removed by using
nonlinear spacesΣn in place of the linear spacesSn (see the discussion in DeVore et al., 2004b).
An illustrative example is approximation by piecewise polynomials on partitions. Ifthe partitions
are set in advance this corresponds to the linear space approximation above. In nonlinear methods
the partitions are allowed to vary but their size is specified. We discuss this in more detail later
in this paper. An in depth discussion of the approximation theory approach tobuilding estimators
for the regression problem in learning is given by DeVore et al. (2004b) and the follow up papers
(Konyagin and Temlyakov, 2004a,b).

We should mention that in classical settings, for example whenρX is Lebesgue measure then
the three approaches to measuring compactness are closely related and in acertain sense equivalent.
This is the main chapter of approximation theory.
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Concrete algorithms have been constructed for the regression problem inlearning by using
approximation from specific linear spaces such as piecewise polynomial onuniform partitions, con-
volution kernels, and spline functions. The rate of convergence of the estimators built from such a
linear approximation process is related to the approximation rate of the corresponding process on
the classΘ.

A very useful method for bounding the performance of such estimators is provided by the fol-
lowing result (see Gÿorfy et al., 2002, Theorem 11.3): ifH is taken as a linear space of dimension
N and if the least-square estimator (3) is post-processed by application of thetruncation operator
y 7→ TM(y) = sign(y)min{|y|,M}, then

E(‖ fρ − fz‖2) ≤C
N log(m)

m
+ inf

g∈H
‖ fρ −g‖2.

Using this, one can derive specific rates of convergence in expectationby balancing both terms.
For example, ifΘ is a ball of the Sobolev spaceWr(L∞) andH is taken as a space of piecewise
polynomial functions of degree no larger thanr −1 on uniform partitions ofX, one derives

E(‖ fρ − fz‖2) ≤C(
m

logm
)−

2r
d+2r . (7)

This estimate is optimal for this classΘ, up to the logarithmic factor.
The deficiency in this approach is twofold. First, it usually chooses the hypothesis classes in

advance and typically assumes knowledge of the prior for this choice. Secondly, it uses linear
methods of approximation and therefore misses our goal of giving an estimator which performs
optimally for the full range of smoothness spaces inL2(X,ρX).

The first deficiency motivates the notion ofadaptiveor universalestimators: the estimation
algorithm should be able to exhibit the optimal rate without the knowledge of the exact amount of
smoothnessr in the regression functionfρ. A classical way to reach this goal is to perform model
selection by adding a complexity regularization term in the empirical risk minimization process
(see Barron, 1991; Baraud, 2002; Birgé and Massart, 2001; DeVore et al., 2004b; Györfy et al.,
2002, Chapter 12). In particular, one can construct one estimator whichsimultaneously obtains the
optimal rate (7) for all finite balls in each of the classWr(L∞), 0 < r ≤ k wherek is arbitrary but
fixed, by the selection of an appropriate uniform partition.

Fixing the second deficiency means that in the case where the marginalρX is Lebesgue mea-
sure, the estimator would necessarily have to be optimal for all Sobolev and Besov classes which
compactly embed intoL2(X,ρX). These spaces correspond to smoothness spaces of orders in Lp

whenevers> d
p − d

2 (see DeVore, 1998). This can be achieved by introducing spatially adaptive
partitions. The selection of an appropriate adaptive partition in the complexity regularization frame-
work can be implemented by the CART algorithm (Breiman et al., 1984), which limits the search
within a set of admissible partitions based on a tree structured splitting rule.

A practical limitation of the above described complexity regularization approach is that it is not
generally compatible with the practical requirement ofon-line computations, by which we mean
that the estimator for the sample sizem can be derived by a simple update of the estimator for the
sample sizem−1, since the minimization problem needs to be globally re-solved when adding a
new sample.

In two slightly different contexts, namely density estimation and denoising on a fixed design,
estimation procedures based onwavelet thresholdinghave been proposed as a natural alternative to
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model selection by complexity regularization (Donoho and Johnstone, 1998, 1995; Donoho et al.,
1996a,b). These procedures are particularly attractive since they combine optimal convergence rates
for the largest possible array of unknown priors together with simple and fast algorithms which are
on-line implementable. In the learning theory context, the wavelet thresholdinghas also been used
by DeVore et al. (2004a) for estimation of a modification of the regression function fρ, namely,
for estimating(dρX/dx) fρ, whereρX is assumed to be absolutely continuous with regard to the
Lebesgue measure. The main difficulty in generalizing such procedures tothe distribution-free
regression context is due to the presence of the marginal probabilityρX in theL2(X,ρX) norm. This
typically leads to the need of using wavelet-type bases which are orthogonal(or biorthogonal) with
respect to this inner product. Such bases might be not easy to handle numerically and cannot be
constructed exactly sinceρX is unknown.

In this paper, we propose an approach which allows us to circumvent these difficulties, while
staying in spirit close to the ideas of wavelet thresholding. In our approach, the hypothesis classesH

are spaces of piecewise constant functions associated to adaptive partitions Λ. Our partitions have
the same tree structure as those used in the CART algorithm (Breiman et al., 1984), yet the selection
of the appropriate partition is operated quite differently since it is not basedon an optimization
problem which would have to be re-solved when a new sample is added: instead our algorithm
selects the partition through a thresholding procedure applied to empirical quantities computed at
each node of the tree which play a role similar to wavelet coefficients. While theconnection between
CART and thresholding in one or several orthonormal bases is well understood in the fixed design
denoising context (Donoho, 1997), this connection is not clear to us in our present context. As it
will be demonstrated, our estimation schemes enjoy the following properties:

(i) They rely on fast algorithms, which may be implemented by simple on-line updates when the
sample sizem is increased.

(ii) The error estimates do not require any regularity inC(X) but only in the natural space
L2(X,ρX).

(iii) The proven convergence rates are optimal in probability and expectation (up to logarithmic
factors) for the largest possible range of smoothness classes inL2(X,ρX).

(iv) The scheme is universal in that it does not involve any a-priori knowledge concerning the
regularity of fρ.

The present choice of piecewise constant functions limits the optimal convergence rate to classes
of low or no pointwise regularity. While the practical extension of our method tohigher order
piecewise polynomial approximations is almost straightforward, its analysis in this more general
context becomes significantly more difficult and will be given in a forthcomingpaper. This is
so far a weakness of our approach from the theoretical perspective, compared to the complexity
regularization approach for which optimal convergence results could beobtained in the piecewise
polynomial context (using for instance Györfy et al., 2002, Theorem 12.1).

Our paper is organized as follows. The learning algorithm as well as the convergence results
are described in Section 2. The next two Sections 3 and 4 are devoted to theproofs of the two main
results which deal respectively with the error estimates for non-adaptiveand adaptive partitions.
Finally, in Section 3 we give results about the consistency of our estimator.
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2. The Basic Strategy and the Main Results

In this section we start in §2.1 with some basic facts about adaptive approximation. Then in we
continue in §2.2 with some results about least-squares fitting on fixed partition.The universal
algorithm is described in §2.3 where the main results of this paper are formulated. In §2.4 we
discuss the on-line implementation of our algorithm.

2.1 Partitions and Adaptive Approximation

A typical way of generating partitionsΛ of X is through a refinement strategy. We first describe
the prototypical example of dyadic partitions. For this, we assume thatX = [0,1]d and denote by
D j = D j(X) the collection of dyadic subcubes ofX of sidelength 2− j andD := ∪∞

j=0D j . These
cubes are naturally aligned on a treeT = T (D). Each node of the treeT is a cubeI ∈ D. If I ∈ D j ,
then its children are the 2d dyadic cubes ofJ ⊂ D j+1 with J ⊂ I . We denote the set of children ofI
by C (I). We callI the parent of each such childJ and writeI = P (J). The cubes inD j(X) form a
uniform partition in which every cube has the same measure 2− jd.

More general adaptive partitions are defined as follow. ApropersubtreeT̃ of T is a collection
of nodes ofT with the properties: (i) the root nodeI = X is in T̃ , (ii) if I 6= X is in T̃ then its
parentP (I) is also inT̃ . Any finite proper subtreẽT is associated to a unique partitionΛ = Λ(T̃ )
which consists of itsouter leaves, by which we mean thoseJ ∈ T such thatJ /∈ T̃ butP (J) is in T̃ .
One way of generating adaptive partitions is through some refinement strategy. One begins at the
rootX and decides whether to refineX (i.e. subdivideX) based on some refinement criteria. IfX is
subdivided then one examines each child and decides whether or not to refine such a child based on
the refinement strategy.

The results given in this paper can be described for more general refinement. We shall work in
the following setting. We assume thata≥ 2 is a fixed integer. We assume that ifX is to be refined
then its children consist ofa subsets ofX which are a partition ofX. Similarly, for each such child
there is a rule which spells out how this child is refined. We assume that the childis also refined
into a sets which form a partition of the child. Such a refinement strategy also results in a treeT

(called themaster tree) and children, parents, proper trees and partitions are defined as above for
the special case of dyadic partitions. The refinement levelj of a node is the smallest number of
refinements (starting at root) to create this node. We denote byT j the proper subtree consisting of
all nodes with level< j and we denote byΛ j the partition associated toT j , which coincides with
D j(X) in the above described dyadic partition case. Note that in contrast to this case, thea children
may not be similar in which case the partitionsΛ j are not spatially uniform (we could also work
with even more generality and allow the number of children to depend on the cellto be refined,
while remaining globally bounded by some fixeda). It is important to note that the cardinalities of
a proper treẽT and of its associated partitionΛ(T̃ ) are equivalent. In fact one easily checks that

#(Λ(T̃ )) = (a−1)#(T̃ )+1,

by remarking that each time a new node gets refined in the process of building an adaptive partition,
#(T̃ ) is incremented by 1 and #(Λ) by a−1.

Given a partitionΛ, let us denote bySΛ the space of piecewise constant functions subordinate
to Λ. EachS∈ SΛ can be written

S= ∑
I∈Λ

aI χI ,
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where forG⊂ X we denote byχG the indicator function, i.e.χG(x) = 1 for x∈ G andχG(x) = 0
for x 6∈ G. We shall consider approximation of a given functionf ∈ L2(X,ρX) by the elements of
SΛ. The best approximation tof in this space is given by

PΛ f := ∑
I∈Λ

cI χI (1)

wherecI = cI ( f ) is given by

cI :=
αI

ρI
, with αI :=

Z

I

f dρX and ρI := ρX(I). (2)

In the case whereρI = 0, both fρ and its projection are undefined onI . For notational reasons, we
set in this casecI := 0.

We shall be interested in two types of approximation corresponding to uniform refinement and
adaptive refinement. We first discuss uniform refinement. Let

En( f ) := ‖ f −PΛn f‖, n = 0,1, . . .

which is the error for uniform refinement. The decay of this error to zerois connected with the
smoothness off as measured inL2(X,ρX). We shall denote byAs the approximation class consist-
ing of all functionsf ∈ L2(X,ρX) such that

En( f ) ≤ M0a−ns, n = 0,1, . . . . (3)

Notice that #(Λn) = an so that the decay in (3) is likeN−s with N the number of elements in the
partition. The smallestM0 for which (3) holds serves to define the semi-norm| f |As on As. The
spaceAs can be viewed as a smoothness space of orders > 0 with smoothness measured with
respect toρX.

For example, ifρX is the Lebesgue measure and we use dyadic partitioning thenAs/d = Bs
∞(L2),

0 < s≤ 1, with equivalent norms. HereBs
∞(L2) is the Besov space which can be described in terms

of differences as

|| f (·+h)− f (·)‖L2 ≤ M0|h|s, x,h∈ X.

Instead of working with a-priori fixed partitions there is a second kind of approximation where
the partition is generated adaptively and will vary withf . Adaptive partitions are typically generated
by using some refinement criterion that determines whether or not to subdivide a given cell. We shall
use a refinement criteria that is motivated by adaptive wavelet constructions such as those given by
Cohen et al. (2001) for image compression. The criteria we shall use to decide when to refine is
analogous to thresholding wavelet coefficients. Indeed, it would be exactly this criteria if we were
to construct a wavelet (Haar like) bases forL2(X,ρX).

For each cellI in the master treeT and anyf ∈ L2(X,ρX) we define

εI ( f )2 := ∑
J∈C (I)

(

R

J
f dρX

)2

ρJ
−

(

R

I
f dρX

)2

ρI
, (4)
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which describes the amount ofL2(X,ρX) energy which is increased in the projection offρ ontoSΛ
when the elementI is refined. It also accounts for the decreased projection error whenI is refined.
In fact, one easily verifies that

εI ( f )2 = ‖ f −cI‖2
L2(I ,ρX)− ∑

J∈C (I)

‖ f −cJ‖2
L2(J,ρX).

If we were in a classical situation of Lebesgue measure and dyadic refinement, thenεI ( f )2 would
be exactly the sum of squares of the Haar coefficients off corresponding toI .

We can useεI ( f ) to generate an adaptive partition. Given anyη > 0, we letT ( f ,η) be the
smallest proper tree that contains allI ∈ T for which εI ( f ) ≥ η. This tree can also be described as
the set of allJ ∈ T such that there existsI ⊂ J such thatεI ( f ) ≥ η. Note that sincef ∈ L2(X,ρX)
the set of nodes such thatεI ( f ) ≥ η is always finite and so isT ( f ,η). Corresponding to this tree
we have the partitionΛ( f ,η) consisting of the outer leaves ofT ( f ,η). We shall define some new
smoothness spacesBs which measure the regularity of a given functionf by the size of the tree
T ( f ,η).

Givens> 0, we letBs be the collection of allf ∈ L2(X,ρX) such that the following is finite

| f |pBs := sup
η>0

ηp#(T ( f ,η)), wherep := (s+1/2)−1 (5)

We obtain the norm forBs by adding‖ f‖ to | f |Bs. One can show that

‖ f −PΛ( f ,η)‖ ≤Cs| f |
1

2s+1
Bs η

2s
2s+1 ≤Cs| f |BsN−s, N := #(T ( f ,η)), (6)

where the constantCs depends only ons. For the proof of this fact we refer the reader to the paper
by Cohen et al. (2001) where a similar result is proven for dyadic partitioning. It follows that every
function f ∈ Bs can be approximated to orderO(N−s) by PΛ f for some partitionΛ with #(Λ) = N.
This should be contrasted withAs which has the same approximation order for the uniform partition.
It is easy to see thatBs is larger thanAs. In classical settings, the classBs is well understood. For
example, in the case of Lebesgue measure and dyadic partitions we know that each Besov space
Bs

q(Lτ) with τ > (s/d + 1/2)−1 and 0< q ≤ ∞ arbitrary, is contained inBs/d (see Cohen et al.,

2001). This should be compared with theAs where we know thatAs/d = Bs
∞(L2) as we have noted

earlier.

The distinction between these two forms of approximation is that in the first, the partitions are
fixed in advance regardless off but in the second form the partition can adapt tof .

We have chosen here one particular refinement strategy (based on the size ofεI ( f )) in generating
our adaptive partitions. According to (6), it provides optimal convergence rates for the classBs.
There is actually a slightly better strategy described in the paper by Binev andDeVore (2004) which
is guaranteed to give near optimal adaptive partitions (independent of therefinement strategy and
hence not necessarily of the above form) for each individualf . We have chosen to stick with the
present refinement strategy since it extends easily to empirical data (see §2.2) and it is much easier
to analyze the convergence properties of this empirical scheme.
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2.2 Least-Squares Fitting on Partitions

We now return to the problem of estimatingfρ from the given data. We shall use the functions in
SΛ for this purpose. Let us first observe that

PΛ fρ = argmin
f∈SΛ

E( f ) = argmin
f∈SΛ

Z

Z

(y− f (x))2dρ.

Indeed, for allf ∈ L2(X,ρX) we have

E( f ) = E( fρ)+‖ f − fρ‖2

so that minimizingE( f ) overSΛ is the same as minimizing‖ fρ − f‖ over f ∈ SΛ. Note thatPΛ fρ
is obtained by solvingN independent problems minc∈R

R

I
( fρ −c)2dρX for each elementI ∈ Λ.

As in (3) we define the estimatorfz,Λ of fρ on SΛ as the empirical counterpart ofPΛ fρ obtained
as the solution of the least-squares problem

fz,Λ := argmin
f∈SΛ

Ez( f ) = argmin
f∈SΛ

1
m

m

∑
i=1

(yi − f (xi))
2.

We can view our data as a multivalued functiony with y(xi) = yi . Then in analogy toPΛ fρ, we can
view fz,Λ as an orthogonal projection ofy ontoSΛ with respect to the empirical norm

‖y‖2
L2(X,δX ) :=

1
m

m

∑
i=1

|y(xi)|2,

and we can compute it by solving #(Λ) independent problems

min
c∈R

1
m

m

∑
i=1

(yi −c)2χI (xi),

for each elementI ∈ Λ. The minimizercI (z) is now given by the empirical average

cI (z) =
αI (z)
ρI (z)

, where αI (z) :=
1
m

m

∑
i=1

yiχI (xi), ρI (z) :=
1
m

m

∑
i=1

χI (xi).xi ∈ I}. (7)

Thus, we can rewrite the estimator as

fz,Λ = ∑
I∈Λ

cI (z)χI . (8)

In the case whereI contains no samplexi (which may happen even ifρI > 0), we setcI (z) := 0.
A natural way of assessing the error‖ fρ − fz,Λ‖ is by splitting it into a bias and stochastic part :

since fρ −PΛ fρ is orthogonal toSΛ,

‖ fρ − fz,Λ‖2 = ‖ fρ −PΛ fρ‖2 +‖PΛ fρ − fz,Λ‖2 =: e1 +e2.

Concerning the variance terme2, we shall establish the following probability estimate.
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Theorem 1 For any partitionΛ and anyη > 0,

Prob
{

‖PΛ fρ − fz,Λ‖ > η
}

≤ 4Ne−cmη2

N , (9)

where N:= #(Λ) and c depends only on M.

As will be explained later in detail, the following estimate of the variance term in expectation is
obtained by integration of (9) overη > 0.

Corollary 1 If Λ is any partition, the mean square error is bounded by

E
(

‖PΛ fρ − fz,Λ‖2
)

≤C
N logN

m
, (10)

where N:= #(Λ) and the constant C depends only on M.

Let us consider now the case of uniform refinement. We can equilibrate thebias term with the
variance term described by Theorem 1 and Corollary 1 and obtain the following result.

Theorem 2 Assume that fρ ∈ As and define the estimator fz := fz,Λ j with j chosen as the smallest

integer such that aj(1+2s) ≥ m
logm. Then, given anyβ > 0, there is a constant̃c= c̃(M,β,a) such that

Prob

{

‖ fρ − fz‖ > (c̃+ | fρ|As)
( logm

m

)
s

2s+1

}

≤Cm−β, (11)

and

E
(

‖ fρ − fz‖2
)

≤ (C+ | fρ|2As)
( logm

m

)
2s

2s+1
. (12)

where C depends only on a and M.

Remark 1 It is also possible to prove Corollary 1 using the result by of Cucker and Smale (2001,
Theorem C*). The expectation estimate (12) in Theorem 2 can also be obtained as a consequence
of Theorem 11.3 by Györfy et al. (2002) quoted in our introduction. In order to prepare for the
subsequent developments direct proofs of these results are given laterin §3.

Theorem 2 is satisfactory in the sense that it is obtained under no assumptionon the measure
ρX and the assumptionfρ ∈ As is measuring smoothness (and hence compactness) inL2(X,ρX), i.e.
the compactness assumption is done inL2(ρX) rather than inL∞. Moreover, the rate( m

logm)−
s

2s+1 is
known to be optimal (or minimax) over the classAs save for the logarithmic factor. However, it
is unsatisfactory in the sense that the estimation procedure requires the a-priori knowledge of the
smoothness parameters which appears in the choice of the resolution levelj. Moreover, as noted
before, the smoothness assumptionfρ ∈ As is too severe.

In the context of density estimation or denoising, it is well known that adaptive methods based
on wavelet thresholding (Donoho and Johnstone, 1998, 1995; Donoho et al., 1996a,b) allow one to
treat both defects. Our next goal is to define similar strategies in our learning context, in which two
specific features have to be taken into account : the error is measured in the normL2(X,ρX) and the
marginal probability measureρX is unknown.
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2.3 A Universal Algorithm Based on Adaptive Partitions

The main feature of our algorithm is to adaptively choose a partitionΛ = Λ(z) depending on the data
z. It will not require a priori knowledge of the smoothness offρ but rather will learn the smoothness
from the data. Thus, it will automatically choose the right size for the partitionΛ.

Our starting point is the adaptive procedure introduced in §2.1 applied to thefunction fρ. We
use the notationεI := εI ( fρ) in this case. Then, by (4),

ε2
I := ∑

J∈C (I)

α2
J

ρJ
− α2

I

ρI
.

The selection of the partitionΛ in our learning scheme will be based on the empirical coefficients

ε2
I (z) := ∑

J∈C (I)

α2
J(z)

ρJ(z)
− α2

I (z)
ρI (z)

.

We define the threshold

τm := κ
√

logm
m

, (13)

where the constantκ is absolute and will be fixed later in the proof of Theorem 3 stated below. Let
γ > 0 be an arbitrary but fixed constant. We definej0 = j0(m,γ) as the largest integerj such that

a j ≤ τ−1/γ
m . We next consider the smallest proper treeT (z,m) which contains the set

Σ(z,m) := {I ∈ T j0 ; εI (z) ≥ τm}.

This tree can also be described as the set of allJ ∈ T j0 such that there existsI ⊂ J such thatI ∈
Σ(z,m). We then define the partitionΛ = Λ(z,m) associated to this tree and the corresponding
estimatorfz := fz,Λ. In summary, our algorithm consists in the following steps:

(i) Compute theεI (z) for the nodesI of generationj < j0.

(ii) Threshold these quantities at levelτm to obtain the setΣ(z,m).

(iii) CompleteΣ(z,m) to T (z,m) by adding the nodesJ which contain anI ∈ Σ(z,m).

(iv) Compute the estimatorfz by empirical risk minimization on the partitionΛ(z,m).

Further comments on the implementation will be given in the next section. The main result of this
paper is the following theorem.

Theorem 3 Let β,γ > 0 be arbitrary. Then, there existsκ0 = κ0(β,γ,M) such that ifκ ≥ κ0, then
whenever fρ ∈ Aγ ∩Bs for some s> 0, the following concentration estimate holds

Prob

{

‖ fρ − fz‖ ≥ c̃
( logm

m

)
s

2s+1

}

≤Cm−β, (14)

as well as the following expectation bound

E(‖ fρ − fz‖2) ≤C
( logm

m

)
2s

2s+1
, (15)

where the constants̃c and C are independent of m.
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Theorem 3 is more satisfactory than Theorem 2 in two respects: (i) the optimalrate( logm
m )

s
2s+1 is now

obtained under weaker smoothness assumptions on the regression function, namely,fρ ∈Bs in place
of fρ ∈ As, with the extra assumption offρ ∈ Aγ smoothness withγ > 0 arbitrarily small, (ii) the
algorithm is universal. Namely, the value ofsdoes not enter the definition of the algorithm. Indeed,
the algorithm automatically exploits this unknown smoothness through the samplesz. We note
however that the algorithm does require the knowledge of the parameterγ which can be arbitrarily
small. It is actually possible to build an algorithm without assuming knowledge of aγ > 0 by using
the adaptive tree algorithm by Binev and DeVore (2004). However, the implementation of such an
algorithm would involve complications we wish to avoid in this presentation.

2.4 Remarks on Algorithmic Aspects and On-Line Implementation

Our first remarks concern the construction of the adaptive partitionΛ(z,m) for a fixedm which

requires the computation of the numbersεI (z) for I ∈ Λ j when j satisfiesa j ≤ τ−1/γ
m . This would

require the computation ofO(mlnm) coefficients. One can actually save a substantial amount of
computation by remarking that by definition we always have

εI (z)2 ≤ EI (z)

with EI (z) := ‖y−cI (z)‖2
L2(I ,δX ) the least-square error onI . In contrast toεI (z), the quantityEI (z)

is monotone with respect to inclusion:

J ⊂ I ⇒ EJ(z) ≤ EI (z).

This allows one to organize the search for thoseI satisfyingεI (z)≥ τm from coarse to fine elements.
In particular, one no longer has to check those descendants of an element I for which EI (z) is less
thanτm.

Our next remarks concern the on-line implementation of the algorithm. Supposethat we have
computedρI (z), αI (z) and theεI (z) wherez containsm samples. If we now add a new sample
(xm+1,ym+1) to z to obtainz+, the newρI andαI are

ρI (z+) =
m

m+1
(ρI (z)+χI (xm+1))

and
αI (z+) =

m
m+1

(αI (z)+ym+1χI (xm+1)).

In particular, we see that at each levelj, only oneI is affected by the new sample. Therefore, if
we store the quantitiesρI (z) andαI (z) in the current partition, then this new step requires at most
j0 additional computations in the case wherej0 is not increased. In the case wherej0 is increased
to j0 + 1 (this may happen becauseτm is decreased), the computations of the quantitiesρI (z) and
αI (z) need to be performed, of course, for all the elements in the newly added level.

3. Proof of the Results on Non-Adaptive Partitions

We first give the proof of Theorem 1. LetΛ be any partition. By (1) and (8), we can write

‖PΛ fρ − fΛ,z‖2 = ∑
I∈Λ

|cI −cI (z)|2ρI .
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According to their definitions (2), (7), bothcI andcI (z) are bounded in modulus byM. Therefore,
givenη > 0, if we define

Λ− := {I ∈ Λ : ρI ≤
η2

8NM2},

we clearly have

∑
I∈Λ−

|cI −cI (z)|2ρI ≤
η2

2
.

We next consider the complement setΛ+ = Λ\Λ−. In order to prove (9), it now suffices to establish
that for allI ∈ Λ+

Prob

{

|cI (z)−cI |2 ≥
η2

2NρI

}

≤ 4e−cmη2

N . (1)

To see this, we writeρI (z) = (1+µI )ρI and remark that if|µI | ≤ 1/2 we have

|cI (z)−cI | =

∣

∣

∣

∣

αI (z)
ρI (z)

− αI

ρI

∣

∣

∣

∣

=
1

ρI (1+µI )
|αI (z)−αI −µI αI |

≤ 2ρ−1
I (|αI (z)−αI |+ |αI µI |).

It follows that|cI (z)−cI | ≤ η√
2NρI

provided that we have jointly

|αI (z)−αI | ≤
η√ρI

4
√

2N
,

and (sinceαI µI = αI (ρI (z)−ρI )/ρI )

|ρI (z)−ρI | ≤ min

{

1
2

ρI ,
ηρ3/2

I

4
√

2N|αI |

}

and therefore

Prob

{

|cI (z)−cI |2 ≥
η2

2NρI

}

≤ Prob

{

|αI (z)−αI | ≥
η√ρI

4
√

2N

}

+ Prob

{

|ρI (z)−ρI | ≥ min

{

1
2

ρI ,
ηρ3/2

I

4
√

2N|αI |

}}

.

In order to estimate these probabilities, we shall use Bernstein’s inequality which says that for
m independent realizationsζi of a random variableζ such that|ζ(z)−E(ζ)| ≤ M0 and Var(ζ) = σ2,
one has for anyε > 0

Prob

{∣

∣

∣

∣

∣

1
m

m

∑
i=1

ζ(zi)−E(ζ)

∣

∣

∣

∣

∣

≥ ε

}

≤ 2e
− mε2

2(σ2+M0ε/3) .

In our context, we apply this inequality toζ = yχI (x) for whichE(ζ) = αI , M0 ≤ 2M andσ2 ≤M2ρI ,
and toζ = χI (x) for whichE(ζ) = ρI , M0 ≤ 1, andσ2 ≤ ρI .
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We first obtain that

Prob

{

|αI (z)−αI | ≥
η√ρI

4
√

2N

}

≤ 2e
− mη2ρI

64N(M2ρI +2Mη
√

ρI /2N/12)

≤ 2e
− mη2ρI

64N(M2ρI +4M2ρI /12)

≤ 2e−cmη2

N ,

with c = [256
3 M2]−1, where we have used in the second inequality thatI ∈ Λ+ to bound the second

term in the denominator of the exponential by the first term in the denominator. We next obtain in

the case where12ρI ≤ ηρ3/2
I

4
√

2N|αI |

Prob

{

|ρI (z)−ρI | ≥
1
2

ρI

}

≤ 2e−
mρ2

I
8(ρI +ρI /6) = 2e−

3
28mρI ≤ 2e−cmη2

N

with c = [224
3 M2]−1 where we have used in the last line thatI ∈ Λ+. Finally, in the case where

1
2ρI ≥ ηρ3/2

I

4
√

2N|αI |
, we obtain

Prob

{

|ρI (z)−ρI | ≥
ηρ3/2

I

4
√

2N|αI |

}

≤ 2e
− mη2ρ3

I
64NρI |αI |2(7ρI /6) ≤ 2e−cmη2

N

with c = [448
6 M2]−1 since|αI | ≤ MρI . Therefore, we obtain (1) with the smallest of the three values

of c, namelyc = [256
3 M2]−1, which concludes the proof of Theorem 1.

Remark 2 The constant c in the estimate behaves like1/M2 and therefore degenerates to0 as
M →+∞. This is due to the fact that we are using Bernstein’s estimate as a concentration inequality
since we are lacking any other information on the conditional lawρ(y|x). For more specific models
where we have more information on the conditional lawρ(y|x), one can avoid the limitation|y| ≤M.
For instance, in the Gaussian regression problem yi = fρ(xi)+gi where gi are i.i.d. Gaussian (and
therefore unbounded) variablesN (0,σ2), the probabilistic estimate (9) can be obtained by a direct
use of the concentration property of the Gaussian.

The proof of Corollary 1 follows by integration of (9) overη:

E
(

‖PΛ fρ − fΛ,z‖2
L2(X,ρX)

)

=
+∞
R

0
ηProb

{

‖PΛ fρ − fΛ,z‖L2(ρX) > η
}

dη

≤
+∞
R

0
ηmin{1,4Ne−cmη2

N }dη

=
η0
R

0
ηdη+

+∞
R

η0

4Nηe−cmη2

N dη

=
η2

0
2 + 2N2

cm e−c
mη2

0
N ,

whereη0 is such that 4Ne−c
mη2

0
N = 1, or equivalentlyη2

0 = N log(4N)
cm . This proves the estimate (10).
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Finally, to prove the estimates in Theorem 2, we first note that, by assumption,N = #(Λ j) ≤

a j+1 ≤ a2
(

m
logm

)
1

2s+1
. Further, from the definition ofAs, we have

‖ fρ −PΛ j fρ‖ ≤ | fρ|Asa− js ≤ | fρ|As

(

logm
m

)
s

2s+1

.

Hence, using Theorem 1, we see that the probability on the left of (11) is bounded from above by

Prob

{

‖PΛ fρ − fΛ,z‖ > c̃

(

logm
m

)
s

2s+1

}

≤ 4a2me−
cc̃2 logm

a2

which does not exceedCm−β providedc̃2c > a2(1+β). The proof of (12) follows in a similar way
from Corollary 1.

4. Proof of Theorem 3

This section is devoted to a proof of Theorem 3. We begin with our notation. Recall that the tree
T ( fρ,η) is the smallest tree which contains allI for which εI = εI ( fρ) is larger thanη. Λ( fρ,η) is
the partition induced by the outer leaves ofT ( fρ,η). We useτm as defined in (13) andj0 = j0(m)

is the largest integer such thata j0 ≤ τ−1/γ
m . For any partitionΛ we write fz,Λ = ∑I∈Λ cI (z)χI .

If Λ0 andΛ1 are two adaptive partitions respectively associated to treesT0 andT1 we denote by
Λ0∨Λ1 andΛ0∧Λ1 the partitions associated to the treesT0∪T1 andT0∩T1, respectively. Given
anyη > 0, we define the partitionsΛ(η) := Λ( fρ,η)∧Λ j0 andΛ(η,z) associated with the smallest
trees containing thoseI such thatεI ≥ η andεI (z) ≥ η, respectively, and such that the refinement
level j of any I in either one of these two partitions satisfiesj ≤ j0. In these terms our estimatorfz

is given by
fz = fz,m = fz,Λ(τm,z).

With this notation in hand, we begin now with the proof of the Theorem. Using the triangle
inequality, we have

‖ fρ − fz,m‖ ≤ e1 +e2 +e3 +e4

with each term defined by

e1 := ‖ fρ −PΛ(τm,z)∨Λ(bτm) fρ‖,
e2 := ‖PΛ(τm,z)∨Λ(bτm) fρ −PΛ(τm,z)∧Λ(τm/b) fρ‖,
e3 := ‖PΛ(τm,z)∧Λ(τm/b) fρ − fz,Λ(τm,z)∧Λ(τm/b)‖,
e4 := ‖ fz,Λ(τm,z)∧Λ(τm/b)− fz,Λ(τm,z)‖,

with b := 2
√

a−1> 1. This type of splitting is classically used in the analysis of wavelet threshold-
ing procedures, in order to deal with the fact that the partition built from thoseI such thatεI (z)≥ τm

does not exactly coincides with the partition which would be chosen by an oracle based on thoseI
such thatεI ≥ τm. This is accounted by the termse2 ande4 which correspond to thoseI such that
εI (z) is significantly larger or smaller thanεI respectively, and which will be proved to be small
in probability. The remaining termse1 ande3 respectively correspond to the bias and variance of
oracle estimators based on partitions obtained by thresholding the unknown coefficientsεI .
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The first terme1 is therefore treated by a deterministic estimate. Namely, sinceΛ(τm,z)∨
Λ(bτm) is a finer partition thanΛ(bτm), we have with probability one

e1 ≤ ‖ fρ −PΛ(bτm) fρ‖ ≤ ‖ fρ −PΛ( fρ,bτm) fρ‖+‖PΛ( fρ,bτm) fρ −PΛ(bτm) fρ‖
≤ ‖ fρ −PΛ( fρ,bτm) fρ‖+‖ fρ −PΛ j0

fρ‖

≤ Cs(bτm)
2s

2s+1 | fρ|Bs +a−γ j0| fρ|Aγ

≤ Cs(bτm)
2s

2s+1 | fρ|Bs +aγτm| fρ|Aγ .

Therefore we conclude that

e1 ≤Cs((bκ)
2s

2s+1 +aγκ)max{| fρ|Aγ , | fρ|Bs}
( logm

m

)
s

2s+1
, (1)

wheneverf ∈ Bs∩Aγ.
The third terme3 is treated by the estimate (9) of Theorem 1:

Prob{e3 > η} ≤ 4Ne−cmη2

N , (2)

with
N = #(Λ(τm,z)∧Λ(τm/b)) ≤ #(Λ(τm/b)) ≤ #(Λ( fρ,τm/b)).

Hence we infer from (5) that

N ≤ bpτ−p
m | fρ|pBs = bpτ−

2
2s+1

m | fρ|pBs = bpκ− 2
2s+1 | fρ|pBs

( m
logm

)
1

2s+1
, (3)

where we have used that 1/p = 1/2+s.
Concerning the two remaining termse2 and e4, we shall prove that for a fixed but arbitrary

β > 0, we have
Prob{e2 > 0}+Prob{e4 > 0} ≤Cm−β, (4)

wheneverκ ≥ κ0 with κ0 depending onβ, γ, andM and withC depending only ona.
Before proving this result, let us show that the combination (1), (2), (3) and (4) imply the

validity of the estimates (14) and (15) in Theorem 3. We fix the value ofβ and we fix any constant
κ for which (4) holds. Letη1 := c̃( logm

m )
s

2s+1 with c̃ from (14) andη2 := c0(
logm

m )
s

2s+1 with c0 :=

Cs(κ
2s

2s+1 +aγκ)max{| fρ|Aγ , | fρ|Bs}. From (1) it follows that for ˜c> c0 we have Prob{‖ fρ− fz,m‖>

η1} ≤ Prob{e2 +e3 +e4 > η1−η2}. Hence, definingη = (c̃−c0)(
logm

m )
s

2s+1 , the probability on the
left side of (14) does not exceed

Prob{e2 > 0}+Prob{e3 > η}+Prob{e4 > 0} ≤ Prob{e3 > η}+Cm−β,

Moreover, on account of (2) and (3), we can estimate Prob{e3 > η} by

Prob{e3 > η} ≤ C
( m

logm

)
1

2s+1
e
−cmη2b−pκ− 2

2s+1 | fρ|−p
Bs

(

logm
m

)
1

2s+1

= C
( m

logm

)
1

2s+1
e
−cD2m

(

logm
m

)

= C
( m

logm

)
1

2s+1
m−cD2

≤ Cm1−cD2
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whereD2 := (c̃−c0)
2

κ
2

2s+1 bp| f |p
Bs

. The concentration estimate (14) follows now by taking ˜c large enough so

that 1−cD2 +β ≤ 0.
For the expectation estimate (15), we recall that according to Corollary 1, we have

E(e2
3) ≤C

N logN
m

≤C

(

m
logm

)
1

2s+1
logm

m
= C

( logm
m

)
2s

1+2s
.

We then remark that we always havee2
2 ≤ 4M2, and therefore

E(e2
2) ≤ 4M2Prob{e2 > 0} ≤Cm−β ≤C

( m
logm

)− 2s
2s+1

,

by choosingβ larger than 2s/(2s+1), for exampleβ = 1. The same holds fore4 and therefore we
obtain (15).

It remains to prove (4). The main tool here is a probabilistic estimate of how the empirical
coefficientεI (z) may differ fromεI with respect to the threshold. This is expressed by the following
lemma.

Lemma 4 For anyη > 0 and any element I∈ T , one has

Prob{εI (z) ≤ η and εI ≥ bη} ≤Ce−cmη2
(5)

and
Prob{εI ≤ η and εI (z) ≥ bη} ≤Ce−cmη2

(6)

where the constant c depends only on M and the constant C depends onlyon a.

Before proving Lemma 4, let us show how this result implies (4). We first consider the sec-
ond terme2. Clearlye2 = 0 if Λ(τm,z)∨Λ(bτm) = Λ(τm,z)∧Λ(τm/b) or equivalentlyT (τm,z)∪
T (bτm) = T (τm,z)∩T (τm/b). Now if the inclusionT (τm,z)∩T (τm/b) ⊂ T (τm,z)∪T (bτm) is
strict, then one either hasT (τm,z) 6⊂ T (τm/b) or T (bτm) 6⊂ T (τm,z). Thus, there either exists anI
such that bothεI (z) < τm andεI ≥ bτm or there exists anI such that bothεI (z) ≥ τm andεI < τm/b.
It follows that

Prob{e2 > 0} ≤ ∑
I∈T j0

Prob{εI (z) ≤ τm and εI ≥ bτm}

εI ≤ bτm}. + ∑
I∈T j0

Prob{εI (z) ≥ τm and εI ≤ τm/b}. (7)

Using (5) withη = τm yields

∑I∈T j0
Prob{εI (z) ≤ τm and εI ≥ bτm} ≤ #(T j0)e

−cmτ2
m

≤ #(Λ j0)e
−cmτ2

m

≤ a j0e−cκ2 logm

≤ τ−1/γ
m m−cκ2

≤Cm1/γ−cκ2
.
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We can treat the second sum in (7) the same way and obtain the same bound asthe one fore4 below.
By similar considerations, we obtain

Prob{e4 > 0} ≤ ∑
I∈T j0

Prob{εI (z) ≥ τm and εI ≤ τm/b},

and we use (6) withη = τm/b which yields Prob{e4 > 0} ≤Cm1/γ−cκ2/b2
. We therefore obtain (4)

by choosingκ ≥ κ0 with cκ2
0 = b2(β+1/γ).

We are left with the proof of Lemma 4. As a first step, we show that the proofcan be reduced to the
particular casea= 2. To this end, we remark that the splitting ofI into itsa children{J1, · · · ,Ja} can
be decomposed intoa−1 steps consisting of splitting an element into a pair of elements: defining
In := I \ (J1∪ ·· · ∪ Jn) we start fromI = I0 and refine iterativelyIn−1 into the two elementsIn and
Jn, for n = 1, · · · ,a−1. By orthogonality, we can write

ε2
I :=

a−2

∑
n=0

(εIn)
2,

whereε2
In is the amount ofL2(X,ρX) energy which is increased in the projection offρ whenIn+1 is

refined intoIn andJn. In a similar way, we can write for the observed quantities

ε2
I (z) :=

a−2

∑
n=0

εIn(z)
2,

Now if ε2
I ≤ η2 andεI (z)2 ≥ b2η2 = 4(a−1)η2, it follows that there existn∈ {0, · · · ,a−2} such

that(εIn)
2 ≤ η2 andεIn(z)

2 ≥ 4η2. Therefore,

Prob{εI ≤ η and εI (z) ≥ bη} ≤
a−2

∑
n=0

Prob{εIn ≤ η and εIn(z) ≥ 2η},

and similarly

Prob{εI (z) ≤ η and εI ≥ bη} ≤
a−2

∑
n=0

Prob{εIn(z) ≤ η and εIn ≥ 2η},

so that the estimates (5) and (6) fora > 2 follow from the same estimates established fora = 2 in
which caseb = 2.

In the casea= 2, we denote byI+ andI− the two children ofI . Note that ifρJ = 0 for J = I+ or
for J = I−, there is nothing to prove, since in this case we find thatεI = εI (z) = 0 with probability
one. We therefore assume thatρJ > 0 for J = I+ andI−. We first rewriteεI as follows

ε2
I =

α2
I+

ρI+
+

α2
I−

ρI−
− α2

I

ρI
= ρI+c2

I+ +ρI−c2
I− −ρI c

2
I

= ρI+c2
I+ +ρI−c2

I− −ρI ((ρI+cI+ +ρI−cI−)/ρI )
2

=
ρI+ρI−

ρI
(cI+ −cI−)2,
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and thereforeεI = |βI | with

βI :=
√

ρI+ρI−

ρI
(cI+ −cI−).

In a similar way we obtainεI (z) = |βI (z)| with

βI (z) :=

√

ρI+(z)ρI−(z)
ρI (z)

(cI+(z)−cI−(z)).

Introducing the quantitiesaI+ =
√

ρI−
ρI ρI+

andaI− =
√

ρI+

ρI ρI−
and their empirical counterpartaI+(z)

andaI−(z) we can rewriteβI andβI (z) as

βI = aI+αI+ −aI−αI−

and
βI (z) = aI+(z)αI+(z)−aI−(z)αI−(z).

It follows that

|εI − εI (z)| ≤ |aI+αI+ −aI+(z)αI+(z)|+ |aI−αI− −aI−(z)αI−(z)|.

We next introduce the numbersδJ defined by the relationρJ(z) = (1+δJ)ρJ, for J = I+, I− or I . It
is easily seen that if|δJ| ≤ δ ≤ 1/4 for J = I+, I− andI , one has

aI+(z) = (1+µ+
I )aI+

with |µ+
I | ≤ 3δ. This follows indeed from the basic inequalities

1−3δ ≤
√

(1−δ)

(1+δ)2 ≤
√

(1+δ)

(1−δ)2 ≤ 1+3δ

which hold for 0≤ δ ≤ 1/4. Therefore if|δJ| ≤ δ ≤ 1/4 for J = I+, I− andI , we have

|aI+αI+ −aI+(z)αI+(z)| ≤ aI+(z)|αI+ −αI+(z)|+ |αI+(aI+ −aI+(z))|
≤ 2aI+ |αI+ −αI+(z)|+3δaI+ |αI+ |.

By similar considerations, we obtain the estimate

|aI−αI− −aI−(z)αI−(z)| ≤ 2aI− |αI− −αI−(z)|+3δaI− |αI− |,

and therefore
|εI − εI (z)| ≤ ∑

K=I+,I−
2aK |αK −αK(z)|+3δaK|αK |. (8)

We first turn to (5), which corresponds to the case whereεI ≥ 2η andεI (z)≤ η. In this case, we
remark that we have

η2 ≤ ε2
I

4
=

ρI+ρI−

ρI

(cI+ −cI−)2

4
≤ M2ρL, (9)
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for L = I+, I− andI . Combining (8) and (9), we estimate the probability by

Prob{εI (z) ≤ η and εI ≥ 2η} ≤ ∑
K=I+,I−

(

pK + ∑
J=I−,I+,I

qK,J

)

, (10)

with

pK := Prob{|αK −αK(z)| ≥ [8aK ]−1η given ρK ≥ η2

M2 },

and

qK,J := Prob{|ρJ −ρJ(z)| ≥ ρJ min{1
4
,η[12aK |αK |]−1} given ρJ ≥

η2

M2}.

Using Bernstein’s inequality, we can estimatepK as follows

pK ≤ 2e
− mη2

2(64a2
KM2ρK+8aK ηM/3) ≤ 2e

− mη2

2(64a2
KM2ρK+8aK

√ρKM2/3) ≤ 2e−cmη2
,

with c= [(128+16/3)M2]−1, where we have usedη2 ≤ ρKM2 in the second inequality and the fact
thata2

KρK ≤ 1 in the third inequality.
In the case where 12aK |αK | ≤ 4η, we estimateqK,J by

qK,J ≤ 2e−
mρJ

2(16+4/3) ≤ 2e−cmη2
,

with c = [(32+8/3)M2]−1, where we have usedρJ ≥ η2/M2.
In the opposite case 12aK |αK | ≥ 4η, we estimateqK,J by

qK,J ≤ 2e
−m

(

ρJη
12aK |αK |

)2

2

(

ρJ+
ρJη

36aK |αK |

)

≤ 2e
− mρJη2

312a2
K |αK |2

where in the last inequality we used 3aK |αK | ≥ η to bound the second term in the denominator.
Since|αK | ≤ MρK , we havea2

Kα2
K ≤ M2(ρI−ρI+/ρI ) ≤ M2 min{ρI− ,ρI+} so thatρJ ≥ a2

Kα2
K/M2.

Therefore, we obtain
qK,J ≤ e−cmη2

with c = [312M2]−1.
Using these estimates forpK andqK,J back in (10), we obtain (5).
We next turn to (6), which corresponds to the opposite case whereεI ≤ η andεI (z) ≥ 2η. In

this case, we remark that we have

η2 ≤ ε2
I (z)
4

=
ρI+(z)ρI−(z)

ρI (z)
(cI+(z)−cI−(z))2

4
≤ M2ρL(z),

for L = I+, I− andI . In this case, we do not haveη2 ≤ M2ρL, but we shall use the fact thatη2 ≤
2M2ρL with high probability, by writing

Prob{εI ≤ η and εI (z) ≥ 2η} ≤ ∑
K=I+,I1

(

pK + p̃K + ∑
J=I−,I+,I

(qK,J + p̃J)
)

, (11)

where now

pK := Prob{|αK −αK(z)| ≥ [8aK ]−1η; given ρK ≥ η2

2M2},
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and

qK,J := Prob{|ρJ −ρJ(z)| ≥ ρJ min{1
4
,η[12aK |αK |]−1} given ρJ ≥

η2

2M2}

and the additional probability is given by

p̃J := Prob{η2 ≤ M2ρJ(z) given η2 ≥ 2M2ρJ}.

Clearly,pK andqK,J are estimated as in the proof of (5). The additional probability is estimated by

p̃J ≤ Prob{η2 ≥ M2ρJ and |ρJ −ρJ(z)| ≥ (η/M)2}

≤ 2e
− mη4

2(ρJM4+M2η/3)

≤ 2e
− mη4

2(η2M2+M2η2/3)

≤ 2e−cmη2
,

with c= (8M2/3)−1. Using these estimates in (11), we obtain (6), which concludes the proof ofthe
lemma. �

5. Universal Consistency of the Estimator

In this last section, we discuss the consistency of our estimator when no smoothness assumption is
made on the regression functionfρ ∈ L2(X,ρX). Of course it is still assumed that|y| ≤ M almost
surely, so that we also have| fρ| ≤ M. For an arbitrary suchfρ, we are interested in proving the
convergence property

lim
m→+∞

E(‖ fρ − fz,m‖2) = 0,

which in turn implies the convergence in probability: for allε > 0,

lim
m→+∞

Prob{‖ fρ − fz,m‖ > ε} = 0.

For this purpose, we use the same estimation of the error bye1 + e2 + e3 + e4 as in the proof of
Theorem 3.

We first remark that the proof of the estimate

E(e2
2)+E(e2

4) ≤Cm−β,

remains unchanged under no smoothness assumption made onfρ.
Concerning the approximation terme1, we have seen that

e1 ≤ ‖ fρ −PΛ( fρ,bτm) fρ‖+‖ fρ −PΛ j0
fρ‖.

Under no smoothness assumptions, the convergence to 0 of these two terms still occurs whenj0 →
+∞ andτm → 0, and therefore asm→ +∞. This requires however that the union of the spaces
(SΛ j ) j≥0 is dense inL2(X,ρX). This is ensured by imposing natural restrictions on the splitting
procedure generating the partitions which should be such that

lim
j→+∞

sup
I∈Λ j

|I | = 0,
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where |I | is the Lebesgue measure ofI . This is obviously true for dyadic partitions, and more
generally when the splitting rule is such that

∑
J∈C (I)

|J| ≤ ν|I |,

with ν < 1 independent ofI ∈ T . Under this restriction, classical results of measure theory state
thatPΛ j f converges tof in L2(X,ρX) as j → +∞ for all f ∈ L2(ρX).

We are therefore ensured that‖ fρ −PΛ j0
fρ‖ tends to 0 asm→ +∞. For the first term‖ fρ −

PΛ( fρ,bτm) fρ‖, we remark that the convergence ofPΛ j f to f also implies thatf can be written as the
sum of anL2(X,ρX)-orthogonal series

f = cXχX + ∑
I∈T

ψI , with ψI := ∑
J∈C (I)

cJχJ −cI χI ,

We remark that‖ψI‖ = εI ( f ). It follows that forη > 0

‖ f −PΛ( f ,η) f‖2 = ∑
I /∈T ( f ,η)

εI ( f )2 ≤ ∑
εI ( f )≤η

εI ( f )2.

Since by Parseval inequality,

∑
I∈T

εI ( f )2 = ‖ f‖2−‖cXχX‖2 < +∞, (1)

it follows that ‖ f −PΛ( f ,η) fρ‖ tends to 0 asη → 0. Therefore‖ fρ −PΛ( fρ,bτm) fρ‖ tends to 0 as
m→ +∞.

It remains to study the variance terme3 for which we have established

E(e2
3) ≤C

N logN
m

,

with
N = #(Λ(τm,z)∧Λ(τm/b)) ≤ #(Λ(τm/b)).

Note that since(εI )I∈T is a square summable sequence according to (1), we have

#{I ∈ T ; εI > η} ≤Cη−2ϕ(η),

whereϕ(η)→ 0 asη→ 0. Therefore if #(Λ(τm/b)) was simply controlled by #{I ∈ T ; εI > τm/b},
we would derive thatE(e2

3) would tend to 0 according to

E(e2
3) ≤C

τ−2
m ϕ(τm) log(τ−2

m ϕ(τm))

m
≤ C̃

τ−2
m ϕ(τm) logm

m
= C̃ϕ(τm).

However, #(Λ(τm/b) can be significantly larger due to the process of completing the set of thresh-
olded coefficients into a proper tree. Since this process adds at mostj0−1 nodesJ for eachI such
thatεI > τm/b, we have the estimate

#(Λ(τm/b)) ≤ j0#{I ∈ T ; εI > τm/b} ≤Cτ−2
m ϕ(τm) logm,
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whereC depends ona andγ. It follows that if the thresholdτm is modified into

τm :=
logm√

m
,

we find thatE(e2
3) goes to 0 according to

E(e2
3) ≤C

τ−2
m ϕ(τm) logmlog(τ−2

m ϕ(τm) logm)

m
≤ C̃

τ−2
m ϕ(τm) logm

m
= C̃ϕ(τm).

It is easily checked that this modification does not affect the other estimates for e1, e2 and e4.
However it induces an additional

√
logm factor in the rate of convergence which was obtained in

Theorem 3.
An alternate way of ensuring the convergence to zero ofE(e2

3) is by imposing thatγ > 1/2,
since we obviously have

#(Λ(τm/b)) ≤ #(Λ j0) = a j0 ≤Cτ−1/γ
m ,

so thatN logN/m tends to 0 if 1/γ > 2. However this is a stronger restriction since the optimal
convergence rate of the algorithm is maintained only for regression functions which are at least in
the uniform approximation spaceA1/2.
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Abstract
We present a sparse dynamic programming algorithm that, given two stringss andt, a gap penalty
λ, and an integerp, computes the value of the gap-weighted length-p subsequences kernel. The al-
gorithm works in timeO(p|M| log|t|), whereM = {(i, j)|si = t j} is the set of matches of characters
in the two sequences. The algorithm is easily adapted to handle bounded length subsequences and
different gap-penalty schemes, including penalizing by the total length of gaps and the number of
gaps as well as incorporating character-specific match/gappenalties.

The new algorithm is empirically evaluated against a full dynamic programming approach and
a trie-based algorithm both on synthetic and newswire article data. Based on the experiments,
the full dynamic programming approach is the fastest on short strings, and on long strings if the
alphabet is small. On large alphabets, the new sparse dynamic programming algorithm is the most
efficient. On medium-sized alphabets the trie-based approach is best if the maximum number of
allowed gaps is strongly restricted.
Keywords: kernel methods, string kernels, text categorization, sparse dynamic programming

1. Introduction

Machine learning algorithms working on sequence data are needed both in bioinformatics and text
categorization and mining. In contrast, standard machine learning algorithms work on feature vector
representation, thus requiring a feature extraction phase to map sequence data into feature vectors.

Representing these feature vectors explicitly is often problematic due to the potentially high
dimensionality. Kernel methods (Vapnik, 1995; Cristianini and Shawe-Taylor, 2000) provide an ef-
ficient way of tackling the problem of dimensionality via the use of a kernel function, corresponding
to the inner product of two feature vectors. With these precomputed inner products, it is possible
to efficiently accomplish a variety of machine learning and data analysis tasks,e.g. classification,
regression and clustering.

The family of kernel functions defined on feature vectors computed fromstrings, are called
string kernels(Watkins, 2000; Haussler, 1999). These kernels are based on features corresponding
to occurrences of certain kinds of subsequences in the string. There isa wide variety of string kernels
depending on how the subsequences are defined: they can be contiguous or non-contiguous, they
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can have bounded or unbounded length, and the mismatches or gaps can be penalized in different
ways.

There are three main approaches in computing string kernels efficiently. Dynamic programming
approaches (Lodhi et al., 2000; Cancedda et al., 2003) are based on composing the solution from
simpler subproblems, in this case, from kernel values of shorter subsequences and prefixes of the
two strings. These approaches usually have time complexity of orderΩ(p|s||t|) since one typically
needs to compute intermediate results for each character pairsi , t j for each subsequence length
1 ≤ l ≤ p. However, there is no extra computational cost associated when using gap penalties
or mismatch costs between the characters. In trie-based approaches (Leslie et al., 2003; Leslie
and Kuang, 2003) one makes a depth-first traversal to an implicit trie data structure. The search
continues along each trie path while in both of the strings there exist an occurrence of thep-gram
corresponding to the trie node. This termination condition prunes the searchspace very efficiently
if the number of gaps is restricted enough. The third approach is to build a suffix tree of one of
the strings and then compute matching statistics of the other string by traversing the suffix tree to
compute matching statistics (Vishwanathan and Smola, 2003). The computation ofthe kernel value
takes a linear time. However, the approach does not deal with gapped strings.

In this paper, we concentrate on improving the time-efficiency of the dynamic programming ap-
proach to gapped string kernel computation. In Section 2 we review types of kernels that are used in
text categorization and sequence analysis tasks. As a full review of kernel based machine learning
is not possible in the context of this article, a reader not familiar with kernel methods might want to
refer to the introductory text book of Cristianini and Shawe-Taylor (2000) or, for a more broad treat-
ment, the books by Schölkopf and Smola (2001) and Shawe-Taylor and Cristianini (2004). In Sec-
tion 3, we review trie-based and a dynamic programming approaches for gap-weighted string kernel
computation before presenting the main contribution of this article, a sparse dynamic programming
algorithm for efficiently computing the kernel on large alphabets. We also discuss variants and im-
plementation of the algorithm. In Section 4 the new algorithm is experimentally compared against
the full dynamic programming approach and a trie-based algorithm. Results andopen problems are
discussed in Section 5 followed by conclusions in Section 6.

2. Kernels for Sequence Data

Kernel methods encompass a family of pattern analysis methods that share a common aspect: map-
ping the inputsx ∈ X to some potentially high-dimensional feature spaceF by defining a feature
mapφ : X 7→ F , and then solving the pattern analysis task by linear methods, such as findinga
separating hyperplane for instances of different classes (supportvector machines, SVM), or find-
ing principal components of the feature vectorsφ(x) (kernel PCA), or finding correlations between
two viewsφ1(x),φ2(x) of the same data (kernel canonical correlation analysis, KCCA). Working
in these high-dimensional spaces in made possible by the use of the so called ’kernel trick’: one
does not need to handle the feature vectors explicitly, as long as the inner product, thekernel,
K(x,z) = φ(x)Tφ(z) has been computed.

For example, support vector machines (Vapnik, 1995) find for the training data{(xi ,yi)}
`
i=1 the

maximum margin separating hyperplane in the feature space. Both learning thehyperplane and
classifying points can be done without explicitly using the feature vectors: learning requires solving
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a quadratic programme

max
αi≥0

∑
i

αi −1/2
`

∑
i, j=1

αiα jyiy jK(xi ,x j) s.t.∑
i

αiyi = 0,

and the SVM prediction can be expressed asf (x) = sign(∑i αiyiK(xi ,x)+b). Thus, the learning and
prediction can be performed in space that has dimension in the order of the number of the training
points.

When handling input data that already comes in vector form, there is no obligation to introduce a
special kernel function. The inner product of the inputsK(x,z) = xTz, also called the ’linear kernel’,
can be used. However, when using structured data such as sequences, trees or graphs, one needs to
convert the structured representation to a vector form.

For sequences the most common feature representation is to count or check the existence of sub-
sequence occurrences, when the subsequences are taken from a fixed index setU . Different choices
for the index set and accounting for occurrences give rise to a family offeature representations
and kernels. Below we review the main forms of representation for sequences and the computation
kernels for such representations.

Word spectrum (Bag-of-words) kernels. In the most widely used feature representation for
strings in a natural language, informally calledbag-of-words(BoW), the index set is taken as the
set of words in the language, possibly excluding some frequently occurring stop words (Salton et
al., 1975). The representation was brought to SVM learning by Joachims (1998).

In the case of a strings containing English text, for each English wordu, we define the feature
value

φu(s) = |{ j|sj . . .sj+|u|−1 = u}|, (1)

as the number of timesu occurs in some positionj of s. For the example texts = ’The cat
was chased by the fat dog’ the BoW will contain the following non-zero entries:φthe(s) = 2,
φdog(s) = 1, φwas(s) = 1, φchased(s) = 1, φby(s) = 1, φfat(s) = 1, φcat = 1. These occurrence counts
can also be weighted, for example by scaling by the inverse document frequency (TFIDF, Salton &
Young, 1973):

φu(s) = |{ j|sj . . .sj+|u| = u}|× log2N/Nu,

whereNu is the number of documents whereu occurs andN is the total number of documents in the
collection.

Although the dimension of the feature space may be very high, computation of the BoW kernel
can be efficiently implemented by scanning the two strings, constructing listsL(s) andL(t) of pairs
(u,cu) of word u and occurrence countcu ordered in the lexicographical order of the substringsu,
and finally traversing the two lists to compute the dot product.

Substring spectrum kernels. For strings that do not encompass a crisply defined word-structure,
for example, biological sequences, a different approach is more suitable. Given an alphabetΣ, a
simple choice is to takeU = Σp, the set of strings of lengthp. The featuresφu(s),u∈ Σp are then
defined as in (1). For example, if we choosep = 4 resulting feature values for our example text
includeφthe = 2, φ the = 1, φ cat = 1, φ dog = 1, along with close to thirty additional 4-grams.

There is a two-fold difficulty in focusing in fixed length subsequences: Firstly, one may not
know how to best choose the lengthp. Secondly, there maybe important subsequences of differ-
ent lengths in the sequences. This problem can be circumvented by allowingthe lengths of the
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subsequences vary within a range:

U = Σq∪Σq+1 · · ·∪Σp for some 1≤ q≤ p. (2)

We call the resulting kernel thebounded-length substringkernel. In our example text, we could
setq = 3 andp = 5 to include features such asφdog, φchaseandφ f at , for instance. In the extreme
case, we can takep = 1 andq = ∞, thus including in the index set all non-empty sequences of
alphabetΣ. It should be noted that the choice of parametersq and p has several effects: First, as
will be discussed in the next section, the time to compute the kernels will increaseby increasingp.
Secondly, if all important subsequences have length at least someq0, settingq < q0 will probably
make the spectrum more ’noisy’. Similarly, settingq0 < q will probably lose some of the ’signal’.
An interesting direction, that is out of scope of this paper, would be to learnthe parametersp andq
from the data.

The most efficient approaches, working inO(p(|s|+ |t|)) time, to compute substring spectrum
kernels are based on suffix trees (Leslie et al., 2002; Vishwanathan and Smola, 2003), although
dynamic programming and trie-based approaches also can be used.

Gapped substring spectrum kernels. Another way to add flexibility to our feature representation
is to allow gaps in the subsequence occurrences. In that case, the indexset of (2) can still be used
but the definition of the features changes. For convenience of notation,in the following we will
use boldface letters to indicate ordered collections of indices:j = ( j1, j2, . . . , jq), j1 < j2 < · · · <
jq and denotes(j) = sj1 . . .sjq. We define the featuresφu(s) to count the number of such unique
sequences of indicesj that the corresponding subsequencesj1 . . .sjq equals tou, in other words
φu(s) = |{j |s(j) = u}|. Our example string’The cat was chased by the fat dog’ can be seen
to contain, among others, the following gapped substrings of length 3:φtea = 7,φted = 5,φdog = 2.

This definition does not make a difference between occurrences that contain few gaps and those
that contain several gaps, or the lengths thereof; all contribute to the feature value equally. For
example, the substring ’tea’ will have a high weight as it occurs many times in the text, although
it never occurs with fewer than two gaps and the total length of gaps is at least three. At the same
time, ’dog’ will have much smaller weight although it occurs in the text without any gaps.

A solution for this problem is to downweight occurrences that contain many or long gaps. Such
feature representation is the basis ofgap-weighted string kernels. In string matching, there are many
approaches for weighting gaps (see e.g. Eppstein, 1989; Gordon et al., 2003). We consider two gap-
weighting schemes, both of which downweight occurrences exponentiallyin increasing gap number
or length.

When downweighting by the total length of gaps the weight of an occurrence i = (i1, . . . , iq)
with spanspan(i) = iq− i1 + 1 is defined asλspan(i), where 0< λ ≤ 1 is a fixed penalty constant.
The feature values are then defined as a normalized sum of occurrenceweights

φu(s) = 1/λq ∑
i:u=s(i)

λspan(i).

The normalization 1/λq ensures that only gaps—not matches—are penalized. This normalization is
important when using substrings of different lengths as the index setU, otherwise short substrings
easily get too much weight.

In some applications the actual length of the gaps may not be important but the number of
contiguous substrings that compose the gapped subsequence may be morerelevant. The features to
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be computed will then be
φu(s) = ∑

i:u=s(i)

λ∑ jJi j+1−i j>1K,u∈ Σp,

where the expression inside the indicator functionJ·K counts pairs of adjacent indices(i j , i j+1)
within i where there’s a gap in between the two indices.

In literature, two approaches for computing gapped substring kernels appear, a dynamic pro-
gramming approach (Lodhi et al., 2002) and a trie-based approach (Leslie et al., 2002), both of
which can deal with gap-weighting as well. We review the dynamic programming approach and
a variant of the trie-based computation in Section 3, followed by a presentation of the new sparse
dynamic programming approach.

Generalized alphabets. We conclude this section by noting that treating text as strings of charac-
ters is not the only and not necessarily the best approach. Depending on the application, considering
larger units such as syllables (c.f. Saunders et al., 2002) or words (c.f. Cancedda et al., 2003) may
be beneficial. Using the text ’The cat was chased by the fat dog’ as the example, if words
are used as the alphabet:

• Substrings are word sequences, or phrases: ’cat was chased’.

• Gapped substrings will be phrases with some words skipped: ’cat ? chased ? ? ?
dog’.

• Penalizing gaps will decrease the weight of phrases that span too long a text segment. For
example, the weight of ’cat was chased’ would be higher than that of ’cat ? chased ?
? ? dog’ as the former phrase exists in the text as such whereas the latter contains two
gaps of total length four.

Using phrases as features has a potential advantage over the bag-of-words representation, as the
ordering and the proximity of the words is taken into account. Thus such a representation should be
able to more closely capture syntactically and, ideally, semantically similar text segments.

There is, however, one drawback in using words or phrases as the features, namely the slight
variations in the word occurrences that still correspond to the same meaning. Such variations in-
clude alternative spellings, prefixes/suffixes attached to words or wordstems. These problems can
of course be tackled by preprocessing the documents. An alternative approach is the use of sylla-
ble alphabet: the text is treated as a sequence of syllables: ’The cat was cha sed by the fat
dog’. The benefit is that small spelling variations or inflection of the word (e.g. ’cha se’ vs. ’cha
sed’) are likely to retain some of the original syllables.

Compared to the character alphabet, word and syllable alphabets share twobenefits. Firstly,
as argued above, using phrases of words or syllables are more likely to capture meaning in the
text than arbitrary substring of characters. Secondly, as the documentsize drastically goes down
when moving from character to syllable and word alphabets, computational requirements decrease
as well.

3. Computing Gap-Weighted String Kernels

Let us now concentrate to the question how to efficiently compute the gap-weighted string kernel:

K(s, t) = ∑
u∈U

φu(s)φu(t), (3)
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A (’the’,g)s A (’the’,g)t A (’the dog’,g)s A (’the dog’,g)t

2 2 2 2
3 3 3 3

5 5 5 5

cat the

dog

dogfa
t

cat the
fat

dogdog

do
g

do
g

th
edo
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dog

dog

g g g g

0 0 0 0
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4 4 4 4
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{1,6} {1,5}
{8}

{8}

{6}

{6}

Figure 1: The co-occurrence trie of the example strings (top), and the sets of alive indices for the
substrings ’the’ and ’the dog’ in the two strings with numbers of gaps ranging from 0
to 6 (bottom).

where the index set satisfiesU = Σp or U = Σq∪ . . .Σp, and

φu(s) = 1/λp ∑
i:u=s(i)

λspan(i) (4)

We will present three algorithms all of which are then experimentally comparedin Section 4. The
first is based on constructing an implicit trie data structure for the co-occurring gapped substrings
in sandt. The second algorithm is the dynamic programming approach by Lodhi et al.,(2002), and
the third is a new method based on sparse dynamic programming.

As a running example we we use two stringss = ’The cat was chased by the fat dog’
andt = ’The fat cat bit the dog’ and, for illustration, we apply the word alphabet. Hence,
in the example, ’letters’ corresponds to English words, ’substrings’ and’subsequences’ to English
phrases.

3.1 Trie-Based Computation

Trie-based computation (Leslie and Kuang, 2003; Cristianini and Shawe-Taylor, 2004) of the gap
weighted subsequence kernel is based on making depth-first search into co-occurring subsequences
in the two strings, starting from co-occurring one-letter matches and extending the matches letter
by letter until the desired lengthp is reached. The search composes an implicit trie-structure of
matching subsequences in the two strings: each path from root to a node corresponds to a subse-
quence that co-occurs in the two strings, in one or more locations, with number of gaps at most
given integergmax. The number of gaps need to be restricted in order to keep computation efficient.
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Thus the resulting kernel can be considered as an approximation of (3) where co-occurrences with
mor thangmax gaps are discarded.

Figure 1 shows the trie structure of co-occurring subsequences for the example strings, when
the index set is fixed toU = Σ3, the three word phrases. Below we briefly describe a trie-based
algorithm that is a slight variation of the one described by Shawe-Taylor and Cristianini (2004) and
also bear resemblance to the related mismatch string kernel algorithm by Leslie et al. (2003).

In a trie-node corresponding to subsequenceu= u1 · · ·uq the algorithm keeps track of all matches
s(i) = u that could still be extended further. For each such index seti = i1 . . . iq, the last indexiq is
stored in a list ofalive matchesAs(u,g) whereg = span(i)−q is the number of gaps in the match.
Similarly for t the listsAt(u,g) are maintained. To expand a nodeu, the algorithm looks for all
possible letters the matching subsequence can be extended to a longer matchuc. For an alive match
i ∈ As(u,g) and allg′ ≤ gmax−g the algorithm puts the indicesi + 1+ g′ into As(usi+1+g′ ,g+ g′).
The listsAt(uti+1+g′ ,g+ g′) are constructed the same way. The search is continued for nodesuc
for which both

(

S

gAs(uc,g)
)

and
(

S

gAt(uc,g)
)

are non-empty, that is, there is at least one occur-
rence ofuc in boths andt, with some number of gaps. This makes the trie much sparser than the
subsequence tries for either one of the strings alone would be.

In our example (Figure 1), ’the’ is encountered in positions 1 and 6 ofs, with (trivially) no
gaps, and in positions 1 and 5 int. To find the alive indices for ’the dog’ the algorithm searches
for the occurrence of ’dog’, in s from indices 2 and 7 onwards, and finds the occurrence in position
6, corresponding to an occurrence with 1 and 4 gaps, respectively. Similar analysis is performed for
t. When a nodeu in depthd is encountered one easily obtains the relevant terms in the kernel via
computing the sum

φu(s)φu(t) = ∑
gs,gt

λgs+d|As(u,gs)| ·λgt+d|At(u,gt)|.

If a length-p subsequence kernel is being computed this computation only need to be performed
in the leaves of the trie. For bounded-length subsequence kernel, the computation needs to be
performed in all trie nodes that are in depthq≤ d ≤ p.

Note that the above approach differs from the(g,k)-gapped trie algorithm by Leslie and Kuang
(2003) in two respects: First, the stringss andt are not broken into frames before the search but
the algorithm maintains the listsAs(u,g) to keep track of the subsequence occurrences. Second, the
algorithm keeps track of the number of gaps in the occurrences during thesearch. This relieves us
from the need to embark on dynamic programming search in the trie leaves to compute the values
φu(s)φu(t).

The worst-case time complexity of the algorithm,O(
(p+gmax

p

)

(|s|+ |t|)), arises whens= t, which
follows from noticing that each position in the two strings is a start location of a co-occurring
subsequence, and there areO(

(p+gmax
p

)

) possible combinations of assigningp letters andgmax gaps
in a window of lengthp+ gmax. Note that if no gaps are allowed we get the time complexity
O(p(|s|+ |t|) matching the suffix tree approach.

3.2 Dynamic Programming Computation

The basis of dynamic programming computation of the string kernel (3) is the following observation:
if there is a co-occurrence of substringu1 . . .uq that ends in positionsk’th and l ’th position ofs and
t, respectively, two conditions must be satisfied:

1. there must be a matching pair of characters in the last positions:sk = tl , and
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Figure 2: The co-occurrence weights of length-one (a) and length-two(b) substrings. Computing
κ2(6,8) requires efficiently maintaining the appropriately scaled sum of the weights in
the shaded region ofκ1.

2. there must be a matching prefixu1 . . .uq−1 that ends in some positioni < k in string s and
some positionj < l in stringt.

Moreover, ignoring the normalization 1/λ2q, the co-occurrence weight can be computed by from
the weight of the prefix co-occurrence by extending the subsequences with k− i and l − j letters,
respectively:

λspan([i1...,iq,k]) ·λspan([ j1..., jq,l ]) = λspan([i1...,iq]) ·λspan([ j1..., jq]) ·λk−iqλl− jq.

Denoting byκq(k, l) the sum of weights of length-q substring co-occurrences, again ignoring the
normalization 1/λ2q, that end at positionsk andl in sandt, respectively, the above observations can
be summarized in the following recurrence

κq(k, l) =

{

λ2Jsk = tl K for q = 1, and

∑i<k ∑ j<l λk−i+l− jκq−1(i, j)Jsk = tl K, for q > 1,
(5)

where Figure 2 depicts the idea behind the recurrence (5): to computeκ2(5,6) we need to extend the
length-1 matches in the shaded region,κ1(i, j), i < 5, j < 6, into length-2 matches by adding gaps.
The weights of two length-1 matches in positions(1,1) and(3,2) are rescaled before summation:
λ8 +λ11 = λ5−3+6−2λ2 +λ5−1+6−1λ2.

The dynamic programming algorithm (Figure 4) computes this recurrence by starting with sub-
sequence length 1, which requires looping through all pairs of positions(i, j) in the two strings,
checking for matching letters and summing up the co-occurrence weights. For convenience, the
algorithm computes the sum of weights without the normalization 1/λ2q that is applied in the final
phase when computing the kernel valueK(q).

Longer subsequences are handled in increasing order of length, in accordance to (5). How-
ever, computing the double sum for each(k, l) (e.g. the shaded region in Figure 2) would be very
inefficient, hence instead, a separate table storing the double sum

S(k, l) = ∑
i<k

∑
j<l

λk−i+l− jκq−1(i, j)
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Figure 3: The tableS (right) stores the scaled sums of co-occurrence weights of the prefixesof the
strings. The valueS(k, l) is computed in constant time by adding upκq−1(k, l) λS(k−1, l)
(horizontally striped area) andλS(k, l − 1) (the vertically striped area) and subtracting
λ2S(k−1, l −1) (the intersection) that would otherwise be doubly counted.

is maintained. With that auxiliary table, computing the recurrence is very simple

κq(k, l) = Jsk = tl Kλ2S(k−1, l −1).

Maintenance of the tableScan be done efficiently via the relationship

S(k, l) = κq−1(k, l)+λS(k−1, l)+λS(k, l −1)−λ2S(k−1, l −1), (6)

where the first term computes the contribution of the cell(k, l), the two middle terms the regions
{(i, j)|i < k, j ≤ l} and{(i, j)|i ≤ k, j < l}, respectively, and the last term subtracts the twice counted
region{(i, j)|i < k, j < l}.

In Figure 3 the computation of the valueS(4,5) = λ6 +λ9 is depicted. The value can be seen as
the sum of weights of matching ’the ? ? ?’ with ’ the ? ? ? ?’ (weight λ4 ·λ5) and ’the’
(λ3 ·λ), and ’cat’ with ’ cat ? ? ? ?’ (weight λ ·λ5).

The algorithm has time complexityO(p|s||t|) which is immediately seen from the pseudocode
in Figure 4. It is possible to optimize the algorithm to consume less memory. As the computation
proceeds in increasing order of subsequence length and only the previous length is referred to, it
suffices to maintain a single tableκ that is reused for valuesκ1, . . . ,κp. Also, it suffices to maintain
a one-dimensional vectorS( j) instead of the matrixS(i, j), as the computation proceeds in the
increasing order ofi and only the valuesS(i−1, :) are referred to when computingS(i, :).

3.3 A Sparse Dynamic Programming Algorithm

In this section we describe a new algorithm for gap-weighted string kernelcomputation that is
based onsparse dynamic programming(Eppstein et al., 1992). These algorithms utilise the fact
that most entries in the dynamic programming matrix do not actually contribute to the results. The
technique has been previously used, for example, to speed up transposition invariant string matching
(Mäkinen, 2003) and, more close to our problem, in computing the longest-commonsubsequence
of two strings given a fixed set of basis fragments (Baker and Giancarlo, 1998).
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function K = DYNPROG(s,t,p,lambda)

κ1 = zeros(length(s), length(t));
K(1) = 0; % length-1 co-occurrences
for i = 1 : length(s)

for j = 1 : length(t)
if s(i) = t( j)

κ1(i, j) = λ2;
K(1) = K(1)+κ1(i, j);

end
end

end
K(1) = K(1)/λ2; % renormalize

for l = 2 : p % co-occurrences of length 2...p
K(l) = 0;
S(1 : (l −1),1 : length(t)) = 0;S(l : length(s),1 : (l −1)) = 0;
for i = 1 : length(s)

for j = 1 : length(t)
S(i, j) = κl−1(i, j)+λ ·S(i−1, j)+

λ ·S(i, j −1)−λ2 ·S(i−1, j −1);
if s(i) = t( j)

κl (i, j) = λ2 ·S(i−1, j −1);
K(l) = K(l)+κl (i, j);

end
end

end
K(l) = K(l)/λ2l ; % renormalize

end

Figure 4: Dynamic programming algorithm for gap-weighted subsequence kernel computation. It
takes a input two strings, subsequence lengthp and a penalty coefficientλ, and returns
the kernel valuesK(1), . . . ,K(p) corresponding to different subsequence lengths.
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Our algorithm is easiest to understand as a speed-up method for the dynamicprogramming
approach described in Section 3.2. Despite its relatively low time-complexity, thealgorithm makes
unnecessary computations: the valueS(k, l) is required only whensk = tl , but computing that value
using (6) dictates that all valuesS(i, j), i ≤ k, j ≤ l are computed. In the following we present an
algorithm that avoids these unnecessary computations via replacing the matrixSwith a query tree
that can be used to retrieve the valuesS(i, j) as needed in logn time.

Another change to the original dynamic programming algorithm is that the matrixκq is replaced
with a set of match lists

Mq(i) = (( j1,κq(i, j)),( j2,κq(i, j)), . . .)

whereκq(i, j) = λm−i+n− j · κq(i, j)) can be interpreted as extending the length-q co-occurrences
ending withsi andt j , respectively, with dummy gaps spanning positionsi +1 tom in sand positions
j +1 ton in t. The use of such dummy gap weighting relieves us from repeatedly scaling the kernel
values as the search progresses: for any(k, l) it holds that

κq(k, l) = Jsk = tl K∑
i<k

∑
j<l

κq−1(i, j). (7)

and the valuesS(k, l) = ∑i<k ∑ j<l κq−1(i, j) can be updated as the search proceeds without perform-
ing any rescaling of the itemsS(k, l) = S(k−1, l)+ ∑ j<l κq−1(k, j). This fact will be essential for
maintaining our range-sum tree data structure, described below.

The data structure used for the queries belongs to the family of one-dimensional range query
data structures, frequently used in computational geometry, online analytical processing (OLAP)
and other fields where efficient range queries are needed (de Berg et al., 1997; Agarwal and Erick-
son, 1999).

Therange sum treefor a set of key-value pairsS = {( j1,v1), . . . ,( jh,vh)} ⊂ {1, . . . ,n}×R is a
binary tree of heighth = dlogne where the nodes are in one-to-one correspondence with the keys
in the range. The root contains the key 2h, leaves contain all odd keys in the range and and if an
internal node in depthd = {0, . . . ,h−1} contains keyj, its left child contains the keyj −2h−1−d

and the right child, when it exists, contains the keyj +2h−1−d. With each keyj in depthd a value
is stored that represents a sum of item weights in a subrange[ j −2h−d +1, j]. It is easy to see that
this subrange exactly covers the keys that are covered by the node’s left subtree and the node itself.
The range sum can be used to return the sum of values within an interval[1, j] in O(logn) time by
traversing the path from the nodej to the root, and computing the sum

Rangesum([1, j]) = v j + ∑
{h∈Ancestors( j)|h< j}

vh

Also, adding an item( j,v)to the tree takes timeO(logn): we need to addv to node j and the set
{h∈ Ancestors( j)|h > j}.

For our algorithm, we will use the tree to query the valuesS(k, l) = λm−k+n−l S(k, l). To cope
with this two-dimensional query region, we maintain the tree so that, when processing the match
list Mq(k) the tree will contain items( j,v j), 1 ≤ j ≤ n, v j = ∑i<k κq−1(i, j), and thus the one-
dimensional range query

Rangesum([1, l −1]) = ∑
j<l

v j = ∑
i<k

∑
j<l

κq−1(i, j) = S(k, l)
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Figure 5: The range-sum tree on the right, with a query path (emphasized edges) and an area of
theκ1 matrix corresponding to the query path (grey and black strips) on the left. Starting
from the leaf, the values in nodes that are left children of their parents are added together.

will return the desired answer.
Figure 5 depicts the state of the range-sum tree when computing the valueκ2(5,6). The node 5

will contain value 0 as there are no subsequence co-occurrences withinthe strip(i,5), i < 5. On the
other hand, the key 4 will contain the valueλ11+λ14 corresponding to the two co-occurrences within
the (shaded) region(i, j), i < 5, j ∈ [1,4], scaled with the dummy gaps:λ11 = λ2λ6−3+8−2,λ14 =
λ2λ6−1+8−1. The sum of weights in the shaded region is computed by adding the value 0 in node 5
corresponding to the empty black region, the value in node 4 corresponding to the grey region and
skipping node 6 as 6> 5.

The sparse dynamic programming algorithm is shown in Figure 6. The algorithmtakes as input
a setM1 = {M1(1), . . . ,M1(m)} of match lists

M1(i) = (( j1,κ1(i, j)),( j2,κ1(i, j)), . . .) ,

that have been created in a preprocessing step takingO(n+ m+ |Σ|+ |M1|) time and space. This
preprocessing involves creating for each characterc ∈ Σ a list I(c) = { j|t j = c} of indices in the
string t that contain the characterc. To create a match listM1(i) then involves copying the indices
in I(si) to M1(i) and storing the corresponding valuesκ1(i, j) = λm−i+n− jλ2 with the indices.

The main algorithm computes the kernelK(s, t) = κp(m,n) by incrementally working out match
setsM2, . . . ,Mp, corresponding to subsequence lengths 2, . . . , p.

The processing of subsequence lengthq entails making one pass through the match setsMq−1(k)
in increasing order ofk. When constructing match listMq(k) the algorithm traverses match list
Mq−1(k), and for each item( j,κ) in the list makes a range queryRangeSum([1, l−1])= ∑i<k ∑ j<l κq−1(i, j),
and, if the result is non-zero, inserts the item(l ,RangeSum([1, l −1])) to the listMq(k). After cre-
ating each listMq(k) the tree is updated with the contents ofMq−1(k).

Finally, the kernel valueK(s, t) is computed by traversing the match listsMp(k),1 ≤ k ≤ m,
rescaling the stored values to remove the dummy gap and summing up the rescaledvalues.
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function K = SPARSE(M1, p,λ)
for q = 2 : (p−1)

RangeSum(1 : |t|) = 0; % initially the ranges are empty
for i = p : m

% compute the kappa values for the next level
Mq(i) = {};
for ( jh,κh) ∈ Mq−1(i)

S= query(RangeSum, [1, jh−1]); % make range query
if S> 0

Mq(i) = Mq(i)∪ ( jh,S);
end

end
% update the range withMq−1(i)
for ( jh,κh) ∈ Mq−1(i)

update(RangeSum,( jh,κh));
end

end
end
% compute the values for the final level
K = 0;
for i = p : (m−1)

for ( jh,κh) ∈ Mp−1(i);
if jh < n

K = K +κhλi+ jh; % rescale to remove the dummy gap
end

end
end

Figure 6: The algorithm for computing the gap-weighted subsequences kernel for two stringss
and t. The algorithm takes as input a match setM1 = {M1(1), . . . ,M1(m)}, a penalty
coefficient 0< λ ≤ 1 and subsequence lengthp.
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The queries and updates amount toO(logn) per item in the match list so the time complexity to
process levelq is O(|Mq| logn). Since we have|M1| ≥ |M2| ≥ · · · ≥ |Mp|, the total time complexity
will be O(p|M1| logn). On random strings|M1| ≈ |s||t|/|Σ|. Hence, the sparse algorithm is likely to
excel when logn/|Σ| is small, which we verify in the experiments presented in Section 4.

3.4 Variants and Implementation

The presented algorithm can be modified to compute many of the string kernel variants:

• A kernel only counting the number of co-occurrences of substrings is trivially obtained by
settingλ = 1. In practical implementation, one can remove the scaling/rescaling operations
from the algorithm, thus reducing the constants hidden in the asymptotic time-complexity.

• Bounded-length subsequence kernels are straight-forward to obtain.For each subsequence
lengthq≤ l ≤ p, the sum of weights in the match lists, rescaled to remove the dummy gaps,
needs to be computed, as opposed for the lengthp only, as in the original algorithm. Thus,
kernels of the formK(s, t) = ∑p

q=1wqKq(s, t),wq ∈ R are easily obtained.

• Weighting by the number of gaps and the use of character specific gap penalties only require
minor modifications to the algorithm (see below).

However, soft matching approaches (c.f Saunders et al., 2002), where most of the characters can be
matched with each other with different costs (or utilities), are beyond this algorithm. This is because
the efficiency of the algorithm relies on the match setsMq to be sparse.

Weighting by the number of gaps. It is straightforward to modify the algorithm to penalize the
number of gaps in the subsequence, instead of the total gap length. The kernel

κGap#(s, t) = ∑
u∈Σp

φp
u(s)φ

p
u(t), with φp

u(s) = ∑
i:u=s(i)

λ∑ j [i j+1−i j>1],u∈ Σp,

can be computed via the recurrence

κq(k, l) = [si = t j ]

(

∑
i<k−1, j<l−1

λ2κq−1(i, j)

+ ∑
i<k−1

λκq−1(i, l −1)+ ∑
j<l−1

λκq−1(k−1, j)+κq−1(k−1, l −1)

)

(8)

which again leads to theO(p|s||t|) time complexity. The first term takes into account co-occurrences
where one gap is inserted to both the matched subsequences. The secondand third term correspond
to matches where a gap is inserted to occurrences ins only andt only, respectively. The last term
takes into account matches where no gap is inserted to eithers or t.

The sparse dynamic programming algorithm can be made to compute this recurrence effi-
ciently by a simple modification: The range sum tree updates need to be lagged by one iteration
so that, when creating the match listMq(k), the tree will not yet contain the values in the match list
Mq−1(k−1); these values will be added to the tree after handling the match listMq(k). By such an
arrangement, the recurrence can be computed as

κq(k, l)= [si = t j ]

(

λ2 ·Rangesum([1, l−2])+λ·Rangesum([l−1, l−1])+λr( j)+κq−1(k−1, l−1)

)

,
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where the valuesr( j) = ∑ j<l−1 κq−1(k− 1, j) are incrementally computed while processing the
match listMq−1(k−1). The algorithm’s time complexityO(p|M| logn) will not change.

Character-specific gap and match weights. Another variant is to let the gap penalty depend on
the character that was skipped, so that we have a set of penalties{λa|a ∈ Σ}. To implement this

we need to precompute a vectorΛs = (λs,k)
|s|
k=1, λs,k = λs1 × ·· ·×λsk and an analogous vectorΛt

for string t. In the algorithm, when storing the itemκq−1(i, j) in the range sum tree, it is first
scaled byλs,m/λs,i ·λt,n/λt, j to introduce a dummy gapss(i +1 : m) andt( j +1 : n) with character
specific weighting. As with uniform gap weights, when computing the final level, rescaling by
λs,k/λs,m ·λt,l/λt,n is needed to recover the valueκp(k, l).

The approach can easily extended to handle different weights for matches and gaps, as suggested
by Cancedda et al., (2003). This only requires performing a scaling

κq(k, l) =
γsk

λsk

γtl

λtl
RangeSum([1, l −1]),

whereγa andλa are the match and gap decays for lettera, respectively, to reflect the fact thatsk was
matched totl rather than skipped over.

Implementation. The algorithm described above has been implemented in MATLAB 7.0. The
code has been heavily tweaked to ensure that the benefits suggested by theoretical analysis can also
be realized in practise. The major tweaks include

• Range sum tree storage.In our MATLAB implementation, the range sum tree is implicitly
stored in a weight vectorw storing the sum of the left subtree of each node 1≤ j ≤ n. To speed
up computations we also precompute in separate tables the nodes that need to be visited when
querying or updating the range sum tree. For example, in the situation depicted in Figure (5)
the precomputedquery pathfor will contain the nodes 4 and 5. The correspondingupdate
pathwill contain the nodes 6 and 8.

• Avoiding numerical underflow. The algorithm in Figure 6 stores the items in the form
λm−i+n− jκq−1(i, j) and rescales them when computing the levelp. This approach suffers
from the potential of numerical underflow when handling long strings. In order to avoid that,
we divide the index plane into rectangles of height and width sufficiently small(depending
on the valueλ) such that within a rectangle[x′,x′′]× [y′,y′′] the values are stored in the form
λx′′+y′′−i− j . The handling of the boundaries of the rectangles causes a small additiveoverhead
to the time complexity. The same technique can be used with the above discussed variants as
well.

The implementation of the sparse dynamic programming algorithm is available via WWWfrom
the home page of Juho Rousu:htt p : //www.cs.helsinki. f i/ juho.rousu.

4. Empirical Evaluation

We compared the time consumption of the following gapped string kernel algorithms, all imple-
mented in MATLAB:

SPARSE. The new sparse dynamic programming algorithm.
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Figure 7: The time consumption of SPARSE in seconds (left) and relative time consumption of

SPARSE relative to the time consumption of DYNPROG (right). The subsequence
lengthp = 10 was used. Note the logarithmic scale on all axes.

DYNPROG. The full dynamic programming approach of Section 3.2.

TRIE. The Trie-based computation approach of Section 3.1.

Note that, differently from TRIE, DYNPROGand SPARSEplace no hard restriction on the gap length
but softly penalize the increase in gap length. We used three data sets for comparing the algorithms.

• Randomly generated strings, with varying length and alphabet sizes.

• 1000 random English news article pairs from the Reuters-21578 corpus, represented as se-
quences of syllables. The size of the syllable alphabet was 3769.

• 1000 random document pairs from the Chinese part of the Reuter’s multilingual RCV-2 cor-
pus. The size of the alphabet was 3142.

The tests were run on a 3GHZ Pentium 4 processor with 1.5GB main memory.

4.1 Results on Random Strings

In our first test we tested the time-consumption of the algorithm SPARSE as a function of string
length and alphabet size. Figure 7 depicts the results. On the left the algorithms absolute time
consumption is shown. The inverse dependency of the time-consumption on thealphabet size is
clearly visible. Also, the larger the alphabet, the slower the time-consumption increases when the
string length is increased.

On the right in Figure 7 the time-consumption of the sparse approach relativeto the full dynamic
programming approach is shown. With small alphabets and short strings DYNPROG is faster than
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Figure 8: The relative time consumption time(TRIE)/time(SPARSE) of the algorithms, as a function
of alphabet size and gap length. The subsequence lengthp= 10 and string length|s|, |t|=
512 was used. Note the logarithmic scale.

SPARSE. With long strings and large alphabets the roles reverse: on strings longerthan 1024 letters
and alphabet sizes over 256, the SPARSEcan be an order of magnitude faster then DYNPROG.

In our second test we compare the speed of TRIE algorithm to the SPARSEalgorithm. Figure 8
depicts the relative time consumption as a function of alphabet size and gap length. Subsequence
length of 10 and string length of 512 were used. Since SPARSE does not place any restriction to
the gap length, in the comparison only the time taken by TRIE actually varied when the maximum
number of gaps was varied.

The figure shows that TRIE algorithm gets very significantly slower than SPARSEwhen more
gaps are allowed especially so on small alphabets. TRIE is faster than SPARSE only when the
number of gaps is restricted to 2 or below. On very large alphabets even disallowing gaps does not
bring TRIE below the time consumption of SPARSE.

The fastest algorithm as a function of string length and alphabet size is depicted in Figure 9,
with different settings for the subsequence length (p) and the maximum number of gaps allowed in
the TRIE algorithm. DYNPROG is the fastest method on short strings independent on the alphabet
size and the subsequence length (a-d). If no gaps are allowed, TRIE is competitive on small to
medium-size alphabets and long strings (a). When the subsequence length isincreased, TRIE is
faster than SPARSE even on large alphabets (c). The situation changes when gaps are allowed
in TRIE algorithm: then SPARSE is the best method on large alphabets, and DYNPROG on small
alphabets, TRIE excelling on medium-sized alphabets if long subsequences are searched for (d).
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Figure 9: The fastest algorithm as a function of string length and alphabetsize, with different sub-
sequence lengths (p) and upper bounds for the number of gaps in the TRIE algorithm.

4.2 Results on Reuter’s News Articles

Our second set of experiments tests the speed of kernel computation on twoReuter’s newswire
article data sets, English articles from Reuters-21578 corpus represented as sequences of syllables
and Chinese articles from the multilingual RCV-2 corpus.

We computed the gap-weighted string kernel using DYNPROG and SPARSE for 1000 random
document pairs, varying the subsequence lengths in the range 5-20. Inour preliminary experiments,
TRIE was significantly slower than both of the dynamic programming approaches onthese data sets.
Hence, we omitted that algorithm from the comparison.

The results on the English news articles are summarized in Figure 10. In the figure each docu-
ment pair is plotted to the location corresponding to the (geometric) mean length ofthe documents
(x-axis) and the inverse of the match frequency|s||t|/|M| (y-axis), which also can be thought as
the effective alphabet size: if the syllables were independently randomly drawn from alphabet of
size|Σ| = |s||t|/|M|, the expected size of the match set would be|M|. Note that, due to the skewed
distribution of syllables in the documents this number is usually significantly lower than the size of
the syllable alphabet.

The marker type corresponds to the minimum subsequence lengthp required to make SPARSE

run faster than DYNPROG on that document pair. Document pairs marked with ’+’ requirep >
20, circles require 11≤ p ≤ 20, boxes require 6≤ p ≤ 10, and for diamondsp ≤ 5 is sufficient.
Similar behaviour to that observed in the tests involving random strings can beseen: the longer the
documents and the sparser the match matrix, the smaller value ofp suffices to make SPARSE the
faster algorithm.
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Figure 10: Regimes of subsequence lengthp, document size (x-axis) and inverse frequency of
matching letters (y-axis), where SPARSE is faster than DYNPROG on English syllable-
represented news articles. Document pairs marked with ’+’ requirep > 20, circles re-
quire 11≤ p≤ 20, boxes require 6≤ p≤ 10, and for diamondsp = 5 is sufficient.

The results on Chinese news are summarized in Figure 11. The behaviour of the algorithms can
be seen to be essentially the same as on the syllable converted English text: longdocuments and a
sparse match matrix favour SPARSE.

5. Discussion and Open Problems

Based on the presented experiments, the full dynamic programming approach is the fastest method
on short strings. On longer strings, the best algorithm depends on otherparameters: if the alphabet
is large the new sparse dynamic programming approach is the fastest method, ifthe alphabet is small
DYNPROG is the best method. On medium-sized alphabets, the trie-based approach is competitive
if the number of gaps can be strongly restricted.

The observed relative performance can be explained as follows. Whenthe alphabet size is
small, allowing more gaps rapidly expands the number of partially matching subsequences. Since
TRIE explicitly keeps track of them, its time-consumption increases. SPARSEalso suffers on small
alphabets. However, it can never be worse than DYNPROG by more than a logn factor. On large
alphabets, TRIE has an overhead of keeping track of all subtrees that may or may not need to be
expanded. The improving performance of TRIE by increasing subsequence length is also easy to
explain: the trie becomes the sparser the deeper the search level. Thus deepening the search is
relatively cheap.

From the point of view algorithm development, an open question is whether thetime-complexity
of the sparse dynamic programming approach could reduced belowO(p|M| logn). The literature
on geometric range searching does not a direct route forward: no index structures are known for
one or two-dimensional range queries that can be maintained in less than amortizedO(logn) time
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Figure 11: Regimes of subsequence lengthp, document size (x-axis) and inverse frequency of
matching letters (y-axis), where SPARSE is faster than DYNPROG on Chinese news ar-
ticles. Document pairs marked with ’+’ requirep > 20, circles require 11≤ p ≤ 20,
boxes require 6≤ p≤ 10, and for diamondsp = 5 is sufficient.

per query (Agarwal and Erickson, 1999), even when taking advantage of the fact that the points are
situated on an integer grid (Overmars, 1988, Alstrup et al., 2000). On the other hand the best lower
bounds are of orderΩ(log logn) per query (Chazelle, 1995).

There are amortizedO(α(n)) time range query methods, whereα(n) is the inverse Ackermann’s
function, but they requireO(|s||t|) (Chazelle and Rosenberg, 1989) orO(|M|2) preprocessing (Poon,
2003)—which would lead toO(p|s||t|) andO(p|M|2) total time complexity in our case, if applied in
a straightforward manner. But, could we getO(p|M|α(|M|)+ |s||t|) complexity by taking advantage
of the fact that the match sets satisfyM1 ⊃ M2 ⊃ ·· · ⊃ Mp? Moreover, each match setMl is highly
structured: for eachl ≤ i ≤ |s| we make the the range querysequence[1, j1] ⊂ [1, j2] ⊂ ·· · ⊂
[1, jr ], wheresi = t jh, l < jh ≤ |t|. In addition, for i and i′ that satisfysi = si′ exactly the same
query sequence is made. However, taking advantage of this appears to be non-trivial. For example,
maintaining a separate range-query index for each character would result in O(p|M||Σ|)≈O(p|s||t|)
time complexity.

6. Conclusions

We presented a sparse dynamic programming algorithm that efficiently computes the gap-weighted
string kernels. The algorithm is easily adaptable to different string kernelvariants, including fixed-
length and bounded-length subsequence kernels and different gap penalization schemes, includ-
ing penalization by total length of the gaps and number of the gaps as well as character specific
gap/match penalization.

Our empirical results suggest that the sparse dynamic programming approach could be useful in
text categorization applications when using syllable or word alphabets. Such alphabets have shown
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to be useful in document classification tasks (Saunders et al., 2002, Cancedda et al., 2003). As the
algorithm scales well to long documents when the alphabet is large, it could find use in classification
of longer documents than the relatively short news stories, for instance,full-length research articles.
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Abstract

Several large scale data mining applications, such as text categorization and gene expression anal-
ysis, involve high-dimensional data that is also inherently directional in nature. Often such data is
L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures
of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a gen-
erative mixture-model approach to clustering directionaldata based on the von Mises-Fisher (vMF)
distribution, which arises naturally for data distributedon the unit hypersphere. In particular, we
derive and analyze two variants of the Expectation Maximization (EM) framework for estimating
the mean and concentration parameters of this mixture. Numerical estimation of the concentra-
tion parameters is non-trivial in high dimensions since it involves functional inversion of ratios of
Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM
that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has
been widely employed by the information retrieval community, and obtains the spherical kmeans
algorithm (kmeans with cosine similarity) as a special caseof both variants. Empirical results on
clustering of high-dimensional text and gene-expression data based on a mixture of vMF distribu-
tions show that the ability to estimate the concentration parameter for each vMF component, which
is not present in existing approaches, yields superior results, especially for difficult clustering tasks
in high-dimensional spaces.

Keywords: clustering, directional distributions, mixtures, von Mises-Fisher, expectation maxi-
mization, maximum likelihood, high dimensional data
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1. Introduction

Clustering or segmentation of data is a fundamental data analysis step that hasbeen actively inves-
tigated by many research communities over the past few decades (Jain and Dubes, 1988). However,
traditional methods for clustering data are severely challenged by a varietyof complex charac-
teristics exhibited by certain recent data sets examined by the machine learningand data mining
communities. These data sets, acquired from scientific domains and the world wide web, also im-
pose significant demands on scalability, visualization and evaluation of clustering methods (Ghosh,
2003). In this paper we focus on clustering objects such as text documents and gene expressions,
where the complexity arises from their representation as vectors that are not only very high dimen-
sional (and often sparse) but alsodirectional, i.e., the vector direction is relevant, not its magnitude.

One can broadly categorize clustering approaches to be either generative (also known as para-
metric or probabilistic) (Smyth, 1997; Jaakkola and Haussler, 1999) or discriminative (non-parametric)
(Indyk, 1999; Scḧolkopf and Smola, 2001). The performance of an approach, and of a specific
method within that approach, is quite data dependent; there is no clustering method that works the
best across all types of data. Generative models, however, often provide greater insight into the
anatomy of the clusters. A lot of domain knowledge can be incorporated into generative models, so
that clustering of data uncovers specific desirable patterns that one is looking for.

Clustering algorithms using the generative model framework, often involve an appropriate ap-
plication of the Expectation Maximization (EM) algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 1997) on a properly chosen statistical generative model forthe data under consideration.
For vector data, there are well studied clustering algorithms for popular generative models such as a
mixture of multivariate Gaussians, whose effect is analogous to the use of Euclidean or Mahalanobis
type distances as the chosen measure of distortion from the discriminative perspective.

The choice of a particular distortion measure (or the corresponding generative model) can be
crucial to the performance of a clustering procedure. There are several domains where methods
based on minimizing Euclidean distortions yield poor results (Strehl et al., 2000). For example,
studies in information retrieval applications convincingly demonstratecosine similarityto be a more
effective measure of similarity for analyzing and clustering text documents.In this domain, there is
substantial empirical evidence that normalizing the data vectors helps to remove the biases induced
by the length of a document and provide superior results (Salton and McGill,1983; Salton and
Buckley, 1988). Further, the spherical kmeans (spkmeans) algorithm (Dhillon and Modha, 2001),
that performs kmeans using cosine similarity instead of Euclidean distortion, has been found to work
well for text clustering. Data Sets from such domains, where similarity measures such as cosine,
Jaccard or Dice (Rasmussen, 1992) are more effective than measuresderived from Mahalanobis type
distances, possess intrinsic “directional” characteristics, and are hence better modeled asdirectional
data(Mardia and Jupp, 2000).1

There are many other important domains such as bioinformatics (e.g., Eisen etal. (1998)),
collaborative filtering (e.g., Sarwar et al. (2001)) etc., in which directional data is encountered.
Consider the Pearson correlation coefficient, which is a popular similarity measure in both these
domains . Givenx,y ∈ R

d, the Pearson product moment correlation between them is given by

ρ(x,y) = ∑d
i=1(xi−x̄)(yi−ȳ)√

∑d
i=1(xi−x̄)2

√
∑d

i=1(yi−ȳ)2
, where ¯x= 1

d ∑d
i=1xi , ȳ= 1

d ∑d
i=1yi . Consider the mappingx 7→ x̃

such that ˜xi = xi−x̄√
∑d

i=1(xi−x̄)2
, and a similar mapping fory. Then we haveρ(x,y) = x̃

T
ỹ. Moreover,

1. This paper treatsL2 normalized data and directional data as synonymous.
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‖x̃‖2 = ‖ỹ‖2 = 1. Thus, the Pearson correlation is exactly the cosine similarity between ˜x andỹ.
Hence, analysis and clustering of data using Pearson correlations is essentially a clustering problem
for directional data.

1.1 Contributions

In this paper2 we present a generative model, consisting of a mixture of von Mises-Fisher (vMF)
distributions, tailored for directional data distributed on the surface of a unit hypersphere. We derive
two clustering algorithms based on EM for estimating the parameters of the mixture model from first
principles. The algorithm involves estimating aconcentrationparameter,κ, for high dimensional
data. The ability to adaptκ on a per-component basis leads to substantial performance improve-
ments over existing generative approaches to modeling directional data. Weshow a connection
between the proposed methods and a class of existing algorithms for clustering high-dimensional
directional data. In particular, our generative model has the same relationto spkmeans as a model
based on a mixture of unit covariance Gaussians has to classicalkmeans that uses squared Eu-
clidean distances. We also present detailed experimental comparisons of the proposed algorithms
with spkmeans and one of its variants. Our formulation uncovers the theoretical justificationbehind
the use of the cosine similarity measure that has largely been ad-hoc, i.e., based on empirical or
intuitive justification, so far.

Other key contributions of the paper are:

• It exposes the vMF model to the learning community and presents a detailed parameter es-
timation method for learning mixtures of vMF distributions in high-dimensions. Previously
known parameter estimates for vMF distributions are reasonable only for low-dimensional
data (typically only 2 or 3 dimensional data is considered) and are hence not applicable to
many modern applications such as text clustering.

• We show that hard assignments maximize a tight lower bound on the incomplete log-likelihood
function. In addition, our analysis of hard assignments is applicable to any mixture model
learning using EM. This result is particularly important when using mixtures ofvMFs since
the computational needs for hard assignments are lower than what is required for the standard
soft assignments (E-step) for these models.

• Extensive experimental results are provided on benchmark text and gene-expression data sets
to show the efficacy of the proposed algorithms for high-dimensional, directional data. Good
results are obtained even for fairly skewed data sets. A recent study (Banerjee and Langford,
2004) using PAC-MDL bounds for evaluation of clustering algorithms also demonstrated the
efficacy of the proposed approaches.

• An explanation of the superior performance of the soft-assignment algorithm is obtained by
drawing an analogy between the observed cluster formation behavior andlocally adaptive
annealing. See Section 7 for further details.

2. An earlier, short version of this paper appeared as:Generative Model-based Clustering of Directional Datain Pro-
ceedings KDD, 2003.
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1.2 Related Work

There has been an enormous amount of work on clustering a wide variety of data sets across multiple
disciplines over the past fifty years (Jain and Dubes, 1988). The methods presented in this paper are
tailored for high-dimensional data with directional characteristics, rather than for arbitrary data sets.
In the learning community, perhaps the most widely studied high-dimensional directional data stem
from text documents represented by vector space models. Much of the work in this domain uses dis-
criminative approaches (Steinbach et al., 2000; Zhao and Karypis, 2004). For example, hierarchical
agglomerative methods based on cosine, Jaccard or Dice coefficients were dominant for text cluster-
ing till the mid-1990s (Rasmussen, 1992). Over the past few years several new approaches, ranging
from spectral partitioning (Kannan et al., 2000; Zhao and Karypis, 2004), to the use of generative
models from the exponential family, e.g., mixture of multinomials or Bernoulli distributions (Nigam
et al., 2000) etc., have emerged. A fairly extensive list of references on generative approaches to
text clustering can be found in (Zhong and Ghosh, 2003a).

Of particular relevance to this work is thespkmeans algorithm (Dhillon and Modha, 2001),
which adapts thekmeans algorithm to normalized data by using the cosine similarity for cluster
allocation, and also by re-normalizing the cluster means to unit length. Thespkmeans algorithm
is superior to regularkmeans for high-dimensional text data, and competitive or superior in both
performance and speed to a wide range of other existing alternatives fortext clustering (Strehl et al.,
2000). It also provides better characterization of clusters in terms of theirtop representative or
discriminative terms.

The larger topic of clustering very high-dimensional data (dimension in the thousands or more),
irrespective of whether it is directional or not, has also attracted great interest lately. Again, most of
the proposed methods of dealing with the curse of dimensionality in this context follow a density-
based heuristic or a discriminatory approach (Ghosh, 2003). Among generative approaches for
clustering high-dimensional data, perhaps the most noteworthy is one that uses low dimensional
projections of mixtures of Gaussians (Dasgupta, 1999). It turns out that one of our proposed meth-
ods alleviates problems associated with high dimensionality via an implicit local annealing behavior.

The vMF distribution is known in the literature on directional statistics (Mardia and Jupp, 2000),
and the maximum likelihood estimates (MLE) of the parameters have been given for a single dis-
tribution. Recently Piater (2001) obtained parameter estimates for a mixture forcircular, i.e., 2-
dimensional vMFs. In an Appendix to his thesis, Piater (2001) starts on an EM formulation for
2-D vMFs but cites the difficulty of parameter estimation (especiallyκ) and eventually avoids do-
ing EM in favor of another numerical gradient descent based scheme. Mooney et al. (2003) use a
mixture of two circular von Mises distributions to estimate the parameters using a quasi-Newton
procedure. Wallace and Dowe (2000) perform mixture modeling for circular von Mises distribu-
tions and have produced a software called Snob that implements their ideas. McLachlan and Peel
(2000) discuss mixture analysis of directional data and mention the possibility of using Fisher distri-
butions (3-dimensional vMFs), but instead use 3-dimensional Kent distributions (Mardia and Jupp,
2000). They also mention work related to the clustering of directional data, but all the efforts in-
cluded by them are restricted to 2-D or 3-D vMFs. Indeed, McLachlan and Peel (2000) also draw
attention to the difficulty of parameter estimation even for 3-D vMFs. Even for asingle component,
the maximum-likelihood estimate for the concentration parameterκ involves inverting a ratio of
two Bessel functions, and current ways of approximating this operation are inadequate for high-
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dimensional data. It turns out that our estimate forκ translates into a substantial improvement in
the empirical results.

The connection between a generative model involving vMF distributions with constantκ and
the spkmeans algorithm was first observed by Banerjee and Ghosh (2002). A variant that could
adapt in an on-line fashion leading to balanced clustering solutions was developed by Banerjee and
Ghosh (2004). Balancing was encouraged by taking a frequency-sensitive competitive learning ap-
proach in which the concentration of a mixture component was made inverselyproportional to the
number of data points already allocated to it. Another online competitive learningscheme using
vMF distributions for minimizing a KL-divergence based distortion was proposed by Sinkkonen
and Kaski (2001). Note that the full EM solution was not obtained or employed in either of these
works. Recently a detailed empirical study of several generative models for document clustering,
including a simple mixture-of-vMFs model that constrains the concentrationκ to be the same for all
mixture components during any iteration was presented by Zhong and Ghosh(2003b). Even with
this restriction, this model was superior to both hard and soft versions of multivariate Bernoulli and
multinomial models. These positive results further motivate the current paperin which we present
the general EM solution for parameter estimation of a mixture of vMF distributions. This enhance-
ment leads to even better clustering performance for difficult clustering tasks: when clusters overlap,
when cluster sizes are skewed, and when cluster sizes are small relativeto the dimensionality of the
data. In the process, several new, key insights into the nature of hard vs. soft mixture modeling and
the behavior of vMF based mixture models are obtained.

The remainder of the paper is organized as follows. We review the multi-variate vMF distri-
bution in Section 2. In Section 3 we introduce a generative model using a mixture of vMF distri-
butions. We then derive the maximum likelihood parameter estimates of this model byemploying
an EM framework. Section 4 highlights our new method of approximatingκ and also presents
a mathematical analysis of hard assignments. Sections 3 and 4 form the basis for two clustering
algorithms using soft and hard-assignments respectively, that are proposed in Section 5. Detailed
experimental results and comparisons with other algorithms are offered in Section 6. A discussion
on the behavior of our algorithms and a connection with simulated annealing follows in Section 7.
Section 8 concludes our paper and highlights some possible directions for future work.

Notation. Bold faced variables, e.g.,x,µ represent vectors; the norm‖ ·‖ denotes theL2 norm;
sets are represented by script-style upper-case letters, e.g.,X , Z. The set of reals is denoted byR,
while S

d−1 denotes the(d−1)-dimensional sphere embedded inR
d. Probability density functions

are denoted by lower case letters such asf , p, q and the probability of a set of events is denoted by
P. If a random vectorx is distributed asp(·), expectations of functions ofx are denoted byEp[·].

2. Preliminaries

In this section, we review the von Mises-Fisher distribution and maximum likelihood estimation of
its parameters from independent samples.

2.1 The von Mises-Fisher (vMF) Distribution

A d-dimensional unit random vectorx (i.e.,x ∈ R
d and‖x‖= 1, or equivalentlyx ∈ S

d−1) is said
to haved-variate von Mises-Fisher (vMF) distribution if its probability density functionis given by

f (x|µ,κ) = cd(κ)eκµ
T
x, (2.1)
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where‖µ‖= 1, κ≥ 0 andd≥ 2. The normalizing constantcd(κ) is given by

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2.2)

where Ir(·) represents the modified Bessel function of the first kind and orderr. The density
f (x|µ,κ) is parameterized by the mean directionµ, and theconcentrationparameterκ, so-called
because it characterizes how strongly the unit vectors drawn according to f (x|µ,κ) are concentrated
about the mean directionµ. Larger values ofκ imply stronger concentration about the mean direc-
tion. In particular whenκ = 0, f (x|µ,κ) reduces to the uniform density onSd−1, and asκ→ ∞,
f (x|µ,κ) tends to a point density. The interested reader is referred to Mardia and Jupp (2000),
Fisher (1996) or Dhillon and Sra (2003) for details on vMF distributions.

The vMF distribution is one of the simplest parametric distributions for directional data, and has
properties analogous to those of the multi-variate Gaussian distribution for data inR

d. For example,
the maximum entropy density onSd−1 subject to the constraint thatE[x] is fixed is a vMF density
(see Rao (1973, pp. 172–174) and Mardia (1975) for details).

2.2 Maximum Likelihood Estimates

In this section we look briefly at maximum likelihood estimates for the parameters ofa single vMF
distribution. The detailed derivation can be found in Appendix A. LetX be a finite set of sample
unit vectors drawn independently followingf (x|µ,κ) (2.1), i.e.,

X = {xi ∈ S
d−1 | xi drawn following f (x|µ,κ) for 1≤ i ≤ n}.

Given X we want to find maximum likelihood estimates for the parametersµ andκ of the distri-
bution f (x|µ,κ). Assuming thexi to be independent and identically distributed, we can write the
log-likelihood ofX as

lnP(X |µ,κ) = nlncd(κ)+κµ
T
r, (2.3)

wherer = ∑i xi . To obtain the maximum likelihood estimates ofµ andκ, we have to maximize (2.3)
subject to the constraintsµT

µ = 1 andκ ≥ 0. After some algebra (details may be found in Sec-
tion A.1) we find that the MLE solutions ˆµ andκ̂ may be obtained from the following equations:

µ̂ =
r

‖r‖ =
∑n

i=1xi

‖∑n
i=1xi‖

, (2.4)

and
Id/2(κ̂)

Id/2−1(κ̂)
=
‖r‖
n

= r̄. (2.5)

Since computinĝκ involves an implicit equation (2.5) that is a ratio of Bessel functions, it is
not possible to obtain an analytic solution, and we have to take recourse to numerical or asymptotic
methods to obtain an approximation (see Section 4.1).

3. EM on a Mixture of vMFs (moVMF)

We now consider a mixture ofk vMF (moVMF) distributions that serves as a generative model for
directional data. Subsequently we derive the update equations for estimating the mixture-density pa-
rameters from a given data set using the Expectation Maximization (EM) framework. Let fh(x|θh)
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denote a vMF distribution with parameterθh = (µh,κh) for 1≤ h≤ k. Then a mixture of thesek
vMF distributions has a density given by

f (x|Θ) =
k

∑
h=1

αh fh(x|θh), (3.1)

whereΘ = {α1, · · · ,αk,θ1, · · · ,θk} and theαh are non-negative and sum to one. To sample a point
from this mixture density we choose theh-th vMF randomly with probabilityαh, and then sample a
point (onS

d−1) following fh(x|θh). Let X = {x1, · · · ,xn} be a data set ofn independently sampled
points that follow (3.1). LetZ = {z1, · · · ,zn} be the corresponding set of hidden random variables
that indicate the particular vMF distribution from which the points are sampled. In particular,zi = h
if xi is sampled fromfh(x|θh). Assuming that the values in the setZ are known, the log-likelihood
of the observed data is given by

lnP(X ,Z|Θ) =
n

∑
i=1

ln(αzi fzi (xi |θzi )) . (3.2)

Obtaining maximum likelihood estimates for the parameters would have been easy were thezi truly
known. Unfortunately that is not the case, and (3.2) is really a random variable dependent on the
distribution ofZ—this random variable is usually called thecomplete data log-likelihood. For a
given(X ,Θ), it is possible to estimate the most likely conditional distribution ofZ|(X ,Θ), and this
estimation forms the E-step in an EM framework.

Using an EM approach for maximizing the expectation of (3.2) with the constraints µ
T
h µh = 1

andκh≥ 0, we obtain (see Appendix A.2),

αh =
1
n

n

∑
i=1

p(h|xi ,Θ), (3.3)

rh =
n

∑
i=1

xi p(h|xi ,Θ), (3.4)

µ̂h =
rh

‖rh‖
, (3.5)

Id/2(κ̂h)

Id/2−1(κ̂h)
=

‖rh‖
∑n

i=1 p(h|xi ,Θ)
. (3.6)

Observe that (3.5) and (3.6) are intuitive generalizations of (2.4) and (2.5) respectively, and they
correspond to an M-step in an EM framework. Given these parameter updates, we now look at
schemes for updating the distributions ofZ|(X ,Θ) (i.e., an E-step) to maximize the likelihood of
the data given the parameters estimates above.

From the standard EM framework, the distribution of the hidden variables (Neal and Hinton,
1998; Bilmes, 1997) is given by

p(h|xi ,Θ) =
αh fh(xi |Θ)

∑k
l=1 αl fl (xi |Θ)

. (3.7)

It can be shown (Collins, 1997) that theincomplete data log-likelihood, ln p(X |Θ), is non-decreasing
at each iteration of the parameter and distribution updates. Iteration over these two updates provides
the foundation for oursoft-moVMF algorithm given in Section 5.
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Our second update scheme is based on the widely used hard-assignment heuristic for unsuper-
vised learning. In this case, the distribution of the hidden variables is givenby

q(h|xi ,Θ) =







1, if h = argmax
h′

p(h′|xi ,Θ),

0, otherwise.
(3.8)

We analyze the above hard-assignment rule in Section 4, and show that it maximizes a lower bound
on the incomplete data log-likelihood. Iteration over the M-step and the hard-assignment rule leads
to thehard-moVMF algorithm given in Section 5.

4. Handling Large and High-Dimensional Data Sets

Although the mixture model outlined in section 3 seems quite straight-forward, there are some of
critical issues that need to be addressed before one can apply the modelto large high-dimensional
data sets:

A. How to computeκh,h = 1, . . . ,k from (3.6) for high-dimensional data?

B. Is it possible to significantly reduce computations and still get a reasonable clustering?

We address both these issues in this section, as they are significant for large high-dimensional data
sets. The problem of estimatingκh is analyzed in Section 4.1. In Section 4.2 we show that hard
assignments can reduce computations significantly while giving a reasonableclustering.

4.1 Approximating κ

Recall that because of the lack of an analytical solution, it is not possible todirectly estimate the
κ values (see (2.5) and (3.6)). One may employ a nonlinear root-finder forestimatingκ, but for
high dimensional data, problems of overflows and numerical instabilities plague such root-finders.
Therefore, an asymptotic approximation ofκ is the best choice for estimatingκ. Such approaches
also have the benefit of taking constant computation time as opposed to any iterative method.

Mardia and Jupp (2000) provided approximations for estimatingκ for a single component (2.5),
for two limiting cases (Approximations (10.3.7) and (10.3.10) of Mardia and Jupp (2000, pp. 198)):

κ̂≈ d−1
2(1− r̄)

valid for large ¯r, (4.1)

κ̂≈ dr̄

(

1+
d

d+2
r̄2 +

d2(d+8)

(d+2)2(d+4)
r̄4

)

valid for small ¯r, (4.2)

where ¯r is given by (2.5).
These approximations assume thatκ� d, which is typically not valid for high dimensions

(see the discussion in Section 7 for an intuition). Also, the ¯r values corresponding to the text
and gene expression data sets considered in this paper are in the mid-rangerather than in the two
extreme ranges of ¯r that are catered to by the above approximations. We obtain a more accurate

approximation forκ as described below. WithAd(κ) =
Id/2(κ)

Id/2−1(κ) , observe thatAd(κ) is a ratio of
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Bessel functions that differ in their order by just one. Fortunately thereexists a continued fraction
representation ofAd(κ) (Watson, 1995) given by

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
=

1

d
κ +

1
d+2

κ + · · ·

. (4.3)

LettingAd(κ) = r̄ we can write (4.3) approximately as

1
r̄
≈ d

κ
+ r̄ ,

which gives the approximation,

κ≈ dr̄
1− r̄2 .

We empirically found (see Section A.3 for details) that the quality of the above approximation can
be improved by adding a correction term of−r̄3/(1− r̄2) to it. Thus we finally get

κ̂ =
r̄d− r̄3

1− r̄2 . (4.4)

The approximation in (4.4) could perhaps be made even more accurate by adding other correction
terms that are functions of ¯r andd.3 For other approximations ofκ (including the derivations of (4.1)
and (4.2)) and some related issues, the reader is referred to the detailed exposition in Dhillon and
Sra (2003).

To properly assess the quality of our approximation and compare it with (4.1)and (4.2), first
note that a particular value of ¯r may correspond to many different combinations ofκ andd values.
Thus, one needs to evaluate the accuracy of the approximations over the parts of thed-κ plane that
are expected to be encountered in the target application domains. Section A.3of the Appendix
provides such an assessment by comparing performances over different slices of thed-κ plane and
over a range of ¯r values. Below we simply compare the accuracies at a scattering of points on this
plane via Table 1 which shows the actual numerical values ofκ that the three approximations (4.1),
(4.2), and (4.4) yielded at these points. The ¯r values shown in the table were computed using (2.5).

(d, r̄,κ) κ̂ = Eq. (4.1) κ̂ = Eq. (4.2) κ̂ = Eq. (4.4)
(10,0.633668,10) 12.2839 9.36921 10.1631
(100,0.46945,60) 93.2999 59.3643 60.0833
(500,0.46859,300) 469.506 296.832 300.084

(1000,0.554386,800) 1120.92 776.799 800.13

Table 1: Approximationŝκ for a sampling ofκ andd values.

3. Note that if one wants a more accurate approximation, it is easier to use (4.4) as a starting point and then perform
Newton-Raphson iterations for solvingAd(κ̂)− r̄ = 0, since it is easy to evaluateA′d(κ) = 1−Ad(κ)2− d−1

κ Ad(κ).
However, for high-dimensional data, accurately computingAd(κ) can be quite slow compared to efficiently approxi-
matingκ̂ using (4.4).
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4.2 Analysis of Hard Assignments

In this subsection, we show that hard assignments should give a reasonable clustering in terms of the
log-likelihood since they actually maximize a tight lower bound on the incomplete log-likelihood of
the data. This result is applicable to any mixture model learning using EM, but the practical advan-
tage in terms of lower computational demands seems to be more substantial when using mixtures
of vMFs. The advantages are derived from the various facts outlined below:

• First, note that the partition function,∑k
l=1 αl fl (xi |θl ), for every data pointxi need not be

computed for hard-assignments. This may not be a significant differencefor several other
models, but this is quite important for vMF distributions. Since the normalization terms
cd(κh) in fh(xi |θh) involve Bessel functions, any reasonable implementation of the algorithm
has to employ high-precision representation to avoid under- and over-flows. As a result,
computing the partition function is computationally intensive. For hard assignments, this
computation is not required resulting in substantially faster running times. In particular, hard-
assignments needO(k) computations in high-precision per iteration simply to compute the
normalization termscd(κh),h = 1, . . . ,k. On the other hand, soft-assignments needO(nk)
computations in high-precision per iteration for allfl (xi |θl ) so that the partition function
∑k

l=1 αl fl (xi |θl ) and the probabilitiesp(h|xi ,Θ) can be accurately computed.

• A second issue is regarding the space complexity. Since soft assignments compute all the
conditional probabilities, the algorithm has to maintainnk floating point numbers at a desired
level of precision. On the other hand, hard assignments only need to maintainthe cluster
assignments of each point, i.e.,n integers. This issue can become critical for large data sets
and large number of clusters.

Hence, a hard assignment scheme is often computationally more efficient andscalable both in terms
of time and space complexity.

We begin by investigating certain properties of hard-assignments. Hard-assignments have seen
extensively used in the statistics (Coleman et al., 1999; McLachlan and Peel, 2000) as well as
machine learning literature (Kearns et al., 1997; Banerjee et al., 2004). In statistics, the hard as-
signment approach is better known as classification maximum likelihood approach (McLachlan,
1982). Although soft-assignments are theoretically well motivated (Collins, 1997; Neal and Hinton,
1998), hard-assignments have not received much theoretical attention with some notable excep-
tions (Kearns et al., 1997). However, algorithms employing hard-assignments, being computation-
ally more efficient especially for large data sets, are often typically more practical than algorithms
that use soft-assignments. Hence it is worthwhile to examine the behavior of hard-assignments from
a theoretical perspective. In the rest of this section, we formally study theconnection between soft
and hard-assignments in the EM framework.

The distributionq in (3.8) belongs to the classH of probability distributions that assume prob-
ability value 1 for some mixture component and 0 for all others. In the hard assignment setting, the
hidden random variables are restricted to have distributions that are members of H . SinceH is a
subset of all possible distributions on the events, for a typical mixture modelthe distribution follow-
ing (3.7) will not belong to this subset. The important question is: Is there a way to optimally pick
a distribution fromH , perform a regular M-step, and guarantee that the incomplete log-likelihood
of the data does not decrease? Unfortunately, such a way may not existin general. However, it
is possible to reasonably lower bound the incomplete log-likelihood of the data using expectations
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over anoptimaldistributionq∈ H , as elucidated below. Thus, clustering using hard-assignments
essentially maximizes a lower bound on the incomplete log-likelihood.

We now show that the expectation overq is a reasonable lower bound on the incomplete log-
likelihood of the data in the sense that the expectation overq is itself lower bounded by the expec-
tation of the complete log-likelihood (3.2) over the distributionp given by (3.7). Further, we show
thatq as given by (3.8) gives the tightest lower bound among all distributions inH .

Following the arguments of Neal and Hinton (1998), we introduce the function F(p̃,Θ) given
by

F(p̃,Θ) = Ep̃[lnP(X ,Z|Θ)]+H(p̃), (4.5)

whereH(p̃) gives the Shannon entropy of a discrete distribution ˜p. The E- and the M-steps of the
EM algorithm can be shown toalternately maximizethe functionF . In the E-step, for a given value
of Θ, the distribution ˜p is chosen to maximizeF(p̃,Θ) for that Θ, and, in the M-step, for a given
value of p̃, the parametersΘ are estimated to maximizeF(p̃,Θ) for the given ˜p. Considerp given
by (3.7). It can be shown (Neal and Hinton, 1998) that for a givenΘ, this value ofp is optimal, i.e,
p = argmax̃pF(p̃,Θ). Then,

F(p,Θ) = Ep[lnP(X ,Z|Θ)]+H(p)

= Ep[lnP(X ,Z|Θ)]−Ep[lnP(Z|(X ,Θ))]

= Ep

[

ln

(

P(X ,Z|Θ)

P(Z|(X ,Θ))

)]

= Ep[lnP(X |Θ)]

= lnP(X |Θ). (4.6)

Since (3.7) gives the optimal choice of the distribution, the functional value of F is smaller for any
other choice of ˜p. In particular, if p̃ = q as in (3.8), we have

F(q,Θ)≤ F(p,Θ) = lnP(X |Θ).

SinceH(q) = 0, from (4.5) we have

Eq[lnP(X ,Z|Θ)]≤ lnP(X |Θ). (4.7)

Thus, the expectation overq actually lower bounds the likelihood of the data. We go one step further
to show that this is in fact a reasonably tight lower bound in the sense that theexpectation overq is
lower bounded by the expectation overp of the complete data log-likelihood. To this end, we first
prove the following result.

Lemma 1 If p is given by (3.7) and q is given by (3.8) then,

Ep[lnP(Z|(X ,Θ))]≤ Eq[lnP(Z|(X ,Θ))].
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Proof Let h∗i = argmax
h

p(h|xi ,Θ). Then,p(h|xi ,Θ) ≤ p(h∗i |xi ,Θ),∀h. Using the definitions ofp

andq, we have

Ep[lnP(Z|(X ,Θ))] =
n

∑
i=1

k

∑
h=1

p(h|xi ,Θ) ln p(h|xi ,Θ)

≤
n

∑
i=1

k

∑
h=1

p(h|xi ,Θ) ln p(h∗i |xi ,Θ)

=
n

∑
i=1

ln p(h∗i |xi ,Θ)
k

∑
h=1

p(h|xi ,Θ) =
n

∑
i=1

ln p(h∗i |xi ,Θ)

=
n

∑
i=1

k

∑
h=1

q(h|xi ,Θ) ln p(h|xi ,Θ)

= Eq[lnP(Z|(X ,Θ))].

Now, adding the incomplete data log-likelihood to both sides of the inequality proven above, we
obtain

Ep[lnP(Z|(X ,Θ))]+ lnP(X |Θ) ≤ Eq[lnP(Z|(X ,Θ))]+ lnP(X |Θ),

Ep[ln(P(Z|(X ,Θ))P(X |Θ))] ≤ Eq[ln(P(Z|(X ,Θ))P(X |Θ))],

Ep[lnP(X ,Z|Θ)] ≤ Eq[lnP(X ,Z|Θ)]. (4.8)

From, (4.7) and (4.8), we infer

Ep[lnP(X ,Z|Θ)]≤ Eq[lnP(X ,Z|Θ)]≤ lnP(X |Θ).

Let q̃ be any other distribution in the class of distributionsH with q̃(h̃i |xi ,Θ) = 1 andq̃(h|xi ,Θ = 0)
for h 6= h̃i . Then,

Eq̃[lnP(Z|X ,Θ)] =
n

∑
i=1

k

∑
h=1

q̃(h|xi ,Θ) ln p(h|xi ,Θ) =
n

∑
i=1

ln p(h̃i |xi ,Θ)

≤
n

∑
i=1

ln p(h∗i |xi ,Θ) =
n

∑
i=1

k

∑
h=1

q(h|xi ,Θ) ln p(h|xi ,Θ)

= Eq[lnP(Z|X ,Θ)].

Hence, the choice ofq as in (3.8) is optimal. This analysis forms the basis of thehard-moVMF
algorithm presented in the next section.

5. Algorithms

The developments of the previous section naturally lead to two algorithms for clustering directional
data. The algorithms are centered on soft and hard-assignment schemesand are titledsoft-moVMF
andhard-moVMF respectively. Thesoft-moVMF algorithm (Algorithm 1) estimates the parameters
of the mixture model exactly following the derivations in Section 3 using EM. Hence, it assigns soft
(or probabilistic) labels to each point that are given by the posterior probabilities of the components
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Algorithm 1 soft-moVMF

Input: SetX of data points onSd−1

Output: A soft clustering ofX over a mixture ofk vMF distributions
Initialize all αh,µh,κh, h = 1, · · · ,k
repeat
{The E (Expectation) step of EM}
for i = 1 ton do

for h = 1 tok do
fh(xi |θh)← cd(κh)e

κhµ
T
h xi

end for
for h = 1 tok do

p(h|xi ,Θ)← αh fh(xi |θh)

∑k
l=1 αl fl (xi |θl )

end for
end for
{The M (Maximization) step of EM}
for h = 1 tok do

αh← 1
n ∑n

i=1 p(h|xi ,Θ)
µh← ∑n

i=1xi p(h|xi ,Θ)
r̄ ←‖µh‖/(nαh)
µh← µh/‖µh‖
κh← r̄d−r̄3

1−r̄2

end for
until convergence

of the mixture conditioned on the point. On termination, the algorithm gives the parametersΘ =
{αh,µh,κh}kh=1 of thek vMF distributions that model the data setX , as well as thesoft-clustering,
i.e., the posterior probabilitiesp(h|xi ,Θ), for all h andi.

Thehard-moVMF algorithm (Algorithm 2) estimates the parameters of the mixture model using
a hard assignment, or,winner takes allstrategy. In other words, we do the assignment of the
points based on a derived posterior distribution given by (3.8). After thehard assignments in every
iteration, each pointbelongsto a single cluster. As before, the updates of the component parameters
are done using the posteriors of the components, given the points. The crucial difference in this case
is that the posterior probabilities are allowed to take only binary (0/1) values.Upon termination,
Algorithm 2 yields a hard clustering of the data and the parametersΘ = {αh,µh,κh}kh=1 of the k
vMFs that model the input data setX .

5.1 Revisiting Spherical Kmeans

In this section we show that upon enforcing certain restrictive assumptionson the generative model,
thespkmeans algorithm (Algorithm 3) can be viewed as a special case of both thesoft-moVMF and
hard-moVMF algorithms.

More precisely, assume that in our mixture of vMFs, the priors of all the components are equal,
i.e., αh = 1/k for all h. Further assume that all the components have (equal) infinite concentration
parameters, i.e.,κh = κ→ ∞ for all h. Under these assumptions the E-step in thesoft-moVMF
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Algorithm 2 hard-moVMF

Input: SetX of data points onSd−1

Output: A disjoint k-partitioning ofX
Initialize all αh,µh,κh, h = 1, · · · ,k
repeat
{The Hardened E (Expectation) step of EM}
for i = 1 ton do

for h = 1 tok do
fh(xi |θh)← cd(κh)e

κhµ
T
h xi

end for
for h = 1 tok do

q(h|xi ,Θ)←







1, if h = argmax
h′

αh′ fh′(xi |θh′)

0, otherwise.
end for

end for
{The M (Maximization) step of EM}
for h = 1 tok do

αh← 1
n ∑n

i=1q(h|xi ,Θ)
µh← ∑n

i=1xiq(h|xi ,Θ)
r̄ ←‖µh‖/(nαh)
µh← µh/‖µh‖
κh← r̄d−r̄3

1−r̄2

end for
until convergence.

algorithm reduces to assigning a point to itsnearestcluster, where nearness is computed as a cosine
similarity between the point and the cluster representative. Thus, a pointxi will be assigned to
clusterh∗ = argmax

h
x

T
i µh, since

p(h∗|xi ,Θ) = lim
κ→∞

eκ x
T
i µh∗

∑k
h=1eκ x

T
i µh

= 1,

andp(h|xi ,Θ)→ 0, asκ→ ∞ for all h 6= h∗.
To show thatspkmeans can also be seen as a special case of thehard-moVMF, in addition

to assuming the priors of the components to be equal, we further assume that the concentration
parameters of all the components are equal, i.e.,κh = κ for all h. With these assumptions on the
model, the estimation of the common concentration parameter becomes unessentialsince the hard
assignment will depend only on the value of the cosine similarityx

T
i µh, andhard-moVMF reduces

to spkmeans.
In addition to the abovementioned algorithms, we report experimental results on another algo-

rithm fskmeans (Banerjee and Ghosh, 2002) that belongs to the same class in the sense that, like
spkmeans, it can be derived from the mixture of vMF models with some restrictive assumptions. In
fskmeans, the centroids of the mixture components are estimated as inhard-movMF. Theκ value
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Algorithm 3 spkmeans

Input: SetX of data points onSd−1

Output: A disjoint k-partitioning{Xh}kh=1 of X

Initialize µh, h = 1, · · · ,k
repeat
{The E (Expectation) step of EM}
SetXh← /0, h = 1, · · · ,k
for i = 1 ton do

Xh← Xh∪{xi} whereh = argmax
h′

x
T
i µh′

end for
{The M (Maximization) step of EM}
for h = 1 tok do

µh←
∑x∈Xh

x

‖∑x∈Xh
x‖

end for
until convergence.

for a component isexplicitly setto be inversely proportional to the number of points in the cluster
corresponding to that component. This explicit choice simulates a frequency sensitive competitive
learning that implicitly prevents the formation of null clusters, a well-known problem in regular
kmeans (Bradley et al., 2000).

6. Experimental Results

We now offer some experimental validation to assess the quality of clustering results achieved by
our algorithms. We compare the following four algorithms on numerous data sets.

1. Spherical KMeans (Dhillon and Modha, 2001)—spkmeans.

2. Frequency Sensitive Spherical KMeans (Banerjee and Ghosh, 2002)—fskmeans.

3. moVMF based clustering using hard assignments (Section 3)—hard-moVMF.

4. moVMF based clustering using soft assignments (Section 3)—soft-moVMF.

It has already been established thatkmeans using Euclidean distance performs much worse than
spkmeans for text data (Strehl et al., 2000), so we do not consider it here. Generative model based
algorithms that use mixtures of Bernoulli or multinomial distributions, which have been shown to
perform well for text data sets, have also not been included in the experiments. This exclusion is
done as a recent empirical study over 15 text data sets showed that simple versions of vMF mixture
models (withκ constant for all clusters) outperform the multinomial model except for onlyone data
set (Classic3), and the Bernoulli model was inferior for all data sets (Zhong and Ghosh, 2003b).

6.1 Data Sets

The data sets that we used for empirical validation and comparison of our algorithms were carefully
selected to represent some typical clustering problems. We also created various subsets of some

1359



BANERJEE, DHILLON , GHOSH AND SRA

of the data sets for gaining greater insight into the nature of clusters discovered or to model some
particular clustering scenario (e.g., balanced clusters, skewed clusters, overlapping clusters etc.).
We drew our data from five sources: Simulation, Classic3, Yahoo News, CMU 20 Newsgroup
and Yeast Gene Expressions. For all the text document data sets, the toolkit MC (Dhillon et al.,
2001) was used for creating a high-dimensional vector space model thateach of the four algorithms
utilized. MATLAB code was used to render the input as a vector space for both the simulated and
gene-expression data sets.

• Simulation. We use simulated data to verify that the discrepancy between computed valuesof
the parameters and their true values is small. Our simulated data serves the principal purpose
of validating the “correctness” of our implementations. We used a slight modification of
the algorithm given by Wood (1994) to generate a set of data points followinga given vMF
distribution. We describe herein, two synthetic data sets. The first data setsmall-mix is
2-dimensional and is used to illustrate soft-clustering. The second data setbig-mix is a high-
dimensional data set that could serve as a model for real world text data sets. Let the triple
(n,d,k) denote the number of sample points, the dimensionality of a sample point and the
number of clusters respectively.

1. small-mix: This data has(n,d,k) = (50,2,2). The mean direction of each component
is a random unit vector. Each component hasκ = 4.

2. big-mix: This data has(n,d,k) = (5000,1000,4). The mean direction of each compo-
nent is a random unit vector, and theκ values of the components are 650.98, 266.83,
267.83, and 612.88. The mixing weights for each component are 0.251, 0.238, 0.252,
and 0.259.

• Classic3. Classic3 is a well known collection of documents. It is an easy data set to clus-
ter since it contains documents from three well-separated sources. Moreover, the intrinsic
clusters are largely balanced.

1. Classic3: This corpus contains 3893 documents, among which 1400 CRANFIELD doc-
uments are from aeronautical system papers, 1033 MEDLINE documents are from med-
ical journals, and 1460 CISI documents are from information retrieval papers. The
particular vector space model used had a total of 4666 features (words). Thus each
document, after normalization, is represented as a unit vector in a 4666-dimensional
space.

2. Classic300: Classic300 is a subset of the Classic3 collection and has 300 documents.
From each category of Classic3, we picked 100 documents at random to form this par-
ticular data set. The dimensionality of the data was 5471.4

3. Classic400: Classic400 is a subset of Classic3 that has 400 documents. This data set
has 100 randomly chosen documents from the MEDLINE and CISI categories and 200
randomly chosen documents from the CRANFIELD category. This data set is specifically
designed to create unbalanced clusters in an otherwise easily separable and balanced
data set. The dimensionality of the data was 6205.

4. Note that the dimensionality in Classic300 is larger than the that of Classic3.Although the same options were used in
the MC toolkit for word pruning, due to very different words distributions, fewer words got prunned for Classic300
in the ’too common’ or ’too rare’ categories.
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• Yahoo News (K-series). This compilation has 2340 Yahoo news articles from 20 different
categories. The underlying clusters in this data set are highly skewed in terms of the number
of documents per cluster, with sizes ranging from 9 to 494. The skewnesspresents additional
challenges to clustering algorithms.

• CMU Newsgroup. The CMU Newsgroup data set is a well known compilation of docu-
ments (Newsgroups). We tested our algorithms on not only the original data set, but on a
variety of subsets with differing characteristics to explore and understand the behavior of our
algorithms.

1. News20: This standard data set is a collection of 19,997 messages, gathered from 20
different USENET newsgroups. One thousand messages are drawn from the first 19
newsgroups, and 997 from the twentieth. The headers for each of the messages are then
removed to avoid biasing the results. The particular vector space model used had 25924
words. News20 embodies the features characteristic of a typical text dataset—high-
dimensionality, sparsity and significantly overlapping clusters.

2. Small-news20: We formed this set by selecting 2000 messages from original News20
data set. We randomly selected 100 messages from each category in the original data
set. Hence this data set has balanced classes (though there may be overlap). The dimen-
sionality of the data was 13406.

3. Same-100/1000 is a collection of 100/1000 messages from 3 very similar newsgroups:
comp.graphics, comp.os.ms-windows, comp.windows.x.

4. Similar-100/1000 is a collection of 100/1000 messages from 3 somewhat similar news-
groups: talk.politics.guns, talk.politics.mideast, talk.politics.misc.

5. Different-100/1000 is a collection of 100/1000 messages from 3 very different news-
groups: alt.atheism, rec.sport.baseball, sci.space.

• Yeast Gene Expressions. Gene-expression data was selected to offer a clustering domain
different from text analysis. As previously motivated, the use of Pearson correlation for the
analysis of gene expression data is common, so a directional model is well-suited. Coincident
to this domain are the difficulties of cluster validation because of the unavailabilityof true
labels. Such difficulties make the gene expression data a more challenging and perhaps a
more rewarding domain for clustering.

Gene expression data is presented as a matrix of genes (rows) by expression values (columns).
The expression vectors are constructed using DNA microarray experiments. We used a subset
of the Rosetta Inpharmatics yeast gene expression set (Hughes et al., 2000). The original data
set consists of 300 experiments measuring expression of 6,048 yeast genes. Out of these we
selected a subset of 996 genes for clustering (Dhillon et al., 2002b). For each of the 996 genes
the 300-element expression vector was normalized to have unit Euclidean (L2) norm.

6.2 Methodology

Except for the gene expression data set, performance of the algorithms on all the data sets has been
analyzed usingmutual information(MI) between the cluster and class labels. For gene data, due to
the absence of true labels, we have to take recourse to reporting some internal figures of merit. We
defer a discussion of the same to Section 6.7.
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The MI gives the amount of statistical similarity between the cluster and class labels (Cover and
Thomas, 1991). IfX is a random variable for the cluster assignments andY is a random variable
for the pre-existing labels on the same data, then their MI is given byI(X;Y) = E[ln p(X,Y)

p(X)p(Y) ] where
the expectation is computed over the joint distribution of(X,Y) estimated from a particular clus-
tering of the data set under consideration. Forsoft-moVMF we “harden” the clustering produced
by labeling a point with the cluster label for which it has the highest value of posterior probability
(ties broken arbitrarily), in order to evaluate MI. Note that variants of MI have been used to evaluate
clustering algorithms by several researchers. Meilă (2003) used a related concept called variation of
information to compare clusterings. An MDL-based formulation that uses the MI between cluster
assignments and class labels was proposed by Dom (2001).

All results reported herein have been averaged over 10 runs. All algorithms were started with the
same random initialization to ensure fairness of comparison. Each run was started with adifferent
random initialization. However, no algorithm was restarted within a given runand all of them were
allowed to run to completion. Since the standard deviations of MI were reasonably small for all
algorithms, to reduce clutter, we have chosen to omit a display of error barsin our plots. Also, for
practical reasons, the estimate ofκ was upper bounded by a large number (104, in this case) in order
to prevent numeric overflows. For example, during the iterations, if a cluster has only one point,
the estimate ofκ will be infinity (a divide by zero error). Upper bounding the estimate is similar in
flavor to ensuring the estimated covariance of a multi-variate Gaussian in a mixture of Gaussians to
be non-singular.

6.3 Simulated Data Sets

First, to build some intuition and confidence in the working of our vMF based algorithms we exhibit
relevant details ofsoft-moVMF’s behavior on the small-mix data set shown in Figure 1(a).
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The small-mix data set. A clustering of small-mix.

Figure 1: Small-mix data set and its clustering bysoft-moVMF.

The clustering produced by our soft cluster assignment algorithm is shown in Figure 1(b). The
four points (taken clockwise) marked with solid circles have cluster labels(0.15,0.85), (0.77,0.23),
(.82, .18) and(.11, .89), where a cluster label(p,1− p) for a point means that the point has proba-
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bility p of belonging to Cluster 1 and probability 1− p of belonging to Cluster 2. All other points
are categorized to belong to a single cluster by ignoring small (less than 0.10) probability values.

The confusion matrix, obtained by “hardening” the clustering produced by soft-moVMF for the

small-mix data set is

[

26 1
0 23

]

. As is evident from this confusion matrix, the clustering performed

by soft-moVMF is excellent, though not surprising, since small-mix is a data set with well-separated
clusters. Further testimony tosoft-moVMF’s performance is served by Table 2, which shows the
discrepancy between true and estimated parameters for the small-mix collection.

Cluster µ µ̂ κ κ̂ α α̂
1 (-0.251, -0.968) (-0.279, -0.960) 4 3.78 0.48 0.46
2 (0.399, 0.917) (0.370, 0.929) 4 3.53 0.52 0.54

Table 2: True and estimated parameters for small-mix usingsoft-moVMF.

In the tableµ,κ,α represent the true parameters and ˆµ,κ̂, α̂ represent the estimated parameters.
We can see that even in the presence of a limited number of data points in the small-mix data set
(50 points), the estimated parameters approximate the true parameters quite well.

Before moving onto real data sets let us briefly look at the behavior of the algorithms on the
larger data set big-mix. On calculating MI as described previously we foundthat all the algorithms
performed similarly with MI values close to one. We attribute this good performance of all the

minµ
T
µ̂ avgµ

T
µ̂ max|κ−κ̂|

|κ| avg|κ−κ̂|
|κ| max|α−α̂|

|α| avg|α−α̂|
|α|

0.994 0.998 0.006 0.004 0.002 0.001

Table 3: Performance ofsoft-moVMF on big-mix data set.

algorithms to the availability of a sufficient number of data points and similar sized clusters. For
reference Table 3 offers numerical evidence about the performanceof soft-moVMF on the big-mix
data set.

6.4 Classic3 Family of Data Sets

Table 4 shows typical confusion matrices obtained for the full Classic3 dataset. We observe that the
performance of all the algorithms is quite similar and there is no added advantageyielded by using
the general moVMF model as compared to the other algorithms. This observation can be explained
by noting that the clusters of Classic3 are well separated and have a sufficient number of documents.
For this clusteringhard-moVMF yieldedκ values of(732.13,809.53,1000.04), while soft-moVMF
reportedκ values of(731.55,808.21,1002.95).

Table 5 shows the confusion matrices obtained for the Classic300 data set. Even though Clas-
sic300 is well separated, the small number of documents per cluster makes theproblem somewhat
difficult for fskmeans andspkmeans, while hard-moVMF has a much better performance due to
its model flexibility. Thesoft-moVMF algorithm performs appreciably better than the other three
algorithms.

It seems that the low number of documents does not pose a problem forsoft-moVMF and it ends
up getting an almost perfect clustering for this data set. Thus in this case, despite the low number
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fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran
1019 0 0 1019 0 0 1018 0 0 1019 0 1

1 6 1386 1 6 1386 2 6 1387 1 4 1384
13 1454 12 13 1454 12 13 1454 11 13 1456 13

Table 4: Comparative confusion matrices for 3 clusters of Classic3 (rowsrepresent clusters).

fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran
29 38 22 29 38 22 3 72 1 0 98 0
31 27 38 31 27 38 62 28 17 99 2 0
40 35 40 40 35 40 35 0 82 1 0 100

Table 5: Comparative confusion matrices for 3 clusters of Classic300.

of points per cluster, the superior modeling power of our moVMF based algorithms prevents them
from getting trapped in inferior local-minima as compared to the other algorithms—resulting in a
better clustering.

The confusion matrices obtained for the Classic400 data set are displayedin Table 6. The behav-
ior of the algorithms for this data set is quite interesting. As before, due to the small number of docu-
ments per cluster,fskmeans andspkmeans give a rather mixed confusion matrix. Thehard-moVMF
algorithm gets a significant part of the bigger cluster correctly and achieves some amount of sepa-
ration between the two smaller clusters. Thesoft-moVMF algorithm exhibits a somewhat intriguing
behavior. It splits the bigger cluster into two, relatively pure segments, and merges the smaller two
into one cluster. When 4 clusters are requested fromsoft-moVMF, it returns 4 very pure clusters
(not shown in the confusion matrices) two of which are almost equal sized segments of the bigger
cluster.

An engaging insight into the working of the algorithms is provided by considering their cluster-
ing performance when they are requested to produce greater than the “natural” number of clusters.
In Table 7 we show the confusion matrices resulting from 5 clusters of the Classic3 corpus. The
matrices suggest that the moVMF algorithms have a tendency of trying to maintain larger clusters
intact as long as possible, and breaking them into reasonably pure and comparably sized parts when
they absolutely must. This behavior of our moVMF algorithms coupled with the observations in Ta-
ble 6, suggest a clustering method in which one could generate a slightly higher number of clusters
than required, and then agglomerate them appropriately.

The MI plots for the various Classic3 data sets are given in Figures 2(a)-(c). For the full Clas-
sic3 data set (Figure 2(a)), all the algorithms perform almost similarly at the true number of clusters.
However, as the number of clusters increases,soft-moVMF seems to outperform the others by a sig-
nificant margin. For Classic300 (Figure 2(b)) and Classic400 (Figure 2(c)), soft-moVMF seems to
significantly outperform the other algorithms. In fact, for these two data sets, soft-moVMF per-
forms substantially better than the other three, even at the correct number of clusters. Among the
other three,hard-moVMF seems to perform better thanspkmeans andfskmeans across the range of
clusters.
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(a) Comparison of MI values for Classic3. (b) Comparison of MI values for Classic300.

2 3 4 5 6 7 8 9 10 11
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n 

va
lu

e

MI values on Classic400

fskmeans
spkmeans
hard−movMF
soft−movMF

0 5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n 

va
lu

e

MI values on yahoo

fskmeans
spkmeans
hard−movMF
soft−movMF

(c) Comparison of MI values for Classic400. (d) Comparison of MI values for Yahoo20.

Figure 2: Comparison of the algorithms for the Classic3 data sets and the Yahoo News data set.
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fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran
27 16 55 27 17 54 56 28 20 0 0 91
51 83 12 51 82 12 44 72 14 82 99 2
23 1 132 23 1 133 1 0 165 19 1 106

Table 6: Comparative confusion matrices for 3 clusters of Classic400.

fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran

2 4 312 2 4 323 3 5 292 0 1 1107
8 520 10 8 512 9 511 1 0 5 1455 14
5 936 6 5 944 6 514 1 0 526 2 1

1018 0 1 1018 0 1 0 2 1093 501 0 0
0 0 1069 0 0 1059 5 1451 13 1 2 276

Table 7: Comparative confusion matrices for 5 clusters of Classic3.

6.5 Yahoo News Data Set

The Yahoo News data set is a relatively difficult data set for clustering since it has a fair amount of
overlap among its clusters and the number of points per cluster is low. In addition, the clusters are
highly skewed in terms of their comparative sizes.

Results for the different algorithms can be seen in Figure 2(d). Over the entire range,soft-moVMF
consistently performs better than the other algorithms. Even at the correct number of clustersk= 20,
it performs significantly better than the other algorithms.

6.6 CMU Newsgroup Family of Data Sets

Now we discuss clustering performance of the four algorithms on the CMU Newsgroup data sets.
Figure 3(a) shows the MI plots for the full News20 data set. All the algorithmsperform similarly
until the true number of clusters after whichsoft-moVMF andspkmeans perform better than the
others. We do not notice any interesting differences between the four algorithms from this Figure.

Figure 3(b) shows MI plots for the Small-News20 data set and the results are of course different.
Since the number of documents per cluster is small (100), as beforespkmeans andfskmeans do not
perform that well, even at the true number of clusters, whereassoft-moVMF performs considerably
better than the others over the entire range. Again,hard-moVMF exhibits good MI values until the
true number of clusters, after which it falls sharply. On the other hand, for the data sets that have a
reasonably large number of documents per cluster, another kind of behavior is usually observed. All
the algorithms perform quite similarly until the true number of clusters, after which soft-moVMF
performs significantly better than the other three. This behavior can be observed in Figures 3(d),
3(f) and 4(b). We note that the other three algorithms perform quite similarly over the entire range of
clusters. We also observe that for an easy data set like Different-1000, the MI values peak at the true
number of clusters, whereas for a more difficult data set such as Similar-1000 the MI values increase
as the clusters get further refined. This behavior is expected since the clusters in Similar-1000 have
much greater overlap than those in Different-1000.
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(a) Comparison of MI values for News20. (b) Comparison of MI values for Small-news20.
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(c) Comparison of MI values for Different-100. (d) Comparison of MI values for Different-1000.
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(e) Comparison of MI values for Similar-100. (f) Comparison of MI valuesfor Similar-1000.

Figure 3: Comparison of the algorithms for the CMU Newsgroup and some subsets.
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Figure 4: Comparison of the algorithms for more subsets of CMU Newsgroupdata.

6.7 Yeast Gene Expression Data Set

The gene data set that we consider differs from text data in two major aspects. First, the data can
have negative values, and second, we do not know the true labels for the data points.

Owing to the absence of true cluster labels for the data points, we evaluate theclusterings by
computing certain internal figures of merit. These internal measures have been earlier employed for
evaluating clustering of genes (e.g., Sharan and Shamir, 2000). LetX = {x1,x2, . . .xn} be the set
of data that is clustered into disjoint clustersX1, . . . ,Xk. Let µ j denote the mean vector of thej-th
cluster (1≤ j ≤ k). The homogeneity of the clustering is measured by

Havg =
1
|X |

k

∑
j=1

∑
x∈X j

x
T
µ j

‖x‖‖µ j‖
. (6.1)

As can easily be seen, a higher homogeneity means that the individual elements of each cluster are
quite similar to the cluster representative. We also take note of the minimum similarity

Hmin = min
1≤ j≤k
x∈X j

x
T
µ j

‖x‖‖µ j‖
. (6.2)

BothHavg andHmin provide a measure of the intra-cluster similarity. We now define the inter-cluster
separation as

Savg =
1

∑i6= j |Xi ||X j |∑i6= j

|Xi‖X j |
µ

T
i µ j

‖µi‖‖µ j‖
. (6.3)

We also take note of the maximum inter-cluster similarity

Smax= max
i6= j

µ
T
i µ j

‖µi‖‖µ j‖
. (6.4)

It is easily seen that for a “good” clusteringSavg andSmax should be low.
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Recently, researchers (Segal et al., 2003; Lee et al., 2004) have started looking at supervised
methods of evaluating the gene clustering results using public genome databases such as the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) and the gene ontology (GO). As of now, the
evaluation techniques are still evolving and there is no consensus on how tobest use the databases.
For example, it is becoming clear that a pairwise precision-recall analysis of gene pairs may not
be useful since the databases are currently incomplete due to lack of knowledge about all genes.
In the recent past, progress has been made in terms of supervised evaluation and online tools such
as GoMiner (GoMiner03) have been developed. As future work, we would like to evaluate the
performance of our proposed algorithms using such tools.

Figure 5 shows the various cluster quality figures of merit as computed for clusters of our gene
expression data. A fact that one immediately observes is thathard-moVMF consistently performs
better than all the other algorithms. This comes as somewhat of a surprise, because in almost all
other data sets,soft-moVMF performs better (though, of course, the measures of evaluation are
different for gene data as compared to the other data sets that we considered). Note that the figures
of merit forsoft-moVMF are computed after “hardening” the clustering results that it produced.
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Figure 5: Measures of cluster quality for gene data.
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We see from Figure 5(a) that bothhard-moVMF andsoft-moVMF yield clusters that are much
more homogeneous than those furnished byfskmeans andspkmeans. The inter-cluster similar-
ities, as measured bySavg andSmax are again the lowest forhard-moVMF, thereby indicating that
hard-moVMF gives the best separated clusters of all the four algorithms. Though the inter-cluster
similarities do not differ that much between the four algorithms,soft-moVMF seems to be forming
clusters with higher inter-cluster similarity than other algorithms. We could explainthis behavior
of soft-moVMF by noting that it tends to form overlapping clusters (because of soft-assignments)
and those clusters remain closer even after hardening. SinceHavg essentially measures the average
cosine similarity, we note that using our moVMF based algorithms, we are able to achieve clusters
that are more coherent and better separated—a fact that could be attributed to the richer model em-
ployed by our algorithms. An inescapable observation is that our vMF based algorithms obtain a
better average cosine similarity thanspkmeans, implying that the richer vMF model allows them to
escape the local minima that trapspkmeans.

6.8 Running Time

This section shows a brief report of the running time differences betweenhard-moVMF andsoft-moVMF.
Table 8 shows these comparisons. These running time experiments were performed on an AMD
Athlon based computer running the Linux operating system. From Table 8 we see thathard-moVMF

Clusters Classic300 Classic3 News20
3 0.39s/11.56s 3.03s/109.87s 10.18s/619.68s
5 0.54s/17.99s 3.59s/163.09s 14.05s/874.13s
10 - - 18.9s/1512s
20 - - 29.08s/3368s

Table 8: Running time comparison betweenhard-moVMF andsoft-moVMF. The times are indicated
in the format “hard-moVMF/ soft-moVMF”.

runs much faster thansoft-moVMF, and this difference becomes even greater when the number of
clusters desired becomes higher.

7. Discussion

The mixture of vMF distributions gives a parametric model-based generalization of the widely used
cosine similarity measure. As discussed in Section 5.1, the spherical kmeans algorithm that uses
cosine similarity arises as a special case of EM on mixture of vMFs when, among other things,
the concentrationκ of all the distributions is held constant. Interestingly, an alternative and more
formal connection can be made from an information geometry viewpoint (Amari, 1995). More
precisely, consider a data set that has been sampled following a vMF distribution with a givenκ, say
κ = 1. Assuming the Fisher-Information matrix is identity, the Fisher kernel similarity (Jaakkola
and Haussler, 1999) corresponding to the vMF distribution is given by

K(xi ,x j) = (∇µ ln f (xi |µ))T(∇µ ln f (x j |µ)) (see (2.1))

= (∇µ(µT
xi))

T(∇µ(µT
x j)) = x

T
i x j ,
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which is exactly the cosine similarity. This provides a theoretical justification fora long-practiced
approach in the information retrieval community.

In terms of performance, the magnitude of improvement shown by thesoft-movMF algorithm
for the difficult clustering tasks was surprising, especially since for low-dimensional non-directional
data, the improvements using a soft, EM-basedkmeans or fuzzy kmeans over the standard hard-
assignment based versions are often quite minimal. In particular, we were curious regarding a
couple of issues: (i) why issoft-movMF performing substantially better thanhard-movMF, even
though the final probability values obtained bysoft-movMF are actually very close to 0 and 1; and
(ii) why is soft-movMF, which needs to estimate more parameters, doing better even when there are
insufficient number of points relative to the dimensionality of the space.

It turns out that both these issues can be understood by taking a closer look at howsoft-moVMF
converges. In all our experiments, we initializedκ to 10, and the initial centroids to small ran-
dom perturbations of the global centroid. Hence, forsoft-movMF, the initial posterior membership
distributions of the data points are almost uniform and the Shannon entropy ofthe hidden random
variables is very high. The change of this entropy over iterations for the News20 subsets is presented
in Figure 6. The behavior is similar for all the other data sets that we studied. Unlike kmeans-based
algorithms where most of the relocation happens in the first two or three iterations with only minor
adjustments later on, insoft-movMF the data points are noncommittal in the first few iterations, and
the entropy remains very high (the maximum possible entropy for 3 clusters can be log23= 1.585).
The cluster patterns are discovered only after several iterations, and the entropy drops drastically
within a small number of iterations after that. When the algorithm converges, theentropy is prac-
tically zero and all points are effectively hard-assigned to their respective clusters. Note that this
behavior is strikingly similar to (locally adaptive) annealing approaches where κ can be considered
as the inverse of the temperature parameter. The drastic drop in entropy after a few iterations is the
typical critical temperature behavior observed in annealing.

As text data has only non-negative features values, all the data points lie inthe first orthant of
the d-dimensional hypersphere and hence, are naturally very concentrated. The gene-expression
data, though spread all over the hypersphere seemed to have some high concentration regions. In
either case, the finalκ values on convergence are very high, reflecting the concentration in thedata,
and implying a low final temperature from the annealing perspective. Then,initializing κ to a low
value, or equivalently a high temperature, is a good idea because in that case whensoft-movMF is
running, theκ values will keep on increasing over successive iterations to get to its finallarge values,
giving the effect of a decreasing temperature in the process, without any explicit deterministic an-
nealing strategy. Also different mixture components can take different values ofκ, as automatically
determined by the EM algorithm itself, and need not be controlled by any external heuristic. The
cost of the added flexibility insoft-moVMF overspkmeans is the extra computation in estimating
the κ values. Thus thesoft-movMF algorithm provides a trade-off between modeling power and
computational demands, but one that judging from the empirical results, seems quite worthwhile.
Thehard-movMF algorithm, instead of using the more general vMF model, suffers because of hard-
assignments from the very beginning. Thefskmeans andspkmeans do not do well for difficult data
sets due to their hard assignment scheme as well as their significantly less modeling capabilities.

Finally, a word on model selection, since choosing the number of clusters remains one of the
widely debated topics in clustering (McLachlan and Peel, 2000). Banerjeeand Langford (2004)
have proposed a new objective criterion for evaluation and model-selection for clustering algo-
rithms: how well does the clustering algorithm perform as a prediction algorithm. The prediction
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Figure 6: Variation of Entropy of hidden variables with number of Iterations(soft-movMF).

accuracy of the clustering is measured by the PAC-MDL bound (Blum and Langford, 2003; Baner-
jee and Langford, 2004) that upper-bounds the error-rate of predictions on the test-set. The way to
use it for model-selection is quite straight-forward: among a range of number of clusters, choose
the one that achieves the minimum bound on the test-set error-rate. Experiments on model selection
applied to several clustering algorithms were reported by Banerjee and Langford (2004). Interest-
ingly, the movMF-based algorithms almost always obtained the ‘right number of clusters’—in this
case, the underlying labels in the data set were actually known and the number of labels were con-
sidered to be the right number of clusters. It is important to note that this formof model-selection
only works in a semi-supervised setting where a little amount of labeled data is available for model
selection.

8. Conclusions and Future Work

From the experimental results, it seems that certain high-dimensional data sets, including text and
gene-expression data, have properties that match well with the modeling assumptions of the vMF
mixture model. This motivates further study of such models. For example, one can consider a hybrid
algorithm that employssoft-moVMF for the first few (more important) iterations, and then switches
tohard-moVMF for speed, and measure the speed-quality tradeoff that this hybrid approach provides.
Another possible extension would be to consider an online version of the EM-based algorithms as
discussed in this paper, developed along the lines of Neal and Hinton (1998). Online algorithms are
particularly attractive for dealing with streaming data when memory is limited, and for modeling
mildly non-stationary data sources. We could also adapt a local search strategy such as the one
in Dhillon et al. (2002a), for incremental EM to yield better local minima for both hard and soft-
assignments.

The vMF distribution that we considered in the proposed techniques is one of the simplest para-
metric distributions for directional data. The iso-density lines of the vMF distribution are circles on
the hypersphere, i.e., all points on the surface of the hypersphere at aconstant angle from the mean
direction. In some applications, more general iso-density contours may be desirable. There are
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more general models on the unit sphere, such as the Bingham distribution, the Kent distribution, the
Watson distribution, the Fisher-Bingham distribution, the Pearson type VII distributions (Shimizu
and Iida, 2002; Mardia and Jupp, 2000), etc., that can potentially be moreapplicable in the general
setting. For example, the Fisher-Bingham distributions have added modeling power since there are
O(d2) parameters for each distribution. However, the parameter estimation problem,especially in
high-dimensions, can be significantly more difficult for such models, as moreparameters need to
estimated from the data. One definitely needs substantially more data to get reliable estimates of the
parameters. Further, for some cases, e.g., the Kent distribution, it can bedifficult to solve the esti-
mation problem in more than 3-dimensions (Peel et al., 2001). Hence these more complex models
may not be viable for many high-dimensional problems. Nevertheless, the tradeoff between model
complexity (in terms of the number of parameters and their estimation), and sample complexity
needs to be studied in more detail in the context of directional data.

Acknowledgments

This research was supported in part by an IBM PhD fellowship to ArindamBanerjee, NSF grant IIS-
0307792, ITR-0312471, NSF CAREER Award No. ACI-0093404 andTexas Advanced Research
Program grant 003658-0431-2001.

Appendix A. Derivations

For reference, we provide the derivation of Maximum Likelihood Estimates (MLE) for data drawn
for a single vMF distribution (Section A.1), and Expectation Minimization update formulae for data
drawn from a mixture ofk vMF distributions (Section A.2).

A.1 Maximum Likelihood Estimates

In this section we look briefly at maximum likelihood estimates for the parameters ofa single vMF
distribution. LetX be a finite set of sample unit vectors drawn independently followingf (x|µ,κ)
(see 2.1), i.e.,

X = {xi ∈ S
d−1 | xi follows f (x|µ,κ) for 1≤ i ≤ n}.

GivenX we want to find maximum likelihood estimates for the parametersµ andκ of the distribu-
tion f (x|µ,κ). Assuming thexi to be independent and identically distributed, we can rewrite the
likelihood of X as

P(X |µ,κ) = P(x1, . . . ,xn|µ,κ) =
n

∏
i=1

f (xi |µ,κ) =
n

∏
i=1

cd(κ)eκµ
T
xi . (A.1)

Taking the logarithm on both sides of (A.1) we obtain

lnP(X |µ,κ) = nlncd(κ)+κµ
T
r, (A.2)

wherer = ∑i xi . To obtain the maximum likelihood estimates ofµ and κ, we have to maxi-
mize (A.2), subject to the constraintsµT

µ = 1 andκ ≥ 0. Introducing a Lagrange multiplierλ,
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the Lagrangian of the objective function is given by5

L(µ,κ,λ;X ) = nlncd(κ)+κµ
T
r +λ(1−µ

T
µ). (A.3)

Differentiating the Lagrangian (A.3) with respect toµ, λ andκ and setting the derivatives to zero,
we get the following equations that the parameter estimates ˆµ, λ̂ andκ̂ must satisfy:

µ̂ =
κ̂
2λ̂

r, (A.4a)

µ̂
T
µ̂ = 1, (A.4b)

nc′d(κ̂)

cd(κ̂)
=−µ̂

T
r. (A.4c)

Substituting (A.4a) in (A.4b) gives us

λ̂ =
κ̂
2
‖r‖, (A.5)

and µ̂ =
r

‖r‖ =
∑n

i=1xi

‖∑n
i=1xi‖

. (A.6)

Substituting ˆµ from (A.6) in (A.4c) we obtain

c′d(κ̂)

cd(κ̂)
=−‖r‖

n
=−r̄. (A.7)

For brevity, let us writes= d/2−1 andξ = (2π)s+1; on differentiating (2.2) with respect toκ, we
obtain

c′d(κ) =
sκs−1

ξIs(κ)
− κsI ′s(κ)

ξI2
s (κ)

.

The right-hand-side simplifies to

κs

ξIs(κ)

(

s
κ
− I ′s(κ)

Is(κ)

)

= cd(κ)

(

s
κ
− I ′s(κ)

Is(κ)

)

.

Using the following well known recurrence relation (see Abramowitz and Stegun (1974, Sec. 9.6.26)),

κIs+1(κ) = κI ′s(κ)−sIs(κ),

we find that
−c′d(κ)

cd(κ)
=

Is+1(κ)

Is(κ)
=

Id/2(κ)

Id/2−1(κ)
.

Thus we can obtain the estimateκ̂ by solving

Ad(κ̂) = r̄, (A.8)

whereAd(κ) =
Id/2(κ)

Id/2−1(κ) and ¯r = ‖r‖/n. SinceAd(κ) is a ratio of Bessel functions, it is not possible

to obtain a closed form expression forA−1
d . We have to take recourse to numerical or asymptotic

methods to obtain an approximation forκ.

5. Strictly speaking, we should introduce the inequality constraint in the Lagrangian forκ, and work with the necessary
KKT conditions. However ifκ = 0 then f (x|µ,κ) is the uniform distribution on the sphere, and ifκ > 0 then the
multiplier for the inequality constraint has to be zero by the KKT condition, so the Lagrangian in (A.3) is adequate.

1374



CLUSTERING WITH VON M ISES-FISHER DISTRIBUTIONS

A.2 Expectation Maximization (EM)

Suppose the posterior distribution,p(h|xi ,Θ), of the hidden variablesZ|(X ,Θ) is known. Unless
otherwise specified, henceforth all expectations will be taken over the distribution of the (set of)
random variable(s)Z|(X ,Θ). Expectation of the complete data log-likelihood (see 3.2) over the
given posterior distributionp can be written as

Ep[lnP(X ,Z|Θ)] =
n

∑
i=1

Ep[ln(αzi fzi (xi |θzi ))]

=
n

∑
i=1

k

∑
h=1

ln(αh fh(xi |θh)) p(h|xi ,Θ)

=
k

∑
h=1

n

∑
i=1

(lnαh) p(h|xi ,Θ)+
k

∑
h=1

n

∑
i=1

(ln fh(xi |θh)) p(h|xi ,Θ).

(A.9)

In the parameter estimation or M-step,Θ is re-estimated so that the above expression is maximized.
Note that for maximizing this expectation we can separately maximize the terms containing αh and
θh as they are unrelated (observe thatp(h|xi ,Θ) is fixed).

To maximize the expectation with respect to eachαh we introduce a Lagrangian multiplierλ
corresponding to the constraint∑k

h=1 αh = 1. We form the Lagrangian, and take partial derivatives
with respect to eachαh obtaining

n

∑
i=1

p(h|xi ,Θ) =−λα̂h. (A.10)

On summing both sides of (A.10) over allh we find thatλ =−n, hence

α̂h =
1
n

n

∑
i=1

p(h|xi ,Θ). (A.11)

Next we concentrate on terms containingθh = (µh,κh) under the constraintsµT
h µh = 1 andκh≥ 0

for 1≤ h≤ k. Let λh be the Lagrange multiplier corresponding to each equality constraint (see
footnote on page 1374). The Lagrangian is given by

L({µh,κh,λh}kh=1) =
k

∑
h=1

n

∑
i=1

(ln fh(xi |θh)) p(h|xi ,Θ)+
k

∑
h=1

λh
(

1−µ
T
h µh

)

=
k

∑
h=1

[

n

∑
i=1

(lncd(κh)) p(h|xi ,Θ)+
n

∑
i=1

κhµ
T
h xi p(h|xi ,Θ)+λh(1−µ

T
h µh)

]

.

(A.12)

Taking partial derivatives of (A.12) with respect to{µh,λh,κh}kh=1 and setting them to zero, for
eachh we get:

µh =
κh

2λh

n

∑
i=1

xi p(h|xi ,Θ), (A.13a)

µ
T
h µh = 1, (A.13b)

c′d(κh)

cd(κh)

n

∑
i=1

p(h|xi ,Θ) =−µ
T
h

n

∑
i=1

xi p(h|xi ,Θ). (A.13c)
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Using (A.13a) and (A.13b) we get

λh =
κh

2

∥

∥

∥

∥

n

∑
i=1

xi p(h|xi ,Θ)

∥

∥

∥

∥

,

µh =
∑n

i=1xi p(h|xi ,Θ)

‖∑n
i=1xi p(h|xi ,Θ)‖ . (A.14)

Substituting (A.14) in (A.13c) gives us

c′d(κh)

cd(κh)
=−‖∑n

i=1xi p(h|xi ,Θ)‖
∑n

i=1 p(h|xi ,Θ)
, (A.15)

which can be written as

Ad(κh) =
‖∑n

i=1xi p(h|xi ,Θ)‖
∑n

i=1 p(h|xi ,Θ)
, (A.16)

whereAd(κ) =
Id/2(κ)

Id/2−1(κ) . Note that (A.14) and (A.16) are intuitive generalizations of (A.6) and (A.8)

respectively.

A.3 Experimental Study of the Approximation

In this section we provide a brief experimental study to assess the quality of our approximation of
the concentration parameterκ. Recall that our approximation (4.4) attempts to solve the implicit
non-linear equation

Id/2(κ)

Id/2−1(κ)
= r̄. (A.17)

We previously mentioned that for large values of ¯r (r̄ close to 1), approximation (4.1) is reason-
able; for small values of ¯r (usually for ¯r < 0.2) estimate (4.2) is quite good; Eqn. (4.4) yields good
approximations for most values of ¯r.

A particular value of ¯r may correspond to many different combinations ofκ andd values. Thus,
to assess the quality of various approximations, we need to evaluate their performance across the
(κ,d) plane. However, such an assessment is difficult to illustrate through 2-dimensional plots. To
supplement Table 1, which showed how the three approximations behave ona sampling of points
from the(κ,d) plane, in this section we present experimental results on some slices of this plane,
where we either keepd fixed and varyκ, or we keepκ fixed and varyd. For all our evaluations, the
r̄ values were computed using (A.17).

We begin by holdingd fixed at 1000, and allowκ to vary from 10 to 5010. Figure 7 shows the
values of computed̂κ (estimation ofκ) using the three approximations. From this figure one can
see that (4.1) overestimates the trueκ, while (4.2) underestimates it. However, our approximation
(4.4) is very close to the trueκ values.

Next we illustrate the quality of approximation whenκ is held fixed andd is allowed to vary.
Figure 8 illustrates how the various approximations behave as the dimensionalityd is varied from
d = 4 till d = 1454. The concentration parameterκ was set at 500 for this experiment. We see
that (4.2) catches up with the true value ofκ after approximatelyd ≥ 2κ (because the associated ¯r
values become small), whereas (4.4) remains accurate throughout.

Since all the approximations depend on ¯r (which implicitly depends onκ andd), it is illustra-
tive to also plot the approximation errors as ¯r is allowed to vary. Figure 9 shows how the three
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Figure 8: Comparison of approximations for varyingd, κ = 500.

approximations perform as ¯r ranges from 0.05 to 0.95. Let f (d, r̄), g(d, r̄), andh(d, r̄) represent the
approximations toκ using (4.1), (4.2) and (4.4), respectively. Figure 9 displays|Ad( f (d, r̄))− r̄|,
|Ad(g(d, r̄))− r̄|, and|Ad(h(d, r̄))− r̄| for the varying ¯r values. Note that they-axis is on a log-scale
to appreciate the differences between the three approximations. We see that up to r̄ ≈ 0.18 (dashed
line on the plot), the approximation yielded by (4.2) has lower error. Thereafter, approximation (4.4)
becomes better.
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Abstract

Bayesian networks have become one of the major models used for statistical inference. We study
the question whether the decisions computed by a Bayesian network can be represented within a
low-dimensional inner product space. We focus on two-labelclassification tasks over the Boolean
domain. As main results we establish upper and lower bounds on the dimension of the inner prod-
uct space for Bayesian networks with an explicitly given (full or reduced) parameter collection. In
particular, these bounds are tight up to a factor of 2. For some nontrivial cases of Bayesian networks
we even determine the exact values of this dimension. We further consider logistic autoregressive
Bayesian networks and show that every sufficiently expressive inner product space must have di-
mension at leastΩ(n2), wheren is the number of network nodes. We also derive the bound 2Ω(n) for
an artificial variant of this network, thereby demonstrating the limits of our approach and raising an
interesting open question. As a major technical contribution, this work reveals combinatorial and
algebraic structures within Bayesian networks such that known methods for the derivation of lower
bounds on the dimension of inner product spaces can be brought into play.

Keywords: Bayesian network, inner product space, embedding, linear arrangement, Euclidean
dimension

1. Introduction

During the last decade, there has been remarkable interest in learning systems based on hypotheses
that can be written as inner products in an appropriate feature space andlearned by algorithms that
perform a kind of empirical or structural risk minimization. Often in such systems the inner product
operation is not carried out explicitly, but reduced to the evaluation of a so-called kernel function
that operates on instances of the original data space. A major advantage of this technique is that
it allows to handle high-dimensional feature spaces efficiently. The learning strategy proposed by
Boser et al. (1992) in connection with the so-called support vector machine is a theoretically well
founded and very powerful method that, in the years since its introduction,has already outperformed
most other systems in a wide variety of applications (see also Vapnik, 1998).
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Bayesian networks have a long history in statistics. In the first half of the 1980s they were
introduced to the field of expert systems through work by Pearl (1982) and Spiegelhalter and Knill-
Jones (1984). Bayesian networks are much different from kernel-based learning systems and offer
some complementary advantages. They graphically model conditional independence relationships
between random variables. Like other probabilistic models, Bayesian networks can be used to
represent inhomogeneous data with possibly overlapping features and missing values in a uniform
manner. Quite elaborate methods dealing with Bayesian networks have been developed for solving
problems in pattern classification.

One of the motivations for the work this article is about was that recently several research groups
considered the possibility of combining the key advantages of probabilistic models and kernel-based
learning systems. Various kernels were suggested and extensively studied, for instance, by Jaakkola
and Haussler (1999a,b), Oliver et al. (2000), Saunders et al. (2003), Tsuda and Kawanabe (2002),
and Tsuda et al. (2002, 2004). Altun et al. (2003) proposed a kernel for the Hidden Markov Model,
which is a special case of a Bayesian network. Another approach for combining kernel methods and
probabilistic models has been made by Taskar et al. (2004).

In this article, we consider Bayesian networks as computational models that perform two-label
classification tasks over the Boolean domain. We aim at finding the simplest inner product space
that is able to express the concept class, that is, the class of decision functions, induced by a given
Bayesian network. Hereby, “simplest” refers to a space which has as few dimensions as possible.
We focus on Euclidean spaces equipped with the standard dot product. For the finite-dimensional
case, this is no loss of generality since any finite-dimensional reproducingkernel Hilbert space is
isometric withR

d for somed. Furthermore, we use the Euclidean dimension of the space as the
measure of complexity. This is well motivated by the fact that most generalization error bounds for
linear classifiers are given in terms of either the Euclidean dimension or in termsof the geomet-
rical margin between the data points and the separating hyperplanes. Applying random projection
techniques from Johnson and Lindenstrauss (1984), Frankl and Maehara (1988), or Arriaga and
Vempala (1999), it can be shown that any arrangement with a large margin can be converted into
a low-dimensional arrangement. A recent result of Balcan et al. (2004)in this direction even takes
into account low-dimensional arrangements that allow a certain amount of error. Thus, a large
lower bound on the smallest possible dimension rules out the possibility that a classifier with a large
margin exists. Given a Bayesian networkN , we introduce Edim(N ) for denoting the smallest di-
mensiond such that the decisions represented byN can be implemented as inner products in the
d-dimensional Euclidean space. Our results are provided as upper and lower bounds for Edim(N ).

We first consider Bayesian networks with an explicitly given parameter collection. The param-
eters can be arbitrary, where we speak of an unconstrained network,or they may be required to
satisfy certain restrictions, in which case we have a network with a reducedparameter collection.
For both network types, we show that the “natural” inner product space, which can obtained from the
probabilistic model by straightforward algebraic manipulations, has a dimension that is the smallest
possible up to a factor of 2, and even up to an additive term of 1 in some cases. Furthermore, we
determine the exact values of Edim(N ) for some nontrivial instances of these networks. The lower
bounds in all these cases are obtained by analyzing the Vapnik-Chervonenkis (VC) dimension of the
concept class associated with the Bayesian network. Interestingly, the VCdimension plays also a
major role when estimating the sample complexity of a learning system. In particular,it can be used
to derive bounds on the number of training examples that are required forselecting hypotheses that
generalize well on new data. Thus, the tight bounds on Edim(N ) reveal that the smallest possible
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Euclidean dimension for a Bayesian network with an explicitly given parametercollection is closely
tied to its sample complexity.

As a second topic, we investigate a class of probabilistic models known as logistic autoregres-
sive Bayesian networks or sigmoid belief networks. These networks were originally proposed by
McCullagh and Nelder (1983) and studied systematically, for instance, by Neal (1992), and Saul
et al. (1996). (See also Frey, 1998). Using the VC dimension, we show that Edim(N ) for theses
networks must grow at least asΩ(n2), wheren is the number of nodes.

Finally, we get interested in the question whether it is possible to establish an exponential lower
bound on Edim(N ) for the logistic autoregressive Bayesian network. This investigation is motivated
by the fact we also derive here that these networks have their VC dimension bounded byO(n6).
Consequently, VC dimension considerations are not sufficient to yield an exponential lower bound
for Edim(N ). We succeed in giving a positive answer for an unnatural variant of this network that
we introduce and call the modified logistic autoregressive Bayesian network. This variant is also
shown to have VC dimensionO(n6). We obtain that for a network withn+2 nodes, Edim(N ) is at
least as large as 2n/4. The proof for this lower bound is based on the idea of embedding one concept
class into another. In particular, we show that a certain class of Boolean parity functions can be
embedded into such a network.

While, as mentioned above, the connection between probabilistic models and inner product
spaces has already been investigated, this work seems to be the first one that explicitly addresses the
question of finding a smallest-dimensional sufficiently expressive inner product space. In addition,
there has been related research considering the question of representing a given concept class by
a system of halfspaces, but not concerned with probabilistic models (see, e.g., Ben-David et al.,
2002; Forster et al., 2001; Forster, 2002; Forster and Simon, 2002; Forster et al., 2003; Kiltz, 2003;
Kiltz and Simon, 2003; Srebro and Shraibman, 2005; Warmuth and Vishwanathan, 2005). A further
contribution of our work can be seen in the uncovering of combinatorial and algebraic structures
within Bayesian networks such that techniques known from this literature can be brought into play.

We start by introducing the basic concepts in Section 2. The upper boundsare presented in
Section 3. Section 4 deals with lower bounds that are obtained using the VC dimension as the core
tool. The exponential lower bound for the modified logistic autoregressivenetwork is derived in
Section 5. In Section 6 we draw the major conclusions and mention some open problems.

Bibliographic Note. Results in this article have been presented at the 17th Annual Conferenceon
Learning Theory, COLT 2004, in Banff, Canada (Nakamura et al., 2004).

2. Preliminaries

In the following, we give formal definitions for the basic notions in this article.Section 2.1 in-
troduces terminology from learning theory. In Section 2.2, we define Bayesian networks and the
distributions and concept classes they induce. The idea of a linear arrangement for a concept class
is presented in Section 2.3.

2.1 Concept Classes, VC Dimension, and Embeddings

A concept classC over domainX is a family of functions of the formf : X →{−1,1}. Eachf ∈ C

is called aconcept. A finite setS= {s1, . . . ,sm} ⊆ X is said to beshatteredby C if for every binary
vectorb ∈ {−1,1}m there exists some conceptf ∈ C such thatf (si) = bi for i = 1, . . . ,m. The
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Vapnik-Chervonenkis (VC) dimensionof C is given by

VCdim(C ) = sup{m | there is someS⊆ X shattered byC and|S| = m}.

For everyz∈ R, let sign(z) = 1 if z≥ 0, and sign(z) = −1 otherwise. We use the sign function for
mapping a real-valued functiong to a±1-valued concept sign◦g.

Given a concept classC over domainX and a concept classC ′ over domainX ′, we writeC ≤ C ′

if there exist mappings

C 3 f 7→ f ′ ∈ C ′ and X 3 x 7→ x′ ∈ X ′

satisfying
f (x) = f ′(x′) for every f ∈ C andx∈ X .

These mappings are said to provide anembeddingof C into C ′. Obviously, if S⊆ X is an m-
element set that is shattered byC thenS′ = {s′ | s∈ S} ⊆ X ′ is anm-element set that is shattered by
C ′. Consequently,C ≤ C ′ implies VCdim(C ) ≤ VCdim(C ′).

2.2 Bayesian Networks

Definition 1 A Bayesian networkN has the following components:

1. A directed acyclic graph G= (V,E), where V is a finite set of nodes and E⊆V ×V a set of
edges,

2. a collection(pi,α)i∈V,α∈{0,1}mi of programmable parameters with values in the open interval
]0,1[, where mi denotes the number of predecessors of node i, that is, mi = |{ j ∈V | ( j, i) ∈
E}|,

3. constraints that describe which assignments of values from]0,1[ to the parameters of the
collection are allowed.

If the constraints are empty, we speak of anunconstrainednetwork. Otherwise, the network is
constrained.

We identify then = |V| nodes ofN with the numbers 1, . . . ,n and assume that every edge
( j, i)∈ E satisfiesj < i, that is,E induces a topological ordering on{1, . . . ,n}. Given( j, i)∈ E, j is
called a parent ofi. We usePi to denote the set of parents of nodei, and letmi = |Pi | be the number
of parents. A networkN is said to befully connectedif Pi = {1, . . . , i−1} holds for every nodei.

Example 1 (kth-order Markov chain) For k ≥ 0, let Nk denote the unconstrained Bayesian net-
work with Pi = {i − 1, . . . , i − k} for i = 1, . . . ,n (with the convention that numbers smaller than
1 are ignored such that mi = |Pi | = min{i − 1,k}). The total number of parameters is equal to
2k(n−k)+2k−1 + · · ·+2+1 = 2k(n−k+1)−1.

We associate with every nodei a Boolean variablexi with values in{0,1}. We sayx j is a
parent-variable ofxi if j is a parent ofi. Eachα ∈ {0,1}mi is called a possible bit-pattern for the
parent-variables ofxi . We useMi,α to denote the polynomial

Mi,α(x) = ∏
j∈Pi

x
α j
j , wherex0

j = 1−x j andx1
j = x j ,
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that is,Mi,α(x) is 1 if the parent variables ofxi exhibit bit-patternα, otherwise it is 0.
Bayesian networks are graphical models of conditional independence relationships. This gen-

eral idea is made concrete by the following notion.

Definition 2 Let N be a Bayesian network with nodes1, . . . ,n. The class of distributions induced
by N , denoted asDN , consists of all distributions on{0,1}n of the form

P(x) =
n

∏
i=1

∏
α∈{0,1}mi

p
xiMi,α(x)
i,α (1− pi,α)(1−xi)Mi,α(x). (1)

Thus, for every assignment of values from]0,1[ to the parameters ofN , we obtain a specific
distribution fromDN . Recall that not every possible assignment is allowed ifN is constrained.

The polynomial representation of log(P(x)) resulting from equation (1) is known as “Chow
expansion” in the pattern classification literature (see, e.g., Duda and Hart,1973). The parameter
pi,α represents the conditional probability for the eventxi = 1 given that the parent variables ofxi

exhibit bit-patternα. Equation (1) is a chain expansion forP(x) that expressesP(x) as a product of
conditional probabilities.

An unconstrained network that is highly connected may have a number of parameters that grows
exponentially in the number of nodes. The idea of a constrained network is tokeep the number of
parameters reasonably small even in case of a dense topology. We consider two types of constraints
giving rise to the definitions of networks with a reduced parameter collection and logistic autore-
gressive networks.

Definition 3 A Bayesian network with a reduced parameter collectionis a Bayesian network with
the following constraints: For every i∈ {1, . . . ,n} there exists a surjective function Ri : {0,1}mi →
{1, . . . ,di} such that the parameters ofN satisfy

∀i = 1, . . . ,n,∀α,α′ ∈ {0,1}mi : Ri(α) = Ri(α′) =⇒ pi,α = pi,α′ .

We denote the network asN R for R= (R1, . . . ,Rn). Obviously,N R is completely described by the
reduced parameter collection(pi,c)1≤i≤n,1≤c≤di .

A special case of these networks uses decision trees or graphs to represent the parameters.

Example 2 Chickering et al. (1997) proposed Bayesian networks “with local structure”. These
networks contain a decision tree Ti (or, alternatively, a decision graph Gi) over the parent-variables
of xi for every node i. The conditional probability for xi = 1, given the bit-pattern of the variables
from Pi , is attached to the corresponding leaf in Ti (or sink in Gi , respectively). This fits nicely into
our framework of networks with a reduced parameter collection. Here, di denotes the number of
leaves in Ti (or sinks of Gi , respectively), and Ri(α) is equal to c∈ {1, . . . ,di} if α is routed to leaf
c in Ti (or to sink c in Gi , respectively).

For a Bayesian network with reduced parameter collection, the distributionP(x) from Defini-
tion 2 can be written in a simpler way. LetRi,c(x) denote the{0,1}-valued function that indicates
for everyx∈ {0,1}n whether the projection ofx to the parent-variables ofxi is mapped byRi to the
valuec. Then, we have

P(x) =
n

∏
i=1

di

∏
c=1

p
xiRi,c(x)
i,c (1− pi,c)

(1−xi)Ri,c(x). (2)
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We finally introduce the so-called logistic autoregressive Bayesian networks, originally pro-
posed by McCullagh and Nelder (1983), that have been shown to perform surprisingly well on
certain problems (see also Neal, 1992, Saul et al., 1996, and Frey, 1998).

Definition 4 Thelogistic autoregressive Bayesian networkNσ is the fully connected Bayesian net-
work with constraints on the parameter collection given as

∀i = 1, . . . ,n,∃(wi, j)1≤ j≤i−1 ∈ R
i−1,∀α ∈ {0,1}i−1 : pi,α = σ

(
i−1

∑
j=1

wi, jα j

)

,

whereσ(y) = 1/(1+e−y) is the standard sigmoid function. Obviously,Nσ is completely described
by the parameter collection(wi, j)1≤i≤n,1≤ j≤i−1.

In a two-label classification task, functionsP(x),Q(x)∈ DN are used as discriminant functions,
whereP(x) andQ(x) represent the distributions ofx conditioned to label 1 and−1, respectively.
The corresponding decision function assigns label 1 tox if P(x) ≥ Q(x), and−1 otherwise. The
obvious connection to concept classes in learning theory is made explicit in the following definition.

Definition 5 Let N be a Bayesian network with nodes1, . . . ,n and letDN be the corresponding
class of distributions. The class of concepts induced byN , denoted asCN , consists of all±1-valued
functions on{0,1}n of the formsign(log(P(x)/Q(x))) for P,Q∈ DN .

Note that the function sign(log(P(x)/Q(x))) attains the value 1 ifP(x) ≥ Q(x), and the value
−1 otherwise. We use VCdim(N ) to denote the VC dimension ofCN .

2.3 Linear Arrangements in Inner Product Spaces

We are interested in embedding concept classes into finite-dimensional Euclidean spaces equipped
with the standard dot productu>v = ∑d

i=1uivi , whereu> denotes the transpose ofu. Such an em-
bedding is provided by a linear arrangement. Given a concept classC , we aim at determining the
smallest Euclidean dimension, denoted Edim(C ), that such a space can have.

Definition 6 A d-dimensional linear arrangementfor a concept classC over domainX is given by
collections(uf ) f∈C and(vx)x∈X of vectors inRd such that

∀ f ∈ C ,x∈ X : f (x) = sign(u>f vx).

The smallest d such that there exists a d-dimensional linear arrangement for C is denoted as
Edim(C ). If there is no finite-dimensional linear arrangement forC , Edim(C ) is defined to be
infinite.

If CN is the concept class induced by a Bayesian networkN , we write Edim(N ) instead of
Edim(CN ). It is evident that Edim(C ) ≤ Edim(C ′) if C ≤ C ′.

It is easy to see that Edim(C ) ≤ min{|C |, |X |} for finite concept classes. Nontrivial upper
bounds on Edim(C ) are usually obtained constructively by presenting an appropriate arrangement.
As for lower bounds, the following result is immediate from a result by Dudley(1978) which states
that VCdim({sign◦ f | f ∈ F }) = d for everyd-dimensional vector spaceF consisting of real-
valued functions (see also Anthony and Bartlett, 1999, Theorem 3.5).
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Lemma 7 Every concept classC satisfiesEdim(C ) ≥ VCdim(C ).

Let PARITYn be the concept class{ha | a∈ {0,1}n} of parity functions on the Boolean domain
given byha(x) = (−1)a>x, that is,ha(x) is the parity of thosexi whereai = 1. The following lower
bound, which will be useful in Section 5, is due to Forster (2002).

Corollary 8 Edim(PARITYn) ≥ 2n/2.

3. Upper Bounds on the Dimension of Inner Product Spaces for Bayesian Networks

This section is concerned with the derivation of upper bounds on Edim(N ). We obtain bounds for
unconstrained networks and for networks with a reduced parameter collection by providing concrete
linear arrangements. Given a setM, let 2M denote its power set.

Theorem 9 Every unconstrained Bayesian networkN satisfies

Edim(N ) ≤

∣
∣
∣
∣
∣

n
[

i=1

2Pi∪{i}

∣
∣
∣
∣
∣
≤ 2·

n

∑
i=1

2mi .

Proof From the expansion ofP in equation (1) and the corresponding expansion ofQ (with param-
etersqi,α in the role ofpi,α), we obtain

log
P(x)
Q(x)

=
n

∑
i=1

∑
α∈{0,1}mi

(

xiMi,α(x) log
pi,α

qi,α
+(1−xi)Mi,α(x) log

1− pi,α

1−qi,α

)

. (3)

On the right-hand side of equation (3), we find the polynomialsMi,α(x) andxiMi,α(x). Note that
| ∪n

i=1 2Pi∪{i}| equals the number of monomials that occur when we express these polynomialsas
sums of monomials by successive applications of the distributive law. A linear arrangement of the
claimed dimensionality is now obtained in the obvious fashion by introducing one coordinate per
monomial.

This result immediately yields an upper bound for Markov chains of orderk.

Corollary 10 Let Nk be the kth-order Markov chain given in Example 1. Then,

Edim(Nk) ≤ (n−k+1)2k.

Proof Apply Theorem 9 and observe that

n
[

i=1

2Pi∪{i} =
n

[

i=k+1

{Ji ∪{i} | Ji ⊆ {i−1, . . . , i−k}}∪{J | J ⊆ {1, . . . ,k}}.

Similar techniques as used in the proof of Theorem 9 lead to an upper boundfor networks with
a reduced parameter collection.
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Theorem 11 Let N R denote the Bayesian network that has a reduced parameter collection

(pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. Then,

Edim(N R) ≤ 2·
n

∑
i=1

di .

Proof Recall that the distributions fromDN R can be written as in equation (2). We make use of the
obvious relationship

log
P(x)
Q(x)

=
n

∑
i=1

di

∑
c=1

(

xiRi,c(x) log
pi,c

qi,c
+(1−xi)Ri,c(x) log

1− pi,c

1−qi,c

)

. (4)

A linear arrangement of the appropriate dimension is now obtained by introducing two coordinates
per pair(i,c): If x is mapped tovx in this arrangement, then the projection ofvx to the two coor-
dinates corresponding to(i,c) is (Ri,c(x),xiRi,c(x)); the appropriate mapping(P,Q) 7→ uP,Q in this
arrangement is easily derived from (4).

In Section 4 we shall show that the bounds established by Theorem 9 and Theorem 11 are tight
up to a factor of 2 and, in some cases, even up to an additive constant of 1.

The linear arrangements for unconstrained Bayesian networks or for Bayesian networks with
a reduced parameter collection were easy to find. This is no accident as thisholds for every class
of distributions (or densities) from the so-called exponential family because (as pointed out, for
instance, in Devroye et al., 1996) the corresponding Bayes rule takes aform known as generalized
linear rule. From this representation a linear arrangement is evident. Note,however, that the bound
given in Theorem 9 is slightly stronger than the bound obtained from the general approach for
members of the exponential family.

4. Lower Bounds Based on VC Dimension Considerations

In this section, we derive lower bounds on Edim(N ) that come close to the upper bounds obtained
in the previous section. Before presenting the main results in Section 4.2 as Corollaries 18, 21, and
Theorem 22, we focus on some specific Bayesian networks for which wedetermine the exact values
of Edim(N ).

4.1 Optimal Bounds for Specific Networks

In the following we calculate exact values of Edim(N ) by establishing lower bounds of VCdim(N )
and applying Lemma 7. This gives us also the exact value of the VC dimension for the respective
networks. We recall thatNk is thekth-order Markov chain defined in Example 1. The concept class
arising from networkN0, which we consider first, is the well-known Naı̈ve Bayes classifier.

Theorem 12

Edim(N0) =

{
n+1 if n ≥ 2,
1 if n = 1.
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The proof of this theorem relies on the following result.

Lemma 13 For every p,q∈]0,1[ there exist w∈ R and b∈]0,1[ such that

∀x∈ R : xlog
p
q

+(1−x) log
1− p
1−q

= w(x−b) (5)

holds. Conversely, for every w∈ R and b∈]0,1[ there exist p,q∈]0,1[ such that (5) is satisfied.

Proof Rewriting the left-hand side of the equation asxlogw′ + logc′, where

w′ =
p(1−q)

q(1− p)
and c′ =

1− p
1−q

,

it follows thatp= q is equivalent tow′ = c′ = 1. By definition ofc′, p< q is equivalent toc′ > 1 and,
asw′c′ = p/q, this is also equivalent toc′ < 1/w′. Analogously, it follows thatp > q is equivalent
to 0< 1/w′ < c′ < 1. By definingw = logw′ andc = logc′ and taking logarithms in the equalities
and inequalities, we conclude thatp,q∈]0,1[ is equivalent tow∈ R andc = −bwwith b∈]0,1[.

Proof (Theorem 12) Clearly, the theorem holds forn= 1. Suppose, therefore, thatn≥ 2. According
to Corollary 10, Edim(N0)≤ n+1. Thus, by Lemma 7 it suffices to show that VCdim(N0)≥ n+1.
Let ei denote the vector with a one in theith position and zeros elsewhere. Further, let1̄ be the
vector with a 1 in each position. We show that the set ofn+ 1 vectorse1, . . . ,en, 1̄ is shattered by
the classCN0

of concepts induced byN0, consisting of the functions of the form

sign

(

log
P(x)
Q(x)

)

= sign

(
n

∑
i=1

xi log
pi

qi
+(1−xi) log

1− pi

1−qi

)

,

wherepi ,qi ∈]0,1[, for i ∈ {1, . . . ,n}. By Lemma 13, the functions inCN0
can be written as

sign(w>(x−b)),

wherew∈ R
n andb∈]0,1[n.

It is not difficult to see that homogeneous halfspaces, that is, whereb = (0, . . . ,0), can di-
chotomize the set{e1, . . . ,en, 1̄} in all possible ways, except for the two cases to separate1̄ from
e1, . . . ,en. To accomplish these two dichotomies we defineb = (3/4) · 1̄ andw = ±1̄. Then, by the
assumption thatn≥ 2, we have fori = 1, . . . ,n,

w>(ei −b) = ±(1−3n/4) ≶ 0 and w>(1̄−b) = ±(n−3n/4) ≷ 0.

A further type of Bayesian network for which we derive the exact dimension has some kind of
bipartite graph underlying where one set of nodes serves as the set ofparents for all nodes in the
other set.
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Theorem 14 For k ≥ 0, let N ′
k denote the unconstrained network with Pi = /0 for i = 1, . . . ,k and

Pi = {1, . . . ,k} for i = k+1, . . . ,n. Then,

Edim(N ′
k ) = 2k(n−k+1).

Proof For the upper bound, we apply Lemma 1 and Theorem 1 using the fact that

n
[

i=1

2Pi∪{xi} =
n

[

i=k+1

{Ji ∪{i} | Ji ⊆ {1, . . . ,k}}∪{J | J ⊆ {1, . . . ,k}}.

To obtain the lower bound, letM ⊆ {0,1}n−k denote the set from the proof of Theorem 12 for the
corresponding networkN0 with n− k nodes. We show that the setS= {0,1}k ×M ⊆ {0,1}n is
shattered byN ′

k . Note thatShas the claimed cardinality since|M| = n−k+1.
Let (S−,S+) be a dichotomy ofS(that is, whereS−∪S+ = SandS−∩S+ = /0). Given a natural

numberj ∈ {0, . . . ,2k−1}, we use bin( j) to denote the binary representation ofj usingk bits. Then,
let (M−

j ,M+
j ) be the dichotomy ofM defined by

M+
j = {v∈ M | bin( j)v∈ S+}.

Here, bin( j)v refers to the concatenation of thek bits of bin( j) and then−k bits ofv. According to
Theorem 12, for each dichotomy(M−

j ,M+
j ) there exist parameter valuesp j

i ,q
j
i , where 1≤ i ≤ n−k,

such thatN0 with these parameter settings induces this dichotomy onM. In the networkN ′
k , we

specify the parameters as follows. Fori = 1, . . . ,k, let

pi = qi = 1/2,

and fori = k+1, . . . ,n and eachj ∈ {0, . . . ,2k−1} define

pi,bin( j) = p j
i−k,

qi,bin( j) = q j
i−k.

Obviously, the concept thus defined byN ′
k outputs−1 for elements ofS− and 1 for elements ofS+.

Since every dichotomy ofScan be implemented in this way,S is shattered byN ′
k .

4.2 General Lower Bounds

In Section 4.2.1 we shall establish lower bounds on Edim(N ) for unconstrained Bayesian networks
and in Section 4.2.2 for networks with a reduced parameter collection. Theseresults are obtained
by providing embeddings of concept classes, as introduced in Section 2.1, into these networks.
Since VCdim(C )≤ VCdim(C ′) if C ≤ C ′, a lower bound on VCdim(C ′) follows immediately from
classes satisfyingC ≤ C ′ if the VC dimension ofC is known or easy to determine. We first define
concept classes that will suit this purpose.

Definition 15 Let N be an arbitrary Bayesian network. For every i∈ {1, . . . ,n}, let Fi be a family
of±1-valued functions on the domain{0,1}mi and letF = F1×·· ·×Fn. ThenCN ,F is the concept
class over the domain{0,1}n\{(0, . . . ,0)} consisting of all functions of the form

LN , f = [(xn, fn), . . . ,(x1, f1)],
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where f= ( f1, . . . , fn) ∈ F . The right-hand side of this equation is to be understood as a decision
list, where LN , f (x) for x 6= (0, . . . ,0) is determined as follows:

1. Find the largest i such that xi = 1.

2. Apply fi to the projection of x to the parent-variables of xi and output the result.

The VC dimension ofCN ,F can be directly obtained from the VC dimensions of the classesFi .

Lemma 16 Let N be an arbitrary Bayesian network. Then,

VCdim(CN ,F ) =
n

∑
i=1

VCdim(Fi).

Proof We show that VCdim(CN ,F ) ≥ ∑n
i=1VCdim(Fi); the proof for the other direction is similar.

For everyi, we embed the vectors from{0,1}mi into {0,1}n according toτi(a) = (a′,1,0, . . . ,0),
wherea′ ∈ {0,1}i−1 is chosen such that its projection to the parent-variables ofxi is equal toa and
the remaining components are set to 0. Note thatτi(a) is absorbed by item(xi , fi) of the decision
list LN , f . It is easy to see that the following holds: If, fori = 1, . . . ,n, Si is a set that is shattered by
Fi , then∪n

i=1τi(Si) is shattered byCN ,F . Thus, VCdim(CN ,F ) ≥ ∑n
i=1VCdim(Fi).

The preceding definition and lemma are valid for unconstrained as well as constrained networks
as they make use only of the graph underlying the network and do not refer to the values of the
parameters. This will be important in the applications that follow.

4.2.1 LOWER BOUNDS FORUNCONSTRAINEDBAYESIAN NETWORKS

The next theorem is the main step in deriving for an arbitrary unconstrained networkN a lower
bound on Edim(N ). It is based on the idea of embedding one of the concept classesCN ,F defined
above intoCN .

Theorem 17 Let N be an unconstrained Bayesian network and letF ∗
i denote the set of all±1-

valued functions on domain{0,1}mi . Further, letF ∗ = F ∗
1 ×·· ·×F ∗

n . Then,CN ,F ∗ ≤ CN .

Proof We have to show that, for everyf = ( f1, . . . , fn), we can find a pair(P,Q) of distributions
from DN such that, for everyx∈ {0,1}n, LN , f (x) = sign(log(P(x)/Q(x))). To this end, we define
the parameters for the distributionsP andQ as

pi,α =

{

2−2i−1n/2 if fi(α) = −1,
1/2 if fi(α) = +1,

and qi,α =

{
1/2 if fi(α) = −1,

2−2i−1n/2 if fi(α) = +1.

An easy calculation now shows that

log

(
pi,α

qi,α

)

= fi(α)2i−1n and

∣
∣
∣
∣
log

1− pi,α

1−qi,α

∣
∣
∣
∣
< 1. (6)

Fix some arbitraryx ∈ {0,1}n \ {(0, . . . ,0)}. Choosei∗ maximal such thatxi∗ = 1 and letα∗ de-
note the projection ofx to the parent-variables ofxi∗ . Then,LN , f (x) = fi∗(α∗). Thus,LN , f (x) =
sign(log(P(x)/Q(x))) would follow immediately from

sign

(

log
P(x)
Q(x)

)

= sign

(

log
pi∗,α∗

qi∗,α∗

)

= fi∗(α∗). (7)
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The second equation in (7) is evident from the equality established in (6). As for the first equation
in (7), we argue as follows. By the choice ofi∗, we havexi = 0 for everyi > i∗. ExpandingP andQ
as given in (3), we obtain

log
P(x)
Q(x)

= log
pi∗,α∗

qi∗,α∗

+
i∗−1

∑
i=1

(

∑
α∈{0,1}mi

xiMi,α(x) log
pi,α

qi,α

)

+∑
i∈I

(

∑
α∈{0,1}mi

(1−xi)Mi,α(x) log
1− pi,α

1−qi,α

)

,

whereI = {1, . . . ,n}\{i∗}. Employing the inequality from (6), it follows that the sign of the right-
hand side of this equation is determined by log(pi∗,α∗/qi∗,α∗) since this term is of absolute value
2i∗−1n and

2i∗−1n−
i∗−1

∑
j=1

(2 j−1n)− (n−1) ≥ 1. (8)

This concludes the proof.

Using the lower bound obtained from Theorem 17 combined with Lemma 16 and the upper
bound provided by Theorem 9, we have a result that is tight up to a factorof 2.

Corollary 18 Every unconstrained Bayesian networkN satisfies

n

∑
i=1

2mi ≤ Edim(N ) ≤

∣
∣
∣
∣
∣

n
[

i=1

2Pi∪{i}

∣
∣
∣
∣
∣
≤ 2·

n

∑
i=1

2mi .

Bounds for thekth-order Markov chain that are optimal up to an additive constant of 1 emerge
from the lower bound due to Theorem 17 with Lemma 16 and the upper bound stated in Corol-
lary 10.

Corollary 19 Let Nk denote the Bayesian network from Example 1. Then,

(n−k+1)2k−1 ≤ Edim(Nk) ≤ (n−k+1)2k.

4.2.2 LOWER BOUNDS FORBAYESIAN NETWORKS WITH A REDUCED PARAMETER

COLLECTION

We now show how to obtain bounds for networks with a reduced parameter collection. Similarly
as in Section 4.2.1, the major step consists in providing embeddings into these networks. The main
result is based on techniques developed for Theorem 17.

Theorem 20 Let N R denote the Bayesian network that has a reduced parameter collection

(pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. LetF Ri
i denote the set of all±1-valued functions on the domain

{0,1}mi that depend onα ∈ {0,1}mi only through Ri(α). In other words, f∈ F Ri
i holds if and only

if there exists a±1-valued function g on domain{1, . . . ,di} such that f(α) = g(Ri(α)) for every
α ∈ {0,1}mi . Finally, let F R = F R1

1 ×·· ·×F Rn
n . Then,CN R,F R ≤ CN R.
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Proof We focus on the differences to the proof of Theorem 17. First, the decision list LN R, f uses a
function f = ( f1, . . . , fn) of the form fi(x) = gi(Ri(x)) for some functiongi : {1, . . . ,di}→ {−1,1}.
Second, the distributionsP,Q that satisfyLN , f (x) = sign(log(P(x)/Q(x))) for every x ∈ {0,1}n

have to be defined over the reduced parameter collection as given in equation (4). An appropriate
choice is

pi,c =

{

2−2i−1n/2 if gi(c) = −1,
1/2 if gi(c) = 1,

and qi,c =

{
1/2 if gi(c) = −1,

2−2i−1n/2 if gi(c) = 1.

The rest of the proof is completely analogous to the proof of Theorem 17.

Theorem 17 can be viewed as a special case of Theorem 20 since every unconstrained network
can be considered as a network with a reduced parameter collection wherethe functionsRi are 1-1.
However, there are differences arising from the notation of the networkparameters that have been
taken into account by the above proof.

Applying the lower bound of Theorem 20 in combination with Lemma 16 and the upper bound
of Theorem 11, we once more have bounds that are optimal up to the factor2.

Corollary 21 Let N R denote the Bayesian network that has a reduced parameter collection

(pi,c)1≤i≤n,1≤c≤di

in the sense of Definition 3. Then,

n

∑
i=1

di ≤ Edim(N R) ≤ 2·
n

∑
i=1

di .

4.2.3 LOWER BOUNDS FORLOGISTIC AUTOREGRESSIVENETWORKS

The following result is not obtained by embedding a concept class into a logistic autoregressive
Bayesian network. However, we apply a similar technique as developed in Sections 4.2.1 and 4.2.2
to derive a bound using the VC dimension by directly showing that these networks can shatter sets
of the claimed size.

Theorem 22 Let Nσ denote the logistic autoregressive Bayesian network from Definition 4. Then,

Edim(Nσ) ≥ n(n−1)/2.

Proof We show that the following setS is shattered by the concept classCNσ . Then the statement
follows from Lemma 7.

For i = 2, . . . ,n andc= 1, . . . , i−1, letαi,c ∈ {0,1}i−1 be the pattern with bit 1 in positionc and
zeros elsewhere. Then, for every pair(i,c), wherei ∈ {2, . . . ,n} andc ∈ {1, . . . , i −1}, let s(i,c) ∈
{0,1}n be the vector that has bit 1 in coordinatei, bit-patternαi,c in the coordinates 1, . . . , i−1, and
zeros in the remaining positions. The set

S = {s(i,c) | i = 2, . . . ,n andc = 1, . . . , i−1}

hasn(n−1)/2 elements.
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To show thatS is shattered, let(S−,S+) be some arbitrary dichotomy ofS. We claim that there
exists a pair(P,Q) of distributions fromDNσ such that for everys(i,c), sign(log(P(s(i,c))/Q(s(i,c))))=

1 if and only if s(i,c) ∈ S+. Assume that the parameterspi,α andqi,α for the distributionsP andQ,
respectively, satisfy

pi,α =

{
1/2 if α = αi,c ands(i,c) ∈ S+,

2−2i−1n/2 otherwise,

and

qi,α =

{

2−2i−1n/2 if α = αi,c ands(i,c) ∈ S+,
1/2 otherwise.

Similarly as in the proof of Theorem 17, we have
∣
∣
∣
∣
log

(
pi,α

qi,α

)∣
∣
∣
∣
= 2i−1n and

∣
∣
∣
∣
log

1− pi,α

1−qi,α

∣
∣
∣
∣
< 1. (9)

The expansion ofP andQ yields for everys(i,c) ∈ S,

log
P(s(i,c))

Q(s(i,c))
= log

pi,αi,c

qi,αi,c

+
i−1

∑
j=1

(

∑
α∈{0,1} j−1

s(i,c)
j M j,α(s(i,c)) log

p j,α

q j,α

)

+∑
j∈I

(

∑
α∈{0,1} j−1

(1−s(i,c)
j )M j,α(s(i,c)) log

1− p j,α

1−q j,α

)

,

where I = {1, . . . ,n} \ {i}. In analogy to inequality (8) in the proof of Theorem 17, it follows
from (9) that the sign of log(P(s(i,c))/Q(s(i,c))) is equal to the sign of log(pi,αi,c/qi,αi,c). By the
definition of pi,αi,c andqi,αi,c, the sign of log(pi,αi,c/qi,αi,c) is positive if and only ifs(i,c) ∈ S+.

It remains to show that the parameters of the distributionsP andQ can be given as required by
Definition 4, that is, in the formpi,α = σ(∑i−1

j=1wi, jα j) with wi, j ∈ R, and similarly forqi,α. This
now immediately follows from the fact thatσ(R) =]0,1[.

5. Lower Bounds via Embeddings of Parity Functions

The lower bounds obtained in Section 4 rely on arguments based on the VC dimension of the respec-
tive concept class. In particular, a quadratic lower bound for the logisticautoregressive network has
been established. In the following, we introduce a different technique leading to the lower bound
2Ω(n) for a variant of this network. For the time being, it seems possible to obtain an exponential
bound for these slightly modified networks only, which are given by the following definition.

Definition 23 The modified logistic autoregressive Bayesian networkN ′
σ is the fully connected

Bayesian network with nodes0,1, . . . ,n+1 and the constraints on the parameter collection defined
as

∀i = 0, . . . ,n,∃(wi, j)0≤ j≤i−1 ∈ R
i ,∀α ∈ {0,1}i : pi,α = σ

(
i−1

∑
j=0

wi, jα j

)
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and

∃(wi)0≤i≤n,∀α ∈ {0,1}n+1 : pn+1,α = σ

(
n

∑
i=0

wiσ

(
i−1

∑
j=0

wi, jα j

))

.

Obviously,N ′
σ is completely described by the parameter collections(wi, j)0≤i≤n,0≤ j≤i−1 and(wi)0≤i≤n.

The crucial difference betweenN ′
σ andNσ is the noden+1 whose sigmoidal function receives

the outputs of the other sigmoidal functions as input. Roughly speaking,Nσ is a single-layer net-
work whereasN ′

σ has an extra node at a second layer.
To obtain the bound, we provide an embedding of the concept class of parity functions. The

following theorem motivates this construction by showing that it is impossible to obtain an expo-
nential lower bound for Edim(Nσ) nor for Edim(N ′

σ) using the VC dimension argument, as these
networks have VC dimensions that are polynomial inn.

Theorem 24 The logistic autoregressive Bayesian networkNσ from Definition 4 and the modi-
fied logistic autoregressive Bayesian networkN ′

σ from Definition 23 have a VC dimension that is
bounded by O(n6).

Proof Consider first the logistic autoregressive Bayesian network. We show that the concept class
induced byNσ can be computed by a specific type of feedforward neural network. Then, we apply
a known bound on the VC dimension of these networks.

The neural networks for the concepts inCNσ consist of sigmoidal units, product units, and units
computing second-order polynomials. A sigmoidal unit computes functions ofthe formσ(w>x−t),
wherex∈R

k is the input vector andw∈R
k, t ∈R are parameters. A product unit computesΠk

i=1xwi
i .

The value ofpi,α can be calculated by a sigmoidal unit aspi,α = σ(∑i−1
j=1wi, jα j) with α as input

and parameterswi,1, . . . ,wi,i−1. Regarding the factorspxi
i,α(1− pi,α)(1−xi), we observe that

pxi
i,α(1− pi,α)(1−xi) = pi,αxi +(1− pi,α)(1−xi)

= 2pi,αxi −xi − pi,α +1,

where the first equation is valid becausexi ∈ {0,1}. Thus, the value ofpxi
i,α(1− pi,α)(1−xi) is given

by a second-order polynomial. Similarly, the value ofqxi
i,α(1− qi,α)(1−xi) can also be determined

using sigmoidal units and polynomial units of order 2. Finally, the output value of the network is
obtained by comparingP(x)/Q(x) with the constant threshold 1. We calculateP(x)/Q(x) using a
product unit

y1 · · ·ynz−1
1 · · ·z−1

n ,

with input variablesyi andzi that receive the value ofpxi
i,α(1− pi,α)(1−xi) andqxi

i,α(1− qi,α)(1−xi)

computed by the second-order units, respectively.
This network hasO(n2) parameters andO(n) computation nodes, each of which is a sigmoidal

unit, a second-order unit, or a product unit. Theorem 2 of Schmitt (2002)shows that every such
network withW parameters andk computation nodes, which are sigmoidal and product units, has
VC dimensionO(W2k2). A close inspection of the proof of this result reveals that it also includes
polynomials of degree 2 as computational units (see also Lemma 4 in Schmitt, 2002). Thus, we
obtain the claimed boundO(n6) for the logistic autoregressive Bayesian networkNσ.

For the modified logistic autoregressive network we have only to take one additional sigmoidal
unit into account. Thus, the bound for this network follows now immediately.
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In the previous result we were interested in the asymptotic behavior of the VCdimension, show-
ing that it is not exponential. Using the techniques provided in Schmitt (2002)mentioned in the
above proof, it is also possible to obtain constant factors for these bounds.

We now provide the main result of this section. Its proof employs the conceptclass PARITYn

defined in Section 2.3.

Theorem 25 LetN ′
σ denote the modified logistic autoregressive Bayesian network with n+2 nodes

and assume that n is a multiple of4. Then,PARITYn/2 ≤ N ′
σ.

Proof The mapping

{0,1}n/2 3 x = (x1, . . . ,xn/2) 7→ (

α
︷ ︸︸ ︷

1,x1, . . . ,xn/2,1, . . . ,1,1) = x′ ∈ {0,1}n+2 (10)

assigns to every element of{0,1}n/2 uniquely some element in{0,1}n+2. Note thatα, as indicated
in (10), equals the bit-pattern of the parent-variables ofx′n+2 (which are actually all other variables).
We claim that the following holds. For everya∈ {0,1}n/2, there exists a pair(P,Q) of distributions
from DN ′

σ
such that for everyx∈ {0,1}n/2,

(−1)a>x = sign

(

log
P(x′)
Q(x′)

)

. (11)

Clearly, the theorem follows once the claim is settled. The proof of the claim makes use of the
following facts:

Fact 1 For everya∈ {0,1}n/2, function(−1)a>x can be computed by a two-layer threshold circuit
with n/2 threshold units at the first layer and one threshold unit as output node at the second
layer.

Fact 2 Each two-layer threshold circuitC can be simulated by a two-layer sigmoidal circuitC′ with
the same number of units and the following output convention:C(x) = 1 =⇒ C′(x) ≥ 2/3
andC(x) = 0 =⇒ C′(x) ≤ 1/3.

Fact 3 Network N ′
σ contains as a sub-network a two-layer sigmoidal circuitC′ with n/2 input

nodes,n/2 sigmoidal units at the first layer, and one sigmoidal unit at the second layer.

The parity function is a symmetric Boolean function, that is, a functionf : {0,1}k →{0,1} that
is described by a setM ⊆ {0, . . . ,k} such thatf (x) = 1 if and only if ∑k

i=1xi ∈ M. Thus, Fact 1
is implied by Proposition 2.1 of Hajnal et al. (1993) which shows that every symmetric Boolean
function can be computed by a circuit of this kind.

Fact 2 follows from the capability of the sigmoidal functionσ to approximate any Boolean
threshold function arbitrarily close. This can be done by multiplying all weightsand the threshold
with a sufficiently large number.

To establish Fact 3, we refer to Definition 23 and proceed as follows: We would like the term
pn+1,α to satisfypn+1,α =C′(α1, . . . ,αn/2), whereC′ denotes an arbitrary two-layer sigmoidal circuit
as described in Fact 3. To this end, we setwi, j = 0 if 1 ≤ i ≤ n/2 or if i, j ≥ n/2+1. Further, we
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let wi = 0 if 1 ≤ i ≤ n/2. The parameters that have been set to zero are referred to as “redundant”
parameters in what follows. Recall from (10) thatα0 = αn/2+1 = · · · = αn = 1. From these settings
and fromσ(0) = 1/2, we obtain

pn+1,α = σ

(

1
2

w0 +
n

∑
i=n/2+1

wiσ

(

wi,0 +
n/2

∑
j=1

wi, jα j

))

.

Indeed, this is the output of a two-layer sigmoidal circuitC′ on the input(α1, . . . ,αn/2).
We are now in the position to describe the choice of distributionsP and Q. Let C′ be the

sigmoidal circuit that computes(−1)a>x for some fixeda ∈ {0,1}n/2 according to Facts 1 and
2. Let P be the distribution obtained by setting the redundant parameters to zero (as described
above) and the remaining parameters as inC′. Thus, pn+1,α = C′(α1, . . . ,αn/2). Let Q be the
distribution with the same parameters asP except for replacingwi by −wi . Thus, by symmetry of
σ, qn+1,α = 1−C′(α1, . . . ,αn/2). Sincex′n+1 = 1 and since all but one factor inP(x′)/Q(x′) cancel
each other, we arrive at

P(x′)
Q(x′)

=
pn+1,α

qn+1,α
=

C′(α1, . . . ,αn/2)

1−C′(α1, . . . ,αn/2)
.

AsC′ computes(−1)a>x, the output convention from Fact 2 yields thatP(x′)/Q(x′)≥ 2 if (−1)a>x =
1, andP(x′)/Q(x′) ≤ 1/2 otherwise. This implies claim (11) and concludes the proof.

Combining Theorem 25 with Corollary 8, we obtain the exponential lower bound for the modi-
fied logistic autoregressive Bayesian network.

Corollary 26 Let N ′
σ denote the modified logistic autoregressive Bayesian network. Then,

Edim(N ′
σ) ≥ 2n/4.

By a more detailed analysis it can be shown that Theorem 25 holds even if werestrict the
values in the parameter collection ofN ′

σ to integers that can be represented usingO(logn) bits. We
mentioned in the introduction that a large lower bound on Edim(C ) rules out the possibility of a large
margin classifier. Forster and Simon (2002) have shown that every lineararrangement for PARITYn
has an average geometric margin of at most 2−n/2. Thus there can be no linear arrangement with
an average margin exceeding 2−n/4 for CN ′

σ
even if we restrict the weight parameters inN ′

σ to
logarithmically bounded integers.

6. Conclusions and Open Problems

Bayesian networks have become one of the heavily studied and widely usedprobabilistic techniques
for pattern recognition and statistical inference. One line of inquiry into Bayesian networks pursues
the idea of combining them with kernel methods so that one can take advantageof both. Kernel
methods employ the principle of mapping the input vectors to some higher-dimensional space where
then inner product operations are performed implicitly. The major motivation for our work was to
reveal more about such inner product spaces. In particular, we asked whether Bayesian networks
can be considered as linear classifiers and, thus, whether kernel operations can be implemented as
standard dot products. With this work we have gained insight into the natureof the inner product
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space in terms of bounds on its dimensionality. As the main results, we have established tight bounds
on the Euclidean dimension of spaces in which two-label classifications of Bayesian networks with
binary nodes can be implemented.

We have employed the VC dimension as one of the tools for deriving lower bounds. Bounds
on the VC dimension of concept classes abound. Exact values are known only for a few classes.
Surprisingly, our investigation of the dimensionality of embeddings lead to some exact values of
the VC dimension for nontrivial Bayesian networks. The VC dimension can be employed to obtain
tight bounds on the complexity of model selection, that is, on the amount of information required for
choosing a Bayesian network that performs well on unseen data. In frameworks where this amount
can be expressed in terms of the VC dimension, the tight bounds for the embeddings of Bayesian
networks established here show that the sizes of the training samples required for learning can
also be estimated using the Euclidean dimension. Another consequence of thisclose relationship
between VC dimension and Euclidean dimension is that these networks can be replaced by linear
classifiers without a significant increase in the required sample sizes. Whether these conclusions
can be drawn also for the logistic autoregressive network is an open issue. It remains to be shown
if the VC dimension is also useful in tightly bounding the Euclidean dimension of these networks.
For the modified version of this model, our results suggest that different approaches might be more
successful.

The results raise some further open questions. First, since we considered only networks with
binary nodes, analogous questions regarding Bayesian networks with multiple-valued nodes or even
continuous-valued nodes are certainly of interest. Another generalization of Bayesian networks are
those with hidden variables which have also been out of the scope of this work. Further, with regard
to logistic autoregressive Bayesian networks, we were able to obtain an exponential lower bound
only for a variant of them. For the unmodified network such a bound has yet to be found. Finally,
the questions we studied here are certainly relevant not only for Bayesian networks but also for
other popular classes of distributions or densities. Those from the exponential family look like a
good thing to start with.
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Abstract

Recent work has introduced Boolean kernels with which one can learn linear threshold functions
over a feature space containing all conjunctions of length up tok (for any 1≤ k≤n) over the original
n Boolean features in the input space. This motivates the question of whether maximum margin
algorithms such as Support Vector Machines can learn Disjunctive Normal Form expressions in
the Probably Approximately Correct (PAC) learning model byusing this kernel. We study this
question, as well as a variant in which structural risk minimization (SRM) is performed where the
class hierarchy is taken over the length of conjunctions.

We show that maximum margin algorithms using the Boolean kernels do not PAC learnt(n)-
term DNF for anyt(n) = ω(1), even when used with such a SRM scheme. We also consider PAC
learning under the uniform distribution and show that if thekernel uses conjunctions of length
ω̃(

√
n) then the maximum margin hypothesis will fail on the uniform distribution as well. Our

results concretely illustrate that margin based algorithms may overfit when learning simple target
functions with natural kernels.

Keywords: computational learning theory, kernel methods, PAC learning, Boolean functions

1. Introduction

Maximum margin algorithms, notably the Support Vector Machines (SVM) introduced by Boser
et al. (1992), have received considerable attention in recent years (see, e.g., Shawe-Taylor and Cris-
tianini, 2000, for an introduction). In their basic form, SVM learn linear threshold hypotheses and
combine two powerful ideas. The first idea is to learn using the linear separator which achieves
the maximum marginon the training data rather than an arbitrary consistent linear threshold hy-
pothesis. The second idea is to use an implicit feature expansion by akernel function. The kernel
K : X ×X → R, whereX is the original space of examples, computes the inner product in the ex-
panded feature space. Given a kernelK which corresponds to some expanded feature space, the
SVM hypothesish is (an implicit representation of) the maximum margin linear threshold hypoth-
esis over this expanded feature space rather than the original feature space. SVM theory (see, e.g.,
Shawe-Taylor and Cristianini, 2000) implies that if the kernelK is efficiently computable then it is
possible to efficiently construct this maximum margin hypothesish and thath itself is efficiently

c©2005 Roni Khardon and Rocco A. Servedio.
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computable. Several on-line algorithms have also been proposed which iteratively construct large
margin hypotheses in the feature space (see, e.g., Friess et al., 1998; Gentile, 2001).

Both theoretical and experimental studies suggest that such algorithms may be able to take
advantage of properties of the distribution and data to converge faster than what would be required
by uniform convergence bounds. In particular, convergence bounds based on the maximum margin
of the classifier on the observed data have been obtained by Shawe-Taylor et al. (1998) and by
Shawe-Taylor and Cristianini (2000).

1.1 Can SVMs Learn DNF?

Another major focus of research in learning theory is the question of whether various classes of
Boolean functions can be learned by computationally efficient algorithms. The canonical open ques-
tion in this area is whether there exist efficient algorithms in the Probably Approximately Correct
(PAC) learning model of Valiant (1984) for learning Boolean formulas in Disjunctive Normal Form,
or DNF. This question has been open since the introduction of the PAC modeland has been inten-
sively studied by many researchers (see, e.g., Blum et al., 1994; Blum and Rudich, 1995; Bshouty,
1996; Hancock and Mansour, 1991; Jackson, 1997; Khardon, 1994; Klivans and Servedio, 2001;
Kucera et al., 1994; Kushilevitz and Roth, 1993; Sakai and Maruoka, 2000; Tarui and Tsukiji, 1999;
Verbeurgt, 1990, 1998).

In this paper we analyze the performance of maximum margin algorithms when used with
Boolean kernels to learn DNF formulas. Several authors including Khardon et al. (2002), Sado-
hara (2001), Watkins (1999) and Kowalczyk et al. (2002) have recently proposed a family of kernel
functionsKk : {0,1}n×{0,1}n → N, where 1≤ k ≤ n, such thatKk(x,y) computes the number of
(monotone or unrestricted) conjunctions of length (exactly or up to)k which are true in bothx andy.
This is equivalent to expanding the original feature space ofn Boolean features to include all such
conjunctions.1 Since linear threshold elements can represent disjunctions, one can naturally view
any DNF formula as a linear threshold function over this expanded featurespace. It is thus natural
to ask whether theKk kernel maximum margin learning algorithms are good algorithms for learning
DNF.

Additional motivation for studying DNF learnability with theKk kernels comes from recent
progress on the DNF learning problem. The fastest known algorithm for PAC learning DNF is
due to Klivans and Servedio (2001); it works by explicitly expanding each example into a feature
space of monotone conjunctions and explicitly learning a consistent linear threshold function over
this expanded feature space. Since theKk kernel enables us to do such expansions implicitly in a
computationally efficient way, it is natural to investigate whether theKk-kernel maximum margin
algorithm yields a computationally efficient algorithm for PAC learning DNF.

1.2 Discussion of the Problem and Previous Work

Recall that a polynomial size sample is sufficient for PAC learning any concept class where each
concept in the class has a polynomial size description. In any such case,as shown by Blumer
et al. (1987), an Occam algorithm which identifies a short consistent hypothesis in the class is a

1. This Boolean kernel is similar to the well known polynomial kernel in thatall monomials of length up tok are
represented. The main difference is that the polynomial kernel assigns weights to monomials which depend on
certain binomial coefficients; thus the weights of different monomials candiffer by an exponential factor. In the
Boolean kernel all monomials have the same weight.
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PAC learner. Thus the statistical ingredient of the problem of PAC learningpolynomial size DNF
expressions is in some sense solved and the main question seems to be computational. Yet, it is not
known whether such an Occam algorithm exists.

As mentioned above recent work of Shawe-Taylor et al. (1998) and Shawe-Taylor and Cristian-
ini (2000) has introduced convergence bounds for maximum margin learners. These bounds are
independent of the dimension of the expanded feature space but they depend on theL2 norm of ex-
amples in this space, as well as the margin obtained on the sample. In particular they depend onR/δ
whereδ is the margin andR bounds theL2 norm of examples. It is instructive to consider applying
these results in our setting, where we assume for concreteness that we are learning a function given
by onek-monomialT, and that we are using theKk monotone kernel with the maximum margin
algorithm. The linear threshold representation for this function isxT ≥ 1, i.e. only one weight is
non-zero and the (non-normalized) margin obtained is 1. However, the maximumL2 norm of exam-
ples isΘ(nk/2) so the quantityR/δ is exponentially large. Seen in another way, we can normalize
the examples to have a maximum norm of 1, but then the normalized margin obtainedis Θ(n−k/2).
Indeed, the bound given by Theorem 4.18 of the paper of Shawe-Taylor and Cristianini (2000) only
implies nontrivial generalization error for theKk kernel algorithm if a sample of sizenΩ(k) is used,
and with such a large sample the computational advantage of using theKk kernel is lost. As a result,
using such bounds we cannota priori conclude anything about the performance of the algorithm
when it is run with a polynomial size sample.

Recently, several negative results have been obtained for embedding concept classes into Eu-
clidean spaces (Ben-David et al., 2002; Forster et al., 2003). The results are best understood in
terms of their relation to the convergence bounds. For example, Ben-Davidet al. (2002) show that
there are concept classes for which there is no mapping into[0,1]N that achieves a large margin,
for anyN. This actually holds “for the majority of concept classes with low VC dimension”. Other
work of Forster et al. (2003) gives bounds on the margin (or the dimension required) for concrete
concept classes. Again, the implication is that known convergence boundsdo not imply success in
these cases. It is worth noting that the notion of embedding used in these results is slightly stronger
than the requirement in the upper bounds, in that the embedding and margin are for all the examples
(or a large fraction of the instance space) and not just for a small sample.However, these results
rule out any simple application of the upper bounds that use properties of the concept class directly.

Therefore, in many cases, and concretely in our case of learning DNF via the monomial kernel,
the upper bounds provided by standard convergence theorems only implythat a large sample will
guarantee successful generalization. However, such upper bounds donot imply that theKk kernel
maximum margin algorithm must have poor generalization error if run with a smallersample. This
is precisely the question studied in this paper. Notice the contrast with the discussion of Occam
algorithms; here we have an efficient algorithm with no known bounds on hypothesis size. The
question is whether its hypothesis provides a good generalization in a statistical sense.

The notion that this might succeed is not unreasonable. In an analogous situation, Servedio
(1999) studied the generalization error of the Perceptron and Winnow algorithms for various prob-
lems. For both Perceptron and Winnow the standard bounds gave only an exponential upper bound
on the number of examples required to learn various classes, but a detailedalgorithm-specific anal-
ysis showed that the Perceptron algorithm succeeds in polynomial time whereas the Winnow algo-
rithm requires exponential time for the problems considered. Analogously,in this paper we perform
detailed algorithm-specific analysis for theKk kernel maximum margin algorithms.
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In previous work we have studied a similar question with regard to the perceptron algorithm. In
particular, Khardon et al. (2002) constructed a simple Boolean function and an example sequence
for the online mistake-bound learning model, and showed that this sequencecauses theKn kernel
Perceptron algorithm (i.e. the Perceptron algorithm run over a feature space of all 2n monotone
conjunctions) to make 2Ω(n) many mistakes. The current paper differs in several ways from this
earlier work: we study the maximum margin algorithm rather than Perceptron, we consider PAC
learning from a random sample rather than online learning, and we analyzethe Kk kernels for all
1≤ k ≤ n. We note here that maximum margin linear threshold learning algorithms are generally
viewed as being more powerful than the simple Perceptron algorithm, and thatPAC learning is
generally viewed as being easier than online mistake bound learning (it is wellknown that any
concept class which is efficiently learnable in the mistake bound model is efficiently PAC learnable,
but the converse is not true as shown by Blum, 1994). Thus, the results of this work represent a
substantial strengthening and generalization of the work of Khardon et al. (2002).

1.3 Our Results

In this paper we study the kernels corresponding to all monotone monomials oflength up tok,
which we denote byKk. We also consider the polynomial kernelK(x,y) = (x ·y)k, parametrized by
the degree of the polynomial.

In addition to unaugmented maximum margin algorithms we also consider a natural scheme of
structural risk minimization (SRM) that can be used with maximum margin algorithms over this
family of Boolean kernels. In SRM, given a hierarchy of classesC1 ⊆C2 ⊆ . . ., one learns with each
class separately and uses a cost function combining the complexity of the class with its observed
accuracy to choose the final hypothesis. The cost function typically balances various criteria such
as the observed error and the (bound on) generalization error. A natural scheme here is to use SRM
over the classes formed byKk with k = 1, . . . ,n.2

Combining either of these algorithms (i.e. with or without SRM scheme) with the monomial
kernel we get a concrete and efficient algorithm that can be applied to theproblem of learning DNF.
We prove several negative results which establish strong limitations on the ability of such algorithms
to learn DNF. Similar negative results are proved for the polynomial kernelas well.

Our first result says essentially that for anyt(n) = ω(1), for all k = 1, . . . ,n theKk kernel maxi-
mum margin algorithm cannot PAC learnt(n)-term DNF. More precisely, we prove

Result 1: Let t(n) = ω(1) and letε = 1
4·2t(n) . There is aO(t(n)1/3)-term monotone DNF overt(n)

relevant variables, and a distributionD over{0,1}n such that for allk∈ {1, . . . ,n} theKk maximum
margin hypothesis has error larger thanε (with overwhelmingly high probability over the choice of
a polynomial size random sample fromD).

Note that this result implies that theKk maximum margin algorithms fail even when combined
with SRM regardless of the cost function. This is simply because the maximum margin hypothesis
has error> ε for all k, and hence the final SRM hypothesis must also have error> ε.

While our accuracy bound in the above result is small (it iso(1) sincet(n) = ω(1)), a simple
variant of the construction used for Result 1 also proves:

2. This is standard practice in experimental work with the polynomial kernel, where typically small values ofk are tried
(e.g. 1 to 5) and the best is chosen.
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Result 2: Let f (x) = x1 be the target function. There is a distributionD over{0,1}n such that for
anyk= ω(1) theKk maximum margin hypothesis has error at least1

2−2−nΩ(1)
(with overwhelmingly

high probability over the choice of a polynomial size random sample fromD).

Thus any attempt to learn using monomials of non-constant size can provablylead to overfitting.
Note that for anyk= Θ(1), standard bounds on maximum margin algorithms show that theKk kernel
algorithm can learnf (x) = x1 from a polynomial size sample.

Given these strong negative results for PAC learning under arbitrary distributions, we next con-
sider the problem of PAC learning monotone DNF under the uniform distribution. This is one of the
few frameworks in which some positive results have been obtained for learning DNF from random
examples only (see, e.g., Bshouty and Tamon, 1996; Servedio, 2001). In this scenario a simple
variant of the construction for Result 1 shows that learning must fail ifk is too small:

Result 3: Let t(n) = ω(1) and ε = 1
4·2t(n) . There is aO(t(n)1/3)-term monotone DNF overt(n)

relevant variables such that for allk < t(n) theKk maximum margin hypothesis has error at leastε
(with probability 1 over the choice of a random sample from the uniform distribution).

This result is representation based; we show that no possible hypothesisoutput by theKk algorithm
can have error less thanε. On the other hand, we also show that theKk algorithm fails under the
uniform distribution for largek:

Result 4: Let f (x) = x1 be the target function. For anyk = ω̃(
√

n), the Kk maximum margin
hypothesis will have error12 −2−Ω(n) with probability at least 0.028 over the choice of a polynomial
size random sample from the uniform distribution.

Note that there is a substantial gap between the “low” values ofk (for which learning is guar-
anteed to fail) and the “high” values ofk (for which we show that learning fails with constant
probability). It is of significant interest to characterize the performanceof theKk maximum margin
algorithm under the uniform distribution for these intermediate values ofk; a discussion of this point
is given in Section 5.

2. Preliminaries

We consider learning Boolean functions over the Boolean cube{0,1}n so thatf : {0,1}n →{0,1}.
It is convenient to consider instead the range{−1,1} with 0 mapped to−1 and 1 mapped to 1. This
is easily achieved by the transformationf ′(x) = 1−2 f (x) and since we deal with linear function
representations this can be done without affecting the results. For the rest of the paper we assume
this representation.

For x,y ∈ R
n we writex · y to denote the standard inner product∑n

i=1xiyi . Note that forx,y ∈
{0,1}n, x ·y calculates the number of bits which are 1 in bothx andy. Our arguments will refer to

L1 andL2 norms of vectors for which we use the notation|x| = ∑ |xi | and‖x‖ =
√

∑x2
i .

Definition 1 Let h: R
N → {−1,1} be a linear threshold function h(x) = sign(W · x−θ) for some

W ∈ R
N,θ ∈ R. Themargin ofh on 〈z,b〉 ∈ R

N ×{−1,1} is

mh(z,b) =
b(W ·z−θ)

‖W‖ .

Note that|mh(z,b)| is the Euclidean distance fromz to the hyperplaneW ·x = θ.
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Definition 2 Let S= {〈xi ,bi〉}i=1,...,m be a set of labeled examples where each xi ∈ R
N and each

bi ∈ {−1,1}. Let h(x) = sign(W ·x−θ) be a linear threshold function. Themargin ofh onS is

mh(S) = min
〈x,b〉∈S

mh(x,b).

Themaximum margin classifier forS is the linear threshold function h(x) = sign(W · x− θ) such
that

mh(S) = max
W′∈RN,θ′∈R

min
〈x,b〉∈S

b(W′ ·x−θ′)
‖W′‖ . (1)

The quantity (1) is called themargin ofS and is denoted mS.

Note thatmS > 0 iff S is consistent with some linear threshold function. IfmS > 0 then the
maximum margin classifier forS is unique (see, e.g., Shawe-Taylor and Cristianini, 2000).

For a sampleSand example〈xi ,1〉 in Swe sometimes writexi,+ to indicate thatxi is a positive
example. Similarlyx j,− is used to indicate thatx j is a negative example.

Let φ be a transformation which maps{0,1}n to R
N and letK : {0,1}n×{0,1}n →R be the cor-

responding kernel functionK(x,y)= φ(x)·φ(y). Given a set of labeled examplesS= {〈xi ,bi〉}i=1,...,m

where eachxi belongs to{0,1}n we denote byφ(S) the set of transformed examples{〈φ(xi),bi〉}i=1,...,m.
We refer to the following learning algorithm as theK-maximum margin learner:

• The algorithm takes as input a sampleS= {〈xi ,bi〉}i=1,...,m of m labeled examples.

We assume thatScontains both positive and negative examples, and that the sample is linearly
separable. If these conditions do not hold then the maximum margin hypothesisis not defined.
The assumptions are simply used to rule out the degenerate cases from the analysis.

We also assume thatm= poly(n), i.e. thatm= nΘ(1) and we have both a lower and upper
bound on the number of examples. The upper bound as usual limits the resources the al-
gorithm uses. The lower bound is again simply used to rule out degenerate cases from the
analysis.

• The algorithm’s hypothesis ish : {0,1}n →{−1,1},h(x) = sign(W ·φ(x)−θ) where sign(W ·
x−θ) is the maximum margin classifier forφ(S). Without loss of generality we assume that
W is normalized, that is‖W‖ = 1.

SVM theory tells us that ifK(x,y) can be computed in poly(n) time then theK-maximum margin
learning algorithm runs in poly(n,m) =poly(n) time and the output hypothesish(x) can be evaluated
in poly(n,m) =poly(n) time (see, e.g., Shawe-Taylor and Cristianini, 2000).

Our goal is to analyze the PAC learning ability of various kernel maximum marginlearning
algorithms. Recall (see, e.g., Kearns and Vazirani, 1994) that a PAC learning algorithm for a class
C of functions over{0,1}n is an algorithm which runs in time polynomial inn and 1

δ , 1
ε whereδ is

a confidence parameter andε is an accuracy parameter. We assume here, as is the case throughout
the paper, that each function inC has a description of size poly(n). Given access to random labeled
examples〈x, f (x)〉 for any f ∈ C and any distributionD over{0,1}n, with probability at least 1−δ a
PAC learning algorithm must output an efficiently computable hypothesish such that Prx∈D [h(x) 6=
f (x)]≤ ε. Applying this framework to the maximum margin learner, we assume that the sampleSis
drawn by taking IID samples fromD and providing the label according to the target functionf . If
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an algorithm only satisfies this criterion for a particular distribution such as theuniform distribution
on{0,1}n, we say that it is a uniform distribution PAC learning algorithm.

Let ρk(n) = ∑i=k
i=1

(n
i

)

. Note that the number of nonempty monotone conjunctions (i.e. mono-
mials) of size at mostk on n variables isρk(n). For x ∈ {0,1}n we write φk(x) to denote the
ρk(n)-dimensional vector(xT)T⊆{1,...,n},1≤|T|≤k wherexT = ∏i∈T xi , i.e. the components ofφk(x)
are all monotone conjunctions of the desired size. We note that for an example x∈ {0,1}n, theL1

norm of the expanded exampleφk(x) is |φk(x)| = ρk(|x|).

Definition 3 We write Kk(x,y) to denoteφk(x) ·φk(y). We refer to Kk as the k-monomials kernel.

The following theorem shows that thek-monomial kernels are easy to compute:

Theorem 4 (Khardon, Roth, and Servedio, 2002) For all1≤ k≤ n we have Kk(x,y) = ∑k
i=1

(x·y
i

)

.

We will frequently use the following observation which is a direct consequence of the Cauchy-
Schwarz inequality:

Observation 1 If U ∈ R
N1 with ‖U‖ = L and I⊆ {1, . . . ,N1}, |I | = N2, then∑i∈I |Ui | ≤ L ·

√
N2.

As a consequence of Observation 1 we have that ifρk(n) = N1 is the number of features in the
expanded feature space and|φk(x)| = ρk(|x|) = N2, thenU ·φk(x) ≤ L ·

√
N2.

Finally we also use the following well-known tail bound on sums of independent random vari-
ables (see, e.g., Kearns and Vazirani, 1994):

Fact 2 (Chernoff Bounds) Let X1, . . . ,Xm be a sequence of m independent 0/1-valued random vari-
ables, each of which has E[Xi ] = p. Let X denote∑m

i=1Xi , so E[X] = pm. Then for0 ≤ γ ≤ 1, we
have

Pr[X > (1+ γ)pm] ≤ e−mpγ2/3 and Pr[X < (1− γ)pm] ≤ e−mpγ2/2.

3. Distribution-Free Non-Learnability

We give a DNF and a distribution which are such that the maximum margin algorithmusing the
k-monomials kernel fails to learn, for all 1≤ k≤ n. The DNF we consider is a read once monotone
DNF overt(n) variables wheret(n) = ω(1) andt(n) = O(logn). In fact our results hold for any
t(n) = ω(1) but for concreteness we uset(n) = logn as a running example. Let

f (x) = (x1 · · ·x4`2)∨ (x4`2+1 · · ·x8`2)∨·· ·∨ (x4`3−4`2+1 · · ·x4`3) (2)

where 4̀3 = t(n) = logn so that the number of terms̀equalsΘ(t(n)1/3) = Θ((logn)1/3). For the
rest of this sectionf (x) will refer to the function defined in Equation (2) and` to its size parameter.

A polynomial threshold functionis defined by a multivariate polynomialp(x1, . . . ,xn) with real
coefficients. The output of the polynomial threshold function is 1 ifp(x1, . . . ,xn) ≥ 0 and is−1
otherwise. The degree of the function is the degree of the polynomialp. A simple but useful
observation is that any hypothesis output by theKk kernel maximum margin algorithm must be a
polynomial threshold function of degree at mostk. Minsky and Papert (1968) (see also Klivans and
Servedio, 2001) gave the following lower bound on polynomial threshold function degree for DNF:
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Theorem 5 Any polynomial threshold function for f(x) in Equation (2) must have degree at least
`.

The distributionD on{0,1}n we consider is the following:

• With probability 1
2 the distribution outputs 0n.

• With probability 1
2 the distribution outputs a stringx ∈ {0,1}n drawn from the following

product distributionD ′: the firstt(n) bits are drawn uniformly, and the lastn− t(n) bits are
drawn from the product distribution which assigns 1 to each bit with probability 1

n1/3 .

For small values ofk the result is representation based and does not depend on the sample drawn:

Lemma 6 If the maximum margin algorithm uses the kernel Kk for k < ` when learning f(x) under
D then its hypothesis has error greater thanε = 1

4·2t(n) = 1
4n.

Proof If hypothesish has error at mostε = 1
4·2t(n) underD then clearly it must have error at most

1
2·2t(n) underD ′. Since we are using the kernelKk, the hypothesish is some polynomial threshold

function of degree at mostk which has errorτ ≤ 1
2·2t(n) underD ′. So there must be some setting of

the lastn− t(n) variables which causesh to have error at mostτ under the uniform distribution on
the firstt(n) bits. Under this setting of variables the hypothesis is a degree-k polynomial threshold
function on the firstt(n) variables. By Minsky and Papert’s theorem, this polynomial threshold
function cannot compute the target function exactly, so it must be wrong onat least one setting
of the firstt(n) variables. But under the uniform distribution, every setting of those variables has
probability at least 1

2t(n) . This contradictsτ ≤ 1
2·2t(n) .

For larger values ofk (in fact for allk = ω(1)) we show that with high probability the maximum
margin hypothesis will overfit the sample. We start by explaining the high levelstructure of the
proof. Note that the target function depends on a small number of the features so most features are
irrelevant for the target. On the other hand the distribution is constructed such that each example
in the sample has a “large” weight on its own, whereas the weight of the commonfeatures in any
two examples is “small”. As a result of these facts, one can find a simple hypothesis with relatively
large margin by using all the structure from the examples, i.e. fitting them exactly. Naturally such
a hypothesis overfits the sample and provides little by way of generalizing to other examples. It is
hard in general to analyze the maximum margin hypothesis directly, and in particular it does not
necessarily follow the overfitting scheme of the simple hypothesis. However,our analysis uses the
simple hypothesis to infer some properties of the maximum margin hypothesis and through this
provide error bounds for it. The same structure is used again to analyze the polynomial kernel and
for the analysis of the uniform distribution. However, the technical details underlying the analysis
are different in each case.

The following definition captures typical properties of a sample from distribution D:

Definition 7 A sample S is aD-typical sampleif

• The sample includes the example0n.

• Any nonzero example x in the sample has0.99n2/3 ≤ |x| ≤ 1.01n2/3.
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• Every pair of examples xi,+ and xj,− in S satisfies xi,+ ·x j,− ≤ 1.01n1/3.

We can apply Chernoff bounds to analyze the second and third conditionsin the definition (with
p = 1

n1/3 and p = 1
n2/3 respectively) over the lastn− t(n) > n/2 bits, and absorb the firstt(n) bits

in the multiplicative(1± 0.01) divergence from the expected value in each case (recall thatt(n)
is only O(logn)). We thus have that the second and third conditions each fail with probabilityat
most 2−nΩ(1)

. Since the maximum margin algorithm usesm=poly(n) = nΩ(1) many examples (see
Section 2), the first condition fails with probability 2−m = 2−nΩ(1)

as well. A union bound thus gives:

Lemma 8 For m= poly(n), with probability1−2−nΩ(1)
a random i.i.d. sample of m draws fromD

is a D-typical sample.

Definition 9 Let S be a sample. The set Z(S) consists of all positive examples z∈ {0,1}n (i.e.
f (z) = 1) which have the property that every example x in S satisfies x·z≤ 1.01n1/3.

As above, we can apply Chernoff bounds withp = 1
n2/3 and use the union bound over all

examplesx ∈ S to show that the probability that a random examplez drawn fromD will have
x · z > 1.01n1/3 for any x ∈ S is at most 2−nΩ(1)

. Recall that f only depends on the firstt(n)
bits and its terms are shorter thant(n). Since the distribution is uniform over these bits we have
Pr[ f (z) = 1] ≥ 1

2t(n) = 1
n. Thus, conditioning onz being a positive example we still have:

Lemma 10 Let S be aD-typical sample of size m= poly(n) examples. ThenPrD [z∈ Z(S)| f (z) =

1] = 1−2−nΩ(1)
.

We now show that for aD-typical sample one can achieve a very large margin:

Lemma 11 Let S be aD-typical sample. Then the maximum margin mS satisfies

mS≥ Mh′ ≡
1
2
· ρk(.99n2/3)−mρk(1.01n1/3)

√

mρk(1.01n2/3)
.

Proof We exhibit an explicit linear threshold functionh′ which has margin at leastMh′ on the data
set. Leth′(x) = sign(W′ ·φ(x)−θ′) be defined as follows:

• W′
T = 1 if T is satisfied in some positive example;

• W′
T = 0 if T is not satisfied in any positive example.

• θ′ is the value that gives the maximum margin onφk(S) for thisW′, i.e. θ′ is the average of
the smallest value ofW′ ·φk(xi,+) and the largest value ofW′ ·φk(x j,−).

Since each positive examplex+ in S has at least.99n2/3 ones, we haveW′ · φ(x+) ≥ ρk(.99n2/3).
Since each positive example has at most 1.01n2/3 ones, each positive example in the sample con-
tributes at mostρk(1.01n2/3) ones toW′, so‖W′‖ ≤

√

mρk(1.01n2/3).

Finally, for any negative examplex− in the sample a termT contributes toW′ ·φ(x−) only if T
is true inx− and in some positive example. Now sincex− shares at most 1.01n1/3 ones with any
positive example in the sample, the number of such terms is at mostmρk(1.01n1/3). We therefore
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getW′ ·φ(x−) ≤ mρk(1.01n1/3). Putting these conditions together, we get that the margin ofh′ on
the sample is at least

1
2
· ρk(.99n2/3)−mρk(1.01n1/3)

√

mρk(1.01n2/3)

as desired.

It is instructive to use a rough calculation and compare the margin obtained to the one calcu-

lated in the introduction. The main term in the bound above grows roughly as
√

ρk(n2/3)
m which is

exponentially larger than the constant value obtained by the correct classifier.

Lemma 12 If S is aD-typical sample, then the thresholdθ in the maximum margin classifier for S
is at least Mh′ .

Proof Let h(x) = sign(W ·φ(x)−θ) be the maximum margin hypothesis. Since‖W‖ = 1 we have

θ =
θ

‖W‖ = mh(φk(0
n),−1) ≥ mh′(S) ≥ Mh′

where the second equality holds becauseW ·φ(0n) = 0 and the last inequality is by Lemma 11.

Lemma 13 If the maximum margin algorithm uses the kernel Kk for k = ω(1) when learning f(x)

underD then with probability1−2−nΩ(1)
its hypothesis has error greater thanε = 1

4·2t(n) = 1
4n.

Proof Let S be the sample used for learning and leth(x) = sign(W · φk(x)− θ) be the maximum
margin hypothesis. It is well known (see, e.g., Shawe-Taylor and Cristianini, 2000, Proposition 6.5)
that the maximum margin weight vectorW is a linear combination of the support vectors, i.e. of
certain examplesφk(x) in the sampleφk(S). Hence the only coordinatesWT of W that can be nonzero
are those corresponding to features (conjunctions)T such thatxT = 1 for some examplex in S.

By Lemma 8 we have that with probability 1− 2−nΩ(1)
the sampleS is D-typical. Consider

any z∈ Z(S). It follows from the above observations onW that W · φk(z) is a sum of at most
mρk(1.01n1/3) nonzero numbers, and moreover the sum of the squares of these numbers is at most
1. Thus by Observation 1 we have thatW · φk(z) ≤

√

mρk(1.01n1/3). The positive examplez is
erroneously classified as negative byh if θ > W ·φk(z); by Lemma 12 this inequality holds if

1
2
· ρk(.99n2/3)−mρk(1.01n1/3)

√

mρk(1.01n2/3)
>
√

mρk(1.01n1/3),

i.e. if

ρk(.99n2/3) > 2m
√

ρk(1.01n1/3)ρk(1.01n2/3)+mρk(1.01n1/3). (3)

We prove in Appendix A that this holds for anyk = ω(1).
Finally, observe that positive examples have probability at least1

2t(n) = 1
n. The above argu-

ment shows that anyz∈ Z(S) is misclassified, and Lemma 10 guarantees that the relative weight
of Z(S) in positive examples is 1− 2−nΩ(1)

. Thus the overall error rate ofh underD is at least
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(1−2−nΩ(1)
) 1

2t(n) > 1
4·2t(n) = 1

4n as claimed.

Together, Lemma 6 and Lemma 13 imply Result 1:

Theorem 14 For any value of k, if the maximum margin algorithm (as defined in Section 2)uses
the kernel Kk when learning f(x) underD then with probability1−2−nΩ(1)

its hypothesis has error
greater thanε = 1

4·2t(n) = 1
4n.

With a small modification we can also obtain Result 2. In particular, since we do not need to
deal with smallk we can use a simple functionf = x1 and modifyD as follows. With probability
1
4 the assignment 0n is drawn. With probability3

4 we draw fromD ′ wherex1 = 1 with probability
2
3 and as before the other bits are 1 with probability1

n1/3 . Note that for the modified distribution the
probability thatf (x) = 1 is 0.5. It is easy to see the that previous arguments go through for this case
and we get:

Theorem 15 For k = ω(1), if the maximum margin algorithm uses the kernel Kk when learning

f (x) = x1 underD then with probability1−2−nΩ(1)
its hypothesis has error at leastε = 1

2 −2−nΩ(1)
.

Remark 16 The proofs above can be adapted to show the same non-learnability resultsfor the
polynomial kernelKk(x,y) = (x · y)k which is commonly being used with SVM systems. The low
degree argument in Lemma 6 holds directly. We briefly sketch the ideas for thehigh degree case.
First note that Lemmas 8 and 10 hold without modification. The argument in Lemma 11 does not
go through if we use the same value ofW′ (sinceW′ is defined in the expanded feature space and
φ(x) is not a zero-one vector, it is not as easy to argue about the value ofW′ ·φ(x)). However, we
can use a simple modification to get a similar result. First note that for anyx∈ {0,1}n, all features
in φ(x) take only non-negative values. Now defineW′ to beW′ = ∑xi,+∈Sφ(xi,+). As in Lemma 11
we have:

• W′ · φ(x+) = ∑x j,+∈Sφ(x j,+) · φ(x+) ≥ φ(x+) · φ(x+) ≥ (0.99n2/3)k where the first inequality
uses the fact that all features in the expanded space have a positive value and therefore all
inner products in the sum are positive.

• W′ ·φ(x−) = ∑x j,+∈Sφ(x j,+) ·φ(x−) ≤ m(1.01n1/3)k.

• ‖W′‖ =
√

(∑x j,+∈Sφ(x j,+)) · (∑xi,+∈Sφ(xi,+)) ≤
√

m2(1.01n2/3)k.

So the maximum margin is at least

1
2
· (.99n2/3)k−m(1.01n1/3)k

m
√

(1.01n2/3)k
. (4)

Now the proof of Lemma 12 shows that (4) is a lower bound on the threshold of the maximum
margin classifier.

The argument in Lemma 13 needs to be changed since we need a bound onW ·φ(z). This can
be derived as follows. LetU be such thatUi ≥ 0 andUi = |Wi | so weights inU andW have the same
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magnitude but the weights inU are forced to be non-negative. Then we have that‖U‖ = ‖W‖ = 1.
For an examplez∈ Z(S) we now have

W ·φ(z) ≤ U ·φ(z)

≤ ∑
xi∈S

U ·φ(z∩xi)

≤ m(1.01n1/3)k/2.

The first inequality holds since all entries inφ(z) are non-negative. The second inequality is true
since both vectors do not have negative weights and a monomial contributesto W ·φ(z) only if it is
true both inz and in at least one example in the sample (recall that, as in the proof of Lemma 13,
the vectorW is a linear combination of vectorsφ(x) ∈ φ(S)). Therefore, each weight inφ(z) is
represented by a weight in one of the intersections, and the value of the weight depends only on the
monomial so it is the same inφ(z) andφ(z∩xi). Summing over allxi in Sgives an upper bound on
the total contribution toW ·φ(z). The last inequality follows from the Cauchy-Schwarz inequality.

As a result of this upper bound onW ·φ(z), we have thatz is misclassified if

1
2
· (.99n2/3)k−m(1.01n1/3)k

m
√

(1.01n2/3)k
> m

√

(1.01n1/3)k.

This can be shown to hold for allk = ω(1).

4. Uniform Distribution

While Theorem 14 tells us that theKk-maximum margin learner is not a PAC learning algorithm for
monotone DNF in the distribution-free PAC model, it does not rule out the possibility that theKk-
maximum margin learner might succeed for particular probability distributions such as the uniform
distribution on{0,1}n. In this section we investigate the uniform distribution.

It is easy to observe that the proof of Lemma 6 goes through for the uniform distribution as well
(we actually gain a factor of 2). This therefore proves Result 3: if the algorithm uses too low a
degreek then its hypothesis cannot possibly be a sufficiently accurate approximationof the target.
In contrast, the next result will show that if a rather largek is used then the algorithm is likely to
overfit.

The case of largek is more complex. In Section 3 we took advantage of the fact that 0n occurred
with high weight under the distributionD. This provided a lower bound (of 0) on the value of
W ·φk(x) for some negative example in the sample, and then we could argue that the value of θ in
the maximum margin classifier must be at least as large asmS. For the uniform distribution, though,
this lower bound no longer holds, so we must use a more subtle analysis. Before explaining the idea
we need some technical details.

For the next result, we consider the target functionf (x) = x1. Let S= S+ ∪S− be a data set
drawn from the uniform distributionU and labeled according to the functionf (x) whereS+ =
{〈xi,+,1〉}i=1,...,m+ are the positive examples andS− = {〈x j,−,−1〉} j=1,...,m− are the negative exam-
ples. Letui denote|xi,+| the weight of thei-th positive example, and let the positive examples be
ordered so thatu1 ≤ u2 ≤ ·· · ≤ um+ . Similarly let v j denote|x j,−| the weight of thej-th negative
example withv1 ≤ v2 ≤ ·· · ≤ vm− .

It turns out that the relative sizes ofu1 andv1, the weights of the lightest positive and negative
examples inS, play an important role. This is captured by the following definition:
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Definition 17 A sample S of size m ispositive-skewedif u1 ≥ v1 + B, i.e. the lightest positive

example in S weighs at least B more than the lightest negative example, where B= 1
66

√

n
logm.

Now, if the sample is positive skewed we can calculate a lower bound onW ·φk(x) for negative
examples in the sample. The value ofB is chosen so that this bound can be used to give a non-trivial
bound forθ. The details of this argument are developed in Section 4.2. But we must firstestablish
that the algorithm may indeed get a positive-skewed sample as input.

4.1 The Probability of Obtaining Positive-Skewed Samples

Theorem 18 Let S be a sample of size m= poly(n) drawn from the uniform distribution. Then S is
positive-skewed with probability at least0.029.

Proof Our first step is to reduce to a situation in which the positive examples and negative examples
are independent from each other.3

Let M−,M+ be any two positive integers. Consider the following new probabilistic experiment
which we callEM−,M+ : first M− draws are made from a binomial distributionB(n−1, 1

2) to obtain
(sorted) valuesv1 ≤ ·· · ≤ vM− , and thenM+ draws are made from 1+B(n−1, 1

2) to obtain (sorted)
valuesu1 ≤ ·· · ≤ uM+. The valuesv1, . . . ,vM− are thus distributed identically to the weights of the
negative examples in the scenario of Theorem 18 conditioned onm− = M−, and likewise for the
u1, . . . ,uM+ and the positive examples.

We define the following event:

• EventAM−,M+: u1 ≥ v1 +B.

For succinctness let us writeAm for the event (in our original scenario of a size-m sampleS
drawn fromU) thatS is positive-skewed. We then have

Pr[Am] ≥ Pr[.49m< m−,m+ < .51m] ·Pr[Am | .49m< m−,m+ < .51m]

≥ (1−2−Ω(m))Pr[Am | .49m< m−,m+ < .51m]

≥ (1−2−Ω(m)) min
.49m<M−,M+<.51m

Pr[Am | m− = M− andm+ = M+]

= (1−2−Ω(m)) min
.49m<M−,M+<.51m

Pr[AM−,M+ ].

where the second inequality holds by Chernoff bound.
It thus suffices to show that for any valuesM−,M+ in (.49m, .51m) we have Pr[AM−,M+ ] ≥

0.0291. Fix anyM−,M+ in this range; we will henceforth only consider the experimentEM−,M+ in
which any event involving only theui ’s is independent from any event involving onlyvi ’s.

Let n′ denoten−1. The idea of the next part of the proof is to show that with some probability
v1 falls into a relatively small left tail of the distribution whileu1 is bounded away from this tail.
This gives us a gap betweenu1 andv1 as desired.

We consideru1 first. For 1≤ i ≤ n′ let ψ(i) denote∑i−1
j=0

(n′

j

)

2−n′ . Note thatψ(i) is precisely the

weight in the “left tail up toi” of the distribution 1+B(n′, 1
2). Let X be the event thatψ(u1) ≥ 1

2m

3. Note that this is not the case inSbecause the total number of examples ism so that more positive examples means
less negative examples and vice versa. This dependence affects thatprobability over weights for the lightest positive
and negative examples in a subtle way which is hard to analyze directly.
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andu1 ≤ n′/2. In order to haveψ(u1) < 1
2m, at least one of theM+ < .51mdraws from 1+B(n′, 1

2)
must land in the “left tail” of weight less than12m; by a union bound the probability that this occurs
is less than0.51

2 and hence Pr[ψ(u1) ≥ 1
2m] ≥ 1− 0.51

2 > 0.745. The probability thatu1 ≥ n′/2 is
2−Ω(m) and thus Pr[X] > 0.745−2−Ω(m) > 0.74.

Next considerv1. For 1≤ i ≤ n′ let ϕ(i) denote∑i
j=0

(n′

j

)

2−n′ ; similar toψ(i) we have thatϕ(i)

captures the weight in the left tail ofB(n′, 1
2). Let Y be the event thatϕn(v1) ≤ 1

4m. This event fails
to occur only if each of theM− draws fromB(n′, 1

2) misses the left tail of weight at most14m. We
need to be slightly careful; note thatϕ(·) takes discrete values, so this tail may actually weigh less
than 1

4m (e.g. conceivablyϕ(22) = 1
m2 andϕ(23) = 1

m.) To take care of this we will now show that
this tail cannot weigh much less than14m.

Forc≥ 1 let σ(c) denote the largest integer such thatϕ(σ(c)) ≤ 1
cm.

Lemma 19 For any constant c≥ 1 we haveϕ(σ(c)) ≥ 1
3cm.

Proof Suppose not; then we haveϕ(σ(c)) < 1
3cm andϕ(σ(c)+1) > 1

cm. This implies that
( n′

σ(c)+1

)

>

2∑σ(c)
j=0

(n′

j

)

so in particular
( n′

σ(c)+1

)

> 2
( n′

σ(c)

)

. This implies thatn′−σ(c) > 2σ(c)+2 which implies
σ(c) < (n′−2)/3. But then Chernoff bound implies that for such values ofσ(c), ϕ(σ(c)+ 1) =
2−Ω(n′) which contradicts the inequalityϕ(σ(c)+1) > 1

cm sincec is constant andm is polynomial
in n.

The lemma implies that the left tail of weight at most1
4m must have weight at least112m. Hence

the probability that each of theM− > .49m draws fromB(n′, 1
2) misses this left tail is at most

(1− 1
12m).49m. This is at most 0.96 and hence Pr[Y] ≥ 0.04.

We next show that if eventsX andY both occur then eventAM−,M+ occurs. This will complete
the proof of the theorem since the eventsX andY are independent and we have that Pr[AM−,M+ ] ≥
Pr[X]Pr[Y] ≥ 0.0296.

Suppose, for the sake of contradiction, that eventsX andY both occur butu1 ≤ v1 +(B−1).
SinceX occurs we haveψ(u1) ≥ 1

2m, i.e.

ψ(u1) =
u1−1

∑
j=0

(

n′

j

)

2−n′ ≥ 1
2m

.

On the other hand sinceY occurs we haveϕ(v1) ≤ 1
4m, so

v1

∑
j=0

(

n′

j

)

2−n′ ≤ 1
4m

. (5)

These two inequalities together clearly implyu1 > v1. In fact they imply

u1−1

∑
j=v1+1

(

n′

j

)

2−n′ ≥ 1
4m

. (6)

Thus we see that the weights betweenv1 +1 andu1−1 have a substantial size. We next show that
this implies that the weights belowv1 also have a substantial size, contradicting Equation (5). The
following lemma is useful:
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Lemma 20 For all j such that u1−3B≤ j ≤ u1−1 we have
(n′

j

)

≥ 1
2

( n′

u1−1

)

.

Proof Clearly it suffices to prove that 2
( n′

u1−3B

)

≥
( n′

u1−1

)

. By eventX we know thatψ(u1) ≥ 1
2m.

But the left tail Chernoff bound implies that unless

u1−1≥ n′

2
−2
√

n′ logm (7)

we haveψ(u1) < 1
m4 < 1

2m so (7) must hold.

Let c = n′
2 − (u1−1) so 0< c≤ 2

√
n′ logm. Now observe that for anyb such thatb < 0.1n′ we

have
( n′

n′/2−b

)

( n′
n′/2−b−1

) =
n′/2+b+1

n′/2−b
= 1+

2b+1
n′/2−b

< 1+
2b+1
0.4n′

= 1+
5b+2.5

n′
.

We thus have
( n′

u1−1

)

( n′
u1−3B

) =

( n′

u1−1

)

( n′
u1−2

) ·
( n′

u1−2

)

( n′
u1−3

) · · · · ·
( n′

u1−3B+1

)

( n′
u1−3B

)

=

( n′
n′
2 −c

)

( n′
n′
2 −c−1

)
·
( n′

n′
2 −c−1

)

( n′
n′
2 −c−2

)
· · · · ·

( n′
n′
2 −(c+3B−2)

)

( n′
n′
2 −(c+3B−3)

)

<

(

1+
5c+2.5

n′

)(

1+
5(c+1)+2.5

n′

)

· · ·
(

1+
5(c+3B−2)+2.5

n′

)

<

(

1+
5(c+3B)+2.5

n′

)3B

≤ e
5(c+3B)+2.5

n′ 3B

where we have used the inequality 1+x≤ ex. The last quantity is at most
√

e< 2 provided that

3B <
n′

10(c+3B)+5
. (8)

Now sincec≤ 2
√

n′ logmand we can bound 5<
√

n′ logmand 30B < 0.5
√

n′ logm this holds if

3B =
1
22

√

n
logm

<
n′

21.5
√

n′ logm
=

1
21.5

√

n′

logm

which is clearly true for sufficiently largen.

Recalling thatu1 ≤ v1 +(B−1), we have that the sum in Equation (6) has at mostB−2 terms.
Now since eventX holds,u1 < n′

2 and therefore the largest of these terms is
( n′

u1−1

)

2−n′ . By Equa-
tion (6) we thus have that

(

n′

u1−1

)

2−n′ ≥ 1
4(B−2)m

. (9)
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Now Lemma 20 together with Equation (9), implies that we have

v1−1

∑
j=u1−3B

(

n′

j

)

2−n′ >
u1−B−1

∑
j=u1−3B

(

n′

j

)

2−n′ ≥
u1−B−1

∑
j=u1−3B

1
2

(

n′

u1−1

)

2−n′ ≥ 2B
2

1
4(B−2)m

>
1

4m

but this contradicts Equation (5).

4.2 Lower Bound for Large k

Using the fact that the sample is positive-skewed with constant probability wecan prove the lower
bound along the same lines as before.

Definition 21 A sample S is aU-typical sampleif

• Every example x∈ S satisfies0.49n≤ |x| ≤ 0.51n.

• Every pair of examples xi,+ and xj,− in S satisfies xi,+ ·x j,− ≤ 0.26n.

As above we can apply Chernoff bounds to derive the next two lemmas:

Lemma 22 For m= poly(n), with probability1−2−Ω(n) a random i.i.d. sample of m draws from
U is a U-typical sample.

Definition 23 Let S be a sample. The set Z(S) includes all positive examples z such that every
example x in S satisfies x·z≤ 0.26n.

Lemma 24 Let S be aU-typical sample of size m= poly(n) examples. ThenPrU [z∈ Z(S)| f (z) =
1] = 1−2−Ω(n).

The following lemma is analogous to Lemma 11:

Lemma 25 Let S be aU-typical sample of size m. Then the maximum margin mS satisfies

mS≥
1
2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

.

Proof We exhibit an explicit linear threshold functionh′ which has this margin. Leth′(x) =
sign(W′ ·φk(x)−θ′) be defined as follows:

• For each positive examplexi,+ in S, pick a set ofρk(u1) features (monomials) which take
value 1 onxi,+. This can be done since each positive examplexi,+ has at leastu1 bits which
are 1. For each featureT in each of these sets, assignW′

T = 1.

• For all remaining featuresT setW′
T = 0.

• Set θ′ to be the value that gives the maximum margin onφk(S) for this W′, i.e. θ′ is the
average of the smallest value ofW′ ·φk(xi,+) and the largest value ofW′ ·φk(x j,−).
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Note that since each positive example contributes at mostρk(u1) nonzero coefficients toW′, the
number of 1’s inW′ is at mostmρk(u1), and hence‖W′‖ ≤

√

mρk(u1). By construction we also
have that each positive examplexi,+ satisfiesW′ ·φk(xi,+) ≥ ρk(u1).

SinceS is a U-typical sample, each negative examplex j,− in S shares at most.26n ones with
any positive example inS. Hence the value ofW′ · φk(x j,−) is a sum of at mostmρk(.26n) num-
bers whose squares sum to at mostmρk(u1). By Observation 1 we have thatW′ · φk(x j,−) ≤
√

mρk(.26n)
√

mρk(u1).
The lemma follows by combining the above bounds on‖W′‖, W′ ·φk(xi,+) andW′ ·φk(x j,−).

Now we can give a lower bound on the thresholdθ for the maximum margin classifier.

Lemma 26 Let S be a labeled sample of size m which isU-typical and positive skewed, and let
h(x) = sign(W ·φk(x)−θ) be the maximum margin hypothesis for S. Then

θ ≥ 1
2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

−
√

ρk(u1−B).

Proof SinceS is positive-skewed we know thatW ·φk(x1,−) is a sum of at mostρk(u1−B) weights
WT , and sinceW is normalized the sum of the squares of these weights is at most 1. By Observation
1 we thus haveW ·φk(x1,−)≥−

√

ρk(u1−B). Now sinceθ ≥W ·φk(x1,−)+mS, Lemma 25 implies
the result.

Putting all of the pieces together, we have:

Theorem 27 If the maximum margin algorithm uses the kernel Kk for k= ω(
√

nlog
3
2 n) when learn-

ing f(x) = x1 under the uniform distribution then with probability at least0.028 its hypothesis has
error ε = 1

2 −2−Ω(n).

Proof By Lemma 22 and Theorem 18, the sampleSused for learning is bothU-typical and positive
skewed with probability at least 0.029−1/2−Ω(n) which is more than 0.028 for sufficiently largen.
Consider anyz∈ Z(S). Using the reasoning from Lemma 13,W ·φ(z) is a sum of at mostmρk(.26n)
numbers whose squares sum to at most 1, soW ·φ(z)≤

√

mρk(.26n). The examplez is erroneously
classified as negative byh if

1
2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

−
√

ρk(u1−B) >
√

mρk(.26n).

so it suffices to show that
√

ρk(u1) > 3m
(

√

ρk(.26n)+
√

ρk(u1−B)
)

. (10)

Recall thatρk(x) = ∑k
j=0

(x
j

)

. Note that fork = n (all-monomials kernel) the above inequality be-

comes 2u1/2 > 3m
(

2.13n +2(u1−B)/2
)

which is clearly true. In Appendix B we show that Equation

(10) holds for allk = ω(
√

nlog
3
2n) as required.

The above argument shows that anyz∈ Z(S) is misclassified, and Lemma 24 guarantees that the
relative weight ofZ(S) in positive examples is 1−2−Ω(n). Since Prx∈U [ f (x) = 1] is 1/2, we have
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that with probability at least 0.028 the hypothesish has error rate at leastε = 1
2 −2−Ω(n), and we are

done.

Remark 28 Here again we can adapt the proofs to show non-learnability results for the polynomial
kernelKk(x,y) = (x·y)k. We modify the definition ofW′ in Lemma 25 as follows. For every positive
examplexi,+ in the sample let ˆxi,+ be the example obtained by picking an arbitrary subset of sizeu1

of the original true bits and setting all other bits to 0. Now letW′ = ∑xi,+∈Sφ(x̂i,+). Arguing as in
Remark 16 we get that the maximum margin is at least

1
2
· uk

1−m(0.26n)k

m
√

uk
1

.

Now in Lemma 26 we get thatW′ ·φ(x1,−) ≥ −(u1−B)k/2 which again implies a lower bound on
the threshold.

Finally, following Theorem 27 and the argument in Remark 16 one can show that for an example
z∈ Z(S) we haveW ·φ(z) ≤ m

√

(0.26n)k so thatz is misclassified if

uk
1−m(0.26n)k−2m

√

uk
1

√

(u1−B)k ≥ 2m2
√

uk
1(0.26n)k

which is true if
uk/2

1 > 5m2(u1−B)k/2.

Using the reasoning in Case 1 of Appendix B, one can show that this holds for k = ω(
√

nlog
3
2 n).

5. Conclusions and Future Work

Boolean kernels offer an interesting new algorithmic approach to one of themajor open problems
in computational learning theory, namely learnability of DNF expressions. Wehave studied the
performance of the maximum margin algorithm with the Boolean kernels, giving negative results
for several settings of the problem. Our results indicate that the maximum marginalgorithm can
overfit even when learning simple target functions and using natural andexpressive kernels for such
functions, and even when combined with structural risk minimization. Our results consider cases
where the L2 norm of examples in the expanded feature space is large. This seems necessary for
learning DNF; note that while one can use an exponential function to definea kernel with weighted
monomials where the weight decays exponentially depending on the degreek, this implies that the
margin for functions of high degree is exponentially small.

While our results are negative there are several interesting avenues suggested by this work which
may succeed; we discuss these briefly below. One direction is to modify the basic learning algo-
rithm. Many interesting variants of the basic maximum margin algorithm have been used in recent
years, such as soft margin criteria and kernel regularization. It may bepossible to prove positive
results for some DNF learning problems using these approaches. A startingpoint would be to test
their performance on the counterexamples (functions and distributions) which we have constructed.

A more immediate goal is to close the gap between small and largek in our results for the
uniform distribution. It is well known (see, e.g., Verbeurgt, 1990) that when learning polynomial
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size DNF under the uniform distribution, conjunctions of lengthω(logn) can be ignored with little
effect. Hence the most interesting setting ofk for the uniform distribution learning problem isk =
Θ(logn). Learning under the uniform distribution with ak = Θ(logn) kernel is qualitatively quite
different from learning with the large values ofk which we were able to analyze. For example, for
k = Θ(logn) if a sufficiently large polynomial size sample is taken, then with very high probability
all features (monomials of size at mostk) are active in the sample.

As a first concrete problem in this scenario, one might consider the question of whether ak =
Θ(logn) kernel maximum margin algorithm can efficiently PAC learn the target functionf (x) = x1.
For this problem it is easy to show that that the naive hypothesish′ constructed in our proofs achieves
both a large margin and high accuracy. Moreover, it is possible to show that with high probability
the maximum margin hypothesis has a margin which is within a multiplicative factor of(1+o(1))
of the margin achieved byh′. Though these preliminary results do not answer the above question
they suggest that the answer may be positive. A positive answer, in our view, would be strong
motivation to analyze the general case.

Finally, the kernel we have used is natural in terms of capturing all monomials of a certain length
but there are other ways to capture natural kernels for Boolean problems. An interesting possibility
is using a kernel of parity functions and such a construction can indeed be given. The resulting
representation is closely related to learning via the Fourier transform as done in the work of Linial
et al. (1993); Kushilevitz and Mansour (1993); Mansour (1995) butthe algorithmic ideas are very
different to the ones used by maximum margin algorithms.
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Appendix A. Proof of Equation (3)

To show that

ρk(.99n2/3) > 2m
√

ρk(1.01n1/3)ρk(1.01n2/3)+mρk(1.01n1/3)

it suffices to show that

ρk(.99n2/3) > 3m
√

ρk(1.01n1/3)ρk(1.01n2/3). (11)

The proof uses several cases depending on the value ofk relative ton.

Case 1:k≤ 0.505n1/3. Sinceρk(`) = ∑k
i=1

(

`
i

)

, for k≤ `/2 we have thatρk(`) ≤ k
(

`
k

)

. For allk we
haveρk(`) ≥

(

`
k

)

so it suffices to show that

(

.99n2/3

k

)

> 3mk

√

(

1.01n1/3

k

)(

1.01n2/3

k

)
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which is equivalent (clearing denominators from the binomial coefficients)to

k−1

∏
i=0

(.99n2/3− i) > 3mk

√

k−1

∏
i=0

(1.01n1/3− i)(1.01n2/3− i).

We now use the fact that fori ≥ 0 we have(A− i)(B− i)≤ (
√

AB− i)2 provided that 2
√

AB< A+B;
it is easy to see that this latter condition holds forA = 1.01n1/3, B = 1.01n2/3. It thus suffices to
show that

k−1

∏
i=0

(.99n2/3− i) > 3mk
k−1

∏
i=0

(1.01n1/2− i)

which in turn is implied by
(

.99n2/3

1.01n1/2

)k

> 3mn

(we used the fact thatk ≤ n to obtain the right-hand side above). This holds as long ask >
log(3mn)

log0.98+ 1
6 logn

= Θ(1) for anym= poly(n). Therefore the condition holds for anyk = ω(1).

Case 2:0.5 ·1.01n1/3 ≤ k≤ 5 ·1.01n1/3. In this case we use the bounds( `
k)

k ≤ ρk(`) = ∑k
i=1

(

`
i

)

≤
( è

k )k for the first and third occurrences ofρk in equation (11) and we useρk(`) ≤ 2` for the second
occurrence. It thus suffices to show that

(

.99n2/3

k

)k

> 3m

√

(

e·1.01n2/3

k

)k

·21.01n1/3
.

Applying the upper bound onk in the denominator on the left side, and the lower bound onk in the
denominator on the right side, it suffices to show that

(

.99
5.05

n1/3
)k

> 3m

√

(

e·1.01
0.505

n1/3

)k

·21.01n1/3

Now since 1.01n1/3 ≤ 2k the condition holds if
(

n1/3

6

)k

> 3m
(

2e·n1/3
)k/2

·2k

or equivalently if
(

n1/6

12
√

2e

)k

> 3m.

This obviously holds sincek = Θ(n1/3).

Case 3:5 ·1.01n1/3 ≤ k ≤ 0.25·0.99n2/3. We use the same bounds as in the previous case to start
the analysis, so we want to show that

(

.99n2/3

k

)k

> 3m

√

(

e·1.01n2/3

k

)k

·21.01n1/3
.
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Since 1.01n1/3 ≤ k/5 it suffices to show that

(

.99n2/3

k

)k

> 3m

(

e·1.01n2/3

k

)k/2

·2k/10

which holds (takingk-th roots and rearranging) if and only if

(

1
2

)1/10

· .99n2/3

k
·

√
k

n1/3
√

1.01·e
=

(

1
2

)1/10

·
(

.99√
1.01·e

)

· n1/3
√

k
> (3m)1/k.

Using our upper bound onk on the left side, the previous inequality holds if

(
1
2
)1/10 .99√

1.01·e
· 2√

.99
> (3m)1/k

and since the left side is greater than 1.1 the inequality holds ifk > log3m
log1.1 = Θ(logn) for m =

poly(n). This obviously holds sincek = Ω(n1/3).

Case 4:0.25·0.99n2/3 ≤ k≤ 0.5·0.99n2/3. We use the following bound (proved later) which holds
for 0 < α < 1 :

αq

∑
i=1

(

q
i

)

≥ 1√
2πq

2H(α)q (12)

whereH(p) = −plogp− (1− p) log(1− p) is the binary entropy function. Applying this bound to
the left side of (11) withq= .99n2/3 andα = k/q, we have.25≤ α ≤ .5 soH(α) > .81. Sinceρk(`)
is always at most 2̀it suffices to show that

1√
2π · .99n2/3

20.81·0.99n2/3
> 3m

√

21.01n2/3+1.01n1/3
.

This is easily seen to hold for anym= poly(n).

To prove the bound (12) we use Stirling’s approximation
√

2πn(n
e)

n ≤ n! ≤
√

2πn(n
e)

n
√

1+ 1
2n;

in fact we use a weaker form with
√

2 instead of
√

1+ 1
2n in the upper bound. We thus have

αq

∑
i=1

(

q
i

)

≥
(

q
αq

)

=
q!

(αq)!((1−α)q)!
≥

√
2πq

2
√

2παq
√

2π(1−α)q

(q
e

)q
(

e
αq

)αq( e
(1−α)q

)(1−α)q

=
1

2
√

2πα(1−α)q
α−αq(1−α)−(1−α)q =

1

2
√

2πα(1−α)q
2qH(α).

Equation (12) follows sinceα(1−α) ≤ 1/4.

Note that by using∑αq
i=0

(q
i

)

≤ αq
( q

αq

)

one can also obtain∑αq
i=0

(q
i

)

≤
√αq√
π(1−α)

2H(α)q.

Case 5: k ≥ 0.5 · 0.99n2/3. In this case we haveρk(.99n2/3) = ∑k
i=1

(

.99n2/3

i

)

≥ 1
22.99n2/3

. Thus it
suffices to show that

1
2
·20.99n2/3

> 3m
√

21.01n2/3+1.01n1/3

which is easily seen to hold for anym= poly(n). Thus Equation (11) holds for allk = ω(1).
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Appendix B. Proof of Equation (10)

We must show that
√

ρk(u1) > 3m
(

√

ρk(.26n)+
√

ρk(u1−B)
)

. Since we are assuming that the

sampleS is U-typical, we haveu1 ≥ .49n sou1−B > 0.26n. It thus suffices to show thatρk(u1) >
36m2ρk(u1−B).

Case 1:k ≤ 1
2(u1−B). Sinceρk(`) = ∑k

i=1

(

`
i

)

, for k ≤ `/2 we haveρk(`) ≤ k
(

`
k

)

. Also for all k,
ρk(`) ≥

(

`
k

)

so it suffices to show that
(

u1

k

)

> 36m2k

(

u1−B
k

)

.

This inequality is true if
(

u1

u1−B

)k

> 36m2k.

Recall thatB = 1
66

√

n
logm. Now using the fact that

u1

u1−B
= 1+

B
u1−B

> 1+
B
n

= 1+
1

66
√

nlogm

it suffices to show that
(

1+
1

66
√

nlogm

)k

> 36m2k.

Using the fact that 1+x≥ ex/2 for 0 < x < 1, we can see that this inequality holds if

k > 132
√

nlog(m) ln(36m2n).

Sincem= poly(n), this is the case fork = ω(
√

nlog
3
2 n).

Case 2: 1
2(u1−B) < k. Sinceρk(u1−B) ≤ 2u1−B, it suffices to show that

u1
2 − B

2

∑
i=1

(

u1

i

)

> 36m2 ·2u1−B.

Since
√

u1 >
√

0.49n > 92
132

√
n > 92B

2 it suffices to show that

u1
2 −

√
u1

92

∑
i=1

(

u1

i

)

> 36m2 ·2u1−B.

Using Stirling approximation it is easy to check that
( q

q/2

)

<
√

1+ 1
2q

√

2
π

1√
q 2q and this implies

that
u1
2 −

√
u1

92

∑
i=1

(

u1

i

)

>
1
2

2u1 −
√

u1

92

√

1+
1

2u1

√

2
π

1√
u1

2u1 > 0.49·2u1

so the condition above holds if
0.49·2B > 36m2.

This is clearly true sincem= poly(n) andB = 1
66

√

n
logm.
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Abstract 
In supervised machine learning, the partitioning of the values (also called grouping) of a 
categorical attribute aims at constructing a new synthetic attribute which keeps the information of 
the initial attribute and reduces the number of its values. In this paper, we propose a new grouping 
method MODL1 founded on a Bayesian approach. The method relies on a model space of 
grouping models and on a prior distribution defined on this model space. This results in an 
evaluation criterion of grouping, which is minimal for the most probable grouping given the data, 
i.e. the Bayes optimal grouping. We propose new super-linear optimization heuristics that yields 
near-optimal groupings. Extensive comparative experiments demonstrate that the MODL grouping 
method builds high quality groupings in terms of predictive quality, robustness and small number 
of groups. 
Keywords: data preparation, grouping, Bayesianism, model selection, classification, naïve Bayes 

1 Introduction 
Supervized learning consists of predicting the value of a class attribute from a set of explanatory 
attributes. Many induction algorithms rely on discrete attributes and need to discretize continuous 
attributes or to group the values of categorical attributes when they are too numerous. While the 
discretization problem has been studied extensively in the past, the grouping problem has not 
been explored so deeply in the literature. The grouping problem consists in partitioning the set of 
values of a categorical attribute into a finite number of groups. For example, most decision trees 
exploit a grouping method to handle categorical attributes, in order to increase the number of 
instances in each node of the tree (Zighed and Rakotomalala, 2000). Neural nets are based on 
continuous attributes and often use a 1-to-N binary encoding to preprocess categorical attributes. 
When the categories are too numerous, this encoding scheme might be replaced by a grouping 
method. This problem arises in many other classification algorithms, such as Bayesian networks 
or logistic regression. Moreover, the grouping is a general-purpose method that is intrinsically 
useful in the data preparation step of the data mining process (Pyle, 1999). 

The grouping methods can be clustered according to the search strategy of the best partition 
and to the grouping criterion used to evaluate the partitions. The simplest algorithm tries to find 
the best bipartition with one category against all the others. A more interesting approach consists 
in searching a bipartition of all categories. The Sequential Forward Selection method derived 
from that of Cestnik et al. (1987) and evaluated by Berckman (1995) is a greedy algorithm that 
initializes a group with the best category (against the others), and iteratively adds new categories 
to this first group. When the class attribute has two values, Breiman et al. (1984) have proposed 
in CART an optimal method to group the categories into two groups for the Gini criterion. This 

                                                      
1 This work is covered under French patent number 04 00179. 
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algorithm first sorts the categories according to the probability of the first class value, and then 
searches for the best split in this sorted list. This algorithm has a time complexity of O(I log(I)), 
where I is the number of categories. Based on the ideas presented in (Lechevallier, 1990; Fulton 
et al., 1995), this result can possibly be extended to find the optimal partition of the categories 
into K groups in the case of two class values, with the use of a dynamic programming algorithm 
of time complexity I2. In the general case of more than two class values, there is no algorithm to 
find the optimal grouping with K groups, apart from exhaustive search. However, Chou (1991) 
has proposed an approach based on K-means that allows finding a locally optimal partition of the 
categories into K groups. Decision tree algorithms often manage the grouping problem with a 
greedy heuristic based on a bottom-up classification of the categories. The algorithm starts with 
single category groups and then searches for the best merge between groups. The process is 
reiterated until no further merge can improve the grouping criterion. The CHAID algorithm 
(Kass, 1980) uses this greedy approach with a criterion close to ChiMerge (Kerber, 1991). The 
best merges are searched by minimizing the chi-square criterion applied locally to two categories: 
they are merged if they are statistically similar. The ID3 algorithm (Quinlan, 1986) uses the 
information gain criterion to evaluate categorical attributes, without any grouping. This criterion 
tends to favor attributes with numerous categories and Quinlan (1993) proposed in C4.5 to exploit 
the gain ratio criterion, by dividing the information gain by the entropy of the categories. The chi-
square criterion has also been applied globally on the whole set of categories, with a normalized 
version of the chi-square value (Ritschard et al., 2001) such as the Cramer's V or the Tschuprow's 
T, in order to compare two different-size partitions. 

In this paper, we present a new grouping method called MODL, which results from a similar 
approach as that of the MODL discretization method (Boullé, 2004c). This method is founded on 
a Bayesian approach to find the most probable grouping model given the data. We first define a 
general family of grouping models, and second propose a prior distribution on this model space. 
This leads to an evaluation criterion of groupings, whose minimization defines the optimal 
grouping. We use a greedy bottom-up algorithm to optimize this criterion. The method starts the 
grouping from the elementary single value groups. It evaluates all merges between groups, selects 
the best one according to the MODL criterion and iterates this process. As the grouping problem 
has been turned into a minimization problem, the method automatically stops merging groups as 
soon as the evaluation of the resulting grouping does not decrease anymore. Additional 
preprocessing and post-optimization steps are proposed in order to improve the solutions while 
keeping a super-linear optimization time. Extensive experiments show that the MODL method 
produces high quality groupings in terms of compactness, robustness and accuracy. 

The remainder of the paper is organized as follows. Section 2 describes the MODL method. 
Section 3 proceeds with an extensive experimental evaluation. 

2 The MODL Grouping Method 
In this section, we present the MODL approach which results in a Bayes optimal evaluation 
criterion of groupings and the greedy heuristic used to find a near-optimal grouping. 

2.1 Presentation 
In order to introduce the issues of grouping, we present in Figure 1 an example based on the 
Mushroom UCI data set (Blake and Merz, 1998). The class attribute has two values: EDIBLE and 
POISONOUS. The 10 categorical values of the explanatory attribute CapColor are sorted by 
decreasing frequency; the proportions of the class values are reported for each explanatory value. 
Grouping the categorical values does not make sense in the unsupervised context. However, 
taking the class attribute into account introduces a metric between the categorical values. For 
example, looking at the proportions of their class values, the YELLOW cap looks closer from the 
RED cap than from the WHITE cap. 
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Value EDIBLE POISONOUS Frequency

BROWN 55.2% 44.8% 1610
GRAY 61.2% 38.8% 1458

RED 40.2% 59.8% 1066
YELLOW 38.4% 61.6% 743

WHITE 69.9% 30.1% 711
BUFF 30.3% 69.7% 122
PINK 39.6% 60.4% 101

CINNAMON 71.0% 29.0% 31
GREEN 100.0% 0.0% 13

PURPLE 100.0% 0.0% 10

RED
YELLOW

BUFF
PINK

BROWN

GRAY

GREEN
PURPLE

WHITE
CINNAMON

G1 G2

G3

G4 G5

Figure 1. Example of a grouping of the categorical values of the attribute CapColor of data set 
Mushroom 

In data preparation for supervised learning, the problem of grouping is to produce the 
smallest possible number of groups with the slightest decay of information concerning the class 
values. In Figure 1, the values of CapColor are partitioned into 5 groups. The BROWN and 
GRAY caps are kept into 2 separate groups, since their relatively small difference of proportions 
of the class values is significant (both categorical values have important frequencies). On the 
opposite, the BUFF cap is merged with the RED, YELLOW and PINK caps: the frequency of the 
BUFF cap is not sufficient to make a significant difference with the other values of the group. 

The issue of a good grouping method is to find a good trade-off between information (as 
many groups as possible with discriminating proportions of class values) and reliability (the class 
information learnt on the train data should be a good estimation of the class information observed 
on the test data). Producing a good grouping is harder with large numbers of values since the risk 
of overfitting the data increases. In the limit situation where the number of values is the same as 
the number of instances, overfitting is obviously so important that efficient grouping methods 
should produce one single group, leading to the elimination of the attribute. In real applications, 
there are some domains that require grouping of the categorical attributes. In marketing 
applications for example, attributes such as Country, State, ZipCode, FirstName, ProductID 
usually hold many different values. Preprocessing these attributes is critical to produce efficient 
classifiers. 

2.2 Definition of a Grouping Model 
The objective of the grouping process is to induce a set of groups from the set of values of a 
categorical explanatory attribute. The data sample consists of a set of instances described by pairs 
of values: the explanatory value and the class value. The explanatory values are categorical: they 
can be distinguished from each other, but they cannot naturally be sorted. We propose in 
Definition 1 the following formal definition of a grouping model. Such a model is a pattern that 
describes both the partition of the categorical values into groups and the proportions of the class 
values in each group. 

 
Definition 1: A standard grouping model is defined by the following properties: 

1. the grouping model allows to describe a partition of the categorical values into 
groups, 

2. in each group, the distribution of the class values is defined by the frequencies of the 
class values in this group. 

Such a grouping model is called a SGM model. 
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Notations: 
n: number of instances 
J: number of classes 
I: number of categorical values 
ni: number of instances for value i 
nij: number of instances for value i and class j 
K: number of groups 
k(i): index of the group containing value i 
nk: number of instances for group k 
nkj: number of instances for group k and class j 
 
The purpose of a grouping model is to describe the distribution of the class attribute 

conditionally to the explanatory attribute. All the information concerning the explanatory 
attribute, such as the size of the data set, the number of explanatory values and their distribution 
might be used by a grouping model. The input data can be summarized knowing n, J, I and ni. 
The grouping model has to describe the partition of the explanatory values into groups and the 
distribution of the class values in each group. A SGM grouping model is completely defined by 
the parameters { ( ){ } { }

JjKkkjIi nikK
≤≤≤≤≤≤ 1,11 ,, }. 

For example, in Figure 1, the input data consists of n=5865 instances (size of the train data 
set used in the sample), I=10 categorical values and J=2 class values. The ni parameters 
represents the counts of the categorical values (for example, n1=1610 for the BROWN CapColor). 

The grouping model pictured in Figure 1 is defined by K=5 groups, the description of the 
partition of the 10 values into 5 groups (for example, k(1)=2 since the BROWN CapColor 
belongs to the G2 group) and the description of the distribution of the class values in each group. 
This last set of parameters ({nkj}1≤k≤5,1≤j≤2) corresponds to the counts in the contingency table of 
the grouped attribute and class attribute. 

2.3 Evaluation of a Grouping Model 
In the Bayesian approach, the best model is found by maximizing the probability P(Model/Data) 
of the model given the data. Using Bayes rule and since the probability P(Data) is constant under 
varying the model, this is equivalent to maximize P(Model)P(Data/Model). For a detailed 
presentation on Bayesian theory and its applications to model comparison and hypothesis testing, 
see for example (Bernardo and Smith, 1994; Kass and Raftery, 1995).  

Once a prior distribution of the models is fixed, the Bayesian approach allows to find the 
optimal model of the data, provided that the calculation of the probabilities P(Model) and 
P(Data/Model) is feasible. We define below a prior which is essentially a uniform prior at each 
stage of the hierarchy of the model parameters. We also introduce a strong hypothesis of 
independence of the distribution of the class values. This hypothesis is often assumed (at least 
implicitly) by many grouping methods that try to merge similar groups and separate groups with 
significantly different distributions of class values. This is the case for example with the CHAID 
grouping method (Kass, 1980), which merges two adjacent groups if their distributions of class 
values are statistically similar (using the chi-square test of independence).  

 
Definition 2: The following distribution prior on SGM models is called the three-stage prior: 

1. the number of groups K is uniformly distributed between 1 and I,  
2. for a given number of groups K, every division of the I categorical values into K 

groups is equiprobable,  
3. for a given group, every distribution of class values in the group is equiprobable,  
4. the distributions of the class values in each group are independent from each other.  
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Owing to the definition of the model space and its prior distribution, Bayes formula is 
applicable to exactly calculate the prior probabilities of the model and the probability of the data 
given the model. Theorem 1, proven in Appendix A, introduces a Bayes optimal evaluation 
criterion. 

 
Theorem 1: A SGM model distributed according to the three-stage prior is Bayes optimal for a 
given set of categorical values if the value of the following criterion is minimal on the set of all 
SGM models: 

( ) ( )( ) ( ) ( )∑∑
==
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−+ +++
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C  is the combinatorial operator. ( ),B I K  is the number of divisions of the I values into K 

groups (with eventually empty groups). When K=I, ( ),B I K  is the Bell number. In the general 
case, ( ),B I K  can be written as a sum of Stirling numbers of the second kind ( ),S I k : 

( ) ( )∑
=

=
K

k
kISKIB

1
,, . 

( ),S I k  stands for the number of ways of partitioning a set of I elements into k nonempty sets. 
 
The first term of the criterion in equation 1 stands for the choice of the number of groups, the 

second term for the choice of the division of the values into groups and the third term for the 
choice of the class distribution in each group. The last term encodes the probability of the data 
given the model. 

There is a subtlety in the three-stage prior, where choosing a grouping with K groups 
incorporates the case of potentially empty groups. The partitions are thus constrained to have at 
most K groups instead of exactly K groups. The intuition behind the choice of this prior is that if 
K groups are chosen and if the categorical values are dropped in the groups independently from 
each other, empty groups are likely to appear. We present below two theorems (proven in 
Appendix A) that bring a more theoretical justification of the choice of the prior. These theorems 
are no longer true when the prior is to have partition containing exactly K groups. 

 
Definition 3: A categorical value is pure if it is associated with a single class. 

 
Theorem 2: In a Bayes optimal SGM model distributed according to the three-stage prior, two 
pure categorical values having the same class are necessary in the same group. 

 
This brings an intuitive validation of the MODL approach. Furthermore, grouping algorithms 

can exploit this property in a preprocessing step and considerably reduce their overall 
computational complexity. 

 
Theorem 3: In a SGM model distributed according to the three-stage prior and in the case of two 
classes, the Bayes optimal grouping model consists of a single group when each instance has a 
different categorical value. 

 
This provides another validation of the MODL approach. Building several groups in this case 

would reflect an over-fitting behavior. 
 

Conjecture 1: In a Bayes optimal SGM model distributed according to the three-stage prior and 
in the case of two classes, any categorical value whose class proportion is between the class 
proportions of two categorical values belonging to the same group necessary belongs to this 
group. 
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This conjecture has been proven for other grouping criterion such as Gini (Breiman, 1984) or 

Kolmogorov-Smirnov (Asseraf, 2000) and experimentally validated in extensive experiments for 
the MODL criterion. It will be considered as true in the following. The grouping algorithms, such 
as greedy bottom-up merge algorithms, can take benefit from this conjecture. Once the 
categorical values have been sorted by decreasing proportion of the class, the number of 
potentially interesting value merges is reduced to (I-1) instead of I(I-1)/2. 

2.4 Optimization of a Grouping Model 
Once the optimality of an evaluation criterion is established, the problem is to design a search 
algorithm in order to find a grouping model that minimizes the criterion. In this section, we 
present a greedy bottom-up merge heuristic enhanced with several preprocessing and post-
optimization algorithms whose purpose is to achieve a good trade-off between the time 
complexity of the search algorithm and the quality of the groupings. 

2.4.1 Greedy Bottom-Up Merge Heuristic 
In this section, we present a standard greedy bottom-up heuristic. The method starts with initial 
single value groups and then searches for the best merge between groups. This merge is 
performed if the MODL evaluation criterion of the grouping decreases after the merge and the 
process is reiterated until not further merge can decrease the criterion. 

The algorithm relies on the O(I) marginal counts, which require one O(n) scan of the data set. 
However, we express the complexity of the algorithm in terms of n (rather than in terms of I), 
since the number of categorical values can reach O(n) in the worst case. With a straightforward 
implementation of the algorithm, the method runs in O(n3) time (more precisely O(n+I3)). 
However, the method can be optimized in O(n2 log(n)) time owing to an algorithm similar to that 
presented in (Boullé, 2004a). The algorithm is mainly based on the additivity of the evaluation 
criterion. Once a grouping is evaluated, the value of a new grouping resulting from the merge 
between two adjacent groups can be evaluated in a single step, without scanning all the other 
groups. Minimizing the value of the groupings after the merges is the same as maximizing the 
related variation of value ∆value. These ∆values can be kept in memory and sorted in a 
maintained sorted list (such as an AVL binary search tree for example). After a merge is 
completed, the ∆values need to be updated only for the new group and its adjacent groups to 
prepare the next merge step. 

 
Optimized greedy bottom-up merge algorithm: 

• Initialization 
• Create an elementary group for each value: O(n) 
• Compute the value of this initial grouping: O(n) 
• Compute the ∆values related to all the possible merges of 2 values: O(n2) 
• Sort the possible merges: O(n2 log(n)) 

• Optimization of the grouping: repeat the following steps (at most n steps) 
• Search for the best possible merge: O(1) 
• Merge and continue if the best merge decreases the grouping value 

 Compute the ∆values of the remaining group merges adjacent to the 
best merge: O(n) 

 Update the sorted list of merges: O(n log(n)) 
 
In the case of two classes, the time complexity of the greedy algorithm can be optimized 

down to O(n log(n)) owing to conjecture 1. 
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2.4.2 Preprocessing 
In the general case, the computational complexity is not compatible with large real databases, 
when the categorical values becomes too numerous. In order to keep a super-linear time 
complexity, the initial categorical values can be preprocessed into a new set of values of 
cardinality nI ≤' . 

A first straightforward preprocessing step is to merge pure values having the same class. This 
step is compatible with the optimal solution (see Theorem 2). 

A second preprocessing step consists in building J groupings for each "one class against the 
others" sub-problems. This require O(J n log(n)) time. The subparts of the groups shared by all 
the J groupings can easily be identified and represent very good candidate subgroups of the 
global grouping problem. The number of these subparts is usually far below the number of initial 
categorical values and helps achieving a reduced sized set of preprocessed values. 

A third preprocessing step can be applied when the number of remaining preprocessed values 
is beyond n . The values can be sorted by decreasing frequencies and the exceeding infrequent 
values can be unconditionally grouped into J groups according to their majority class. This last 
step is mandatory to control the computational complexity of the algorithm. However, 
experiments show that this last step is rarely activated in practice. 

2.4.3 Post-Optimizations 
The greedy heuristic may fall in a local optimum, so that time efficient post-optimizations are 
potentially useful to improve the quality of the solution. Since the evaluation criterion is Bayes 
optimal, spending more computation time is meaningful. 

A first post-optimization step consists in forcing the merges between groups until a single 
terminal group is obtained and to keep the best encountered grouping. This helps escaping local 
optima and requires O(n log(n)) computation time. Furthermore, in the case of noisy attribute 
where the optimal grouping consists of a single group, this heuristic guarantees to find the 
optimal solution. 

A second post-optimization step consists in evaluating every move of a categorical value 
from one group to another. The best moves are performed as long as they improve the evaluation 
criterion. This process is similar to the K-means algorithm where each value is attracted by its 
closest group. It converges very quickly, although this cannot be proved theoretically. 

A third post-optimization step is a look-ahead optimization. The best merge between groups 
is simulated and post-optimized using the second step algorithm. The merge is performed in case 
of improvement. This algorithm looks similar to the initial greedy merge algorithm, except that it 
starts from a very good solution and incorporates an enhanced post-optimization. Thus, this 
additional post-optimization is usually triggered for only one or two extra merges. 

3 Experiments 
In our experimental study, we compare the MODL grouping method with other supervised 
grouping algorithms. In this section, we introduce the evaluation protocol, the alternative 
evaluated grouping methods and the evaluation results on artificial and real data sets. Finally, we 
present the impact of grouping as a preprocessing step to the Naïve Bayes classifier. 

3.1 Presentation 
In order to evaluate the intrinsic performance of the grouping methods and eliminate the bias of 
the choice of a specific induction algorithm, we use a protocol similar as (Boullé, 2004b), where 
each grouping method is considered as an elementary inductive method which predicts the 
distribution of the class values in each learned groups. 

The grouping problem is a bi-criteria problem that tries to compromise between the predictive 
quality and the number of groups. The optimal classifier is the Bayes classifier: in the case of an 
univariate classifier based on a single categorical attribute, the optimal grouping is to do nothing, 
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i.e. to build one group per categorical value. In the context of data preparation, the objective is to 
keep most of the class conditional information contained in the attribute while decreasing the 
number of values. In the experiments, we collect both the number of groups and the predictive 
quality of the grouping. The number of groups is easy to calculate. The quality of the estimation 
of the class conditional information hold by each group is more difficult to evaluate. 

We choose not to use the accuracy criterion because it focuses only on the majority class 
value and cannot differentiate correct predictions made with probability 1 from correct 
predictions made with probability slightly greater than 0.5. Furthermore, many applications, 
especially in the marketing field, rely on the scoring of the instances and need to evaluate the 
probability of each class value. In the case of categorical attributes, we have the unique 
opportunity of observing the class conditional distribution on the test data set: for each categorical 
value in the test data set, the observed distribution of the class values can be estimated by 
counting. The grouping methods allow to induce the class conditional distribution from the train 
data set: for each learnt group on the train data set, the learnt distribution of the class values can 
be estimated by counting. The objective of grouping is to minimize the distance between the 
learnt distribution and the observed distribution. This distance can be evaluated owing to a 
divergence measure, such as the Kullback-Leibler divergence, the chi-square divergence or the 
Hellinger coefficient. In our experiments, we choose to evaluate this distance using the Kullback-
Leibler divergence (Kullback, 1968). 

The MODL grouping methods exploits a space of class conditional distribution models (the 
SGM models) and searches the most probable model given the train data. It is noteworthy that no 
loss function is optimized in this approach: neither the classification accuracy is optimized nor the 
Kullback-Leibler divergence (which would require to divide the train data set into train data and 
validation data). The MODL method exploits all the available train data to build its grouping 
model. 

 
The evaluation conducted in the experiments focuses on the quality of the groupings (size and 

Kullback-Leibler divergence criterions) as a preprocessing method for data mining. It is 
interesting to examine whether optimizing the posterior probability of a grouping model (on the 
basis on the three-stage prior) leads to high-quality groupings. 

3.2 The Evaluation Protocol 
The predictive quality of the groupings is evaluated owing to the Kullback-Leibler divergence 
(Kullback, 1968) applied to compare the distribution of the class values estimated from the train 
data set with the distribution of the class values observed on the test data set.  

Let n' be the number of instances, n'i be the number of instances for value i and n'ij the 
number of instances for value i and class j on the test data set. 

For a given categorical value i, let pij be the probability of the jth class value estimated on the 
train data set (on the basis of the group containing the categorical value), and qij be the probability 
of the jth class value observed on the test data set (using directly the categorical value). The qij 
probabilities are estimated with the Laplace's estimator in order to deal with zero values. We get 
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In a first experiment, we compare the behavior of the evaluated grouping method on synthetic 

data sets, where the ideal grouping pattern is known in advance. In the second experiments, we 



A BAYES OPTIMAL GROUPING METHOD 

 1439 

use real data sets to compare the grouping methods considered as univariate classifiers. In a third 
experiment, we use the same data sets to evaluate the results of Naïve Bayes classifiers using the 
grouping methods to preprocess the categorical attributes. In this last experiment, the results are 
evaluated using the classification accuracy both on train data sets and on test data sets. 

 
Data Set Continuous Categorical Size Class Majority 
 Attributes Attributes  Values Accuracy 
Adult 7 8 48842 2 76.07 
Australian 6 8 690 2 55.51 
Breast 10 0 699 2 65.52 
Crx 6 9 690 2 55.51 
Heart 10 3 270 2 55.56 
HorseColic 7 20 368 2 63.04 
Ionosphere 34 0 351 2 64.10 
Mushroom 0 22 8416 2 53.33 
TicTacToe 0 9 958 2 65.34 
Vehicle 18 0 846 4 25.77 
Waveform 40 0 5000 3 33.84 
Wine 13 0 178 3 39.89 

Table 1. Data sets 

We gathered 12 data sets from U.C. Irvine repository (Blake and Merz, 1998), each data set 
has at least a few tenths of instances for each class value and some categorical attributes with 
more than two values. In order to increase the number of categorical attributes candidate for 
grouping, the continuous attributes have been discretized in a preprocessing step with a 10 equal-
width unsupervised discretization. The 12 data sets comprising 230 attributes are described in 
Table 1; the last column corresponds to the accuracy of the majority class. 

The categorical attributes in these data sets hold less than 10 values on average (from an 
average 3 values in the TicTacToe attributes to about 20 values in the HorseColic attributes). In 
order to perform more discriminating experiments, we use a second collection of data sets 
containing all the cross-products of the attributes. In this "bivariate" benchmark, the 12 data sets 
contain 2614 categorical attributes holding 55 values on average. 

3.3 The Evaluated Methods 
The grouping methods studied in the comparison are: 

• MODL, the method described in this paper, 
• Khiops (Boulle, 2004b), 
• BIC (Ritschard, 2003), 
• CHAID (Kass, 1980), 
• Tschuprow (Ritschard et al., 2001),  
• Gain Ratio (Quinlan, 1993). 

 
All these methods are based on a greedy bottom-up algorithm that iteratively merges the 

categories into groups, and automatically determines the number of groups in the final partition of 
the categories. The MODL method is based on a Bayesian approach and incorporates 
preprocessing and post-optimization algorithms. The Khiops, CHAID, Tschuprow and BIC 
methods use the chi-square statistics in different manner. The Gain Ratio method is based on 
entropy. 

The CHAID method is the grouping method used in the CHAID decision tree classifier 
(Kass, 1980). It applies the chi-square criterion locally to two categorical values in the 
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contingency table, and iteratively merges the values as long as they are statistically similar. The 
significance level is set to 0.95 for the chi-square threshold. The Tschuprow method is based on a 
global evaluation of the contingency table, and uses the Tschuprow's T normalization of the chi-
square value to evaluate the partitions. The Khiops method also applies the chi-square criterion 
on the whole contingency table, but it evaluates the partition using the confidence level related to 
the chi-square criterion. Furthermore, the Khiops method provides a guaranteed resistance to 
noise: any categorical attribute independent from the class attribute is grouped in a single terminal 
group with a user defined probability. This probability is set to 0.95 in the experiments. The BIC 
method is based on the deviance G2 statistics, which is a chi-square statistics. It exploits a 
Bayesian information criterion (Schwarz, 1978) to select the best compromise model between fit 
and complexity. The Gain Ratio method is the methods used in the C4.5 decision tree classifier 
(Quinlan, 1993). The gain ratio criterion attempts to find a trade-off between the information on 
the class values (information gain) and the complexity of the partition (the split information) by 
dividing the two quantities. 

We have re-implemented these alternative grouping approaches in order to eliminate any 
variance resulting from different cross-validation splits. 

3.4 The Artificial Data Sets Experiments 
Using artificial data sets allows controlling the distribution of the explanatory values and of the 
class values. The evaluation of the groupings learned on train data sets can thus be optimal, 
without requiring any test data set. In the case of grouping, an artificial data set containing one 
categorical attribute and one class attribute is completely specified by the following parameters: 

I: number of categorical values, 
J: number of classes, 
pi, 1 i I≤ ≤ : probability distribution of the categorical values, 
pj/i, 1 j J≤ ≤ , 1 i I≤ ≤ : probability distribution of the class values conditionally to the 

categorical values. 

3.4.1 The Noise Pattern 
The purpose of this experiment is to compare the robustness of the grouping methods. The noise 
pattern data set consists of an explanatory categorical attribute independent from the class 
attribute. The explanatory attribute is uniformly distributed (pi=1/I) and the class attribute consists 
of two equidistributed class values (pj/i=1/2). We use randomly generated train samples of size 
1000 and perform the experiment 1000 times, for different numbers of categorical values. In the 
case of independence, the optimal number of groups is 1. In Figure 2, we report the mean of the 
number of unnecessary groups (K-1) and of the Kullback-Leibler divergence between the 
estimated class distribution and the true class distribution. 

The results demonstrate the effectiveness of the Kullback-Leibler divergence to evaluate the 
quality of a grouping. In the case of attribute independence, the classification accuracy is 
uniformly equal to 50% whatever the number of groups: it is useless as an evaluation criterion. 
The most comprehensible grouping consists of a single group whereas the worst one is to build 
one group per value. The Kullback-Leibler divergence is able to exploit this by a better evaluation 
of the true class distribution in the most frequent groups. Thus, building separate groups that 
could be merged leads to a poorer estimation of the class distribution. 

The CHAID method creates more and more groups when the number of categorical values 
increases. This translates by a quickly decreasing quality of estimation of the class distribution, as 
pictured in Figure 2. 

The BIC method performs better than the CHAID method when the number of categorical 
values is small. When this number of values increases, the BIC and CHAID methods perform 
similarly. 
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Figure 2. Mean of the number of unnecessary groups (K-1) and of the Kullback-Leibler 

divergence of the groupings of an explanatory attribute independent from the class 
attribute 

The GainRatio method is constrained to produce at least 2 groups. It overfits the train data as 
soon as the number of categorical values exceeds a few tens. 

The Tschuprow method is also constrained to produce at least 2 groups. It builds almost 
systematically exactly two groups. A closer look at the Tschuprow criterion shows that the 
criterion can reach its theoretical bound only when the contingency table is square, meaning that 
the number of groups is exactly equal to the number of class values. Additional experiments with 
different numbers of class values (not reported in this paper) confirm this bias. Although the 
number of groups is constant under varying the number of categorical values, the estimation of 
the class distribution worsens with higher number of values. This is explained since less frequent 
values lead to a less reliable estimation of the class probabilities. 

The Khiops method is designed to build one single group with probability 0.95, when the 
explanatory attribute and the class attribute are independent. This is confirmed by the experiment 
up to about 100 categorical values. Above this number of values, the Khiops method 
systematically builds one group for the reason that it unconditionally groups the least frequent 
values in a preprocessing step. The objective of this preprocessing step is to improve the 
reliability of the confidence level associated with the chi-square criterion, by constraining every 
cell of the contingency table to have an expected value of at least 5. 

The MODL method builds one single group almost always, and the proportion of multi-
groups partitions decreases sharply with the number of categorical values. The experiments have 
been performed 100000 times for the MODL method. Above 50 values, no grouping (out of 
100000) contains more than one group. 

3.4.2 The Mixture Pattern 
The objective of this experiment is to evaluate the sensibility of the grouping methods. The 
mixture pattern data set consists of an explanatory categorical attribute distributed according to 
several mixtures of class values. The explanatory attribute is uniformly distributed (pi=1/I) and 
the class attribute consists of four equidistributed class values (pj/i=1/4). We designed 8 artificial 
groups corresponding to 8 different mixtures of class values. In each group, one of the class 
values is the majority class (with probability 0.50 or 0.75) and the other three classes are 
equidistributed, as pictured in Figure 3. 

We use randomly generated train samples of size 10000 and perform the experiment 1000 
times, for different numbers of categorical values. Due to the quadratic complexity of the 
algorithms, the experiment was conducted up to 2000 categorical values, except for the MODL 
algorithm that has a super-linear complexity. In Figure 4, we report the mean of the number of 
groups and of the Kullback-Leibler divergence between the estimated class distribution and the 
true class distribution. 
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Figure 3. Class distribution in 8 artificial group and 4 class values; the categorical values are 

uniformly distributed on the 8 groups 

The CHAID method overfits the training data by creating too many groups, even more than 
in the case of independence since the number of class values is now 4. The BIC method manages 
to find the optimal number of groups when the number of categorical values is below 100. Above 
this threshold, it overfits the training data and exhibits a behavior similar to that of the CHAID 
method. The behavior of the GainRatio method is unexpected. For small numbers of categorical 
values, it builds a constant number of groups equal to the number of class values, and beyond one 
hundred values, the number of groups raises sharply. The Tschuprow method is so strongly biases 
that it always produces exactly 4 groups. The Khiops method benefits from its robustness and 
correctly identifies the 8 artificial groups as long as the frequencies of the categorical values are 
sufficient. Beyond about 400 values, the minimum frequency constraint of the Khiops algorithms 
become active and the number of groups falls down to 1. The MODL method almost always 
builds optimal groupings with the correct number of groups. When the number of categorical 
values becomes large (about 500, i.e. an average frequency of 40 per value), there is a transition 
in the behavior of the algorithm, that produces only 4 groups instead of 8. The frequency of the 
categorical values is no longer sufficient to discriminate 8 types of class distributions. When the 
number of class values increases again (beyond 2000, i.e. an average frequency of 5 per value), 
there is a second transition and the MODL method builds one single group. 
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Figure 4. Mean of the number of groups and of the Kullback-Leibler divergence of the groupings 

of an explanatory attribute distributed in 8 mixtures of class values 

To summarize, the noise and mixture pattern experiments are a convenient way to 
characterize each grouping methods with their bias, robustness, sensibility and limits. The 
experiments show the interest of using the Kullback-Leibler divergence to evaluate the quality of 
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the groupings. This criterion looks well suited to evaluate the groupings in real data sets, where 
the true class distribution is unknown. 

The CHAID method exhibits an overfitting behavior, which decays when the number of 
categorical values or class values increases. The BIC method finds the correct number of groups 
when the categorical values are not too numerous and then overfits the training data. The 
Tschuprow is strongly biased in favor of numbers of groups equal to numbers of classes. The 
GainRatio exhibits a varying biased and overfitting behavior according to the distribution of the 
train data. The Khiops method is robust but suffers from a lack of sensibility when the categorical 
values are too numerous, due to its minimum frequency constraint. 

 
The MODL method builds groupings that are optimum, the most probable groupings given 

the train data. It is the only evaluated method that retrieves the exact number of groups both in 
case of noise data and of informative data. 

3.5 The Real Data Sets Experiments 
The goal of this experiment is to evaluate the intrinsic performance of the grouping methods, 
without the bias of the choice of a specific induction algorithm. The grouping are performed on 
all the attributes of the UCI data sets presented in Table 1, using a stratified tenfold cross-
validation. As the purpose of the experiments is to evaluate the grouping methods according to 
the way they compromise between the quality and the size of the groupings, we also added three 
basic grouping methods for comparison reasons. The first method named NoGrouping builds one 
group per categorical value: it is the least biased method for estimating the distribution of the 
class values at the expense of the highest number of groups. The second method called 
ExhaustiveCHAID (SPSS, 2001) is a version of the CHAID method that merges similar pairs 
continuously until only a single pair remains. We added a similar method ExhaustiveMODL, 
which allows comparing the two methods when they are constrained to build the same number of 
groups. 

During the experiments, we collect the number of groups and the Kulback-Leibler divergence 
between the class distribution estimated on train data sets and the class distribution observed on 
test data sets. For each grouping method, this represents 2300 measures for the univariate analysis 
(230 attributes) and 26140 measures for the bivariate analysis (2614 pairs of attributes). All these 
results are summarized across the attributes of the data sets owing to means, in order to provide a 
gross estimation of the relative performances of the methods. We report the mean of the number 
of groups and of the Kullback-Leibler divergence for the univariate and bivariate analysis in 
Figure 5. For the Kullback-Leibler divergence, we use geometric means normalized by the result 
of the NoGrouping method in order to focus on the ratios of predictive performance between 
tested methods. The gray line highlights the Pareto curve of the results obtained by the grouping 
methods. 

As expected, the NoGrouping method obtains the best results in term of predictive quality, at 
the expense of the worst number of groups. However, in the univariate analysis, the Khiops, BIC, 
CHAID and MODL methods reach almost the same quality with far less groups. The Tschuprow 
method is hampered by its bias in favor of number of groups equal to the number of class values, 
so that its performance are not better that those of the constrained methods ExhaustiveCHAID 
and ExhaustiveMODL. The GainRatio method is dominated by the other methods. The bivariate 
analysis is much more selective. The results follow the same trend with sharper differences 
between the methods. The Khiops method underfits the data because of its minimum frequency 
constraint, while the CHAID method suffers from its lack of overfitting control by producing too 
many groups and degrading its predictive performance. Although its criterion incorporates a 
complexity penalty, the BIC method builds too many groups and overfits the data. 
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Figure 5. Mean of the number of groups and of the Kullback-Leibler divergence of the groupings 
performed on the UCI data sets, in univariate analysis (on the left) and bivariate analysis 
(on the right) 

 
The MODL method gets the lowest number of group without discarding the predictive 

quality. It manages to reduce the number of categorical values by one order of magnitude while 
keeping the best estimate of the class conditional probability. 

3.6 Impact of Groupings on the Naïve Bayes Classifier 
The aim of this experiment is to evaluate the impact of grouping methods on the Naïve Bayes 
classifier. The Naïve Bayes classifier (Langley et al., 1992) assigns the most probable class value 
given the explanatory attributes values, assuming conditional independence between the attributes 
for each class value. The Naïve Bayes classifier is a very simple technique that does not require 
any parameter setting, which removes the bias due to parameter tuning. It performs surprisingly 
well on many data sets (Dougherty et al., 1995; Hand and Yu, 2001) and is very robust. High 
quality grouping tend to increase the frequency in each group and to decrease the variance in the 
estimation of the conditional class density. It is interesting to examine whether this can benefit to 
classifiers, even to the Naïve Bayes classifier which is particularly unsophisticated. 

The evaluation of probabilities for numeric attributes owing to discretization has already been 
discussed in the literature (Dougherty et al., 1995; Hsu et al, 2003; Yang and Webb, 2003). 
Experiments have shown that even a simple Equal Width discretization with 10 bins brings 
superior performances compared to the assumption using the Gaussian distribution. On the 
opposite, the probabilities for categorical attribute are estimated using the Laplace's estimator 
directly on the categorical values, without any preprocessing such as grouping. It is interesting to 
study whether grouping could produce a more robust estimation of the class distributions and 
enhance the performance of the Naïve Bayes classifier. The experiment is performed on the 12 
data sets presented in Table 1, using the univariate (all categorical attributes) and bivariate (all 
pairwise interactions of categorical attributes) sets of data sets. A Student's test at the 5% 
confidence level is performed between the MODL grouping method and the other methods to 
determine whether the differences of performance are significant. According to (Dietterich, 
1998), the McNemar's test is more reliable, but it does not assess the effect of varying the training 
set. However, these statistical tests "must be viewed as approximate, heuristic tests, rather than as 
rigorously correct statistical methods" (Dietterich, 1998). Table 2 reports a summary of the test 
accuracy and robustness results, using the mean of the data set results, the average rank of each 
method and the number of significant wins and losses of the MODL method. 

 



A BAYES OPTIMAL GROUPING METHOD 

 1445 

 Test accuracy Robustness (Test acc. / Train acc.) 
 Univariate data sets Bivariate data sets Univariate data sets Bivariate data sets
 Mean Rank Wins Mean Rank Wins Mean Rank Wins Mean Rank Wins
MODL 84.8% 2.6  85.8% 2.8 98.6% 3.0 96.8% 4.2
Khiops 84.1% 3.4 3/1 83.7% 4.7 4/0 98.6% 3.8 1/0 97.2% 2.5 0/3
BIC 83.2% 4.2 4/0 84.9% 3.2 3/0 96.1% 5.2 3/0 93.9% 6.7 7/0
CHAID 83.3% 3.7 2/0 84.7% 4.0 2/1 96.1% 5.2 1/0 93.6% 7.3 7/0
Tschuprow 82.8% 6.4 7/0 83.3% 6.6 6/0 96.6% 5.2 1/0 93.8% 5.5 3/0
GainRatio 81.5% 6.1 5/1 82.9% 5.8 4/0 95.4% 6.0 1/0 93.0% 5.7 5/0
ExMODL 83.4% 5.2 5/0 84.6% 4.7 4/0 98.5% 3.8 0/0 97.1% 2.7 0/2
ExCHAID 81.9% 7.4 7/0 83.2% 5.7 6/0 96.2% 5.8 2/0 94.6% 3.5 2/2
NoGrouping 84.0% 4.1 4/0 84.6% 5.1 4/0 97.3% 6.4 3/0 94.0% 6.2 6/0

Table 2. Summary of the test accuracy and robustness results (mean, average rank and number of 
wins/losses) of the Naïve Bayes classifier on the UCI data sets, in univariate analysis and 
bivariate analysis 

The results look consistent on the three indicators and show that the MODL method 
dominates the other methods on the test accuracy criterion. The mean results are pictured in 
Figure 6 with the classification accuracy reported both on train and test data sets, in order to 
visualize the train and test accuracy of the methods in a two criteria-analysis. The thick gray line 
on the diagonal represents the asymptotic best achievable robustness of the methods. The thin 
gray line highlights the Pareto curve in the two-criteria analysis between robustness and test 
accuracy. 

Test accuracy

81%

82%

83%

84%

85%

86%

81% 83% 85% 87% 89%

Train
acc

0.91.01.11.2
1.31.41.51.6

1 10

MODL
Khiops
BIC
CHAID
Tschuprow
GainRatio
ExhaustiveMODL
ExhaustiveCHAID
NoGrouping

Test accuracy

81%

82%

83%

84%

85%

86%

81% 83% 85% 87% 89% 91%

Train
acc

 
Figure 6. Mean of the train accuracy and test accuracy of the Naïve Bayes classifier on the UCI 

data sets, in univariate analysis (on the left) and bivariate analysis (on the right) 

Most methods do not perform better than the NoGrouping method. This probably explains 
why the Naïve Bayes classifiers do not make use of groupings in the literature. The MODL 
method clearly dominates all the other methods, owing to the quality of its groupings. The 
resulting Naïve Bayes classifier is both the more robust one (together with Khiops) and the more 
accurate on test data sets. Another important aspect learnt from this experiment is the overall gain 
in test accuracy when the pairs of attributes are used. The bivariate analysis allows to investigate 
simple interactions between attributes and to go beyond the limiting independence assumption of 
the Naïve Bayes classifier. Although this degrades the robustness (because of a decrease in the 
frequency of the categorical values), this enhances the test accuracy. From univariate to bivariate 
analysis, the MODL method achieves an increase in test accuracy about twice and a decay in 
robustness approximately half that of the reference NoGrouping method. 
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Compared to the NoGrouping method, the MODL method is the only evaluated grouping 

method that improves the test accuracy of the Naïve Bayes classifier. The most noticeable effect 
of using the MODL method is a drastic improvement of the robustness. 

4 Conclusion 
When categorical attributes contain few values, typically less than 10 values, using a grouping 
method is not required. As the number of values increases (which is common in marketing 
applications), preprocessing the categorical attributes becomes attractive in order to improve the 
performance of classifiers. The issue of grouping methods is to reduce the number of groups of 
values while maintaining the conditional class information. 

The MODL grouping method exploits the precise definition of a family of grouping models 
with a general prior. This provides a new evaluation criterion which is minimal for the Bayes 
optimal grouping, i.e. the most probable grouping given the data sample. An optimization 
heuristics including preprocessing and post-optimizations is proposed in this paper to optimize 
the grouping with super-linear time complexity. This algorithm manages to efficiently find high 
quality groupings. 

Extensive evaluations both on real and synthetic data indicate notable performances for the 
MODL method. It is time efficient and does not require any parameter setting. It builds groupings 
that are both robust and accurate. The more valuable characteristic of the MODL method is 
probably the understandability of the groupings. Although understandability is hard to evaluate, 
the method is theoretically founded to produce correct explanations of the explanatory categorical 
attributes on the basis of the partition of their values, and even the most probable "grouping 
based" explanation given the train data. 
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Appendix A 
In this appendix, we first present the combinatorial formula used to evaluate the numbers of 
partition of a set and second provide the proof of the theorems introduced in the paper. 

A.1 Partition numbers 
The number of ways a set of n elements can be partitioned into nonempty subsets is called a Bell 
number and denoted Bn. 

The number of ways of partitioning a set of n elements into k nonempty subsets is called a 
Stirling number of the second kind and denoted ( ),S n k . 

The Bell numbers can be defined by the sum 

( )
1

,
n

n
k

B S n k
=

= ∑  . 

Let ( ),B n k  be the number of partition of a set of n elements into at most k parts. This 
number, that we choose to call a generalized Bell number, can be defined by the sum 

( ) ( )
1

, ,
k

i
B n k S n i

=

= ∑  . 

 
 

Theorem 1: A SGM model distributed according to the three-stage prior is Bayes optimal for a 
given set of categorical values if the value of the following criterion is minimal on the set of all 
SGM models: 
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Proof: 
The prior probability of a grouping model M can be defined by the prior probability of the 
parameters of the model. 

Let us introduce some notations: 
• ( )p K : prior probability of the number of groups K, 

• ( ){ }( )p k i : prior probability of a partition (defined by ( ){ }k i ) of the categorical 

values into K groups, 
• { }( )kjp n : prior probability of the set of parameters{ }11,..., ,...,kj KJn n n , 

• { }( )kj k
p n : prior probability of the set of parameters{ }1,...,k kJn n . 

The objective is to find the grouping model M that maximizes the probability ( )|p M D  for a 
given train data set D. Using Bayes formula and since the probability ( )p D  is constant under 
varying the model, this is equivalent to maximize ( ) ( )|p M p D M . 

Let us first focus on the prior probability ( )p M  of the model. We have 
( ){ } { }( )

( ) ( ){ }( ) { } ( ){ }( )
( ) , ,

| | , .

kj

kj

p M p K k i n

p K p k i K p n K k i

=

=
 

The first hypothesis of the three-stage prior is that the number of groups is uniformly 
distributed between 1 and I. Thus we get 

1( )p K
I

=  . 

The second hypothesis is that all the partition of the categorical values into at most K groups 
are equiprobable for a given K. Computing the probability of one set of groups turns into the 
combinatorial evaluation of the number of possible group sets. This number is equal to the 
generalized Bell number ( ),B I K . Thus we obtain 

( ){ }( ) ( )
1|
,

p k i K
B I K

= . 

The last term to evaluate can be rewritten as a product using the hypothesis of independence 
of the distributions of the class values between the groups. We have 
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The frequencies per group nk derive from the frequencies per categorical values ni for a given 
partition of the values into groups. 

For a given group k with size nk, all the distributions of the class values are equiprobable. 
Computing the probability of one distribution is a combinatorial problem, which solution is 
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Thus, 
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The prior probability of the model is then 
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Let us now evaluate the probability of getting the train data set D for a given model M. We 
first divide the data set D into K subsets Dk of size nk corresponding to the K groups. Using again 
the independence assumption between the groups, we obtain 
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as evaluating the probability of a subset Dk under uniform prior turns out to be a multinomial 
problem. 

 
Taking the negative log of the probabilities, the maximization problem turns into the 

minimization of the claimed criterion 
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Theorem 2: In a Bayes optimal SGM model distributed according to the three-stage prior, two 
pure categorical values having the same class are necessary in the same group. 

 
Proof: 
Let a and b be the two pure values related to the same class (indexed as class 1 for convenience 
reasons). Let us assume that, contrary to the claim, the two values are separated into two groups 
A1 and B1. 

We construct two new groups A0 and B2 by moving the pure value a from A1 to B1. The cost 
variation ∆Cost1 of the grouping is 
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If the A1 group contains only the a value, moving a from A1 to B1 results in a decreased 
number of groups, with a related variation of partition cost 

( )( ) ( )( )1 log , 1 log ,PartitionCost B I K B I K∆ = − − , 
which is negative. In the opposite case, the number of groups remains the same and the 

resulting variation of partition cost is zero. 
The frequencies are the same for each class except for class 1, thus 
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Similarly, we construct two groups A2 and B0 by moving pure value b from B1 to A1. This 
time, the cost variation ∆Cost2 of the grouping is 
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Let us assume that 

( ) ( )11 11,111,1 −+≤−+ JnnJnn BBAA . 
Using the property 

( ) ( ) ( ) ( )0 z x y x z y z x y x z y z≤ ≤ < ⇒ − − ≤ ≤ + + , 
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Thus, we get 1 1 0Cost PartitionCost∆ −∆ ≤ . 
 
On the opposite, let us assume that 

( ) ( )1,1 1 1,1 11 1A A B Bn n J n n J+ − ≥ + − . 
This time, we obtain 2 2 0Cost PartitionCost∆ −∆ ≤ . 
Since the variations of partition costs are always non-negative, at least one of the two cost 

variations ∆Cost1 or ∆Cost2 is negative and the initial grouping could not be optimal. As this is 
contradictory with the initial assumption, the claim follows.  

 
Remark: 
If the partition costs are evaluated using the Stirling numbers of the second kind instead of the 
generalized Bell numbers, this theorem is no longer true, since decreasing the number of groups 
can result in an increase of the partition cost (for example, S(I,I-1) = I(I-1)/2 and S(I,I) = 1). 

 
 

Theorem 3: In a SGM model distributed according to the three-stage prior and in the case of two 
classes, the Bayes optimal grouping model consists of a single group when each instance has a 
different categorical value. 
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Proof: 
Since each instance has a different categorical value, all the categorical values are pure values 
associated with one among the J class values. According to Theorem 2, the values having the 
same class values are necessary in the same group. The optimal grouping contains at most J 
groups. 

Let A and B be two groups and A∪B the group obtained by merging A and B. 
Let nA, nB and nA∪B be the frequencies of these groups, and let nA,j, nB,j and nA∪B,j be the 

frequencies per class value in these groups. 
When the two groups are merged, the number of groups decreases from K to K-1 with the 

variation of partition cost ( )( ) ( )( )KIBKIBostPartitionC ,log1,log −−=∆ . 
The total variation of the grouping cost is 
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Since each class is fully contained either in group A or B, we obtain 

( ) ( ) ( ) ( )( )log 1 ! 1 ! 1 ! 1 ! .A B A BCost PartitionCost n J J n J n J∪∆ = ∆ + + − − + − + −  
 
We are in the case of 2 class values and thus have J = 2, nA∪B = n, K = 2. 
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n CCC  for 1>n  and 1>k  (with a strict inequality when 

2n > ), we finally obtain 
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The claim follows. 
 

Remark: 
If the partition costs are evaluated using the Stirling numbers of the second kind instead of the 
generalized Bell numbers, this theorem is no longer true. In particular, when the class values are 
equi-distributed, the grouping cost in the case of a single group ( ( )2log( ) log( 1) log n

nn n C+ + + ) is 
higher than the grouping cost in the case of one group per categorical value ( ( )log( ) log 2n n+ ). 

References 
M. Asseraf. Metric on decision trees and optimal partition problem. International Conference on 

Human System Learning, Proceedings of CAPS’3, Paris, 2000. 



A BAYES OPTIMAL GROUPING METHOD 

 1451 

N. C. Berckman. Value grouping for binary decision trees. Technical Report, Computer Science 
Department – University of Massachusetts, 1995. 

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, New York, 1994. 

C. L. Blake and C. J. Merz. UCI Repository of machine learning databases Web URL 
http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University of California, 
Department of Information and Computer Science, 1998. 

M. Boullé. Khiops: a Statistical Discretization Method of Continuous Attributes. Machine 
Learning, 55(1):53-69, 2004a. 

M. Boullé. A robust method for partitioning the values of categorical attributes. Revue des 
Nouvelles Technologies de l’Information, Extraction et gestion des connaissances 
(EGC’2004), RNTI-E-2, volume II: 173-182, 2004b. 

M. Boullé. A Bayesian Approach for Supervised Discretization. Data Mining V, Eds Zanasi, 
Ebecken, Brebbia, WIT Press, pp 199-208, 2004c. 

L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone. Classification and Regression Trees. 
California: Wadsworth International, 1984. 

B. Cestnik, I. Kononenko and I. Bratko. ASSISTANT 86: A knowledge-elicitation tool for 
sophisticated users. In Bratko and Lavrac (Eds.), Progress in Machine Learning. Wilmslow, 
UK: Sigma Press, 1987. 

P. A. Chou. Optimal Partitioning for Classification and Regression Trees. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 13(4):340-354, 1991. 

T. G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Methods. 
Neural Computation, 10(7), 1998. 

J. Dougherty, R. Kohavi and M. Sahami. Supervised and Unsupervised Discretization of 
Continuous Features. Proceedings of the Twelf International Conference on Machine 
Learning. Los Altos, CA: Morgan Kaufmann, pp 194-202, 1995. 

T. Fulton, S. Kasif and S. Salzberg. Efficient algorithms for finding multi-way splits for decision 
trees. In Proc. Thirteenth International Joint Conference on Artificial Intelligence, San 
Francisco, CA: Morgan Kaufmann, pp 244-255, 1995. 

D. J. Hand and K. Yu. Idiot Bayes ? not so stupid after all? International Statistical Review, 
69:385-398, 2001. 

C. N. Hsu, H. J. Huang and T. T Wong. Implications of the Dirichlet Assumption for 
Discretization of Continuous Variables in Naive Bayesian Classifiers. Machine Learning, 
53(3):235-263, 2003. 

G. V. Kass. An exploratory technique for investigating large quantities of categorical data. 
Applied Statistics, 29(2):119-127, 1980. 

R. Kass and A. Raftery. Bayes factors. In Journal of the American Statistical Association, 90: 
773-795, 1995. 

R. Kerber. Chimerge discretization of numeric attributes. Proceedings of the 10th International 
Conference on Artificial Intelligence, pp 123-128, 1991. 

S. Kullback. Information Theory and Statistics. New York: Wiley, (1959); republished by Dover, 
1968. 



BOULLE 

 1452 

P. Langley, W. Iba and K. Thompson. An analysis of Bayesian classifiers. In Proceedings of the 
10th national conference on Artificial Intelligence, AAAI Press, pp 223-228, 1992. 

Y. Lechevallier. Recherche d'une partition optimale sous contrainte d'ordre total. Technical report 
N°1247. INRIA, 1990. 

D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999. 

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986. 

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993. 

G. Ritschard, D. A. Zighed and N. Nicoloyannis. Maximisation de l'association par regroupement 
de lignes ou de colonnes d'un tableau croisé. Mathématiques et Sciences Humaines, n°154-
155:81-98, 2001. 

G. Ritschard. Partition BIC optimale de l'espace des prédicteurs. Revue des Nouvelles 
Technologies de l'Information, 1:99-110, 2003. 

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978. 

SPSS Inc. AnswerTree 3.0 User's Guide. Chicago: SPSS Inc, 2001. 

Y. Yang and G. Webb. On why discretization works for naïve-Bayes classifiers. Proceedings of 
the 16th Australian Joint Conference on Artificial Intelligence (AI), 2003. 

D. A. Zighed and R. Rakotomalala. Graphes d’induction. Hermes Science Publications, pp 327-
359, 2000. 
 



Journal of Machine Learning Research 6 (2005) 1453–1484 Submitted 11/04; Published 9/05

Large Margin Methods for Structured and
Interdependent Output Variables

Ioannis Tsochantaridis IOANNIS@GOOGLE.COM

Google, Inc.
Mountain View, CA 94043, USA

Thorsten Joachims TJ@CS.CORNELL.EDU

Department of Computer Science
Cornell University
Ithaca, NY 14853, USA

Thomas Hofmann HOFMANN@INT.TU-DARMSTADT.DE

Darmstadt University of Technology
Fraunhofer IPSI
Darmstadt, Germany

Yasemin Altun ALTUN @TTI-C.ORG

Toyota Technological Institute
Chicago, IL 60637, USA

Editor: Yoram Singer

Abstract
Learning general functional dependencies between arbitrary input and output spaces is one of the
key challenges in computational intelligence. While recentprogress in machine learning has mainly
focused on designing flexible and powerful input representations, this paper addresses the comple-
mentary issue of designing classification algorithms that can deal with more complex outputs, such
as trees, sequences, or sets. More generally, we consider problems involving multiple dependent
output variables, structured output spaces, and classification problems with class attributes. In order
to accomplish this, we propose to appropriately generalizethe well-known notion of a separation
margin and derive a corresponding maximum-margin formulation. While this leads to a quadratic
program with a potentially prohibitive, i.e. exponential,number of constraints, we present a cut-
ting plane algorithm that solves the optimization problem in polynomial time for a large class of
problems. The proposed method has important applications in areas such as computational biology,
natural language processing, information retrieval/extraction, and optical character recognition. Ex-
periments from various domains involving different types of output spaces emphasize the breadth
and generality of our approach.

1. Introduction

This paper deals with the general problem of learning a mapping from inputvectors or patterns
x ∈ X to discrete response variablesy ∈ Y , based on a training sample of input-output pairs
(x1,y1), . . . ,(xn,yn) ∈ X ×Y drawn from some fixed but unknown probability distribution. Un-
like multiclass classification, where the output space consists of an arbitraryfinite set of labels or
class identifiers,Y = {1, ...,K}, or regression, whereY = R and the response variable is a scalar,
we consider the case where elements ofY arestructured objectssuch as sequences, strings, trees,
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lattices, or graphs. Such problems arise in a variety of applications, ranging from multilabel clas-
sification and classification with class taxonomies, to label sequence learning, sequence alignment
learning, and supervised grammar learning, to name just a few. More generally, these problems
fall into two generic cases: first, problems where classes themselves can be characterized by certain
class-specific attributes and learning should occur across classes as much as across patterns; second,
problems wherey represents a macro-label, i.e. describes aconfigurationover components or state
variablesy = (y1, . . . ,yT), with possible dependencies between these state variables.

We approach these problems by generalizing large margin methods, more specifically multiclass
support vector machines (SVMs) (Weston and Watkins, 1998; Crammer and Singer, 2001), to the
broader problem of learning structured responses. The naive approach of treating each structure as a
separate class is often intractable, since it leads to a multiclass problem with a very large number of
classes. We overcome this problem by specifying discriminant functions that exploit the structure
and dependencies withinY . In that respect our approach follows the work of Collins (2002) on
perceptron learning with a similar class of discriminant functions. However,the maximum-margin
algorithm we propose has advantages in terms of accuracy and tunability to specific loss functions.
A maximum-margin algorithm has also been proposed by Collins and Duffy (2002a) in the context
of natural language processing. However, it depends on the size of the output space, therefore it
requires some external process to enumerate a small number of candidate outputsy for a given
input x. The same is true also for other ranking algorithms (Cohen et al., 1999; Herbrich et al.,
2000; Schapire and Singer, 2000; Crammer and Singer, 2002; Joachims, 2002). In contrast, we
have proposed an efficient algorithm (Hofmann et al., 2002; Altun et al., 2003; Joachims, 2003)
even in the case of very large output spaces, that takes advantage of the sparseness of the maximum-
margin solution.

A different maximum-margin algorithm that can deal with very large output sets, maximum
margin Markov networks, has been independently proposed by Taskaret al. (2004a). The structure
of the output is modeled by a Markov network, and by employing a probabilistic interpretation of the
dual formulation of the problem, Taskar et al. (2004a) propose a reparameterization of the problem,
that leads to an efficient algorithm, as well as generalization bounds that donot depend on the size
of the output space. The proposed reparameterization, however, assumes that the loss function can
be decomposed in the the same fashion as the feature map, thus does not support arbitrary loss
functions that may be appropriate for specific applications.

On the surface our approach is related to the kernel dependency estimation approach described
in Weston et al. (2003). There, however, separate kernel functionsare defined for the input and
output space, with the idea to encode a priori knowledge about the similarity or loss function in
output space. In particular, this assumes that the loss is input dependentand known beforehand.
More specifically, in Weston et al. (2003) a kernel PCA is used in the feature space defined overy to
reduce the problem to a (small) number of independent regression problems. The latter corresponds
to an unsupervised embedding (followed by dimension reduction) performed in the output space
and no information about the patternsx is utilized in defining this low-dimensional representation.
In contrast, the key idea in our approach is not primarily to define more complex functions, but to
deal with more complex output spaces by extracting combined features overinputs and outputs.

For a large class of structured models, we propose a novel SVM algorithmthat allows us to
learn mappings involving complex structures in polynomial time despite an exponential (or infi-
nite) number of possible output values. In addition to respective theoretical results, we empirically
evaluate our approach for a number of specific problem instantiations: classification with class tax-
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Figure 1: Illustration of natural language parsing model.

onomies, label sequence learning, sequence alignment, and natural language parsing. This paper
extends Tsochantaridis et al. (2004) with additional theoretical and empirical results.

The rest of the paper is organized as follows: Section 2 presents the general framework of
large margin learning over structured output spaces using representations of input-output pairs via
joint feature maps. Section 3 describes and analyzes a generic algorithm for solving the resulting
optimization problems. Sections 4 and 5 discuss numerous important special cases and experimental
results, respectively.

2. Large Margin Learning with Joint Feature Maps

We are interested in the general problem of learning functionsf : X → Y between input spaces
X and arbitrary discrete output spacesY based on a training sample of input-output pairs. As
an illustrating example, which we will continue to use as a prototypical applicationin the sequel,
consider the case of natural language parsing, where the functionf maps a given sentencex to a
parse treey. This is depicted graphically in Figure 1.

The approach we pursue is to learn adiscriminant function F: X ×Y → R over input-output
pairs from which we can derive a prediction by maximizingF over the response variable for a
specific given inputx. Hence, the general form of our hypothesesf is

f (x;w) = argmax
y∈Y

F(x,y;w) , (1)

wherew denotes a parameter vector. It might be useful to think ofF as a compatibility function
that measures how compatible pairs(x,y) are, or, alternatively,−F can be thought of as aw-
parameterized family of cost functions, which we try to design in such a way that the minimum of
F(x, ·;w) is at the desired outputy for inputsx of interest.

Throughout this paper, we assumeF to be linear in somecombined feature representationof
inputs and outputsΨ(x,y), i.e.

F(x,y;w) = 〈w,Ψ(x,y)〉 . (2)

The specific form ofΨ depends on the nature of the problem and special cases will be discussed
subsequently. However, whenever possible we will develop learning algorithms and theoretical
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results for the general case. Since we want to exploit the advantages ofkernel-based method, we will
pay special attention to cases where the inner product in the joint representation can be efficiently
computed via a joint kernel functionJ((x,y),(x′,y′)) = 〈Ψ(x,y),Ψ(x′,y′)〉.

Using again natural language parsing as an illustrative example, we can choseF such that we
get a model that is isomorphic to a probabilistic context free grammar (PCFG) (cf. Manning and
Schuetze, 1999). Each node in a parse treey for a sentencex corresponds to grammar ruleg j , which
in turn has a scorew j . All valid parse treesy (i.e. trees with a designated start symbolSas the root
and the words in the sentencex as the leaves) for a sentencex are scored by the sum of thew j of
their nodes. This score can thus be written in the form of Equation (2), withΨ(x,y) denoting a
histogram vector of counts (how often each grammar ruleg j occurs in the treey). f (x;w) can be
efficiently computed by finding the structurey∈Y that maximizesF(x,y;w) via the CKY algorithm
(Younger, 1967; Manning and Schuetze, 1999).

2.1 Loss Functions and Risk Minimization

The standard zero-one loss function typically used in classification is not appropriate for most kinds
of structured responses. For example, in natural language parsing, aparse tree that is almost correct
and differs from the correct parse in only one or a few nodes should be treated differently from
a parse tree that is completely different. Typically, the correctness of a predicted parse tree is
measured by itsF1 score (see e.g. Johnson, 1998), the harmonic mean of precision and recall as
calculated based on the overlap of nodes between the trees.

In order to quantify the accuracy of a prediction, we will consider learning with arbitrary loss
functions4 : Y ×Y → R. Here4(y, ŷ) quantifies the loss associated with a predictionŷ, if the
true output value isy. It is usually sufficient to restrict attention to zero diagonal loss functionswith
4(y,y) = 0 and for which furthermore4(y,y′) > 0 for y 6= y′.1 Moreover, we assume the loss is
bounded for every given target valuey∗, i.e. maxy{4(y∗,y)} exists.

We investigate a supervised learning scenario, where input-output pairs(x,y) are generated
according to some fixed distributionP(x,y) and the goal is to find a functionf in a given hypothesis
class such that the risk,

R
4

P ( f ) =
Z

X×Y
4(y, f (x))dP(x,y) ,

is minimized. Of course,P is unknown and following the supervised learning paradigm, we assume
that a finite training set of pairsS= {(xi ,yi) ∈ X ×Y : i = 1, . . . ,n} generated i.i.d. according toP
is given. The performance of a functionf on the training sampleS is described by the empirical
risk,

R
4

S ( f ) =
1
n

n

∑
i=1

4(yi , f (xi)) ,

which is simply the expected loss under the empirical distribution induced byS. Forw-parameterized
hypothesis classes, we will also writeR

4
P (w)≡ R

4
P ( f (·;w)) and similarly for the empirical risk.

1. Cases where4(y,y′) = 0 for y 6= y′ can be dealt with, but lead to additional technical overhead, which we chose to
avoid for the sake of clarity.
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2.2 Margin Maximization

We consider various scenarios for the generalization of support vector machine learning over struc-
tured outputs. We start with the simple case of hard-margin SVMs, followed bysoft-margin SVMs,
and finally we propose two approaches for the case of loss-sensitive SVMs, which is the most gen-
eral case and subsumes the former ones.

2.2.1 SEPARABLE CASE

First, we consider the case where there exists a functionf parameterized byw such that the empirical
risk is zero. The condition of zero training error can then be compactly written as a set of nonlinear
constraints

∀i ∈ {1, . . . ,n} : max
y∈Y \yi

{〈w,Ψ(xi ,y)〉} ≤ 〈w,Ψ(xi ,yi)〉 . (3)

Notice that this holds independently of the loss functions, since we have assumed that4(y,y) = 0
and4(y,y′) > 0 for y 6= y′.

Every one of the nonlinear inequalities in Equation (3) can be equivalently replaced by|Y |−1
linear inequalities, resulting in a total ofn|Y |−n linear constraints,

∀i ∈ {1, . . . ,n}, ∀y ∈ Y \yi : 〈w,Ψ(xi ,yi)−Ψ(xi ,y)〉 ≥ 0. (4)

As we will often encounter terms involving feature vector differences of the type appearing in
Equation (4), we defineδΨi(y)≡Ψ(xi ,yi)−Ψ(xi ,y) so that the constraints can be more compactly
written as〈w,δΨi(y)〉 ≥ 0.

If the set of inequalities in Equation (4) is feasible, there will typically be more than one solu-
tion w∗. To specify a unique solution, we propose to select thew for which the separation margin
γ, i.e. the minimal differences between the score of the correct labelyi and the closest runner-up
ŷ(w) = argmaxy 6=yi

〈w,Ψ(xi ,y)〉, is maximal. This generalizes the maximum-margin principle em-
ployed in support vector machines (Vapnik, 1998) to the more general case considered in this paper.
Restricting theL2 norm ofw to make the problem well-posed leads to the following optimization
problem:

max
γ,w:‖w‖=1

γ

s.t.∀i ∈ {1, . . . ,n}, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ γ .

This problem can be equivalently expressed as a convex quadratic program in standard form

SVM0 : min
w

1
2
‖w‖2 (5)

s.t.∀i, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ 1. (6)

2.2.2 SOFT-MARGIN MAXIMIZATION

To allow errors in the training set, we introduce slack variables and propose to optimize a soft-
margin criterion. As in the case of multiclass SVMs, there are at least two waysof introducing slack
variables. One may introduce a single slack variableξi for violations of thenonlinearconstraints
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(i.e. every instancexi) (Crammer and Singer, 2001) or one may penalize margin violations for
every linear constraint (i.e. every instancexi and outputy 6= yi) (Weston and Watkins, 1998; Har-
Peled et al., 2002). Since the former will result in a (tighter) upper bound on the empirical risk
(cf. Proposition 1) and offers some advantages in the proposed optimization scheme (cf. Section 3),
we have focused on this formulation. Adding a penalty term that is linear in the slack variables to
the objective, results in the quadratic program

SVM1 : min
w,ξξξ

1
2
‖w‖2 +

C
n

n

∑
i=1

ξi (7)

s.t.∀i, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ 1−ξi , ξi ≥ 0.

Alternatively, we can also penalize margin violations by a quadratic term leading to the following
optimization problem:

SVM2 : min
w,ξξξ

1
2
‖w‖2 +

C
2n

n

∑
i=1

ξ2
i

s.t.∀i, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ 1−ξi .

In both cases,C > 0 is a constant that controls the trade-off between training error minimization and
margin maximization.

2.2.3 GENERAL LOSSFUNCTIONS: SLACK RE-SCALING

The first approach we propose for the case of arbitrary loss functions, is to re-scale the slack vari-
ables according to the loss incurred in each of the linear constraints. Intuitively, violating a margin
constraint involving ay 6= yi with high loss4(yi ,y) should be penalized more severely than a vi-
olation involving an output value with smaller loss. This can be accomplished by multiplying the
margin violation by the loss, or equivalently, by scaling the slack variable with the inverse loss,
which yields

SVM4s
1 : min

w,ξξξ

1
2
‖w‖2 +

C
n

n

∑
i=1

ξi

s.t.∀i, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ 1− ξi

4(yi ,y)
.

A justification for this formulation is given by the subsequent proposition.

Proposition 1 Denote byξ∗(w) the optimal solution of the slack variables in SVM4s
1 for a given

weight vectorw. Then1
n ∑n

i=1 ξ∗i is an upper bound on the empirical riskR
4

S (w).

Proof Notice first thatξ∗i = max{0,maxy 6=yi{4(yi ,y)(1−〈w,δΨi(y)〉)}}.
Case 1: If f(xi ;w) = yi , thenξ∗i ≥ 0 =4(yi , f (xi ;w)) and the loss is trivially upper bounded.

Case 2: If ŷ ≡ f (xi ;w) 6= yi , then 〈w,δΨi(ŷ)〉 ≤ 0 and thus ξ∗i
4(yi ,y) ≥ 1 which is equivalent to

ξ∗i ≥4(yi ,y).
Since the bound holds for every training instance, it also holds for the average.

The optimization problem SVM4s
2 can be derived analogously, where4(yi ,y) is replaced by

√

4(yi ,y)
in order to obtain an upper bound on the empirical risk.
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2.2.4 GENERAL LOSSFUNCTIONS: MARGIN RE-SCALING

In addition to thisslack re-scalingapproach, a second way to include loss functions is to re-scale
the margin as proposed by Taskar et al. (2004a) for the special case of the Hamming loss. It is
straightforward to generalize this method to general loss functions. The margin constraints in this
setting take the following form:

∀i, ∀y ∈ Y : 〈w,δΨi(y)〉 ≥ 4(yi ,y)−ξi . (8)

The set of constraints in Equation (8) combined with the objective in Equation (7) yield an opti-
mization problem SVM4m

1 which also results in an upper bound onR
4

S (w∗).

Proposition 2 Denote byξ∗(w) the optimal solution of the slack variables in SVM4m
1 for a given

weight vectorw. Then1
n ∑n

i=1 ξ∗i is an upper bound on the empirical riskR
4

S (w).

Proof The essential observation is thatξ∗i = max{0,maxy{4(yi ,y)−〈w,δΨi(y)〉}}which is guar-
anteed to upper bound4(yi ,y) for y such that〈w,δΨi(y)〉 ≤ 0.

The optimization problem SVM4m
2 can be derived analogously, where4(yi ,y) is replaced by

√

4(yi ,y).

2.2.5 GENERAL LOSSFUNCTIONS: DISCUSSION

Let us discuss some of the advantages and disadvantages of the two formulations presented. An
appealing property of the slack re-scaling approach is its scaling invariance.

Proposition 3 Suppose4′ ≡ η4 with η > 0, i.e.4′ is a scaled version of the original loss4.
Then by re-scaling C′ =C/η, the optimization problems SVM4s

1 (C) and SVM4
′s

1 (C′) are equivalent
as far asw is concerned. In particular the optimal weight vectorw∗ is the same in both cases.

Proof First note that eachw is feasible for SVM4s
1 and SVM4

′s
1 in the sense that we can find slack

variables such that all the constraints are satisfied. In fact we can chosethem optimally and define
H(w) ≡ 1

2‖w‖2 + C
n ∑i ξ∗i (w) and H′(w) ≡ 1

2‖w‖2 + C′
n ∑i ξ∗i

′(w), whereξ∗ and ξ∗′ refer to the

optimal slacks in SVM4s
1 and SVM4

′s
1 , respectively, for givenw. It is easy to see that they are given

by
ξ∗i = max{0,max

y 6=yi

{4(yi ,y)(1−〈w,δΨi(y)〉)}}

and
ξ∗i
′ = max{0,max

y 6=yi

{η4(yi ,y)(1−〈w,δΨi(y)〉)}},

respectively. Pullingη out of the max, one gets thatξ∗i
′ = ηξ∗i and thus∑i ξ∗i =Cη∑i ξ∗i

′ =C′∑i ξ∗i
′.

From that it follows immediately that H= H ′.

In contrast, the margin re-scaling formulation is not invariant under scalingof the loss function.
One needs, for example, to re-scale the feature mapΨ by a corresponding scale factor as well. This
seems to indicate that one has to calibrate the scaling of the loss and the scaling of the feature map
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more carefully in the SVM4m
1 formulation. The SVM4s

1 formulation on the other hand, represents
the loss scale explicitly in terms of the constantC.

A second disadvantage of the margin scaling approach is that it potentially gives significant
weight to output valuesy ∈ Y that are not even close to being confusable with the target values
yi , because every increase in the loss increases the required margin. If one interpretsF(xi ,yi ;w)−
F(xi ,y;w) as a log odds ratio of an exponential family model (Smola and Hofmann, 2003), then
the margin constraints may be dominated by incorrect valuesy that are exponentially less likely
than the target value. To be more precise, notice that in the SVM4s

1 formulation, the penalty
part only depends ony for which 〈w,δΨi(y)〉 ≤ 1. These are output valuesy that all receive
a relatively “high” (i.e. 1-close to the optimum) value ofF(x,y;w). However, in SVM4m

1 , ξ∗i
has to majorize4(yi ,y)− 〈w,δΨi(y)〉 for all y. This meansξ∗i can be dominated by a value
ŷ = argmaxy {4(yi ,y)−〈w,δΨi(y)〉} which has a large loss, but whose value ofF(x,y;w) comes
nowhere near the optimal value ofF .

3. Support Vector Algorithm for Structured Output Spaces

So far we have not discussed how to solve the optimization problems associated with the various
formulations SVM0 , SVM1 , SVM2 , SVM4s

1 , SVM4m
1 , SVM4s

2 , and SVM4m
2 . The key challenge

is that the size of each of these problems can be immense, since we have to deal with n|Y | − n
margin inequalities. In many cases,|Y | may be extremely large, in particular, ifY is a product
space of some sort (e.g. in grammar learning, label sequence learning, etc.), its cardinality may
grow exponentially in the description length ofy. This makes standard quadratic programming
solvers unsuitable for this type of problem.

In the following, we will propose an algorithm that exploits the special structure of the maximum-
margin problem, so that only a much smaller subset of constraints needs to be explicitly examined.
We will show that the algorithm can compute arbitrary close approximations to allSVM optimiza-
tion problems posed in this paper in polynomial time for a large range of structures and loss func-
tions. Since the algorithm operates on the dual program, we will first derive the Wolfe dual for the
various soft margin formulations.

3.1 Dual Programs

We will denote byα(iy) the Lagrange multiplier enforcing the margin constraint for labely 6= yi

and example(xi ,yi). Using standard Lagragian duality techniques, one arrives at the following dual
quadratic program (QP).

Proposition 4 The objective of the dual problem of SVM0 from Equation(6) is given by

Θ(α)≡−1
2 ∑

i,y 6=yi

∑
j,ȳ 6=y j

α(iy)α( j ȳ)J(iy)( j ȳ) + ∑
i,y 6=yi

α(iy),

where J(iy)( j ȳ) =
〈

δΨi(y),δΨ j(ȳ)
〉

. The dual QP can be formulated as

α∗ = argmax
ααα

Θ(α), s.t. α≥ 0.
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Proof (sketch) Forming the Lagrangian function and eliminating the primal variables w by using
the optimality condition

w∗(α) = ∑
i

∑
y 6=yi

α(iy)δΨi(y)

directly leads to the above dual program.

Notice that theJ function that generates the quadratic from in the dual objective can be computed
from inner products involving values ofΨ, which is a simple consequence of the linearity of the
inner product.J can hence be alternatively computed from a joint kernel function overX ×Y .

In the non-separable case, linear penalties introduce additional constraints, whereas the squared
penalties modify the kernel function.

Proposition 5 The dual problem to SVM1 is given by the program in Proposition 4 with additional
constraints

∑
y 6=yi

α(iy) ≤
C
n

, ∀i = 1, . . . ,n.

In the following, we denote withδ(a,b) the function that returns 1 ifa = b, and 0 otherwise.

Proposition 6 The dual problem to SVM2 is given by the program in Proposition 4 with modified
kernel function

J(iy)( j ȳ) ≡
〈

δΨi(y),δΨ j(ȳ)
〉

+δ(i, j)
n
C

.

In the non-separable case with slack re-scaling, the loss function is introduced in the constraints for
linear penalties and in the kernel function for quadratic penalties.

Proposition 7 The dual problem to SVM4s
1 is given by the program in Proposition 4 with additional

constraints

∑
y 6=yi

α(iy)

4(yi ,y)
≤ C

n
, ∀i = 1, . . . ,n.

Proposition 8 The dual problem to SVM4s
2 is given by the program in Proposition 4 with modified

kernel function

J(iy)( j ȳ) =
〈

δΨi(y),δΨ j(ȳ)
〉

+δ(i, j)
n

C
√

4(yi ,y)
√

4(y j , ȳ)
.

In the non-separable case with margin re-scaling, the loss function is introduced in the linear part of
the objective function

Proposition 9 The dual problems to SVM4m
1 and SVM4m

2 are given by the dual problems to SVM1 and
SVM2 with the linear part of the objective replaced by

∑
i,y 6=yi

α(iy)4(yi ,y) and ∑
i,y 6=yi

α(iy)

√

4(yi ,y)

respectively.
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3.2 Algorithm

The algorithm we propose aims at finding a small set of constraints from the full-sized optimization
problem that ensures a sufficiently accurate solution. More precisely, we will construct a nested
sequence of successively tighter relaxations of the original problem using a cutting plane method
(Kelley, 1960), implemented as a variable selection approach in the dual formulation. Similar to
its use with the Ellipsoid method (Grötschel et al., 1981; Karmarkar, 1984), we merely require a
separation oracle that delivers a constraint that is violated by the current solution. We will later
show that this is a valid strategy, since there always exists a polynomially sizedsubset of constraints
so that the solution of the relaxed problem defined by this subset fulfills all constraints from the full
optimization problem up to a precision ofε. This means, the remaining—potentially exponentially
many—constraints are guaranteed to be violated by no more thanε, without the need for explicitly
adding these constraints to the optimization problem.

We will base the optimization on the dual program formulation which has two important advan-
tages over the primal QP. First, it only depends on inner products in the jointfeature space defined
by Ψ, hence allowing the use of kernel functions. Second, the constraint matrix of the dual program
supports a natural problem decomposition. More specifically, notice that the constraint matrix de-
rived for the SVM0 and the SVM∗2 variants is diagonal, since the non-negativity constraints involve
only a singleα-variable at a time, whereas in the SVM∗1 case, dual variables are coupled, but the
couplings only occur within a block of variables associated with the same training instance. Hence,
the constraint matrix is (at least) block diagonal in all cases, where each block corresponds to a
specific training instance.

Pseudo-code of the algorithm is depicted in Algorithm 1. The algorithm maintainsworking
setsSi for each training instance to keep track of the selected constraints which define the current
relaxation. Iterating through the training examples(xi ,yi), the algorithm proceeds by finding the
(potentially) “most violated” constraint forxi , involving some output valuêy. If the (appropriately
scaled) margin violation of this constraint exceeds the current value ofξi by more thanε, the dual
variable corresponding tôy is added to the working set. This variable selection process in the dual
program corresponds to a successive strengthening of the primal problem by a cutting plane that
cuts off the current primal solution from the feasible set. The chosen cutting plane corresponds to
the constraint that determines the lowest feasible value forξi . Once a constraint has been added,
the solution is re-computed with respect toS. Alternatively, we have also devised a scheme where
the optimization is restricted toSi only, and where optimization over the fullS is performed much
less frequently. This can be beneficial due to the block diagonal structure of the constraint matrix,
which implies that variablesα( jy) with j 6= i, y ∈ Sj can simply be “frozen” at their current values.
Notice that all variables not included in their respective working set are implicitly treated as 0. The
algorithm stops, if no constraint is violated by more thanε. With respect to the optimization in step
10, we would like to point out that in some applications the constraint selection instep 6 may be
more expensive than solving the relaxed QP. Hence it may be advantageous to solve the full relaxed
QP in every iteration, instead of just optimizing over a subspace of the dual variables.

The presented algorithm is implemented in the software packageSVMstruct, available on the web
athttp://svmlight.joachims.org. Note that the SVM optimization problems from iteration to
iteration differ only by a single constraint. We therefore restart the SVM optimizer from the current
solution, which greatly reduces the runtime.
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Algorithm 1 Algorithm for solving SVM0 and the loss re-scaling formulations SVM∗1 and SVM∗2 .

1: Input: (x1,y1), . . . ,(xn,yn), C, ε
2: Si ← /0 for all i = 1, . . . ,n
3: repeat
4: for i = 1, . . . ,n do

5: /* prepare cost function for optimization */
set up cost function

H(y)≡































1−〈δΨi(y),w〉 (SVM0 )

(1−〈δΨi(y),w〉)4(yi ,y) (SVM4s
1 )

4(yi ,y)−〈δΨi(y),w〉 (SVM4m
1 )

(1−〈δΨi(y),w〉)
√

4(yi ,y) (SVM4s
2 )

√

4(yi ,y)−〈δΨi(y),w〉 (SVM4m
2 )

wherew≡ ∑ j ∑y′∈Sj
α( jy′)δΨ j(y′).

6: /* find cutting plane */
computeŷ = argmaxy∈Y H(y)

7: /* determine value of current slack variable */
computeξi = max{0,maxy∈Si H(y)}

8: if H(ŷ) > ξi + ε then

9: /* add constraint to the working set */
Si ← Si ∪{ŷ}

10a: /* Variant (a): perform full optimization */
αS← optimize the dual of SVM0 , SVM∗1 or SVM∗2 overS, S= ∪iSi .

10b: /* Variant (b): perform subspace ascent */
αSi ← optimize the dual of SVM0 , SVM∗1 or SVM∗2 overSi

12: end if
13: end for
14: until noSi has changed during iteration

A convenient property of both variants of the cutting plane algorithm is that they have a very
general and well-defined interface independent of the choice ofΨ and4. To apply the algorithm,
it is sufficient to implement the feature mappingΨ(x,y) (either explicitly or via a joint kernel
function), the loss function4(yi ,y), as well as the maximization in step 6. All of those, in particular
the constraint/cut selection method, are treated as black boxes. While the modeling of Ψ(x,y)
and4(yi ,y) is typically straightforward, solving the maximization problem for constraint selection
typically requires exploiting the structure ofΨ for output spaces that can not be dealt with by
exhaustive search.
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In the slack re-scaling setting, it turns out that for a given example(xi ,yi) we need to identify
the maximum over

ŷ≡ argmax
y∈Y

{(1−〈w,δΨi(y)〉)4(yi ,y)} .

We will discuss several cases for how to solve this problem in Section 4. Typically, it can be
solved by an appropriate modification of the prediction problem in Equation (1), which recovers
f from F . For example, in the case of grammar learning with theF1 score as the loss function
via4(yi ,y) = (1−F1(yi ,y)), the maximum can be computed using a modified version of the CKY
algorithm. More generally, in cases where4(yi , ·) only takes on a finite number of values, a generic
strategy is a two stage approach, where one first computes the maximum overthosey for which the
loss is constant,4(yi ,y) = const, and then maximizes over the finite number of levels.

In the margin re-scaling setting, one needs to solve the maximization problem

ŷ≡ argmax
y∈Y

{4(yi ,y)−〈w,δΨi(y)〉} . (9)

In cases where the loss function has an additive decomposition that is compatible with the feature
map, one can fold the loss function contribution into the weight vector〈w′,δΨi(y)〉= 〈w,δΨi(y)〉−
4(yi ,y) for somew′. This means the class of cost functions defined byF(x, ·;w) andF(x, ·;w)−
4(y, ·) may actually be identical.

The algorithm for the zero-one loss is a special case of either algorithm. Weneed to identify the
highest scoringy that is incorrect,

ŷ≡ argmax
y 6=yi

{1−〈w,δΨi(y)〉} .

It is therefore sufficient to identify the best solutionŷ = argmaxy∈Y 〈w,Ψ(xi ,y)〉 as well as the
second best solutioñy = argmaxy∈Y \ŷ 〈w,Ψ(xi ,y)〉. The second best solution is necessary to detect
margin violations in cases wherêy = yi , but 〈w,δΨi(ỹ)〉 < 1. This means that for all problems
where we can solve the inference problem in Equation (1) for the top twoy, we can also apply our
learning algorithms with the zero-one loss. In the case of grammar learning, for example, we can
use any existing parser that returns the two highest scoring parse trees.

We will now proceed by analyzing the presented family of algorithms. In particular, we will
show correctness and sparse approximation properties, as well as bounds on the runtime complexity.

3.3 Correctness and Complexity of the Algorithm

What we would like to accomplish first is to obtain a lower bound on the achievable improvement of
the dual objective by selecting a single variableα(iŷ) and adding it to the dual problem (cf. step 10
in Algorithm 1). While this is relatively straightforward when using quadratic penalties, the SVM1
formulation introduces an additional complication in the form of upper boundson non-overlapping
subsets of variables, namely the set of variablesα(iy) in the current working set that correspond to
the same training instance. Hence, we may not be able to answer the above question by optimizing
overα(iy) alone, but rather have to deal with a larger optimization problem over a wholesubspace.
In order to derive useful bounds, it suffices to restrict attention to simpleone-dimensional families
of solutions that are defined by improving an existing solution along a specificdirectionη. Proving
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that one can make sufficient progress along a specific direction, clearlyimplies that one can make at
least that much progress by optimizing over a larger subspace that includes the directionη. A first
step towards executing this idea is the following lemma.

Lemma 10 Let J be a symmetric, positive semi-definite matrix, and define a concave objective inα

Θ(α) =−1
2

α′Jα+ 〈h,α〉 ,

which we assume to be bounded from above. Assume that a solutionαo and an optimization direc-
tion η is given such that〈∇Θ(αo),η〉 > 0. Then optimizingΘ starting fromαo along the chosen
directionη will increase the objective by

max
β>0
{Θ(αo +βη)}−Θ(αo) =

1
2
〈∇Θ(αo),η〉2

η′Jη
> 0.

Proof The difference obtained by a particularβ is given by

δΘ(β)≡ β
[

〈∇Θ(αo),η〉− β
2

η′Jη
]

,

as can be verified by elementary algebra. Solving forβ one arrives at

d
dβ

δΘ = 0 ⇐⇒ β∗ =
〈∇Θ(αo),η〉

η′Jη
.

Notice that this requiresη′Jη > 0. Obviously, the positive semi-definiteness ofJ guaranteesη′Jη≥
0 for anyη. Moreoverη′Jη = 0 together with〈∇Θ(αo),η〉 > 0 would imply thatlimβ→∞ Θ(αo +
βη) = ∞, which is in contradiction with the assumption thatΘ is bounded. Plugging the value for
β∗ back into the above expression forδΘ yields the claim.

Corollary 11 Under the same assumption as in Lemma 10 and for the special case of an optimiza-
tion directionη = er , the objective improves by

δΘ(β∗) =
1

2Jrr

(

∂Θ
∂αr

)2

> 0.

Proof Notice thatη = er implies〈∇Θ,η〉= ∂Θ
∂αr

andη′Jη = Jrr .

Corollary 12 Under the same assumptions as in Lemma 10 and enforcing the constraintβ≤D for
some D> 0, the objective improves by

max
0<β≤D

{Θ(αo +βη)}−Θ(αo) =







〈∇Θ(αo),η〉2
2η′Jη if 〈∇Θ(αo),η〉 ≤ Dη′Jη

D〈∇Θ(αo),η〉− D2

2 η′Jη otherwise
.
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Moreover, the improvement can be upper bounded by

max
0<β≤D

{Θ(αo +βη)}−Θ(αo)≥ 1
2

min

{

D,
〈∇Θ(αo),η〉

η′Jη

}

〈∇Θ(αo),η〉 .

Proof We distinguish two cases of eitherβ∗ ≤ D or β∗ > D. In the first case, we can simple apply
lemma 10 since the additional constraint is inactive and does not change thesolution. In the second
case, the concavity ofΘ implies thatβ = D achieves the maximum ofδΘ over the constrained range.
Plugging in this result forβ∗ into δΘ yields the second case in the claim.

Finally, the bound is obtained by exploiting that in the second case

β∗ > D ⇐⇒ D <
〈∇Θ(αo),η〉

η′Jη
.

Replacing one of the D factors in the D2 term of the second case with this bound yields an upper
bound. The first (exact) case and the bound in the second case can becompactly combined as shown
in the formula of the claim.

Corollary 13 Under the same assumption as in Corollary 12 and for the special case of asingle-
coordinate optimization directionη = er , the objective improves at least by

max
0<β≤D

Θ(αo +βer)−Θ(αo)≥ 1
2

min







D,
∂Θ
∂αr

(αo)

Jrr







∂Θ
∂αr

(αo)

Proof Notice thatη = er implies〈∇Θ,η〉= ∂Θ
∂αr

andη′Jη = Jrr .

We now apply the above lemma and corollaries to the four different SVM formulations, starting
with the somewhat simpler squared penalty case.

Proposition 14 (SVM4s
2 ) For SVM4s

2 step 10 in Algorithm 1 the improvementδΘ of the dual ob-
jective is lower bounded by

δΘ≥ 1
2

ε2

4iR2
i + n

C

, where 4i ≡max
y
{4(yi ,y)} and Ri ≡max

y
{‖δΨi(y)‖} .

Proof Using the notation in Algorithm 1 one can apply Corollary 11 with multi-index r= (iŷ),
h = 1, and J such that

J(iŷ)( jy) = 〈δΨi(ŷ),δΨ j(y)〉+ δ(i, j)n

C
√

4(yi , ŷ)
√

4(yi ,y)
.

Notice that the partial derivative ofΘ with respect toα(iŷ) is given by

∂Θ
∂α(iŷ)

(αo) = 1−∑
j,y

αo
( jy)J(iŷ)( jy) = 1−〈w∗,δΨi(ŷ)〉− ξ∗i

√

4(yi , ŷ)
,
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since the optimality equations for the primal variables yield the identities

w∗ = ∑
j,y

αo
( jy)δΨ j(y), and ξ∗i = ∑

y 6=yi

nαo
(iy)

C
√

4(yi ,y)
.

Now, applying the condition of step 10, namely
√

4(yi , ŷ)(1−〈w∗,δΨi(ŷ)〉) > ξ∗i + ε, leads to the
bound

∂Θ
∂α(iŷ)

(αo)≥ ε
√

4(yi , ŷ)
.

Finally, Jrr = ‖δΨi(ŷ)‖2 + n
C4(yi ,ŷ) and inserting this expression and the previous bound into the

expression from Corollary 11 yields

1
2Jrr

(

∂Θ
∂α(iŷ)

)2

≥ ε2

2
(

4(yi , ŷ)‖δΨi(ŷ)‖2 + n
C

) ≥ ε2

2
(

4iR2
i + n

C

) .

The claim follows by observing that jointly optimizing over a set of variables that includeαr can
only further increase the value of the dual objective.

Proposition 15 (SVM4m
2 ) For SVM4m

2 step 10 in Algorithm 1 the improvementδΘ of the dual
objective is lower bounded by

δΘ≥ 1
2

ε2

R2
i + n

C

, where Ri = max
y
‖δΨi(y)‖ .

Proof By re-definingδΨ̃i(y)≡ δΨi(y)√
4(yi ,y)

we are back to Proposition 14 with

max
y
{4(yi ,y)‖δΨ̃i(y)‖2}= max

y
{‖δΨi(y)‖2}= R2

i ,

since

〈w,δΨi(y)〉 ≥
√

4(yi ,y)−ξi ⇐⇒ 〈w,δΨ̃i(y)〉 ≥ 1− ξi
√

4(yi ,y)
.

Proposition 16 (SVM4s
1 ) For SVM4s

1 step 10 in Algorithm 1 the improvementδΘ of the dual ob-
jective is lower bounded by

δΘ≥min

{

Cε
2n

,
ε2

842
i R2

i

}

where 4i = max
y
{4(yi ,y)} and Ri = max

y
{‖δΨi(y)‖} .

Proof
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Case I:
If the working set does not contain an element(iy), then we can optimize overα(iŷ) under the
constraint thatα(iŷ) ≤4(yi , ŷ)C

n = D. Notice that

∂Θ
∂α(iŷ)

(αo) = 1−〈w∗,δΨi(ŷ)〉> ξ∗i + ε
4(yi , ŷ)

≥ ε
4(yi , ŷ)

,

where the first inequality follows from the pre-condition for selecting(iŷ) and the last one from
ξ∗i ≥ 0. Moreover, notice that J(iŷ)(iŷ) ≤ R2

i . Evoking Corollary 13 with the obvious identifications
yields

δΘ≥ 1
2

min

{

D,
1

Jrr

∂Θ
∂α(iŷ)

(αo)

}

∂Θ
∂α(iŷ)

(αo)

>
1
2

min

{4(yi , ŷ)C
n

,
ε

4(yi , ŷ)R2
i

}

ε
4(yi , ŷ)

= min

{

Cε
2n

,
ε2

2R2
i4(yi , ŷ)2

}

The second term can be further bounded to yield the claim.
Case II:
If there are already active constraints for instancexi in the current working set, i.e. Si 6= /0, then we
may need to reduce dual variablesα(iy) in order to get some slack for increasing the newly added

α(iŷ). We thus investigate search directionsη such thatη(iŷ) = 1, η(iy) = − α(iy)

4(yi ,ŷ)
n
C ≤ 0 for y ∈ Si ,

andη( jy′) = 0 in all other cases. For suchη, we guarantee thatαo +βη≥ 0 sinceβ≤ C
n4(yi , ŷ).

In finding a suitable direction to derive a good bound, we have two (possibly conflicting) goals.
First of all, we want the directional derivative to be positively bounded awayfrom zero. Notice that

〈∇Θ(αo),η〉= ∑
y

η(iy) (1−〈w∗,δΨi(y)〉) .

Furthermore, by the restrictions imposed onη, η(iy) < 0 implies that the respective constraint is
active and hence4(yi ,y)(1−〈w∗,δΨi(y)〉) = ξ∗i . Moreover the pre-condition of step 10 ensures
that4(yi , ŷ)(1−〈w∗,δΨi(ŷ)〉) = ξ∗i +δ whereδ≥ ε > 0. Hence

〈∇Θ(αo),η〉= ξ∗i
4(yi , ŷ)

(

1− n
C ∑

y

αo
(iy)

4(yi ,y)

)

+
δ

4(yi , ŷ)
≥ ε
4(yi , ŷ)

.

The second goal is to make sure the curvature along the chosen directionis not too large.

η′Jη = J(iŷ)(iŷ)−2 ∑
y 6=ŷ

αo
(iy)

4(yi , ŷ)

n
C

J(iŷ)(iy) + ∑
y 6=ŷ

∑
y′ 6=ŷ

αo
(iy)

4(yi , ŷ)

n
C

αo
(iy′)

4(yi , ŷ)

n
C

J(iy)(iy′)

≤ R2
i +2

nR2
i

C4(yi , ŷ) ∑
y 6=ŷ

αo
(iy) +

n2R2
i

C24(yi , ŷ)2 ∑
y 6=ŷ

∑
y′ 6=ŷ

αo
(iy)α

o
(iy′)

≤ R2
i +2

R2
i4i

4(yi , ŷ)
+

R2
i42

i

4(yi , ŷ)2 ≤
4R2

i42
i

4(yi , ŷ)2 .

1468



LARGE MARGIN METHODS FORSTRUCTURED AND INTERDEPENDENTOUTPUT VARIABLES

This follows from the fact that∑y 6=ŷ αo
(iy) ≤4i ∑y 6=ŷ

αo
(iy)

4(yi ,y) ≤
C4i

n . Evoking Corollary 12 yields

δΘ≥ 1
2

min

{

D,
〈∇Θ(αo),η〉

η′Jη

}

〈∇Θ(αo),η〉

≥ 1
2

min







4(yi , ŷ)C
n

,

ε
4(yi ,ŷ)

4R2
i 42

i

4(yi ,ŷ)2







ε
4(yi , ŷ)

= min

{

Cε
2n

,
ε2

8R2
i42

i

}

Proposition 17 (SVM4m
1 ) For SVM4m

1 step 10 in Algorithm 1 the improvementδΘ of the dual
objective is lower bounded by

δΘ≥ ε2

8R2
i

, where Ri = max
y
‖δΨi(y)‖ .

Proof By re-definingδΨ̃i(y)≡ δΨi(y)
4(yi ,y) we are back to Proposition 16 with

max
y
{4(yi ,y)2‖δΨ̃i(y)‖2}= max

y
{‖δΨi(y)‖2}= R2

i ,

since

〈w,δΨi(y)〉 ≥ 4(yi ,y)−ξi ⇐⇒ 〈w,δΨ̃i(y)〉 ≥ 1− ξi

4(yi ,y)
.

This leads to the following polynomial bound on the maximum size ofS.

Theorem 18 With R̄= maxi Ri , 4̄ = maxi4i and for a givenε > 0, Algorithm 1 terminates after
incrementally adding at most

max

{

2n4̄
ε

,
8C4̄3R̄2

ε2

}

, max

{

2n4̄
ε

,
8C4̄R̄2

ε2

}

,
C4̄2R̄2 +n4̄

ε2 and
C4̄R̄2 +n4̄

ε2

constraints to the working set S for the SVM4s
1 , SVM4m

1 , SVM4s
2 and SVM4m

2 respectively.
Proof With S= /0 the optimal value of the dual is0. In each iteration a constraint is added that
is violated by at leastε, provided such a constraint exists. After solving the S-relaxed QP in step
10, the objective will increase by at least the amounts suggested by Propositions 16, 17, 14 and 15
respectively. Hence after t constraints, the dual objective will be at least ttimes these increments.
The result follows from the fact that the dual objective is upper bounded by the minimum of the
primal, which in turn can be bounded by C̄4 and 1

2C4̄ for SVM∗1 and SVM∗2 respectively.
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Note that the number of constraints inS does not depend on|Y |. This is crucial, since|Y | is
exponential or infinite for many interesting problems. For problems where step 6 can be computed
in polynomial time, the overall algorithm has a runtime polynomial inn, R̄,4̄, 1/ε, since at least
one constraint will be added while cycling through alln instances and since step 10 is polynomial.
This shows that the algorithm considers only a small number of constraints, ifone allows an extraε
slack, and that the solution is correct up to an approximation that depends on the precision parameter
ε. The upper bound on the number of active constraints in such an approximate solution depends
on the chosen representation, more specifically, we need to upper boundthe difference vectors
‖Ψ(xi ,y)−Ψ(xi, ȳ)‖2 for arbitraryy, ȳ ∈ Y . In the following, we will thus make sure that suitable
upper bounds are available.

4. Specific Problems and Special Cases

In the sequel, we will discuss a number of interesting special cases of the general scenario outlined
in the previous section. To model each particular problem and to be able to run the algorithm and
bound its complexity, we need to examine the following three questions for eachcase:

• Modeling: How can we define suitable feature mapsΨ(x,y) for specific problems?

• Algorithms: How can we compute the required maximization overY for givenx?

• Sparseness: How can we bound‖Ψ(x,y)−Ψ(x,y′)‖?

4.1 Multiclass Classification

A special case of Equation (1) is winner-takes-all (WTA) multiclass classification, whereY =
{y1, . . . ,yK} andw = (v′1, . . . ,v

′
K)′ is a stack of vectors,vk being a weight vector associated with the

k-th classyk. The WTA rule is given by

f (x) = arg max
yk∈Y

F(x,y;w), F(x,yk;w) = 〈vk,Φ(x)〉 . (10)

HereΦ(x) ∈R
D denotes an arbitrary feature representation of the inputs, which in many cases may

be defined implicitly via a kernel function.

4.1.1 MODELING

The above decision rule can be equivalently represented by making use of a joint feature map as
follows. First of all, we define the canonical (binary) representation oflabelsy ∈ Y by unit vectors

Λc(y)≡ (δ(y1,y),δ(y2,y), . . . ,δ(yK ,y))′ ∈ {0,1}K , (11)

so that〈Λc(y),Λc(y′)〉 = δ(y,y′). It will turn out to be convenient to use direct tensor products⊗
to combine feature maps overX andY . In general, we thus define the⊗-operation in the following
manner

⊗ : R
D×R

K → R
D·K , (a⊗b)i+( j−1)D ≡ ai ·b j .

Now we can define a joint feature map for the multiclass problem by

Ψ(x,y)≡Φ(x)⊗Λc(y) . (12)
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It is is easy to show that this results in an equivalent formulation of the multiclassWTA as expressed
in the following proposition.

Proposition 19 F(x,y;w) = 〈w,Ψ(x,y)〉, where F is defined in Equation(10) and Ψ in Equa-
tion (12).

Proof For all yk∈Y : 〈w,Ψ(x,yk)〉= ∑D·K
r=1 wrψr(x,yk)= ∑K

j=1 ∑D
d=1v jdφd(x)δ( j,k)= ∑D

d=1vkdφd(x)=
〈vk,Φ(x)〉.

4.1.2 ALGORITHMS

It is usually assumed that the number of classesK in simple multiclass problems is small enough,
so that an exhaustive search can be performed to maximize any objective overY . Similarly, we can
find the second besty ∈ Y .

4.1.3 SPARSENESS

In order to bound the norm of the difference feature vectors, we prove the following simple result.

Proposition 20 Define Ri ≡ ‖Φ(xi)‖. Then‖Ψ(xi ,y)−Ψ(xi ,y′)‖2≤ 2R2
i .

Proof

‖Ψ(xi ,y)−Ψ(xi ,y′)‖2≤ ‖Ψ(xi ,y)‖2 +‖Ψ(xi ,y′)‖2 = 2‖Φ(xi)‖2,

where the first step follows from the Cauchy-Schwarz inequality and the second step exploits the
sparseness ofΛc.

4.2 Multiclass Classification with Output Features

The first generalization we propose is to make use of more interesting outputfeaturesΛ than the
canonical representation in Equation (11). Apparently, we could use thesame approach as in Equa-
tion (12) to define a joint feature function, but use a more general form for Λ.

4.2.1 MODELING

We first show that for any joint feature mapΨ constructed via the direct tensor product⊗ the
following relation holds:

Proposition 21 For Ψ = Φ⊗Λ the inner product can be written as

〈

Ψ(x,y),Ψ(x′,y′)
〉

=
〈

Φ(x),Φ(x′)
〉

·
〈

Λ(y),Λ(y′)
〉

.
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Proof By simple algebra

〈

Ψ(x,y),Ψ(x′,y′)
〉

=
D·K
∑
r=1

D·K
∑
s=1

ψr(x,y)ψs(x′,y′) =
D

∑
d=1

K

∑
k=1

D

∑
d′=1

K

∑
k′=1

φd(x)λk(y)φd′(x′)λk′(y′)

=
D

∑
d=1

D

∑
d′=1

φd(x)φd′(x′)
K

∑
k=1

K

∑
k′=1

λk(y)λk′(y′) =
〈

Φ(x),Φ(x′)
〉

·
〈

Λ(y),Λ(y′)
〉

.

This implies that for feature mapsΦ that are implicitly defined via kernel functionsK, K(x,x′)≡
〈Φ(x),Φ(x′)〉, one can define a joint kernel function as follows:

J((x,y),(x′,y′)) =
〈

Ψ(x,y),Ψ(x′,y′)
〉

=
〈

Λ(y),Λ(y′)
〉

K(x,x′) .

Of course, nothing prevents us from expressing the inner product in output space via yet another
kernel functionL(y,y′) = 〈Λ(y),Λ(y′)〉. Notice that the kernelL is simply the identity in the stan-
dard multiclass case. How can this kernel be chosen in concrete cases? It basically may encode any
type of prior knowledge one might have about the similarity between classes.It is illuminating to
note the following proposition.

Proposition 22 Define Ψ(x,y) = Φ(x)⊗Λ(y) with Λ(y) ∈ R
R; then the discriminant function

F(x,y;w) can be written as

F(x,y;w) =
R

∑
r=1

λr(y)〈vr ,Φ(x)〉,

wherew = (v′1, . . . ,v
′
R)′ is the stack of vectorsvr ∈ R

D, one vector for each basis function ofΛ.

Proof

R

∑
r=1

λr(y)
D

∑
d=1

vrdφd(x) =
R

∑
r=1

D

∑
d=1

wD·(d−1)+rλr(y)φd(x) = 〈w,Φ(x)⊗Λ(y)〉

= 〈w,Ψ(x,y)〉= F(x,y;w).

We can give this a simple interpretation: For each output featureλr a corresponding weight vectorvr

is introduced. The discriminant function can then be represented as a weighted sum of contributions
coming from the different features. In particular, in the case of binary featuresΛ : Y → {0,1}R,
this will simply be a sum over all contributions〈vr ,Φ(x)〉 of features that are active for the classy,
i.e. for whichλr(y) = 1.

It is also important to note that the orthogonal representation provides a maximally large hypoth-
esis class and that nothing can be gained in terms of representational power by includingadditional
features.
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Corollary 23 Assume a mappingΛ(y) = (Λ̃(y)′,Λc(y)′)′, Λ̃(y) ∈ R
R and defineΨ̃(x,y) = Φ(x)⊗

Λ(y) andΨ(x,y) = Φ(x)⊗Λc(y). Now, for everỹw there isw such that
〈

w̃,Ψ̃(x,y)
〉

= 〈w,Ψ(x,y)〉
and vice versa.

Proof Applying Proposition 22 twice it follows that

〈

w̃,Ψ̃(x,y)
〉

=
R+K

∑
r=1

λr(y)〈ṽr ,Φ(x)〉=
〈

R+K

∑
r=1

λr(y)ṽr ,Φ(x)

〉

= 〈vy,Φ(x)〉= 〈w,Ψ(x,y)〉 .

where we have definedvy = ∑R+K
r=1 λr(y)ṽr . The reverse direction is trivial and requires setting

ṽr = 0 for r = 1, . . . ,R.

In the light of this corollary, we would like to emphasize that the rationale behindthe use of class
features is not to increase the representational power of the hypothesisspace, but to re-parameterize
(or even constrain) the hypothesis space such that a more suitable representation forY is produced.
We would like togeneralize across classesas we want to generalize across input patterns in the stan-
dard formulation of classification problems. Obviously, orthogonal representations (corresponding
to diagonal kernels) will provide no generalization whatsoever across different classesy. The choice
of a good output feature mapΛ is thus expected to provide an inductive bias, namely that learning
can occur across a set of classes sharing a common property.

Let us discuss some special cases of interest.

Classification with Taxonomies Assume that class labelsy are arranged in a taxonomy. We will
define a taxonomy as a set of elementsZ ⊇Y equipped with a partial order≺. The partially ordered
set(Z,≺) might, for example, represent a tree or a lattice. Now we can define binary features for
classes as follows: Associate one featureλz with every element inZ according to

λz(y) =

{

1 if y≺ z or y = z

0 otherwise.

This includes multiclass classification as a special case of an unordered set Z = Y . In general,
however, the featuresλz will be “shared” by all classes belowz, e.g. all nodesy in the subtree
rooted atz in the case of a tree. One may also introduce a relative weightβz for every feature
and define aβ-weighted (instead of binary) output feature mapΛ̃ asλ̃z = βzλz. If we reflect upon
the implication of this definition in the light of Proposition 22, one observes that this effectively
introduces a weight vectorvz for every element ofZ, i.e. for every node in the hierarchy.

Learning with Textual Class Descriptions As a second motivating example, we consider prob-
lems where classes are characterized by short glosses, blurbs or other textual descriptions. We
would like to exploit the fact that classes sharing some descriptors are likelyto be similar, in order
to specify a suitable inductive bias. This can be achieved, for example, byassociating a featureλ
with every keyword used to describe classes, in addition to the class identity.Hence standard vector
space models like term-frequency of idf representations can be applied to model classes and the
inner product〈Λ(y),Λ(y′)〉 then defines a similarity measure between classes corresponding to the
standard cosine-measure used in information retrieval.
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Learning with Class Similarities The above example can obviously be generalized to any situa-
tion, where we have access to a positive definite similarity function for pairs of classes. To come up
with suitable similarity functions is part of the domain model—very much like determininga good
representation of the inputs—and we assume here that it is given.

4.2.2 ALGORITHMS

As in the multiclass case, we assume that the number of classes is small enough toperform an
exhaustive search.

4.2.3 SPARSENESS

Proposition 20 can be generalized in the following way:

Proposition 24 Define Ri ≡‖Φ(xi)‖ and S≡maxy∈Y ‖Λ(y)‖ then‖Ψ(xi ,y)−Ψ(xi ,y′)‖2≤ 2R2
i S2

for all y,y′ ∈ Y .

Proof 〈Ψ(xi ,y),Ψ(xi,y)〉 = ‖Φ(xi)‖2 · ‖Λ(y)‖2 ≤ R2
i S2. In the last step, we have used Proposi-

tion 21.

4.3 Label Sequence Learning

The next problem we would like to formulate in the joint feature map framework isthe problem of
label sequence learning, or sequence segmentation/annotation. Here, the goal is to predict a label
sequencey = (y1, . . . ,yT) for a given observation sequencex = (x1, . . . ,xT). In order to simplify
the presentation, let us assume all sequences are of the same lengthT. Let us denote byΣ the
set of possible labels for each individual variableyt , i.e.Y = ΣT . Hence each sequence of labels is
considered to be a class of its own, resulting in a multiclass classification problem with |Σ|T different
classes. To model label sequence learning in this manner would of coursenot be very useful, if one
were to apply standard multiclass classification methods. However, this can beovercome by an
appropriate definition of the discriminant function.

4.3.1 MODELING

Inspired by hidden Markov model (HMM) type of interactions, we propose to defineΨ to include
interactions between input features and labels via multiple copies of the input features as well as
features that model interactions between nearby label variables. It is perhaps most intuitive to start
from the discriminant function

F(x,y;w) =
T

∑
t=1

∑
σ∈Σ
〈w̄σ,Φ(xt)〉δ(yt ,σ)+η

T−1

∑
t=1

∑
σ∈Σ

∑̄
σ∈Σ

ŵσ,σ̄δ(yt ,σ)δ(yt+1, σ̄)

=

〈

w̄,
T

∑
t=1

Φ(xt)⊗Λc(yt)

〉

+η

〈

ŵ,
T−1

∑
t=1

Λc(yt)⊗Λc(yt+1)

〉

. (13)

Herew = (w̄′, ŵ′)′, Λc denotes the orthogonal representation of labels overΣ, andη≥ 0 is a scaling
factor which balances the two types of contributions. It is straightforwardto read off the joint feature
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map implicit in the definition of the HMM discriminant from Equation (13),

Ψ(x,y) =

(

∑T
t=1 Φ(xt)⊗Λc(yt)

η∑T−1
t=1 Λc(yt)⊗Λc(yt+1)

)

.

Notice that similar to the multiclass case, we can apply Proposition 21 in the case ofan implicit
representation ofΦ via a kernel functionK and the inner product between labeled sequences can
thus be written as

〈Ψ((x,y)),Ψ(x̄, ȳ)〉=
T

∑
s,t=1

δ(yt , ȳs)K(xt , x̄s)+η2
T−1

∑
s,t=1

δ(yt , ȳs)δ(yt+1, ȳs+1) . (14)

A larger family of discriminant functions can be obtained by using more powerful feature functions
Ψ. We would like to mention three ways of extending the previous HMM discriminant.First of
all, one can extract features not just fromxt , but from a window aroundxt , e.g. replacingΦ(xt)
with Φ(xt−r , . . . ,xt , . . . ,xt+r). Since the same input patternxt now occurs in multiple terms, this has
been called the use ofoverlappingfeatures (Lafferty et al., 2001) in the context of label sequence
learning. Secondly, it is also straightforward to include higher order label-label interactions beyond
pairwise interactions by including higher order tensor terms, for instance,label triplets∑t Λc(yt)⊗
Λc(yt+1)⊗Λc(yt+2), etc. Thirdly, one can also combine higher ordery features with input features,
for example, by including terms of the type∑t Φ(xt)⊗Λc(yt)⊗Λc(yt+1).

4.3.2 ALGORITHMS

The maximization of〈w,Ψ(xi ,y)〉 over y can be carried out by dynamic programming, since the
cost contributions are additive over sites and contain only linear and nearest neighbor quadratic
contributions. In particular, in order to find the best label sequenceŷ 6= yi , one can perform Viterbi
decoding (Forney Jr., 1973; Schwarz and Chow, 1990), which can also determine the second best
sequence for the zero-one loss (2-best Viterbi decoding). Viterbi decoding can also be used with
other loss functions by computing the maximization for all possible values of the loss function.

4.3.3 SPARSENESS

Proposition 25 Define Ri ≡maxt ‖Φ(xt
i )‖; then‖Ψ(xi ,y)−Ψ(xi ,y′)‖2≤ 2T2(R2

i +η2).

Proof Notice that‖Ψ(xi ,y)‖2 = ‖∑t Φ(xt
i)⊗Λc(yt)‖2 + η2‖∑t Λc(yt)⊗Λc(yt+1)‖2. The first

squared norm can be upper bounded by

‖∑
t

Φ(xt
i)⊗Λc(yt)‖2 = ∑

s
∑
t

〈

Φ(xs
i ),Φ(xt

i)
〉

δ(ys,yt)≤ T2R2
i

and the second one byη2T2, which yields the claim.

4.4 Sequence Alignment

Next we show how to apply the proposed algorithm to the problem of learningto align sequences
x ∈ Σ∗, whereΣ∗ is the set of all strings over some finite alphabetΣ. For a given pair of sequences
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x ∈ Σ∗ andy ∈ Σ∗, alignment methods like the Smith-Waterman algorithm select the sequence of
operations (e.g. insertion, substitution) that transformsx into y and that maximizes a linear objective
function

â(x,y) = argmax
a∈A

〈w,Ψ(x,y,a)〉

that is parameterized by the operation scoresw. Ψ(x,y,a) is the histogram of alignment operations.
The value of〈w,Ψ(x,y, â(x,y))〉 can be used as a measure of similarity betweenx andy. It is the
score of the highest scoring sequence of operations that transformsx into y. Such alignment models
are used, for example, to measure the similarity of two protein sequences.

4.4.1 MODELING

In order to learn the score vectorw we use training data of the following type. For each native
sequencexi there is a most similar homologous sequenceyi along with the optimal alignmentai .
In addition we are given a set of decoy sequencesyt

i , t = 1, . . . ,k with unknown alignments. Note
that this data is more restrictive than what Ristad and Yianilos (1997) consider in their generative
modeling approach. The goal is to learn a discriminant functionf that recognizes the homologous
sequence among the decoys. In our approach, this corresponds to finding a weight vectorw so that
homologous sequences align to their native sequence with high score, andthat the alignment scores
for the decoy sequences are lower. WithYi = {yi ,y1

i , ...,y
k
i } as the output space for the i-th example,

we seek aw so that〈w,Ψ(xi ,yi ,ai)〉 exceeds〈w,Ψ(xi ,yt
i ,a)〉 for all t anda. This implies a zero-one

loss and hypotheses of the form

f (xi) = argmax
y∈Yi

max
a
〈w,Ψ(x,y,a)〉 . (15)

The design of the feature mapΨ depends on the set of operations used in the sequence alignment
algorithm.

4.4.2 ALGORITHMS

In order to find the optimal alignment between a given native sequencex and a homologous/decoy
sequencey as the solution of

max
a
〈w,Ψ(x,y,a)〉 , (16)

we can use dynamic programming as e.g. in the Smith-Waterman algorithm. To solve the argmax
in Equation (15), we assume that the numberk of decoy sequences is small enough, so that we can
select among the scores computed in Equation (16) via exhaustive search.

4.4.3 SPARSENESS

If we select insertion, deletion, and substitution as our possible operations, each (non-redundant)
operation reads at least one character in eitherx or y. If the maximum sequence length isN, then
theL1-norm ofΨ(x,y,a) is at most 2N and theL2-norm ofΨ(x,y,a)−Ψ(x,y′,a′) is at most 2

√
2N.
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4.5 Weighted Context-Free Grammars

In natural language parsing, the task is to predict a labeled treey based on a stringx = (x1, ...,xk)
of terminal symbols. For this problem, our approach extends the approaches of Collins (2000) and
Collins and Duffy (2002b) to an efficient maximum-margin algorithm with general loss functions.
We assume that each node in the tree corresponds to the application of a context-free grammar rule.
The leaves of the tree are the symbols inx, while interior nodes correspond to non-terminal symbols
from a given alphabetN . For simplicity, we assume that the trees are in Chomsky normal form.
This means that each internal node has exactly two children. An exception are pre-terminal nodes
(non-leaf nodes that have a terminal symbol as child) which have exactly one child.

4.5.1 MODELING

We consider weighted context-free grammars to model the dependency betweenx andy. Grammar
rules are of the formnl [Ci →Cj ,Ck] or nl [Ci → xt ], whereCi ,Cj ,Ck ∈N are non-terminal symbols,
andxt ∈ T is a terminal symbol. Each such rule is parameterized by an individual weightwl . A
particular kind of weighted context-free grammar are probabilistic context-free grammars (PCFGs),
where this weightwl is the log-probability of expanding nodeHi with rule nl . In PCFGs, the indi-
vidual node probabilities are assumed to be independent, so that the probability P(x,y) of sequence
x and treey is the product of the node probabilities in the tree. The most likely parse tree toyield x
from a designated start symbol is the predicted labelh(x). This leads to the following maximization
problem, where we userules(y) to denote the multi-set of nodes iny,

h(x) = argmax
y∈Y

P(y|x) = argmax
y∈Y

{

∑
nl∈rules(y)

wl

}

.

More generally, weighted context-free grammars can be used in our framework as follows.Ψ(x,y)
contains one featurefi jk for each node of typeni jk [Ci →Cj ,Ck] and one featurefit for each node
of typenit [Ci → xt ]. As illustrated in Figure 1, the number of times a particular rule occurs in the
tree is the value of the feature. The weight vectorw contains the corresponding weights so that
〈w,Ψ(x,y)〉= ∑nl∈rules(y) wl .

Note that our framework also allows more complexΨ(x,y), making it more flexible than
PCFGs. In particular, each node weight can be a (kernelized) linear function of the full x and
the span of the subtree.

4.5.2 ALGORITHMS

The solution of argmaxy∈Y 〈w,Ψ(x,y)〉 for a givenx can be determined efficiently using a CKY-
Parser (see Manning and Schuetze, 1999), which can also return the second best parse for learn-
ing with the zero-one loss. To implement other loss functions, like4(yi ,y) = (1−F1(yi ,y)), the
CKY algorithm can be extended to compute both argmaxy∈Y (1−〈w,δΨi(y)〉)4(yi ,y) as well as
argmaxy∈Y (4(yi ,y)−〈w,δΨi(y)〉) by stratifying the maximization over all values of4(yi ,y) as
described in Joachims (2005) for the case of multivariate classification.
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flt 0/1 tax 0/1 flt 4 tax4
4 training instances per class
acc 28.32 28.32 27.47 29.74 +5.01 %
4-loss 1.36 1.32 1.30 1.21 +12.40 %
2 training instances per class
acc 20.20 20.46 20.20 21.73 +7.57 %
4-loss 1.54 1.51 1.39 1.33 +13.67 %

Table 1: Results on the WIPO-alpha corpus, section D with 160 groups using 3-fold and 5-fold
cross validation, respectively. ‘flt’ is a standard (flat) SVM multiclass model,‘tax’ the
hierarchical architecture. ‘0/1’ denotes training based on the classification loss, ‘4’ refers
to training based on the tree loss.

4.5.3 SPARSENESS

Since the trees branch for each internal node, a tree over a sequencex of lengthN hasN−1 internal
nodes. Furthermore, it hasN pre-terminal nodes. This means that theL1-norm ofΨ(x,y) is 2N−1
and that theL2-norm ofΨ(x,y)−Ψ(x,y′) is at most

√

4N2 +4(N−1)2 < 2
√

2N.

5. Experimental Results

To demonstrate the effectiveness and versatility of our approach, we applied it to the problems of
taxonomic text classification (see also Cai and Hofmann, 2004), named entityrecognition, sequence
alignment, and natural language parsing.

5.1 Classification with Taxonomies

We have performed experiments using a document collection released by theWorld Intellectual
Property Organization (WIPO), which uses the International Patent Classification (IPC) scheme. We
have restricted ourselves to one of the 8 sections, namely section D, consisting of 1,710 documents
in the WIPO-alpha collection. For our experiments, we have indexed the title and claim tags. We
have furthermore sub-sampled the training data to investigate the effect of the training set size.
Document parsing, tokenization and term normalization have been performed with the MindServer
retrieval engine.2 As a suitable loss function4, we have used a tree loss function which defines
the loss between two classesy andy′ as the height of the first common ancestor ofy andy′ in
the taxonomy. The results are summarized in Table 1 and show that the proposed hierarchical
SVM learning architecture improves performance over the standard multiclassSVM in terms of
classification accuracy as well as in terms of the tree loss.

5.2 Label Sequence Learning

We study our algorithm for label sequence learning on a named entity recognition (NER) problem.
More specifically, we consider a sub-corpus consisting of 300 sentences from the Spanish news
wire article corpus which was provided for the special session of CoNLL2002 devoted to NER.

2. This software is available athttp://www.recommind.com.
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Method HMM CRF PerceptronSVM
Error 9.36 5.17 5.94 5.08

Table 2: Results of various algorithms on the named entity recognition task.

Method Train Err Test Err Const Avg Loss
SVM2 0.2±0.1 5.1±0.6 2824±106 1.02±0.01
SVM4s

2 0.4±0.4 5.1±0.8 2626±225 1.10±0.08
SVM4m

2 0.3±0.2 5.1±0.7 2628±119 1.17±0.12

Table 3: Results for various SVM formulations on the named entity recognition task (ε = 0.01,
C = 1).

The label set in this corpus consists of non-name and the beginning and continuation of person
names, organizations, locations and miscellaneous names, resulting in a total of |Σ| = 9 different
labels. In the setup followed in Altun et al. (2003), the joint feature mapΨ(x,y) is the histogram
of state transition plus a set of features describing the emissions. An adaptedversion of the Viterbi
algorithm is used to solve theargmax in line 6. For both perceptron and SVM a second degree
polynomial kernel was used.

The results given in Table 2 for the zero-one loss, compare the generative HMM with condi-
tional random fields (CRF) (Lafferty et al., 2001), Collins’ perceptronand the SVM algorithm. All
discriminative learning methods substantially outperform the standard HMM. In addition, the SVM
performs slightly better than the perceptron and CRFs, demonstrating the benefit of a large margin
approach. Table 3 shows that all SVM formulations perform comparably,attributed to the fact the
vast majority of the support label sequences end up having Hamming distance 1 to the correct label
sequence. Notice that for 0-1 loss functions all three SVM formulations are equivalent.

5.3 Sequence Alignment

To analyze the behavior of the algorithm for sequence alignment, we constructed a synthetic dataset
according to the following sequence and local alignment model. The native sequence and the decoys
are generated by drawing randomly from a 20 letter alphabetΣ = {1, ..,20} so that letterc∈ Σ has
probabilityc/210. Each sequence has length 50, and there are 10 decoys per native sequence. To
generate the homologous sequence, we generate an alignment string of length 30 consisting of 4
characters “match”, “substitute”, “insert” , “delete”. For simplicity of illustration, substitutions
are alwaysc→ (c mod 20)+1. In the following experiments, matches occur with probability 0.2,
substitutions with 0.4, insertion with 0.2, deletion with 0.2. The homologous sequence is created
by applying the alignment string to a randomly selected substring of the native.The shortening of
the sequences through insertions and deletions is padded by additional random characters.

We model this problem using local sequence alignment with the Smith-Waterman algorithm.
Table 4 shows the test error rates (i.e. the percentage of times a decoy is selected instead of the
homologous sequence) depending on the number of training examples. Theresults are averaged
over 10 train/test samples. The model contains 400 parameters in the substitution matrix Π and a
costδ for “insert/delete”. We train this model using the SVM2 and compare against a generative
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Train Error Test Error
n GenMod SVM2 GenMod SVM2

1 20.0±13.3 0.0±0.0 74.3±2.7 47.0±4.6
2 20.0±8.2 0.0±0.0 54.5±3.3 34.3±4.3
4 10.0±5.5 2.0±2.0 28.0±2.3 14.4±1.4

10 2.0±1.3 0.0±0.0 10.2±0.7 7.1±1.6
20 2.5±0.8 1.0±0.7 3.4±0.7 5.2±0.5
40 2.0±1.0 1.0±0.4 2.3±0.5 3.0±0.3
80 2.8±0.5 2.0±0.5 1.9±0.4 2.8±0.6

Table 4: Error rates and number of constraints|S| depending on the number of training examples
(ε = 0.1,C = 0.01).
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Figure 2: Number of constraints added toSdepending on the number of training examples (middle)
and the value ofε (right). If not stated otherwise,ε = 0.1,C = 0.01, andn = 20.

sequence alignment model, where the substitution matrix is computed asΠi j = log
(

P(xi ,zj )
P(xi)P(zj )

)

(see

e.g. Durbin et al., 1998) using Laplace estimates. For the generative model,we report the results
for δ =−0.2, which performs best on the test set. Despite this unfair advantage, the SVM performs
better for low training set sizes. For larger training sets, both methods perform similarly, with a
small preference for the generative model. However, an advantage ofthe SVM approach is that it is
straightforward to train gap penalties.

Figure 2 shows the number of constraints that are added toS before convergence. The graph
on the left-hand side shows the scaling with the number of training examples. Aspredicted by
Theorem 18, the number of constraints is low. It appears to grow sub-linearly with the number of
examples. The graph on the right-hand side shows how the number of constraints in the finalS
changes with log(ε). The observed scaling appears to be better than suggested by the upperbound
in Theorem 18. A good value forε is 0.1. We observed that larger values lead to worse prediction
accuracy, while smaller values decrease efficiency while not providing further benefit.
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Train Test Training Efficiency
Method Acc Prec Rec F1 Acc Prec Rec F1 CPU-h %SVM Iter Const
PCFG 61.4 92.4 88.5 90.4 55.2 86.8 85.2 86.0 0 N/A N/A N/A
SVM2 66.3 92.8 91.2 92.0 58.9 85.3 87.2 86.2 1.2 81.6 17 7494

SVM4s
2 62.2 93.9 90.4 92.1 58.9 88.9 88.1 88.5 3.4 10.5 12 8043

SVM4m
2 63.5 93.9 90.8 92.3 58.3 88.7 88.1 88.4 3.5 18.0 16 7117

Table 5: Results for learning a weighted context-free grammar on the Penn Treebank.

5.4 Weighted Context-Free Grammars

We test the feasibility of our approach for learning a weighted context-free grammar (see Figure 1)
on a subset of the Penn Treebank Wall Street Journal corpus. We consider the 4098 sentences of
length at most 10 from sections F2-21 as the training set, and the 163 sentences of length at most 10
from F22 as the test set. Following the setup in Johnson (1998), we start based on the part-of-speech
tags and learn a weighted grammar consisting of all rules that occur in the training data. To solve the
argmaxin line 6 of the algorithm, we use a modified version of the CKY parser of Mark Johnson.3

The results are given in Table 5. They show micro-averaged precision,recall, andF1 for the
training and the test set. The first line shows the performance of the generative PCFG model using
the maximum likelihood estimate (MLE) as computed by Johnson’s implementation. Thesecond
line show the SVM2 with zero-one loss, while the following lines give the results for theF1-loss
4(yi ,y) = (1−F1(yi ,y)) using SVM4s

2 and SVM4m
2 . All results are forC= 1 andε = 0.01. All val-

ues ofC between 10−1 to 102 gave comparable prediction performance. While the zero-one loss—
which is also implicitly used in Perceptrons (Collins and Duffy, 2002a; Collins,2002)—achieves
better accuracy (i.e. predicting the complete tree correctly), theF1-score is only marginally better
compared to the PCFG model. However, optimizing the SVM for theF1-loss gives substantially
betterF1-scores, outperforming the PCFG substantially. The difference is significant according to a
McNemar test on theF1-scores. We conjecture that we can achieve further gains by incorporating
more complex features into the grammar, which would be impossible or at best awkward to use in
a generative PCFG model. Note that our approach can handle arbitrary models (e.g. with kernels
and overlapping features) for which theargmaxin line 6 can be computed. Experiments with such
complex features were independently conducted by Taskar et al. (2004b) based on the algorithm
in Taskar et al. (2004a). While their algorithm cannot optimize F1-score asthe training loss, they
report substantial gains from the use of complex features.

In terms of training time, Table 5 shows that the total number of constraints added to the working
set is small. It is roughly twice the number of training examples in all cases. Whilethe training is
faster for the zero-one loss, the time for solving the QPs remains roughly comparable. The re-
scaling formulations lose time mostly on theargmaxin line 6 of the algorithm. This might be sped
up, since we were using a rather naive algorithm in the experiments.

6. Conclusions

We presented a maximum-margin approach to learning functional dependencies for complex output
spaces. In particular, we considered cases where the prediction is a structured object or where
the prediction consists of multiple dependent variables. The key idea is to model the problem as

3. This software is available athttp://www.cog.brown.edu/∼mj/Software.htm.
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a (kernelized) linear discriminant function over a joint feature space of inputs and outputs. We
demonstrated that our approach is very general, covering problems from natural language parsing
and label sequence learning to multilabel classification and classification with output features.

While the resulting learning problem can be exponential in size, we presented an algorithm for
which we prove polynomial convergence for a large class of problems. We also evaluated the al-
gorithm empirically on a broad range of applications. The experiments show that the algorithm is
feasible in practice and that it produces promising results in comparison to conventional genera-
tive models. A key advantage of the algorithm is the flexibility to include different loss functions,
making it possible to directly optimize the desired performance criterion. Furthermore, the ability
to include kernels opens the opportunity to learn more complex dependencies compared to conven-
tional, mostly linear models.
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Abstract
This work deals with a method for building a reproducing kernel Hilbert space (RKHS) from a
Hilbert space with frame elements having special properties. Conditions on existence and a method
of construction are given. Then, these RKHS are used within the framework of regularization
theory for function approximation. Implications on semiparametric estimation are discussed and a
multiscale scheme of regularization is also proposed. Results on toy and real-world approximation
problems illustrate the effectiveness of such methods.
Keywords: regularization, kernel, frames, wavelets

1. Introduction

A reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions with special prop-
erties (Aronszajn, 1950). It plays an important role in approximation and regularization theory as
it allows writing in a simple way the solution of a learning from empirical data problem (Wahba,
1990, 2000). Since the development of support vector machines (SVMs) (Vapnik, 1995; Vapnik
et al., 1997; Burges, 1998; Vapnik, 1998) as a machine learning for data classification and func-
tional estimation, there is a growing interest around reproducing kernel Hilbert spaces. In fact,
for nonlinear classification or approximation, SVMs map the input space into ahigh dimensional
feature space by means of a nonlinear transformationΦ (Boser et al., 1992). Usually in SVMs,
the mapping function is related to an integral operator kernelK(x,y) which corresponds to the dot
product of the mapped data:

K(x,y) = 〈Φ(x),Φ(y)〉
wherex andy belong to the input space.

In regularization theory (Tikhonov and Arsénin, 1977; Groetsch, 1993; Morosov, 1984), the ill-
conditioned estimation from data problem is transformed into a well-conditioned problem by means
of a stabilizer, which is a functional with specific properties.

For both SVMs and regularization theory, one can consider special cases of kernel and stabilizer:
the kernel and the norm associated with an RKHS (Girosi, 1998; Smola et al.,1998; Evgeniou et al.,
2000). This justifies the appeal of RKHS as it allows the development of a general framework that
includes several approximation schemes.

One of the most important issues in a learning problem is the choice of the data representation.
For instance, in SVMs this corresponds to the selection of the nonlinear mapping Φ. It is a key

c©2005 Alain Rakotomamonjy and Stéphane Canu.
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problem since the mapping has a direct influence on the kernel and thus, ithas an influence on
the solution of the approximation or classification problem. In practical cases, the choice of an
appropriate data representation is as important as the choice of the learningmachine. In fact, prior
information on a specific problem can be used for choosing an efficient input representation, or
for choosing a good hypothesis space that leads to enhanced performance of the learning machine
(Scholkopf et al., 1998; Jaakkola and Haussler, 1999; Niyogi et al., 1998).

The purpose of this paper is to present a method for constructing an RKHSand its associated
kernel by means of frame theory (Duffin and Schaeffer, 1952; Daubechies, 1992). A frame of a
Hilbert space spans any vector of the space by linear combination of the frame elements. But unlike
a basis, a frame is not necessarily linear independent although it achieves stable representation.
Since a frame is a more general way to represent elements of Hilbert space, it allows flexibility in
the representation of any vector of the space. By giving conditions for constructing arbitrary RKHS
from frame elements, our goal is to widen the choice of kernel so that in future applications, one
can adapt its RKHS to prior information available concerning a problem at hand.

The paper is organized as follows: in Section 2, we recall the problem of estimating function
from data and the way of solving it owing to regularization theory. Section 3 deals with frame.
After a short introduction about frame theory, we give conditions for a Hilbert space described by
a frame to be an RKHS and then derive the corresponding kernel. In Section 4, a practical way for
building RKHS is given. Section 5 discusses implication of these results on regularization technique
and proposes an algorithm for multiscale approximation. Section 6 presents estimation results on
numerical experiments on toy and real-world problems while Section 7 concludes the paper and
contains remarks and other issues about this work.

2. Regularized Approximation

As argued by Girosi et al. (1995), learning from data can be viewed asa multivariate function
approximation from sparse data. Supposing that one has a set of data{(xi ,yi),xi ∈ R

d,yi ∈ R, i =
1. . . `} provided by the random sampling of a noisy functionf , the goal is to recover the unknown
function f , from the knowledge of the data set. It is well-known that such a problem isill-posed as
there exists an infinity of functions that pass perfectly through the data. One way to transform this
problem into a well-posed one is to assume that the functionf presents some smoothness properties
and hence, the problem becomes a variational problem of finding the function f ∗ that minimizes the
functional (Tikhonov and Arśenin, 1977):

H[ f ] =
1
`

`

∑
i=1

C(yi , f (xi))+λΩ[ f ] (1)

whereλ is a positive number,C a cost function which determines how differences betweenf (xi) and
yi should be penalized andΩ[ f ] a functional which denotes the prior information on the functionf .
λ balances the trade-off between fitness off to the data and smoothness off . This regularization
principle leads to different approximation schemes depending on the cost functionC(·, ·). Classical
L2 cost function (C(yi), f (xi)) = (yi − f (xi))

2 leads to the so-called Regularization Networks (Girosi
et al., 1995; Evgeniou et al., 2000) whereas cost function like Vapnik’sε−insensitive function leads
to SVMs.

When the functionalΩ[ f ] is defined as‖ f‖2
H

, the square norm off in a reproducing kernel
Hilbert spaceH associated to a positive definite function K (the square norm in a Hilbert space
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being related to the inner product by‖ f‖2
H

= 〈 f , f 〉H ) , the solution of Equation (1) is under general
conditions

f ∗(x) =
`

∑
i=1

ciK(x,xi). (2)

The case of‖ f‖H being a seminorm leads to a minimizer with the following form:

f ∗(x) =
`

∑
i=1

ciK(x,xi)+
m

∑
j=1

d jg j(x) (3)

where{g j} j=1...m span the null space of the functional‖ f‖2
H

.
In a nutshell, looking for a functionf of the form (3) is equivalent to minimizing the functional

H[ f ], and thus the solution which depends onλ is the “best” balance between smoothness inH

and fitness to the data. Choosing a kernelK is equivalent to specifying a prior information on the
RKHS, therefore having a large choice of RKHS should be fruitful for the approximation accuracy,
if overfitting is properly controlled, since one can adapt its hypothesis space to each specific data
set.

3. Frames and Reproducing Kernel Hilbert Spaces

In this section, we give an introduction to frame theory that will be useful for the remainder of
the paper.

3.1 A Brief Review of Frame Theory

Frame theory was introduced by Duffin and Schaeffer (1952) (Daubechies, 1992) in order to
establish general conditions under which one can reconstruct perfectly a function f in a Hilbert
spaceH from its inner product(〈·, ·〉H ) with a family of vectors{φn}n∈Γ with Γ being a finite or
infinite countable index set.

Definition 1 A set of vectors{φn}n∈Γ is a frame of a Hilbert spaceH if there exists two constants
A > 0 and∞ > B≥ A > 0 so that

∀ f ∈ H , A|| f ||2
H
≤ ∑

n∈Γ
|〈 f ,φn〉H |2 ≤ B|| f ||2

H
. (4)

The frame is said to be tight if A and B are equal.

If the set{φn}n∈Γ satisfies the frame condition then the frame operatorU can be defined as

U :
H −→ `2

f −→ {〈 f ,φn〉H }n∈Γ.
(5)

The reconstruction off from its frame coefficients needs the definition of a dual frame. For this
purpose, one introduces the adjoint operatorU∗ of U which exists and is unique because it lies on a
Hilbert space:

U∗ :
`2 −→ H

{cn}n∈Γ −→ ∑n∈Γ cnφn.
(6)
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Theorem 1 (Daubechies, 1992) Let{φn}n∈Γ be a frame ofH with frame bounds A and B. Let us
define the dual frame{φ̄n}n∈Γ as φ̄n = (U?U)−1φn. For all f ∈ H , we have

1
B
‖ f‖2

H
≤ ∑

n∈Γ
|〈 f , φ̄n〉H |2 ≤ 1

A
‖ f‖2

H
(7)

and
f = ∑

n∈Γ
〈 f , φ̄n〉H φn = ∑

n∈Γ
〈 f ,φn〉H φ̄n. (8)

If the frame is tight then̄φn = 1
Aφn .

This theorem also shows that the dual frame{φ̄n}n∈Γ is a family of vectors which allows to
recover anyf ∈ H , and consequently one can write each vector of the frame and the dual frame as

∀m∈ Γ, φ̄m = ∑
n∈Γ

〈φ̄m,φn〉H φ̄n (9)

and
∀m∈ Γ, φm = ∑

n∈Γ
〈φm,φn〉H φ̄n. (10)

According to this theorem and the above equations, one can note that an orthonormal basis
of H is a special case of frame whereA = B = 1, φ̄n = φn and ‖φn‖ = 1. However, as stated
by Daubechies (1992), frame redundancy can be statistically useful. Also note that in the general
case, we do not have an analytical expression of the dual frame, and thus it has to be computed
numerically. Grochenig has proposed such an algorithm (Grochenig, 1993) which is based on a
iterative conjugate gradient method. We have briefly described this algorithm in the appendix but
for further details, one should refer to the original paper.

For the sake of simplicity, in the following we will call frameable Hilbert space, a Hilbert space
H for which there exists a set of vector ofH that forms a frame ofH . Note that all separable
Hilbert spaces are frameable since by definition they have a countable orthonormal basis.

3.2 A Reproducing Kernel Hilbert Space and Its Frame

After this short introduction on frame theory, let us look at the conditions under which a frame-
able Hilbert space is also a reproducing kernel Hilbert space.

First of all, we introduce some notations that will be used throughout the rest of the paper: let
R

Ω be the set of all functions defined on a domainΩ ⊂ R
d with values inR.

For the purpose of being self-contained, we propose here some useful definitions and proper-
ties concerning RKHS. However, the reader who is interested in deeper details can refer to books
describing mathematical aspects (Atteia, 1992; Berlinet and Agnan, 2004).

Definition 2 A Hilbert spaceH with inner product〈·, ·〉H is a reproducing kernel Hilbert space of
R

Ω if:

• H is a subspace ofRΩ
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• ∀t ∈ Ω ,∃Mt > 0 so that
∀ f ∈ H , | f (t)| ≤ Mt || f ||. (11)

This latter property means that for any t∈ Ω, the linear functionalFt (also called the evalu-
ation functional) defined as

Ft( f ) :
H −→ R

f −→ Ft( f ) = f (t)

is a bounded linear functional.

Note that for any Hilbert space of functions, the evaluation functional is linear, thus the impor-
tant point for having the reproducing kernel property is this evaluational functional being bounded.

Definition 3 We callHilb(RΩ) the set of all RKHS ofRΩ.

Owing to the Riesz theorem, one can state that:

Theorem 4 Let H ∈ Hilb(RΩ), there exists an unique symmetric function K(·, t) of H called the
reproducing kernel ofH so that

∀t ∈ Ω, ∀ f ∈ H , f (t) = 〈 f |K(·, t)〉H . (12)

Theorem 5 Let H be a Hilbert space and{φn}n∈Γ be a frame of this space. If{φn}n∈Γ is a (finite
or infinite) set of functions ofRΩ, so that:

∀t ∈ Ω,

∥

∥

∥

∥

∥

∑
n∈Γ

φ̄n(·)φn(t)

∥

∥

∥

∥

∥

H

< ∞. (13)

ThenH is a reproducing kernel Hilbert space.

Proof

Step 1 Any φn is both an element ofRΩ andH . Hence the equation

∀ f ∈ H , f = ∑
n∈Γ

〈 f , φ̄n〉H φn

holds inH according to the frame property given in Equation (8) (Mallat, 1998; Daubechies, 1992).
Now since,RΩ has a structure of vector space,f = ∑n∈Γ〈 f , φ̄n〉φn is also valid inR

Ω and thusf also
belongs toRΩ. Now, if for eacht ∈ Ω, we define the seminorm on the vector spaceR

Ω as

∀ f ∈ R
Ω, ‖ f‖t = | f (t)|.

According to this seminorm, we get the following pointwise convergence:

f = ∑
n∈Γ

〈 f , φ̄n〉H φn ⇔ f (t) = ∑
n∈Γ

〈 f , φ̄n〉H φn(t). (14)
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Step 2 Now let’s show that∀t ∈ Ω, ∃Mt > 0 so that

∀ f ∈ H , | f (t)| ≤ Mt‖ f‖H . (15)

All elements ofH can be expanded with regards to the frame elements, so according to Equation
(14), we have for allf in H andR

Ω:

| f (t)| =
∣

∣

∣

∣

∣

∑
n∈Γ

〈 f (·), φ̄n(·)〉H φn(t)

∣

∣

∣

∣

∣

(16)

and consequently,

| f (t)| =

∣

∣

∣

∣

∣

〈

f (·), ∑
n∈Γ

φ̄n(·)φn(t)

〉

H

∣

∣

∣

∣

∣

≤ ‖ f‖H

∥

∥

∥

∥

∥

∑
n∈Γ

φ̄n(·)φn(t)

∥

∥

∥

∥

∥

H

(17)

by definingMt , ‖∑n∈Γ φ̄n(·)φn(t)‖H one can conclude thatH is a reproducing kernel Hilbert space
sinceMt is finite by hypothesis and therefore,H admits an unique reproducing kernel.

Remark 6 In this proof, we have chosen to expand a function f ofH according to f= ∑n∈Γ〈 f , φ̄n〉φn.
However choosing the relationship f= ∑n∈Γ〈 f ,φn〉φ̄n would have led to the following equivalent
condition to Equation (13):

∀t ∈ Ω,

∥

∥

∥

∥

∥

∑
n∈Γ

φ̄n(t)φn(·)
∥

∥

∥

∥

∥

H

< ∞. (18)

Now let’s try to express the reproducing kernel of such a Hilbert space.

Theorem 7 Let H be a reproducing kernel Hilbert space andH ∈ Hilb(RΩ), and the family
{φn}n∈Γ be a frame of this space, the reproducing kernel is K(s, t) defined by:

K :

∣

∣

∣

∣

Ω×Ω → R

s× t → K(s, t) = ∑n∈Γ φ̄n(s)φn(t)
(19)

Proof
At first, note that according to the frame inequality:

∑
n∈Γ

φ2
n(t) = ∑

n∈Γ
|〈K(t, ·),φn(·)〉H |2 ≤ B‖K(t, ·)‖2

H
< ∞.

Furthermore, according to Theorem (1) we know that{φ̄n}n∈Γ is another frame ofH . Thus, sim-
ilarly to Equation (6), we can define the adjoint operatorU∗

φ̄ associated to this dual frame. And,
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applyingU∗
φ̄ to the`2 sequence{φn(t)} shows that the function∑n∈Γ φ̄n(·)φn(t) is a well-defined

function ofH .
Furthermore, anyf ∈ H can be expanded by means of the frame ofH , thus according to

Equation (14):

f (t) = ∑
n∈Γ

〈 f , φ̄n〉H φn(t)

=

〈

f (·), ∑
n∈Γ

φ̄n(·)φn(t)

〉

H

(20)

and sinceH is an RKHS, we have

∀ f ∈ H , ∀t ∈ Ω, f (t) = 〈 f (·),K(·, t)〉H . (21)

Hence, by identifying Equation (20) and (21) due to the unicity of the reproducing kernel, we have

K(·, t) = ∑
n∈Γ

φ̄n(·)φn(t)

and thus, we can conclude that

K(s, t) = ∑
n∈Γ

φ̄n(s)φn(t).

These propositions show that a Hilbert space which can be described byits frame is under gen-
eral conditions, a reproducing kernel Hilbert space and its reproducing kernel is given by a linear
combination of its frame and dual frame product.

A simple corollary to Theorem (7) is that for any RKHSH with family {φn}n∈Γ as a frame,
the inequality (13) holds. This naturally stems from the fact thatK(·, t) = ∑n∈Γ φ̄n(·)φn(t) is a well-
defined function ofH (as stated in the proof of Theorem 7) and thus it has a finite norm inH .

The symmetry and the positivity of the kernelK(s, t) are direct consequences ofK(·, ·) being
a kernel of an RKHS. However, these properties can also be easily shown owing to the frame
representation. In fact, according to Equation (8) and (14), we get:

x(t) = ∑
n∈Γ

〈x, φ̄n〉H φn(t) = ∑
n∈Γ

〈x,φn〉H φ̄n(t)

=

〈

x(·), ∑
n∈Γ

φ̄n(·)φn(t)

〉

H

=

〈

x(·), ∑
n∈Γ

φn(·)φ̄n(t)

〉

H

(22)

thus, owing to the uniqueness of the functional evaluation in a RKHS, one can deduce from Equation
(22) that

K(s, t) = ∑
n∈Γ

φ̄n(s)φn(t) = ∑
n∈Γ

φ̄n(t)φn(s) = K(t,s).
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The positivity can also be proved from the following reasoning. Letx1, · · · ,x` be some vectors ofΩ
anda1, · · · ,a` some scalar values inR, we want to show that for any set{xi} and{ai}:

`

∑
i, j

aia jK(xi ,x j) ≥ 0.

According to Equation (10), we can write

K(xi ,x j) = ∑
n∈Γ

φ̄n(xi) ∑
m∈Γ

φ̄m(x j)〈φn,φm〉H .

Thus, we have
`

∑
i, j

aia jK(xi ,x j) =
`

∑
i, j

aia j ∑
n,m∈Γ

φ̄n(xi)φ̄m(x j)〈φn,φm〉H

=

〈

`

∑
i

∑
n∈Γ

ai φ̄n(xi)φn(·),
`

∑
j

∑
m∈Γ

a j φ̄m(x j)φm(·)
〉

H

=

∥

∥

∥

∥

∥

`

∑
i

∑
n∈Γ

ai φ̄n(xi)φn(·)
∥

∥

∥

∥

∥

2

H

≥ 0.

4. Learning Schemes Using Frames

In the previous section, conditions for a frameable Hilbert space being anRKHS were given.
Here, we are interested in constructing a reproducing kernel Hilbert space together with its frame
and discuss about the implications of such result in a functional estimation framework.

4.1 Learning on Frameable Hilbert Spaces

An interesting point of frameable Hilbert space is that under weak conditions, it becomes easy
to build RKHS. The following theorem proves such point.

Theorem 8 Let N ∈ N and {φn}n=1...N be a finite set of non-zero functions of a Hilbert space
(B,〈·, ·〉) with B ⊂ R

Ω so that

∃M,∀t ∈ Ω, ∀n 1≤ n≤ N, |φn(t)| ≤ M.

Let H be the set of functions so that

H = { f =
N

∑
n=1

anφn : an ∈ R, n = 1, . . . ,N}

(H ,〈·, ·〉B) is an RKHS and its reproducing kernel is

K(s, t) =
N

∑
n=1

φ̄n(s)φn(t),

where{φ̄n}n=1,...,N is the dual frame of{φn}n=1,...,N in H .
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Proof

Step 1 H is a Hilbert space.

This is straightforward sinceH is a closed subspace of a Hilbert spaceB, and is endowed with
B inner product. HenceH is a Hilbert space.

Step 2 {φn} is a frame ofH . A proof of this step is also given in Christensen (1993). We have
to show that there existsA andB satisfying equation (4). Let us consider the non trivial case that
span{φn}n=1..N 6= 0.

The existence ofB is straightforward applying Cauchy-Schwartz inequality. In fact, for all
f ∈ H

|〈 f ,φn〉|2 ≤ ‖ f‖2‖φn‖2

and thus
N

∑
n=1

|〈 f ,φn〉|2 ≤ ‖ f‖2
N

∑
n=1

‖φn‖2.

Thus by takingB= ∑N
n=1‖φn‖2, we haveB< ∞ andB satisfies the right-hand inequality of Equation

(4).
Let H ∗ , { f ∈ H : ‖ f‖H > 0} andS( f ) be the following mapping:

S:

∣

∣

∣

∣

H ∗ −→ R

f −→ S( f ) = ∑n∈Γ |〈 f ,φn〉|2.
(23)

This mapping is continuous and becauseH ∗ is of finite dimension the restriction ofSto the unit
ball in span{φn}n=1..N reach its infimum (Brezis, 1983): there isg∈ span{φn}n=1,...,N with ‖g‖ = 1
such that

∑
n∈Γ

|〈g,φn〉|2 = inf

{

∑
n∈Γ

|〈 f ,φn〉|2, f ∈ H ∗ so that‖ f‖ = 1

}

.

Let A be∑n∈Γ |〈g,φn〉|2. HenceA > 0, and as‖g‖ = 1, one has for anyf ∈ H ∗:

A‖ f‖2 ≤
N

∑
n=1

|〈 f ,φn〉|2.

Step 3 Now let’s prove thatH is an RKHS. For that it suffices to prove that the frame{φn}
satisfies condition given in Theorem 5.

This is straightforward since{φn}n=1,...,N is a frame ofH and owing to Theorem 1, the dual
frame{φ̄n}n=1,...,N is also a frame ofH . Hence, the norm of each̄φn is finite. Besides,|φn(t)| is
supposed to be bounded byM. Hence,

∥

∥

∥

∥

∥

N

∑
n=1

φ̄n(·)φn(t)

∥

∥

∥

∥

∥

≤ M
N

∑
n=1

‖φ̄n(·)‖ < ∞

and consequently,H is an RKHS with a kernel equal to:

K(s, t) =
N

∑
n=1

φ̄n(s)φn(t).
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Figure 1: Examples of wavelet frame elements (left) anf their dual elements (right).

Here, we give some examples of RKHS that have been derived from the direct application of
this theorem.

Example 1 Any finite set of bounded, real-valued, pointwise-defined and squareintegrable func-
tions onΩ endowed with the inner product〈 f ,g〉 =

R

Ω f (t)g(t)dt spans a RKHS. For instance, the
set of functions which expressions are given below spans an RKHS.

∀t ∈ Ω,φn(t) = t ·e−(t−n)2
, n∈ [nmin,nmax] with (nmin,nmax) ∈ N

2

Example 2 Any finite set of bounded and pointwise-defined functions belonging to Sobolev space
(Berlinet and Agnan, 2004) spans an RKHS. The set of functions, given in the previous example
spans also an RKHS in a Sobolev inner product sense.

Example 3 Consider a finite set of wavelet onR
{

ψ j,k(t) =
1√
a j

ψ
(

t −ku0a j

a j

)

, j ∈ Z : jmin ≤ j ≤ jmax, k∈ Z : kmin ≤ k≤ kmax

}

where(a,u0) ∈ R
∗
+×R, and( jmin, jmax,kmin,kmax) ∈ Z

4. Then the span of these functions endowed
with the inner product〈 f ,g〉 =

R

R
f (t)g(t)dt is an RKHS. Figure (1) plots an example of wavelet

frame and dual frame elements for a dilation j= −7.

The main interest of Theorem (8) is the flexibility it introduces in the RKHS choice or in the
choice of the functions that span the hypothesis space. However, this theorem only deals withfinite
dimension RKHS. For building infinite dimensional RKHS, Theorem (5) has to be used. The main
difference between the finite andinfinite dimensional case and thus between Theorems (5) and (8)
is that a finite set of functions{φn}n=1,...,N, if endowed with an adequate inner product, is always
a frame of the space it spans (see step 2 of the proof of Theorem (8)) .This is not always true
for an infinite set of functions and in this case, the frame condition given in Equation (4) and the
boundedness of the evaluation functional in Equation (13) have to be verified. Next examples are
examples of infinite dimension RKHS which kernels are given explicitly by their frame elements.
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Example 4 Let us considerH as the space of continuous and differentiable functions onΩ = [0,1]
with the constraints that for any f∈ H , f (0) = f (1) = 0 and ∂ f ∈ L2(Ω) where∂ f is the usual
derivative of f . Endowed with the inner product:

∀ f and g∈ H , 〈 f ,g〉H =
Z

Ω
∂x f (x)∂xg(x)dx

one can show thatH is a Hilbert space of functions onΩ and that the set

{φn(t)}n∈N∗ =

{√
2

nπ
sin(nπt)

}

n∈N∗

is an orthonormal basis ofH (Debnath and Mikusinki, 1998; Atteia and Gaches, 1999). Hence,
{φn(x)}n∈N∗ is a tight frame ofH with the frame constant A equals to 1. Let us show that this frame
verify the condition given in Theorem (5) in order to prove thatH is an RKHS.

At first, let us prove that for all t∈ Ω, the sequence{φn(t)}n∈N∗ belongs tò 2. Becausēφn = φn,
we have for any t∈ Ω:

∑
n∈N∗

φ2
n(t) = ∑

n∈N∗
φ̄2

n(t) = ∑
n∈N∗

2
n2π2 sin2(nπt)

≤ 2
π2 ∑

n∈N∗

1
n2

< ∞.

Hence, according to the adjoint frame operator U∗ given in equation (6), for any t∈ Ω, the function
∑n∈N∗ φn(·)φn(t) is a well-defined function ofH . Thus,

∥

∥

∥

∥

∥

∑
n∈N∗

φn(·)φn(t)

∥

∥

∥

∥

∥

2

H

= ∑
n∈N∗

φ2
n(t) < ∞.

HenceH is a infinite dimensional RKHS with kernel

∀s, t ∈ Ω, K(s, t) =
∞

∑
n=1

2
n2π2 sin(nπs)sin(nπt).

Example 5 This other example shows a way for constructing an infinite dimensional RKHS from
its frame. Let{αn}n∈Γ be a set of strictly positive real values and define the subspace`2

α of `2 as

`2
α =

{

c = {cn}n∈Γ, cn ∈ R : ∑
n∈Γ

c2
n

αn
< ∞

}

.

Endowed with the inner product〈c,d〉`2
α
≡ ∑n∈Γ

cndn
αn

, one can show that̀2α is a Hilbert space. Now,

let {φn}n∈Γ be a set of functions onRΩ so that:

∀t ∈ Ω, ∑
n∈Γ

αnφ2
n(t) < ∞
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and T the mapping:

T :
`2

α → H ⊂ R
Ω

c → f = ∑n∈Γ cnφn.

It is simple to show thatH is a space of functions onΩ since for all t∈ Ω,{αnφn(t)}n∈Γ belongs to
`2

α. Then we have,

〈c,{αnφn(t)}n∈Γ〉`2
α
= ∑

n∈Γ

cnαnφn(t)
αn

= ∑
n∈Γ

cnφn(t) < ∞.

Suppose furthermore for simplicity and clarity that{φn}n∈Γ has been chosen so that T is an injective
mapping. Then the range of the mapping T also defined as

H =

{

f = ∑
n∈Γ

cnφn : {cn}n∈Γ ∈ `2
α

}

and endowed with the inner product:

〈 f ,g〉H ≡ 〈c,d〉`2
α
= ∑

n∈Γ

cndn

αn
with f = ∑

n∈Γ
cnφnand g= ∑

n∈Γ
dnφn

is also a Hilbert space since in this case T is an isometric isomorphism between`2
α andH (Debnath

and Mikusinki, 1998). Note that this way of building a Hilbert space is also described by Opfer
(2004a) and Amato et al. (2004). However, none of them has presented the following frame-based
point of view for showing that under some weak hypothesisH can be an RKHS.

At first, note that due to the one-to-one mapping between`2
α and H , the following equality

holds:

∀k,n∈ Γ, 〈φk,φn〉H =
δk,n

αk

whereδk,n is the Kronecker symbol.
Let us show that{φn}n∈Γ is a frame ofH . Owing to the above property, we have∑n∈Γ |〈 f ,φn〉|2 =

∑n∈Γ
c2

n
α2

n
and‖ f‖2

H
= ∑n∈Γ

c2
n

αn
, then it is clear that the following inequality holds:

1
αmax

‖ f‖2
H
≤ ∑

n∈Γ
|〈 f ,φn〉|2 ≤

1
αmin

‖ f‖2
H

whereαmax = maxn∈Γ αn and αmin = minn∈Γ αn. Since according to the frame property given in
Equation (8), each frame element can be expanded asφk = ∑n∈Γ〈φk,φn〉φ̄n, we haveφk = 1

αk
φ̄k.

Hence since the frame and dual frame elements are so that for any t∈ Ω, we have

∑
n∈Γ

αnφ2
n(t) = ∑

n∈Γ

(φ̄n(t))2

αn
< ∞. (24)

Then{φ̄n(t)}n∈Γ ∈ `2
α and consequently, the function K(·, t) = ∑n∈Γ φ̄n(t)φn(·) is well-defined, be-

longs by construction toH and is so that
∥

∥

∥

∥

∥

∑
n∈Γ

φ̄n(t)φn(·)
∥

∥

∥

∥

∥

H

< ∞,
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andH is an RKHS whose kernel is

K(s, t) = ∑
n∈Γ

φ̄n(t)φn(s) = ∑
n∈Γ

αnφn(s)φn(t).

A practical example of such an infinite dimensional RKHS can be obtained as follows. Let us con-
sider thatΩ = R and eachφn(t) = 1√

2J
ϕ

(

t−n
2J

)

with n∈ Z, J∈ Z andϕ(t) a pointwise-defined onΩ
and compactly supported function so that{φn}n∈Γ are linearly independent. Examples of such func-
tionsϕ(t) are functions that are classically used in wavelet-based multiresolution analysis (Mallat,
1998). Since eachφn is a compactly supported shift of a functionϕ, for any t, the sum in Equation
(24) becomes a finite sum of non-zero terms which convergence is consequently guaranteed for any
{αn}n∈Γ. At this point, we can state that the space

H =

{

f = ∑
n∈Γ

cn√
2J

ϕ
(

t −n
2J

)

: ∑
n∈Γ

c2
n

αn
< ∞

}

is a reproducing kernel Hilbert space.
If we wantH to be the span of different dilations and shifts ofϕ, we can also show thatH is

an RKHS by choosing the{αn}n∈Γ to be related to the dilation parameter J so that the inequality in
(24) holds.

4.2 Other Classes of Frame-Based Kernels

Recently, Gao et al. (2001) have proposed another class of frame-based kernels. Their approach
is based on the connection between regularization operator and supportvector kernel as described in
Smola et al. (1998). Supposing thatU is the frame operator of a either finite or infinite dimensional
RKHS, their kernel is based on the statement that the operatorQ = U∗U is a symmetric positive
definite operator and the Green function associated to this operator is a Mercer kernel. Thus, the
kernel they proposed, named the frame operator kernel, can be expanded with respect to the dual
frame elements as

K(s, t) = ∑
n∈Γ

φ̄n(s)φ̄n(t).

A detailed proof of this equation is given in Gao et al. (2001).
From the point of view of the regularization theory (Smola et al., 1998), this frame-operator

kernel of Gao et al. is different from the one we propose as the regularization operator associated
to each of them are different. In fact, in our case the regularization operator can be considered as
the projector of any function space onH whereas in the Gao et al. case, it can be seen as the frame
operatorU .

More recently, Opfer (2004b) has shown that the kernel associated toan RKHSH can be
expanded as

K(s, t) = ∑
n∈Γ

φn(s)φn(t)

if and only if the set of functions{φn}n∈Γ is a super tight frame (which is a tight frame with frame
bounds equal to 1) ofH . This results is a particular case of Theorem (7) since for a super tight
frame each dual frame element isφ̄n = φn. Furthermore, compared to Opfer’s work, our Theorem
(5) gives a frame-based condition for a Hilbert space to be an RKHS.

1497



RAKOTOMAMONJY AND CANU

The works of Amato et al. (2004) and Opfer (2004a) where they both proposed the concept of
multiscale kernels can also be related to our work. Interestingly, they have both shown that a Hilbert
space spanned by wavelet can be under some weak hypotheses an RKHS. The way they build their
RKHS H is very similar to the one we described in example (5) and the related reproducing kernel
is naturally

K(s, t) = ∑
n∈Γ

αnφn(s)φn(t),

where eachαn is a strictly positive real value. On one hand, Amato et al. ended up with this kernel
by considering that{φn}n∈Γ are a orthonormal wavelet basis ofL2([0,1]) and showing that for their
spaceH , the evaluation functional is continuous. On the other hand, for achievingthis result, Opfer
has shown that the functionK(·, t) belongs toH and satisfies the reproducing property without
explicit explanations on how this kernel has been obtained. Hence, although very similar to the
work of Opfer, the example (5) gives the functional setting on how the kernel in (Opfer, 2004a) can
be derived.

5. Discussions

Propositions presented in previous sections describe a way for easily building RKHS and its
associate reproducing kernel. Hence, this kernel can be used within theframework of regularization
networks or SVMs for functional estimation.
For SVMs, one usually chooses as a kernel a continuous symmetric function K in L2(Ω) (Ω being
a compact subset ofRd) that has to satisfy the following condition, known as Mercer’s condition:

Z

Ω

Z

Ω
K(x,y) f (x) f (y)dxdy≥ 0 (25)

for all f ∈ L2(Ω).
Now, one may ask what are the advantages and drawbacks of using kernels built by means of

Theorem (5) or (8).

• Both Mercer’s condition and frameable RKHS allow to obtain a positive definitefunction.
However, it is obvious that conditions for having frameable RKHS are easier to verify than
Mercer’s condition. Thus, this can be interpreted as a flexibility for adapting kernel to a
particular problem. Examples of this flexibility will be given below within the context of
semiparametric estimation. Notice that methods for choosing the appropriate frame elements
of the RKHS are not given here.

Example 6 Consider the set of functions onR

{

φn(s) = sin(π(s−n))
π(s−n)

}

n=1...N
. The space spanned

by these frame elements associated to L2(R) inner product is an RKHS. Thus, as a direct
corollary of Theorem 8, the kernel

K(s, t) =
N

∑
i=1

φ̄i(s)φi(t)

is an admissible kernel for SVMs.

A representation of such a kernel with N= 9 is given in Figure (2).
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Figure 2: The sinc kernel.

• Since conditions for obtaining a frameable RKHS hold mainly for finite dimensional space
(although, it may exists infinite dimensional Hilbert space which frame elements satisfy hy-
potheses of Theorem (5)), it is fairest to compare the frameable kernelto a finite dimensional
kernel. According to Mercer’s condition, or other more detailed papers on the subject (Aron-
szajn, 1950; Wahba, 2000), Mercer’s kernel can be expanded asfollows:

K(s, t) =
N

∑
n=1

1
λn

ψn(s)ψn(t)

wheres andt belong toΩ, λl is a positive real number and{ψl}i=1..N is a set of orthogonal
functions. Conditions for constructing frameable kernel are less restricting since the orthogo-
nality of the frame elements are not needed. One can note that for tight frameor orthonormal
basis, frameable kernel leads to the following expansion:

K(s, t) =
N

∑
n=1

1
A

ψn(s)ψn(t)

since dual frame elements is equal to frame elements up to a multiplicative constantdepending
on the frame boundA . Tightness of a frame is a very interesting property since in this case
processing the dual frame is no more needed. However, unless we explicitly build the RKHS
H so that it is spanned by a tight frame (as in example (5) or in Opfer (2004b)), tightness of
a frame needs more constraints on the frame elements than other frames. Thusa tight frame
of a space is harder to build than other frame of the same space.
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• The conditions for a frameable Hilbert space being an RKHS is given in Equation (13) and
they hold also for infinite dimensional case for which the kernel is written

K(s, t) = ∑
n

φ̄n(s)φn(t).

Again in this case, the frame kernel expansion is similar to the Mercer’s kernel one. The main
difference between the finite and infinite dimensional case relies on the factthat a finite set
of functions{φn} is always a frame of the space it spans (provided that this latter is endowed
with an adequate inner product). This is not always true for an infinite setof functions.
However, we have shown in example (5) that under some mild conditions, it is possible to
build an infinite dimensional RKHS.

• In the SVMs algorithm, the kernel realizes the dot product of the data pointsmapped in some
feature space:

K(s, t) = 〈Φ(s),Φ(t)〉

with Φ being the mapping. Usually, this mapping is not explicitly given since one only needs
for computing the optimal hyperplane the dot product in the feature space.With frame-based
kernels, we have the relation

K(s, t) =
N

∑
n=1

φ̄n(s)φn(t)

=
N

∑
n=1

φ̄n(s)
N

∑
j=1

φ̄ j(t)〈φ j(·),φn(·)〉H according to Equation (10)

=

〈

N

∑
n=1

φ̄n(s)φn(·),
N

∑
j=1

φ̄ j(t)φ j(·)
〉

H

.

Thus the data embedding can be defined as

Φ :
Ω −→ H

t −→ ∑N
n=1 φ̄n(t)φn(·).

The data points are mapped to a function belonging toH . The mapping is consequently
strictly related to the frame elements{φn} and is implicitly defined by them.

• Besides, since the kernel has an expansion with regards to the frame elements, the solution of
Equation (1) is of easier interpretation. Indeed, although the solution depends on the kernel
expression, it can be rewritten as a linear combination of the frame elements. Thus, compared
to other kernels for which basis functions are unknown, using frame-based kernel increases
model interpretability.

• Drawbacks of using frame-based kernel rely mainly on the time complexity burden that is
added for constructing the data model. For both SVMs and regularization networks, one has
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to process the kernel matrixK with elementsKi, j = K(xi ,x j). Thus, with frame-based kernel,
one has to compute the dual frame elements, (for instance, by means of an iterative algorithm,
as the one described in (Grochenig, 1993)). This by its own may be time-consuming. Further-
more, the construction of the matrixK needs the processing of the sum. Hence, if the number
N of frame elements describing the kernel and the number` of data are large, buildingK
becomes rapidly very time-consuming (of an order ofN2 · `2).

Some of these points suggest that frame-based kernels can be useful by themselves. However,
within the context of semiparametric estimation, this flexibility for building kernel offers some other
interesting perspectives. Semiparametric estimation can be introduced by the following theorem.

Theorem 9 (Kimeldorf and Wahba, 1971)
LetHK be an RKHS of real valued functions onΩ with reproducing kernel K. Denote by{(xi ,yi)i=1...`}
the training set and let{g j , j = 1. . .N} be a set of functions onΩ such that the matrix Gi, j = g j(xi)
has maximal rank. Then, the solution to the problem

min
f∈span(g)+h,h∈HK

1
`

`

∑
i=1

C(yi , f (xi))+λ‖ f‖2
HK

(26)

has a representation of the form

f (·) =
`

∑
i=1

ciK(xi , ·)+
N

∑
j=1

d jg j(·).

The solution of this problem can be interpreted as a semiparametric estimation since one part of the
solution (the first sum) comes from a non-parametric estimation (the regularization problem) while
the other term is due to the parametric expansion (the span of{g j}). As stated by Smola in his
thesis (Smola, 1998), semiparametric estimation can be advantageous with regards to a fully non
parametric estimation as it exploits some prior knowledge on the estimation problem (for instance
major properties of the data are described by linear combination of a small setof functions), and
making a “good” guess (on the set of functions{g j}) can have a large effect on performance.

Again in this context, the flexibility of frame-based kernel can be exploited. In fact, letG =
{gi}i=1...N be a set ofN linearly independent functions that satisfies Theorem 8, hence, any subset
of G, {gi}i∈Γ,( Γ being an index set of sizen0 < N) can be used for building an RKHSHK while
the remaining vectors can be used in the parametric part of the Kimeldorf-Wahba theorem. Hence
in this case, the solution of (26) is written

f (·) =
`

∑
i=1

ci ∑
k∈Γ

ḡk(xi)gk(·)+ ∑
j∈CΓ

d jg j(·).

The flexibility comes from the fact that in a learning problem, any elements of G can be regular-
ized (if involved in the span ofHK) or can be kept as it is (if used in the parametric part). Intuitively,
one should use any vector that comes from “good” prior knowledge, in the parametric part of the
approximation while leaving in the kernel expansion the other frame elements. Notice also that only
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Figure 3: Example of multiscale approximation on 3 levels. Each spaceH j can be decomposed in
a trend spaceH j−1 and a detail spaceF j−1. In this case,H3 can be considered as the sum
of H0, F0, F1 andF2.
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Figure 4: Example of multiscale approximation on 3 levels: the kernel point of view. For instance,
here we want to learn a functionf (x) that has generated the samples(xi ,yi)i=1,n under
some noisy condition. The first step consists of decomposing the hypothesisspace into
a parametric part spanned by{Φ j,2(x)} and a non parametric part spanned byK j,2(x,xi).
Then the resulting parametric approximation is decomposed again in two parts and so
on. The multiscale approximation off (x) is then f̂ (x) = ∑d jΦ j(x) + ∑c jK j(x,xi) +

∑c j,1K j,1(x,xi)+∑c j,2K j,2(x,xi).
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the subset ofG which is used in the parametric part has to be linearly independent.

Another perspective which follows directly from this finding is a technique of regularization
that we call multiscale regularization which is inspired from the multiresolution analysis of Mallat
(1998). Here, we just sketch the idea behind this concept and in no way,the following paragraph
should be considered a complete study of this new technique since the analysis of its properties
goes beyond the scope of this paper. Consider the same problem as the one described in Theorem
9. Now, suppose that{gi} is a set ofN linearly independent functions verifying Theorem (8). Let
{Γi}i=0...m be a set of index set such that∪m

i=0Γi = {1, . . . ,N} andΓi ∩Γ j = /0 for i 6= j andH being
the RKHS spanned by{gi}. By subdividing the set{gi} with the index set{Γi}i=0...m, one can
constructmRKHS{Fi}i=0...m−1 in such a way that

∀i = 1. . .m, Fi−1 = span{gk}k∈Γi

and reproducing kernel ofFi is notedKi . Now, denote asHi the RKHS such that

∀i = 1. . .m, Hi = Hi−1 +Fi−1

with H0 = span{gk}k∈Γ0. By construction, the spaceHi are nested spaces:

H0 ⊂ H1 ⊂ . . . ⊂ Hm = H .

In this case, one can interpretH0 as the space of lower approximation capacity whereasHm is
the space with higher capacity. Besides, sinceHi = Hi−1+Fi−1, one can think ofFi−1 as the details
needed to be added toHi−1 to obtainHi , thus we will call spacesFi the “details” spaces whereas
spacesHi are the “trend” spaces. Every of these spacesFi andHi are an RKHS since any subset of
{gi} satisfies Theorem (8).

Multiscale regularization is an iterative technique that at stepk = 1, . . . ,m consists of looking
for the solutionfm−k(·) of the following minimization problem:

min
f∈Hm−k+1

1
n

n

∑
i=1

C(yi,m−k, f (xi))+λm−k‖ f‖2
Fm−k

(27)

whereyi,m−1 = yi , yi,m−(k+1) = yi,m−k−∑n
j=1c j,m−kKm−k(x j ,xi). According to the representer The-

orem (9), fm−k(·) can be written:

fm−k(·) =
n

∑
i=1

ci,m−kKm−k(xi , ·)+ ∑
j∈∪m−k

l=0 Γl

d j,m−kg j(·) (28)

and thus the overall solution of the so-called multiscale regularization is

f̂ (·) =
m

∑
k=1

n

∑
i=1

ci,m−kKm−k(xi , ·)+ ∑
j∈Γ0

d j,0g j(·). (29)

The solutionf̂ of the multiscale regularization is the sum of different approximations on nested
spaces. At first, one seeks to approximate the data on the highest approximation capacity space
by regularizing only the details. Then, these details are subtracted to the dataand one tries to
approximate this residual on the next space by keeping regularizing the details on this space, and
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so on. Thus at each step, one can control the “amount” of regularizationbrought to each details
space, increasing in this way the capacity control capability of the model. Figure (3) and (4) show
an example of how the algorithm works for a 3-level approximation scheme.

The framework of additive models of Hastie et al. (Hastie and Tibshirani (1990)) can give other
insights to multiscale regularization. In fact, if we suppose that the family{gi}i=1,...,N forms an
orthonormal basis ofH and build the spacesH0 andFm in the same way as described above, then
by construction, we have

H = H0⊕F0⊕·· ·⊕Fm−1.

Hence any functionf ∈ H can be written asf (x) = ∑m
i=0 fi(x) with f0 ∈ H0 and fi ∈ Fi−1 for

i = 1, . . . ,m. Thus, the multiscale regularization algorithm can be interpreted as an algorithm which
looks for the functionf that minimizes the following empirical risk:

Rreg[ f ] =
1
`

`

∑
i=1

C(yi ,
m

∑
j=0

f j(xi))+
m

∑
j=1

λ j‖ f j‖2
F j−1

(30)

where eachλ j is a hyperparameter that controls the amount of regularization forF j−1. This min-
imization problem is typically the problem of fitting an additive model as proposedby Hastie and
Tibshirani (1990).

Illustrations of the multiscale regularization algorithm on both toy and real-worldproblems are
given in the next section.

6. Numerical Experiments

This section describes some experiments that compare frame-based kernels to classical one (for
instance gaussian kernel) on some regression problems. Besides, illustrations of some points raised
in the discussion such as the multiscale approximation algorithm are given.

6.1 Experiment 1

This first experiment aims at comparing the behavior of different kernelsusing regularization
networks and support vector regression. The function to be approximated is

f (x) = sinx+sinc(π(x−5))+sinc(5π(x−2)) (31)

where sinc(x) = sinx
x . Data used for the approximation is corrupted by an additive noise, thusyi =

f (xi)+εi whereεi is a zero-mean gaussian noise of standard deviation 0.2 . Pointsxi are drawn from
uniform random sampling of interval[0,10]. Three kernels have been used for the approximation:

• Gaussian kernel:

K(x,y) = e−
‖x−y‖2

2σ2

• Wavelet kernel:
K(x,y) = ∑

i∈Γ
ψ̄i(x)ψi(y)

where i denote a multi index andψi(x) = ψ j,k(x) = 1√
a j

ψ
(

x−ku0a j

a j

)

. ψ(x) is the mother

wavelet which in this experiment is a mexican hat wavelet. Dilation parameterj takes value
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Regularization Networks Support vector regression
Gaussian kernel 0.0218±0.0049 0.0248±0.0058
Wavelet kernel 0.0249±0.0078 0.0291±0.0086
Sin/Sinc kernel 0.0249±0.0122 0.0302±0.0176

Table 1: True generalization error for Gaussian, Wavelet, Sin/Sinc kernels with Regularization Net-
works and support vector regression for the best hyperparameters.

in the set{−5,0,5} whereask is chosen so that a given waveletψ j,k(x) has its support in the
interval [0,10]. For now on, we setu0 = 1 anda = 20.25. These values are those proposed by
Daubechies (Daubechies, 1992) so that a wavelet set is a frame ofL2(R). Notice that in our
case, we only use a subset of this frame.

• Sin/Sinc kernel:
K(x,y) = ∑

i∈Γ
φ̄i(x)φi(y)

whereφi(x) = {1,sin(x),cos(x),sinc( jπ(x−k)) : j ∈ {1,3,6},k∈ [1. . .9])}.

For frame-based kernel, if necessary the dual frame is processed using Grochenig’s algorithm.
For both regularization network and support vector regression, some hyperparameters have to

be tuned. Different approaches are possible for solving this model selection problem. In this study,
the true generalization error has been evaluated for a range of finely sampled values of hyperpa-
rameters. This is repeated for a hundred different data sets, and the mean and standard deviation
of the generalization error are thus obtained. Table 1 depicts the true generalization error evaluated
on 200 datapoints for the two learning machines and the different kernels using the best hyperpa-
rameters setting. Analysis of this table leads to the following observation: The different kernels
and learning machines give comparable results (all averages are within one standard deviation from
each other). Using prior knowledge on the problem in this context does not improve performance
(Sin/Sinc kernel or wavelet kernel compared to gaussian kernel). A justification can be that such
kernels use strong prior knowledge (thesin frame element) that is included in the kernel expansion
and thus this prior knowledge gets regularized as much as other frame elements. This suggests that
semiparametric regularization should be more appropriate to get advantage of such a kernel.

6.2 Experiment 2

In this experiment, we suppose that some additional knowledge on the approximation problem
is available, and thus its exploitation using semiparametric approximation should lead to better
performance. We have kept the same experimental setup as the one used inthe first example but we
have restricted our study to regularization networks.

Basis functions and kernel used are the following:

• Gaussian kernel and sinusoidal basis functions{1,sin(x),cos(x)}.

• Gaussian kernel and wavelet basis functions
{

ψ j,k(x) = 1√
a j

ψ
(

x−ku0a j

a j

)

, j ∈ {0,5}
}
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• Wavelet kernel and wavelet basis functions: these functions are the same as in the previous
case but the kernel is built only with low dilation wavelet (j = −10). In a nutshell, we
can consider that the RKHS associated to the kernel used in the non- parametric context
(experiment 1) has been splitted in two RKHS. One that leads to a hypothesis space that have
to be regularized and another one that does not have to be controlled.

• Sinc kernel and Sin/Sinc basis functions: in this setting, the kernel is givenby the following
equation:

K(x,y) = ∑
i∈Γ

φ̄i(x)φi(y)

with φi(x) = {sinc( jπ(x−k)) : j ∈ {3,6}, k∈ [1. . .9]}
and the basis functions are{1,sinx,cosx,sinc(π(x−k) : k∈ [1. . .9]}.

For each kernel, model selection has been solved by cross-validation using 50 data sets. Then,
after having spotted the best hyperparameters, the experiment was run ahundred times and the true
generalization error in a mean-square sense, was evaluated. Table 2 summarizes all these trials
and describes the performance improvement achieved by different kernels compared to the gaussian
kernel and sin basis functions. From this table, one can note that:

- exploiting prior knowledge on the function to be approximated leads immediately toa lower
generalization error (compare Table 1 and Table 2).

- as one may have expected, using strong prior knowledge on the hypothesis space and the
related kernel gives considerably higher performances than gaussian kernel. In fact, the sinc-
based kernel achieves by far the lower mean square error. The idea of including the “good”
knowledge in a non-regularized hypothesis space while including the “bad” prior knowledge
in the RKHS span seems to be fruitful in this case (the frame elements sinc(3π(x− k)) and
sinc(6π(x−k)) can be termed as “bad” knowledge as, they are not used in the target function
).

- wavelet kernel achieves minor improvement of performance compared togaussian kernel.
However, this is still of interest as using wavelet kernel and basis functions does corresponds
to prior knowledge that can be reformulated as: “the function to be approximated contains
smooth structure (thesin part), irregular structures (thesinc part) and noise”. It is obvious
that knowing the true basis function leads to better performance, howeverthat information is
not always available and using bad knowledge may result in poorer performance. Thus, prior
knowledge on structures which may be easiest to get than prior knowledgeon basis function
can be easily exploited by means of wavelet span and wavelet kernel.

6.3 Experiment 3

This last simulated example targets at illustrating the concept of multiscale regularization. We
have compared several learning algorithms in function approximation problems. The learning ma-
chines are: regularization networks, SVM, semiparametric regularization and multiscale regulariza-
tion. For the two first methods, a gaussian kernel is used whereas for thetwo latter, wavelet kernel
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Kernel / Basis Functions M.S.E Improvement (%)
Gaussian / Sin 0.0216±0.0083 (6) 0

Gaussian / Wavelet 0.0202±0.0072 (4) 4.6
Wavelet / Wavelet 0.0195±0.0077 (2) 9.7

Sinc / Sin 0.0156±0.0076 (88) 27.8

Table 2: True generalization performance for semiparametric regressionnetworks and different set-
tings of kernel and basis functions. The number in parentheses reflectsthe number of trials
for which the model has been the best model.
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Figure 5: Original functions used for benchmarking in experiment 3. (a)f1 (b) f2. Top: multiscale
structure on 3 levels. Bottom: Complete function.

and basis functions are taken. The true functions used for benchmarking are the following:

f1(x) = sinx+sinc(3π(x−5))+sinc(6π(x−2)),

f2(x) = sinx+sinc(3π(x−5))+sinc(6π(x−2))+sinc(6π(x−8)).

The two functionsf1 and f2 have been randomly sampled on the interval[0,10]. Gaussian noiseεi

of standard deviation 0.2 is added to the samples, thus the entries of the learning machines become
{xi , f (xi)+ εi}. Here again, a range of finely sampled values of hyperparameters has been tested
for model selection. In each case, an averaging of the true error generalization over 100 data sets of
200 samples was evaluated using a uniform measure.

For semiparametric regularization, the kernel and basis setting was built with awavelet set given
by

ψ j,k(x) =
1√
a j

ψ
(

x−ku0a j

a j

)

.
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f1 f2
Gaussian Reg. Networks0.0266±0.0085 0.0385±0.0141

Gaussian SVM 0.0328±0.0093 0.0475±0.0155
Semip Reg. Networks 1 0.0266±0.0085 0.0397±0.0113
Semip Reg. Networks 2 0.0236±0.0063 0.0353±0.0080
Multi. Regularization 0.0246±0.0060 0.0344±0.0069

Table 3: True mean-square-error generalization for regularization networks, SVM, semiparametric
regularization networks, and multiscale regularization forf1 and f2.

The kernel is constructed from a set of wavelet frame of dilationjSPH and the basis functions
are given by another wavelet set described byjSPL. For multiscale regularization, the setting of the
nested spaces are the following:

H0 = span

{

1√
a j

ψ
(

t −ku0a j

a j

)

, j = 5

}

,

F0 = span

{

1√
a j

ψ
(

t −ku0a j

a j

)

, j = 0

}

,

F1 = span

{

1√
a j

ψ
(

t −ku0a j

a j

)

, j = −10

}

.

These dilation parameters have been set in aad hocway, but their choices can be justified by the
following reasoning: Three distinct levels have been used for separating the approximation in three
structures which should be smooth (j = 5), irregular (j = 0) and highly irregular (j = −10). The
same values ofj were used in the semiparametric context. Two semiparametric settings have been
tested: the first one usesjSPH = −10 and jSPL= {0,5} and the other one is configured as follows
jSPH = {−10,0} and jSPL= 5.

Table 3 presents the average of the mean-square error of the different learning machines for
the two functions and for the best hyperparameter value found by cross-validation. Comments and
analysis of this experiment validating the concept of multiscale approximation are:

- semiparametric 2 and multiscale approximation give the best mean-square error. They achieve
respectively a performance improvement with regards to gaussian regularization networks of
11.2% and 7.5% for f1, and 8.3% and 10.6% for f2. Also note that both learning machines
give the lowest standard deviation of the mean square error.

- multiscale approximation balances loss of approximation due to error at eachlevel (see Fig-
ure) and flexibility of regularization, thus its performance is better than semiparametric one’s
when the multiscale structure of the signal is more pronounced.

- comparison of the two semiparametric settings shows that the second setup outperforms the
first one (especially forf2). This highlights the importance of selecting the hypothesis space
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Figure 6: Top: Multiscale structure of a typical prediction of off1 (left) and f2 (right) by multiscale

wavelet approximation Bottom: full approximation and true function
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to be regularized. In this experiment, it seems that leaving the space spanned by wavelet of
dilation j = 0 on the parametric span (the space which is not regularized) leads to overfitting.

- multiscale approximation is able to catch all the structures of the signal (see Figure (7) ). One
can see that each level of approximation represents one structure of thefunction f1 and f2:
the lowest dilation (j =−10) represents the wiggles due to the highest frequency sinc, at level
j = 0, one has the sinc(3x) function whereas thesin is located on the highest dilationj = 5.

- Figure (6.3) shows that multiscale and semiparametric algorithms achieve betterapproxi-
mation of the “wiggles” than nonparametric methods without compromising smoothness in
region of the functions where it is needed.

6.4 Experiments on Real-World Data Sets

This paragraph presents some estimation results on real-world time-series. These times-series
are publicly available in a time-series data library (Hyndman and Akram (1998)) and have already
been widely used in the field of statistics. The first oneenginesconcerns a monthly measured ratio
between the motor vehicles engines production and the consumer price indexin Canada whereas
the second onebasirondeals with the monthly production of iron in Australia. The problem we
want to solve is the estimation of these time-series after a zero-mean normalization.

For this purpose, two models have been compared, the first one being a regularization networks
with a gaussian kernel whereas the other one is a multiscale regularization algorithm with an or-
thogonal wavelet kernel. The wavelet that has been used is aSymmletwavelet with 4 vanishing
moments (Mallat, 1998). The kernel of the corresponding hypothesis space H which have been
split into three orthogonal spaces, is so that

H = H0⊕F0⊕F1 and KH (x,y) = KH0
(x,y)+KF0(x,y)+KF1(x,y)

with

KH0
(x,y) =

j1

∑
j= jmin

∑
k

ψ j,k(x)ψ j,k(y)+∑
k

φ j,k(x)φ j,k(y), (32)

KF0(x,y) =
j2

∑
j= j1+1

∑
k

ψ j,k(x)ψ j,k(y), (33)

KF1(x,y) =
jmax

∑
j= j2+1

∑
k

ψ j,k(x)ψ j,k(y), (34)

and the dilation indexes are so thatjmin≤ j1 ≤ j2 ≤ jmax. For both data sets, we have setjmin =−3,
j1 = 0, j2 = 4 and jmax= 7.

For each estimation trial, each data set has been randomly split in a learning set of 100 samples
with the remaining samples being considered as the test set. The results that wepresent are the
normalized mean-squared error averaged over 30 trials for the best hyperparameters values of each
model: for the gaussian regularization networks and the multiscale regularization networks, these
hyperparameters are respectively{λ,σ} and{λ0,λ1,λ2} which are the regularization parameters
associated to each scale. The best hyperparameters have been obtained by evaluating the test error
on a large range of finely sampled values of these hyperparameters.
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basiron engine
Gaussian Reg. Networks 10.55±1.24(1) 37.57±5.62(8)

Multi. Regularization 9.58±1.21(29) 36.00±4.30(22)

Table 4: Averaged normalized mean-square error of estimation of real-world time-series with a
gaussian and a wavelet multiscale regularization networks. The number withinparenthesis
is the number of time a given model has performed better than the other.

Table (4) summarizes the performance of each model. It shows that for both time-series, the
multiscale algorithm performs better than the gaussian regularization networks. Indeed, for the
basirondata set, although the difference in normalized mean-squared error is onlyabout 0.9%, the
multiscale approach has given the best results on 29 of the 30 trials. For theenginestime-series,
although the difference in normalized mean-squared error is higher (1%), our algorithm gives better
results on only 22 trials. Figure (8) depicts some examples of estimation for bothtime-series and
algorithms. This figure shows that the best model for the gaussian regularization networks is rather
a smooth model whereas the wavelet multiscale model is far less smooth. This is essentially due to
the nature of the time-series which are composed of a slow-varying part denoting the trend of the
series, and a fast-varying part denoting the fluctuation of the time-series around the trend. Hence,
because of the particular structure of the signal to be estimated, the gaussian model is not able to
estimate correctly both the trend and the fluctuation whereas the multiscale model gives a better
estimate. This is particularly clear for thebasirondata set which is composed of a slow-varying
trend and fluctuations.

7. Conclusions

In this paper, we showed that an RKHS can be defined by its frame elements and conversely, one
can construct an RKHS from a frame. One of the key result is that the space spanned by any finite
number of functions belonging to a given Hilbert space, endowed with an adequate inner product,
is an RKHS with a kernel that can be at least numerically described. We have also proposed some
conditions for a infinite dimensional Hilbert space to be an RKHS. These conditions depend on the
frame and the dual frame elements of the Hilbert space and under some weakhypothesis, these
conditions are easy to check (see example 5) . Hence, we have essentiallyprovided some methods
for building a specific kernel adapted to a problem at hand.

By exploiting this new way for constructing RKHS, a multiscale algorithm using nested RKHS
has been introduced and examples given in this paper showed that using this algorithm or a semi-
parametric approach with frame-based kernel improves the result of a regression problem with re-
gards to nonparametric approximation. It has also been shown that these frame-based kernels allow
better approximation only if exploited in a semiparametric context. Using them as a regularization
network or SVMs kernels are not as efficient as one may have expected. However, depending on
the prior knowledge on the problem, one can build appropriate kernels thatcan enhance the quality
of the regressor within a semiparametric approach. However, for fully taking advantage of the main
theorem proposed in this paper, one has to answer some open questions:
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Figure 8: Examples of estimation of real-world time-series. The left and rightcolumns respec-
tively depict estimation ofbasironandengines. The top and bottom figures respectively
show the full time-series estimations and a zoomed version of these estimations. The+
marks at the bottom of each figure denote the position of the learning examplesin the
time-series. (solid) true function. (dotted) gaussian regularization networks estimation.
(dashed) wavelet multiscale regularization networks estimation.

• we give conditions for building RKHS to be used for approximation. But the difficulty stands
in one question: How to transform prior information on the learning problem toframe ele-
ments? This is still an open issue.

• reconstruction from frame elements has been shown to be more robust in presence of noise
(Daubechies, 1992). In fact, redundancy attenuates noise effects on the frame coefficients.
Thus, this is a good statistical argument for using frame with high redundancy. However, this
implies the computing of the dual frame and consequently a higher time complexity ofthe
algorithm. Hence, fast algorithms still have to be derived.

• a multiscale regularization algorithm has been sketched in this paper in order totake ad-
vantage of frame kernels. Although some experiments show that in some situations, this
algorithm performs well, it is not clear whether it theoretically sounds or not.Hence, some
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further works have to be carried for a better theoretical understandingof this novel regulariza-
tion method and for a better implementation of the algorithm and all the subsequentproblems
such as model selection.
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Appendix A.

We recall in this appendix a numerical method to process the dual frame of a frameable Hilbert
spaceH with frame elements{φn}n∈Γ. Let us define the operatorS

S:

∣

∣

∣

∣

H −→ H

f −→ ∑n∈Γ〈 f ,φn〉φn.
(35)

One can also write the operatorSasS,U∗U whereU is the frame operator defined in equation
(5) and (6). Our goal is to process

∀n, φ̄n = S−1φn.

Grochenig (1993) has proposed an algorithm to compute the problemf = S−1g . The idea is to
calculate f with a gradient descent algorithm along orthogonal directions with respect to norm
induced by the symmetric operatorS:

‖ f‖2
S = ‖S f‖2.

This norm is useful to compute the error.

Theorem 10 Let g∈ H . To compute f= S−1g, one has to initialize

f0 = 0 , r0 = p0 = g , p−1 = 0.

Then, for any n≥ 0, one defines by induction,

λn =
〈rn, pn〉
〈pn,Spn〉

(36)

fn+1 = fn +λnpn (37)

rn+1 = rn−λnSpn (38)

pn+1 = Spn−
〈Spn,Spn〉
〈pn,Spn〉

pn−
〈Spn,Spn−1〉
〈pn−1,Spn−1〉

pn−1. (39)

If σ =
√

B−
√

A√
B+

√
A

, then

‖ f − fn‖S≤
2σn

1+2σn‖ f‖S (40)

and thus,limn→+∞ fn = f .

Then, in order to process numerically the dual frame ofH , one has to apply this algorithm on
each element of the frame.

One can note that the speed of convergence is highly dependent on frame boundsA andB.
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Abstract

This paper describes a scheme for local computation in conditional Gaussian Bayesian networks
that combines the approach of Lauritzen and Jensen (2001) with some elements of Shachter and
Kenley (1989). Message passing takes place on an elimination tree structure rather than the more
compact (and usual) junction tree of cliques. This yields a local computation scheme in which all
calculations involving the continuous variables are performed by manipulating univariate regres-
sions, and hence matrix operations are avoided.

Keywords: Bayesian networks, conditional Gaussian distributions, propagation algorithm, elimi-
nation tree

1. Introduction

Bayesian networks were developed within the field of artificial intelligence asa tool for representing
and managing uncertainty (Pearl, 1988; Cowell et al., 1999), but are now finding many applications
beyond that field. When a Bayesian network represents the joint distributionof a set of finite discrete
random variables, exact and efficient local computations schemes may beused to evaluate marginal
distributions of interest. Shachter and Kenley (1989) introduced Gaussian influence diagrams to
represent multivariate Gaussian distributions and performed inference on them using standard influ-
ence diagram operations such as arc-reversals and barren node removal. Raphael (2003) presented
an alternative computational scheme for degenerate multivariate Gaussian distributions and has ap-
plied it to problems of rhythmic parsing of music.

Lauritzen (1992) introduced a method of exact local computation of means and variances for
Bayesian networks with conditional Gaussian distributions (Lauritzen and Wermuth, 1984, 1989),
but it was later discovered that the method was numerically unstable. More recently Lauritzen and
Jensen (2001) have developed an alternative and stable local computation scheme in junction trees
for these conditional Gaussian networks. Apart from the improved numerical stability compared to
the previous algorithm, their method is able to calculate full mixture marginals of continuous vari-
ables, and is also able to include deterministic linear relationships between continuous variables.
However their method is quite complicated, requiring evaluations of matrix generalized inverses,
and recursive combinations of potentials. This paper presents an alternative scheme in which the
local computation is performed on an elimination tree, rather than using a junctiontree. As will
be shown this means that matrix manipulations are avoided because all messagepassing opera-

c©2005 Robert G. Cowell.
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tions involving the densities of the continuous variables are performed by manipulating univariate
regressions, and complex operations such as recursive combination ofpotentials are avoided.

The plan of the paper is as follows. The following section presents notation for conditional
Gaussian regressions. Then elimination trees are defined and compared tojunction trees. A simple
network is used to illustrate the various phases of the message passing scheme. Then the general
procedure is presented: deriving an elimination tree derived from a network; initializing the elim-
ination tree is given (this is perhaps the most complicated part of the scheme);entering evidence
and evaluating posterior marginal densities. A discussion relating the current scheme to those of
Shachter and Kenley (1989) and Lauritzen and Jensen (2001) is presented, followed by an algo-
rithm for sampling from the posterior and two maximization operations.

2. CG Regressions

Following the notation of Lauritzen and Jensen (2001), a mixed Bayesian network consists of a set
of nodesV partitioned into a set ofdiscretenodes,∆, and a set of continuous nodes,Γ. Each node
represents a random variable. The Bayesian network is directed acyclicgraph, with the restriction
that discrete nodes are not allowed to have continuous parents. Associated with eachY ∈ Γ of the
continuous nodes are conditional Gaussian (CG) regressions, one for each configuration in the state
space of the discrete parentsI of Y, given by

L(Y | I = i,Z = z) = N (α(i)+β(i)Tz,σ2(i)),

whereα(i) is a real number,Z is a vector of the continuous parents ofY, β(i) is a vector of real
numbers of the same size ofZ, andσ2(i) is a non-negative real number. If the varianceσ2(i) = 0,
then the regression represents a deterministic linear relationship betweenY and theZ. Associated
with each discrete random variableX ∈ ∆ is a conditional probability distribution of the variable
given its parents in the graph.

The product of the densities associated with the continuous random variables gives the (multi-
variate normal) density of the continuous variablesΓ conditional on the discrete variables∆. On
multiplying this by the product of the conditional probability distributions of eachof the discrete
variables, the joint density of both discrete and continuous variables is obtained.

Lauritzen and Jensen (2001) introduce as their basic computational object a CG potential, rep-
resented by the tupleφ = [p,A,B,C](H |T), where: H is a set ofr continuous variables, called
the head; T is a set ofs continuous variables, called thetail; H ∩T = /0; p = {p(i)} is a table of
nonnegative numbers;A = {A(i)} is a table ofr ×1 vectors;B = {B(i)} is a table ofr × s matri-
ces; andC = {C(i)} is a table ofr × r positive semidefinite symmetric matrices. They introduce
various operations on such potentials: multiplication, extension, marginalization, direct combina-
tion, complementation, and recursive combination. These operations are required for their message
passing algorithm on the junction tree structure, and in the main correspond tooperations on prob-
ability distributions. However there are restrictions that must be observed for these operations to
be permissible; for example, it is not possible to directly combine two CG potentialstogether if the
intersection of their heads is non-empty. Such constraints are obeyed in their propagation algorithm.

In comparison to the propagation scheme presented in this paper, much of thecomplexity of
their algorithm arises because their local computational structure is a strongjunction tree of cliques.
The cliques with continuous variables essentially contain, after a basic initialization, multivariate
CG regressions. Sending a sum-marginal message between two cliques could require marginaliza-
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tion over both discrete and continuous variables, in which case the latter aremarginalized first. In
contrast, we work with univariate regressions on an elimination tree, avoiding matrix operations.
(Indeed one could implement the current scheme using the CG potentials and their operations, re-
stricting them to heads that contain only one variable, so thatr = 1.)

3. Junction Trees and Elimination Trees

In this section we review the notions of a junction tree of cliques and of an elimination tree, and
of their relative advantages and disadvantages. More details about these structures may be found in
Cowell et al. (1999).

3.1 Making a Junction Tree

Since the work of Lauritzen and Spiegelhalter (1988) the most common graphical structure on which
to perform exact inference on Bayesian networks by local message passing has been a junction tree
of cliques. This is a tree structure, with the node set being the set of cliquesC of a chordal graph,
such that the intersectionC1∩C2 of any two cliquesC1 ∈ C andC2 ∈ C is contained in every clique
on the path in the junction tree betweenC1 andC2. The intersection of two cliques adjacent in a
junction tree is called aseparator. The basic algorithmic steps in constructing the junction tree,
starting from a directed acyclic graphG, are as follows:

1. Add moral edges toG, and then drop directionality on the edges to form the moral graphGm.

2. Add sufficient fill-in edges toGm to make a chordal graphGc.

3. Identify the cliques ofGc, and join them up to form a tree structure which has the running-
intersection property.

Step 1 is straightforward, and Step 3 may be done efficiently using themaximum cardinality
searchalgorithm (Tarjan and Yannakakis, 1984). It is Step 2, also commonly known as trian-
gulation, that presents the main obstacle to efficient message passing. There are many ways to
triangulate the moral graphGm, what is desirable is that the cliques that arise are kept small, or
more specifically the sum total state space size over the cliques is minimized. Findingoptimal
triangulations is NP-hard (Yannakakis, 1981), and so early work focused on heuristic algorithms,
typically of a one-step-look-ahead type (Kjærulff, 1990), but other methods, for example genetic
algorithms (Larrãnaga et al., 1997) have also been used. More recent work has focussed on divide-
and-conquer approaches that can yield close to optimal or even optimal triangulations (Becker and
Geiger, 2001; Olesen and Madsen, 2002), and an optimal triangulation algorithm is implemented in
the commercial expert system HUGIN.1

3.2 Making an Elimination Tree

Elimination trees were introduced by Cowell (1994) for analysing decision problems, and are de-
scribed on pages 58–60 of Cowell et al. (1999). An elimination tree is similar toa junction tree,
in that it is a tree structure, but with the node set being a subset of the complete subgraphs of a
chordal graph (rather than the set of cliques) such that the intersectionC1∩C2 of any two nodes

1. The company web site is athttp://www.hugin.com.
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in the elimination tree is contained in every node on the path in the tree betweenC1 andC2. The
subset of complete subgraphs is determined by an elimination sequence, this being an ordering of
the nodes of the chordal graph. The basic steps to make an elimination tree starting with the directed
acyclic graphG are as follows:

1. Add moral edges toG, and then drop directionality on the edges to form the moral graphGm.

2. Take an elimination sequencevk,vk−1, . . . ,v1 of the k nodes (suitably re-numbered) of the
moral graphGm, and use this to form a triangulated graphGc.

3. For each nodevi associate a so calledcluster setof nodes consisting ofvi and its neighbours
later in the elimination sequence (and hence of lower number), call this setCi .

4. Join the setsC1,C2, . . . ,Ck, which has the running-intersection property, together to form a
tree.

Step 1 is the same step as for making a junction tree. For Step 2, we first start with the nodevk,
and add edges so that it and its neighbours form a complete subgraph (thiswill make the setCk in
Step 3). Then move onto nodevk−1, add edges so that it and its neighbours that occur later in the
elimination sequence form a complete subgraph (this will make the setCk−1 in Step 3). Repeat this
last step for the other nodes in the elimination sequence. There will bek cluster sets, one for each
of thek nodes in the graphG, andC1 = {v1}. The choice of elimination sequence will govern the
number of fill-ins in the triangulation, and hence the size of the state space of the elimination tree.
Reasonable choices can usually be made by a one-step-look-ahead search. Notice that if one knows
an optimal triangulationGc of Gm, then a perfect numbering of the nodes ofGc could be used as an
elimination sequence forGm. Step 4 may be done in time typically linear ink (but possibly as bad
asO(k2)), by the simple expedient of finding in each cluster setCi the first nodevei , say, that was
eliminated aftervi and then joiningCi to Cei .

3.3 Comparing Elimination and Junction Trees

In an elimination tree, the set of cluster sets contains the set of cliques of the triangulated graph
together with some other sets. Hence in terms of storage requirements for potentials on the sets,
elimination trees are less efficient than junction trees. Sometimes they can be very bad, as shown
with the following example.

Suppose the original graphG or its moral graphGm is a complete graph ofk nodes, each of
which represents a binary random variable. Then there are no fill-in edges to be added asGm is
already triangulated, and the junction tree is a single clique containing allk nodes ofG and having
a total state space of size 2k. Now consider the elimination tree, made by using an elimination
sequencevk,vk−1, . . . ,v1. This will yield k cluster sets, withCj =∪

j
i=1{vi}, having a total state space

size given by 2+22+ · · ·+2k = 2(2k−1). That is, it requires almost double the storage requirements
of the junction tree. Actually things are worse than this, because we have not taken into account the
k−1 separators between adjacent clusters which have total state space size2+ 22 + · · ·+ 2k−1 =
2k − 2, thus leading to a factor of almost three in the storage requirements. However it should
be emphasized that this is a worst case scenario, and in most applications theoverhead is a small
fraction of the total state space of the corresponding junction tree.
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Now suppose that the variables ofG are continuous rather than being discrete, withG now
representing a multivariate Gaussian distribution. To represent this distribution in the junction tree
will requirek values for the means of each variable, and a furtherk(k+1)/2 values for the symmetric
covariance matrix, making a total ofk(k+3)/2 values to be stored. In the corresponding elimination
tree, as we shall see, only univariate regressions are stored. Hencein C1 we store two numbers (a
mean and a variance), inC2 we store three numbers (a mean, one coefficient and a variance),. . .
, and inCk we storek+ 1 numbers, (a mean,k−1 coefficients, and a variance). Adding all these
together we have a total of 2+ 3+ · · ·+(k+ 1) = k(k+ 3)/2 values to be stored, the same as for
the junction tree. Thus the use of the elimination tree does not introduce duplication in the values
to be stored, in contrast to the discrete case. Hence the elimination tree isalmostas efficient as the
junction tree in storage requirements (only almost, because there will be some extra bookkeeping
needed to keep track of which variables are in each of the cluster sets).

3.4 Strongly Rooted Trees

For purely discrete Bayesian networks and purely continuous multivariateGaussian Bayesian net-
works the junction or elimination trees described above may be used for exact propagation algo-
rithms, with any clique or cluster set being chosen as the root to which messages are collected to
and distributed from. For the conditional Gaussian networks in which both discrete and continuous
variables appear, Lauritzen (1992) used the notion of amarked graph(Leimer, 1989) to define the
structure of astrongly rooted junction treein order to have a manageable propagation scheme which
handles the asymmetry between the discrete and continuous variables. This structure is retained in
Lauritzen and Jensen (2001). Here we use a similar structure based on elimination trees, which
we shall call astrongly rooted elimination tree. We shall assume without loss of generality that
the graphG of the Bayesian network is connected. Then a strongly rooted elimination treemay be
formed in the same way as a standard elimination tree provided that, in the elimination sequence
used, all of the continuous variables occur before any of the discrete variables. The cluster sets are
joined up as before, and the last cluster formed is taken to be the strong root. (If G has more than
one connected component, then we form a strong elimination tree for each component; it can then
be useful to introduce an empty cluster set connected to each of the strong roots of the individual
elimination trees, and make this the strong root of the forest of elimination trees.)

The reason for using a strong elimination tree will become apparent when wediscuss the initial-
ization of the tree and propagation on it. For a more efficient computation scheme (from a storage
requirement viewpoint) is it convenient to use a tree structure that is intermediate between a junction
tree and an elimination tree, a structure which we call astrong semi-elimination tree, introduced in
the next section.

3.5 From Elimination Tree to Junction Tree

Given an elimination ordering for a graphG, one can construct a triangulated graphGc, use maxi-
mum cardinality search to find the cliques, and then organize the cliques into a junction tree. Alter-
natively, one could take the elimination tree and remove the redundant clustersets that are subsets
of cliques, by repeated application of the following result due to Leimer (1989) (see also Lemma
2.13 of Lauritzen (1996) or Lemma 4.16 of Cowell et al. (1999)):

1521



COWELL

Lemma 3.1 Let C1, . . . ,Ck be a sequence of sets having the running intersection property. Assume
that Ct ⊆Cp for some t6= p and that p is minimal with this property for fixed t. Then:

(i) If t > p, then C1, . . . ,Ct−1,Ct+1, . . . ,Ck has the running intersection property.

(ii) If t < p, then C1, . . . ,Ct−1,Cp,Ct+1, . . . ,Cp−1,Cp+1, . . . ,Ck has the running intersection prop-
erty.

The preceding Lemma operates on sets, but in the elimination tree we also have links be-
tween sets, which will need to be rearranged if a set if deleted. The following algorithm, based
on Lemma 3.1 makes a single pass through the cluster sets of an elimination tree to produce a junc-
tion tree, it assumes that the elimination tree is connected. It is convenient to make the edges of the
elimination tree directed edges, with directions pointing away from the rootC1. We may then talk
of parents(pa) and children(ch) of the cluster sets in the tree in the obvious manner.

Algorithm 3.2 (Elimination tree to Junction tree)

1. Initialize:

• An ordered list L of the cluster sets C1,C2, . . . ,Ck derived from the elimination ordering
vk,vk−1, . . .v1 having the running intersection property, and joined to form an elimina-
tion tree.

• An ordered list J, initially empty.

2. While L is non-empty do:

• Remove the first element Ct from L;

• If Ct is a clique then append it to the end of J, otherwise:

(a) find Cp ∈ ch(Ct) such that p is minimized;

(b) Remove Cp from L;

(c) Set pa(Cp) = pa(Ct);

(d) In each cluster c∈ ch(Ct)\Cp replace Ct in pa(c) with Cp;

(e) Add the elements of ch(Ct)\Cp to the set ch(Cp);

(f) Put Cp at the front of L;

(g) Discard Ct .

It is left to the reader to verify that this repeatedly applies Step (ii) of Lemma 3.1, with Steps
2(c)-(e) updating the connections in the tree. When the algorithm terminates the list J contains the
cliques in running intersection order, and the parent and child sets of these cliques contain the links
required to make a strong junction tree. An example illustrating the steps in Algorithm 3.2 is shown
in Figure 1.

Although the message passing algorithms presented below will work on a strong elimination
tree, to optimize the storage requirements it is better to work on astrong semi-elimination tree. This
is a strong elimination tree in which the purely discrete clusters that are subsetsof other purely
discrete clusters have been removed, with links among the remaining clusters suitably adjusted.
Algorithm 3.3 produces a strong semi-elimination tree from a strong elimination tree.
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Figure 1: Illustration of Algorithm 3.2. On the left a Bayesian network, and top right the elimina-
tion tree obtained using the elimination sequence of reverse alphabetical ordering. In the
top tree we first remove the redundant clusterCt = {A} having the unique child cluster
Cp = {AB}, yielding the second tree in which{AB} now has no parent. Then the redun-
dant clusterCt = {BC} is removed: it has the unique child clusterCp = {BCD}, and so
this now inherits{BC}’s parent{AB}. Finally the redundant clusterCt = {BCD} is re-
moved. It has two child clusters, of theseCp = {BCDE} becauseE is eliminated afterF .
Cp has its parent changed to{AB} (Step 2b) and is itself made the new parent of{BCDF}
(Step 2c). It inherits the extra child{BCDF} from Ct (Step 2d) to yield the bottom tree,
which after dropping directions on the edges gives the junction tree.
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Algorithm 3.3 (Strong elimination tree to strong semi-elimination tree)

1. Initialize:

• An ordered list L of the cluster sets C1,C2, . . . ,Ck derived from the strong elimination
ordering vk,vk−1, . . .v1 having the running intersection property.

• An ordered list J, initially empty.

2. While L is non-empty do:

• Remove the first element Ct from L;

• If Ct contains a continuous variable, or Ct is purely discrete and not a subset of another
purely discrete cluster, append it to J, otherwise:

– Find Cp ∈ ch(Ct) such that p is minimized; (note that Cp will be purely discrete and
Ct ⊂Cp), and then:

(a) Remove Cp from L;

(b) In Cp set pa(Cp) = pa(Ct);

(c) In each cluster c∈ ch(Ct)\Cp replace Ct in pa(c) with Cp;

(d) Add the elements of ch(Ct)\Cp to the set ch(Cp);

(e) Put Cp at the front of L;

(f) Discard Ct .

4. Computations on a Simple Network

The computational scheme to be presented here is more complicated than for thepurely discrete
case. Although both start with moralizing the Bayesian network, for CG networks a strong triangu-
lation is required, leading to a strong elimination tree. For discrete networks, after the junction tree
of cliques has been made, the initialization stage is quite straightforward, consisting of: (i) setting
all entries in all of the tables (potentials) in the cliques and separators of the junction tree to unity;
(ii) a multiplication of each conditional probability table of the Bayesian network into any one suit-
able clique table (one whose clique variables contains the variables of the conditional probability
table); and (iii) propagation on the junction tree to yield clique and separator tables storing marginal
distributions. For the CG networks we use the same initialization process for thediscrete part of
the elimination tree. However on the continuous part of the tree things are morecomplicated, and
its initialization is perhaps the most important and complicated part of the computational scheme
of this paper. In the initialization phase, CG regressions are passed between continuous clusters,
and so we introduce a list structure called apostbagto store such messages that are to be passed.
In addition we introduce for each continuous cluster another list structurecalled anlp-potential
that will on completion of the initialization phase store the conditional density of theelimination
variable associated with the cluster (conditional on the remaining variables in the cluster). Each
regression of the Bayesian network is initially allocated to either somelp-potentialor postbagby
rules given below. During the initialization process the contents of thelp-potential’s andpostbag’s
may be modified by an operation that we call EXCHANGE (see Section 5.3), which is equivalent to
an arc-reversal in the Bayesian network. These EXCHANGE operations have to done in a correct
order, which requires apostbag’s contents to be sorted.
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Evaluating node marginals is also more complicated. For discrete variables this proceeds as in
the purely discrete case, by a marginalization of the tables in the discrete clusters in the elimination
tree. For continuous variables we use the PUSH operation introduced by Lauritzen and Jensen
(2001), which is a sequence of EXCHANGE operations carried out among regressions in continuous
clusters along a path in the tree, to obtain for a continuous variable its marginaldensity conditional
on a set of discrete variables. When combined with the marginal of those discrete variables we
obtain the marginal density of the continuous variable—typically a mixture. The PUSH operation is
also used as part of the process of entering evidence about continuous variables.

In this section we use a simple example to illustrate the steps of constructing a tree from a
Bayesian network, initializing the tree, and finding the marginal of a continuous node, before giving
the formulation of these algorithmic steps for a general network in the subsequent section. Some
terminology is also introduced that will be used later.

4.1 Specification

Figure 2 shows a small mixed Bayesian network consisting of three discrete random variables,
shown as square-shaped nodes, and three continuous real-valued random variables, shown as cir-
cles. It follows from the structure of the Bayesian network that the joint distribution of the discrete

A B C

X

Y Z

Figure 2: A mixed Bayesian network: square nodes represent discretevariables, circular nodes
continuous variables.

variables isP(A = a,B = b,C = c) = P(A = a)P(B = c)P(C = c), where the marginal probabil-
ity distributions on each individual variable are assumed specified. To complete the probabilistic
specification, we require the set of linear regressions (with theα’s, β’s andσ’s being constants):

L(X |A = a,B = b) = N (αX:ab,σ2
X:ab)

L(Y |X = x,C = c) = N (αY:c +βY:cx,σ2
Y:c)

L(Z |Y = y,C = c) = N (αZ:c +βZ:cy,σ2
Z:c)

So for example, if all discrete variables are binary, four regressions are required forX, and two
each forY andZ. This set of linear regressions defines the joint density of the continuousvariables
conditional on the discrete variables.

4.2 Making the Elimination Tree

The first stage is to transform the Bayesian network into the tree on which themessage passing takes
place. There are 36 possible elimination sequences that could be applied to the moral graph (3!
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ways of eliminating the continuous variables first, followed by 3! ways of eliminating the discrete
variables); here we shall use a sequence in whichY is eliminated first, thenX. This is not the
most computationally efficient sequence (eliminatingZ first will ensure thatZ does not appear in a
cluster withX), but helps illustrate the operations of the propagation algorithm. In Figure 3we show
various trees that may be formed based on this elimination sequence; for ourpropagation algorithm
we shall use the middle tree, which has the strong root{ABC}.

B AB ABC ZABC XZABC YXZC

ABC ZABC XZABC YXZC

XZABC YXZC

Figure 3: Strong elimination tree (top) with strong root{B}, strong semi-elimination tree with
strong root{ABC} (middle) and strong junction tree (bottom) with strong root{XZABC},
using the elimination sequenceYXZCABapplied to the moralized graph derived from the
network in Figure 2. Separators are not shown.

4.3 Assignment of Potentials

The next stage is to assign the conditional probabilities and densities of the Bayesian network to the
tree so that the tree contains a representation of the joint density of all of thevariables. For purely
discrete Bayesian networks, and in the formulations of mixed networks of Lauritzen (1992) and
Lauritzen and Jensen (2001), each conditional distribution of a discretenode given its parents may
be assigned to any clique in the junction tree that contains the family of the node,and similarly for
the continuous variables the conditional density of a node given its parentsis assigned to any clique
containing the family of the node.

In contrast we apply a more restrictive assignment: for continuous variables the conditional
density of a node given its parents is assigned to any cluster containing the family of the node, but
the conditional distribution of a discrete node given its parents may be assigned to any cluster set
that contains the family of the node provided that the cluster set does not contain any continuous
variables. There always exists such a cluster set, because discrete variables are not eliminated until
after the continuous variables are eliminated.

As a consequence of this assignment, the subtree consisting of those clusters containing only
discrete variables contains all of the information required to reconstruct the joint marginal of the
discrete variables; this part of the tree shall be referred to as thediscrete part. Similarly, the clusters
having the continuous variables hold representations of all of the densitieswith which one can
construct the joint density of the continuous variables conditional on the discrete variables; this part
of the tree will be called thecontinuous part. The set of discrete clusters that are neighbours to the
continuous part will be called theboundary. Thus in Figure 3 the discrete part of the middle tree
consists of the set{ABC}, the continuous part consists of the sets{ZABC},{XZABC} and{YXZC},
and the boundary consists of the single set{ABC}. We assign probability tables and regressions as
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follows:
Cluster Regressions
ABC P(A),P(B),P(C)
ZABC −
XZABC L(X |A,B)
YXZC L(Z |Y,C),L(Y |X,C)

Our aim is that when initialization is complete, on the continuous part of the tree wehave the
following regressions:

Cluster Regressions
ZABC L(Z |A,B,C)
XZABC L(X |Z,A,B,C)
YXZC L(Y |X,Z,C)

and in general we aim to represent in each continuous cluster set the conditional densities of the
eliminated node given the remaining variables in the cluster set. This corresponds to the set-chain
representation (Lauritzen and Spiegelhalter, 1988), at least on the continuous part of the tree. Note
that we do not explicitly store potentials on separators between continuous cluster sets. In contrast
for the discrete part of the tree we will retain separators, and perform usual sum-propagation to find
the sum-marginal potential representation (see Cowell et al. (1999), Chapter 6); however in this
example there is no such separator.

We move from the initial assignment of regressions to this (partial) set-chain representation
by local message passing as follows. First, in the cluster set{YXZC} we rearrange the pair of
regressions as follows,

L(Z |Y,C = c),L(Y |X,C = c) → L(Z,Y |X,C = c) → L(Y |Z,X,C = c),L(Z |X,C = c)

for each value thatC can take. This rearrangement corresponds to the arc-reversal of the directed
edge fromY to Z in Figure 2 (that is, an application of Bayes’ theorem). In the expression on the
right the regressionsL(Y |ZXC) are retained in the cluster set. The regressionsL(Z |X,C), which
are independent ofY, are forwarded to the neighbouring cluster set towards the root, here{XZABC}.
After this rearrangement we have the following represented on the continuous part of the tree:

Cluster Regressions
ZABC −
XZABC L(X |A,B),L(Z |X,C)
YXZC L(Y |X,Z,C)

Next, the regressions in the cluster{XZABC} are modified as follows:

L(X |A = a,B = b),L(Z |X,C = c)

→ L(X,Z |A = a,B = b,C = c)

→ L(X |Z,A = a,B = b,C = c),L(Z |A = a,B = b,C = c).

The regressionsL(X |Z,A,B,C) are retained in the cluster{XZABC}, and the regressionsL(Z |A,B,C)
are forwarded to the cluster{ZABC}, and we are done.

Note that it is not necessary to form the intermediate joint density implied by, forexample,
L(X,Z |A,B,C). Instead, the algebraic EXCHANGE formulae (see Section 5.3) may be applied to
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pass directly from one pair of regressions to another, even in the case that some variances are zero
(corresponding to deterministic linear relationship between continuous variables). These formu-
lae are essentially equivalent to Theorem 1 of Shachter and Kenley (1989). By working directly
and only with linear regressions, instead of multivariate conditional Gaussian densities, the need for
matrix algebra and evaluation of determinants is avoided. Another advantageof the EXCHANGE for-
mulae, as emphasized by Shachter and Kenley (1989), is that they should not lead through roundoff
error to negative values of variances, something that could happen when manipulating multivariate
densities.2

4.4 Calculating Marginals

One of the prime applications of the propagation algorithms in Bayesian networks is to evaluate
marginal distributions of variables, perhaps conditional on values (evidence, findings) of some other
variables in the network. We illustrate the procedure for the simple example, beginning with the case
that no variable in the network has evidence.

Suppose that we wish to evaluate the marginal density ofZ. Formally this may be written as

fZ(z) = ∑
a,b,c

Z ∞

x=−∞

Z ∞

y=−∞
fXYZ|ABC(x,y,z|a,b,c)p(a,b,c)dydx,

= ∑
a,b,c

Z ∞

x=−∞
fXZ|ABC(x,z|a,b,c)p(a,b,c)dx

= ∑
a,b,c

fZ |ABC(z|a,b,c)p(a,b,c),

where fXYZ|ABC(x,y,z|a,b,c) is the multivariate normal density of the continuous variables given
the values of the discrete variables, etc. Now on our elimination tree we have arepresentation of
fXYZ|ABC(·) in terms of the three linear regressionsL(Y |X,Z,C), L(X |Z,A,B,C) andL(Z |A,B,C),
and the last of these combined with the joint distributionP(A,B,C) stored in the discrete cluster
{ABC} is sufficient to evaluate the marginal density ofZ, which will thus be a mixture of normal
densities.

Now suppose we wish to evaluate the marginal density ofY. Formally this is given by

fY(y) = ∑
a,b,c

Z ∞

x=−∞

Z ∞

z=−∞
fXYZ|ABC(x,y,z|a,b,c)p(a,b,c)dzdx,

= ∑
a,b,c

Z ∞

x=−∞

Z ∞

z=−∞
fY |XZC(y|x,z,c) fX |ZABC(x|z,a,b,c)×

fZ |ABC(z|a,b,c)p(a,b,c)dzdx, (1)

where in (1) we have written down the factorization of the joint density as available on the tree. We
wish to evaluate this by local message passing. To do this we rearrange the current factorization into
a more suitable form. First we take the pair of densitiesfY |XZC(y|x,z,c), fX |ZABC(x|z,a,b,c) and
use the EXCHANGE operation to rewrite these as the pairfX |YZABC(x|y,z,a,b,c), fY |ZABC(y|z,a,b,c)

2. Or so in theory! In implementing the algorithms described in this paper, theauthor came across the problem that
when subtracting one zero double precision from another, the result was zero but with the negative bit set, and so was
treated by the compiled program as a negative number! Tracking down this ‘bug’ took the author a couple of days.
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which leaves the product density unchanged. Now integrating overX (which gives unity) leaves the
following expression to evaluate:

fY(y) = ∑
a,b,c

Z ∞

z=−∞
fY |ZABC(y|z,a,b,c) fZ |ABC(z|a,b,c)p(a,b,c)dz,

We now apply the EXCHANGE operation again to the two densities in this expression to yield

fY(y) = ∑
a,b,c

Z ∞

z=−∞
fZ |YABC(z|y,a,b,c) fY |ABC(y|a,b,c)p(a,b,c)dz,

in which theZ integral gives unity, leaving the desired marginal

fY(y) = ∑
a,b,c

fY |ABC(y|a,b,c)p(a,b,c).

This sequence may be described in terms of a local message passing as follows: (i) take the
regression stored in the cluster{YXZC} and pass it to{XZABC}; (ii) perform the EXCHANGE

operation on the pair of regressions stored in{XZABC}; (iii) take the resulting regression that has
Y in the head and pass it it to{ZABC}; (iv) perform the EXCHANGE operation on the pair of
regressions now stored in{ZABC}; (v) combine the resulting regression that hasY in the head with
the joint distributionP(A,B,C) that may be obtained from the boundary set to yield the marginal of
Y.

This process of rearranging the regressions involvingY is an example of the PUSH operation
introduced by Lauritzen and Jensen (2001). (Their PUSH operation can act more generally on a
group of variables, but because we are working with an elimination tree we only require it to act on
one variable at a time.) We say that the variableY has been PUSHED to the boundary. The PUSH

operation leaves unchanged the overall joint density of the continuous variables conditional on the
discrete variables.

Lauritzen and Jensen also used the PUSH operation to incorporate evidence on continuous vari-
ables, and we shall follow them. Thus suppose that we wish to evaluate the marginal density ofZ
givenY = y∗. The first step is to PUSH the variableY to the boundary, and when it arrives there
substituteY = y∗ in all cluster sets in which it appears: In the cluster neighbouring the boundaryY
appears in the head and the tail is empty of continuous variables, and so this yields a likelihood term
for each configuration of the discrete variables that is passed to (that is,multiplied into the discrete
potential stored in) the boundary set. The tree then stores the following representations:

Cluster Regressions and Distributions
ABC P(A,B,C,Y = y∗)
ZABC L(Z |A,B,C,Y = y∗)
XZABC L(X |A,B,C,Z,Y = y∗)
YXZC −

We may now take the CG regressions stored in{ZABC} and combine them with the marginal
P(A,B,C,Y = y∗) to obtain, after normalization, the marginal density ofZ given the evidence. To
obtain the marginal density ofX, we would PUSH the regressions in{XZABC} to the boundary.
Evidence about the discrete variables may also be entered, but only on thediscrete part of the tree.
For evidence on several continuous variables it is convenient to enter the evidence one variable
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at a time. For example, to enter additional evidence thatX = x∗, we first PUSH the regression
L(X |A,B,C,Z,Y = y∗) to the boundary, and then substituteX = x∗, yielding the representation:

Cluster Regressions and Distributions
ABC P(A,B,C,X = x∗,Y = y∗)
ZABC L(Z |A,B,C,X = x∗,Y = y∗)
XZABC −
YXZC −

from which the marginal ofZ given the evidence may be found. Notice that the likelihood of the
evidence is found, as usual, as the normalization constant when all evidence has been collected to
the strong root.

5. The General Local Propagation Scheme

The example in the previous section has illustrated the main steps in initialization and evidence
propagation, and evaluation of marginal densities of variables. Howeverthe example is too simple
to exhibit all of the subtleties involved in the general procedure. In this section we assume that
we have a strong elimination tree, and that it is connected. If the tree is disconnected, then the
scheme described below may be applied to each connected component separately. The algorithms
will also work for a strong semi-elimination tree, and in implementations this might be preferred on
efficiency grounds; no details of the following algorithms depend on which of the two types of tree
is used.

5.1 Some Notation and Terminology

Let us suppose that the original conditional-Gaussian Bayesian networkhasn > 0 continuous vari-
ablesΓ = {γ1, . . . ,γn} andm> 0 discrete variables∆ = {δ1, . . . ,δm}. Also suppose that the variables
have been numbered so that the elimination ordering of the continuous variables to make the strong
elimination tree is(γn,γn−1, . . . ,γ1). The ordering of the discrete variables is unimportant for our
purposes, except that it should lead to a computationally efficient tree. Wedenote the set of con-
tinuous cluster sets byCΓ, with CΓ(i) ∈ CΓ denoting the cluster set associated with eliminating
the continuous variableγi . Let SΓ denote the separators adjacent to continuous cluster sets, with
SΓ(i) ∈ SΓ denoting the separator betweenCΓ(i) and its neighbouring cluster set in the direction of
the strong root. Note that if the neighbouring cluster is part of the boundary (that is, purely discrete),
thenSΓ(i) will be purely discrete. We will denote the set of purely discrete clusters byC∆, and the
set of separators between purely discrete clusters byS∆.

In the present propagation scheme, the conditional distribution of the continuous variables given
the discrete variables is maintained in factored form by sets of univariate regressions. The messages
passed between the continuous clusters consists of such sets. To facilitatediscussion of this we
introduce data structures to store such sets of regressions.

In each continuous cluster we retain, for each configuration of the discrete variables in the
cluster, two list structures to store zero or more linear regressions, one that we call thepostbag, the
other we call thelp-potential(lp is short forlinear predictor). On the separatorsSΓ we retain only
thepostbag. On the clustersC∆ and separatorsS∆ of the discrete part of the tree we store the usual
tables (called potentials) of discrete junction tree propagation algorithms.
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5.2 Pre-initializing the Tree

After constructing the tree from the Bayesian network, the first task is to allocate the conditional
probability tables and CG regressions to the clusters of the tree. We adopt amore restrictive alloca-
tion than Lauritzen and Jensen (2001) in that we restrict where the probability tables are allocated.
The allocation scheme is as follows:

Algorithm 5.1 Allocation of potentials

Pre-initialize tree potentials

In each continuous cluster set CΓ(i) ∈CΓ:

• Set eachlp-potentialto empty;

• Set eachpostbagto an empty list.

In each SΓ(i) ∈ SΓ: set eachpostbagto an empty list.

Set all table entries to unity in all potentials of the clustersC∆ and separatorsS∆ of the discrete
part of the tree.

Allocation of probability tables

For each X∈ ∆: multiply P(X | pa(X)) into the potential of any one discrete cluster ofC∆ that
contains X∪ pa(X).

Allocation of CG regressions

For each X∈ Γ, find a cluster, CΓ(i) say, which contains X∪ pa(X), and:

• IF the elimination nodeγ(i) of CΓ(i) is X, then addL(X | pa(X)) to thelp-potential;

OTHERWISE appendL(X | pa(X)) to thepostbagof CΓ(i).

Under this allocation the discrete part of the tree contains all of the conditional (and uncondi-
tional) probability tables of the discrete variables, and the product of the potentials in the discrete
clusters yields the joint marginal distribution of the discrete variables. In the continuous part of the
tree are contained all of the CG regressions of the continuous variables inthe Bayesian network,
hence the lists in the clusters in the continuous part of the tree represent (infactored form) the joint
multivariate density of the continuous variables given the discrete variables.

Applying this to the example of Section 4, both thepostbagand lp-potentialof {ZABC} were
empty, thepostbagof {XZABC}was empty but itslp-potentialstoredL(X |A,B), whilst for{YXZC}
thepostbagcontainedL(Z |Y,C) and thelp-potentialstoredL(Y |X,C).

Note that the continuous leaves of the elimination tree will have non-emptylp-potentials, be-
cause for each such leaf, its associated elimination node appears nowhere else in the tree, and so
there is no other cluster where the conditional density of that variable can be allocated.
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5.3 TheEXCHANGE Operation

The basic formula required in the message passing scheme of this paper is theEXCHANGE oper-
ation, which is essentially Bayes’ theorem. LetY,Z,W1, . . .Wl be continuous variables (whereY
andZ do not refer to the variables in our example), anda0,a1, . . .al , b, c0,c1, . . .cl ,σY andσZ |Y be
constants, withb 6= 0, such that we have the pair of CG regressions:

Z |Y,W1, . . .Wl ∼ N(a0 +a1W1 + · · ·+alWl +bY,σ2
Z |Y),

Y |W1, . . .Wl ∼ N(c0 +c1W1 + · · ·+clWl ,σ2
Y).

Then the EXCHANGE operator converts these into the pair of distributions

Y |Z,W1, . . .Wl ∼ N(·, ·) andZ |W1, . . .Wl ∼ N(·, ·), (2)

that have the same joint density as the original pair. For convenience we introduce and define
W0 ≡ 1. We show in Appendix A that

Z |W1, . . .Wl ∼ N

(
l

∑
i=0

(ai +bci)Wi ,σ2
Z |Y +b2σ2

Y

)

.

For the conditional distribution ofY there are three cases to consider.
Case 1:σ2

Y > 0 andσ2
Z |Y > 0:

Y |Z,W1, . . .Wl ∼ N




∑l

i=0

(

ciσ2
Z |Y −aibσ2

Y

)

Wi +bσ2
YZ

σ2
Z |Y +b2σ2

Y

,
σ2

Yσ2
Z |Y

σ2
Z |Y +b2σ2

Y



 .

Case 2:σ2
Y > 0 andσ2

Z |Y = 0:

Y |Z,W1, . . .Wl ∼ N

(
Z−∑l

i=0aiWi

b
,0

)

.

Case 3:σ2
Y = 0 andσ2

Z |Y ≥ 0:

Y |Z,W1, . . .Wl ∼ N

(
l

∑
i=0

ciWi ,0

)

.

The derivation of these formulae is straightforward and is given in Appendix A. Case 1 is
equivalent to Theorem 1 of Shachter and Kenley (1989), but differing in that they use the central-
moment representation of multivariate Gaussian distributions, whereas the EXCHANGE operation
(like Lauritzen and Jensen (2001)) employs the raw-moment representation. Cases 2 and 3 may be
obtained as mathematical limits of Case 1, however computer implementations would require these
to be treated separately.

Finally, if b = 0 (so thatL(Z |Y,W1, . . .Wl ) does not depend onY), the EXCHANGE operation
merely permutes the two regressions, withY andZ disappearing from the conditioning sets of the
two regressions.
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5.4 Initial Transformation of the Tree: An Example

Having allocated potentials according to Algorithm 5.1, we proceed to complete the initialization
phase via local message passing to yield, on the continuous part of the tree, univariate regressions
in the lp-potentials and emptypostbags, so representing, in set-chain form on the continuous part
of the tree, the joint density of the continuous variables conditional on the discrete variables. In
the example of Section 4 nopostbagcontained more than one regression (for each discrete con-
figuration); in larger and more complicated networks this might not happen, and so within each
continuous cluster a sequence of EXCHANGE operations may be necessary. When this happens care
must be taken in the ordering of such operations. We illustrate this in an examplebefore giving the
general procedure.

The example we shall use is given as Example 3 in Lauritzen and Jensen (2001), and is shown
in Figure 4. This example is chosen because Lauritzen and Jensen show that in their initialization
phase several layers of recursive combinations of potentials are required. We shall see how this
arises and is avoided in our propagation scheme.

A

D

F

EC

B A AB

ABCABCD

ABCDE CDEF

Figure 4: Mixed Bayesian network (left) with one discrete variableA, given as Example 3 in Lau-
ritzen and Jensen (2001). In the strong elimination tree (right) the strong root is a, and
the two sets{CDEF} and{ABCDE} would by themselves form a strong junction tree
with {ABCDE} as the strong root.

We shall use the same initial allocation of regressions as Lauritzen and Jensen, which means that
L(F |−) is put into thelp-potentialof cluster{CDEF}, and in itspostbagwe placeL(E |CF) and
L(D |F). In thepostbagof cluster{ABCDE} we place the regressionsL(C|DA) andL(B|ACDE).
The lp-potentialof cluster{ABCDE} is empty, as are thelp-potentials andpostbags of the three re-
maining continuous clusters{ABCD}, {ABC} and{AB}. The discrete distributionP(A) is allocated
to the strong root{A}. This allocation is displayed in the following table.
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Cluster lp-potential postbag
{CDEF} L(F |−) L(E |CF), L(D |F)
{ABCDE} - L(C|DA), L(B|ACDE)
{ABCD} - -
{ABC} - -
{AB} - -
{A} P(A)

Our aim is to transform thelp-potential of cluster{CDEF} into L(F |CDE), (becauseF is
the elimination variable for this cluster) using the originallp-potential, thepostbagcontents, and
EXCHANGE operations. This corresponds to arc-reversal operations on the two directed edgesF →
D andF → E in the original Bayesian network. Now if we first reverse the arcF → E, then this will
give rise to an illegal directed-cycle in the Bayesian network (E →F →D→C→E); this is avoided
if we first reverse the arcF → D. Hence our sequence of EXCHANGE operations is summarized by

L(F |−),L(D |F)
︸ ︷︷ ︸

,L(E |CF) → L(D |−),L(F |D),L(E |CF)
︸ ︷︷ ︸

→ L(D |−),L(E |CD),L(F |CDE),

in which the pairings of the potentials in each EXCHANGE operation is indicated. We now retain
L(F |CDE) in thelp-potentialof cluster{CDEF} and pass the regressionsL(D |−) andL(E |CD)
to the cluster{ABCDE}. Now because the variableE is the elimination variable in this cluster,
this means thatL(E |CD) is put into thelp-potentialandL(D |−) is put into thepostbag. Actu-
ally, because this cluster contains the discrete variableA, there is anlp-potentialand apostbagfor
each configuration ofA. Hence we really put a copy ofL(E |CD) into each suchlp-potential, and
similarly a copy ofL(D |−) into each suchpostbag. This corresponds to a trivial extension of the
regressions toL(E |ACD) ≡ L(E |CD) andL(D |A)≡ L(D |−). (In the following we shall assume
for brevity that we are working with a particular configuration ofA, to avoid repeating the phrase
“for each configuration ofA”.)

So now in the cluster{ABCDE} we have the following regressions stored:

lp-potential L(E |ACD)
postbag L(D |A), L(C|DA), L(B|ACDE)

In our desired set-chain representation we wish to end up withL(E |ABCD) in the lp-potential;
we may use the following sequence of EXCHANGE operations,

L(E |ACD),L(D |A)
︸ ︷︷ ︸

,L(C|DA),L(B|ACDE)

→ L(D |A),L(E |ACD),L(C|DA)
︸ ︷︷ ︸

,L(B|ACDE)

→ L(D |A),L(C|DA),L(E |ACD),L(B|ACDE)
︸ ︷︷ ︸

→ L(D |A),L(C|DA),L(B|ACD),L(E |ABCD),

in which the first two operations merely permute the regressions, (C andD are already conditioning
variables of the regressions ofE), and only the last is an application of Bayes’ theorem. From this
set,L(E |ABCD) is retained in thelp-potentialof {ABCDE}, L(D |A) is put into thelp-potentialof
{ABCD} (becauseD is the elimination variable of this cluster), andL(C|DA) andL(B|ACD) are
put into thepostbagof {ABCD}. Hence in the cluster{ABCD} we have:
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lp-potential L(D |A)
postbag L(B|ACD), L(C|DA)

Now D appears in the tails of both regressions in thepostbag, hence care must be taken. The
correct EXCHANGE sequence is:

L(D |A),L(C|DA)
︸ ︷︷ ︸

,L(B|ACD) → L(C|A),L(D |AC),L(B|ACD)
︸ ︷︷ ︸

→ L(C|A),L(B|AC),L(D |ABC)

L(D |ABC) is retained in the cluster{ABCD}, L(C|A) is put into thelp-potentialof the cluster
{ABC}, andL(B|AC) is put into itspostbag.

In the cluster{ABC} we apply the EXCHANGE operation,

L(C|A),L(B|AC) → L(B|A),L(C|AB),

retainingL(C|AB) in thelp-potentialand puttingL(B|A) into thelp-potentialof cluster{AB}, and
we are done.

Before proceeding in the next section to give the general initialization algorithm, we need to
explain how we choose the ordering exchange operations to be performed when apostbagcontains
more than one regression. The answer is straightforward: one ordersthe regressions in apostbag
by a topological ordering in the original Bayesian network of the response (head) variables in the
regressions, such that in the ordering all the parents of a variableX appear to the left ofX, and all
child variables appear to the right ofX. This ordering ensures that the sequence of EXCHANGE

operations is valid. (It is essentially Proposition 2 of Shachter and Kenley (1989).)

5.5 Initial Transformation of the Tree: General Algorithm

We now present the general algorithm for initializing the CG regressions ofthe tree. Recall thatγi

is the elimination variable associated with the continuous clusterCΓ(i).

Algorithm 5.2 (Initialization of CG regressions)

1. Given:

• A mixed Bayesian networkB with a strong elimination tree initialized according to
Algorithm 5.1.

• The elimination sequenceγn,γn−1, . . . ,γ1 of the continuous nodes.

• A topological orderingTOP of the variables inB.

2. Message passing sequence:

For i := n step -1 until 1 do:

For each configurationδ∗i of the discrete variables in CΓ(i) do:

• Sort the regressions in theδ∗i postbagof CΓ(i) so that their head variables occur in the
same sequence as in the topological orderingTOP;

• While theδ∗i postbagof CΓ(i) is not empty do:
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– Remove the first regression R in theδ∗i postbagof CΓ(i);

– If the tail of R containsγi , then modify R and theδ∗i lp-potentialof CΓ(i) via the
EXCHANGE operation, such that R does not depend onγi .

– For each configurationδ∗j i ⊇ δ∗i , of the discrete variables in the cluster CΓ( j i) neigh-
bouring CΓ(i) in the direction of the strong root, put a copy of R either (1) in theδ∗j i
lp-potentialof CΓ( j i) if the head of R is the elimination variable of CΓ( j i), or (2) in
theδ∗j i postbagof CΓ( j i) otherwise.

– Discard R.

Note that by the strong nature of the tree, the set of discrete variables ofCΓ(i) is contained in
the set of discrete variables ofCΓ( j i). Hence for each configurationδ∗j i there will be an induced
sub-configurationδ∗i .

On completion of Algorithm 5.2 all of thepostbags are empty, and thelp-potentials contain the
desired set-chain CG regressions. To see this, first note that each EXCHANGE operation is a valid
application of Bayes’ theorem, and does not at any stage alter the joint conditional density that can
be reconstructed from the regressions stored in thelp-potentials andpostbags. Secondly, when the
outer i-th loop is performed thelp-potentialof CΓ(i) is not empty, eitherCΓ(i) is a leaf cluster, in
which case it started out non empty; otherwise it will have started out non empty and remained so,
or it will have started out empty but then became non-empty because it received a regression from a
neighbouring cluster away from the root. (The conditional density ofγi given its parents must have
been placed either in thelp-potentialof CΓ(i), or in somepostbagof a cluster on some path from
CΓ(i) through clusters further away from the root thanCΓ(i), and will arrive, possibly modified via
EXCHANGE operations atCΓ(i) through application of the previous steps of the algorithm for higher
values ofi.)

5.6 Entering Evidence and thePUSH Operation

Evidence on discrete and/or continuous variables may be entered and propagated on the tree, and
posterior distributions of individual nodes found. Discrete evidence is entered and propagated in
the usual way,but only on the discrete part of the tree. To enter continuous evidence, and to find
marginal densities of continuous variables, we use the PUSH operation of Lauritzen and Jensen
(2001).

It is convenient to enter evidence on the continuous variables one observed variable at a time. In
order to keep track of those variables that have already had their evidence entered, in each contin-
uous cluster we retain a boolean variable—calledactiveflag—which is initially set to TRUE before
any continuous evidence has been entered. A value of FALSE indicates that evidence on the elimi-
nation variable of the cluster has been entered. A TRUE value indicates thatevidence concerning the
elimination variable may be entered, or that the marginal density of the variable may be calculated.

Recall that the separatorSΓ(i) between a continuous cluster setCΓ(i) that is a neighbour to a
discrete cluster inC∆ only contains those discrete variables inCΓ(i). In every such separator we
store a table of real values indexed by the states of the discrete variables which we call aweight
table.

In the algorithm below the cluster neighbouringCΓ(i) in the direction of the strong root will be
denoted bytoroot(i), and is either another continuous cluster, or a purely discrete boundarycluster.
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If toroot(i) is continuous its index is denoted byr i (so thatr i ∈ {1,2, . . . , i − 1} and toroot(i) ≡
CΓ(r i)).

We now state the algorithm for entering evidence on a continuous variableγ j (indexed accord-
ing the elimination ordering) which consists of the finding thatγ j = γ∗j . Basically it performs a
sequence of EXCHANGE operations so that in the final regression in whichγ j is the head variable,
no continuous variables appear in the tail; the substitutionγ j = γ∗j may then be performed in all re-
gressions in whichγ j appears, and where it is the head variable this substitution forms a likelihood
to be incorporated into the discrete part of the tree.

Algorithm 5.3 (The PUSH operation: Entering evidenceγ j = γ∗j )

• Given:

– A tree with elimination sequenceγn,γn−1, . . . ,γ1 of the continuous variables.

– The tree initialized according to Algorithm 5.2, and then possibly having had some ev-
idence already entered and propagated—but not on the variableγ j—according to this
algorithm. (Note: allpostbags are empty.)

– Evidenceγ j = γ∗j to enter and propagate on the tree.

• Step 1: Enter γ j = γ∗j in all regressions in whichγ j is a conditioning variable.

– For i := n step -1 until j+1 do

∗ IF activeflagof CΓ(i) is TRUE andγ j ∈CΓ(i) substituteγ j = γ∗j in everylp-potential
regression of CΓ(i).

• Step 2: Initialize the loop for pushingγ j towards a boundary cluster.

– Set i:= j.

– For each configurationδ∗i of the discrete variables of CΓ(i) move the regression in the
δ∗i lp-potentialof CΓ(i) into theδ∗i postbagof CΓ(i).

– Setactiveflagof CΓ(i) to FALSE.

• Step 3: Pushγ j towards a boundary cluster.

while toroot(i) is not a boundary cluster do:

– For each configurationδ∗r i
of the discrete variables of CΓ(r i) (with induced configuration

δ∗i of the discrete variables of CΓ(i)) do:

∗ IF activeflagof toroot(i) is FALSE, then:

1. Copy theδ∗i postbagof CΓ(i) into theδ∗r i
postbagof CΓ(r i);

OTHERWISE:

1. Copy theδ∗i postbagof CΓ(i) into theδ∗r i
postbagof CΓ(r i)

2. Perform theEXCHANGE operation on theδ∗r i
lp-potentialandpostbagof CΓ(r i)

(such that the resultingpostbagregression hasγ j as head).

3. Substituteγ j = γ∗j in theδ∗r i
lp-potentialof CΓ(r i);

– Discard the content of everypostbagof CΓ(i);

– Set i:= r i .
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• Step 4: Update the discrete part of the tree.

1. For each configurationδ∗i of the discrete variables of CΓ(i) substituteγ j = γ∗j into the
density of the regression stored in theδ∗i postbagof CΓ(i) and store the result in theδ∗i
entry of the weight table of SΓ(i).

2. Multiply theweighttable of SΓ(i) into the discrete cluster potential of toroot(i);

3. Empty thepostbagof CΓ(i).

Substitutingγ j = γ∗j into a regression in whichγ j is in the tail, andγv is the head variable will
result in another regression ofγv on the remaining variables of the tail, affecting the expression for
the mean. In the more complex substitutions of Step 4(1), there is a regressionin theδ∗i postbagof
CΓ(i) of the formγ j ∼ N(ai, j ,σ2

i, j), so that theδ∗i entry in theweighttable will store

w[δ∗i ] =
exp
(

−(γ∗j −ai, j)
2/2σ2

i, j

)

√

2πσ2
i, j

.

If σ2
i, j = 0, which could (though not necessarily must) occur if there are logical relationships

on the continuous variables, this could be mathematically undefined (Lauritzenand Jensen (2001)
provide an example). Should such an event occur an implementation of Algorithm 5.3 should warn
the user.

To see how the algorithm works, suppose that we start with no evidence having been entered.
In this case the continuous part of the tree stores a representation of the conditional density of the
continuous variables given the discrete,L(Γ |∆). When evidenceγ j = γ∗j is entered on a continuous
variableγ j , the sequence of EXCHANGE operations and substitutions ofγ j = γ∗j leads to a factored
representationL(Γ\{γ j}|γ∗j ,∆),L(γ∗j |∆) where the first term is represented in thelp-potentials of
the continuous clusters in which theactiveflagis TRUE, and the last term is passed as a likelihood
term via a weight table to the discrete part of the tree. After standard evidence propagation on the
discrete part of the tree, the latter stores a representation ofP(∆ |γ j = γ∗j ,δ∗) or P(∆,γ j = γ∗j ,δ∗)
depending on whether or not the discrete potentials have been normalized tounity (δ∗ represents
discrete evidence). If a second piece of evidence is entered,γk = γ∗k say, the algorithm leads to
the active continuous clusters storing a factored representation ofL(Γ\{γ j ,γk}|γ j = γ∗j ,γk = γ∗k,∆)
and the further likelihood factorL(γk = γ∗k |γ j = γ∗j ,∆) being multiplied into the discrete part of
the tree. At each stage theactiveflags which are FALSE in the continuous clusters identify, via
the elimination variables of the clusters, those continuous variables about which evidence has been
entered, thelp-potentials in the other clusters (in which theactiveflags are TRUE) represent the
joint density of the unobserved continuous variables given the discrete variables and the observed
continuous variables.

After all continuous evidence has been entered, and evidence on discrete variables has been
entered and propagation performed on the discrete part of the tree, the discrete part contains a
factored representation of the posterior probability of the unobserved discrete variables given the
evidence on all variables.
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We illustrate the algorithm by revisiting the example in Section 4. We start with no evidence on
the continuous part of the tree, which is initialized thus:

Cluster lp-potentials
ZABC Z |abc∼ N (αZ:abc,σ2

Z:abc)
XZABC X |zabc∼ N (αX:abc+βX:Zabcz,σ2

X:abc)
YXZC Y |xzc∼ N (αY:c +βY:Xcx+βY:Zcz,σ2

Y:c)

If X = x∗ is observed, then Algorithm 5.3 operates as follows:

1. In the cluster{YXZC}, the distributionY |xzc∼ N (αY:c+βY:Xcx+βY:Zcz,σ2
Y:c)→Y |x∗zc∼

N (αY:c +βY:Xcx∗ +βY:Zcz,σ2
Y:c). Theactiveflagremains TRUE.

2. In {XZABC}, theactiveflagis set to FALSE, and for each configurationabc the regression
N (αX:abc+βX:Zabcz,σ2

X:abc) is moved into theabc postbagof {ZABC}

3. In{ZABC}, for each configurationabcthe EXCHANGE operations acts on theabc lp-potential,
representingL(Z |A = a,B = b,C = c), and theabc postbagto give a newabc lp-potential
representingL(Z |X = x,A= a,B= b,C = c) and modifiedabc postbagcontent representing
L(X = x|A = a,B = b,C = c). Then thelp-potentialis set toL(Z |X = x∗,A = a,B = b,C =
c), and the weight table entryw(a,b,c) stores the density value ofL(X = x∗ |A = a,B =
b,C = c).

4. Thepostbags of{ZABC} are emptied, theactiveflagremains TRUE.

5. In the discrete cluster{ABC}, the potentialp(a,b,c) → p(a,b,c)w(a,b,c) ∀ {a,b,c}.

6. On normalizing the potential in the discrete cluster{ABC} we obtain the probability distribu-
tion P(A,B,C|X = x∗).

5.7 Evaluating Posterior Marginals of Individual Variables

After propagating evidence on variables as described above, finding the posterior marginal of a
discrete variable,D say, proceeds in the usual way: Find a cluster set in the discrete part ofthe tree
containingD and marginalize the joint table in that cluster set appropriately.

Finding the posterior density of an unobserved continuous variable usesthe PUSH operation in
a way similar to but simpler than Algorithm 5.3. Suppose the marginal density ofY ∈ Γ is required.
The idea is to use a sequence of EXCHANGE operations to pushY to a clusterC neighbouring the
boundary, so that we have a representation of the distributionL(Y |EΓ,B) whereEΓ denotes the
evidence on the continuous variables, andB ⊆ ∆ are the discrete variables in the clusterC. From
the boundary cluster the marginalP(B|EΓ∪∆) may be found and then combined withL(Y |EΓ,B) to
give the required posterior marginal ofY. The complete algorithm is given in Algorithm 5.4, which
uses the same notation as Algorithm 5.3.

Algorithm 5.4 (Find the posterior density of a continuous variable)

• Given:

– A strong elimination tree with elimination sequenceγn,γn−1, . . . ,γ1 of the continuous
variables.
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– The tree initialized according to Algorithm 5.2, with evidenceEΓ entered as in Algorithm 5.3,
and discrete evidenceE∆ entered and propagated on the discrete part, so that the dis-
crete clusters contain posterior distributions. (Note: allpostbags are empty.)

– Task: to find the posterior density of an unobserved continuous variableγ j . (Note: the
activeflagof CΓ( j) is TRUE.)

• Step 1: Initialize the loop.

– For each configurationδ∗j of the discrete variables of CΓ( j) copy theδ∗j lp-potentialof
CΓ( j) into theδ∗j postbagof CΓ( j).

– Set i:= j

• Step 2: Pushγ j towards a boundary cluster.

while toroot(i) is not a boundary cluster do:

– For each configurationδ∗r i
of the discrete variables of CΓ(r i) (with induced configuration

δ∗i of the discrete variables of CΓ(i)) do:

∗ Copy theδ∗i postbagof CΓ(i) into theδ∗r i
postbagof CΓ(r i);

∗ IF activeflagof CΓ(r i) is TRUE andγ j is in the tail of the regression in theδ∗r i
lp-

potentialof CΓ(r i), THEN use theEXCHANGE operation formulae to modify the
δ∗r i

postbagof CΓ(r i) (so thatγ j is still the head variable) but do not modify theδ∗r i

lp-potentialof CΓ(r i);

– Empty all of thepostbags of CΓ(i);

– Set i:= r i .

• Step 3: Find the marginal density.

1. Marginalize the discrete potential in the boundary cluster neighbouring CΓ(i) to the
weighttable in the separator SΓ(i).

2. Output the result of adding together the product of eachweight table entry with the
density of the regression stored in the correspondingpostbagof CΓ(i).

3. Empty all of thepostbags of CΓ(i).

Prior to an application of this algorithm thelp-potentials in the active clusters represent a fac-
torization of the joint conditional density of the unobserved continuous variables given the evidence
on the continuous variables. The algorithm does not change these in any way, and so does not
alter this joint conditional density, and indeed the algorithm leaves the tree ready in a state for
finding the marginal density of another continuous variable. The algorithm isjust using thepost-
bags as temporary storage to find, by repeated (partial) application of the EXCHANGE formulae, the
marginal density ofγ j conditional on the discrete variables and the values of the observed continu-
ous variables. Step 3 combines this with the correct posterior probability of the unobserved discrete
variables ofCΓ(i) (conditional on all evidence) to form the posterior marginal density ofγ j .
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6. Comparison to Other Methods

In this section we review the propagation scheme described in this paper, and compare it to the
scheme of Lauritzen and Jensen (2001) and to the work of Shachter andKenley (1989). We then
discuss some possible extensions of the scheme.

6.1 Summary of Current Scheme

In the current scheme, evidence propagation and evaluation of marginaldistributions in a mixed
Bayesian networkB takes place on a strong elimination tree or strong semi-elimination tree. The
tree has two distinct parts, the continuous part and the discrete part, with thestrong root located in
the discrete part. The continuous part is initialized using the CG regressionsof B, and represents,
using a collection of univariate regressions, the density of the continuousvariables conditional on
the discrete variables. The discrete part represents the marginal distribution of the discrete variables,
and is initialized using the discrete conditional probability tables ofB. Entering evidence on contin-
uous variables, and evaluating marginal densities of continuous variables, uses the PUSH operation
with the EXCHANGE formulae, the latter being an application Bayes’ theorem. Discrete evidence
is entered on the discrete part of the tree and propagated on the discrete part of the tree in the usual
way. For finding marginals of continuous variables there is no DISTRIBUTE operation on the tree.

6.2 Comparison with the Lauritzen and Jensen (2001) Scheme

As discussed in Section 2 the Lauritzen and Jensen propagation scheme uses a strong junction tree
architecture. Associated with each clique of the junction tree is a CG potential, which is a tupleφ =
[p,A,B,C](H |T) of scalars, vectors and matrices and a partition of the variables into conditioned
variables (the head) and conditioning variables (the tail). The conditional distribution or density
of a variableX in B may be assigned to any clique or separator that contains the family ofX in
the Bayesian network. CG potentials may be combined but there are restrictions that have to be
followed, which necessitate the introduction of therecursive combinationof potentials to allow
incoming messages to a clique to be combined correctly.

It is instructive to see how recursive combination is avoided in the current scheme, or alterna-
tively, how to interpret recursive combination within the current scheme. For this we return to the
example in Section 5.4. In Figure 4 the clusters{CDEF} and{ABCDE} form a strong junction tree
with the latter as the strong root. In the Lauritzen and Jensen analysis, the assignment of potential
to clique{CDEF} leads to a CG potential having the head and tail structure(DEF |C). This is de-
composed into(F |CED) and(DE |C) the latter is passed to the clique{ABCDE} to be combined
with the potential(BC|DE). However the heads’ and tails’ contents of these two potentials preclude
their direct combination. Instead they must be combined recursively. The first stage is to decompose
(DE |C) → (E |CD),(D |−), however this is not sufficient, as(E |CD) cannot be directly combined
with (BC|DE). So we decompose(BC|DE) → (B|CDE),(C|D) and then we may combine the
four potentials(B|CDE)(E |CD)(C|D)(D |−) in that orderto yield a potential(BCDE|−).

If one compares these four potentials with the regressions stored in the cluster {ABCDE} in
Section 5.4 we see that they have the same head-and-tail structures. In thecurrent scheme the
regressionsL(D |−),L(E |CD) were passed to the cluster{ABCDE}, which stored (omitting the
dependence onA) the regressionsL(C|D),L(B|CDE). These are subject to EXCHANGE operation,
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dependent on the topological ordering of the head variables in the Bayesian networkB, the ordering
beingD−C−E−B.

Thus we interpret the recursive combination of potentials as a ordered factorization of potentials
so their direct combinations are well defined (although it will not always decompose potentials to
univariate CG potentials). The current scheme avoids the recursive combination operation because it
works all the time with a factored representation, and the correct orderingof EXCHANGE operations
is ensured by using the topological ordering of the variables inB. It has echoes oflazy-propagation
(Madsen and Jensen, 1998), in which potentials are stored in factored form when initializing a
junction tree and are only combined when required; the difference is that inour scheme factored
forms are always retained.

In our scheme there is noSUM-DISTRIBUTE operation on the continuous part of the tree,
whereas Lauritzen and Jensen have such an operation that can be used to store weak-marginals
in the separators. If weak-marginals are desired in the current scheme,they may be found using the
mean and variance of the mixture marginals.

Another aspect of the Lauritzen and Jensen scheme should be mentioned,which is their opera-
tion of minimizationof the tails of CG potentials. In their operations on CG potentials represented
by tuplesφ = [p,A,B,C](H |T), when a column ofB has entries all zero for every configuration of
the discrete variables in the CG potential, then that column and the associated continuous tail vari-
able may be removed. This is areductionoperation, and takes place during recursive combination.
In the current scheme, reduction occurs as a result of the EXCHANGE operation: theZ regression
of (2) does not depend onY, so an implementation of the EXCHANGE operation would, in taking
this into account, automatically perform a reduction. Theminimizationof a potential occurs if the
potential has been reduced as far as possible.

Lauritzen and Jensen also discuss the possibility of forming the marginal of agroup of contin-
uous variables. This should be possible within the present scheme, with the result being expressed
as weighted sets of linear regressions. However it may be that in the message passing process more
than one regression might be stored in apostbag(for a given configuration of discrete variables) and
if so their order would be important, not however the topological ordering of the original Bayesian
network variables used in Algorithm 5.2, but the (reverse of) the elimination ordering. This would
be appropriate because it is a perfect numbering of the strongly triangulated graph associated with
the tree. Similar considerations suggests it ought to be possible to propagateevidence on several
continuous variables simultaneously. These connections are discussed infurther detail in the next
subsection.

6.3 Relationship to the Shachter and Kenley (1989) Scheme

In the Shachter and Kenley scheme, arc-operations are performed on aBayesian network one pair
of variables at a time, which means that it operates on pairs of linear regressions, which is like the
current scheme. (Their paper is concerned with pure Gaussian networks, but this is difference is
not very significant.) When several arcs need reversing in a Probabilistic Node Reduction operation
(their PROPOSITION2) the sequence of arc reversals has to follow an ordering which is equivalent
to one obtained from a topological ordering of the nodes in the Bayesian network. Hence this is very
similar to the sequence of EXCHANGE operations in initializing the tree described in Algorithm 5.2.

The close connections between the current scheme, and of both Shachter and Kenley (1989)
and Lauritzen and Jensen (2001) are illuminated by the paper of Shachteret al. (1990). These
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authors show that the inference algorithms operating on junction trees are essentially the same as
node reductions algorithms operating on influence diagrams, because theyare both working on the
same underlying graphical structures. In the terms of the present paper, what they show is that in
the elimination sequenceγn,γn−1, . . . ,γ1 operating on the moralized mixed Bayesian network, the
clusterCΓ(i) is the same as that which would be obtained in the influence diagram for family ofthe
nodeγi after all outgoing arcs have been reversed to makeγi a barren node, if the nodes are removed
from the mixed Bayesian network in the same order as the elimination sequence.To avoid directed
cycles being introduced there is a restriction to the order in reversing the child arcs of a node, the
restriction uses a topological ordering of the original Bayesian network.They also describe how
evidence is entered—if evidence is entered on a node then arcs are reversed so that that node has no
parents, and in the process child arcs from the node are removed. Whenthis is done the likelihood
associated with that node may be found. This process—which they callevidence propagation—is
essentially the PUSH operation on a continuous variable, except that arcs are reversed only to the
point that the variable has no continuous parents, and then substituting the evidence value leads to
modification of those regressions in which the variable appears in the tail (corresponding to removal
of those arcs from the influence diagram viewpoint) and evaluation of a likelihood to be passed on
to the discrete part of the tree. The elimination tree, with itslp-potentialandpostbagstructures,
provides an organizing framework for such operations. They also describe how multiple evidence
may be entered simultaneously, and their procedure should be transferable into the current scheme.

6.4 Implementation Issues

The propagation scheme presented here works by manipulating linear regressions. To aid the presen-
tation the paper has used, like Lauritzen and Jensen (2001), a raw momentrepresentation, for which
the EXCHANGE formulae of Section 5.3 may be used. If the user wishes to implement the current
scheme then one possibility would be to represent CG regressions by the tuple φ = [p,A,B,C](H |T)
of Lauritzen and Jensen, but nowA andC are scalars andB a vector (corresponding tor = 1) for
each configuration of the discrete variables. Further restrictions are that the tablep is a table of 1’s
if the CG regression has continuous variables, and hence are not required.

However this is not the only possibility. In the author’s C++ implementation, an associative
array of the formstd::map<variable,double> is used to store coefficients of covariates in the
regressions. The reduction operation is effected by a variable being removed from the associative
array.

One could instead use the central-moment representation of Shachter and Kenley, all that would
be required would be suitable replacements of the EXCHANGE formulae which describe Bayes’
theorem. In this case the formulae in Theorem 1 of Shachter and Kenley could be used (suitably
extended to take account of deterministic relationships and the configurations of the discrete vari-
ables).

A further possibility could be to use computer algebra. Each univariate regression is specified by
(1) a specification of the head and tail variables and either (2a) a quadratic form in the continuous
variables if the variance is strictly positive, or (2b) a linear form for deterministic relationships.
These are readily represented and manipulated in computer algebra packages, and so the current
scheme could be implemented in which the messages are either linear expressions or quadratic
forms in the continuous variables. Reduction operations would be taken care of automatically by
such computer algebra calculations.
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From these comments above we see that, although the presentation in this paperhas focussed on
using the raw-moment representation, the propagation scheme is more general than this. The only
place that the raw-moment representation has been used is in the explicit EXCHANGE formulae of
Section 5.3.

7. Sampling and Mode-Finding Algorithms

Aside from finding the posterior marginals of variables, the use of the elimination tree in the current
scheme facilitates other operations that may be of interest in applications. In Section 7.1 we show
how to sample from the posterior distribution, and in Section 7.2 we show how to find the highest
peak in the posterior mixture distribution, which could be useful as the startingpoint of an iterative
search for the posterior mode.

7.1 Sampling from the Posterior

It may be desirable to sample from the posterior distribution of the variables in the Bayesian net-
work given some observed evidenceEΓ∪∆. Dawid (1992) has shown how to do this for discrete
networks, his method is as follows. Starting from a junction tree of cliques, and after entering and
sum-propagating evidenceE∆, the clique and separator tables contain posterior marginals of their
variables. Suppose we label the cliques in running intersection orderC1,C2, . . . ,Ck say, withC1

being chosen as the root clique. First one samples from the posterior marginal in C1, to give some
configurationδs

1. Then one samples from the posterior marginal of the variables inC2 conditional on
δs

1, yielding some combined configurationδs
1∪δs

2. Then one samples the variables inC3 conditional
on δs

1 ∪ δs
2. Proceeding in this way will yield a sampleδs = δs

1 ∪ δs
2 ∪ ·· · ∪ δs

k from the posterior
distribution on the junction tree.

Here we present in Algorithm 7.1 a simple extension of Dawid’s method to conditional-Gaussian
networks. The idea is to sample the discrete variables, and then sample the remaining continuous
variables one at a time in a distribute-type operation.

Algorithm 7.1 (Sampling from the posterior)

• Given: A tree with elimination sequenceγn,γn−1, . . . ,γ1 of the continuous variables, which
has been initialized and has had evidence propagated according to Algorithm 5.3, and any
discrete evidence has also been propagated on the discrete part of the tree.

• Sample:

– Sample a configurationδs of the discrete variables∆ using the algorithm of Dawid.

– For i := 1 step 1 until n do

∗ IF activeflagof CΓ(i) is TRUE then find the sub-configurationδs
i ⊆ δs of the discrete

variables in CΓ(i), and sampleγi from the regression stored in theδs
i lp-potential

of CΓ(i) in which the sampled or observed values of all continuous tail variables
∈ {γs

1,γ
s
2, . . . ,γ

s
i−1} have been substituted; denote the sampled value byγs

i .

∗ OTHERWISE there is evidenceγi = γ∗i , so simply setγs
i = γ∗i .

• The configuration{γs
i : i = 1, . . . ,n}∪δs is a sample from the posterior density.
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Note that, because of the elimination tree structure employed, each simulatedγi is sampled from
a univariate normal distribution. Such simulation may be done efficiently by a variety of methods
and is much simpler than sampling from a multivariate normal distribution.

7.2 Locating the Mode (Approximately)

It is sometimes of interest to locate the most probable values of the unobserved variables given
evidence on observed variables. For discrete networks this may be foundby local propagation as
shown by Dawid (1992). For CG networks an exact solution to the problemis not known, and
we do not propose a solution here. Instead in Algorithm 7.2 we propose a method that finds the
component having thehighest peakin the posterior distribution. The posterior distribution is a
mixture of weighted multivariate normal densities. Each component multivariate density will attain
maximum height at its mean, the height will be proportional to the weight of the component divided
by the square root of the determinant of the covariance matrix of the component. These heights
are compared by Algorithm 7.2. Now if the variances of the components in the mixture are small
compared to the distances between their means, then the location of the component having the
highest peak might be expected to be a good approximation to the posterior mode, or could be used
as the starting point of an iterative search for the mode. Algorithm 7.2 is slightlymore complicated
than Algorithm 7.1, and cannot be used if any variances are zero. In order to keep track of the
heights of each component, we need to keep aweight table in every continuous separator inSΓ.
Note that it is not necessary to evaluate a determinant.

Algorithm 7.2 (Highest Component Search)

• Given:

– A tree with elimination sequenceγn,γn−1, . . . ,γ1 of the continuous variables, which has
been initialized and had evidence propagated according to Algorithm 5.3, and any dis-
crete evidence also been propagated on the discrete part of the tree.

– All entries in allweighttables initialized to unity.

• Highest Peak Search:

– For i := n step -1 until 1 do

1. IF activeflagof CΓ(i) is TRUE THEN: For each configurationδ∗i of the discrete
variables in CΓ(i) multiply theδ∗i entry in theweighttable of SΓ(i) by1/

√

2πσ2(δ∗i )
whereσ2(δ∗i ) is the variance in the regression stored in theδ∗i lp-potentialof CΓ(i).

2. IF toroot(i) is NOT a boundary cluster, THEN: For each configurationδ∗r i
of the

discrete variables of CΓ(r i) (with induced configurationδ∗i of the discrete variables
of CΓ(i)), multiply theδ∗r i

entry in the weight table of SΓ(r i) by theδ∗i entry in the
weight table of SΓ(i).
OTHERWISE if toroot(i) IS a boundary cluster, then multiply the weight table of
SΓ(i) into the discrete potential of toroot(i) in the usual way.

– Use theMAX -PROPAGATEalgorithm of Dawid (1992) on the discrete part of the tree to
give a“max-configuration”δm of the discrete variables.

– For i := 1 step 1 until n do
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∗ IF activeflagof CΓ(i) is FALSE, then there is evidenceγi = γ∗i , so set the peak value
γm

i = γ∗i ;
OTHERWISEactiveflagof CΓ(i) is TRUE, so find the sub-configurationδm

i ⊆ δm of
the discrete variables in CΓ(i), and setγi to the mean of the regression stored in the
δm

i lp-potentialof CΓ(i) in which the peak values or observed values of all continu-
ous tail variables∈ {γm

1 ,γm
2 , . . . ,γm

i−1} have been substituted; denote the peak value
by γm

i .

• The configuration{γm
i : i = 1, . . . ,n}∪ δm specifies the location of the highest component in

the joint multivariate posterior density.

Mathematically Algorithm 7.2 may be understood in the following manner. LetIΓ = {I1, I2, . . . , Ik}
denote the set of indices of the continuous nodes for which no evidence has been entered (with
Ik > Ik−1 > · · · > I1). Then the algorithm starts out with the tree storing a recursive factorization of
the posterior multivariate normal mixture density in the form:

p(∆ |EΓ∪∆)∏
i∈IΓ

fi(γi |Sγ(i),EΓ)

where thefi(· | ·) are appropriate CG regression densities. Given the covariates and evidence, each
CG regression density is maximized at the mean, so the component having the maximum height
may be obtained as a sequence of ordered maximizations:

max
Γ,∆

(

p(∆ |EΓ∪∆)
k

∏
j=1

fI j (γI j |Sγ(I j),EΓ)

)

= max
Γ,∆

(

p(∆ |EΓ∪∆)wIk(Sγ(Ik),EΓ)
k−1

∏
j=1

fI j (γI j |Sγ(I j),EΓ)

)

= max
Γ,∆

(

p(∆ |EΓ∪∆)wIk(Sγ(Ik),EΓ)wIk−1(Sγ(Ik−1),EΓ)
k−2

∏
j=1

fI j (γI j |Sγ(I j),EΓ)

)

...

= max
∆

(

p(∆ |EΓ∪∆)
k

∏
j=1

wI j (Sγ(I j),EΓ)

)

,

where thewi(·) are theweighttables representing the values of the densities of the CG regressions
located at the means. The algorithm accumulates the product of these valuesand multiplies them
into the discrete part of the tree, from which standardMAX -PROPAGATIONmay be used to findδm.
(Note that this accumulated product is valid because of the strong nature ofthe tree: a continuous
clusterCΓ(r i) neighbouring another continuous clusterCΓ(i) but closer to the strong root will contain
all of the discrete variables that are inCΓ(i).) This information is then distributed back to locate the
mean values of the continuous variables for the configurationδm of the discrete variables, in the
final stage of Algorithm 7.2.

Finally, we mention another maximization operation calledSEMIMAX -PROPAGATION that can
easily be carried out in the current scheme. This consists of finding the most likely configuration
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of the posterior marginal distribution of the discrete variables, that is, finding the maximum of
P(∆ |EΓ∪∆). For this we propagate evidence as in Algorithm 5.3, and incorporate evidence on the
discrete variables on the discrete part of the tree. We then perform standardMAX -PROPAGATIONon
the discrete part of the tree according to the algorithm of Dawid (1992).SEMIMAX -PROPAGATION

was introduced and applied to forensic DNA problems involving the modelling and analysis of
mixed DNA samples using CG networks by Cowell et al. (2004).

8. Summary

We have presented a local propagation scheme for conditional GaussianBayesian networks based
on elimination trees, that combines the scheme of Lauritzen and Jensen (2001) with that of Shachter
and Kenley (1989). Complex matrix algebra is avoided because operationsmanipulate linear regres-
sions. The propagation scheme is not dependent on a particular implementation of the representation
of linear regressions, although the paper has used one for exposition.3 We have also introduced: an
algorithm for sampling on such networks; an algorithm for finding highest peaks that could be use-
ful either as an approximation to, or an iterative algorithm for locating, the posterior mode of the
distribution; and have briefly described another operation calledSEMIMAX -PROPAGATION.
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Appendix A. Derivation of EXCHANGE Formulae of Section 5.3

From the pair of normal distributions

Z |Y,W1, . . .Wl ∼ N(a0 +a1W1 + . . .alWl +bY,σ2
Z |Y),

Y |W1, . . .Wl ∼ N(c0 +c1W1 + . . .clWl ,σ2
Y),

it follows thatY |Z,W1, . . .Wl andZ |W1, . . .Wl are also normal distributions. The mean and variance
of the latter is readily found using

E[Z |W1, . . .Wl ] = E[E[Z |Y,W1, . . .Wl ] ] = E[a0 +a1W1 + . . .alWl +bY]

=
l

∑
i=0

(ai +bci)Wi

V[Z |W1, . . .Wl ] = E[V[Z |Y,W1, . . .Wl ] ]+V[E[Z |Y,W1, . . .Wl ] ]

= E[σ2
Z |Y]+V[a0 +a1W1 + . . .alWl +bY]

= σ2
Z |Y +b2σ2

Y

where we defineW0 ≡ 1.
There are three cases to consider in finding the conditional distribution ofY |Z,W1, . . .Wl .

3. It is also one implemented by the author.
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Case 1:σY > 0 and σ2
Z |Y > 0.

The joint conditional density ofY,Z |W1, . . . ,Wl is

fY,Z |W1,...,Wl
(y,z) = fZ |Y,W1,...,Wl

(y,z) fY |W1,...,Wl
(y)

=
1

2πσZ |YσY
exp

(

−(z−∑l
i=0aiWi −by)2

2σ2
Z |Y

)

exp

(
−(y−∑l

i=0ciWi)
2

2σ2
Y

)

= fY |Z,W1,...,Wl
(y,z) fZ |W1,...,Wl

(z)

=
1

2πσY |ZσZ
exp

(

−(y−α−βz)2

2σ2
Y |Z

)

exp

(
−(z−∑l

i=0(ai +bci)Wi)
2

2σ2
Z

)

,

whereα, β andσ2
Y |Z are constants to be determined. The density ofY |Z,W1, . . . ,Wl may be found

directly by dividing the first expression for the joint density by the density of Z |W1, . . . ,Wl (Bayes’
theorem), or alternatively it may be deduced from the linear and quadratic terms iny in the expo-
nential terms as follows. Equating the coefficients ofy2 yields

1

2σ2
Y |Z

=
b2

2σ2
Z |Y

+
1

2σ2
Y

from which it follows that the desired variance is

σ2
Y |Z =

σ2
Z |Yσ2

Y

σ2
Z |Y +b2σ2

Y

.

Equating the terms linear iny yields

α+βz

σ2
Y |Z

=
b
(
z−∑l

i=0aiWi
)

σ2
Z |Y

+
∑l

i=0ciWi

σ2
Y

hence the conditional meanα+βZ is given by

(

b(Z−∑l
i=0aiWi)

σ2
Z |Y

+
∑l

i=0ciWi

σ2
Y

)/(
σ2

Z |Y +b2σ2
Y

σ2
Z |Yσ2

Y

)

=
∑l

i=0

(

ciσ2
Z |Y −aibσ2

Y

)

Wi +bσ2
YZ

σ2
Z |Y +b2σ2

Y

Thus,

Y |Z,W1, . . .Wl ∼ N




∑l

i=0

(

ciσ2
Z |Y −aibσ2

Y

)

Wi +bσ2
YZ

σ2
Z |Y +b2σ2

Y

,
σ2

Yσ2
Z |Y

σ2
Z |Y +b2σ2

Y



 ,

Case 2:σY > 0 and σ2
Z |Y = 0.

We may deduce that

Y |Z,W1, . . .Wl ∼ N

(
Z−∑l

i=0aiWi

b
,0

)

either by considering the limitσ2
Z |Y → 0 in Case 1, or by noting that ifσ2

Z |Y = 0, then

Z |Y,W1, . . .Wl ∼ N(a0 +a1W1 + . . .alWl +bY,σ2
Z |Y)
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is equivalent to
Z = a0 +a1W1 + · · ·+alWl +bY

which is equivalent to the constraint

Y =
Z−a0−a1W1−·· ·−alWl

b
.

Case 3:σY = 0 and σ2
Z |Y ≥ 0.

We may obtain

Y |Z,W1, . . .Wl ∼ N

(
Z−∑l

i=0aiWi

b
,0

)

either as the limitσ2
Y → 0 of Case 1, or by noting that the deterministic constraint implied by

Y |W1, . . .Wl ∼ N

(
l

∑
i=0

ciWi ,0

)

≡Y =
l

∑
i=0

ciWi

will be unaffected by further conditioning onZ.
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Abstract

We develop a Bayesian framework for tackling the supervisedclustering problem, the generic prob-
lem encountered in tasks such as reference matching, coreference resolution, identity uncertainty
and record linkage. Our clustering model is based on the Dirichlet process prior, which enables
us to define distributions over the countably infinite sets that naturally arise in this problem. We
addsupervisionto our model by positing the existence of a set of unobserved random variables
(we call these “reference types”) that are generic across all clusters. Inference in our framework,
which requires integrating over infinitely many parameters, is solved using Markov chain Monte
Carlo techniques. We present algorithms for both conjugateand non-conjugate priors. We present a
simple—but general—parameterization of our model based on a Gaussian assumption. We evaluate
this model on one artificial task and three real-world tasks,comparing it against both unsupervised
and state-of-the-art supervised algorithms. Our results show that our model is able to outperform
other models across a variety of tasks and performance metrics.

Keywords: supervised clustering, record linkage, citation matching, coreference, Dirichlet pro-
cess, non-parametric Bayesian

1. Introduction

Supervised clustering is the general characterization of a problem that occurs frequently in strikingly
different communities. Like standard clustering, the problem involves breaking a finite setX ⊆ X
into aK-way partitionB1, . . . ,BK (with K unknown). The distinction between supervised clustering
and standard clustering is that in the supervised form we are given training examples. These training
examples enable a learning algorithm to determine what aspects ofX are relevant to creating an
appropriate clustering. TheN training examples(X(n),{Bk}

(n)

k=1...K(n)) are subsets ofX paired with
their correct partitioning. In the end, the supervised clustering task is a prediction problem: a new
X(n+1) ⊆ X is presented and a system must produce a partition of it.

The supervised clustering problem goes under many names, depending on the goals of the in-
terested community. In the relational learning community, it is typically referred toas identity
uncertaintyand the primary task is to augment a reasoning system so that it does not implicitly(or
even explicitly) assume that there is a one-to-one correspondence between elements in an knowl-
edge base and entities in the real world (Cohen and Richman, 2002; Pasulaet al., 2003). In the
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DAUM É III AND MARCU

database community, the task arises in the context of merging databases with overlapping fields,
and is known asrecord linkage(Monge and Elkan, 1997; Doan et al., 2004). In information ex-
traction, particularly in the context of extracting citations from scholarly publications, the task is to
identify which citations are to the same publication. Here, the task is known asreference matching
(McCallum et al., 2000). In natural language processing, the problem arises in the context ofcoref-
erence resolution, wherein one wishes to identify which entities mentioned in a document are the
same person (or organization) in real life (Soon et al., 2001; Ng and Cardie, 2002; McCallum and
Wellner, 2004). In the machine learning community, it has additionally been referred to aslearning
under equivalence constraints(Bar-Hillel and Weinshall, 2003) andlearning from cluster examples
(Kamishima and Motoyoshi, 2003).

In this paper, we propose a generative model for solving the supervised clustering problem. Our
model takes advantage of theDirichlet process prior, which is a non-parametric Bayesian prior over
discrete distributions. This prior plays two crucial roles: first, it allows us toestimate the number
of clustersK in a principled manner; second, it allows us to control the complexity of the solutions
that are learned. We present inference methods for our model based on Markov chain Monte Carlo
methods. We compare our model against other methods on large, real-worlddata sets, where we
show that it is able to outperform most other systems according to several metrics of performance.

The remainder of this paper is structured as follows. In Section 2, we describe prior efforts to
tackle the supervised clustering problem. In Section 3, we develop our framework for this prob-
lem, starting from very basic assumptions about the task. We follow this discussion with a general
scheme for inference in this framework (Section 4). Next, in Section 5, we present three generic pa-
rameterizations of our framework and describe the appropriate adaptationof the inference scheme to
these parameterizations. We then discuss performance metrics for the supervised clustering prob-
lem in Section 6 and present experimental results of our models’ performance on artificial and
real-world problems in Section 7. We conclude in Section 8 with a discussion ofthe advantages and
disadvantages of our model, our generic parameterization, and our learning techniques.

2. Prior Work

The most common technique for solving supervised clustering is by mapping it tobinary classifi-
cation. For a given input set, a binary classifier is trained on all pairs of inputs, eliciting a positive
output if the two elements belong in the same cluster and a negative output otherwise. When applied
to test data, however, such a classifier will not necessarily produce a valid equivalence relation (i.e.,
it might sayx = y andy = z but x 6= z); to solve this problem, the outputs of the binary classifier
are fed into a clustering algorithm. Among others, Cohen and Richman (2002)present an agglom-
erative clustering algorithm in the task of record linkage; Bar-Hillel and Weinshall (2003) present
a similar, but more complex algorithm that is provably optimal whenever the binary classifier is
sufficiently good.1

The binary classification plus clustering approach is attractive primarily because both of these
problems have individually received much attention; thus, good algorithms are known to solve them.
The primary disadvantages of these approaches are the largely ad-hocconnection between the clas-

1. Unfortunately, the “sufficiently good requirement” of Bar-Hillel and Weinshall (2003) is often unattainable: it states
that the classifier must achieve an error rate of at mostR2/6, whereR is the ratio of the size of the smallest class to
the total number of points. In many real world problems, the size of the smallest class is 1, and the number of points
is quite large, meaning that only a perfect classifier will achieve the required accuracy.
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sifier and the clustering algorithm, the necessity of training overO(n2) data points, and the potential
difficulty of performing unbiased cross-validation to estimate hyperparameters. The first issue, the
ad-hoc connection, makes it difficult to make state precise statements about performance. The sec-
ond can cause computational problems for expensive classifiers (suchas SVMs) and invalidates
the i.i.d. assumption that is necessary for many generalization bounds.2 The final issue, regarding
cross-validation, has to do with the fact that the classification plus clusteringapproach is based on
pipelining two independent systems (see Section 7.1 for how the cross-validation is done in our
comparative model).

In addition to the classification plus clustering approach, there have been several attempts to
solve the supervised clustering problem directly. Some researchers have posed the problem in the
framework of learning a distance metric, for which, eg., convex optimization methods can be em-
ployed (Bar-Hillel et al., 2003; Xing et al., 2003; Basu et al., 2003). Using a learned distance metric,
one is able to use a standard clustering algorithm for doing the final predictions. These methods ef-
fectively solve all of the problems associated with the classification plus clustering approach. The
only drawback to these approaches is that they assume Euclidean data andlearn a Mahalanobis dis-
tance metric. It is often unclear how to extend this assumption to a more generalspace or a more
general notion of similarity.

Two other recent techniques have been proposed for directly solving the supervised clustering
problem, and are not phrased in terms of learning a Mahalanobis distance.The first, due to Mc-
Callum and Wellner (2004), is based on conditional random fields. In this model, a fully connected
graph is created, where nodes are elements in a data set. Feature functions are defined over the edges
(corresponding to pairs of input elements), and weights are learned to maximize the conditional
likelihood of the data. In order to ensure that the model never predicts intransitive solutions, clique
potentials of−∞ are inserted for any solution that is intransitive. Exact inference in this model is
intractable (as in most supervised clustering models), and they employ a simple perceptron-style
update scheme, which they show to be quite effective on this task. The perceptron requires that
the most likely clustering be found for a given set of weights, which is NP-complete by reduction
to graph partitioning; McCallum and Wellner (2004) employ a standard approximation algorithm
for performing this operation. This technique appears promising, largely because it can incorporate
arbitrary feature functions. The only potential drawback seems to be thattwo approximations are
used: the perceptron approximation to the CRF likelihood3 and an approximate graph partitioning
algorithm for performing the clustering.

The other direct solution to the supervised clustering problem, due to Finley and Joachims
(2005), is based on the SVMs for Interdependent and Structured Outputs technique (Tsochantaridis
et al., 2004). In this model, a particular clustering method,correlation clustering, is held fixed, and
weights are optimized to minimize the regularized empirical loss of the training data withrespect to
this clustering function. The choice of correlation clustering is not accidental: it decomposes over
pairs. The advantage of this model over the model of McCallum and Wellner (2004) is primarily
due to the fact that the SVM model can optimize more complex (and appropriate)loss functions
than can the CRF approach. However, like the CRF approach, the SVMISO approach must resort
to approximation methods for finding solutions during learning.

2. For instance, the pairs(x1,x2) and(x3,x4) can be seen as being drawn i.i.d. from a joint pair distribution, but the
pairs(x1,x2), (x2,x3) cannot possibly be i.i.d.

3. It could be argued that the perceptron “approximation” is actually superior to the CRF, since it optimizes something
closer to “accuracy” than the log-loss optimized by the CRF.
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In comparison to other models that have been proposed, ours most closelyresembles the (non-
Bayesian) generative model proposed by Pasula et al. (2003). This model formulates the identity
uncertainty/citation matching problem in a generative framework, based on acomplex generative
model under which inference is intractable. They resort to an Markov chain Monte Carlo inference
scheme for identifying clusters, where a uniform prior is placed on the number of clusters. Their
framework learns the model parameters through an MCMC sampling procedure, though no learning
is done with respect to the prior on the number of clusters. The work we present in this paper can be
seen as a method for extending their approach in two ways: first, we directlymodel the number of
output clusters; second, we provide an intuitive, effective procedure for accounting for the multiple
aspects of similarity between different instances. As we discuss in Section 8, the hybridization of
their model and the one we propose could lead to a more effective system than either alone. (Indeed,
between the time of submission of this paper and its final acceptance, Carbonetto et al. (2005) have
presented an extension to the Pasula et al. (2003) model that solves the first problem: estimating
the number of clusters in the citation matching domain. Like us, they employ a Dirichlet process
model to solve this problem. The fact that this model has now been proposedtwice, independently,
is not surprising: citation matching is a well-known problem that suffers from the need to estimate
the number of clusters in a data set, and the Dirichlet process excels at precisely this task.)

3. Supervised Clustering Model

In this section, we describe our model for the supervised clustering problem. To facilitate discussion,
we take our terminology and notation from the reference matching task. The canonical example
of this task is the CiteSeer/ResearchIndex database. Specifically, we assume that we are given
a list of references appearing in the bibliographies of scholarly publications and that we need to
identify which references correspond to the same publication. This task is difficult: according
to CiteSeer, there are currently over 100 different books onArtificial Intelligenceby Russell and
Norvig, according to Pasula et al. (2003). We refer to the setX as the set ofreferencesand a correct
cluster of references as apublication. In our problem, the observed data is a set of references paired
with partial equivalence classes over those references (partial publications). For instance, we might
know thatr1, r2, r3 ∈ X belong to the same equivalence class (are the same publication), but we
might not have any information about the equivalence class ofr4. In this case, we identifyr1, r2, r3

as training data andr4 as test data.
In general, we have a countable set of referencesX and some information about the structure of

equivalence classes on this set and seek to extend the observed equivalence classes to all ofX . In
complete generality, this would be impossible, due to the infinite nature ofX and the corresponding
equivalence classes. However, in thepredictioncase, our job is simply to make predictions about the
structure of afinitesubset ofX , which we have previously denotedX(n+1). Thus, while our inference
procedure attempts to uncover the structure of an infinite structure, calculations are possible because
at any given time, we only deal with a finite portion of this set. This is not unlike the situation
one encounters in Gaussian processes, wherein a distribution is placed over a function space, but
computations are tractable because observations are always finite.

3.1 Generative Story

The model we describe is a generative one. Our modeling assumption is that areference is generated
according to the cross-product of two attributes. The first attribute specifies which publication this
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reference belongs to. The second attribute specifies the manner in which this reference is created,
which we call the “reference type.” A reference type encompasses thenotion that under different
circumstances, references to the same publication are realized differently.

In the terminology of reference matching, in the context of a short workshop paper (for in-
stance), author first names might be abbreviated as initials, page numbers might be left off and
conferences and journals might be referred to by abbreviations. On thecontrary, in a reference ap-
pearing in a journal, page numbers are included, as are full conference/journal names and author
names. In the context of coreference resolution, one reference typemight be for generating proper
names (“Bill Clinton”), one for nominal constructions (“the President”) and one for pronouns (“he”).
Of course, the form and number of the reference types is unknown.

The generative process for a data set proceeds as follows:

1. Select a distributionGp
0 over publications that will be referred to in this data set.Gp

0 should
assign positive probability to only a finite set of all possible publications.

2. Select a distributionGt
0 over reference types that will be used in this data set; again,Gt

0 should
be finite.

3. For each referencern appearing in the data set:

(a) Select the corresponding publicationpn ∼ Gp
0.

(b) Select the corresponding reference typetn ∼ Gt
0.

(c) Generatern by a problem-specific distribution parameterized by the publication and
reference type:rn ∼ F(pn, tn).

The difficulty with this model is knowing how to parameterize the selection of the distributions
Gp

0 andGt
0 in steps 1 and 2. It turns out that a Dirichlet process is an excellent tool for solving this

problem. The Dirichlet process (DP), which is adistribution over distributions, can be most easily
understood via a generalized Pòlya urn scheme, where one draws colored balls from an urn with
replacement. The difference is that when a black ball is drawn, one replaces it together with a ball
of a new color. In this way, the number of “classes” (ball colors) is unlimited, but defines a discrete
distribution (with probability one). See Appendix A for a brief review of the properties of the DP
that are relevant to our model.

Our model is seen as an extension of the standard naı̈ve-Bayes multiclass classification model (in
the Bayesian framework), but where we allow the number of classes to grow unboundedly. Just as a
multiclass classification model can be seen as a finite mixture model where the mixture components
correspond to the finite classes, the supervised clustering model can be seen as aninfinite mixture
model. In the case of the standard multiclass setup, one treats the classy as a random variable drawn
from a multinomial distributionMult(π), whereπ is again a random variable with prior distribution
Dir(α) for the standard Dirichlet distribution. In our model, we essentially remove therequirement
that there is a known finite number of classes and allow this to grow unboundedly. In order to
account for the resulting non-identifiability of the classes, we introduce thenotion of reference
types to capture the relationships between elements from the same class.

Whenever one chooses a model for a problem, it is appropriate to ascertain whether the chosen
model is able to adequately capture the required aspects of a data set. In thecase of our choice
of the Dirichlet process as a prior over publications, one such issue is that of the expected number
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Figure 1: Graphical model for our generic supervised clustering model.

of publications per citation. We have performed such experiments and verified that on a variety
of problems (reference matching, identity uncertainty and coreference resolution), the Dirichlet
process is appropriate with respect to this measure (see Section 7.3 and Figure 3 for discussion).

3.2 Hierarchical Model

The model we propose is structured as follows:

πp | αp ∼ Dir(αp/K, . . . ,αp/K) πt | αt ∼ Dir(αt/L, . . . ,αt/L)
cn | πp ∼ Disc(πp

1, . . . ,π
p
K) dn | πt ∼ Disc(πt

1, . . . ,π
t
L)

pk | Gp
0 ∼ Gp

0 tk | Gt
0 ∼ Gt

0
rn | cn,dn, p, t ∼ F(pcn, tdn)

(1)

The corresponding graphical model is depicted in Figure 1. In this figure, we depict theα
andG parameters as being fixed (indicated by the square boxes). Theαs give rise to multinomial
random variablesπ, which in turn determine indicator variablescn (specifying the publication to
which rn belongs) anddn (specifying the reference type used by referencern). The base density
Gp generates publicationspk (according to a problem-specific distribution), while the base density
Gt generates reference typestl (again according to a problem-specific distribution). Finally, the
observed referencern is generated according to publicationpcn and reference typetdn with problem-
specific distributionF . The rn random variable (the reference itself) is shaded to indicate that it
is always observed, and thecn random variable (the indicator as to which publication is used for
referencern) is partially shaded to indicate that it is sometimes observed (in the training data) and
sometimes not (in the test data).

As indicated by the counts on the plates for the(πp, p) and(πt , t) variables, we take the limit as
K → ∞ andL → ∞ (whereK is the number of publications andL is the number of reference types).
This limit corresponds to a choice of a Dirichlet process prior on theps andts (Neal, 1998).

4. Inference Scheme

Inference in infinite models differs from inference in finite models, primarily because we cannot
store all possible values for infinite plates. However, as noted earlier, weonly encounter a finite
amount of data, so at any time only a finite number of these infinite parameters willbe active—i.e.,
only a finite number of them will affect the distribution of the observed data. We will suggest and
implement inference schemes based on Markov chain Monte Carlo (MCMC) techniques, which
are the most frequently used methods for inference in DP models (Antoniak,1974; Escobar, 1994;
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Neal, 1998; MacEachern and Müller, 1998; Ishwaran and James, 2001; Beal et al., 2002; Xing
et al., 2004). Recently, Blei and Jordan (2005) have presented a variational approach to Dirichlet
process models, and Minka and Ghahramani (2004) have presented aninference procedure for DP
models based on expectation propagation. Unfortunately, these methods donot work when the prior
distributionsG0 are not conjugate to the data distributionF and they are thus not of use to us.

The MCMC-based Bayesian solution to the supervised clustering problem (or, indeed, any prob-
lem) is to write down the expression corresponding to the posterior distributionof thecns for the test
data and draw samples from that posterior. Writing data points 1 throughN as the training data and
pointsN + 1 throughN + M as the test data, we obtain the following expression for this posterior
(the actual distributions are from Equation (1)):

p(cN+1:N+M | r1:N+M,c1:N) ∝
Z

dπp p(πp | αp)
Z

dπt p
(

πt | αt)

Z

dp p
(

p | Gp
0

)

Z

dt p
(

t | Gt
0

)

∑
d1:N+M

N+M

∏
n=1

p(cn | πp) p
(

dn | πt) p(rn | pcn, tdn) .

We now describe how we can do this sampling. Most of the information in this section is taken
from Neal (1998), in which a vast amount of additional information is provided. The interested
reader is directed there for additional motivation and different algorithms.The algorithms we use
in this paper are either exact replicas, or slight deviations from Algorithms 2and 8 of Neal’s.

4.1 Updates for Conjugate Priors

The simplest case arises when a conjugate prior is used. In the terminology of the Dirichlet pro-
cess, this means that the data sampling distributionF is conjugate to the base densityG0 of the
Dirichlet process. To perform inference with conjugate priors, we need to be able to compute the
marginal distribution of a single observation and need to be able to draw samples from the posterior
of the base distributions. In each iteration of sampling, we first resample each active publication
pc and reference typetd according to their posterior densities (in the case of conjugate priors, this
is possible). Then, for each test reference, we resample its publication and for all references, we
resample the corresponding reference type. The algorithm is shown in Figure 2. We actually have
two options when sampling thecns, depending on whether publications are allowed to be shared
across the training and testing data. If a training reference may refer to thesame publication as a
testing reference (as is natural in the context of reference matching), then the sum in Equation (2)
is over all data; on the other hand, if they are not allowed to co-refer (asis natural in, for example,
single-document coreference resolution), then the sum is only over the test data.

4.2 Updates for Non-Conjugate Priors

The case of non-conjugate priors is a bit more complex, since in this case, ingeneral, one is not
able to analytically compute the data marginals, nor is one able to directly sample from the relevant
posterior distributions. A naı̈ve solution would be to set up separate Markov chains to draw samples
from the appropriate distributions so that wecouldcalculate these. Unfortunately, since these values
need to be computed for each loop of the “outer” Markov chain, such an approach is impractical.
The alternative—given as Algorithm 8 by Neal (1998)—is essentially to sample just a few of these
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Initialize the test portion ofc arbitrarily
Initialize d, eachpc and eachtd arbitrarily
for iter = 1, . . . do

Sample each activepc ∼ Gp
0(p)∏n:cn=cF(rn | p, tdn)

Sample each activetd ∼ Gt
0(t)∏n:dn=d F(rn | pcn, t)

for n∈ {1, . . . ,N} (in, perhaps, arbitrary order)do
if n is part of the test datathen

Samplecn according to:
p(cn = ci | c−n) ∝ F(rn | pci , tdn)∑N

m=1 δcm=ci

p(cn is new| c−n) ∝ αp R

dGp
0(p)F(rn | p, tdn)

(2)

if cn is newthen Samplepcn ∼ Gp
0(p)F(rn | p, tdn)

end if
Sampledn according to:

p(dn = di | d−n) ∝ F(rn | pcn, tdi )∑N
m=1 δdm=di

p(dn is new| d−n) ∝ αt R

dGt
0(t)F(rn | pcn, t)

if dn is newthen Sampletdn ∼ Gt
0(t)F(rn | pcn, t)

end for
end for

Figure 2: The inference algorithm for the supervised clustering model withconjugate priors.

needed values in a way that does not affect the detailed balance conditionthat guarantees that the
outerMarkov chain converges to the correct stationary distribution.

The overall structure of the sampling algorithm remains identical in the case ofnon-conjugate
priors; however, the sampling for the indicator variablescn anddn changes slightly, and so does the
sampling of thep andt variables. For instance, in the conjugate case,dn is sampled according to the
marginal distribution

R

dGt
0(t)F(rn | pcn, t), which is analytically unavailable whenGt

0 is not conju-
gate toF (with respect to the second variable). In the case of non-conjugacy, we approximate this
integral by drawingM̃ samples independently fromGt

0. In general, asM̃ → ∞, this is exactly like
computing the integral with an independence sampler; however, forM̃ finite, we still get conver-
gence of the overall Markov chain.̃M is set by the experimenter by choosing the number of samples
M that is drawn and then setting̃M to beM whenever the old value ofdn was not unique, and to
M +1 whenever it was unique. If the chosen value corresponds to one of the newly sampledts, then
we settd to be that sampled value. The corresponding sampling for thec variables is identical. This
is the technique suggested by Neal (1998) in his Algorithm 8. In all experiments, we useM = 8.

The second complication is when we cannot sample from the data posteriors,which means that
resamplingp andt is difficult. This is partially assuaged by the fact that in sampling forcn anddn

we are given an explicit new value ofp or t to use. However, at the beginning of each iteration of
the chain, we must resamplep according to its posterior distribution (and similarly fort). The most
general approach to solving this problem—and the approach we employ here—is to run a short
independence sampler forp by drawing a set of valuesp from Gp

0 and then choosing one of those
according to its posterior. However, depending on the actual distributionschosen, there might be
more appropriate methods for doing this sampling that still leaves the overall chain invariant.
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4.3 Resampling the Dirichlet Process Precision

We often wish to leave the values ofαp andαt (the scaling/precision hyperparameters for the two
Dirichlet processes) as random variables, and estimate them according tothe data distribution. West
(1992) gives a method for drawing samples for the precision parameter given the number of refer-
encesNand the number of publicationsK (or, for αt , the number of reference types); in his analysis,
it is natural to place a gamma prior onα. In most cases, his analysis can be applied directly; how-
ever, in the case of coreference resolution, the problem is a bit more complicated because we have
multipleobservations pairs(N,K) for each “training document.” In Appendix B, we briefly extend
this analysis to the case where there are multiple observations.

5. Model Parameterization

One of the simplest model parameterizations occurs when the data pointsrn are vectors in the
Euclidean spaceRF for some dimensionalityF , and when each dimension is a measure of distance
(i.e., |rn f − rm f| is small wheneverrn andrm are similar along dimensionf ). In this case, it may be
a reasonable assumption that therns are distributed normally around some unknown mean vector,
and with some unknown covariance. While the assumption of normalcy is probably not accurate, it
turns out that it fares rather well experimentally (see Section 7). Moreover, as discussed at the end
of this paper, it is possible to substitute in other models forF as deemed appropriate by a specific
problem.

If we believe therns are distributed normally (i.e.,F is a Normal distribution), it is natural
to treat thepk variables as means and thetl variables as precisions (inverse variance-covariances
matrices). For efficiency’s sake, we further assume thattl is diagonal, so that all covariance terms
are zero. In this model, one can think of a precisiontl f as the “weight” along dimensionf , so that
high weights mean that this dimension is important and low weights mean that this dimension is not
relevant.

By making F an isotropic Normal distribution, the natural conjugate priors are to makeGp
0

another Normal distribution and to makeGt
0 a product of inverse-gamma distributions (one inverse-

gamma distribution per dimensionf ).4 As we typically center and spherize the training data, it
is natural to parameterizeGp

0 with a mean of 0 and a covariance matrix ofσI for someσ ≈ 1.
Similarly, we may parameterizeGt

0 with identical scale and shape parameters all approximately 1.
(Note that we could alsolearn these hyperparameters during inference by including them in the
sampling, though we do not explore this option.)

Experiments with the model just described have demonstrated that while it is adept at finding
points in the same cluster, it is not as able to separate out points in different clusters (it has low pre-
cision, in the precision/recall sense). This occurs because the Gaussian precisions are learned solely
for the purpose of accounting for the distribution of classes by themselves, but with no regard to the
relation between classes. We explore two modeling extensions to attempt to alleviate this problem
and give the model a better ability to separate classes; in the first, we maintain conjugacy (and hence
efficiency in implementation), but in the second we give up conjugacy for a more appropriate model.

4. If we had not assumed thatt was diagonal, then the natural choice forGt
0 would be an inverse-Wishart distribution.
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5.1 Separation by ModifyingGp
0

Our first method for adding separation power between to the model is to condition the parameters
of Gp

0 on p andc: in other words, the shape and scale parameters of the prior on the precisions is
affected by the relative positions of the means of the data. In the original model, we assumed that
t f ∼ Gam(1,1) is a gamma random variable with mean 1 and variance 1. Here, we wish to change
this distribution so that the mean is large enough to keep the data separated along this dimension, and
the variance is small whenever many points tell us that this dimension is important. To accomplish
this we use instead aGam(a,b) prior, whereab is half the mean variance along dimensionf and
ab2 is the variance of the variance along dimensionf . The values fora andb must be resampled at
each iteration of the algorithm.

5.2 Separation by Conditioning

Our second approach to adding more separation power to the model is to condition the choice of
the precisions (reference types)t on the means (publications)p. In terms of our generative story,
this means that first we choose a publication then, based on the publication, choose a reference
type. Since we wish to ascribe no meaning to the actual location of the meanspk, we compute this
probability based only on their relative distances (along each dimension), and also under a naı̈ve
Bayes assumption:

p(t | p,c,d) ≈
[1] |d|

∏
i=1

p(ti | p,c,d)

=
[2] |d|

∏
i=1

p(ti | c,d) p(p | ti ,c,d)

p(p | c,d)

≈
[3] |d|

∏
i=1

Gt
0(ti)

∏|c|
j=1Gp

0(p j)

|c|

∏
j=1

p
(

p j | ti , p1: j−1,c,d
)

=
[4] |d|

∏
i=1

Gt
0(ti)

|c|

∏
j=1

p(p j | ti ,c,d) p
(

p1: j−1 | ti , p j ,c,d
)

p
(

p1: j−1 | ti ,c,d
)

Gp
0(p j)

≈
[5] |d|

∏
i=1

Gt
0(ti)

|c|

∏
j=1

p(p j | ti ,c,d)∏ j−1
k=1 p(pk | ti , p j ,c,d)

Gp
0(p j)∏ j−1

k=1 p(pk | ti ,c,d)

=
[6] |d|

∏
i=1

Gt
0(ti)

|c|

∏
j=1

Gp
0(pi)

2( j−1)−|c|
j−1

∏
k=1

p(p j | pk, ti) . (3)

In the first step of this derivation, we make a factorial assumption on thet vector. The second
step simply applies Bayes’ rule. The third step replaces the genericp(·) symbol for theti variables
with the true distributionGt

0, makes a similar factorial assumption on thep vector and replaces
the correspondingp(·) with Gp

0. The fourth step applies Bayes’ rule to the last term and moves
the denominator from the first product into the second. The fifth step applies the same factorial
assumption onp1: j−1 as before. The last step replaces the genericp(·) symbol withGp

0 and performs
some minor algebraic manipulation.
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This final expression in Equation (3) depends only on the prior values for the sampledts and
ps, coupled with the probability of meanp j given pk under precisionti . Unfortunately, under
the assumptions made, the probability of a vectorp is no longer independent of the ordering of
the values ofp. In all our experiments, we order thep according to the sizes of the classes: if
count(c1) > count(c2). We parameterize the distribution on the meansp(p j | pk, ti) by treating the
distancebetweenp j andpk, measured byti as a random variable with an exponential distribution:

p(p j | pk, ti) = λexp[−λ
∣

∣

∣

∣p j − pk
∣

∣

∣

∣

2
ti
]. We setλ = 1, but, again, it could be learned concurrently by

sampling.

Clearly, this prior distribution fort is no longer conjugate to the data sampling distributionF .
Moreover, theps andts are no longer separated by the indicator variables, which makes the entire
sampling story more complex. Indeed, the marginal distribution now depends on the types and,
similarly, the types depend on the mentions. We thus use the non-conjugate updates described in
Section 4.2. The simplest approach to performing inference with the non-conjugate priors would
be, for each of theM̃ samples forp, to draw fromGp

0 and weight the sampled ˜ps proportional to its
unnormalized posterior probability, given by Equation (3). Similarly, a proposed samplẽt would be
weighted according to its (unnormalized) posterior probability according to Equation (3).

6. Performance Metrics

Quite a few performance metrics have been proposed in the literature for comparing two clusterings
of a given data set. Since these are, in general, less well known than the metrics used for clas-
sification (accuracy, ROC, etc.), we review them here, and attempt to pointout the strengths and
weaknesses of each metric. Of course, the evaluation criteria one uses should reflect one’s own per-
sonal views of what is important, but the metrics used here can be seen as surrogate measurements
when such prior knowledge is unavailable. All of these metrics assume that we have a gold standard
(correct) clusteringG and a hypothesis clusteringH and that the total number of data points isN.

6.1 Rand Index

The rand index (Rand, 1971) is computed by viewing the clustering problemas a binary classifica-
tion problem. LettingN11 denote the number of pairs that are in the same cluster in bothG and in
H, and lettingN00 denote the number of pairs that are in different clusters in bothG andH, the rand
index has valueRI(G,H) = 2[N11+ N00]/[N(N−1)]. Thus, the rand index computes the number
of correct binary decisions (N11+N00) made by the system and normalizes by the total number of
decisions made. The value of the rand index lies between 0 and 1, with 1 representing a perfect
clustering.

The rand index is the most frequently reported metric in the clustering literature, though we
believe that its value is often misleading. As we show in our results (Section 7),a very simple
baseline system that places each element in its own cluster tends to achieve a very high rand index.
This occurs due to the structure of the clusters in most real world data sets.In such data sets,
the number of negative pairs (pairs that, in the gold standard, fall into different clusters) vastly
outnumber the number of positive pairs; thus the rand index becomes dominated by theN00 factor,
and theN11 factor tends to have very little impact on the final value. Moreover, the influence of large
clusters on the rand index quadratically outnumbers the influence of small clusters on this value, so
system performance on small clusters (which are typically the most difficult) becomes insignificant.
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In this paper, we report the rand index for comparative purposes with earlier work, but strongly
encourage readers not to take these numbers too seriously. We recommendother researchers in the
supervised clustering field to report on other metrics of system performance than the rand index.

6.2 Precision, Recall, F-score

The second set of metrics we report are the precision/recall/F-score ofthe clustering. Extending the
notation used for the rand index, we writeN10 for the number of pairs that are in the same cluster
in G, but in different clusters inH. Similarly, we writeN01 for the number of pairs that are in
different clusters inG but the same cluster inH. Precision isP(G,H) = N11/[N11+N01], recall is
R(G,H) = N11/[N11+N10] and F-score isF(G,H) = (P(G,H)−1 + R(G,H)−1)−1. Again, each of
these values falls between 0 and 1 with 1 being optimal. While precision, recall and F-score are still
computed based on binary decisions, they do not suffer as strongly from the weaknesses of the rand
index. However, they still place quadratically as much importance on large clusters.

6.3 Cluster Edit Distance and Normalized Edit Score

Pantel (2003) proposes a metric called thecluster edit distance, which computes the number of
“create,” “move,” and “merge” operations required to transform the hypothesis clustering into the
gold standard. Since no “split” operation is allowed, the cluster edit distancecan be computed
easily and efficiently. However, the lack of a split operation (which is absent precisely so that the
computation of the metric is efficient) means that the cluster edit distance favorsalgorithms that
tend to make too many clusters, rather than too few clusters. This is because ifan algorithm splits
anm element cluster in half, it requires only one merge operation to fix this; however, if, instead,
two m/2-sized clusters are mistakenly merged by an algorithm,m/2 operations are required to fix
this error. The cluster edit distance has a minimum at 0 for the perfect clustering and a maximum
of N. Also note that the cluster edit distance is not symmetric: in general, it does not hold that
CED(G,H) = CED(H,G) (again, precisely because splits are disallowed).

We propose a variant of the cluster edit distance that we call thenormalized edit score. This
value is computed asNES(G,H) = 1− [CED(G,H)+ CED(H,G)]/[2N] and is clearly symmetric
and no longer favors fine clusterings over coarse clusterings. Additionally, it takes values from 0 to
1, with 1 being a perfect clustering. While the normalized edit score no longer can be interpreted
in terms of the number of operations required to transform the hypothesis clustering into the correct
clustering, we believe that these additional properties are sufficiently important to make it preferable
to the cluster edit distance metric.

6.4 Variation of Information

The final metric we report in this paper is the variation of information (VI), introduced by Meila
(2003). TheVI metric essentially looks at how much entropy there is aboutG knowingH, and how
much entropy there is aboutH knowingG. It is computed asVI(G,H) = H(G)+H(H)−2I(G,H).
Here,H(·) is the entropy of a clustering, computed by looking at the probability that any given
point is in any particular cluster.I(G,H) is the mutual information betweenG andH, computed by
looking at the probability that two points are in the same cluster, according toG andH. It has a
minimum at 0, only when the two clusterings match, and is bounded above by logN. It has several
other desirable properties, including the fact that it is a metric. Though frowned upon by Meila
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(2003), we also report thenormalized variation of information, computed simply asNVI(G,H) =
1−VI(G,H)/ logN. This value is again bounded between 0 and 1, where 1 represents a correct
clustering.

7. Experimental Results

In this section, we present experimental results on both artificial and real-world data sets, comparing
our model against other supervised clustering algorithms as well as other standard clustering algo-
rithms. We first discuss the baselines and systems we compare against, and then describe the data
sets we use for comparison. Some data sets support additional, problem-specific baselines against
which we also compare.

7.1 Systems Compared

The first baseline we compare against, COARSE, simply places all elements in the same, single
cluster. The second baseline, FINE, places each element in its own cluster. These are straw-man
baselines that are used only to provide a better sense of the performancemetrics.

The next systems we compare against are pure clustering systems that do not perform any learn-
ing. In particular, we compare against K-MEANS, where the number of clusters,k, is chosen ac-
cording to an oracle (this is thus anupper boundon how well the k-means algorithm can perform
in real life). We additionally compare against a version of our model that does not use any of the
training data. To do so, we initializeαp = 1 and use a single reference type, the identity matrix.
This system is denoted CDP (for “Clustering with theDrichletProcess”) in subsequent sections.

The final class of systems against which we compare are true learning systems. The first is based
on the standard technique of building a binary classifier and applying a clustering method to it. We
use an SVM as the classifier, with an RBF kernel. The kernel parameterγ and the regularization
parameterC are tuned using golden section search under 10-fold cross validation. After the SVM
has been optimized, we use an agglomerative clustering algorithm to create clusters according to
either minimum, maximum or average link, with a threshold to stop merging. The link type(min,
max or avg) and the threshold is tuned through another series of 10-fold cross validation on the
training data. This is essentially the method advocated by Cohen and Richman (2002), with the
slight complication that we consider all link types, while they use average link exclusively. This
system is denoted BINARY in subsequent sections.

The second learning system is the model of distance metric learning presented by Xing et al.
(2003). This model learns a distance metric in the form of a positive semi-definite matrixA and
computes the distance between vectorsx andy as[(x−y)>A(x−y)]1/2. The matrix is learned so as
to minimize the distances between elements in the same cluster (in the training data) andmaximize
the distance between elements in different clusters. Once this distance metric islearned, Xing et al.
(2003) apply standard k-means clustering to the test data. There is a weighting termC that controls
the trade-off between keeping similar points close and dissimilar points separate; we found that the
performance of the resulting system was highly sensitive to this parameter. In the results we present,
we ran four configurations, one withC = 0, one withC = 1, one withC = |s|/|d| (wheres is the set
of similar points andd is the set of dissimilar points), and one withC = (|s|/|d|)2. We evaluated all
four and chose the one that performed best on the test data according toF-score (using an “oracle”).
In all cases, eitherC = 0 or C = (|s|/|d|)2 performed best. We denote this model XING-K in the
following.
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Lastly, we present results produced by the system described in this paper. We report scores on
several variants of our “SupervisedClustering with theDrichlet Process” model: SCDP-1 is the
result of the system run using the conjugate inference methods; SCDP-2 isthe model presented in
Section 5.1 that is aimed at achieving better class separation by modifyingGp

0; finally, SCDP-3 is
the model presented in Section 5.2 that separates classes through conditioning. For all problems, we
will report the number of iterations of the sampling algorithm run, and the time taken for sampling.
In all cases, we ran the algorithms for what wea priori assumed would be “long enough” and did
not employ any technique to determine if we could stop early.

7.2 Data Sets

We evaluate these models on four data sets, the first of which is semi-artificial,and the last three of
which are real-world data sets from three different domains. The four data sets we experiment on
are: the USPS digits database (1987), a collection of annotated data for identity uncertainty from
Doan et al. (2004), proper noun coreference data from NIST and reference matching data from Mc-
Callum et al. (2000). In the digits data set, the data points live in a high-dimensional Euclidean
space and thus one can directly apply all of the models discussed above. The last three data sets
all involve textual data for which an obvious embedding in Euclidean space isnot available. There
are three obvious approaches to dealing with such data. The first is to usea Euclidean embedding
technique, such as multidimensional scaling, kernel PCA or LLE, thus giving us data in Euclidean
space to deal with. The second is to modify the Gaussian assumption in our model to a more ap-
propriate, problem-specific distribution. The third, which is the alternative we explore here, is to
notice that in all the computations required in our model, in k-means clustering, and in the distance
metric learning algorithm (Xing et al., 2003), one never needs to compute locations but only relative
distances.5 We thus structure all of our feature functions to take the form of some sortof distance
metric and then use all algorithms with the implicit embedding technique. The choice of representa-
tion is an important one and a better representation is likely to lead to better performance, especially
in the case where the features employed are not amenable to our factorial assumption. Nevertheless,
results with this simple model are quite strong, comparative to the other baseline models, and little
effort was required to “make the features work” in this task. The only slight complication is that
the distances need to be defined so that large distance is correlated with different class, rather than
the other way around—this is a problem not faced in conditional or discriminative models such as
those of McCallum and Wellner (2004) and Finley and Joachims (2005).

7.3 Appropriateness of DP Prior

Before presenting results on these four data sets, we evaluated whetherthe assumption that the
underlying data distribution comes from a Dirichlet process is reasonable.To do so, we estimated
the α parameter for each data set as described in Section 4.3 and computed for each data set size

5. For instance, one of the common calculations is to compute the distances between the means of two subsets of the
data,{ai}
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The other relevant computations can be done similarly, and the generalization to multidimensional inputs is straight-
forward.
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Figure 3: Number of data points by expected number of clusters for the four data sets. The solid
black line is the expected number according to the Dirichlet process (dotted black lines
are two standard deviations); the dashed blue line is the empirical expected number (dash-
dotted blue lines are two standard deviations).

N the expected number of classesK according to the DP (as well as its standard deviation). For
eachN, we also computed—through resampling—theempiricalexpected value ofK according to
the data set and its standard deviation. We have plotted these curves for each data set in Figure 3.
As we can see form this figure, the DP is an excellent match for most of the data sets, except for the
digits data, where the match is rather poor (though the expectations always fall within two standard
deviations). Better fits could be obtained using a more complex prior, such asthe two-parameter
Poisson-Dirichlet process, but we believe that for these tasks, the standard DP is sufficient.

7.3.1 DIGITS DATA

Our first data set is adapted from the USPS digits database (1987), originally a test set of multiclass
classification in the vision domain. In order to treat it as a supervised clustering problem, we
randomly selected five of the ten digits as the “training data” and use the remaining five as “test
data.” The digits used for training are{1,3,5,8,9} and those used for testing are{0,2,4,6,7}. The
idea is that upon seeing only the digits{1,3,5,8,9}, a supervised clustering model should have
learned enough about the structure of digits to be able to separate the digits{0,2,4,6,7}, even
though it has seen none of them (of course, it will not be able to label them).

In order to more closely mimic the fact that in real world data the clusters are rarely equally
sized, we artificially “imbalanced” both the training and test data, so that therewere between 30
and 300 examples of each of the digits. The digits are 8×8 blocks of pixel intensities, which in all
cases are centered and scaled to have unit variance along each dimension. We run ten chains of ten
thousand iterations each of the inference algorithm from Figure 2. Each chain of model 1 required
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System RI P R F CED NES VI NVI
COARSE .229 .229 1.00 .372 .725 .275 1.525 .765
FINE .771 1.00 .000 .000 1.00 .008 4.975 .235
K-M EANS .760 .481 .656 .555 .350 .412 1.446 .778
CDP .886 .970 .016 .031 1.00 .000 4.237 .241
BINARY .921 .730 .497 .592 .455 .372 1.193 .805
X ING-K .821 .610 .605 .608 .245 .478 1.165 .821
SCDP-1 .848 .668 .664 .666 .239 .483 1.176 .819
SCDP-2 .854 .692 .659 .675 .227 .538 1.118 .828
SCDP-3 .889 .761 .751 .756 .158 .710 0.791 .878

Table 1: Results on the digits data.

about 40 minutes to complete; model 2’s chains required approximately one hour and the chains
from model 3 required 5 hours to complete.

The results of the systems on the digits data are shown in Table 1. There are several things
to note in these results. Somewhat surprising is the relatively poor performance of the BINARY

model. Indeed, this model barely does better than plain K-means, which completely ignores the
training data. Learning a distance metric, in the XING-K system, improves results over standard
K-means, and also performs better than the binary classifier. The ordering of performance of our
model, compared to the learned distance metric, varies by which metric we believe. According to
F-score andNES, our model is universally better; however, according toVI andNVI, the distance
metric method outperforms our model 1, but not models 2 and 3. Finally, on this data, our untrained
model, CDP performs quite poorly, and makes far too many clusters.

7.3.2 IDENTITY UNCERTAINTY DATA

The second data that set we apply our algorithm to is based on the real world problem ofidentity
uncertaintyor entity integration. The data used in the experiment is mined from the dblp bibliogra-
phy server.6 Each “publication” in the data is a computer science researcher and each “reference”
is a name occurring in a reference. There are a total of 1382 elements in thedata, corresponding
to 328 total entities (all labeled). We use 1004 instances (225 entities) as training data and the rest
(378 instances and 103 entities that do not occur in training) as testing data.

The (pairwise) features we use for this data set are the following: string edit distance between the
two first names; string edit distance between the two last names; string edit distance between the full
names; Euclidean distance between the publication years; Euclidean distance between the number of
publications (in our data) published in those years; string edit distance between conference names;
Euclidean distance between the number of publications published in those conferences; and the
number of coauthors with normalized string edit distance less than 0.1. We ran fifty chains of ten
thousand iterations each. One chain for Models 1 and 2 required approximately one day to complete,
while Model 3 took approximately 3 days per chain.

We introduce an additional baseline for this data set that groups person names with identical last
names and identical first initials. This baseline is denoted NAMEMATCH. The results of the systems
on the identity uncertainty data are shown in Table 2. The trend of results here largely agrees with

6. Thanks to Anhai Doan, Hui Fang and Rishi R. Sinha for making this available, seehttp://anhai.cs.uiuc.edu/
archive/domains/researchers.html for further information.
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System RI P R F CED NES VI NVI
COARSE .079 .079 1.00 .147 .749 .251 3.589 .395
FINE .921 1.00 .000 .000 .000 .273 2.345 .605
NAMEMATCH .933 .545 1.00 .706 .405 .595 1.252 .789
K-M EANS .912 .451 .510 .479 .341 .373 1.919 .677
CDP .913 .480 .452 .466 .355 .360 2.031 .658
BINARY .855 .753 .801 .776 .389 .553 1.193 .808
X ING-K .916 .467 .423 .444 .378 .304 2.112 .644
SCDP-1 .963 .764 .786 .775 .127 .761 0.806 .864
SCDP-2 .971 .820 .814 .817 .111 .796 0.669 .887
SCDP-3 .982 .875 .913 .894 .066 .876 0.423 .929

Table 2: Results on the identity uncertainty data.

that of the digits data, in which our models 2 and 3 outperform the baseline systems. However, in
this case, running the distance-metric learning algorithm actually hurts the results. This is perhaps
because our data does not live in Euclidean space, and hence the optimization performed in learning
the distance metric is not run under the proper conditions.

In this data, according to theF-score, the binary classifier outperforms our model 1 (though
our models 2 and 3 outperform the binary classifier). However, according to both the edit distance
metrics and the information metrics, our models all outperform the binary classifier. This data also
provides a good example of the deficiencies of the rand index: accordingto the RI, the FINE system
outperforms all of: K-MEANS, CDP, BINARY and XING-K. Note also in this data that none of the
unsupervised models are able to outperform the NAMEMATCH baseline system (and neither does
the XING-K system).

7.3.3 PROPERNOUN COREFERENCEDATA

The third set of data on which we evaluate is a subtask of the coreferencetask, namely, coreference
of proper nouns (e.g., “George Bush”↔ “President Bush”↔ “Bush” 6↔ “President Clinton”). This
subtask is significantly simpler than the full task, since one need not identify coreference between
pronouns and proper nouns (“he”↔ “George Bush”), nor proper nouns and definite descriptions
(“George Bush”↔ “the President”). This task has previously been used as a benchmark byMcCal-
lum and Wellner (2004). We use a partition of the ACE 2004 broadcast news and newswire training
corpus as the training and test data. This totals 280 documents for training data and 59 documents
for test data. The training data consists of 5613 mentions of entities, corresponding to a total of
3100 different entities; the test data contains 950 mentions correspondingto 523 entities.

As features we use string edit distance, string edit distance on the heads (final word), the length
of the longest common substring, the length of the longest common subsequence, and the string
edit distance between the abbreviations of both terms. For computing this finalterm, we first map
words sequences like “George W. Bush” to “GWB” and leave sequences that already look like
abbreviations (eg., “IBM”) alone; we then compute string edit distance between these pairs. For
this data set, we ran fifty chains for ten thousand iterations. Models 1 and 2 completed in about
three days and Model 3 completed in one week.

As an additional baseline, we cluster mentions with the same head word (final word); this is
denoted SAMEHEAD. The results of the systems on the coreference data are shown in Table 3.As
a point of comparison, McCallum and Wellner (2004) report anF-score of .931 on this task, using
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System RI P R F CED NES VI NVI
COARSE .003 .003 1.00 .006 .978 .021 5.950 .132
FINE .997 1.00 .000 .000 1.00 .551 0.906 .868
SAMEHEAD .999 .965 .899 .931 .019 .933 0.123 .982
K-M EANS .994 .297 .773 .429 .391 .524 1.059 .846
CDP .995 .273 .384 .319 .352 .418 1.265 .815
BINARY .999 .900 .893 .896 .040 .936 0.141 .979
X ING-K .998 .489 .802 .608 .308 .599 0.911 .883
SCDP-1 .996 .409 .497 .449 .261 .564 0.938 .863
SCDP-2 .997 .596 .717 .651 .203 .682 0.654 .904
SCDP-3 .999 .804 .882 .841 .083 .861 0.284 .958

Table 3: Results on the proper noun coreference data.

a graph partition strategy, with weights trained using a perceptron-style algorithm. Our binary clas-
sification model achieve a slightly lowerF-score or .896. Neither of the unsupervised algorithms
perform very well on this data, but in this data, the trained distance metric performs better than
standard K-means.

Overall the binary classifier is the best of the learned systems, achieving an F of .896, a NES of
.936 and a normalized variation of information of.979 (compared to our best scores of.841, .861
and.958, respectively). However, even the binary classifier is outperformed along all metrics by the
simple baseline that matches on the final word, SAMEHEAD, which achieves scores of.931, .933
and.982 for the three overall metrics. The.931F-score is, incidentally, the same number reported
by McCallum and Wellner (2004) (though their choice of training/test division is likely different
from ours). Overall, however, based on this data, it seems reasonableto say that one might be better
served writing a dozen more rules to capture notions of abbreviation, post-modification, and a few
other simple phenomena to handle the proper noun coreference task, rather than try to learn a model
from data.7

7.3.4 REFERENCEMATCHING DATA

Lastly, we perform evaluation on the Cora reference matching data set McCallum et al. (2000).8

This data consists of all references from their collection to publications by Michael Kearns, Robert
Schapire and Yoav Freund. There are 1916 references and 121 publications. In the original pub-
lication, McCallum et al. treated this as a pure clustering task. In order to viewit as a supervised
clustering task, we treat the labeled data for two of these authors as trainingdata, using the last au-
thor as testing data (performing the segmentation this way is more realistic than random selection,
and also serves to strengthen the point that the training and testing data are largely unrelated).

We use the same feature set as in the identity uncertainty evaluation, with the exception that the
first two features become the string edit distance between the publication names and the string edit
distance between the primary author names, respectively. Note that this datais significantly noisier
than the data used in the previous section: there are errors on the labeling of the fields. We again
ran fifty chains for ten thousand iterations; the chains for Models 1 and 2 took one day and Model 3
took three days.

7. Of course, the proper-noun coreference task is the easiest subtask of full coreference resolution, where empirical
results have shown learned systems are able to outperform rule-basedsystems.

8. Thanks to Andrew McCallum for making this data available.
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System RI P R F CED NES VI NVI
COARSE .118 .118 1.00 .205 .745 .255 2.977 .538
FINE .882 1.00 .000 .000 .000 .105 3.456 .462
K-M EANS .862 .407 .461 .433 .392 .240 2.655 .577
CDP .850 .353 .379 .365 .449 .125 2.948 .531
BINARY .936 .804 .616 .686 .107 .721 0.762 .881
X ING-K .855 .369 .384 .377 .411 .180 2.807 .552
SCDP-1 .892 .529 .507 .518 .319 .372 2.237 .643
SCDP-2 .934 .696 .741 .718 .184 .641 1.382 .780
SCDP-3 .952 .794 .782 .788 .125 .757 0.957 .847

Table 4: Results on the reference matching data.

BINARY X ING-K SCDP-1 SCDP-2 SCDP-3
Digits .592 .608 .666 .675 .756
Identity Uncertainty .776 .444 .775 .817 .894
Proper Noun Coreference .896 .608 .449 .651 .841
Reference Matching .686 .377 .518 .718 .788

Table 5: Summary of F-scores of the learning systems on all four data sets.

The results of the systems on the reference matching data are shown in Table4. In this data,
the unsupervised algorithms perform quite poorly, in comparison to the systems that make use of
the training data. Again, as in the identity uncertainty data, we see that learninga distance metric
can hurt performance (at least according toF-score; with respect to edit score and normalizedVI, it
seems to help, but only marginally so).

According toF-score, the binary classifier on this data outperforms our model 1, though our
models 2 and 3 are able to outperform the binary classifier system. In terms ofedit score, the binary
system outperforms all of our models, except for our model 3, which is able to do slightly better
(.757 versus.721). In terms ofNVI, the binary classifier beats all of our models, even model 3,
where it achieves anNVI of .881 and we only achieve.847.

7.4 Summary of Results

We have summarized the results of the five learning systems in Table 5 by listing only their final
F-score. Across all data sets, we consistently see that the supervised approaches outperform the
unsupervised approaches, which is not a terribly surprising finding. Additionally, the standard K-
means algorithm always outperformed our CDP model (the unsupervised version of our model).
In two of the data sets (digits and proper noun coreference), the learned distance metric (XING-
K) achieved superior performance to standard K-means, but in the othertwo data sets, learning
the distance metric hurt. In those cases, we attribute this loss in performance tothe fact that the
algorithm was not operating on truly Euclidean data.

Comparing our models against each other, of our models, model 1 is the poorest performer,
followed by model 2, and model 3 is the best. Our models also tend to have higher precision than
recall, which suggests that they create too many clusters. One could potentially reduce this by cross-
validating onF-score to adjust theαp parameter to attain a balanced precision/recall, but one strong
point of Bayesian models is that no cross-validation is necessary.
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Our model 3 was able to outperform the binary classification model in most metrics on most
data sets, but not always. It tended to consistently outperform the binary classifier in terms ofF-
score, but in terms ofNES and NVI, the binary classifier was better on the reference matching
data. On the proper noun coreference data, our model was unable to match the performance of the
binary classifier, but both performed more poorly than the simple head-matching baseline system,
suggesting that future work on this subtask is perhaps best handled by rules, rather than learning. On
the other data sets (digits and identity uncertainty), our models 2 and 3 consistently outperformed
the binary classification model.

8. Discussion

In this paper, we have presented a Bayesian model for the supervised clustering problem. We have
dealt with the difficulty of defining a prior over a potentially infinite set by appealing to the Dirichlet
process prior. We have introduced the concept of a “reference type” as a mechanism for representing
the aspects of the data that are general to the entire data set—essentially allowing for the supervision.
Like any generative Bayesian classification model, our framework requires the specification of the
data generating distribution, which we have denotedF . In general, theF distribution is problem-
specific, but we have presented a generic parameterization whenF is a Gaussian distribution.

In all but trivial cases, exact evaluation of the posterior distribution of the class variables in
our model is intractable. We have presented MCMC-based sampling algorithmsthat are able to
overcome this intractability. Unlike deterministic approximation techniques (such as variational
or mean-field inference, or expectation propagation), the MCMC methods are able to perform
even when non-conjugate priors are employed. We have presented sampling algorithms for a full
Bayesian treatment of the problem.

Experimentally, under the Gaussian assumption our initial model is unable to separate classes
well. To fix this problem, we introduced two subsequent models. The first modification we make
is to use the references to adjust the parameterization of the prior over the reference types (model
2). This enables the use of a sampling procedure that is essentially as efficient as that used in
the original model (model 1). The other modification we employ is to condition the choice of the
reference types on the references (model 3). Unfortunately, in this model, the distributions over the
reference types and the references are no longer conjugate to the datagenerating distribution, so a
less efficient Gibbs sampler must be employed to perform inference (in general, a single iteration
of the non-conjugate model is approximately 10 times slower than one iteration ofthe conjugate
model).

In a systematic comparison on four data sets against both supervised and unsupervised models,
we have demonstrated that our model is typically able to attain a higher level of performance than
other models (see Section 7.4 for a summary of the experimental results). FullBayesian inference
(similar to transduction) has an advantage over the more standard training/prediction phases: the
test data has no influence on the reference types.

The largest weakness of our model is its generative nature and the potential difficulty of specify-
ing a good distributionF that fits the data and results in tractable inference. The Gaussian parame-
terization seems general, experimentally, but in order to maintain tractability, we had to assume that
the covariance matrix was diagonal: this is essentially the same as making a naı̈ve Bayes assumption
on the features. For discrete data, using a multinomial/Dirichlet pair or binomial/beta pair instead
of the normal/gamma pair might be more natural and would lead to nearly the same inference.
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However, like other generative models, it is likely that our model would be struck with the curse of
dimensionality for any large number of highly correlated features. The generative story employed
by Pasula et al. (2003) is clearly superior to our—largely unmotivated—Gaussian assumption; it
would be very interesting to incorporate their generative story into our “F” distribution, hopefully
to obtain the benefits of both models.

Clearly, scalability is also an issue for our model. The most computationally intensive run of our
model with the application of Model 3 to the proper noun coreference data,which required roughly
one CPUyear to perform. This is not to say that, for instance, the binary classification scheme was
enormously efficient: training a cross-validated SVM on this data set took approximately one CPU
month to perform, though this could be improved by not rerunning the SVM learning for each fold.
Nevertheless, our approach is still roughly ten times slower. However, there are several methods
that one can employ to improve the speed of the model, especially if we wish to scale the model up
to larger data sets. For instance, employing the canopy method described byMcCallum et al. (2000)
and only considering drawing thec indicator variables from appropriate canopies would drastically
improve the efficiency of our model, provided the canopies were sufficiently small. Furthermore,
in the cases of Models 1 and 2, since conjugate priorsare used, one could employ a more efficient
sampling scheme, similar to the Metropolis-Hastings algorithm suggested by Xing et al. (2004) or
the split-merge proposals suggested by Jain and Neal (2003). Nevertheless, MCMC algorithms are
notoriously slow and experiments employing variational or EP methods for the conjugate models
might also improve performance (Blei and Jordan, 2005; Minka and Ghahramani, 2004).

Our model is also similar to a distance metric learning algorithm. Under the Gaussianassump-
tion, the reference types become covariance matrices, which—when thereis only one reference
type—can be interpreted as a transform on the data. However, when there is more than one refer-
ence type, or in the case of full Bayesian inference, the sorts of data distributions accounted for by
our model are more general than in the standard metric learning scenario.9

We believe future research in the context of the framework described in this paper can proceed
along several dimensions. The most obvious would be the integration of moredomain-specific
information in the data generating distributionF . One might be also able to achieve a similar
effect by investigating the interaction of our model with various unsupervised embedding techniques
(kPCA, LLE, MDS, etc.). We have performed preliminary investigations using kPCA (using the
standard string kernel) and LLE combined with K-means as well as K-means and distance-metric
learning and have found that performance is substantially worse than the results presented in this
paper. A final potential avenue for future work would be to attempt to combine the power of our
model with the ability to incorporate arbitrary features found in conditional models, like that of
McCallum and Wellner (2004). Such an integration would be technically challenging, but would
likely result in a more appropriate, general model.

Finally, to foster further research in the supervised clustering problem, we have contributed
our data sets and scoring software to the RIDDLE data repository,http://www.cs.utexas.edu/
users/ml/riddle/, maintained by Mikhail Bilenko.

9. Consider, for instance, a two dimensional Euclidean space where theclusters are axis-aligned pluses. Our model
learns two “reference types” for this data: one aligned with each axis, and, for data that is reasonably separated, is
able to correctly classify most test data. On the other hand, a metric learning algorithm cannot perform any linear
transformation on the data that will result in “better looking” clusters.

1571
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Appendix A. The Dirichlet Process

The formal definition of the Dirichlet process is as follows. Let(X ,Ω) be a measurable space and
let µ be a measure (unnormalized density) on this space that is finite, additive, non-negative and
non-null. We say that a random probability measurePµ on (X ,Ω) is a Dirichlet processwith pa-
rameterµ under the following condition: whenever{B1, . . . ,BK} is a measurable partition ofΩ (i.e.,
eachµ(Bk) > 0 for all k) , then the joint distribution of random probabilities(Pµ(B1), . . . ,Pµ(BK)) is
distributed according toDir(µ(B1), . . . ,µ(BK)), whereDir denotes the standard Dirichlet distribu-
tion (Ferguson, 1973, 1974). In words:Pµ is a Dirichlet process if it behaves as if it were a Dirichlet
distribution on any finite partition of the original space.

It is typically useful to writeµ = αG0, whereα =
R

Ω dµ andG0 = µ/α, so thatG0 is a density.
In this case we refer toG0 as thebase distributionor themean distributionof the DP, andα as the
precision, or scale parameter.

Two fundamental results regarding the DP that are important to us are: (1)observations from a
DP are discrete (with probability one) and (2) ifPµ is a DP with parameterµ, then the conditional
distribution ofPµ given a sampleX1, . . . ,XN is a DP with parameterPµ + ∑N

n=1 δXn, whereδX is a
point mass concentrated atX (Ferguson, 1974). The final useful fact is a correspondence between
the DP and P̀olya Urns, described by Blackwell and MacQueen (1973). In the Pòlya Urn construc-
tion, we consider the situation of an urn from which we draw balls. Initially the urn contains a single
black ball. At any time step, we draw a ballx from the urn. Ifx is black (as it must be on the first
draw), we putx back into the urn and also add a ball of a brand new color. Ifx was not black, we
put x back into the urn and also put in an additional ball of the same color. The pattern of draws
from such an urn describes draws from a DP (withα = 1). In this scheme, we can see that there is a
clustering effect in this model: as more balls of one color (say, blue) are drawn, the number of blue
balls in the urn increases, so the probability of drawing a blue ball in the nextiteration is higher.
However, regardless of how many balls there are in the urn, there is always some probability the
black ball (i.e., a ball of a new color) is drawn. This relative probability is controlled by the preci-
sion parameterα. For lowα, there will be few colors and for highα, there will be many colors. The
appropriateness of such a prior depends on one’s prior intuitions about the problem; more flexible
similar priors are given in terms of exchangeable probability partition functions, including a simple
two-parameter extension of the DP, by Pitman (1996).

As noted by Ferguson (1983), the discreteness of observations fromthe DP means that observa-
tions from the distributions drawn from a DP can be viewed as countably infinite mixtures. This can
be seen directly by considering a model that first draws a distributionG from a DP with parameter
αG0 and then draws observationsθ1, . . . from G. In such a model, one can analytically integrate
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out G to obtain the following conditional distributions from the observationsθn (Blackwell and
MacQueen, 1973; Ferguson, 1983):

θn+1 | θ1, . . . ,θn ∼
α

n+α
G0 +

1
n+α

n

∑
i=1

δθi .

Thus, then+1st data point is drawn with probability proportional toα from the base distribution
G0, and is exactly equal to a previously drawnθi with probability proportional to∑n

j=1 δθi=θ j . This
characterization leads to a straightforward implementation of a Gibbs sampler. It also enables one to
show that the posterior density of a DP with parameterµ after observingN observationsθ1, . . . ,θN

is again a DP with parameterµ+∑N
n=1 δθn (Ferguson, 1973).

Appendix B. Sampling the Precision Parameter

West (1992) describes a method of sampling the precision parameterα for a DP mixture model.
Placing aGam(a,b) prior overα, whenn (the number of observations) andk (the number of unique
mixture components) are known, one first samples an intermediary valuex by a beta distribution
xα(1−x)n−1, whereα is the previous value for the precision parameter. Given this random variable
x, one resamplesα according to a mixture of two gamma densities:

πxGam(a+k,b− logx)+(1−πx)Gam(a+k−1,b− logx),

whereπx is the solution toπx/(1−πx) = (a+ k−1)/[n(b− logx)]. To extend this method to the
case with multiplen andk, we first recall the result of Antoniak (1974), which states that the prior
distribution ofk givenα andn is given by

p(k | α,n) = cn(k)n!αk Γ(α)

Γ(α+n)
.

Here,cn(k) ∝ |S(k)
n |, a Stirling number of the first kind, does not depend onα. Placing a gamma

prior onα with shape parametera and scale parameterb, we obtain the posterior distribution ofα
given all thenm,km as

p(α | x,k,n) ∝ e−bααa−1
M

∏
m=1

αkm−1(α+nm)xα
m(1−xm)nm−1

∝ αa−M−1+∑M
m=1 kme−α(b−log∏M

m=1 xm)
M

∏
m=1

(α+nm). (4)

The product in Equation (4) can be written as the sum over a vector of binary indicator variables
i of lengthM, which gives us

α | x,k,n∼ ∑
i∈2M

ρiGam

(

a−M +
M

∑
m=1

km+ im,b− log
M

∏
m=1

xm

)

. (5)
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Where, writingâ to denote the valuea−M−1+∑M
m=1km andb̂ to denoteb− log∏M

m=1xm, the
mixing weightsρ are defined by

ρi =
1
Z

Γ

(

â+
M

∑
m=1

im

)

M

∏
m=1

(

nmb̂
)1−im

. (6)

To see the correctness of this derivation, consider a giveni. There are∑ im choices ofα, corre-
sponding to the∑ im in the shape parameter for the posterior gamma distribution in Equation (5). For
each of these, the constant from the gamma distribution is decreased by a factor ofΓ(â+∑ im)/Γ(â);
compensating for this results in the first term above (with the bottom half omitted since it is just a
constant). Additionally, each term for whichim = 0 means thatnm was chosen (instead ofα), so
a factor ofnm = n1−im

m needs to be included. Finally, when the shape parameter of the gamma dis-
tribution increases by 1 for eachim = 1, the constant of proportionality for the gamma distribution
increases by a factor ofb− log∏xm, which is compensated for by the last term above.

Similarly, we can obtain a marginal distribution for eachxm conditional onα andk as:

xm | α,nm,km ∝ xα
m(1−xm)nm−1 ∼ Bet(α+1,nm) (7)

In order to sampleα, we first samplex by a sequence ofm beta distributions according to
Equation (7), conditioned on the current value ofα andn. Then, given these values ofx, we sample
a new value ofα from a mixture of gammas defined in Equation (5), conditional on the newly
sampledx, with weights defined in Equation (6). In the latter step, we simply select ani ∈ 2M

according to the probability densityρi and then sample a value from the corresponding gamma
distribution.

Unfortunately, in all but trivial cases,M is large and so computingρi directly for all suchi re-
quires an exponential amount of time (inM). Thus, instead of computing theρs directly, we sample
for them, effectively computing the constantZ though standard MCMC techniques. To perform the
actual sampling from 2M, we employ a Gibbs sampler. Each iteration of the Gibbs sampler cycles
through each of theM values ofi and replacesim with a new value, sampled according to its poste-
rior, conditional oni−m = 〈i l | 1≤ l ≤M, l 6= m〉. The derivation of this posterior is straightforward:

im = 1 | i−m =
â+∑m′ 6=m im

â+∑m′ 6=m im+nmb̂
. (8)

Putting it all together, we sample a new value ofα by first sampling a vectorx, where each
xm is sampled according to Equation (7). Then, we sampleR-many i(r)s using the Gibbs sampler
with update given by Equation (8); finally selecting one of thei(r) according to its empirical density.
Finally, given thisi and thexms, we sample a new value forα by a gamma distribution according
to Equation (5). We have found that for modestM < 100,nm < 1000 andkm < 500, such a chain
converges in roughly 50 iterations. In practice, we run it for 200 iterations to be safe.

References

Charles E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric
problems.The Annals of Statistics, 2(6):1152–1174, November 1974.

1574



A BAYESIAN MODEL FORSUPERVISEDCLUSTERING

Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall. Learning distance functions
using equivalence relations. InProceedings of the International Conference on Machine Learning
(ICML), 2003.

Aharon Bar-Hillel and Daphna Weinshall. Learning with equivalence constraints and the relation
to multiclass learning. InProceedings of the Conference on Computational Learning Theory
(COLT), 2003.

Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. Comparing and unifying search-based and
similarity-based approaches to semi-supervised clustering. InICML Workshop on the Continuum
from Labeled to Unlabeled Data in Machine Learning and Data Mining, pages 42–49, 2003.

Matt Beal, Zoubin Ghahramani, and Carl Edward Rasmussen. The infinite hidden Markov model.
In Advances in Neural Information Processing Systems (NIPS), 2002.

David Blackwell and James B. MacQueen. Ferguson distributions via Pòlya urn schemes.The
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DAUM É III AND MARCU

Sonia Jain and Radford M. Neal. A split-merge markov chain Monte Carlo procedure for the
Dirichlet process mixture model. Technical Report 2003, University of Toronto, Department of
Statistics, 2003.

Toshihiro Kamishima and Fumio Motoyoshi. Learning from cluster examples.Machine Learning
(ML), pages 199–233, 2003.

Steven N. MacEachern and Peter Müller. Estimating mixture of Dirichlet process models.Journal
of Computational and Graphical Statistics (JCGS), 7:223–238, 1998.

Andrew McCallum, Kamal Nigam, and Lyle Ungar. Efficient clustering of high-dimensional data
sets with application to reference matching. InKDD, 2000.

Andrew McCallum and Ben Wellner. Conditional models of identity uncertainty with application
to noun coreference. InAdvances in Neural Information Processing Systems (NIPS), 2004.

Marina Meila. Comparing clusterings. InProceedings of the Conference on Computational Learn-
ing Theory (COLT), 2003.

Thomas Minka and Zoubin Ghahramani. Expectation propagation for infinite mixtures. InNIPS
Workshop on Nonparametric Bayesian Methods and Infinite Models, 2004.

Alvaro E. Monge and Charles Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. InKDD, 1997.

Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Technical
Report 9815, University of Toronto, September 1998.

Vincent Ng and Claire Cardie. Improving machine learning approaches to coreference resolution.
In Proceedings of the Conference of the Association for Computational Linguistics (ACL), 2002.

Patrick Pantel.Clustering by Committee. PhD thesis, University of Alberta, 2003.

Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart Russell, and Ilya Shpitser. Identity uncertainty
and citation matching. InAdvances in Neural Information Processing Systems (NIPS), 2003.

Jim Pitman. Some developments of the Blackwell-MacQueen urn scheme.In Statistics, Probability
and Game Theory; Papers in honor of David Blackwell Lecture Notes, Monograph Series 30:
245–267, 1996.

W. M. Rand. Objective criteria for the evaluation of clustering methods.Journal of the American
Statistical Association (JASA), 66:846–850, 1971.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim. A machine learning approach to
coreference resolution of noun phrases.Computational Linguistics, 27(4):521 – 544, 2001.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasmine Altun. Support vector
machine learning for interdependent and structured output spaces. InProceedings of the Interna-
tional Conference on Machine Learning (ICML), 2004.

1576



A BAYESIAN MODEL FORSUPERVISEDCLUSTERING

USPS digits database. United states postal service handwritten zip code database. Made available
by the USPS Office of Advanced Technology, 1987.

Mike West. Hyperparameter estimation in Dirichlet process mixture models.ISDS Discussion
Paper #92-A03, 1992. Duke University.

Eric P. Xing, Andrew Ng, Michael I. Jordan, and Stuart Russell. Distance metric learning, with
application to clustering with side-information. InAdvances in Neural Information Processing
Systems (NIPS), 2003.

Eric P. Xing, Roded Sharan, and Michael I. Jordan. Bayesian haplotype inference via the Dirichlet
process. InProceedings of the International Conference on Machine Learning (ICML), 2004.

1577





Journal of Machine Learning Research 6 (2005) 1579–1619 Submitted 3/05; Published 9/05

Fast Kernel Classifiers
with Online and Active Learning

Antoine Bordes ANTOINE.BORDES@BDE.ESPCI.FR

NEC Laboratories America
4 Independence Way
Princeton, NJ 08540, USA, and
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Abstract
Very high dimensional learning systems become theoretically possible when training examples are
abundant. The computing cost then becomes the limiting factor. Any efficient learning algorithm
should at least take a brief look at each example. But should all examples be given equal attention?

This contribution proposes an empirical answer. We first present an online SVM algorithm
based on this premise. LASVM yields competitive misclassification rates after a single pass over
the training examples, outspeeding state-of-the-art SVM solvers. Then we show how active exam-
ple selection can yield faster training, higher accuracies, and simpler models, using only a fraction
of the training example labels.

1. Introduction

Electronic computers have vastly enhanced our ability to compute complicated statistical models.
Both theory and practice have adapted to take into account the essential compromise between the
number of examples and the model capacity (Vapnik, 1998). Cheap, pervasive and networked com-
puters are now enhancing our ability to collect observations to an even greater extent. Data sizes
outgrow computer speed. During the last decade, processors became 100 times faster, hard disks
became 1000 times bigger.

Very high dimensional learning systems become theoretically possible when training examples
are abundant. The computing cost then becomes the limiting factor. Any efficient learning algorithm
should at least pay a brief look at each example. But should all training examples be given equal
attention?

c©2005 Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou.
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This contribution proposes an empirical answer:

• Section 2 presents kernel classifiers such as Support Vector Machines (SVM). Kernel classi-
fiers are convenient for our purposes because they clearly express their internal states in terms
of subsets of the training examples.

• Section 3 proposes a novel online algorithm,LASVM , which converges to the SVM solution.
Experimental evidence on diverse data sets indicates that it reliably reaches competitive ac-
curacies after performing a single pass over the training set. It uses lessmemory and trains
significantly faster than state-of-the-art SVM solvers.

• Section 4 investigates two criteria to select informative training examples at each iteration
instead of sequentially processing all examples. Empirical evidence showsthat selecting in-
formative examples without making use of the class labels can drastically reduce the training
time and produce much more compact classifiers with equivalent or superioraccuracy.

• Section 5 discusses the above results and formulates theoretical questions. The simplest ques-
tion involves the convergence of these algorithms and is addressed by the appendix. Other
questions of greater importance remain open.

2. Kernel Classifiers

Early linear classifiers associate classesy = ±1 to patternsx by first transforming the patterns into
feature vectorsΦ(x) and taking the sign of a linear discriminant function:

ŷ(x) = w′Φ(x)+b. (1)

The parametersw andb are determined by running some learning algorithm on a set of training
examples(x1,y1) · · ·(xn,yn). The feature functionΦ is usually hand chosen for each particular
problem (Nilsson, 1965).

Aizerman et al. (1964) transform such linear classifiers by leveraging two theorems of theRe-
producing Kerneltheory (Aronszajn, 1950).

TheRepresentation Theoremstates that manyΦ-machine learning algorithms produce parame-
ter vectorsw that can be expressed as a linear combinations of the training patterns:

w =
n

∑
i=1

αiΦ(xi).

The linear discriminant function (1) can then be written as akernel expansion

ŷ(x) =
n

∑
i=1

αiK(x,xi)+b, (2)

where thekernel function K(x,y) represents the dot productsΦ(x)′Φ(y) in feature space. This
expression is most useful when a large fraction of the coefficientsαi are zero. Examples such that
αi 6= 0 are then calledSupport Vectors.

Mercer’s Theoremprecisely states which kernel functions correspond to a dot product for some
feature space. Kernel classifiers deal with the kernel functionK(x,y) without explicitly using the
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corresponding feature functionΦ(x). For instance, the well knownRBFkernelK(x,y) = e−γ‖x−y‖2

defines an implicit feature space of infinite dimension.
Kernel classifiers handle such large feature spaces with the comparatively modest computational

costs of the kernel function. On the other hand, kernel classifiers mustcontrol the decision funcion
complexity in order to avoid overfitting the training data in such large feature spaces. This can be
achieved by keeping the number of support vectors as low as possible (Littlestone and Warmuth,
1986) or by searching decision boundaries that separate the examples with the largest margin (Vap-
nik and Lerner, 1963; Vapnik, 1998).

2.1 Support Vector Machines

Support Vector Machines were defined by three incremental steps. First, Vapnik and Lerner (1963)
propose to construct theOptimal Hyperplane, that is, the linear classifier that separates the training
examples with the widest margin. Then, Guyon, Boser, and Vapnik (1993) propose to construct
the Optimal Hyperplane in the feature space induced by a kernel function.Finally, Cortes and
Vapnik (1995) show that noisy problems are best addressed by allowingsome examples to violate
the margin condition.

Support Vector Machines minimize the following objective function in feature space:

min
w,b
‖w‖2 +C

n

∑
i=1

ξi with

{

∀ i yi ŷ(xi)≥ 1−ξi

∀ i ξi ≥ 0.
(3)

For very large values of the hyper-parameterC, this expression minimizes‖w‖2 under the constraint
that all training examples are correctly classified with a marginyi ŷ(xi) greater than 1. Smaller values
of C relax this constraint and produce markedly better results on noisy problems (Cortes and Vapnik,
1995).

In practice this is achieved by solving the dual of this convex optimization problem. The coef-
ficientsαi of the SVM kernel expansion (2) are found by defining the dual objective function

W(α) = ∑
i

αiyi−
1
2 ∑

i, j

αiα jK(xi ,x j) (4)

and solving the SVMQuadratic Programming(QP) problem:

max
α

W(α) with















∑i αi = 0
Ai ≤ αi ≤ Bi

Ai = min(0,Cyi)
Bi = max(0,Cyi).

(5)

The above formulation slightly deviates from the standard formulation (Cortesand Vapnik, 1995)
because it makes theαi coefficients positive whenyi = +1 and negative whenyi =−1.

SVMs have been very successful and are very widely used becausethey reliably deliver state-
of-the-art classifiers with minimal tweaking.

Computational Cost of SVMs There are two intuitive lower bounds on the computational cost
of any algorithm able to solve the SVM QP problem for arbitrary matricesKi j = K(xi ,x j).
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1. Suppose that an oracle reveals whetherαi = 0 or αi = ±C for all i = 1. . .n. Computing the
remaining 0< |αi | < C amounts to inverting a matrix of sizeR×R whereR is the number
of support vectors such that 0< |αi | < C. This typically requires a number of operations
proportional toR3.

2. Simply verifying that a vectorα is a solution of the SVM QP problem involves computing
the gradients ofW(α) and checking the Karush-Kuhn-Tucker optimality conditions (Vapnik,
1998). Withn examples andSsupport vectors, this requires a number of operations propor-
tional tonS.

Few support vectors reach the upper boundC when it gets large. The cost is then dominated by
theR3≈ S3. Otherwise the termn Sis usually larger. The final number of support vectors therefore
is the critical component of the computational cost of the SVM QP problem.

Assume that increasingly large sets of training examples are drawn from anunknown distribu-
tion P(x,y). Let B be the error rate achieved by the best decision function (1) for that distribution.
WhenB > 0, Steinwart (2004) shows that the number of support vectors is asymptotically equiv-
alent to 2nB. Therefore, regardless of the exact algorithm used, the asymptotical computational
cost of solving the SVM QP problem grows at least liken2 whenC is small andn3 whenC gets
large. Empirical evidence shows that modern SVM solvers (Chang and Lin, 2001-2004; Collobert
and Bengio, 2001) come close to these scaling laws.

Practice however is dominated by the constant factors. When the number ofexamples grows,
the kernel matrixKi j = K(xi ,x j) becomes very large and cannot be stored in memory. Kernel values
must be computed on the fly or retrieved from a cache of often accessed values. When the cost of
computing each kernel value is relatively high, the kernel cache hit rate becomes a major component
of the cost of solving the SVM QP problem (Joachims, 1999). Larger problems must be addressed
by using algorithms that access kernel values with very consistent patterns.

Section 3 proposes an Online SVM algorithm that accesses kernel valuesvery consistently.
Because it computes the SVM optimum, this algorithm cannot improve on then2 lower bound.
Because it is an online algorithm, early stopping strategies might give approximate solutions in
much shorter times. Section 4 suggests that this can be achieved by carefullychoosing which
examples are processed at each iteration.

Before introducing the new Online SVM, let us briefly describe other existing online kernel
methods, beginning with the kernel Perceptron.

2.2 Kernel Perceptrons

The earliest kernel classifiers (Aizerman et al., 1964) were derived from the Perceptron algorithm (Rosen-
blatt, 1958). The decision function (2) is represented by maintaining the setSof the indicesi of the
support vectors. The bias parameterb remains zero.

Kernel Perceptron
1) S ← /0, b← 0.
2) Pick a random example(xt ,yt)
3) Compute ˆy(xt) = ∑i∈S αi K(xt ,xi)+b
4) If yt ŷ(xt) ≤ 0 then S ← S ∪{t}, αt ← yt

5) Return to step 2.
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SuchOnline Learning Algorithmsrequire very little memory because the examples are pro-
cessed one by one and can be discarded after being examined.

Iterations such thatyt ŷ(xt) < 0 are calledmistakesbecause they correspond to patterns mis-
classified by the perceptron decision boundary. The algorithm then modifies the decision boundary
by inserting the misclassified pattern into the kernel expansion. When a solution exists, Novikoff’s
Theorem (Novikoff, 1962) states that the algorithm converges after a finite number of mistakes, or
equivalently after inserting a finite number of support vectors. Noisy datasets are more problematic.

Large Margin Kernel Perceptrons The success of Support Vector Machines has shown that large
classification margins were desirable. On the other hand, the Kernel Perceptron (Section 2.2) makes
no attempt to achieve large margins because it happily ignores training examples that are very close
to being misclassified.

Many authors have proposed to close the gap with online kernel classifiers by providing larger
margins. The Averaged Perceptron (Freund and Schapire, 1998) decision rule is the majority vote of
all the decision rules obtained after each iteration of the Kernel Perceptron algorithm. This choice
provides a bound comparable to those offered in support of SVMs. Other algorithms (Frieß et al.,
1998; Gentile, 2001; Li and Long, 2002; Crammer and Singer, 2003) explicitely construct larger
margins. These algorithms modify the decision boundary whenever a trainingexample is either
misclassified or classified with an insufficient margin. Such examples are theninserted into the
kernel expansion with a suitable coefficient. Unfortunately, this change significantly increases the
number of mistakes and therefore the number of support vectors. The increased computational cost
and the potential overfitting undermines the positive effects of the increased margin.

Kernel Perceptrons with Removal Step This is why Crammer et al. (2004) suggest an additional
step forremovingsupport vectors from the kernel expansion (2). The Budget Perceptron performs
very nicely on relatively clean data sets.

Budget Kernel Perceptron (β,N)
1) S ← /0, b← 0.
2) Pick a random example(xt ,yt)
3) Compute ˆy(xt) = ∑i∈S αi K(xt ,xi)+b
4) If yt ŷ(xt) ≤ β then,

4a) S ← S ∪{t}, αt ← yt

4b) If |S |> N thenS ← S −{argmaxi∈S yi (ŷ(xi)−αi K(xi ,xi))}
5) Return to step 2.

Online kernel classifiers usually experience considerable problems with noisy data sets. Each
iteration is likely to cause a mistake because the best achievable misclassificationrate for such prob-
lems is high. The number of support vectors increases very rapidly and potentially causes overfitting
and poor convergence. More sophisticated support vector removal criteria avoid this drawback (We-
ston et al., 2005). This modified algorithm outperforms all otheronlinekernel classifiers on noisy
data sets and matches the performance of Support Vector Machines with less support vectors.

3. Online Support Vector Machines

This section proposes a novel online algorithm namedLASVM that converges to the SVM solution.
This algorithm furthers ideas first presented by Bordes and Bottou (2005). Unlike this previous
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work, LASVM relies on the traditional “soft margin” SVM formulation, handles noisy data sets, and
is nicely related to the SMO algorithm. Experimental evidence on multiple data sets indicates that
it reliably reaches competitive test error rates after performing a single pass over the training set. It
uses less memory and trains significantly faster than state-of-the-art SVM solvers.

3.1 Quadratic Programming Solvers for SVMs

Sequential Direction Search Efficient numerical algorithms have been developed to solve the
SVM QP problem (5). The best known methods are the Conjugate Gradientmethod (Vapnik, 1982,
pages 359–362) and the Sequential Minimal Optimization (Platt, 1999). Both methods work by
making successive searches along well chosen directions.

Each direction search solves the restriction of the SVM problem to the half-line starting from the
current vectorα and extending along the specified directionu. Such a search yields a new feasible
vectorα+λ∗u, where

λ∗ = argmaxW(α+λu) with 0≤ λ≤ φ(α,u). (6)

The upper boundφ(α,u) ensures thatα+λu is feasible as well:

φ(α,u) = min







0 if ∑k uk 6= 0
(Bi−αi)/ui for all i such thatui > 0
(A j −α j)/u j for all j such thatu j < 0.







(7)

Calculus shows that the optimal value is achieved for

λ∗ = min

{

φ(α,u) ,
∑i gi ui

∑i, j uiu j Ki j

}

(8)

whereKi j = K(xi ,x j) andg = (g1 . . .gn) is the gradient ofW(α), and

gk =
∂W(α)

∂αk
= yk−∑

i

αiK(xi ,xk) = yk− ŷ(xk)+b. (9)

Sequential Minimal Optimization Platt (1999) observes that direction search computations are
much faster when the search directionu mostly contains zero coefficients. At least two coefficients
are needed to ensure that∑k uk = 0. TheSequential Minimal Optimization(SMO) algorithm uses
search directions whose coefficients are all zero except for a single+1 and a single−1.

Practical implementations of the SMO algorithm (Chang and Lin, 2001-2004; Collobert and
Bengio, 2001) usually rely on a small positive toleranceτ > 0. They only select directionsu such
thatφ(α,u) > 0 andu′g > τ. This means that we can move along directionu without immediately
reaching a constraint and increase the value ofW(α). Such directions are defined by the so-called
τ-violating pair (i, j):

(i, j) is aτ-violating pair ⇐⇒







αi < Bi

α j > A j

gi−g j > τ.
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SMO Algorithm
1) Setα← 0 and compute the initial gradientg (equation 9)

2) Choose aτ-violating pair(i, j). Stop if no such pair exists.

3) λ←min

{

gi−g j

Kii +K j j −2Ki j
, Bi−αi , α j −A j

}

αi ← αi +λ , α j ← α j −λ
gs← gs−λ(Kis−K js) ∀s∈ {1. . .n}

4) Return to step (2)

The above algorithm does not specify how exactly theτ-violating pairs are chosen. Modern
implementations of SMO select theτ-violating pair(i, j) that maximizes the directional gradientu′g.
This choice was described in the context of Optimal Hyperplanes in both (Vapnik, 1982, pages 362–
364) and (Vapnik et al., 1984).

Regardless of how exactly theτ-violating pairs are chosen, Keerthi and Gilbert (2002) assert
that the SMO algorithm stops after a finite number of steps. This assertion is correct despite a slight
flaw in their final argument (Takahashi and Nishi, 2003).

When SMO stops, noτ-violating pair remain. The correspondingα is called aτ-approximate
solution. Proposition 13 in appendix A establishes that such approximate solutions indicate the
location of the solution(s) of the SVM QP problem when the toleranceτ become close to zero.

3.2 OnlineLASVM

This section presents a novel online SVM algorithm namedLASVM . There are two ways to view
this algorithm.LASVM is an online kernel classifier sporting a support vector removal step: vectors
collected in the current kernel expansion can be removed during the online process.LASVM also is
a reorganization of the SMO sequential direction searches and, as such, converges to the solution of
the SVM QP problem.

Compared to basic kernel perceptrons (Aizerman et al., 1964; Freund and Schapire, 1998), the
LASVM algorithm features a removal step and gracefully handles noisy data. Compared to kernel
perceptrons with removal steps (Crammer et al., 2004; Weston et al., 2005), LASVM converges to the
known SVM solution. Compared to a traditional SVM solver (Platt, 1999; Chang and Lin, 2001-
2004; Collobert and Bengio, 2001),LASVM brings the computational benefits and the flexibility
of online learning algorithms. Experimental evidence indicates thatLASVM matches the SVM
accuracy after a single sequential pass over the training examples.

This is achieved by alternating two kinds of direction searches namedPROCESSandREPRO-
CESS. Each direction search involves a pair of examples. Direction searches of the PROCESSkind
involve at least one example that is not a support vector of the current kernel expansion. They po-
tentially can change the coefficient of this example and make it a support vector. Direction searches
of theREPROCESSkind involve two examples that already are support vectors in the currentkernel
expansion. They potentially can zero the coefficient of one or both support vectors and thus remove
them from the kernel expansion.

Building Blocks The LASVM algorithm maintains three essential pieces of information: the set
S of potential support vector indices, the coefficientsαi of the current kernel expansion, and the
partial derivativesgi defined in (9). Variablesαi andgi contain meaningful values wheni ∈ S only.
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The coefficientαi are assumed to be null ifi /∈ S . On the other hand, setS might contain a few
indicesi such thatαi = 0.

The two basic operations of the OnlineLASVM algorithm correspond to steps 2 and 3 of the
SMO algorithm. These two operations differ from each other because theyhave different ways to
selectτ-violating pairs.

The first operation,PROCESS, attempts to insert examplek /∈ S into the set of current support
vectors. In the online setting this can be used to process a new example at timet. It first adds
examplek /∈ S into S (step 1-2). Then it searches a second example inS to find theτ-violating pair
with maximal gradient (steps 3-4) and performs a direction search (step 5).

LASVM PROCESS(k)
1) Bail out if k∈ S .

2) αk← 0 , gk← yk−∑s∈S αsKks , S ← S ∪{k}

3) If yk = +1 then
i← k , j ← argmins∈Sgs with αs > As

else
j ← k , i← argmaxs∈Sgs with αs < Bs

4) Bail out if (i, j) is not aτ-violating pair.

5) λ←min

{

gi−g j

Kii +K j j −2Ki j
, Bi−αi , α j −A j

}

αi ← αi +λ , α j ← α j −λ
gs← gs−λ(Kis−K js) ∀s∈ S

The second operation,REPROCESS, removes some elements fromS . It first searches theτ-
violating pair of elements ofS with maximal gradient (steps 1-2), and performs a direction search
(step 3). Then it removes blatant non support vectors (step 4). Finally itcomputes two useful
quantities: the bias termb of the decision function (2) and the gradientδ of the mostτ-violating pair
in S .

LASVM REPROCESS
1) i← argmaxs∈S gs with αs < Bs

j ← argmins∈S gs with αs > As

2) Bail out if (i, j) is not aτ-violating pair.

3) λ←min

{

gi−g j

Kii +K j j −2Ki j
, Bi−αi , α j −A j

}

αi ← αi +λ , α j ← α j −λ
gs← gs−λ(Kis−K js) ∀s∈ S

4) i← argmaxs∈S gs with αs < Bs

j ← argmins∈S gs with αs > As

For alls∈ S such thatαs = 0
If ys =−1 andgs≥ gi then S = S −{s}
If ys = +1 andgs≤ g j then S = S −{s}

5) b← (gi +g j)/2 , δ← gi−g j
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Online LASVM After initializing the state variables (step 1), the OnlineLASVM algorithm al-
ternatesPROCESSandREPROCESSa predefined number of times (step 2). Then it simplifies the
kernel expansion by runningREPROCESSto remove allτ-violating pairs from the kernel expansion
(step 3).

LASVM
1) Initialization :

SeedS with a few examples of each class.
Setα← 0 and compute the initial gradientg (equation 9)

2) Online Iterations:
Repeat a predefined number of times:

- Pick an examplekt

- RunPROCESS(kt).
- RunREPROCESSonce.

3) Finishing:
RepeatREPROCESSuntil δ≤ τ.

LASVM can be used in the online setup where one is given a continuous stream of fresh random
examples. The online iterations process fresh training examples as they come. LASVM can also be
used as a stochastic optimization algorithm in the offline setup where the complete training set is
available before hand. Each iteration randomly picks an example from the training set.

In practice we run theLASVM online iterations in epochs. Each epoch sequentially visits all
the randomly shuffled training examples. After a predefined numberP of epochs, we perform the
finishing step. A single epoch is consistent with the use ofLASVM in the online setup. Multiple
epochs are consistent with the use ofLASVM as a stochastic optimization algorithm in the offline
setup.

Convergence of the Online Iterations Let us first ignore the finishing step (step 3) and assume
that online iterations (step 2) are repeated indefinitely. Suppose that thereare remainingτ-violating
pairs at iterationT.

a.) If there areτ-violating pairs(i, j) such thati ∈ S and j ∈ S , one of them will be exploited by
the nextREPROCESS.

b.) Otherwise, if there areτ-violating pairs(i, j) such thati ∈ S or j ∈ S , each subsequentPRO-
CESShas a chance to exploit one of them. The interveningREPROCESSdo nothing because
they bail out at step 2.

c.) Otherwise, allτ-violating pairs involve indices outsideS . Subsequent calls toPROCESSand
REPROCESSbail out until we reach a timet > T such thatkt = i andkt+1 = j for someτ-
violating pair (i, j). The firstPROCESSthen insertsi into S and bails out. The following
REPROCESSbails out immediately. Finally the secondPROCESSlocates pair(i, j).

This case is not important in practice. There usually is a support vectors∈ S such that
As < αs < Bs. We can then writegi −g j = (gi −gs)+ (gs−g j) ≤ 2τ and conclude that we
already have reached a 2τ-approximate solution.
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The LASVM online iterations therefore work like the SMO algorithm. Remainingτ-violating
pairs is sooner or later exploited by eitherPROCESSor REPROCESS. As soon as aτ-approximate
solution is reached, the algorithm stops updating the coefficientsα. Theorem 18 in the appendix
gives more precise convergence results for this stochastic algorithm.

The finishing step (step 3) is only useful when one limits the number of online iterations. Run-
ning LASVM usually consists in performing a predefined numberP of epochs and running the fin-
ishing step. Each epoch performsn online iterations by sequentially visiting the randomly shuffled
training examples. Empirical evidence suggests indeed that asingle epochyields a classifier almost
as good as the SVM solution.

Computational Cost ofLASVM BothPROCESSandREPROCESSrequire a number of operations
proportional to the numberSof support vectors in setS . PerformingP epochs of online iterations
requires a number of operations proportional ton PS̄. The average number̄S of support vectors
scales no more than linearly withn because each online iteration brings at most one new support
vector. The asymptotic cost therefore grows liken2 at most. The finishing step is similar to running
a SMO solver on a SVM problem with onlyS training examples. We recover here then2 to n3

behavior of standard SVM solvers.
Online algorithms access kernel values with a very specific pattern. Most of the kernel values

accessed byPROCESSandREPROCESSinvolve only support vectors from setS . Only PROCESS
on a new examplexkt accessesS fresh kernel valuesK(xkt ,xi) for i ∈ S .

Implementation Details Our LASVM implementation reorders the examples after everyPRO-
CESSor REPROCESSto ensure that the current support vectors come first in the reorderedlist
of indices. The kernel cache records truncated rows of the reordered kernel matrix. SVMLight
(Joachims, 1999) andLIBSVM (Chang and Lin, 2001-2004) also perform such reorderings, but do
so rather infrequently (Joachims, 1999). The reordering overhead isacceptable during the online
iterations because the computation of fresh kernel values takes much more time.

Reordering examples during the finishing step was more problematic. We eventually deployed
an adaptation of theshrinkingheuristic (Joachims, 1999) for the finishing step only. The setS of
support vectors is split into an active setSa and an inactive setSi . All support vectors are initially
active. TheREPROCESSiterations are restricted to the active setSa and do not perform any reorder-
ing. About every 1000 iterations, support vectors that hit the boundaries of the box constraints are
either removed from the setS of support vectors or moved from the active setSa to the inactive set
Si . When allτ-violating pairs of the active set are exhausted, the inactive set examplesare trans-
ferred back into the active set. The process continues as long as the merged set containsτ-violating
pairs.

3.3 MNIST Experiments

The OnlineLASVM was first evaluated on the MNIST1 handwritten digit data set (Bottou et al.,
1994). Computing kernel values for this data set is relatively expensivebecause it involves dot
products of 784 gray level pixel values. In the experiments reported below, all algorithms use the
same code for computing kernel values. The ten binary classification tasksconsist of separating
each digit class from the nine remaining classes. All experiments use RBF kernels withγ = 0.005

1. This data set is available athttp://yann.lecun.com/exdb/mnist.
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Figure 1: Compared test error rates for the ten
MNIST binary classifiers.

Figure 2: Compared training times for the ten
MNIST binary classifiers.

and the same training parametersC = 1000 andτ = 0.001. Unless indicated otherwise, the kernel
cache size is 256MB.

LASVM versus Sequential Minimal Optimization Baseline results were obtained by running
the state-of-the-art SMO solverLIBSVM (Chang and Lin, 2001-2004). The resulting classifier ac-
curately represents the SVM solution.

Two sets of results are reported forLASVM . TheLASVM×1 results were obtained by performing
a single epoch of online iterations: each training example was processed exactly once during a
single sequential sweep over the training set. TheLASVM×2 results were obtained by performing
two epochs of online iterations.

Figures 1 and 2 show the resulting test errors and training times.LASVM×1 runs about three
times faster thanLIBSVM and yields test error rates very close to theLIBSVM results. Standard
paired significance tests indicate that these small differences are not significant. LASVM×2 usually
runs faster thanLIBSVM and very closely tracks theLIBSVM test errors.

Neither theLASVM×1 or LASVM×2 experiments yield the exact SVM solution. On this data
set,LASVM reaches the exact SVM solution after about five epochs. The first two epochs represent
the bulk of the computing time. The remaining epochs run faster when the kernel cache is large
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Algorithm Error Time
LIBSVM 1.36% 17400s
LASVM×1 1.42% 4950s
LASVM×2 1.36% 12210s

Figure 3: Training time as a function of the
number of support vectors.

Figure 4: Multiclass errors and training times
for the MNIST data set.

Figure 5: Compared numbers of support vec-
tors for the ten MNIST binary clas-
sifiers.

Figure 6: Training time variation as a func-
tion of the cache size. Relative
changes with respect to the 1GB
LIBSVM times are averaged over all
ten MNIST classifiers.

enough to hold all the dot products involving support vectors. Yet the overall optimization times are
not competitive with those achieved byLIBSVM .

Figure 3 shows the training time as a function of the final number of support vectors for the
ten binary classification problems. BothLIBSVM andLASVM×1 show a linear dependency. The
OnlineLASVM algorithm seems more efficient overall.
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Figure 4 shows the multiclass error rates and training times obtained by combiningthe ten
classifiers using the well known 1-versus-rest scheme (Schölkopf and Smola, 2002).LASVM×1
provides almost the same accuracy with much shorter training times.LASVM×2 reproduces the
LIBSVM accuracy with slightly shorter training time.

Figure 5 shows the resulting number of support vectors. A single epoch of the OnlineLASVM
algorithm gathers most of the support vectors of the SVM solution computed by LIBSVM . The first
iterations of the OnlineLASVM might indeed ignore examples that later become support vectors.
Performing a second epoch captures most of the missing support vectors.

LASVM versus the Averaged Perceptron The computational advantage ofLASVM relies on its
apparent ability to match the SVM accuracies after a single epoch. Therefore it must be compared
with algorithms such as the Averaged Perceptron (Freund and Schapire,1998) that provably match
well known upper bounds on the SVM accuracies. TheAVGPERC×1 results in Figures 1 and 2 were
obtained after running a single epoch of the Averaged Perceptron. Although the computing times are
very good, the corresponding test errors are not competitive with thoseachieved by eitherLIBSVM
or LASVM . Freund and Schapire (1998) suggest that the Averaged Perceptron approaches the actual
SVM accuracies after 10 to 30 epochs. Doing so no longer provides the theoretical guarantees. The
AVGPERC×10 results in Figures 1 and 2 were obtained after ten epochs. Test errorrates indeed
approach the SVM results. The corresponding training times are no longercompetitive.

Impact of the Kernel Cache Size These training times stress the importance of the kernel cache
size. Figure 2 shows how theAVGPERC×10 runs much faster on problems 0, 1, and 6. This is hap-
pening because the cache is large enough to accomodate the dot productsof all examples with all
support vectors. Each repeated iteration of the Average Perceptron requires very few additional ker-
nel evaluations. This is much less likely to happen when the training set size increases. Computing
times then increase drastically because repeated kernel evaluations become necessary.

Figure 6 compares how theLIBSVM andLASVM×1 training times change with the kernel cache
size. The vertical axis reports the relative changes with respect toLIBSVM with one gigabyte of
kernel cache. These changes are averaged over the ten MNIST classifiers. The plot shows how
LASVM tolerates much smaller caches. On this problem,LASVMwith a 8MB cache runs slightly
faster thanLIBSVMwith a 1024MB cache.

Useful orders of magnitude can be obtained by evaluating how large the kernel cache must be
to avoid the systematic recomputation of dot-products. Following the notations ofSection 2.1, letn
be the number of examples,Sbe the number of support vectors, andR≤ S the number of support
vectors such that 0< |αi |< C.

• In the case ofLIBSVM , the cache must accommodate aboutnR terms: the examples selected
for the SMO iterations are usually chosen among theR free support vectors. Each SMO
iteration needsn distinct dot-products for each selected example.

• To perform asingleLASVM epoch, the cache must only accommodate aboutSRterms: since
the examples are visited only once, the dot-products computed by aPROCESSoperation can
only be reutilized by subsequentREPROCESSoperations. The examples selected byRE-
PROCESSare usually chosen amont theR free support vectors; for each selected example,
REPROCESSneeds one distinct dot-product per support vector in setS .
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• To performmultiple LASVM epochs, the cache must accommodate aboutnS terms: the
dot-products computed by processing a particular example are reused when processing the
same example again in subsequent epochs. This also applies to multiple Averaged Perceptron
epochs.

An efficient single epoch learning algorithm is therefore very desirable when one expectsS to be
much smaller thann. Unfortunately, this may not be the case when the data set is noisy. Section
3.4 presents results obtained in such less favorable conditions. Section 4 then proposes an active
learning method to contain the growth of the number of support vectors, andrecover the full benefits
of the online approach.

3.4 Multiple Data Set Experiments

Further experiments were carried out with a collection of standard data setsrepresenting diverse
noise conditions, training set sizes, and input dimensionality. Figure 7 presents these data sets and
the parameters used for the experiments.

Kernel computation times for these data sets are extremely fast. The data eitherhas low di-
mensionality or can be represented with sparse vectors. For instance, computing kernel values for
two Reuters documents only involves words common to both documents (excluding stop words).
The Forest experiments use a kernel implemented with hand optimized assembly code (Graf et al.,
2005).

Figure 8 compares the solutions returned byLASVM×1 andLIBSVM . TheLASVM×1 experi-
ments call the kernel function much less often, but do not always run faster. The fast kernel com-
putation times expose the relative weakness of our kernel cache implementation. TheLASVM×1
accuracies are very close to theLIBSVM accuracies. The number of support vectors is always
slightly smaller.

LASVM×1 essentially achieves consistent results over very diverse data sets, after performing
one single epoch over the training set only. In this situation, theLASVM PROCESSfunction gets
only once chance to take a particular example into the kernel expansion andpotentially make it a
support vector. The conservative strategy would be to take all examplesand sort them out during
the finishing step. The resulting training times would always be worse thanLIBSVM ’s because
the finishing step is itself a simplified SMO solver. ThereforeLASVM online iterations are able to
very quickly discard a large number of examples with a high confidence. This process is not perfect
because we can see that theLASVM×1 number of support vectors are smaller thanLIBSVM ’s. Some
good support vectors are discarded erroneously.

Figure 9 reports the relative variations of the test error, number of support vectors, and training
time measured before and after the finishing step. The online iterations pretty much select the right
support vectors on clean data sets such as “Waveform”, “Reuters” or“USPS”, and the finishing step
does very little. On the other problems the online iterations keep much more examples as potential
support vectors. The finishing step significantly improves the accuracy on noisy data sets such as
“Banana”, “Adult” or “USPS+N”, and drastically increases the computation time on data sets with
complicated decision boundaries such as “Banana” or “Forest”.
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Train Size Test Size γ C Cache τ Notes

Waveform1 4000 1000 0.05 1 40M 0.001 Artificial data, 21 dims.
Banana1 4000 1300 0.5 316 40M 0.001 Artificial data, 2 dims.
Reuters2 7700 3299 1 1 40M 0.001 Topic “moneyfx” vs. rest.
USPS3 7329 2000 2 1000 40M 0.001 Class “0” vs. rest.
USPS+N3 7329 2000 2 10 40M 0.001 10% training label noise.
Adult3 32562 16282 0.005 100 40M 0.001 As in (Platt, 1999).
Forest3 (100k) 100000 50000 1 3 512M 0.001 As in (Collobert et al., 2002).
Forest3 (521k) 521012 50000 1 3 1250M 0.01 As in (Collobert et al., 2002).

1 http://mlg.anu.edu.au/∼raetsch/data/index.html
2 http://www.daviddlewis.com/resources/testcollections/reuters21578
3 ftp://ftp.ics.uci.edu/pub/machine-learning-databases

Figure 7: Data Sets discussed in Section 3.4.

LIBSVM LASVM×1
Data Set Error SV KCalc Time Error SV KCalc Time

Waveform 8.82% 1006 4.2M 3.2s 8.68% 948 2.2M 2.7s
Banana 9.96% 873 6.8M 9.9s 9.98% 869 6.7M 10.0s
Reuters 2.76% 1493 11.8M 24s 2.76% 1504 9.2M 31.4s
USPS 0.41% 236 1.97M 13.5s 0.43% 201 1.08M 15.9s
USPS+N 0.41% 2750 63M 305s 0.53% 2572 20M 178s
Adult 14.90% 11327 1760M 1079s 14.94% 11268 626M 809s
Forest (100k) 8.03% 43251 27569M 14598s 8.15% 41750 18939M 10310s
Forest (521k) 4.84% 124782 316750M 159443s 4.83% 122064 188744M 137183s

Figure 8: Comparison ofLIBSVM versusLASVM×1: Test error rates (Error), number of support
vectors (SV), number of kernel calls (KCalc), and training time (Time). Boldcharacters
indicate significative differences.

Relative Variation
Data Set Error SV Time

Waveform -0% -0% +4%
Banana -79% -74% +185%
Reuters 0% -0% +3%
USPS 0% -2% +0%
USPS+N% -67% -33% +7%
Adult -13% -19% +80%
Forest (100k) -1% -24% +248%
Forest (521k) -2% -24% +84%

Figure 9: Relative variations of test error, number of support vectorsand training time measured
before and after the finishing step.
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3.5 The Collection of Potential Support Vectors

The final step of theREPROCESSoperation computes the current value of the kernel expansion bias
b and the stopping criterionδ:

gmax = max
s∈S

gs with αs < Bs b =
gmax+gmin

2
gmin = min

s∈S
gs with αs > As δ = gmax−gmin.

(10)

The quantitiesgmin andgmax can be interpreted as bounds for the decision thresholdb. The quantity
δ then represents an uncertainty on the decision thresholdb.

The quantityδ also controls howLASVM collects potential support vectors. The definition of
PROCESSand the equality (9) indicate indeed thatPROCESS(k) adds the support vectorxk to the
kernel expansion if and only if

yk ŷ(xk) < 1+
δ
2
− τ. (11)

Whenα is optimal, the uncertaintyδ is zero, and this condition matches the Karush-Kuhn-Tucker
condition for support vectorsyk ŷ(xk)≤ 1.

Intuitively, relation (11) describes howPROCESScollects potential support vectors that are com-
patible with the current uncertainty levelδ on the thresholdb. Simultaneously, theREPROCESS
operations reduceδ and discard the support vectors that are no longer compatible with this reduced
uncertainty.

The online iterations of theLASVM algorithm make equal numbers ofPROCESSandREPRO-
CESSfor purely heuristic reasons. Nothing guarantees that this is the optimal proportion. The
results reported in Figure 9 clearly suggest to investigate this arbitrage moreclosely.

Variations on REPROCESS Experiments were carried out with a slightly modifiedLASVM al-
gorithm: instead of performing a singleREPROCESS, the modified online iterations repeatedly run
REPROCESSuntil the uncertaintyδ becomes smaller than a predefined thresholdδmax.

Figure 10 reports comparative results for the “Banana” data set. Similar results were obtained
with other data sets. The three plots report test error rates, training time, and number of support
vectors as a function ofδmax. These measurements were performed after one epoch of online it-
erations without finishing step, and after one and two epochs followed by the finishing step. The
correspondingLIBSVM figures are indicated by large triangles on the right side of the plot.

Regardless ofδmax, the SVM test error rate can be replicated by performing two epochs followed
by a finishing step. However, this does not guarantee that the optimal SVM solution has been
reached.

Large values ofδmax essentially correspond to the unmodifiedLASVM algorithm. Small values
of δmax considerably increases the computation time because each online iteration callsREPROCESS
many times in order to sufficiently reduceδ. Small values ofδmax also remove theLASVM ability
to produce a competitive result after a single epoch followed by a finishing step. The additional
optimization effort discards support vectors more aggressively. Additional epochs are necessary to
recapture the support vectors that should have been kept.

There clearly is a sweet spot aroundδmax = 3 when one epoch of online iterations alone almost
match the SVM performance and also makes the finishing step very fast. This sweet spot is difficult
to find in general. Ifδmax is a little bit too small, we must make one extra epoch. Ifδmax is a little
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Figure 10: Impact of additionalREPROCESSmeasured on “Banana” data set. During theLASVM
online iterations, calls toREPROCESSare repeated untilδ < δmax.

bit too large, the algorithm behaves like the unmodifiedLASVM . Short of a deeper understanding
of these effects, the unmodifiedLASVM seems to be a robust compromise.

SimpleSVM The right side of each plot in Figure 10 corresponds to an algorithm that optimizes
the coefficient of the current support vectors at each iteration. This isclosely related to the Sim-
pleSVM algorithm (Vishwanathan et al., 2003). BothLASVM and the SimpleSVM update a current
kernel expansion by adding or removing one or two support vectors ateach iteration. The two key
differences are the numerical objective of these updates and their computational costs.

Whereas each SimpleSVM iteration seeks the optimal solution of the SVM QP problem re-
stricted to the current set of support vectors, theLASVM online iterations merely attempt to improve
the value of the dual objective functionW(α). As a a consequence,LASVM needs a finishing step
and the SimpleSVM does not. On the other hand, Figure 10 suggests that seeking the optimum
at each iteration discards support vectors too aggressively to reach competitive accuracies after a
single epoch.

Each SimpleSVM iteration updates the current kernel expansion using rank 1 matrix updates
(Cauwenberghs and Poggio, 2001) whose computational cost grows as the square of the number of
support vectors.LASVM performs these updates using SMO direction searches whose cost grows
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linearly with the number of examples. Rank 1 updates make good sense when one seeks the optimal
coefficients. On the other hand, all the kernel values involving supportvectors must be stored in
memory. TheLASVM direction searches are more amenable to caching strategies for kernel values.

4. Active Selection of Training Examples

The previous section presentsLASVM as an Online Learning algorithm or as a Stochastic Opti-
mization algorithm. In both cases, theLASVM online iterations pick random training examples.
The current section departs from this framework and investigates more refined ways to select an
informative example for each iteration.

This departure is justified in the offline setup because the complete training setis available
beforehand and can be searched for informative examples. It is also justified in the online setup
when the continuous stream of fresh training examples is too costly to process, either because the
computational requirements are too high, or because it is inpractical to labelall the potential training
examples.

In particular, we show that selecting informative examples yields considerable speedups. Fur-
thermore, training example selection can be achieved without the knowledge of the training example
labels. In fact, excessive reliance on the training example labels can havevery detrimental effects.

4.1 Gradient Selection

The most obvious approach consists in selecting an examplek such that thePROCESSoperation
results in a large increase of the dual objective function. This can be approximated by choosing the
example which yields theτ-violating pair with the largest gradient. Depending on the classyk, the
PROCESS(k) operation considers pair(k, j) or (i,k) wherei and j are the indices of the examples in
S with extreme gradients:

i = argmax
s∈S

gs with αs < Bs , j = argmin
s∈S

gs with αs > As.

The corresponding gradients aregk−g j for positive examples andgi −gk for negative examples.
Using the expression (9) of the gradients and the value ofb andδ computed during the previous
REPROCESS(10), we can write:

whenyk=+1, gk−g j = yk gk−
gi +g j

2
+

gi−g j

2
= 1+

δ
2
−yk ŷ(xk)

whenyk=−1, gi−gk =
gi +g j

2
+

gi−g j

2
+yk gk = 1+

δ
2
−yk ŷ(xk).

This expression shows that theGradient Selection Criterionsimply suggests to pick the most mis-
classified example

kG = argmin
k/∈S

yk ŷ(xk). (12)

4.2 Active Selection

Always picking the most misclassified example is reasonable when one is veryconfident of the train-
ing example labels. On noisy data sets, this strategy is simply going to pick mislabelledexamples
or examples that sit on the wrong side of the optimal decision boundary.
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When training example labels are unreliable, a conservative approach chooses the examplekA

that yields the strongest minimax gradient:

kA = argmin
k/∈S

max
y=±1

yŷ(xk) = argmin
k/∈S

|ŷ(xk)| . (13)

This Active Selection Criterionsimply chooses the example that comes closest to the current deci-
sion boundary. Such a choice yields a gradient approximatively equal to1+ δ/2 regardless of the
true class of the example.

Criterion (13) does not depend on the labelsyk. The resulting learning algorithm only uses the
labels of examples that have been selected during the previous online iterations. This is related to
thePool Based Active Learningparadigm (Cohn et al., 1990).

Early active learning literature, also known asExperiment Design(Fedorov, 1972), contrasts
the passive learner, who observes examples(x,y), with the active learner, who constructs queriesx
and observes their labelsy. In this setup, the active learner cannot beat the passive learner because
he lacks information about the input pattern distribution (Eisenberg and Rivest, 1990). Pool-based
active learning algorithms observe the pattern distribution from a vast poolof unlabelled examples.
Instead of constructing queries, they incrementally select unlabelled examples xk and obtain their
labelsyk from an oracle.

Several authors (Campbell et al., 2000; Schohn and Cohn, 2000; Tong and Koller, 2000) propose
incremental active learning algorithms that clearly are related to Active Selection. The initialization
consists of obtaining the labels for a small random subset of examples. A SVM is trained using
all the labelled examples as a training set. Then one searches the pool for the unlabelled example
that comes closest to the SVM decision boundary, one obtains the label of this example, retrains the
SVM and reiterates the process.

4.3 Randomized Search

Both criteria (12) and (13) suggest a search through all the training examples. This is impossible in
the online setup and potentially expensive in the offline setup.

It is however possible to locate an approximate optimum by simply examining a small constant
number of randomly chosen examples. The randomized search first samples M random training
examples and selects the best one among theseM examples. With probability 1−ηM, the value
of the criterion for this example exceeds theη-quantile of the criterion for all training examples
(Scḧolkopf and Smola, 2002, theorem 6.33) regardless of the size of the training set. In practice this
means that the best among 59 random training examples has 95% chances to belong to the best 5%
examples in the training set.

Randomized search has been used in the offline setup to accelerate various machine learning
algorithms (Domingo and Watanabe, 2000; Vishwanathan et al., 2003; Tsang et al., 2005). In the
online setup, randomized search is the only practical way to select training examples. For instance,
here is a modification of the basicLASVM algorithm to select examples using the Active Selection
Criterion with Randomized Search:
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LASVM + Active Example Selection + Randomized Search
1) Initialization :

SeedS with a few examples of each class.
Setα← 0 andg← 0.

2) Online Iterations:
Repeat a predefined number of times:

- PickM random exampless1 . . .sM.
- kt ← argmin

i=1...M
| ŷ(xsi ) |

- RunPROCESS(kt).
- RunREPROCESSonce.

3) Finishing:
RepeatREPROCESSuntil δ≤ τ.

Each online iteration of the above algorithm is aboutM times more computationally expen-
sive that an online iteration of the basicLASVM algorithm. Indeed one must compute the kernel
expansion (2) forM fresh examples instead of a single one (9). This cost can be reduced byheuris-
tic techniques for adaptingM to the current conditions. For instance, we present experimental
results where one stops collecting new examples as soon asM contains five examples such that
| ŷ(xs) |< 1+δ/2.

Finally the last two paragraphs of appendix A discuss the convergence of LASVM with example
selection according to the gradient selection criterion or the active selectioncriterion. The gradient
selection criterion always leads to a solution of the SVM problem. On the other hand, the active
selection criterion only does so when one uses the sampling method. In practice this convergence
occurs very slowly. The next section presents many reasons to preferthe intermediate kernel classi-
fiers visited by this algorithm.

4.4 Example Selection for Online SVMs

This section experimentally compares theLASVM algorithm using different example selection
methods. Four different algorithms are compared:

• RANDOM example selection randomly picks the next training example among those that have
not yet beenPROCESSed. This is equivalent to the plainLASVM algorithm discussed in
Section 3.2.

• GRADIENT example selection consists in sampling 50 random training examples among those
that have not yet beenPROCESSed. The sampled example with the smallestyk ŷ(xk) is then
selected.

• ACTIVE example selection consists in sampling 50 random training examples among those
that have not yet beenPROCESSed. The sampled example with the smallest|ŷ(xk)| is then
selected.

• AUTOACTIVE example selection attempts to adaptively select the sampling size. Sampling
stops as soon as 5 examples are within distance 1+ δ/2 of the decision boundary. The max-
imum sample size is 100 examples. The sampled example with the smallest|ŷ(xk)| is then
selected.
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Figure 11: Comparing example selection criteria on the Adult data set. Measurements were per-
formed on 65 runs using randomly selected training sets. The graphs showthe error
measured on the remaining testing examples as a function of the number of iterations
and the computing time. The dashed line represents theLIBSVM test error under the
same conditions.

Adult Data Set We first report experiments performed on the “Adult” data set. This data set
provides a good indication of the relative performance of the Gradient and Active selection criteria
under noisy conditions.

Reliable results were obtained by averaging experimental results measuredfor 65 random splits
of the full data set into training and test sets. Paired tests indicate that test error differences of 0.25%
on a single run are statistically significant at the 95% level. We conservatively estimate that average
error differences of 0.05% are meaningful.

Figure 11 reports the average error rate measured on the test set as a function of the number
of online iterations (left plot) and of the average computing time (right plot). Regardless of the
training example selection method, all reported results were measured after performing theLASVM
finishing step. More specifically, we run a predefined number of online iterations, save theLASVM
state, perform the finishing step, measure error rates and number of support vectors, and restore the
savedLASVM state before proceeding with more online iterations. Computing time includes the
duration of the online iterations and the duration of the finishing step.

The GRADIENT example selection criterion performs very poorly on this noisy data set. A
detailed analysis shows that most of the selected examples become support vectors with coefficient
reaching the upper boundC. TheACTIVE andAUTOACTIVE criteria both reach smaller test error
rates than those achieved by the SVM solution computed byLIBSVM . The error rates then seem to
increase towards the error rate of the SVM solution (left plot). We believe indeed that continued
iterations of the algorithm eventually yield the SVM solution.

Figure 12 relates error rates and numbers of support vectors. TheRANDOM LASVM algorithm
performs as expected: a single pass over all training examples replicates the accuracy and the num-

1599



BORDES, ERTEKIN, WESTON, AND BOTTOU

Figure 12: Comparing example selection criteria on the Adult data set. Test error as a function of
the number of support vectors.

ber of support vectors of theLIBSVM solution. Both theACTIVE andAUTOACTIVE criteria yield
kernel classifiers with the same accuracy and much less support vectors. For instance, theAUTOAC-
TIVE LASVM algorithm reaches the accuracy of theLIBSVM solution using 2500 support vectors
instead of 11278. Figure 11 (right plot) shows that this result is achievedafter 150 seconds only.
This is about one fifteenth of the time needed to perform a fullRANDOM LASVM epoch.2

Both theACTIVE LASVM andAUTOACTIVE LASVM algorithms exceed theLIBSVM accuracy
after a few iterations only. This is surprising because these algorithms only use the training labels
of the few selected examples. They both outperform theLIBSVM solution by using only a small
subset of the available training labels.

MNIST Data Set The comparatively clean MNIST data set provides a good opportunity to verify
the behavior of the various example selection criteria on a problem with a much lower error rate.

Figure 13 compares the performance of theRANDOM, GRADIENT andACTIVE criteria on the
classification of digit “8” versus all other digits. The curves are averaged on 5 runs using different
random seeds. All runs use the standard MNIST training and test sets. Both theGRADIENT and
ACTIVE criteria perform similarly on this relatively clean data set. They require about as much
computing time asRANDOM example selection to achieve a similar test error.

Adding ten percent label noise on the MNIST training data provides additional insight regarding
the relation between noisy data and example selection criteria. Label noise was not applied to the
testing set because the resulting measurement can be readily compared to test errors achieved by
training SVMs without label noise. The expected test errors under similar label noise conditions
can be derived from the test errors measured without label noise. Figure 14 shows the test errors
achieved when 10% label noise is added to the training examples. TheGRADIENT selection cri-

2. The timing results reported in Figure 8 were measured on a faster computer.
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Figure 13: Comparing example selection criteria on the MNIST data set, recognizing digit “8”
against all other classes. Gradient selection and Active selection perform similarly on
this relatively noiseless task.

Figure 14: Comparing example selection criteria on the MNIST data set with 10%label noise on
the training examples.
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Figure 15: Comparing example selection criteria on the MNIST data set. Activeexample selection
is insensitive to the artificial label noise.

terion causes a very chaotic convergence because it keeps selecting mislabelled training examples.
TheACTIVE selection criterion is obviously undisturbed by the label noise.

Figure 15 summarizes error rates and number of support vectors for allnoise conditions. In the
presence of label noise on the training data,LIBSVM yields a slightly higher test error rate, and a
much larger number of support vectors. TheRANDOM LASVM algorithm replicates theLIBSVM
results after one epoch. Regardless of the noise conditions, theACTIVE LASVM algorithm reaches
the accuracy and the number of support vectors of theLIBSVM solution obtained with clean training
data. Although we have not been able to observe it on this data set, we expect that, after a very long
time, theACTIVE curve for the noisy training set converges to the accuracy and the number of
support vectors achieved of theLIBSVM solution obtained for the noisy training data.

4.5 Online SVMs for Active Learning

TheACTIVE LASVM algorithm implements two dramatic speedups with respect to existing active
learning algorithms such as (Campbell et al., 2000; Schohn and Cohn, 2000; Tong and Koller, 2000).
First it chooses a query by sampling a small number of random examples instead of scanning all
unlabelled examples. Second, it uses a singleLASVM iteration after each query instead of fully
retraining the SVM.

Figure 16 reports experiments performed on the Reuters and USPS data sets presented in table
7. TheRETRAIN ACTIVE 50 andRETRAIN ACTIVE ALL select a query from 50 or all unlabeled
examples respectively, and then retrain the SVM. The SVM solver was initialized with the solution
from the previous iteration. TheLASVM ACTIVE 50 andLASVM ACTIVE ALL do not retrain the
SVM, but instead make a singleLASVM iteration for each new labeled example.
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Figure 16: Comparing active learning methods on the USPS and Reuters datasets. Results are
averaged on 10 random choices of training and test sets. UsingLASVM iterations instead
of retraining causes no loss of accuracy. SamplingM = 50 examples instead of searching
all examples only causes a minor loss of accuracy when the number of labeled examples
is very small.

All the active learning methods performed approximately the same, and were superior to ran-
dom selection. UsingLASVM iterations instead of retraining causes no loss of accuracy. Sampling
M = 50 examples instead of searching all examples only causes a minor loss of accuracy when the
number of labeled examples is very small. Yet the speedups are very significant: for 500 queried
labels on the Reuters data set, theRETRAIN ACTIVE ALL , LASVM ACTIVE ALL , andLASVM AC-
TIVE 50 algorithms took 917 seconds, 99 seconds, and 9.6 seconds respectively.

5. Discussion

This work started because we observed that the data set sizes are quickly outgrowing the computing
power of our calculators. One possible avenue consists of harnessingthe computing power of
multiple computers (Graf et al., 2005). Instead we propose learning algorithms that remain closely
related to SVMs but require less computational resources. This section discusses their practical and
theoretical implications.

5.1 Practical Significance

When we have access to an abundant source of training examples, the simple way to reduce the
complexity of a learning algorithm consists of picking a random subset of training examples and
running a regular training algorithm on this subset. Unfortunately this approach renounces the
more accurate models that the large training set could afford. This is why wesay, by reference to
statistical efficiency, that anefficient learning algorithm should at least pay a brief look at every
training example.

The onlineLASVM algorithm is very attractive because it matches the performance of a SVM
trained on all the examples. More importantly, it achives this performance after a single epoch,
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faster than a SVM (figure 2) and using much less memory than a SVM (figure 6). This is very im-
portant in practice because modern data storage devices are most effective when the data is accessed
sequentially.

Active Selection of theLASVM training examples brings two additional benefits for practical
applications. It achieves equivalent performances with significantly lesssupport vectors, further
reducing the required time and memory. It also offers an obvious opportunity to parallelize the
search for informative examples.

5.2 Informative Examples and Support Vectors

By suggesting that all examples should not be given equal attention, we first state that all training
examples are not equally informative. This question has been asked and answered in various con-
texts (Fedorov, 1972; Cohn et al., 1990; MacKay, 1992). We also askwhether these differences can
be exploited to reduce the computational requirements of learning algorithms. Our work answers
this question by proposing algorithms that exploit these differences and achieve very competitive
performances.

Kernel classifiers in general distinguish the few training examples named support vectors. Ker-
nel classifier algorithms usually maintain an active set of potential support vectors and work by
iterations. Their computing requirements are readily associated with the trainingexamples that be-
long to the active set. Adding a training example to the active set increases thecomputing time
associated with each subsequent iteration because they will require additional kernel computations
involving this new support vector. Removing a training example from the active set reduces the
cost of each subsequent iteration. However it is unclear how such changes affect the number of
subsequent iterations needed to reach a satisfactory performance level.

Online kernel algorithms, such as the kernel perceptrons usually produce different classifiers
when given different sequences of training examples. Section 3 proposes an online kernel algorithm
that converges to the SVM solution after many epochs. The final set of support vectors is intrin-
sically defined by the SVM QP problem, regardless of the path followed by theonline learning
process. Intrinsic support vectors provide a benchmark to evaluate theimpact of changes in the ac-
tive set of current support vectors. Augmenting the active set with an example that is not an intrinsic
support vector moderately increases the cost of each iteration without clear benefits. Discarding an
example that is an intrinsic support vector incurs a much higher cost. Additional iterations will be
necessary to recapture the missing support vector. Empirical evidence ispresented in Section 3.5.

Nothing guarantees however that the most informative examples are the support vectors of the
SVM solution. Bakır et al. (2005) interpret Steinwart’s theorem (Steinwart, 2004) as an indication
that the number of SVM support vectors is asymptotically driven by the examples located on the
wrong side of the optimal decision boundary. Although such outliers might play a useful role in the
construction of a decision boundary, it seems unwise to give them the bulk of the available com-
puting time. Section 4 adds explicit example selection criteria toLASVM . The Gradient Selection
Criterion selects the example most likely to cause a large increase of the SVM objective function.
Experiments show that it prefers outliers over honest examples. The Active Selection Criterion by-
passes the problem by choosing examples without regard to their labels. Experiments show that it
leads to competitive test error rates after a shorter time, with less support vectors, and using only
the labels of a small fraction of the examples.
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5.3 Theoretical Questions

The appendix provides a comprehensive analysis of the convergenceof the algorithms discussed in
this contribution. Such convergence results are useful but limited in scope. This section underlines
some aspects of this work that would vastly benefit from a deeper theoretical understanding.

• Empirical evidence suggests that a single epoch of theLASVM algorithm yields misclassifi-
cation rates comparable with a SVM. We also know thatLASVM exactly reaches the SVM
solution after a sufficient number of epochs. Can we theoretically estimate theexpected dif-
ference between the first epoch test error and the many epoch test error? Such results exist for
well designed online learning algorithms based on stochastic gradient descent (Murata and
Amari, 1999; Bottou and LeCun, 2005). Unfortunately these results do not directly apply to
kernel classifiers. A better understanding would certainly suggest improved algorithms.

• Test error rates are sometimes improved by active example selection. In fact this effect has
already been observed in the active learning setups (Schohn and Cohn, 2000). This small
improvement is difficult to exploit in practice because it requires very sensitive early stopping
criteria. Yet it demands an explanation because it seems that one gets a better performance
by using less information. There are three potential explanations: (i) active selection works
well on unbalanced data sets because it tends to pick equal number of examples of each class
(Schohn and Cohn, 2000), (ii ) active selection improves the SVM loss function because it
discards distant outliers, (iii ) active selection leads to more sparse kernel expansions with
better generalization abilities (Cesa-Bianchi et al., 2005). These three explanations may be
related.

• We know that the number of SVM support vectors scales linearly with the number of examples
(Steinwart, 2004). Empirical evidence suggests that active example selection yields transitory
kernel classifiers that achieve low error rates with much less support vectors. What is the
scaling law for this new number of support vectors?

• What is the minimal computational cost for learningn independent examples and achieving
“optimal” test error rates? The answer depends of course of how we define these “optimal”
test error rates. This cost intuitively scales at least linearly withn because one must pay a
look at each example to fully exploit them. The present work suggest that this cost might
be smaller thann times the reduced number of support vectors achievable with the active
learning technique. This range is consistent with previous work showing that stochastic gra-
dient algorithms can train a fixed capacity model in linear time (Bottou and LeCun,2005).
Learning seems to be much easier than computing the optimum of the empirical loss.

5.4 Future Directions

Progress can also be achieved along less arduous directions.

• Section 3.5 suggests that better convergence speed could be attained by cleverly modulating
the number of calls toREPROCESSduring the online iterations. Simple heuristics might go a
long way.
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• Section 4.3 suggests a heuristic to adapt the sampling size for the randomized search of in-
formative training examples. ThisAUTOACTIVE heuristic performs very well and deserves
further investigation.

• Sometimes one can generate a very large number of training examples by exploiting known
invariances. Active example selection can drive the generation of examples. This idea was
suggested in (Loosli et al., 2004) for the SimpleSVM.

6. Conclusion

This work explores various ways to speedup kernel classifiers by asking which examples deserve
more computing time. We have proposed a novel online algorithm that converges to the SVM solu-
tion. LASVM reliably reaches competitive accuracies after performing a single pass over the training
examples, outspeeding state-of-the-art SVM solvers. We have then shown how active example se-
lection can yield faster training, higher accuracies and simpler models using only a fraction of the
training examples labels.
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Appendix A. Convex Programming with Witness Families

This appendix presents theoretical elements about convex programming algorithms that rely on
successive direction searches. Results are presented for the case where directions are selected from
a well chosen finite pool, like SMO (Platt, 1999), and for the stochastic algorithms, like the online
and active SVM discussed in the body of this contribution.

Consider a compact convex subsetF of R
n and a concave functionf defined onF . We assume

that f is twice differentiable with continuous derivatives. This appendix discusses the maximization
of function f over setF :

max
x∈F

f (x). (14)

This discussion starts with some results about feasible directions. Then it introduces the notion
of witness family of directions which leads to a more compact characterization of the optimum.
Finally it presents maximization algorithms and establishes their convergence to approximate solu-
tions

A.1 Feasible Directions

Notations Given a pointx∈ F and a directionu∈ R
n
∗ = R

n, let

φ(x,u) = max{λ≥ 0|x+λu∈ F }

f ∗(x,u) = max{ f (x+λu), x+λu∈ F }.
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In particular we writeφ(x,0) = ∞ and f ∗(x,0) = f (x).

Definition 1 The cone of feasible directions in x∈ F is the set

Dx = {u∈ R
n |φ(x,u) > 0}.

All the pointsx+ λu, 0≤ λ ≤ φ(x,u) belong toF becauseF is convex. Intuitively, a direction
u 6= 0 is feasible inx when we can start fromx and make a little movement along directionu without
leaving the convex setF .

Proposition 2 Given x∈ F and u∈ R
n,

f ∗(x,u) > f (x) ⇐⇒

{

u′∇ f (x) > 0
u∈Dx.

Proof Assumef ∗(x,u) > f (x). Directionu 6= 0 is feasible because the maximumf ∗(x,u) is reached
for some 0< λ∗ ≤ φ(x,u). Let ν ∈ [0,1]. Since setF is convex, x+ νλ∗u∈ F . Since functionf
is concave, f (x+ νλ∗u)) ≥ (1− ν) f (x)+ ν f ∗(x,u). Writing a first order expansion whenν→ 0
yields λ∗u′∇ f (x) ≥ f ∗(x,u)− f (x) > 0. Conversely, assumeu′∇ f (x) > 0 andu 6= 0 is a feasible
direction. Recallf (x+ λu) = f (x)+ λu′∇ f (x)+ o(λ). Therefore we can choose 0< λ0 ≤ φ(x,u)
such thatf (x+λ0u) > f (x)+λ0u′∇ f (x)/2. Thereforef ∗(x,u)≥ f (x+λ0u) > f (x).

Theorem 3 (Zoutendijk (1960) page 22)The following assertions are equivalent:
i) x is a solution of problem (14).

ii) ∀u∈ R
n f ∗(x,u)≤ f (x).

iii) ∀u∈Dx u′∇ f (x)≤ 0.

Proof The equivalence between assertions(ii) and(iii ) results from proposition 2. Assume asser-
tion (i) is true. Assertion(ii) is necessarily true becausef ∗(u,x)≤maxF f = f (x). Conversely, as-
sume assertion(i) is false. Then there isy∈ F such thatf (y) > f (x). Thereforef ∗(x,y−x) > f (x)
and assertion(ii) is false.

A.2 Witness Families

We now seek to improve this theorem. Instead of considering all feasible directions inR
n, we wish

to only consider the feasible directions from a smaller setU.

Proposition 4 Let x∈ F and v1 . . .vk ∈ Dx be feasible directions. Every positive linear combina-
tion of v1 . . .vk (i.e. a linear combination with positive coefficients) is a feasible direction.

Proof Let u be a positive linear combination of thevi . Since thevi are feasible directions there are
yi = x+ λivi ∈ F , andu can be written as∑i γi(yi −x) with γi ≥ 0. Directionu is feasible because
the convexF contains(∑γiyi)/(∑γi) = x+(1/∑γi)u.
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Definition 5 A set of directionsU ⊂ R
n
∗ is a “witness family forF ” when, for any point x∈ F ,

any feasible direction u∈Dx can be expressed as a positive linear combination of a finite number
of feasible directions vj ∈U∩Dx.

This definition directly leads to an improved characterization of the optima.

Theorem 6 Let U be a witness family for convex setF .
The following assertions are equivalent:

i) x is a solution of problem (14).
ii) ∀u∈U f ∗(x,u)≤ f (x).

iii) ∀u∈U∩Dx u′∇ f (x)≤ 0.

Proof The equivalence between assertions(ii) and (iii ) results from proposition 2. Assume as-
sertion(i) is true. Theorem 3 implies that assertion(ii) is true as well. Conversely, assume asser-
tion (i) is false. Theorem 3 implies that there is a feasible directionu ∈ R

n on pointx such that
u′∇ f (x) > 0. SinceU is a witness family, there are positive coefficientsγ1 . . .γk and feasible direc-
tionsv1, . . . ,vk ∈U∩Dx such thatu = ∑γivi . We have then∑γ jv′j∇ f (x) > 0. Since all coefficients
γ j are positive, there is at least one termj0 such thatv′j0∇ f (x) > 0. Assertion(iii ) is therefore false.

The following proposition provides an example of witness family for the convex domainFs that
appears in the SVM QP problem (5).

Proposition 7 Let (e1 . . .en) be the canonical basis ofRn. SetUs = {ei − ej , i 6= j} is a witness
family for convex setFs defined by the constraints

x∈ Fs ⇐⇒

{

∀ i Ai ≤ xi ≤ Bi

∑i xi = 0.

Proof Let u∈ R
n
∗ be a feasible direction inx∈ Fs. Sinceu is a feasible direction, there isλ > 0

such thaty = x+λu∈ Fs. Consider the subsetB ⊂ Fs defined by the constraints

z∈ B ⇔

{

∀ i, Ai ≤min(xi ,yi)≤ zi ≤max(xi ,yi)≤ Bi

∑i zi = 0.

Let us recursively define a sequence of pointsz( j) ∈ B. We start withz(0) = x ∈ B. For each
t ≥ 0, we define two sets of coordinate indicesI+

t = {i |zi(t) < yi} and I−t = { j |zj(t) > y j}. The
recursion stops if either set is empty. Otherwise, we choosei ∈ I+

t and j ∈ I−t and definez(t+1) =
z(t)+ γ(t)v(t) ∈ B with v(t) = ei−ej ∈Us andγ(t) = min(yi−zi(t),zj(t)−y j) > 0. Intuitively, we
move towardsy along directionv(t) until we hit the boundaries of setB.

Each iteration removes at least one of the indicesi or j from setsI+
t andI−t . Eventually one of

these sets gets empty and the recursion stops after a finite numberk of iterations. The other set is
also empty because

∑
i∈I+

k

|yi−zi(k)|− ∑
i∈I−k

|yi−zi(k)| =
n

∑
i=1

yi−zi(k) =
n

∑
i=1

yi−
n

∑
i=1

zi(k) = 0.
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Thereforez(k) = y andλu = y− x = ∑t γ(t) v(t). Moreover thev(t) are feasible directions onx be-
causev(t) = ei−ej with i ∈ I+

t ⊂ I+
0 and j ∈ I−t ⊂ I−0 .

Assertion(iii ) in Theorem 6 then yields the following necessary and sufficient optimality criterion
for the SVM QP problem (5):

∀(i, j) ∈ {1. . .n}2 xi < Bi andx j > A j ⇒
∂ f
∂xi

(x)−
∂ f
∂x j

(x)≤ 0.

Different constraint sets call for different choices of witness family. For instance, it is sometimes
useful to disregard the equality constraint in the SVM polytopeFs. Along the lines of proposition 7,
it is quite easy to prove that{±ei , i = 1. . .n} is a witness family. Theorem 6 then yields an adequate
optimality criterion.

A.3 Finite Witness Families

This section deals withfinite witness families. Theorem 9 shows thatF is necessarily a convex
polytope, that is a bounded set defined by a finite number of linear of linearequality and inequality
constraints (Schrijver, 1986).

Proposition 8 Let Cx = {x+u, u∈Dx} for x∈ F . ThenF =
T

x∈F Cx.

Proof We first show thatF ⊂
T

x∈F Cx. IndeedF ⊂ Cx for all x because every pointz∈ F defines
a feasible directionz−x∈Dx.

Conversely, Letz∈
T

x∈F Cx and assume thatz does not belong toF . Let ẑ be the projection
of z on F . We know thatz∈ Cẑ becausez∈

T

x∈F Cx. Thereforez− ẑ is a feasible direction in
ẑ. Choose 0< λ < φ(ẑ,z− ẑ). We know thatλ < 1 becausez does not belong toF . But then
ẑ+λ(z− ẑ) ∈ F is closer toz thanẑ. This contradicts the definition of the projection ˆz.

Theorem 9 Let F be a bounded convex set.
If there is a finite witness family forF , thenF is a convex polytope.3

Proof Consider a pointx∈ F and let{v1 . . .vk} = U ∩Dx. Proposition 4 and definition 5 imply
that Dx is the polyhedral cone{z = ∑γivi , γi ≥ 0} and can be represented (Schrijver, 1986) by a
finite number of linear equality and inequality constraints of the formnz≤ 0 where the directionsn
are unit vectors. LetKx be the set of these unit vectors. Equality constraints arise when the setKx
contains bothn and−n. Each setKx depends only on the subset{v1 . . .vk} = U ∩Dx of feasible
witness directions inx. Since the finite setU contains only a finite number of potential subsets,
there is only a finite number of distinct setsKx.

Each setCx is therefore represented by the constraintsnz≤ nx for n∈Kx. The intersectionF =
T

x∈F Cx is then defined by all the constraints associated withCx for anyx∈ F . These constraints
involve only a finite number of unit vectorsn because there is only a finite number of distinct sets
Kx.

Inequalities defined by the same unit vectorn can be summarized by considering only the most
restrictive right hand side. ThereforeF is described by a finite number of equality and inequality
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constraints. SinceF is bounded, it is a polytope.

A convex polytope comes with useful continuity properties.

Proposition 10 Let F be a polytope, and let u∈ R
n be fixed.

Functions x7→ φ(x,u) and x 7→ f ∗(x,u) are uniformly continous onF .

Proof The polytopeF is defined by a finite set of constraintsn x≤ b. Let KF be the set of pairs
(n,b) representing these constraints. Functionx 7→ φ(x,u) is a continuous onF because we can
write:

φ(x,u) = min

{

b−nx
n u

for all (n,b) ∈KF such thatnu> 0

}

.

Functionx 7→ φ(x,u) is uniformly continuous because it is continuous on the compactF .
Chooseε > 0 and letx,y∈ F . Let the maximumf ∗(x,u) be reached inx+ λ∗u with 0≤ λ∗ ≤

φ(x,u). Since f is uniformly continous on compactF , there isη > 0 such that| f (x+λ∗u)− f (y+
λ′u)|< ε whenever‖x−y+(λ∗−λ′)u‖< η(1+‖u‖). In particular, it is sufficient to have‖x−y‖<
η and|λ∗−λ′|< η. Sinceφ is uniformly continuous, there isτ > 0 such that|φ(y,u)−φ(x,u)|< η
whenever‖x−y‖< τ. We can then select 0≤ λ′ ≤ φ(y,u) such that|λ∗−λ′|< η. Therefore, when
‖x−y‖< min(η,τ), f ∗(x,u) = f (x+λ∗u)≤ f (y+λ′u)+ ε≤ f ∗(y,u)+ ε.

By reversing the roles ofx andy in the above argument, we can similary establish thatf ∗(y,u)≤
f ∗(x,u)+ ε when‖x−y‖ ≤min(η,τ). Functionx 7→ f ∗(x,u) is therefore uniformly continuous on
F .

A.4 Stochastic Witness Direction Search

Each iteration of the following algorithm randomly chooses a feasible witness direction and per-
forms an optimization along this direction. The successive search directionsut are randomly se-
lected (step 2a) according to some distributionPt defined onU. DistributionPt possibly depends on
values observed before timet.

Stochastic Witness Direction Search (WDS)
1) Find an initial feasible pointx0 ∈ F .

2) For eacht = 1,2, . . . ,
2a) Draw a directionut ∈U from a distributionPt

2b) If u∈Dxt−1 and u′t∇ f (xt−1) > 0 ,
xt ← argmaxf (x) underx∈ {xt−1 +λut ∈ F , λ≥ 0}

otherwise
xt ← xt−1.

Clearly the Stochastic WDS algorithm does not work if the distributionsPt always give probabil-
ity zero to important directions. On the other hand, convergence is easily established if all feasible
directions can be drawn with non zero minimal probability at any time.

3. We believe that the converse of Theorem 9 is also true.
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Theorem 11 Let f be a concave function defined on a compact convex setF , differentiable with
continuous derivatives. AssumeU is a finite witness set for setF , and let the sequence xt be defined
by the Stochastic WDS algorithm above. Further assume there isπ > 0 such that Pt(u) > π for all
u∈U ∩Dxt−1. All accumulation points of the sequence xt are then solutions of problem (14) with
probability1.

Proof We want to evaluate the probability of eventQcomprising all sequences of selected directions
(u1,u2, . . .) leading to a situation wherext has an accumulation pointx∗ that is not a solution of
problem (14).

For each sequence of directions(u1,u2, . . .), the sequencef (xt) is increasing and bounded. It
converges tof ∗ = supt f (xt). We havef (x∗) = f ∗ becausef is continuous. By Theorem 6, there is
a directionu∈U such thatf ∗(x∗,u) > f ∗ andφ(x∗,u) > 0. Letxkt be a subsequence converging to
x∗. Thanks to the continuity ofφ, f ∗ and∇ f , there is at0 such thatf ∗(xkt ,u) > f ∗ andφ(xkt ,u) > 0
for all kt > t0.

Chooseε > 0 and letQT ⊂ Q contain only sequences of directions such thatt0 = T. For any
kt > T, we know thatφ(xkt ,u) > 0 which meansu∈U ∩Dxkt

. We also know thatukt 6= u because
we would otherwise obtain a contradictionf (xkt+1) = f ∗(xkt ,u) > f ∗. The probability of selecting
such aukt is therefore smaller than(1− π). The probability that this happens simultaneously for
N distinctkt ≥ T is smaller than(1−π)N for anyN. We getP(QT) ≤ ε/T2 by choosingN large
enough.

Then we haveP(Q) = ∑T P(QT)≤ ε
(

∑T 1/T2
)

= Kε. HenceP(Q) = 0 because we can choose
ε as small as we want, We can therefore assert with probability 1 that all accumulation points of
sequencext are solutions.

This condition on the distributionsPt is unfortunately too restrictive. ThePROCESSandRE-
PROCESSiterations of the OnlineLASVM algorithm (Section 3.2) only exploit directions from very
specific subsets.

On the other hand, the OnlineLASVM algorithm only ensures that any remaining feasible direc-
tion at timeT will eventually be selected with probability 1. Yet it is challenging to mathematically
express that there is no coupling between the subset of time pointst corresponding to a subsequence
converging to a particular accumulation point, and the subset of time pointst corresponding to the
iterations where specific feasible directions are selected.

This problem also occurs in the deterministic Generalized SMO algorithm (Section 3.1). An
asymptotic convergence proof (Lin, 2001) only exist for the important case of the SVM QP problem
using a specific direction selection strategy. Following Keerthi and Gilbert (2002), we bypass this
technical difficulty by defining a notion of approximate optimum and proving convergence in finite
time. It is then easy to discuss the properties of the limit point.

A.5 Approximate Witness Direction Search

Definition 12 Given a finite witness familyU and the tolerancesκ > 0 andτ > 0, we say that x is
a κτ-approximate solution of problem (14) when the following condition is verified:

∀u∈U, φ(x,u)≤ κ or u′∇ f (x)≤ τ.

A vector u∈ Rn such thatφ(x,u) > κ and u′∇ f (x) > τ is called aκτ-violating direction in point x.
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This definition is inspired by assertion (iii ) in Theorem 6. The definition demands afinite witness
family because this leads to proposition 13 establishing thatκτ-approximate solutions indicate the
location of actual solutions whenκ andτ tend to zero.

Proposition 13 Let U be a finite witness family for bounded convex setF . Consider a sequence
xt ∈ F of κtτt-approximate solutions of problem (14) withτt → 0 and κt → 0. The accumulation
points of this sequence are solutions of problem (14).

Proof Consider an accumulation pointx∗ and a subsequencexkt converging tox∗. Define function

(x,τ,κ) 7→ ψ(x,τ,κ,u) =
(

u′∇ f (x)− τ
)

max{0,φ(x,u)−κ}

such thatu is aκτ-violating direction if and only ifψ(x,κ,τ,u) > 0. Functionψ is continuous thanks
to Theorem 9, proposition 10 and to the continuity of∇ f . Therefore, we haveψ(xkt ,κkt ,τkt ,u)≤ 0
for all u∈U. Taking the limit whenkt → ∞ givesψ(x∗,0,0,u)≤ 0 for all u∈U. Theorem 6 then
states thatx∗ is a solution.

The following algorithm introduces the two tolerance parametersτ > 0 andκ > 0 into the Stochastic
Witness Direction Search algorithm.

Approximate Stochastic Witness Direction Search
1) Find an initial feasible pointx0 ∈ F .
2) For eacht = 1,2, . . . ,

2a) Draw a directionut ∈U from a probability distributionPt

2b) If ut is aκτ-violating direction,
xt ← argmaxf (x) underx∈ {xt−1 +λut ∈ F , λ≥ 0}

otherwise
xt ← xt−1.

The successive search directionsut are drawn from some unspecified distributionsPt defined onU.
Proposition 16 establishes that this algorithm always converges to somex∗ ∈F after a finite number
of steps, regardless of the selected directions(ut). The proof relies on the two intermediate results
that generalize a lemma proposed by Keerthi and Gilbert (2002) in the caseof quadratic functions.

Proposition 14 If ut is a κτ-violating direction in xt−1,

φ(xt ,ut)u′t∇ f (xt) = 0.

Proof Let the maximumf (xt)= f ∗(xt−1,ut) be attained inxt = xt−1+λ∗ut with 0≤ λ∗ ≤ φ(xt−1,ut).
We know thatλ∗ 6= 0 becauseut is κτ-violating and proposition 2 impliesf ∗(xt−1,ut) > f (xt−1).
If λ∗ reaches its upper bound,φ(xt ,ut) = 0. Otherwisext is an unconstrained maximum and
u′t∇ f (xt) = 0.

Proposition 15 There is a constant K> 0 such that

∀t , f (xt)− f (xt−1) ≥ K ‖xt −xt−1‖.
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Proof The relation is obvious whenut is not aκτ-violating direction inxt−1. Otherwise let the
maximum f (xt) = f ∗(xt−1,ut) be attained inxt = xt−1 +λ∗ut .
Let λ = νλ∗ with 0 < ν≤ 1. Sincext is a maximum,

f (xt)− f (xt−1) = f (xt−1 +λ∗ut)− f (xt−1)≥ f (xt−1 +λut)− f (xt−1).

Let H be the maximum overF of the norm of the Hessian off .
A Taylor expansion with the Cauchy remainder gives

∣

∣ f (xt−1 +λut)− f (xt−1)−λu′t∇ f (xt−1)
∣

∣≤
1
2

λ2‖ut‖
2H

or, more specifically,

f (xt−1 +λut)− f (xt−1)−λu′t∇ f (xt−1) ≥ −
1
2

λ2‖ut‖
2H.

Combining these inequalities yields

f (xt)− f (xt−1)≥ f (xt−1 +λut)− f (xt−1)≥ λu′t∇ f (xt−1)−
1
2

λ2‖ut‖
2H.

Recallingu′t∇ f (xt−1) > τ, andλ‖ut‖= ν‖xt −xt−1‖, we obtain

f (xt)− f (xt−1)≥ ‖xt −xt−1‖

(

ν
τ
U
−ν21

2
DH

)

whereU =max
U
‖u‖ andD is the diameter of the compact convexF .

Choosingν = min
(

1,
τ

UDH

)

then gives the desired result.

Proposition 16 AssumeU is a finite witness set for setF . The Approximate Stochastic WDS
algorithm converges to some x∗ ∈ F after a finite number of steps.

Proof Sequencef (xt) converges because it is increasing and bounded. Therefore it satisfies
Cauchy’s convergence criterion:

∀ ε > 0, ∃ t0, ∀ t2 > t1 > t0,
f (xt2)− f (xt1) = ∑

t1<t≤t2

f (xt)− f (xt−1) < ε.

Using proposition 15, we can write

∀ ε > 0, ∃ t0, ∀ t2 > t1 > t0,

‖xt2−xt1‖ ≤ ∑
t1<t≤t2

‖xt −xt−1‖ ≤ ∑
t1<t≤t2

f (xt)− f (xt−1)

K
<

ε
K

.

Therefore sequencext satisfies Cauchy’s condition and converges to somex∗ ∈ F .
Assume this convergence does not occur in a finite time. SinceU is finite, the algorithm ex-

ploits at least one directionu∈U an infinite number of times. Therefore there is a strictly increas-
ing sequence of positive indiceskt such thatukt = u is κτ-violating in pointxkt−1. We have then
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φ(xkt−1,u) > κ andu′∇ f (xkt−1) > τ. By continuity we haveφ(x∗,u)≥ κ andu′∇ f (x∗)≥ τ. On the
other hand, proposition 14 states thatφ(xkt ,u)u′∇ f (xkt ) = 0. By continuity whent→ 0, we obtain
the contradictionφ(x∗,u)u′∇ f (x∗) = 0.

In general, proposition 16 only holds forκ > 0 andτ > 0. Keerthi and Gilbert (2002) assert a similar
property forκ = 0 andτ > 0 in the case of SVMs only. Despite a mild flaw in the final argument of
the initial proof, this assertion is correct (Takahashi and Nishi, 2003).

Proposition 16 does not prove that the limitx∗ is related to the solution of the optimization
problem (14). Additional assumptions on the direction selection step are required. Theorem 17 ad-
dresses the deterministic case by considering trivial distributionsPt that always select aκτ-violating
direction if such directions exist. Theorem 18 addresses the stochastic case under mild conditions
on the distributionPt .

Theorem 17 Let the concave function f defined on the compact convex setF be twice differen-
tiable with continuous second derivatives. AssumeU is a finite witness set for setF , and let the
sequence xt be defined by the Approximate Stochastic WDS algorithm above. Assume that step
(2a) always selects aκτ-violating direction in xt−1 if such directions exist. Then xt converges to a
κτ-approximate solution of problem (14) after a finite number of steps.

Proof Proposition 16 establishes that there ist0 such thatxt = x∗ for all t ≥ t0. Assume there is
a κτ-violating direction inx∗. For anyt > t0, step (2a) always selects such a direction, and step
(2b) makesxt different fromxt−1 = x∗. This contradicts the definition oft0. Therefore there are no
κτ-violating direction inx∗ andx∗ is aκτ-approximate solution.

Example (SMO) The SMO algorithm (Section 3.1) is4 an Approximate Stochastic WDS that
always selects aκτ-violating direction when one exists. Therefore Theorem 17 applies.

Theorem 18 Let the concave function f defined on the compact convex setF be twice differen-
tiable with continuous second derivatives. AssumeU is a finite witness set for setF , and let the
sequence xt be defined by the Approximate Stochastic WDS algorithm above. Let pt be the condi-
tional probability that ut is κτ-violating in xt−1 given thatU contains such directions. Assume that
limsuppt > 0. Then xt converges with probability one to aκτ-approximate solution of problem (14)
after a finite number of steps.

Proof Proposition 16 establishes that for each sequence of selected directionsut , there is a time
t0 and a pointx∗ ∈ F such thatxt = x∗ for all t ≥ t0. Both t0 andx∗ depend on the sequence of
directions(u1,u2, . . .).

We want to evaluate the probability of eventQcomprising all sequences of directions(u1,u2, . . .)
leading to a situation where there areκτ-violating directions in pointx∗. Chooseε > 0 and let
QT ⊂Q contain only sequences of decisions(u1,u2, . . .) such thatt0 = T.

Since limsuppt > 0, there is a subsequencekt such thatpkt ≥ π > 0. For anykt > T, we know
thatU containsκτ-violating directions inxkt−1 = x∗. Directionukt is not one of them because this

4. Strictly speaking we should introduce the toleranceκ > 0 into the SMO algorithm. We can also claim that (Keerthi
and Gilbert, 2002; Takahashi and Nishi, 2003) have established proposition 16 withκ = 0 andτ > 0 for the specific
case of SVMs. Therefore Theorems 17 and 18 remain valid.

1614



FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

would makexkt different fromxkt−1 = x∗. This occurs with probability 1− pkt ≤ 1−π < 1. The
probability that this happens simultaneously forN distinctkt > T is smaller than(1−π)N for any
N. We getP(QT)≤ ε/T2 by choosingN large enough.

Then we haveP(Q) = ∑T P(QT)≤ ε
(

∑T 1/T2
)

= Kε. HenceP(Q) = 0 because we can choose
ε as small as we want. We can therefore assert with probability 1 thatU contains noκτ-violating
directions in pointx∗.

Example (LASVM ) The LASVM algorithm (Section 3.2) is5 an Approximate Stochastic WDS
that alternates two strategies for selecting search directions:PROCESSandREPROCESS. Theorem
18 applies because limsuppt > 0.
Proof Consider a arbitrary iterationT corresponding to aREPROCESS.
Let us define the following assertions:

A – There areτ-violating pairs(i, j) with both i ∈ S and j ∈ S .
B – A is false, but there areτ-violating pairs(i, j) with eitheri ∈ S or j ∈ S .
C – A andB are false, but there areτ-violating pairs(i, j).
Qt – Directionut is τ-violating inxt−1.

A reasoning similar to the convergence discussion in Section 3.2 gives the following lower bounds
(wheren is the total number of examples).

P(QT |A) = 1
P(QT |B) = 0 P(QT+1|B)≥ n−1

P(QT |C) = 0 P(QT+1|C) = 0 P(QT+2|C) = 0 P(QT+3|C)≥ n−2.

Therefore
P( QT ∪QT+1∪QT+2∪QT+2 | A )≥ n−2

P( QT ∪QT+1∪QT+2∪QT+2 | B )≥ n−2

P( QT ∪QT+1∪QT+2∪QT+2 |C )≥ n−2.

Sincept = P(Qt | A∪B∪C) and since the eventsA, B, andC are disjoint, we have

pT + pT+1 + pT+2 + pT+4≥ P( QT ∪QT+1∪QT+2∪QT+2 | A∪B∪C )≥ n−2.

Therefore limsuppt ≥
1
4 n−2.

Example (LASVM + Gradient Selection) TheLASVM algorithm with Gradient Example Selec-
tion remains an Approximate WDS algorithm. Whenever Random Example Selectionhas a non
zero probability to pick aτ-violating pair, Gradient Example Selection picks the aτ-violating pair
with maximal gradient with probability one. Reasoning as above yields limsuppt ≥ 1. Therefore
Theorem 18 applies and the algorithm converges to a solution of the SVM QP problem.

Example (LASVM + Active Selection + Randomized Search) TheLASVM algorithm with Ac-
tive Example Selection remains an Approximate WDS algorithm. However it does not necessarily
verify the conditions of Theorem 18. There might indeed beτ-violating pairs that do not involve the
example closest to the decision boundary.

However, convergence occurs when one uses the Randomized Search method to select an ex-
ample near the decision boundary. There is indeed a probability greater than 1/nM to draw a sample

5. See footnote 4 discussing the toleranceκ in the case of SVMs.

1615



BORDES, ERTEKIN, WESTON, AND BOTTOU

containingM copies of the same example. Reasonning as above yields limsuppt ≥
1
4 n−2M. There-

fore, Theorem 18 applies and the algorithm eventually converges to a solution of the SVM QP
problem.

In practice this convergence occurs very slowly because it involves very rare events. On the other
hand, there are good reasons to prefer the intermediate kernel classifiers visited by this algorithm
(see Section 4).
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Abstract
Ensembles are a widely used and effective technique in machine learning—their success is com-
monly attributed to the degree of disagreement, or ‘diversity’, within the ensemble. For ensembles
where the individual estimators output crisp class labels,this ‘diversity’ is not well understood and
remains an open research issue. For ensembles of regressionestimators, the diversity can be exactly
formulated in terms of the covariance between individual estimator outputs, and the optimum level
is expressed in terms of abias-variance-covariancetrade-off. Despite this, most approaches to
learning ensembles use heuristics to encourage the right degree of diversity. In this work we show
how to explicitly control diversity through the error function. The first contribution of this paper is
to show thatby taking the combination mechanism for the ensemble into account we can derive an
error function for each individual that balances ensemble diversity with individual accuracy. We
show the relationship between this error function and an existing algorithm callednegative corre-
lation learning, which uses a heuristic penalty term added to the mean squared error function. It is
demonstrated that these methods control the bias-variance-covariance trade-off systematically, and
can be utilised with any estimator capable of minimising a quadratic error function, for example
MLPs, or RBF networks. As a second contribution, we derive a strict upper bound on the coef-
ficient of the penalty term, which holds for any estimator that can be cast in a generalised linear
regression framework, with mild assumptions on the basis functions. Finally we present the re-
sults of an empirical study, showing significant improvements over simple ensemble learning, and
finding that this technique is competitive with a variety of methods, including boosting, bagging,
mixtures of experts, and Gaussian processes, on a number of tasks.
Keywords: ensemble, diversity, regression estimators, neural networks, hessian matrix, negative
correlation learning

1. Introduction

The last decade has seen a frenzy of work in so-calledensemble learning systems. These are groups
of machine learning systems where each learner provides an estimate of a target variable; these
estimates are combined in some fashion, hopefully reducing the generalisationerror compared to
a single learner. The target can be categorical (classification ensembles) or continuous (regression
ensembles). The multiple estimates are integrated via a combination function, commonly majority
voting for classification and alinear combinationfor regression. It is well appreciated in both
cases that the individual estimators should exhibit different patterns of generalisation—the very
simple intuitive explanation is that a million identical estimators are obviously no betterthan a single

c©2005 Gavin Brown, Jeremy L. Wyatt and Peter Tin̆o.
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estimator of the same form. Much research has gone into how to encourage this error “diversity”—
most commonly manipulating the training data, providing each learner with a different subset of
patterns or features (see Brown et al. (2005a) for a recent survey). The main point to note here is that
when our estimators output crisp class labels, there is no agreed definition of diversity, and it remains
an open research question (Kuncheva and Whitaker (2003)). The problem is somewhat easier if we
have estimators that give posterior probabilities, in which case the effect of estimator correlations
on classification error rate has been investigated by Tumer and Ghosh (1995) and Fumera and Roli
(2003), though there remain several open questions on this topic.

A commonly overlooked point for regression ensembles is that this “diversity” can be explic-
itly quantified and measured. Thebias-variance-covariancedecomposition from Ueda and Nakano
(1996) breaks the mean squared error (MSE) into three components. Quite simply, whereas in a sin-
gle regression estimator we have the well known bias-variancetwo-waytrade-off, in an ensemble
of regressors we have the bias-variance-covariancethree-waytrade-off. The optimum “diversity” is
that which optimally balances the components to reduce the overall MSE. In thisarticle we focus
on negative correlation (NC) learning, a successful neural network ensemble learning technique
developed in the evolutionary computation literature (Liu (1998)). In a statistical framework, we
show that NC uses a penalty coefficient toexplicitly alter the emphasis on the variance and co-
variance portions of the MSE. Setting a zero coefficient corresponds toindependently training the
estimators; a higher coefficient introduces more emphasis on covariance,and at a particular value it
corresponds to treating the entire ensemble as a single learning unit. This is anexplicit management
of the ensemble diversity. We will describe how the ensemble error gradient can be broken into a
number of individually understandable components, and that NC exploits thisto blend smoothly be-
tween a group of independent learners and a single large learner, finding the optimal pointbetween
the two. We will prove an upper bound on the penalty coefficient, provide guidance on how to set it
optimally, and show empirical support that this guidance is useful. The NC framework isapplicable
to any nonlinear regression estimatorminimising the MSE; we show examples using multi-layer
perceptrons and radial basis function networks as the base estimators.

The structure of this article is as follows. We begin in Section 2 with a summary of the un-
derlying theory of regression ensemble learning, describing why there exists a trade-off between
ensemble diversity and individual estimator accuracy. We then consider inSection 3 how we might
derive an error function that is capable of optimising this trade-offexplicitly. We do this and note
that it can be shown as equivalent to an existing heuristic technique,negative correlation (NC)
learning. We continue in Section 4 with an introduction to NC learning, summarising the assump-
tions and properties as published in the original work. Here we provide a statistical interpretation of
NC, and derive a strict upper bound on its penalty coefficient—we empirically validate this bound
in Sections 5 and 6. Finally in Section 7 we summarise the implications of this work in a broad
context.

2. Ensemble Learning for Regression

In this section we review the bias-variance decomposition (Geman et al. (1992)), using it as a
vehicle to introduce our notation; we then show how this decomposition naturallyextends to a
bias-variance-covariancedecomposition (Ueda and Nakano (1996)) when using an ensemble of
regression estimators.
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2.1 The Bias-Variance Decomposition

We have a data set of input vectors and output scalars,z= {(x1, t1), ...,(xN, tN)}, with each element
drawn from a random variableZ defined over an unknown distributionp(x, t). It should be noted
that for brevity, and without loss of generality, we have assumed a noise level of zero in the data.1

The learning problem is to use the setz to approximate the correct mapping from input to output.
For this purpose we use a parameterized estimatorf , whose set of parametersw determine how
well it approximates the mapping. We would like to find the set of parametersw that minimise the
expected mean squared error,

e( f ) =
Z

( f (x;w)− t)2p(x, t)d(x, t). (1)

Unfortunately we do not have access to the true distributionp(x, t), so we approximate this
integral with a summation over the data setz,

e( f ) ≈
1
N

N

∑
n=1

( f (xn;w)− tn)
2

, (xn, tn) ∈ z. (2)

We do not necessarily want a set of parametersw that give us zero error onz; this is becausez
is only asamplefrom the true distribution, and if we tunew precisely toz then the estimatorf may
not perform well on future data (we overfitted). However, if we do nottunew just enough, then
we may again not perform well in the future (we underfitted). This is explicitlyformulated in the
bias-variancedecomposition (Geman et al. (1992)). Note that from this point forward, inplace of
the integral notation in Equation (1), we use the shorthand expectation operatorE{·}; additionally
we will omit the input and parameter vectors, so where it is unambiguous, instead of f (x;w), we
write simply f . The bias-variance decomposition is

E{( f − t)2} = (E{ f}− t)2 +E{( f −E{ f})2}

= bias( f )2 +variance( f ). (3)

The decomposition is a property of thegeneralisationerror; these two components have to
be balanced against each other for best performance. Now let us imagine that instead of a single
estimatorf , we have a collection of them:f1, ..., fM, eachfi has its own parameter vectorwi , and
M is the total number of estimators. We then train each individualfi separately, using Equation (2)
as the error function; once this is accomplished, the outputs of the individuals arecombinedto give
theensemble outputfor any new datapointx. The simplest possible combination mechanism is to
take a uniformly weighted average, so the output of the ensemble is

f̄ (x;w1, ...,wM) =
1
M

M

∑
i=1

fi(x;wi). (4)

The ensemblēf can obviously be seen as an estimator in its own right; it will therefore have a bias-
variance decomposition; However it transpires that, for this class of estimator, it can be extended to
a bias-variance-covariancedecomposition.

1. In the case of a non-zero noise component,t in the decomposition would be replaced by its expected valueET{t},
and a constant (irreducible) termσ2 would be added, representing the variance of the noise.
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2.2 The Bias-Variance-Covariance Decomposition

Treating the ensemble as a single learning unit, its bias-variance decompositioncan be formulated
as

E{( f̄ − t)2} = (E{ f̄}− t)2 +E{( f̄ −E{ f̄})2}

= bias( f̄ )2 +variance( f̄ ). (5)

We will now consider how the bias-variance decomposition for an ensemble can be extended (Ueda
and Nakano (1996)).2 From this point forward, it should be noted that the expectation operator is
subtly different to that in the decomposition for a single estimator. We redefineour random variable
Z as a setZ = (Z1, ...,ZM), so theith estimator is trained with a training setzi drawn from its own
random variableZi . It should be noted thatZi potentially may be identical for alli, or not. If the
training data is identical for two machinesi and j, it does not imply that the expected valuesE{ fi}
andE{ f j} are equal, since other differences may be present between machinesi and j, i.e. in the
training procedures, or the models. Finally, we note that although the decomposition presented
below does hold for non-uniformly weighted ensembles, we restrict our analysis to the uniform
case, as it corresponds to the simple average combination technique used commonly in practice. To
aid our exposition now, we define three concepts. The first concept isbias, the averaged bias of the
ensemble members,

bias =
1
M ∑

i

(E{ fi}− t). (6)

The second isvar, the averaged variance of the ensemble members,

var =
1
M ∑

i

E{( fi −E{ fi})
2}. (7)

The third iscovar, the averaged covariance of the ensemble members,

covar =
1

M(M−1) ∑
i

∑
j 6=i

E{( fi −E{ fi})( f j −E{ f j})}. (8)

We then have

E{( f̄ − t)2} = bias
2
+

1
M

var+

(

1−
1
M

)

covar. (9)

What does this decomposition tell us? It illustrates that in addition to the bias and variance of
the individual estimators, the generalisation error of an ensemble also depends on thecovariance
between the individuals. This raises the interesting issue of why we should ever train ensemble
members separately; why shouldn’t we try to find some way to capture the effect of the covariance
in the error function? Given the decomposition (9), it is not immediately obviouswhat form this
should take—this will be our next topic for consideration.

2. It is interesting to note that this was the first appearance of the decomposition only for the ML literature—in fact an
equivalent decomposition can be found in Markowitz (1952), which wasinstrumental for modern financial portfolio
theory, and subsequently won the 1990 Nobel Prize for Economics.
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3. How Can We Optimise Diversity with an Error Function?

For a single regression estimator, generalisation error is determined by a two-way bias-variance
trade-off; for an ensemble of regression estimators, the ‘diversity’ issue is simply athree-waybias-
variance-covariancetrade-off. We know how to quantify diversity, but we have not yet considered
how to achieve it and balance it against individual accuracy—the fundamental issue of ensemble
learning. The decompositions we have considered so far consist of integrals overall possible data
setsof a fixed size—we require a computable approximation to these in order to minimisean error
function on a limited data set. It turns out that another decomposition in the literature, significantly
more well-known, provides the missing link. We will review this decomposition andits relation
to the ones we have already considered, then show how we can use it to train an ensemble whilst
controlling the bias-variance-covariance trade-off.

3.1 The Ambiguity Decompositon

Krogh and Vedelsby (1995) showed thatat a single arbitrary datapoint, the quadratic error of the
ensemble estimator is guaranteed to be less than or equal to the weighted average quadratic error
of the component estimators,

( fens− t)2 = ∑
i

ci( fi − t)2−∑
i

ci( fi − fens)
2
. (10)

wheret is the target value of an arbitrary datapoint,∑i ci = 1, ci ≥ 0, and fens is the convex com-
bination of theM component estimatorsfens= ∑M

i=1ci fi . Preceding the bias-variance-covariance
decomposition, this was a very encouraging result for ensemble research, providing a very simple
expression for the effect of error correlations in an ensemble. The decomposition is made up of
two terms. The first,∑i ci( fi − t)2, is the weighted average error of the individuals. The second,
∑i ci( fi − fens)

2 is referred to as theAmbiguity, measuring the amount of variability among the en-
semble member answers for this particular(x, t) pair. The trade-off between these two determines
how well the ensemble performs at this datapoint.

We have now seen two decompositions, Equation (9) and Equation (10), expressing the effect
of correlations on ensemble error in two different ways. It is thereforesensible to ask what the
relationship is between these two. The very similar structure of the two decompositions (5) and (10)
is no coincidence; the proofs are virtually identical (Brown et al. (2005a)); see also Hansen (2000)
for an alternative treatment of this relationship. Assuming a uniform weighting, we substitute the
right hand side of equation (10) into the left hand side of equation (9), giving us

E{
1
M ∑

i

( fi − t)2−
1
M ∑

i

( fi − f̄ )2} = bias
2
+

1
M

var+

(

1−
1
M

)

covar. (11)

What portions of the bias-variance-covariance decomposition correspond to the Ambiguity term?
After some manipulations (see Appendix B for details) we can show

E{
1
M ∑

i

( fi − t)2} = bias
2
+Ω (12)

E{
1
M ∑

i

( fi − f̄ )2} = Ω−

[

1
M

var+

(

1−
1
M

)

covar

]

. (13)
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whereΩ is the interaction between the two sides,

Ω = var+
1
M ∑

i

(E{ fi}−E{ f̄})2
. (14)

Since theΩ is present in both sides, when we combine them by subtracting the Ambiguity in equa-
tion (13), from the average MSE in equation (12), theΩs cancel out, and we get the original bias-
variance-covariance decomposition back, as in the RHS of equation (11). ThisΩ term is the average
variance of the estimators, plus the average squared deviation of the expectations of the individuals
from the expectation of the ensemble. The fact that theΩ term exists illustrates again that we cannot
simply maximise diversity without affecting the other parts of the error—in effect, this interaction
quantifiesthe diversity trade-off for regression ensembles.

3.2 Using the Decompositions to Optimise Diversity

In a simple ensemble, the norm is to train learners separately—theith member of the ensemble
would have the error function3

ei =
1
2
( fi − t)2

. (15)

In light of the decompositions we have seen, this is rather odd. Why wouldn’t we want to directly
minimise thefull ensemble error?

eens=
1
2
( f̄ − t)2 =

1
M ∑

i

1
2
( fi − t)2−

1
M ∑

i

1
2
( fi − f̄ )2

. (16)

One easy answer to this is that we are adopting the “division of labor” approach, simplifying the
learning problem by breaking it intoM smaller problems. However, according to Equation (11),
this error function should account for the bias, the variance, and critically also the covariance of
the ensemble. The point to remember is that these components should bebalancedagainst each
another. Given the relationship shown in Equation (12) and Equation (13), we could imagine a
“diversity-encouraging” error function of the form

ediv
i =

1
M ∑

i

1
2
( fi − t)2−κ

1
M ∑

i

1
2
( fi − f̄ )2

. (17)

whereκ is a scaling coefficient in[0,1] and allows us to vary the emphasis on the covariance com-
ponent. If we adopt a gradient descent procedure for training, we note

∂ediv
i

∂ fi
=

1
M

[

( fi − t)−κ( fi − f̄ )
]

. (18)

Whenκ = 0 here, the gradient of our error function is proportional to the gradient of the error of a
single learner, Equation (15). At the other extreme, whenκ = 1, the fi terms in Equation (18) cancel
out, and we have the gradient of the entire ensemble as a single unit,

κ = 0 ,
∂ediv

i

∂ fi
=

1
M

[

( fi − t)
]

=
1
M

∂ei

∂ fi
(19)

κ = 1 ,
∂ediv

i

∂ fi
=

1
M

[

( f̄ − t)
]

=
∂eens

∂ fi
. (20)

3. As we will shortly be using a gradient descent procedure, by convention with the existing literature we multiply by
1
2 .

1626



MANAGING DIVERSITY IN REGRESSIONENSEMBLES

By scaling theκ term we would be able to vary smoothly between the two extremes of training
learners separately and training the ensemble as a single unit. Further analysis of these gradi-
ent components is provided in Appendix C. Using this scaling parameter corresponds to explicitly
varying our emphasis on minimising the covariance term within the ensemble MSE, balancing it
against our emphasis on the bias and variance terms; hence we are explicitlymanagingthe bias-
variance-covariance trade-off. The reader may now justifiably expect an empirical investigation of
this error function; however, it conveniently transpires that an existing heuristic method in the liter-
ature (derived independently of the observations above) can be shown to be equivalent to this, and
has undergone extensive empirical tests showing its utility in a number of domains. The theoret-
ical results we have derived in this section form a solid foundation to explainthe success of this
technique and link it to others in the literature. We will now consider this,Negative Correlation
Learning, and show precisely how it relates to the derivations we have provided in this section.

4. Negative Correlation Learning

Negative correlation (NC) learning (Liu (1998)) is a neural network ensemble learning technique
developed in the Evolutionary Computation literature. NC has shown a number of empirical suc-
cesses and varied applications, including regression problems (Yao et al. (2001)), classification
problems (McKay and Abbass (2001)), and time-series prediction (Liu (1998)). It has consistently
demonstrated significant performance improvements over a simple ensemble system, showing very
competitive results with other techniques like mixtures of experts, bagging, and boosting (Liu and
Yao (1997); McKay and Abbass (2001)). Though empirical successes have been found with classi-
fication problems, it should be noted that the discussion here concerns only the regression case.

4.1 The History

The fact that correlations between ensemble members affects performancehas been known for a
long time. The first such reference to appear in the machine learning literature was Perrone (1993),
showing that we obtain a1M variance reduction if correlation between learners is zero. The first
reference in the literature to explicitly use this idea in a learning algorithm was Rosen (1996), who
trained networks sequentially using a penalty and scaling coefficientλ added to the error term,

ei =
1
2
( fi − t)2 +λpi (21)

pi = ( fi − t)
i−1

∑
j=1

( f j − t). (22)

Attempting to extend this work, Liu and Yao (1997) trained the networks in parallel, and used a
number of alternative penalty terms4 including one where thet is replaced byf̄ ,

pi = ( fi − t)∑
j 6=i

( f j − t) (23)

pi = ( fi − f̄ )∑
j 6=i

( f j − f̄ ). (24)

4. A companion work to this article, Brown et al. (2005b), gives a similar analysis to penalty (23).
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Theλ parameter is problem-dependent, controlling the trade-off between the objective and penalty
terms during the gradient descent training procedure. Figure 1 shows NC using backpropaga-
tion to update the network weights. A point to note here is that the authors calculate the gradi-
ent using the assumption“that the output of the ensemblēf has constant value with respect to
fi” (Liu, 1998, p.29)., i.e.

∂ f̄
∂ fi

= 0. (25)

Using this, and the penalty Equation (24), the following gradient was derived,

ei =
1
2
( fi − t)2 +λ( fi − f̄ )∑

j 6=i

( f j − f̄ ) (26)

∂ei

∂ fi
= ( fi − t)+λ∑

j 6=i

( f j − f̄ ). (27)

This is clearly an incorrect assumption—in the next section we will examine the reasoning behind it,

1. LetM be the final number of predictors required.

2. Take a training setz= {(x1, t1), ...,(xN, tN)}.

3. For each training pattern inz from n = 1 toN do :

(a) Calculatef̄ = 1
M ∑i fi(xn)

(b) For each network fromi = 1 toM do:

• Perform asingleupdate for each weightw in networki, using a
learning rateα (set as 0.1 in our experiments), and:

∆w = −α
[

( fi(xn)− tn)−λ( fi(xn)− f̄ )
]

· ∂ fi
∂w

4. Repeat from step 3 for a desired number of iterations.

For any new testing patternx, the ensemble output is given by:

f̄ =
1
M ∑

i

fi(x)

Figure 1: Pseudocode for negative correlation learning. Note the relationship between theλ term
and theγ term in Equation (30).

the implications it brings, and show how NC relates to the error decompositions we have discussed
so far.
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4.2 A Theoretical Grounding for NC Learning

We would like to provide a rigorous foundation for the NC method, so it seems sensible to observe
what happens when weremovethe assumption of constant̄f . We now introduce a termγ in place of
λ, to indicate when we perform the gradient calculationswithout the assumption. Re-deriving the
gradient, we have

ei =
1
2
( fi − t)2 + γ( fi − f̄ )∑

j 6=i

( f j − f̄ ) (28)

∂ei

∂ fi
= ( fi − t)− γ

[

2(1−
1
M

)( fi − f̄ )
]

. (29)

We understand now thatλ in fact has the deterministic component 2(1− 1
M ); to avoid confusion we

now refer to the parameters in the following context,

λ = 2γ(1−
1
M

). (30)

whereγ is still a problem-dependent scaling parameter. According to communications with the
original authors, the assumption was introduced for two reasons. Firstly because the term 2(1− 1

M )
is a constant for any fixed ensemble of sizeM, so can be precalculated for efficiency. Secondly, it
allowed the appealing property that whenλ = 1, the gradient in Equation (27) reduces

∂ei

∂ fi
= ( fi − t)+λ∑

j 6=i

( f j − f̄ )

= ( fi − t)−λ( fi − f̄ )

= ( f̄ − t)

= M ·
∂eens

∂ fi
. (31)

Here it can be seen that the identity∑ j 6=i( f j − f̄ ) = −( fi − f̄ ) was used—the sum of deviations
around a mean is equal to zero. However, for this to hold we have to nowviolate the constantf̄
assumption, as the sum of deviations around a constant isnot equal to zero. The reader will see an
immediate similarity in (31) to the observations we have made in the previous section,specifically
equations (18), (19), and (20). It emerges that by introducing the assumption, and subsequently
violating it, the NC gradient becomes proportional to the gradient of the “diversity-encouraging”
error function (18) suggested earlier, where we useλ in place ofκ,

∂ei

∂ fi
= ( fi − t)−λ( fi − f̄ ) = M ·

∂ediv
i

∂ fi
. (32)

¿From the observations we have made here, the connection between NC and the Bias-Variance-
Covariance decomposition should be apparent. By introducing the assumption (25), NC was in-
advertently provided with the missing gradient components that correspondto the variance and
covariance terms within the ensemble MSE. It can therefore be concluded that NC succeeds be-
cause it trains the individual networks with error functions which more closely approximate the
individual’s contribution to ensemble error, than that used by simple ensemblelearning. Using the
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penalty coefficient, we then balance the trade-off between those individual errors and the ensemble
covariance. The relationship to the Ambiguity decomposition is made even more apparent by noting
that the penalty term can be rearranged,

pi = ( fi − f̄ )∑
j 6=i

( f j − f̄ ) = −( fi − f̄ )2
. (33)

This leads us to a restatement of the NC error function,

ei =
1
2
( fi − t)2− γ( fi − f̄ )2

. (34)

Remembering the breakdown of the ensemble error from earlier,

eens=
1
M ∑

i

[
1
2
( fi − t)2−

1
2
( fi − f̄ )2

]

, (35)

we see that the MSE of an ensemble can be decomposed into a weighted summation, where the
ith term is the backpropagation error function plus the NC-learning penalty function, with theγ
parameter set at 0.5. Here we note an important point, that there are additional effects thatfi has
on Equation (35), that arenot containedin Equation (34). This is via thēf term, which obviously
depends onfi , and can be found in each component of the summation in Equation (35). Therefore,
simply settingγ = 0.5 would mean we are not taking account of these effects, and settingγ > 0.5 al-
lows us to include them and find the appropriate problem-dependent balance for best generalisation.
These observations are supported by further gradient analysis in Appendix C.

To summarise, in this section we have shown that there exist two quite different error functions,
which yield gradients (18) and (29) differing only in a scalar constant. Each incorporates sufficient
information to allow the individual learners to optimise the bias-variance-covariance trade-off. We
now understand how NC balances accuracy against diversity; however, we do not yet understand
what thecorrectbalance is, i.e. how do we set the penalty coefficient? We consider this problem in
the next section.

4.3 Understanding and Defining Bounds on the Penalty Coefficient

The original work on NC (Liu and Yao (1997)) showed that aλ value greater than zero can encour-
age a decrease in covariance, however it is also observed that too higha value can cause a rapid
increase in the variance component, causing overall error to be higher.No theoretical explanation
was given for this behaviour, and as such we do not yet have a clear picture of the exact dynamics of
the parameter. It was stated that the bounds ofλ should be[0,1], based on the following calculation,

∂ei

∂ fi
= fi − t +λ∑

j 6=i

( f j − f̄ )

= fi − t −λ( fi − f̄ )

= fi − t −λ( fi − f̄ )+λt −λt

= (1−λ)( fi − t)+λ( f̄ − t).

It is stated:“the value of parameterλ lies inside the range0≤ λ ≤ 1 so that both(1−λ) andλ have
non-negative values”(Liu, 1998, p.29). In practice this bound seemed to be applicable; however,
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the justification is questionable, and again here we see the assumption of constant f̄ is violated—if
constantf̄ is assumed, then the deviations aroundf̄ result cannot be used. In this section we provide
more concrete theoretical evidence for an upper bound.

The NC penalty term ‘warps’ the error landscape of the network, making the global minimum
hopefully easier to locate. However, if the landscape is warpedtoo much, it could eliminate any
useful gradient information. This state is indicated by the positive-definiteness (PD) of the Hessian
matrix. If the Hessian matrix, evaluated at a given point, is non-PD, then the error gradient consists
of either a local maximum or a point of inflexion, and we have lost any useful gradient information
from our original objective function. We acknowledge an important pointhere, that the state of the
Hessian during training saysnothingabout thegeneralisation error. We simply note that if we have
a non-PD Hessian during the training, there will be no minimum to converge toon the datapoint
at which it was evaluated, in which case training can only cause weight divergence. We would
therefore like to know conditions under which the Hessian will be non-PD.

If the Hessian matrix is positive definite, then all elements on the leading diagonal are positive-
valued; therefore if any element on that diagonal is zero or less, the entire matrixcannotbe positive
definite. Assume we have an estimator that is a linear combination of a number of nonlinear func-
tionsφ, so

fi =
K

∑
k=1

wkiφki. (36)

Examples of estimators in this class are Multi-Layer Perceptrons using linear output nodes, Polyno-
mial Neural Networks, and Radial Basis Functions. Now, for an arbitrary Hessian diagonal element
corresponding to theqth weight in the output layer of theith network,wqi, we can show (derivation
given in Appendix A) that

∂2ei

∂wqi
2 =

[

1−λ(1−
1
M

)
]

φqi
2
. (37)

where in the case of RBF networks,φqi
2 is the squared output of theqth basis function in the

ith network. If this element, Equation (37), equates to zero or less, the entireHessian matrixis
guaranteed to be non-positive definite. Therefore we would like the following inequality to hold,

0 <

[

1−λ(1−
1
M

)
]

φqi
2

0 < φqi
2−λφqi

2(
M−1

M
)

λφqi
2(

M−1
M

) < φqi
2

λ <
φqi

2

φqi
2(M−1

M )

λ <
M

M−1
. (38)

Since the effect ofφqi cancels out,5 we find that this inequality isindependentof all other
network parameters, so it isa constant for any ensemble architecture using estimators of this form

5. We note that we assume a basis functionφqi 6= 0, to avoid divide by zero problems—this does not always hold, for
example when using hyperbolic tangent activations; however here we assume either sigmoid activation or a Gaussian
RBF.
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and a simple average combination function. This defines an upper bound forλ and, since we know
the relationship between the two strength parameters from Equation (30), wecan also show a bound
for γ,

λupper=
M

M−1
γupper=

M2

2(M−1)2 . (39)

Whenλ or γ is varied beyond these upper bounds, the Hessian matrix is guaranteed tobe
non-positive definite.Figure 2 plotsλupper and the equivalentγupper for different ensemble sizes.
We see that as the size increases,λupper asymptotes to 1, andγupper to 0.5. For larger ensembles,
e.g. M > 10, this therefore lends concrete theoretical evidence to Liu’s proposed bound ofλ = 1.
However, for smallM, the bound shows values larger thanλ = 1 may still retain a positive definite
Hessian matrix.
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Figure 2: The Upper bound onγ andλ.

Our bound was determined on the premise that the leading diagonal containingnegative el-
ements implies a non-PD Hessian matrix. However, it could easily be the case that the leading
diagonal is all positive, yet the entire matrix is still non-PD. This implies that the matrix could be-
come non-PDbeforeour upper bound is reached. Our bound is therefore a conservativeone, and it
may be possible to define a tighter bound. The question of whether a tighter bound can be defined
can be phrased as“Are there any general conditions for the off-diagonal elements of the Hessian,
that will force non-positive definiteness, in spite of all leading diagonal elements being positive?”.
Any such analytical conditions based on the Hessian will almost certainly be input-dependent—the
advantage of our bound is that it is a constant for a given ensemble, dependent only on the number
of ensemble members. However, the utility of the bound depends entirely on how tight it is—using
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a neural network ensemble it would be pointless if the weights diverged significantly beforethe
bound is reached. To validate this hypothesis we now engage in empirical testing.

5. Empirically Validating the Proposed Bound

The purpose of this section is to determine how useful our theoretical upper bound can be in practice.
We remind the reader again that our bound is not computed in reference to generalisation error, and
we now wish to evaluate whether it can be practically useful in this context. When varyingγ, if the
network weights diverge significantly before the upper bound is reached, then the bound is not tight
and therefore of little use. Alternatively, it could simply be that certain ensemble configurations
do not show any benefit from using NC, in which case NCitself is of no use, and neither is our
parameter bound. We now investigate these issues.

5.1 Data Sets

We use the Boston Housing data set, where the problem is to predict the medianhouse price given
a number of demographic features. There are 506 examples, each containing 13 input variables (12
continuous, 1 binary), and 1 continuous output variable in the range 0 to 50. All input variables
were linearly rescaled, independently of each other, to be in the range[0,1], and the output variable
was linearly rescaled to[−1,1]. A five-fold cross validation procedure was used, so keeping 20% of
the data as a holdout set, and using the remaining 80% for training and validation. With the Boston
data set this equates to 304 for training, 101 for validation, and 101 for testing. The validation data
was used to perform early stopping by the following procedure: train whilenoting the validation
error every 50 epochs; if the validation error has risen in comparison to 500 epochs ago, terminate
training and reset the weights to the best point within that 500 epoch window (at a resolution of 50
epochs) according to the validation data.

The second data set was generated (Friedman (1991)) by the function

h(x) = 10sin(πx1x2)+20

(

x3−
1
2

)2

+10x4 +5x5 +η, (40)

wherex = [x1, ..,x10] is an input vector whose components are drawn uniformly at random from
[0,1], andη is a noise component drawn fromN(0,1), i.e. mean zero and variance 1.0. Totally
there are 10 continuous valued attributes, but only the first 5 are used in the function, leaving the
last 5 as irrelevant characteristics that the algorithm has to learn to ignore.We used a data set of
size 1000, using the same five-fold cross validation procedure as described above.

The third data set used was theLogPdata, recently used in (Tino et al. (2004)). This is a highly
nonlinear pharmaceutical data set, where the task is to predict thepartition coefficientof a chemical
compound, allowing one to determine certain uptake properties of the molecule.The data set has
14 continuous input variables, and 1 continuous output variable in the range [−4.2,+9.9]. There
are 6912 examples, which we used in the same cross-validation procedureas above.

For all three data sets, each ensemble was evaluated over the 5 data folds and over 30 trials of
random weights, giving 150 trials for each run.
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5.2 When Does the NC Technique Work Well?

Empirical analyses of NC have been shown on several other occasionsand on several other data sets
(Liu et al. (2000); Liu and Yao (1997); Brown (2004)). The point ofthis section is to characterise
some general conditions of ensemble architecture under which NC seems to succeed in comparison
to a simple ensemble.

We train several different ensemble architectures using a range ofγ values (at a resolution of
0.05), the optimumγ value was located according to the validation data, and finally evaluated on
the testing data. This was compared to usingγ = 0, where it should be remembered thatγ = 0
is exactly equivalent to simple ensemble learning, i.e. training each network independently of the
otherswithoutNC learning. We first varied the number of networks in the ensemble, using afixed
individual network size of 6 hidden nodes. Figure 3 shows results for the Friedman data, figure 4
for Boston, and figure 5 for LogP; 95% confidence intervals are indicated. With the Friedman and
Boston data sets, a general trend that can be noted is that larger relativegains seem to be made with
larger ensemble sizes.
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Figure 3: Friedman,γ = 0 versus optimalγ, 6
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Figure 4: Boston,γ = 0 versus optimalγ, 6 hid-
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However, with the LogP data, relative performance does not seem to increase with the size of the
ensemble. If we make the component networks much simpler, 2 hidden nodes as in figure 6, we see
the same recognisable trends as in the other data sets. The general rule here, supported by previous
empirical work on NC, seems to be to use very simple networks—in this case we can see that an
ensemble of 16 networks, each with 2 hidden nodes, has equalled the performance of a similarly
sized ensemble, using 6 hidden nodes per network.

Figures 7 and 8 show the gains as we vary thecomplexity(i.e. number of hidden nodes per net-
work) of the individual ensemble members. We can note here that the gain from using NCdecreases
as we increase the complexity of the networks. Regarding again figures 3 to6 these results indi-
cate that NC is of most use when we have large ensembles of relatively low complexity ensemble
members. This is emphasized further looking at figure 10, where we see that an ensemble of 6 net-
works using 2 hidden nodes, and using NC, can equal the performanceof the same ensemble using
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Figure 6: LogP,γ = 0 versus optimalγ, 2 hid-
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far more complex networks. Additionally, in these situations, whenγ is set optimally, significantly
faster convergence and lower generalisation error for a fixed numberof epochs were observed.

5.3 How Tight is the Bound?

We now turn to examining the behaviour of thegeneralization erroras we moveγ toward its upper
bound. Figures 11, 13 and 15 show the performance asγ is changed, with several different sizes of
ensemble—each network has fixed complexity at 6 hidden nodes. A distinctive pattern is observed:
a virtually monotonic decrease in error as we increaseγ, up to a particular “threshold”, beyond which
the error rises rapidly. On closer examination of the networks trained with these highγ values, it
was observed that the network weights had diverged to excessively large values. The point at which
divergence occurs seems to move downward as we increase the size of the ensemble. Figures 12, 14
and 16 show the behaviour with a fixed ensemble size,M = 6, as we vary the individual complexity
between 2 and 12 hidden nodes. Here we see a distinction from the results varying ensemble size:
the divergence point seems largely unaffected by the complexity of the networks.

Using these results as a guide, we searched the range ofγ at the finer resolution of 0.01 to locate
the divergence point. Figure 18 shows this, illustrating that divergence seems extremelyinvariant
to the choice of data set. We superimpose the predicted upper bound and note that as the number
of networks increases, the divergence point and the upper bound both asymptote to 0.5, confirming
that our bound is tight. We have also superimposedγ = M

2(M−1) , corresponding to whenλ = 1.
Zooming in on part of the plot allows us to see that theλ = 1 original bound is obeyed in most
instances, but not all. We acknowledge of course that theexactlocation of the divergence point is
of little consequence; the real point we wish to locate is theoptimumγ value, and see if it provides
significant improvements relative to other ensemble techniques; we will explore this in the next
section.

In conclusion to the ‘upper bound’ issue, we note that we have providedtheoretical evidence
that supports thatλ = 1 bound in the case of largeM, but the bound remains loose for smallM, and
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λ = 1 (or equivalentlyγ = M
2(M−1) ) seems to be a useful heuristic bound. A possible justification for

this is to remember that as we approachλ = 1, we treat the ensemble more and more as a single
learning unit—beyond this we would be introducing a greater emphasis on covariance than is in
the overall ensemble objective function; whether this bound can be strictly proved remains an open
question.
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Figure 11: Friedman, varyingγ with 6 hidden
nodes per network
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Figure 12: Friedman, varyingγ with 6 net-
works
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Figure 13: Boston, varyingγ with 6 hidden
nodes per network
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Figure 14: Boston, varyingγ with 6 networks
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Figure 15: LogP, varyingγ with 6 hidden nodes
per network
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Figure 16: LogP, varyingγ with 6 networks
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Figure 17:γ-value at which divergence of weights was observed for the data sets.
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Figure 18:γ-value at which divergence occurred, zoomed in.
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6. Further Empirical Comparisons

In this section we will compare the NC framework to other competitive ensemble approaches, using
MLPs as the base estimator. Additionally we will illustrate that the NC framework is indeed general,
by using RBF regressors, and showing that very similar empirical patternsemerge, obeying our
upper bound for theγ parameter.

6.1 Comparing NC to Other Popular Ensemble Approaches

Performing valid empirical comparisons with existing works in the literature is a notoriously diffi-
cult task; slight differences in experimental setup can easily invalidate the procedure. In particular,
training/testing data must be exactly the same between two systems to be compared.The LogP data
has been used in previous work (Tino et al. (2004)) by one of the current authors—we obtained the
exact data split used in that work to test NC against their results. Of the 6912 examples, 5530 were
used for training, 691 for validation and 691 for testing. We used 12 networks, each with 6 hidden
nodes. Using the validation data, the optimumγ = 0.5 was determined. Results in table 2 show how
NC compares with other state-of-the-art techniques; 95% confidence intervals are indicated where
available. As an additional useful statistic, Tino et al. (2004) computed the ION (Improvement over
Naive) value. This is the percentage improvement relative to a naive predictor (with an MSE of
2.69) which predicts a constant for any input, equal to the mean target value in the training data.
The best achieveable improvement in their experiments was 77.7%, the Gaussian Process learner,
while here we see NC achieves 78.2%.

System Testing MSE (conf) ION %

NC, 12 MLPs,γ = 0.5 0.5866(±0.0168) 78.2%

Gaussian Processes 0.601 77.7%

Hierarchical Mixture of Experts 0.658 75.5%

Simple ensemble, 12 MLPs 0.7692(±0.0154) 71.4%

Table 1: Comparing NC to other state-of-the-art learning techniques on theLogPdata.

To further empirically verify NC, we now compare it to two other popular ensemble techniques,
Adaboost.R2 and bagging. Figures 19 to 22 show results, again following the empirical procedures
described in section 5 - all Boosted and Bagged networks were trained withearly stopping. We note
that on the Friedman data, NC significantly outperforms both boosting and bagging, increasing its
lead as the ensemble size is increased. The Boston data shows that NC is obviously not a panacea
technique - boosting and bagging significantly outperform it in this situation. From this and previous
experiments with NC, we hypothesize that the noisy nature of the Friedman datais ideally suited to
the flexibility allowed by NC’sγ parameter, explicitly varying thefit of the ensemble modelto the
data as needed, whereas boosting and bagging do not have this extra free parameter. We note that a
full empirical benchmarking of NC and its behaviour with noisy data is underway, but outside the
scope of this article.
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Figure 19: Friedman, varying number of net-
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Figure 20: Friedman, varying number of hid-
den nodes per network (ensemble of
6 networks)
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Figure 21: Boston, varying number of net-
works (6 hidden nodes in each)
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Figure 22: Boston, varying number of hidden
nodes per network (ensemble of 6
networks)

6.2 Using NC with an Ensemble of RBF Networks

We now briefly illustrate that NC can be applied to regression estimators of other types, not just
multi-layer perceptrons. We use an ensemble of Radial Basis Function networks, using Gaussian
basis functions. Centres and widths are initialised randomly, then a full gradient descent is per-
formed on all parameters, using the NC penalty framework as previously described. Table 2 shows
that an ensemble of RBF networks each with 50 centres can outperform anMLP ensemble each
with 50 sigmoidal hidden nodes, and applying NC to the RBF ensemble allows further gain. Finally
in figure 23 we see the effect of varyingγ on both the MLP and RBF ensemble. As previously
observed, with very complex individuals NC cannot provide further error reduction. Here we note
two points. Firstly, though an MLP ensemble cannot benefit, an RBF ensembleof the same sizecan
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benefitfrom NC. Secondly, and most importantly, we see it again obeys our predicted upper bound
on γ.

System Testing MSE (conf)

RBF: 5 x 50 basis functions, NCγ = 0.5 0.0229(±0.001)

RBF: 5 x 50 basis functions 0.0263(±0.001)

MLP: 5 x 50 hidden nodes, NCγ = 0.5 0.0313(±0.001)

MLP: 5 x 50 hidden nodes 0.0319(±0.001)

Table 2: Using NC with an ensemble of RBF networks on the Boston data set
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Figure 23: LogP data: The effect of varying the NCγ parameter on
an RBF and MLP ensemble of sizeM = 5, noting that
our predicted upper boundγupper = 0.78125 holds for
the RBF ensemble.

7. Conclusions

We have investigated the issue of how to explicitlymanagethe correlations in an ensemble of re-
gression estimators. We made important observations on the relationships between the Ambiguity
decomposition (Krogh and Vedelsby (1995)) and the bias-variance-covariance decomposition (Ueda
and Nakano (1996)). From this base, we provided a thorough critique of negative correlation (NC)
learning (Liu (1998)), a technique that extended from Rosen (1996),and developed in the evolu-
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tionary computation literature. We showed that using a penalty term and coefficient, NCexplicitly
includes the covariance portion of the ensemble MSE in its error function. This article has served
to illustrate that NC is not merely a heuristic technique, butfundamentallytied to the dynamics of
training an ensemble system with the mean squared error function. The observations we made are
in fact all properties of the mean squared error function. NC is therefore best viewed as aframe-
work rather than as an algorithm. The NC framework can be applied to ensembles ofany nonlinear
regression estimatorcombined in an ensemblēf of the form

f̄ (x) =
1
M

M

∑
i=1

fi(x). (41)

In addition, an upper bound on the strength parameter was shown to apply when each estimatorfi
is of the form

fi(x) =
K

∑
k=1

wkiφki(x). (42)

Examples of estimators in this class are multi-layer perceptrons with linear outputnodes, and
Radial Basis Function networks, indeed any estimator that can be cast in a generalised linear regres-
sion framework. To derive the bound, we observed that positive definiteness of the Hessian matrix
can be determined by checking just the firstK leading diagonal elements. We verified this bound
empirically, and although the bound is tight for larger ensembles, it remains loose for sizeM < 10,
and a useful empirical bound ofγ = M

2(M−1) seems to apply. These results seem to suggest a general
set of guidelines for application of the NC framework. The common trend wasto see increasing
utility of NC with larger ensembles of relatively low individual complexity, with optimum γ tend-
ing to 0.5. We therefore recommend a starting point as: ensemble sizeM ≥ 10, number of hidden
nodes between 2 and 5, and a penalty strength parameter ofγ = 0.5. This will of course be problem
dependent, most significantly the number of hidden nodes—what is ’low complexity’ for one task
will not be for another—but we believe it does provide good general guidance. In addition, it seems
sensible from our investigations that some sort of annealing of the parameter during the learning
process, from zero up towards the bound, may show further performance benefits.

We then engaged in a detailed study of the error gradient and how it changes when using NC
learning. We showed that the error of an NC learning ensemble can be broken down into four
components, each with its own interpretation with respect to the current state of the ensemble.
Further to this we noted that NC allows a smooth transition of the error gradientsbetween that of a
fully parallel ensemble system and a single estimator. This raises a point on thenature ofoverfitting
in ensembles. It is well known that overfitting of the individual estimators canbe beneficial in an
ensemble system (Sollich and Krogh (1996)), but obviously overfitting theentire ensemble as a unit
is an undesirable prospect. With this new information about NC,whatshould we overfit?

Appendix A. Calculations Supporting the Strength Parameter Bound

We now present additional calculations supporting the work on the upper bound for theλ and
γ parameters, as in Section 4.3. Assuming an estimator which is a linear combination of other
functionsφ, we wish to derive one of the entries in the leading diagonal of the Hessian matrix. The
diagonal element corresponding to theqth weight in theith estimator is∂2ei

∂wqi
2 . If this is zero or less,

then the Hessian is guaranteed to be non-positive definite, an undesirableprospect. Making use of
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the product rule, we have

∂ei

∂wqi
=

∂ei

∂ fi

∂ fi
∂wqi

∂2ei

∂wqi
2 =

[ ∂
∂wqi

∂ei

∂ fi

] ∂ fi
∂wqi

+
[ ∂

∂wqi

∂ fi
∂wqi

]∂ei

∂ fi
. (43)

Taking the first term on the right hand side,

∂ei

∂ fi
= ( fi − t)−λ( fi − f̄ )

∂
∂wqi

∂ei

∂ fi
= φqi −λ(φqi −

1
M

φqi)

=
(

1−λ(1−
1
M

)
)

φqi. (44)

Now for the second term, remembering eq (42), we have

∂ fi
∂wqi

= φqi (45)

∂
∂wqi

∂ fi
∂wqi

=
∂2 fi

∂wqi
2 = 0. (46)

Therefore we simply have

∂2ei

∂wqi
2 =

[(

1−λ(1−
1
M

)
)

φqi

]

φqi +
[

0
]∂ei

∂ fi
(47)

=
(

1−λ(1−
1
M

)
)

φqi
2
. (48)

It is interesting to observe that since we have

∂ei

∂ fi
= ( fi − t)−λ( fi − f̄ ) (49)

∂2ei

∂ fi2
= 1−λ(1−

1
M

). (50)

then we can see

∂2ei

∂wqi
2 =

∂2ei

∂ fi2
φqi

2
. (51)

This demonstrates that, sinceφqi
2 is positive, the sign of the leading diagonal entry∂2ei

∂wqi
2 in the

Hessian is decided by the sign of∂2ei

∂ fi 2
.
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Appendix B. The Relationship between Ambiguity and Covariance

We now show the exact link between the Ambiguity decomposition and the bias-variance-covariance
decomposition. The bias-variance-covariance decomposition gives us

E{( f̄ − t)2} = bias
2
+

1
M

var+

(

1−
1
M

)

covar. (52)

Now using the Ambiguity decomposition, we have the result

E{
1
M ∑

i

( fi − t)2−
1
M ∑

i

( fi − f̄ )2} = bias
2
+

1
M

var+

(

1−
1
M

)

covar. (53)

It would be interesting to understand what portions of the bias-variance-covariance decomposi-
tion correspond to the ambiguity term. We place anα in front of the Ambiguity term, then derive
the relationship between the left and right sides of equation (53). Wherever theα appears in the
derivation will indicate how the Ambiguity term plays a role in the bias-variance-covariance de-
composition. We have

eens = E
{ 1

M ∑
i

[
( fi − t)2−α( fi − f̄ )2]

}

=
1
M ∑

i

[

E
{

( fi −E{ f̄}+E{ f̄}− t)2−α( fi −E{ f̄}+E{ f̄}− f̄ )2
}]

.

now multiply out the brackets, thus

eens =
1
M ∑

i

[

E
{

( fi −E{ f̄})2 +(E{ f̄}− t)2 +2( fi −E{ f̄})(E{ f̄}− t)

−α( fi −E{ f̄})2−α(E{ f̄}− f̄ )2−2α( fi −E{ f̄})(E{ f̄}− f̄ )
}]

.

and evaluate the expectation and summation, giving us

eens =
1
M ∑

i

E
{

( fi −E{ f̄})2
}

+(E{ f̄}− t)2

−α
1
M ∑

i

E
{

( fi −E{ f̄})2
}

−αE
{

( f̄ −E{ f̄})2
}

−2αE
{

( f̄ −E{ f̄})(E{ f̄}− f̄ )
}

.

and finally by rearranging the last term we obtain

eens =
1
M ∑

i

E
{

( fi −E{ f̄})2
}

+(E{ f̄}− t)2

−α
1
M ∑

i

E
{

( fi −E{ f̄})2
}

+αE
{

( f̄ −E{ f̄})2
}

.

Obviously now if we remove theα term that we have been using, this would simplify to give
us the squared bias of̄f , plus the variance of̄f : which we could then break down further using the
bias-variance-covariance decomposition as we showed earlier. The interesting part here though, is
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the term that would cancel out. The expected value of the Ambiguity term is equal to whatever parts
of this that contain theα term. Therefore,

E{
1
M ∑

i

( fi − f̄ )2} =
1
M ∑

i

E{( fi −E{ f̄})2}−E{( f̄ −E{ f̄})2}

= Ω−var( f̄ ).

And the other side of the Ambiguity decomposition, the expected value of the average individual
error is whatever partsdo notcontainα, this is

E{
1
M ∑

i

( fi − t)2} =
1
M ∑

i

E
{

( fi −E{ f̄})2
}

+(E{ f̄}− t)2

= Ω+bias( f̄ )2
.

This interaction term,Ω, is present in both sides, and cancels out to allow the normal bias-
variance decomposition of ensemble error. But what does itmean? If we examine it a little further,
we see

1
M ∑

i

E{( fi −E{ f̄})2} =
1
M ∑

i

E{( fi −E{ fi}+E{ fi}−E{ f̄})2}

=
1
M ∑

i

E{( fi −E{ fi})
2}+

1
M ∑

i

(E{ fi}−E{ f̄})2
.

where we have used thatE{ fiE{ fi}} = E{ fi}2 and alsoE{ fiE{ f̄}} = E{ fi}E{ f̄}. This shows
that the interaction term,Ω, is the average variance of the estimators, plus the average squared
deviation of the expectations of the individuals from the expectation of the ensemble.

Appendix C. Further Gradient Analysis of NC Learning

We have seen that the MSE of an ensemble system can be interpreted in two ways: firstly with
the Ambiguity decomposition, and secondly with the bias-variance-covariance decomposition. We
now present a third way to understand the dynamics of a regression ensemble, in reference to the
gradient of the error function. Regard the architecture in figure 24. This is an ensemble of three

h

f

f

w

i

qi

q

input

Figure 24: A typical ensemble architecture
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MLPs, with three inputs and three hidden nodes each, using a uniformly weighted combination as
the ensemble output. We desire to update the weight,wqi, marked in bold—this is one of the output
layer weights for theith network (connected to theqth hidden node). If we consider the ensemble
as a single entity, then the error of this system at a single point is defined as

eens=
1
2
( f̄ − t)2

. (54)

In this case, an update to the weightwqi would involve the gradient

∂eens

∂wqi
=

∂eens

∂ fi

∂ fi
∂wqi

=
1
M

( f̄ −d)
∂ fi

∂wqi
. (55)

Note that we are assuming an ensemble of networks with linear output functions—if this is the case,
the second term in the above error gradient,∂ fi

∂wqi
evaluates to simply the output of the relevant hidden

node. The error gradient is therefore proportional to∂eens
∂ fi

, and we can simplify our calculations
below by omitting the reference to the hidden node since it just acts as a scalingcomponent.

We calculated (55) in one simple step using the chain rule, treating the ensemble as a single
unit—if we perform this instead starting from the decomposed form of the ensemble error, it high-
lights more interesting results. We use the Ambiguity decomposition, and additionallybreak the
error into two components, where the first term concerns estimatori, and the second concerns all
the other estimatorsj 6= i,

1
2
( f̄ − t)2 =

1
M ∑

i

[
1
2
( fi − t)2−

1
2
( fi − f̄ )2

]

=
1
M

[
1
2
( fi − t)2−

1
2
( fi − f̄ )2

]

+
1
M ∑

j 6=i

[
1
2
( f j − t)2−

1
2
( f j − f̄ )2

]

. (56)

If we do this we discover that the gradient of the ensemble error function isa sum of four distinct
components, shown and described in table 3. Each of these components contributes to the gradient
of the ensemble error in eq. (55). If we take the1

M on the outside and label the components, we can
make an interesting observation.

∂eens
∂ fi

= 1
M

[

( fi − t)
︸ ︷︷ ︸

−( fi − f̄ )
︸ ︷︷ ︸

+
1
M

( fi − f̄ )
︸ ︷︷ ︸

+
1
M ∑

j 6=i

( f j − f̄ )

︸ ︷︷ ︸

]

A B C D

(57)

We now see that the gradient of the individual, and the gradient of the ensemble as a single unit, can
be expressed as combinations of these components; thus we have

∂ei

∂ fi
= ( fi − t) = A (58)
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Component Interpretation

1
M ( fi − t) This is the component of the error gradient due to the difference

between the ith network output and the desired output (due to the
fact that fi is changing.)

− 1
M ( fi − f̄ ) This is the component of the error gradient due to the difference

betweenfi and f̄ (due to the fact thatfi is changing.)

1
M2 ( fi − f̄ ) This is the component of the error gradient due to the difference

between fi and f̄ (due to the fact thatf̄ changes, becausefi is
changing.)

1
M2 ∑ j 6=i( f j − f̄ ) This is the component of the error gradient due to the differences

between thef js and f̄ (due to the fact that̄f changes, becausefi is
changing.)

Table 3: Ensemble gradient components

∂eens

∂ fi
=

1
M

( f̄ − t) =
1
M

(A−B). (59)

Furthermore, a simple rearrangement now shows the error gradient forfi in an ensemble using NC
is

∂
∂ fi

[1
2
( fi − t)2− γ( fi − f̄ )2

]

= ( fi − t)−2γ(1−
1
M

)( fi − f̄ ) (60)

= ( fi − t)−2γ
[

( fi − f̄ )−
1
M

( fi − f̄ )
]

= A−2γ(B−C).

Alternatively, because we knowλ = 2γ(1− 1
M ), this can also be expressed asA−λB. From all this

we can understand, a single framework, the relationships between minimising the simple ensemble
error, the NC ensemble error, and a single network, described in table 4.

If we setλ = 1, or equivalentlyγ = M
2(M−1) , we see that the gradient of the individual error with

NC is directly proportional to the gradient for the ensemble seen as a single entity, i.e.

∂eens

∂wqi
=

1
M

∂ei

∂wqi
. (61)

An alternative way of thinking about this is that all the minima are in the same locations, but the
landscape isM times shallower—the effect of which could be duplicated with a smaller learning
rate in the update rule. When we changeγ within a certain range, we scale smoothly between the
gradient of a single large entity, and that of a set of independently trainednetworks. The choice
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Algorithm Components in error gradient for network
i

Simple Ensemble A

Ensemble with NC A−2γ(B−C) or (A−λB)

Ensemble with NC,λ = 1 A−B
or equivalentlyγ = M

2(M−1)

Single large network 1
M (A−B)

(with fixed output layer weights)

Table 4: Components of the Ensemble Error Gradient under different Algorithms

Figure 25: An regression example to illustrate how NC affects the error gradient.

of γ is problem-dependent, and it emerges that we can also understand theoptimal setting of the
parameter in this gradient-based context—consider the scenario in figure 25.

On a single datapoint, the networkfi is estimating too high at 8.0, which is right of the target
t = 4. We have an ensemble ofM = 5 networks, but for clarity the outputs of the other ensemble
members are not shown; the resulting ensemble output isf̄ = 3, too low, left of the target. When
updating the value offi , a simple ensemble will use the gradient measurement( fi − t) = 4, resulting
in fi being shifted left, towards the target. However, this will cause the ensemble output f̄ to
also shift left, moving away from the target. An ensemble using NC will include three gradient
components,

A−2γ(B−C) = ( fi − t)−2γ
[

( fi − f̄ )−
1
M

( fi − f̄ )
]

(62)

= 4−2γ(5−
1
5

5)

= 4− γ8.

If we chooseγ = 0.4, this sum evaluates to 0.8, still a positive gradient forfi , meaning the
ensemble output will still be moved away from the target. If however we chooseγ = 0.6, it evaluates
to −0.8, giving a pressure for the networkfi to moveawayfrom the target, causing the ensemble
output to movecloserto the target. The setting of theγ value provides a way of finding a trade-off
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between these gradient components that will cause the ensemble outputf̄ to move toward the target
valuet. This is obviously a purely hypothetical situation, and finding the optimalγ that allows this
correct trade-off will be more difficult.
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Abstract

This paper describes an active learning approach to the problem of grammatical inference, specif-
ically the inference of deterministic finite automata (DFAs). We refer to the algorithm as the
estimation-exploration algorithm (EEA). This approach differs from previous passive and active
learning approaches to grammatical inference in that training data is actively proposed by the al-
gorithm, rather than passively receiving training data from some external teacher. Here we show
that this algorithm outperforms one version of the most powerful set of algorithms for grammatical
inference, evidence driven state merging (EDSM), on randomly-generated DFAs. The performance
increase is due to the fact that the EDSM algorithm only workswell for DFAs with specific bal-
ances (percentage of positive labelings), while the EEA is more consistent over a wider range of
balances. Based on this finding we propose a more general method for generating DFAs to be used
in the development of future grammatical inference algorithms.

Keywords: grammatical inference, evolutionary computation, deterministic finite automata, active
learning, system identification

1. Introduction

Grammatical inference is a popular machine learning domain (refer to Cicchelloand Kremer, 2003,
for an overview): it has wide applicability in both computational linguistics and related fields, as
well as giving rise to a host of benchmark problems (Tomita, 1982; Lang etal., 1998) and compe-
titions. Grammatical inference is a special case of the larger problem domain of inductive learning
(Bergadano and Gunetti, 1995), which aims to construct models of some underlying system based
on sets of positive and negative classifications. In one class of grammatical inference methods,
the system is considered to be some kind of language or classifier, and models are represented as
deterministic finite automata (DFA). Both the target system and models take stringsof symbols as
input (sentences), and produce binary classification as output (labellings), indicating whether that
sentence belongs to the language or not. The problem of grammatical inference can also be consid-
ered a special instance of the problem of system identification (Ljung, 1999), in which some target
system is inferred based solely on input/output data.

Grammatical inference methods that employ DFAs as models can be divided into two broad
classes: passive and active learning methods. In passive methods, a set of training data is supplied
to the algorithm for model construction. In active learning approaches, the algorithm has some
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influence over which training data is labeled by the target DFA for model construction. Active
learning approaches are typically iterative, in which membership queries are proposed periodically,
often in response to some deficiency in the currently constructed models. Inthese iterative active
approaches the amount of training data available for inference grows over time, unlike passive
approaches, in which a fixed set of training data is used for model construction.

Passive methods usually make some assumption about the training data: a set of labeled training
data is either generated by some auxiliary method randomly, or according to some predefined distri-
bution. For example Pitt (1989), Porat and Feldman (1991), Dupont (1996) and Lang et al. (1998)
assume a randomly-selected set of sample data; Luke et al. (1999) and Lucas and Reynolds (2005)
assume equal amounts of positive and negative training data when inferring the Tomita languages
(Tomita, 1982) by using the same training sets as previous researchers; Pao and Carr (1978) and
Parekh and Honavar (1996) assume a structurally complete set; Oncina and García (1992) assume
a characteristic sample; and Angluin (1981) assumes a live complete set. Once the sample data has
been generated and labeled, inference is then conducted.

With the exception of randomly-generated training data, it is assumed that the training data is
collected using some knowledge of the target system to be inferred. For example one necessary
criterion for a structurally complete set of training data is that it covers every state transition of a
DFA1 (Pao and Carr, 1978; Parekh and Honavar, 1993; Dupont et al., 1994). This requires that
the algorithm which generates the training data knows something about the structure of the DFA,
namely its state transitions. This is advantageous as then it is possible to make performance guaran-
tees regarding an inference algorithm working on that training data. However, for real-world usage
of grammatical inference algorithms, it is unreasonable to assume that the internal structure of the
DFA is known: indeed, this is exactly what is being inferred. In this work wepresent an active
learning algorithm that makes few assumptions about the structure of the target DFA, and in fact
outperforms one of the best heuristic methods for grammatical inference, which implicitly assumes
that the DFAs are balanced (i.e. produce a more or less equal number of positive and negative
labelings).

The current most powerful passive approach to grammatical inference using DFAs as models
are the evidence driven state merging (EDSM) methods (see Cicchello and Kremer, 2003, for an
overview), a heuristic approach that iteratively compresses an initially large DFA down to a smaller
one, while preserving perfect classification before and after each compression. In this paper we com-
pare our algorithm’s performance against an EDSM variant implemented by Lucas and Reynolds
(2005). Evolutionary approaches to grammatical inference also exist, in which a stochastic search
method seeks the most accurate DFA model through mutation and recombination of previous mod-
els: in this work we will also compare our own method, which employs evolutionary computation
for search, against the evolutionary method proposed by Lucas and Reynolds (2005). However,
like the other passive methods, both heuristic and evolutionary approaches so far assume that some
external agent generates either a random or balanced training set2 before inference begins.

In the active learning approach to regular language inference pioneered by Angluin (1987) (see
also Berg et al., 2003, and Angluin, 2004), the algorithm iteratively requests membership queries
for training data it has generated on its own. Despite this active approach totraining data generation,
these algorithms also require an external agent—an oracle—that can answer equivalence queries:
the oracle indicates whether the current model is equivalent to the target DFA and, if it is not, returns

1. See the definition of states and state transitions in Section 2.1 below.
2. A training set containing an equal number of positive and negative samples.
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new training data that belongs to the target language but does not belong tothe language encoded by
the candidate model. Once again, this assumes that the oracle knows somethingabout the structure
of the target DFA. The algorithm presented here assumes that an oracle can answer membership
queries, but not equivalence queries. In practical applications, such an oracle is the target system
itself: the target system will return a classification for a proposed item, but cannot indicate whether
a proposed model is equivalent to itself or not. The target system can indicate the goodness of a
model if a large amount of sample data is classified by both itself and the proposed model and the
resulting classifications are compared, but for target systems in which classifications are costly, slow
or dangerous, this is not feasible.

Other active learning approaches to language inference also exist, butthey all assume com-
pletely passive reception of training data: Sempere and Garcia (1993) only require that samples be
presented in lexicographic order, and the RPNI (Oncina and Garciá, 1992, and Lang et al., 1992)
and RPNI2 Dupont (1996) algorithms assume random training data is supplied by an external agent,
with the stipulation that positive and negative sample data must be made available.

The method presented in this paper does not assume any passive reception of training data
from an external agent: rather, the algorithm attempts to evolve sentences that, when passed to
the target system, should indirectly extract information about previously hidden components of the
target system. For example, sentences should be sent to a target system that, during labelling,
cause transitions to states that have never or rarely been visited during previous labellings. This
is particularly useful in cases when passively-generated training data will cause some states of the
target DFA to be visited much more often than others. In system identification, such systems are
said to have low observability; it is more difficult to observe some components of the system than
others using input data generated without recourse to a partial model of the system. For this and
other reasons, it is not surprising that active learning approaches outperform passive methods: active
methods have more control over the collection of training data. However the point of this paper is to
demonstrate one reason why active methods outperform passive methods: namely, that they perform
well on both balanced and imbalanced DFAs. More specifically, it is shown that one of the leading
passive methods, the EDSM method, does poorly because it only performswell on balanced DFAs
using balanced training data.

Large and unbalanced DFAs are one kind of automata that have low observability: these DFAs
contain a large number of states, but tend to produce one labelling much more often than the other
labelling, for any given sentence. For example one particular language (Tomita language 1, see
Tomita, 1982) only produces a positive classification for a given binary string 2.4% of the time. In
such cases, generating random training data is not recommended, because few or no sentences that
elucidate the pathways to accepting states will be collected. Also, generating balanced training data
is also not recommended, for two reasons. First, there will be a surfeit oftraining data elucidating
paths to accepting states, and most likely not enough training data to elucidate the many other
paths to non-accepting states, leading to the generation of a model that may have high training
data accuracy but low test set accuracy. Secondly, generating balanced training data requires many
labellings by the target system until a sufficient number of the minority labellingsare collected. For
example in order to obtain training data with 100 positively labelled data and 100 negatively labelled
data for Tomita language 1, at leastd 100

0.024e = 4167 labellings of randomly generated sentences
would have to be performed. This is not desirable for the real-world inference of languages or
classifiers for which it is costly, dangerous or slow to perform a target labelling: the two performance
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metrics for grammatical inference are model accuracy, and a minimum of sentence labellings by the
target system.

Here we show that our algorithm outperforms competing methods that assume randomly-generated
training data. For the case of imbalanced DFAs, we attribute this performanceimprovement to the
discovery of sufficient minority class training data to produce accurate models: randomly-generated
training data contains too little minority class training data. We support this claim by showing that
the proposed algorithm performs well over a range of DFAs with differingbalances (percentage
of positive labellings), but that the EDSM method implemented here only performs well on DFAs
within a narrow range of balances.

The fact that our algorithm also outperforms competing algorithms on balanced DFAs suggests
that those DFAs contain state transition pathways that are rarely traversedby randomly-generated
training data, but are better traversed by our proposed algorithm. However as of yet we have no
supporting evidence for this stronger claim.

In the next section we briefly describe grammatical inference, as well as describing our method
for the inference of target DFAs using active training data generation. We also document an evo-
lutionary and a heuristics-based method for performing grammatical inference using pre-selected
training data. In Section 3 we compare results from our algorithm against these algorithms for both
randomly-generated DFAs, and randomly-generated DFAs that have differing balances. In the final
section we provide some discussion and concluding remarks.

2. Methods

In this section we introduce grammatical inference, and outline three methods for approaching the
problem: evidence-driven state merging, evolutionary approaches, and the estimation-exploration
algorithm.

2.1 Grammatical Inference

A deterministic finite automata, or DFA, is a type of finite state automata that can be represented
using the five-tuple(n,Σ,T,s,F) wheren is the number of states,Σ is the alphabet of the encoded
language,T is a transition function,s is the start state, andF is a set of final, or accepting states.
Then, given some sentence made up of a string of symbols taken from the alphabetΣ, and beginning
at the start states, the first symbol is extracted from the sentence, and based on that symbol the
sentence transitions to a new state as indicated byT. A deterministic finite automata follows the
transition dictated by the current sentence symbol, the current state and thestate transition function
T with a probability of 1; probabilistic finite automata (which have not yet been investigated using
our method) include probability distributions that denote the probabilities of transitioning to new
states given the current sentence symbol, the current state and the state transition function.

After a state transition the next symbol is then extracted from the sentence, and based onT the
sentence transitions to a new state. This process is continued until all symbolsin the sentence have
been exhausted. If the last state visited is a member ofF , then the sentence receives a positive
classification (the sentence belongs to the language); otherwise, a negative classification is assigned
(the sentence does not belong to the language).

The quality of a grammatical inference algorithm is viewed as one that can produce someT ′

and F ′ (together referred to as a candidate DFA) that matches the labels of a poolof sentences
that have already been labelled by the target DFA (the training set accuracy). The candidate DFA
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should then produce a high classification accuracy when supplied with a different set of unlabelled
sentences (test set accuracy). More specifically, quality can be measured in five ways: generation of
an accurate model using a small set of training data; probability of learning the target language using
little training data; continued performance for target DFAs with increasingly more states; consistent
performance across DFAs with differing balances; and generation of an accurate DFA in the face of
training set noise.

2.2 Evidence-Driven State Merging Algorithm

A family of algorithms collectively known as evidence-driven state merging algorithms (EDSMs)
(Trakhtenbrot and Barzdin, 1973; Lang et al., 1998; Cicchello and Kremer, 2003) have been pro-
posed that can infer some target DFA in which the number of states is unknown. EDSM algorithms
operate by first generating an augmented prefix tree acceptor (APTA) which by definition perfectly
classifies all sentences in the training set. Subsequent steps then involve merging states such that
the DFA still maintains perfect training set accuracy. It has been shown that state merging tends to
increase the test set accuracy of the reduced DFA. However in the face of incomplete training data,
it is possible that an incorrect merge may occur: a merge that does not affect training set accuracy
but does decrease test set accuracy. All of the work on EDSM algorithms is concerned with how
merges should be performed in order to minimize test set accuracy degradation.

The EDSM method employed in this paper is adopted from (Lucas and Reynolds, 2005), which
in turn modifies the EDSM method proposed by Price (Lang et al., 1998). Thealgorithm works as
follows. Each pair of states in the APTA (or partially folded APTA) are considered for merging. The
score of each merge is calculated by overlapping the roots and subtrees of the selected state pair,
and summing the number of overlapped states that are either both accepting orrejecting states. If
an accepting and rejecting state are found to overlap, that merge is disqualified. The state pair with
the highest score is then selected for merging. In the case of a tie score, the state pair that appears
first in the sequence of upper triangular matrix raster scan order[(0,1),(0,2), . . . ,(1,2),(1,3), . . .] is
selected. The merge is then performed, and the previous steps are repeated until no further merges
can be performed (i.e. all candidate merges are disqualified).

2.3 Evolutionary Approaches to Grammatical Inference

Evolutionary approaches to grammatical inference have also been proposed (Brave, 1996; Luke
et al., 1999; Lucas and Reynolds, 2005). Generally, an evolutionary algorithm comprises a popu-
lation of candidate models of the target DFA that compete against each other,and the fitness of a
particular model is given by the percentage of training data that it can correctly classify. The model
with the highest fitness at the termination of the run is then evaluated against theunlabelled test
data. In this paper we compare our own evolutionary algorithm against the evolutionary method
proposed by Lucas and Reynolds (2005). This approach is described below.

2.3.1 EVOLVING DFAS WITH A FIXED NUMBER OF STATES

Lucas and Reynolds (2005) proposed an evolutionary approach to grammatical inference in which
the number of states in candidate models is fixed at 5n/4, wheren is believed to be the number
of states in the target DFA. On target DFAs withn≤ 16 and a range of training set densities, this
methodology outperforms the EDSM method outlined above (see Section 3).
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1. Characterization of the target system

• Define a representation, variation operators and similarity metric for the space of systems

• Define a representation and variation operators for the space of inputs (tests)

• Define a representation and similarity metric for the space of outputs

2. Initialization

• Create an initial population of candidate models (random, blank, or seeded with prior information)

• Create an initial population of candidate tests (random, or seeded with prior information)

3. Estimation Phase

• Evolve candidate models; encourage diversity

• Fitness of a model is its ability to explain all input-output data in training set

4. Exploration Phase

• Evolve candidate tests (input sets)

• Fitness of a test is the disagreement it causes among good candidate models

• Carry out best test on target system, add input/output data to training set

5. Termination

• Iterate estimation-exploration (steps 3-4) until the population of models converges on a sufficiently accurate solution, or
the target system exhibits some desired behavior.

• If no model is found, the search space may be inappropriate, or the target system may be inconsistent

• If no good test is found, then either:

– all good candidate models are perfect;

– the search method for finding good tests is failing; or

– the target system may be partially unobservable

6. Validation

• Validate best model(s) using unseen inputs

• If validation fails, add new data to training set and resume estimation phase

Table 1: Estimation-Exploration Algorithm Overview

In this method a transition functionT ′ is encoded as aΣ× 5n
4 matrix, and each element inT ′,

t ′i j , lies in the range[0, 5n
4 −1]. Each column ofT ′ corresponds to a particular state: the first column

is regarded as the start state. During parsing, state transition is computed asfollows. Transition to
the state indicated byt ′i j , wherei is the current state, and the current symbol from the input sentence
corresponds to thejth letter in alphabetΣ.

Lucas and Reynolds (2005) realized that it is not necessary to evolveF ′ in addition toT ′, but
rather that it can be constructed indirectly fromT ′ and the training data. For each state inT ′,
compute the ratio of positive and negative training sentences that terminate atthat state: if more
positive sentences terminate there, then consider that state an accepting state; otherwise, consider it
a rejecting state.
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Rather than employing a generational genetic algorithm, this method employs a multi-start hill
climber. A random instance ofT ′ is selected, and then a mutation is introduced: if the mutation
causes a decrease in training set accuracy, revert to the originalT ′. Otherwise, keep the mutation,
and perform another mutation. If 10,000 mutations have been attempted with no improvement,
store the currentT ′ and create a new randomT ′. Continue this process until aT ′ perfectly labels
the training data, or until a total of 1,000,000 mutations have been attempted. Return theT ′ with
the highest training set accuracy.

2.4 The Estimation-Exploration Algorithm

Both the heuristic and evolutionary method described above assume passive inference: a set of
labelled data is presented to the algorithm, and the algorithm produces a candidate model of the
target DFA. We have developed an active learning methodology for inferring DFAs (as well as
other nonlinear target systems) which we refer to as the estimation-exploration algorithm (EEA).
The algorithm is composed of two phases, as are most active learning systems (refer to Baram
et al., 2004, for an overview of active learning): the estimation phase uses i instances of training
data obtained from the target system to construct a set of candidate models; the exploration phase
generates a new sentence (an instance of training data) that causes maximal disagreement among
the candidate models. This new sentence is then supplied to the target system, and the estimation
phase then begins again withi + 1 training data points. The estimation phase in our algorithm
corresponds to the learning algorithmA as described by Baram et al. (2004), and the exploration
phase corresponds to the querying functionQ . The utility of an active learning system corresponds
to how wellA andQ perform together, compared to a control method whereA operates alone on
randomly-generated unlabelled data (refer to Baram et al. (2004) for an overview of active learning).

The estimation-exploration algorithm is essentially aco−evolutionaryprocess comprising two
populations. One population is of candidate models of the target system, where a model’s fitness
is determined by its ability to correctly explain observed data from the target system. The other
population is of candidate unlabelled sentences, each of whose fitness is determined by its ability
to cause disagreement among model classifications (thereby elucidating model uncertainties), or by
exploiting agreement among models to achieve some desired output (thereby capitalizing on model
certainties). The query by committee algorithm (Seung et al., 1992) first proposed that a good test
is one that causes maximal agreement among a set of different candidate learners: however, the
method by which differing yet accurate learners and disagreement-causing tests are generated was
not given. In the estimation-exploration algorithm, evolutionary algorithms areused both to syn-
thesize accurate yet differing models, as well as useful tests. If successful, the two populations
challenge each other and drive an ‘arms-race’ towards inference ofthe model or towards elicit-
ing some desired output from it. In previous papers (Bongard and Lipson, 2004b,a) we outlined a
methodology for applying the estimation-exploration algorithm to other kinds of nonlinear target
systems. The general methodology is given in Table 2.3.1, and the specific application to grammat-
ical inference is given below.

2.4.1 CHARACTERIZATION OF THE TARGET SYSTEM

Like Lucas and Reynolds (2005), we choose to represent the target DFA and candidate models as
2×n integer matrices. For target DFAs with alphabets containing more than two elements, a larger
matrix or a different encoding would be required. For the case of the target DFA, n is known. For
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the work presented here, however, we assume that the learning algorithmdoes not know the number
of states in the target system, but has some idea as to the upper bound. For the random target DFAs
presented in Section 3.1, we compare our results against those of Lucas and Reynolds (2005), in
which the number of states in a candidate model was fixed to be5n

4 : we set the maximum number
of states in a candidate model to be 2n in order to make less assumptions about the size of the target
DFA. The second difference between our method and that of Lucas andReynolds (2005) is that we
exert selection pressure favoring smaller DFAs, in the hope of discovering more general models, as
will be explained in the subsection documenting the estimation phase below.

It is always assumed that the first state is the start state. In addition, the target DFA contains
an additional binary vector of lengthn that indicates whether statei is an accepting or rejecting
state (F). For each candidate DFA modelT ′ we computeF ′ using the method described in Section
2.3.1, as originally proposed by Lucas and Reynolds (2005). Due to the difficulties of devising a
similarity metric between the target DFA and a given candidate model, we have chosen to denote
similarity between a model and target DFA as the test set accuracy of the candidate model. If it were
possible to define a similarity metric between the target and a model DFA, it would be possible to
quantitatively determine how well an inference algorithm was doing by periodically measuring the
similarity of candidate models against a target DFA. This would serve as a validation phase before
using the algorithm in a practical application, where it is assumed there is no measure of target-
model similarity, except for a model’s ability to consistently match the classificationsproduced by
the target.

In the exploration phase, for the grammatical inference problem a training item is considered to
be an unlabelled binary sentences′. Each sentence is represented as a binary vector of lengthsmax,
wheresmax is the maximum sentence length to be found in the training or test set. An additional
integer variablel is selected from[0,smax] with a uniform distribution, and indicates how long the
encoded sentence is. Ifl < smax, then the trailing digits[l , l +1, . . . ,smax] are ignored during the
labelling of the sentence.

2.4.2 INITIALIZATION

The algorithm begins inference by generating an unlabelled sentence at random, which is then
labelled by the target DFA. The training set, consisting of a single labelled sentence, is then provided
to the candidate models in the estimation phase.

During the first pass through the estimation phase, a random population of candidate models is
generated. In order to generate a pool of competing candidate models, thepopulation of models in
the estimation phase is partitioned into two equally-sized, reproductively isolated sub-populations:
no candidate model can place offspring into the other sub-population. When the estimation termi-
nates, the two most fit candidate models from each sub-population are provided to the exploration
phase. This partition has no additional computational costs, as the two populations of models take
the same time to evaluate as a single population with twice as many models.

During subsequent passes through the estimation phase, the two best models from the previ-
ous pass are introduced into their respective sub-populations. The remaining slots are filled with
randomly-generated candidate models.

At the beginning of each pass through the exploration phase, the population is seeded with
random binary sentences.
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2.4.3 ESTIMATION PHASE

It is important to maintain a diverse set of candidate models in the estimation phase, so that dis-
agreement among models can be measured effectively at the exploration phase. Many diversity
maintenance techniques exist, but here we take the simplest approach based on evolving in two,
separate niches. Starting with an initial population ofp candidate models (withp/2 models in
each of the two sub-populations), the population is evaluated, fit models areselected, copied and
mutated, and less fit models are deleted. No recombination operators are employed in the current
implementation. The pass continues for a fixed number of generations (g).

The fitness of a candidate model is given by

fT ′ = 1−
∑i

j=1 |t j −mj |

i
, (1)

wheret j is the labelling provided for thejth sentence by the target DFA, andmj is the labelling
provided for the same sentence by the model DFA. Then a candidate model that obtainsfT ′ = 1
perfectly labels all of thei training sentences seen so far, and models with lower values offT ′

have lower accuracies. Within each sub-population, genomes are then sorted in order of decreasing
fitness, such that the model with the highest fitness is at the top of the list of models within the sub-
population, and the least fit model is at the bottom of the list. If two or more models have the same
fitness, then those models are sorted among themselves based on the number of internal states that
were visited during processing of alli training sentences seen so far, such that the topmost model in
the subset used the least number of states, and the bottommost model used themost.

Once all of the models in both sub-populations have been evaluated, a pair of candidate models
from within the same sub-population are selected. Each genome has an equal probability of being
selected. The lower model in the sorted list is overwritten by a copy of the model higher up in the
list. This ensures that models with higher fitness produce more offspring than models with lower
fitness, and smaller models produce more offspring that models of larger size and equal fitness:
selection pressure favors more accurate and more compact models. If both models have the same
fitness and the same size, then each model in the pair has an equal probabilityof replacing, or being
replaced by the other model. Also, this selection method ensures that the modelwith the best fitness
and least size in each sub-population is never overwritten.

When a model is copied, it undergoes mutation. Mutation involves the selection of a random
valuet ′i j , and the replacement of the value found there by a new integer chosen from [0,2n−1] with
a uniform distribution.

A total of 3p
8 pairs are selected for replacement and mutation in each sub-population at the end of

each generation. Note that a genome may be selected more than once during the same generation,
and that it may produce more offspring, or be overwritten by a more fit or smaller model. Also
note that a mutated offspring may be selected for copying and further mutationduring the same
generation.

2.4.4 EXPLORATION PHASE

The exploration phase maintains a population of the same size as that of the estimation phase (p),
and evolves candidate sentences for the same number of generations (g). At the end of each genera-
tion, 3p

4 pairs of sentences are selected, copied and mutated as described in the previous section: the
sentence with higher fitness is copied over the sentence with lower fitness, and the copied sentence
is then mutated.

1659



BONGARD AND L IPSON

The fitness for a given sentence is set to the amount of disagreement thatthat sentence causes
when labelled by a pool ofk candidate models:

fs′ = 1−2|0.5−
∑k

j=1c j

k
|, (2)

wherec j is the classification of the candidate sentence by modelj. Sentences that do not differ-
entiate between the candidate models—all models produce the same classification—obtain fs′ = 0
(poorest quality); sentences that produce the maximum classification variance obtainfs′ = 1 (best
quality). This fitness function relies on the fact that the most agreement is equivalent to half of the
models returning a negative classification, and the other half returning a positive classification. For
target DFAs that do not produce binary classifications, this function would have to be generalized.

When a sentence is evolved that induces high classification variance, andthat sentence is clas-
sified by the target DFA, then the resulting classification will usually lend support to k/2 candidate
models during the next pass through the estimation phase, and provide evidence against the re-
maining half. It is important to note that for the experiments reported here,fs′ can only assume
two values: 0 or 1, hence there is no gradient within the search space. This is the simplest im-
plementation of the algorithm. We expect that increasing the number of sub-populations or using
other diversity maintenance techniques such as deterministic crowding (Mahfoud, 1995) would im-
prove these results by inducing a gradient in the search space. Future work is planned to assess the
performance benefit of population diversity.

Mutation is executed slightly differently from the estimation phase: with an equalprobability,
either the sentence or the length parameterl are selected for mutation. If the sentence is selected, a
random bit is chosen and flipped; ifl is chosen,l is reset to a random value in[0,smax]. In this way
the algorithm can modify both the content and length of a candidate string.

2.4.5 TERMINATION

A typical run would terminate when the population of models converges. In theexperiments re-
ported here, however, the number of iterations was set to use exactly the same number of sentence
labellings as the benchmark algorithms we compare it to require. The algorithm iteratest times,
wheret is the number of sentences in the training set used by the competing algorithm. Thisresults
in the labelling oft sentences by the target DFA,t passes through the estimation phase, andt −1
passes through the exploration phase (the first sentence proposed for labelling is a random sentence).
After the tth pass through the estimation phase, the most fit model from the first sub-population is
output for validation purposes.

2.4.6 VALIDATION

Validation involves computing the accuracy of the best candidate model on a previously unseen set
of test sentences.

3. Results

The estimation-exploration algorithm was compared against two sets of targetDFAs: DFAs gener-
ated randomly in accordance with the method described in (Lang et al., 1998)for generating DFAs
with differing sizes; and DFAs generated using a more generalized method that creates DFAs of
differing sizes and balances.
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3.1 Random DFAs

Sets of target DFAs of increasing size were generated for comparison between the EDSM method
described in Section 2.2 (indicated as ‘EDSM’ in Figure 2), the evolutionarymethod proposed by
Lucas and Reynolds (2005) (indicated as ‘Lucas’ in Figure 2), the estimation-exploration algorithm
with the exploration phase disabled (random sentences are proposed to the target DFA and indicated
as ‘Passive EEA’ in ensuing figures), and the estimation-exploration algorithm (indicated as ‘Active
EEA’ in ensuing figures). Although the passive variant of the EEA proposes sentences to the tar-
get DFA for labeling, it is considered passive because it does not actively construct training data;
rather, it outputs random training data. This stresses the importance of actively seeking informative
sentences for target labeling.

As prescribed by the generative method introduced by Lang et al. (1998), the target DFAs were
generated by creating random digraphs with 5n/4, wheren is the desired number of active states:
an active state is one that is visited by at least one test or training sentence during labelling. Graphs
are continually generated until one is produced which has a depth of exactly 2log2n−2, where the
depth of a DFA is determined to be the maximum over all states of the length of the shortest string
which leads to that state:

d = max(x| 5n
4 )min(y|strings leading to statex)length(y). (3)

Once a target DFA is generated, each state is labelled as either accepting or rejecting with equal
probability.

The total number of binary strings available for labelling is given as

Stotal =
b(2log2n)+3c

∑
i=0

2i , (4)

in accordance with the Abbadingo method (Lang et al., 1998) for generating random DFAs, where
b(2log2n)+3c is the maximum possible string length. This approach ensures that all binary strings
from the null string to lengthb(2log2n)+3c can be found in either the training or test set.

Strings selected for membership in the training set for the passive methods outlined in Sections
2.2 and 2.3.1 were selected at random (with a uniform distribution) from among this set of possible
strings. Given a desired training set densityd, the number of strings chosen for the training set can
then be computed ast = bdStotalc.

In order to fairly compare our active learning method against passive methods, we have elected
to equalize the number of labellings performed by the target DFA (i.e. the number of training
sentences that are labelled), and the number of labellings performed by candidate models during
inference. Because EDSM methods do not maintain a population of candidatemodels but rather it-
eratively compress a single one, in order to compare our method against theEDSM method outlined
here we equalize the amount of labelled data that both algorithms have accessto.

In Lucas and Reynolds (2005), the total number of candidate model labellings m is equal to
the number of training sentences times the number of mutations considered during hill climbing:
m = bdStotalc × 106 = t × 106, whered is training set density andt is the number of training
sentences. In the estimation-exploration algorithm a total of

pgk(t −1)+ pg
t

∑
i=1

i
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labellings are performed, wherep is the population size andg is the number of generations for
both phases, and thuspg indicates the total number of either sentences or models that are evaluated
during a single pass through either phase.k indicates the number of candidate models output by
the estimation phase,3 so pgk(t −1) indicates how many labellings are performed during thet −1
passes through the exploration phase. The second term indicates how many labellings are performed
during thet passes through the estimation phase: during the first pass there is only onelabelling per
candidate model; during the second pass there are two labellings per model; and so on.

We can ensure that our method performs the same or fewer model labellings as Lucas’ method
by arbitrarily settingp = g, and solving forp as follows:

pgk(t −1)+ pg
t

∑
i=1

i = m (5)

p2(2(t −1)+
t

∑
i=1

i) = t ×106 (6)

p,g = b

√

t ×106

(2(t −1)+∑t
i=1 i)

c (7)

Note thatk= 2 here because we partition the estimation phase populations into two sub-populations.

3.1.1 THE EFFECT OFCOMPRESSIONPRESSURE ONINFERENCE

One advantage of the EEA over the EDSM methods is that it allows for both compression and
expansion of models: EDSM methods only allow for compression at each step, and do not allow
re-expansion. The advantage of this is illustrated in Figure 1, which reports the application of the
EEA to a randomly-generated DFA withn = 8 states. Two other variants were also applied to
the same DFA. The passive variant disables the exploration phase of the algorithm, so that at each
cycle through the algorithm, a random sentence is output to the target DFA for labelling. The third
variant is identical to the active variant, except for two modifications. First,the fitness function
that favors smaller DFAs is disabled: when two candidate models are selectedand both achieve the
same training set accuracy, the first model is copied over the second modelwith a probability of
0.5, regardless of whether the second model is smaller than the first. Second, the maximum number
of states that any candidate model can encode in this variant was increased from 2n = 16 to 80.
At the end of each pass through the estimation phase for each variant, the test set accuracy of the
best candidate model output by the first sub-population is computed. Only the first 100 iterations
through each variant are shown.

As can be seen in Figure 1a, the active variant outputs a model consistentwith all training and
test data after the 93rd pass through the estimation phase. The other two variants never produce
a perfectly consistent model. Figure 1b indicates that the size-insensitive variant tends to output
increasingly large DFAs that obtain better training set accuracy (data notshown), but there is no
marked improvement in test set accuracy. Thus the added fitness component that favors smaller
DFAs does confer some performance benefit by indirectly selecting for DFAs that can generalize
beyond the training set better. Second, it is noted that the size of the best candidate model increases
and decreases over the inference process in the active variant of theEEA. It has been found that
models that solve all training data so far are gradually replaced by equally-fit but smaller models,

3. In the work reported here two models are output: the best model fromeach of the two sub-populations.
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Figure 1: Performance and Size of Candidate Models. a:The test set accuracies of the best
models output by each pass through the estimation phase.b: The total number of states
used by each model when labelling the test sentences.

and new training data injected during the inference process causes older, smaller models to fail, only
to be replaced with more accurate, larger models. This compression and expansion is a dynamic
process that occurs as new training data is collected. Once a model consistent with all training data
is obtained by the active EEA, subsequent passes through the estimation phase cause a compression
of the candidate model (as long as the model is also consistent with the new training data): the
model withn = 10 is reduced ton = 9 during the 99th pass through the estimation phase for the
active EEA variant.

This example illustrates that evolutionary techniques are conducive to dynamic modelling in
machine learning, at least in the specific case of grammatical inference, asthey allow for dynamic
restructuring of both the size of the model (the number of states) and its structure (the connections
between states and whether a state is accepting or rejecting) as new training data is collected using
active learning.

3.1.2 COMPARATIVE PERFORMANCEAMONG INFERENCEALGORITHMS

Each of four algorithms—EDSM, Lucas’ method, and the active and passive variants of the EEA—
were run against 3720 target DFAs: 1200 withn = 4, 1200 withn = 8, 1200 withn = 16, and
120 withn = 32 states. For the three smaller DFA classes, each algorithm was applied 100times
for each of 12 training set densities against a different DFA. For the largen = 32 DFA class, each
algorithm was applied 10 times for each of 12 training set densities to a different DFA due to slower
run times on these large DFAs.

The total number of training sentences available for inference for each DFA size and training
set density is shown in Table 3.1.2. Table 3.1.2 reports the number of model labellings performed
for each run of Lucas’ algorithm (left-hand figures) and the EEA (parenthesized figures).

Figure 2 reports the average performance of all four algorithms againstthe four DFAs and 12
training set densities. Performance is considered to be the test set accuracy of the best DFA output
by each algorithm. The test set is comprised of all of the binary sentences that were not selected
as training data. In the case of the estimation-exploration algorithm, which outputs two candidate
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d \ n 4 8 16 32
0.01 2 10 40 163
0.02 5 20 81 327
0.03 7 30 122 491
0.04 10 40 163 655
0.05 12 51 204 819
0.06 15 61 245 982
0.07 17 71 286 1146
0.08 20 81 327 1310
0.09 22 91 368 1474
0.10 25 102 409 1638
0.15 38 153 614 2457
0.2 50 204 818 3276

Table 2: Total Numbers of Target Labellings

d \ n 4 8 16 32
0.01 0.002 (0.002) 0.010 (0.010) 0.040 (0.040) 0.163 (0.162)
0.02 0.005 (0.005) 0.020 (0.019) 0.081 (0.080) 0.327 (0.321)
0.03 0.007 (0.007) 0.030 (0.029) 0.122 (0.121) 0.491 (0.483)
0.04 0.010 (0.010) 0.040 (0.040) 0.163 (0.162) 0.655 (0.653)
0.05 0.012 (0.012) 0.051 (0.050) 0.204 (0.200) 0.819 (0.810)
0.06 0.015 (0.015) 0.061 (0.060) 0.245 (0.242) 0.982 (0.981)
0.07 0.017 (0.017) 0.071 (0.070) 0.286 (0.279) 1.146 (1.108)
0.08 0.020 (0.019) 0.081 (0.080) 0.327 (0.321) 1.310 (1.243)
0.09 0.022 (0.022) 0.091 (0.090) 0.368 (0.365) 1.474 (1.412)
0.10 0.025 (0.024) 0.102 (0.100) 0.409 (0.403) 1.638 (1.555)
0.15 0.038 (0.037) 0.153 (0.151) 0.614 (0.595) 2.457 (2.371)
0.2 0.050 (0.049) 0.204 (0.200) 0.818 (0.808) 3.276 (3.095)

Table 3: Total Numbers of Model Labellings(×109)

models after the last pass through the estimation phase and then terminates, the best model is taken
to be the model from the first sub-population. Figure 3 reports the percentage of runs of both the
passive and active EEA variants that produced a model that correctly classifies all training and test
data. The percentage of runs that produced such models for the various methods described in Lucas
and Reynolds (2005) was not reported.

3.2 Unbalanced DFAs

As can be seen in Figure 2, the EDSM method only begins to compete with the active EEA for DFAs
with n= 32 states. This seems to suggest that the EDSM methods scale better than the evolutionary
method proposed here. However an alternate explanation of this observation is that the EDSM
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Figure 2: Comparative Performance against Random DFAs.The target DFAs are grouped ac-
cording to size (a: n = 4, b: n = 8, c: n = 16, andd: n = 32) and training set density.
Error bars indicate standard error computed over 100 runs for each algorithm for the first
three DFA sizes (a-c), and over 10 runs for target DFAs withn = 32 (d).
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Figure 3: Probability of Perfectly Consistent Model Discovery for the Random DFAs. The
target DFAs are grouped according to size (a: n = 4, b: n = 8, c: n = 16, andd: n = 32)
and training set density. Data points indicate the percentage of runs that produced a model
that achieves 100% test set accuracy.
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Figure 4: a: Balance Distribution for the Random DFAs. The 4 sets of 1200 random DFAs re-
ported in Section 3.1 were grouped according to their size and balance. Balances were
calculated using all random strings of length 0 tob(2log2n)+3c. Each bar indicates the
fraction of DFAs that fall within that particular range of balances. The upper row of panel
b shows the distribution of balances for the same set of DFAs. Balances were calculated
only using the strings output by the passive variant of the estimation-exploration algo-
rithm applied to that DFA. The bottom row reports the balance distributions of the same
DFAs using the active variant of the algorithm.

method works increasingly well on the large instances of the class of random DFAs produced by
the generative method proposed by (Lang et al., 1998) and described inSection 3.1.

Figure 4a reports the balance distributions of the four DFA sizes producedby this generative
method. As the figure indicates, DFAs withn = 4 states tend to exhibit a uniform distribution of
balances, but as the DFAs increase in size the distribution clusters more closely around balanced
DFAs that produce a more or less equal distribution of positive and negative labellings. For the
largest class of DFAs (n= 32), the majority of DFAs have a balance within 0.4 and 0.6; the minority
of DFAs produce less than 40% labellings of their minority classification.

This agrees with the original stated purpose of this generative approach, which was to produce
random, balanced DFAs. However, this raises the possibility that methods developed to infer the
DFAs produced by this method may not perform well on other kinds of DFAs, such as unbalanced
DFAs. In order to test this, we generalized the generative method to produce DFAs of a desired size
and balance. We then generated a number of DFAs of differing sizes andbalances, and compared
our algorithm against the EDSM algorithm described in Section 2.2. The new generalized method
is as follows:

1667



BONGARD AND L IPSON

1. Select the desired number of states,n, and the desired balanceb. The balance must be a real
number in[0,1].

2. Create all random binary strings from length 0 tob(2log2n)+3c.

3. Create a random digraph with 5n/4 nodes.

4. While the depth of the graph is not 2log2n−2, go to step 3.

5. For each state, label it as accepting with probabilityb; otherwise, label it rejecting.

6. Pass each random string through the DFA, and compute the fraction of positive labellings. If the
fraction of positive labellings is not in[b− ε,b+ ε], go to step 5.ε is taken to be some small
tolerance; in the results reported below,ε is set to 0.01.

This method will produce DFAs with size centered aroundn states, and with a balance in[b−
ε,b+ ε].

Using this method, a total of 15 DFAs were created: 5 withn = 8 states, 5 withn = 16 states,
and 5 withn = 32 states. Within each size class, five DFAs were created with balances of 0.1, 0.2,
0.3, 0.4 and 0.5. For each DFA, the EDSM and the active variant of the EEA were applied30 times
using 12 different training set densities. The EDSM and EEA were instantiated using the same
parameters described in the previous section.

Due to speed limitations, the EEA was not applied to then = 32 DFAs using training set densi-
ties above 0.06. The mean test set accuracies of the EDSM and EEA methods are reported for the
n = 8 DFAs in Figure 5, for then = 16 DFAs in Figure 6, and for then = 32 DFAs in Figure 7.
The improvement factor for each DFA and corresponding training set density was calculated using
mEEA/mEDSM, wheremEEA is the mean test set accuracy of the EEA for that DFA and that training set
density, andmEDSM is the mean accuracy for the same DFA and same training set density.

4. Discussion

Several trends can be noted in the mean performances of the algorithms reported in Figure 2. First,
the evolutionary approach of Lucas and Reynolds (2005) tends to outperform the EDSM variant
for smaller target DFAS (n < 32), but the EDSM far outperforms Lucas’ algorithm for larger target
DFAs (n = 32). Second, the active EEA variant outperforms all three other algorithms for the
smallest size of target DFA (n = 4); is competitive with Lucas’ algorithm for DFAs withn = 8 and
n = 16; and is competitive with EDSM on the largest target DFAs (n = 32).

Third, the passive EEA variant performs poorly against the other threealgorithms on all larger
DFAS (n> 4). Because the passive variant performs the same or less model evaluations than Lucas’
algorithm, and it randomly selects the same number of training sentences, we can conclude that
our particular method of evolutionary search is inferior to that proposed by Lucas and Reynolds
(2005). It seems plausible that replacing the evolutionary search that occurs within the EEA with
a more powerful search technique—whether another evolutionary method, or a heuristic variant
such as EDSM—may allow the proposed algorithm to outperform the passiveforms of grammatical
inference reviewed here.

The reason that the EDSM begins to compete with the EEA on the largen = 32 DFAs is made
clear in Figure 7. The EDSM only performs well on DFAs centered atb = 0.4 (indicated by the
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Figure 5: Performance of the EEA against EDSM on DFAs withn = 8 states and differing
balances. a:Mean accuracies of the EDSM for differing balances and training set densi-
ties. b: Mean accuracies of the EEA for differing balances and training set densities. c:
Improvement factors of the EEA over the EDSM for differing balances and training set
densities.
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Figure 6: Performance of the EEA against EDSM on DFAs withn = 16 states and differing
balances. a:Mean accuracies of the EDSM for differing balances and training set densi-
ties. b: Mean accuracies of the EEA for differing balances and training set densities. c:
Improvement factors of the EEA over the EDSM for differing balances and training set
densities.

1670



ACTIVE COEVOLUTIONARY LEARNING OF DETERMINISTIC FINITE AUTOMATA

a
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2

0.5

0.6

0.7

0.8

0.9

1

Training Set Density

T
es

t S
et

 A
cc

ur
ac

y

b
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2

0.5

0.6

0.7

0.8

0.9

1

Training Set Density

T
es

t S
et

 A
cc

ur
ac

y

c
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Training Set Density

Im
pr

ov
em

en
t F

ac
to

r

Balance=0.1
0.2
0.3
0.4
0.5

Figure 7: Performance of the EEA against EDSM on DFAs withn = 32 states and differing
balances. a:Mean accuracies of the EDSM for differing balances and training set densi-
ties. b: Mean accuracies of the EEA for differing balances and training set densities. c:
Improvement factors of the EEA over the EDSM for differing balances and training set
densities.
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balance= 0.4 bins in Figure 7a), and only slightly worse on DFAs with balances centeredatb= 0.5
(indicated by the balance= 0.5 bins) for the intermediate training set densities. For low training
set densities it does poorly on the DFAs of all balances, and the highest training set density it does
well on DFAs of all balances. Finally, on the unbalanced DFAs centered around 0.1 and 0.2, it only
begins to infer accurate models when supplied with training set densities of 0.15 and 0.2.

As Figure 4a illustrates, the generative method proposed by Lang et al. (1998) mostly produces
random DFAs with balances in[0.4,0.6], which corresponds to the range of DFA balances for which
the EDSM is well-suited. In contrast, as the EEA begins to perform successfully on the DFAs when
allowed to generate sufficient training data, it begins to perform successfully on all of the DFAs,
regardless of balance. As can be seen in Figure 7b, the standard deviations of the test set accuracies
mostly overlap within each training set density class for the EEA, while the deviations of accuracies
for the EDSM in Figure 7b do not overlap in many cases. This difference ishighlighted by Figure
7c, which shows that for training set densities above 0.04, the EEA performs significantly better than
the EDSM for all DFA balances except 0.4. From this it can be concluded that at least this EDSM
variant performs well on just those DFAs with balances equal to those produced by the generative
method proposed by Lang et al. (1998).

The balance specificity of the EDSM method is also clear in Figure 6a: EDSM does well for
DFAs with balances of 0.3 and higher, but requires high training set densities to perform well on
the DFAs with balances below 0.3. Alternatively, the EEA begins to perform better on all DFA
balances as training set density increases (Figure 6b). Again this difference is highlighted by Figure
6c, which shows that for training set densities above 0.08, there is a significant performance increase
of the EEA over the EDSM for the two imbalanced DFAs withb = 0.1 andb = 0.2.

In Figure 5, the balance specificity of the EDSM is less apparent. However, Figure 5c indicates
that for DFAs withb= 0.1, the EEA achieves an increasing performance benefit over the EDSM for
increasing training set densities (indicated by the increasing slope of the linewith darkened circle
markers). For instance, the EDSM only achieves a mean test set accuracy of 62% for the DFA with
n = 8 andb = 0.1 using 0.2 training set density, while the EEA achieves a mean accuracy of 93%
for the same DFA and the same amount of training data.

The reason why the active EEA infers imbalanced DFAs better than the EDSMis made clear
by Figure 4b. For DFAs withn = 32 states, it can be seen that the active EEA generates training
strings that achieve a more balanced labelling (lower righthand panel) than the passive EEA variant
which outputs random strings for labelling (middle righthand panel). This is explained as follows.
At the outset of inference using the active EEA, training strings are generated at random, because
sufficiently accurate models do not yet exist. As inference proceeds, afew training strings are output
to the target system that obtain a minority labelling. This allows for an increase inthe accuracy of
the set of candidate models in the estimation phase. Henceforth, training sets are evolved that cause
disagreement among the models. This indicates that training strings with high fitness at least elicit
a minority labelling from some of the candidate models, and since the models are now somewhat
accurate, this increases the probability of obtaining a new minority labelling from the target system.
As inference proceeds, minority labellings are extracted with increasing probability, allowing for
the better inference of imbalanced DFAs.

This advantage of active training data generation, compared to passive training data collection,
is also supported by the results reported in Figure 3. Clearly, the active EEA discovers models
consistent with all training and test data more often than the passive EEA.
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These results highlight the need to broaden the class of DFAs that are considered in grammatical
inference. Furthermore, an inference algorithm should be judged not just on how well it infers a
DFA of a given size and given training data, but how well an algorithm does on DFAs of differing
sizes and balances. This requires rethinking how grammatical inference algorithms are compared:
rather than simply providing them with training data already collected from a DFA, the algorithms
should be free to request training data labelling, as is done in the active learning community (Baram
et al., 2004).

4.1 Intelligent Testing

The results reported here support the claim that useful experiments (in the domain of grammatical
inference, binary sentences) are those that elicit informative responses from the target system. What
qualifies as ‘informative’, however, will vary across problem domains.Here we have stressed that
one informative type of test are training data belonging to the minority class of an imbalanced DFA:
automatically and actively generating such informative tests helps the algorithmto outperform other
methods that rely on passively generated random training data.

It is important to note that there is no explicit reward in the exploration phase for such sentences.
Rather, the ability to cause disagreement between alternative, approximate models means thatk/2 of
the models will yield the minority label for such a sample, and because these models are somewhat
accurate (but not yet perfect), there is an increased probability that that sentence will actually elicit
the minority label from the target DFA. This is a useful trait to have in an inference method, because
what qualifies as an informative is domain dependent. For example in the domainof classification,
training data that lie near the intersection of the decision boundaries of candidate classifiers would
be more informative than data that lies on the same side of the decision boundaries.

There may be other kinds of informative sentences in grammatical inferencethat are unknow-
ingly being favored by the active EEA variant. For example it seems plausiblethat for many DFAs,
longer sentences are more informative than shorter sentences. It is clear that states closer4 to the
start state in the transition functionT will be visited more often than distant states, and longer sen-
tences have a higher probability of reaching these distant states than shorter sentences do. Also,
because longer sentences traverse more state transitions than shorter sentences and therefore have
a better chance of uncovering differing transitions among candidate models, we predict that longer
strings would tend to produce more disagreement among candidate models thanshorter sentences
can. So, we predict that the active EEA variant will propose, on average, longer training sentences
than a passive algorithm will. Whether longer sentences truly are more informative than shorter
ones, and whether longer sentences are actually favored by the activeEEA variant has not yet been
verified.

Cast in another light, informative tests tend to expose the unobservable parts of the target sys-
tem, thus accelerating the inference process. In grammatical inference, unbalanced DFAs are less
observable than balanced DFAs: there are either less states that produce the minority labelling than
states that produce the majority labelling, or minority labelling states are more distant from the start
state than majority labelling states. It follows then that passive grammatical inference approaches
are inappropriate in these cases, for one of two reasons: either a balanced training set is assumed,
in which case the minority class is grossly over-represented in the training data; or random training

4. Here, we assume that distance between states—more specifically, the distance between the start state and a given
state—is viewed as the number of paths that exist between those states, andthe mean length of those paths.
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data is assumed, in which case the minority class is grossly under-represented. An active approach
to grammatical inference, like the estimation-exploration algorithm, actively generates a training set
that falls between these two extremes, and accelerates inference.

It also seems clear that most real-world systems will be unbalanced: they willnot produce
equal numbers of all label types for a randomly generated set of sample data. Also, acquiring a
balanced training set will require a large number of target labellings in order to obtain enough of
the minority labellings. As stated previously, the estimation-exploration algorithm isdesigned for
inference using as few target trials as possible, because real world systems may be costly, dangerous
or slow to query.

Furthermore, our method may be useful for indicating what kinds of trainingdata is most useful
for the inference of particular kinds of languages, by simply observing what kinds of sentences are
generated by our method. However, this line of investigation has not yet been pursued.

4.2 Time Complexity

The running time of the estimation-exploration algorithm is proportional to the totalnumber of
labellings (trials) performed by the target DFA (t):

T(t) = gp
t

∑
i=1

i +gt p2 (8)

= O(t2), (9)

where p andg are the population size and number of generations used by the genetic algorithm
during each pass through either phases, respectively. The first termaccounts for the running time
of the estimation phase, which evolves models against all labellings seen so far. The second term
accounts for the running time of the exploration phase, which evolves candidate trials and evaluates
each one against each individual in the population of models, to estimate overall disagreement.

However, in the implementation of the EEA described here, a trial is not evaluated against all
of the candidate models; a trial is only evaluated against the two best models from each of the two
model sub-populations. This reduces overall running time but does not affect the time complexity
of the algorithm:

T(t) = gp
t

∑
i=1

i +2gt p (10)

= O(t2). (11)

Therefore, the algorithm running time increases polynomially with the total number of training
strings presented to the target DFA.

However, the completion of the algorithm does not guarantee the output of amodel that can
correctly classify all training and test strings. Due to the complexity of the learning algorithm
and its stochastic nature, we have not yet characterized the time complexity required to guarantee
the output of such a consistent model. However, Figure 3 provides empirical evidence that for
the random DFAs generated using the method proposed by Lang et al. (1998), a model DFA that
correctly classifies all binary strings with lengths of 0 tob(2log2n) + 3c can be found using the
proposed algorithm. More specifically, for the active EEA, a model consistent with all training and
test strings was found in at least 1 of the 100 runs for all training set densities for then = 4 target
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DFAs (Figure 3a); for all training set densities of 0.04 or higher for then = 8 target DFAs (Figure
3b); for all training set densities of 0.05 or higher for then = 16 target DFAs (Figure 3c); and for
all training set densities of 0.07 or higher for then = 32 target DFAs (Figure 3d). This translates
to the ability of the algorithm to find perfectly consistent models when it is allowed topropose at
least 2 binary strings for labelling by an= 4 target DFA; at least 40 binary strings for labelling by a
n = 8 target DFA; at least 204 binary strings for labelling by an = 16 target DFA; and at least 1146
binary strings for labelling by an = 32 target DFA (data taken from Table 3.1.2). This indicates
that the ability of the active EEA to produce a model consistent with all training and test data scales
polynomially with the amount of training data. However, as reported in Section 3.2, the balance
of a DFA also has an effect on inference ability for both EDSM and EEA methods. Formulating
time complexities for both methods as a function of both DFA size and balance as well as allowed
number of target labellings requires further investigation.

5. Summary and Conclusions

Here we have introduced a co-evolutionary approach to grammatical inference that differs from
both passive and active learning methods in that training data is not assumedto be provided by an
external agent (either all at once or iteratively), but is generated internally by the algorithm itself:
one component of the algorithm evolves a pool of candidate models, and the second component
evolves a new training sentence that causes maximal disagreement among them. The sample that
causes the most disagreement is then sent to the target language for labelling. We refer to this
method as the estimation-exploration algorithm, or EEA. We have previously used this method to
infer other kinds of tightly coupled, nonlinear target systems (see Bongard and Lipson, 2005, for an
overview).

It has been shown here that the EEA outperforms another evolutionary approach to random
DFA inference. Furthermore, the EEA outperforms the more powerful ofthe heuristic approaches
(EDSM) on small random DFAs, and is competitive with EDSM on larger random DFAs.

The reason why the EDSM methods seem to perform better as the target DFAs increase in size
was investigated. It was found that the EDSM method investigated here doesnot improve in ability
as DFAs increase in size, but rather performs well on DFAs with specific balances (percentages of
positive labellings), and that the generative method introduced by Lang etal. (1998) produces large
DFAs with just these balances. It was shown that the EEA performs better on DFAs with differing
balances by actively extracting minority labellings from the target DFA.

In order to better gauge the inference ability of grammatical inference methods, we introduce
a more general method for generating DFAs with specific sizes and balances. In future, methods
should be shown to work well not only on large DFAs with limited training data, but also consis-
tently on DFAs of the same size but differing balances.

Our algorithm also allows for continual expansion and compression of candidate models over
time, in response to new training data: expansion allows for the accommodation of new training
data, and compression usually leads to greater test set accuracy. The current EDSM methods only
allow for state compression, raising the possibility of inaccurate generalization. Another benefit
of the EEA is that the internal search mechanism could be replaced with a morepowerful search
method: our algorithm functions independently of the search method used for inferring models and
generating informative tests. It may be that replacing the current, basic evolutionary method with a
more powerful stochastic search method (or even a deterministic one such as an EDSM variant) may
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improve our method further. At the moment an upper bound is currently assumed on the number
of states in a candidate model, but again, the current model search mechanism in EEA could be
replaced by one that does not assume an upper bound, as was done in Luke et al. (1999).

In many approaches to grammatical inference, either a balanced training set is assumed, or
random training data is generated. This can be wasteful when inferenceshould be performed with as
few labellings by the target language as possible, because either too little or too much of the minority
training class is passively collected, or many labellings have to be performedin order to collect
enough of the minority class training data for a balanced set. This is of practical importance because
for many real-world languages or classifiers, collection of training data can be costly, dangerous or
slow. In the EEA, only training sentences that cause maximal disagreement among the current set of
candidate models are sent to the target DFA for labelling, and here we haveshown that this process
builds an informative training set: the set contains sufficient minority class training data to produce
accurate models.

In future work we intend to apply our algorithm to probabilistic finite automata—automata
that output probabilities as to which class(es) a sequence may belong, rather than absolute class
assignments—as well as noisy sample data: evolutionary methods have previously proven to be
well suited to dealing with probabilistic and noisy systems. One possible approach would be to
evolve test sequences that cause the candidate models to disagree most in the class probabilities
they predict the target system will output for that sequence. We also intend to apply our method
to larger languages (n >> 32) in order to provide evidence that our approach could be useful in
real-world situations.

In closing we suggest that the grammatical inference community consider broadening the suite
of target systems and target system generation methods in order to avoid biasing the development
of new inference methods that only perform well on the target systems produced by a particular
generative method.
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Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfor-
tunately exact Bayesian inference is analytically intractable and various approximation techniques
have been proposed. In this work we review and compare Laplace’s method and Expectation Prop-
agation for approximate Bayesian inference in the binary Gaussian process classification model.
We present a comprehensive comparison of the approximations, their predictive performance and
marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and
corroborate empirically the advantages of Expectation Propagation compared to Laplace’s method.

Keywords: Gaussian process priors, probabilistic classification, Laplace’s approximation, expec-
tation propagation, marginal likelihood, evidence, MCMC

1. Introduction

In recent years models based on Gaussian process (GP) priors haveattracted much attention in the
machine learning community. Whereas inference in the GP regression model with Gaussian noise
can be done analytically, probabilistic classification using GPs is analytically intractable, see Ras-
mussen and Williams (2006) for a general overview. Several approaches to approximate Bayesian
inference have been suggested, including Laplace’s method, Expectation Propagation (EP), varia-
tional approximations and Markov chain Monte Carlo (MCMC) sampling, some of these in con-
junction with generalisation bounds, online learning schemes and sparse approximations (e.g. Neal,
1998; Williams and Barber, 1998; Gibbs and MacKay, 2000; Opper and Winther, 2000; Csató and
Opper, 2002; Seeger, 2002; Lawrence et al., 2003).

Despite the abundance of recent work on probabilistic GP classifiers, most experimental studies
provide only anecdotal evidence, and no clear picture has yet emerged, as to when and why which
algorithm should be preferred. Thus, from a practitioners point of viewit is unclear what the method
of choice is for probabilistic GP classification. In this work, we set out to understand and compare
two of the most wide-spread approximations: Laplace’s method and Expectation Propagation (EP).
We also compare to a sophisticated, but computationally demanding MCMC scheme, which be-
comes exact in the limit of long running times. We do not address issues of sparsification but stick
to comparing the two types of approximation.

We examine two aspects of the approximation schemes: Firstly the accuracy ofapproximations
to the marginal likelihood which is of central importance for model selection andmodel comparison.

c©2005 Malte Kuss and Carl Edward Rasmussen.



KUSS AND RASMUSSEN

In any practical application of GPs in classification (usually multiple) parameters of the covariance
function (hyper-parameters) have to be handled. Bayesian model selection provides a consistent
framework for setting such parameters. Therefore, it is essential to evaluate the accuracy of the
marginal likelihood approximations as a function of the hyper-parameters, inorder to assess the
practical usefulness of the approach. The related question of whetherthe marginal likelihood cor-
relates well with the generalisation performance cannot be answered in general but depends on the
appropriateness of the model for a given data set. However, we do assess this empirically for two
data sets.

Secondly, we need to assess the quality of the approximate probabilistic predictions. In the
past, the probabilistic nature of the GP predictions has not received much attention, the focus being
mostly on classification errorrates. This unfortunate state of affairs is caused primarily by typical
benchmarking problems being considered outside of a realistic context. Theability of a classifier
to produce class probabilities or confidences, have obvious relevancein most areas of application,
e.g. medical diagnosis and ROC analysis. We evaluate the predictive distributions of the approxi-
mate methods, and compare to the MCMC gold standard.

2. The Gaussian Process Model for Binary Classification

In this section we describe the Gaussian process model for binary classification (GPC). Lety ∈
{−1,1} denote the class label corresponding to an inputx. The GPC model is discriminative in the
sense that it modelsp(y|x) which for fixedx is a Bernoulli distribution. The probability of success
p(y=1|x) is related to an unconstrained latent functionf (x) which is mapped to the unit interval
by a sigmoidal transformation, e.g. thelogit or theprobit. Both mappings are relatively similar
around zero but show different tail behaviour. We will not examine the difference in this study.
For reasons of analytic convenience (for the EP algorithm) we exclusively use the probit model
p(y= 1|x) = Φ( f (x)), whereΦ denotes the cumulative density function of the standard normal
distribution.

In the GPC model Bayesian inference is performed about the latent function f in the light of
observed dataD = {(yi ,xi)|i =1, . . . ,m}. Let fi = f (xi) andf = [ f1, . . . , fm]> be shorthand for the
values of the latent function andy = [y1, . . . ,ym]> andX = [x1, . . . ,xm]> collect the class labels and
inputs respectively.

Given the latent function, the class labels are independent Bernoulli variables, so the joint like-
lihood factorises:

p(y|f) =
m

∏
i=1

p(yi | fi) (1)

and depends onf only through its value at the corresponding observed inputs. For the probit model
the individual likelihood terms becomep(yi | fi) = Φ(yi fi), due to the symmetry ofΦ.

As prior over functionsf we use a zero-mean Gaussian process (GP) prior (O’Hagan, 1978).
A GP is a stochastic process where each inputx has an associated random variablef (x). The
joint distribution of function values corresponding to any set of inputsX is multivariate Gaussian
p(f|X,θ) = N (f|0,K). The covariance matrix is defined element-wise,K i j = k(xi ,x j ,θ) wherek
is a positive definite covariance function parameterised byθ. Note that by choosing a covariance
function we introducehyper-parametersθ to the prior. The zero-mean GP prior encodes thata
priori p(y=1|x) = 1/2 and certain further beliefs about the characteristics of the latent function.
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For details on covariance functions and their implications on the prior over functions see for example
Abrahamsen (1997) or Rasmussen and Williams (2006, ch. 4).

Using Bayes’ rule the posterior distribution over the latent function valuesf for given hyper-
parametersθ becomes:

p(f|D,θ) =
p(y|f) p(f|X,θ)

p(D|θ)
=

N (f|0,K)

p(D|θ)

m

∏
i=1

Φ(yi fi) (2)

which is non-Gaussian. Properties of the posterior will be described in Section 5.
The main purpose of classification models is to predict the class labely∗ for test inputsx∗. The

distribution of the latent function value can be computed by marginalisation:

p( f∗|D,θ,x∗) =
Z

p( f∗|f,X,θ,x∗)p(f|D,θ)df, (3)

and by computing the expectation:

p(y∗|D,θ,x∗) =
Z

p(y∗| f∗)p( f∗|D,θ,x∗)d f∗ (4)

the predictive distribution is obtained, which is again a Bernoulli distribution. The first term in the
right hand side of equation (3) is Gaussian and obtained by conditioning thejoint Gaussian prior
distribution.

Unfortunately, neither the posterior eq. (2)p(f|D,θ), the predictive distribution eq. (4)p(y∗=
1|D,θ,x∗) nor the marginal likelihood eq. (7)p(D|θ) can be computed analytically, so approxima-
tions are needed. For the GPC model approximations are either based on a Gaussian approximation
q(f|D,θ) = N (f|m,A) to the posteriorp(f|D,θ) or involve Markov chain Monte Carlo (MCMC)
sampling.

A key insight is that a Gaussian approximation to the posterior implies a GP approximation to
the posterior process, which gives rise to an approximate predictive distribution for test cases. Intro-
ducing the approximate Gaussian posterior into eq. (3) gives the approximate posteriorq( f∗|D,θ,x∗)=
N ( f∗|µ∗,σ2

∗), with mean and variance:

µ∗ = k>∗ K−1m (5a)

σ2
∗ = k(x∗,x∗)−k>∗ (K−1−K−1AK−1)k∗, (5b)

wherek∗ = [k(x1,x∗), . . . ,k(xm,x∗)]
> is a vector of prior covariances betweenx∗ and the training

inputsX. For the probit likelihood the approximate predictive probability (4) ofx∗ belonging to
class 1 can be computed analytically:

q(y∗=1|D,θ,x∗) =
Z

Φ( f∗)N ( f∗|µ∗,σ2
∗)d f∗ = Φ

( µ∗√
1+σ2

∗

)

. (6)

The parametersm and A of the posterior approximation can be found using Laplace’s method
(Section 3) or by Expectation Propagation (Section 4).

We have introduced the hyper-parametersθ which we considered to be fixed. Typically very
little information about these parameters is availablea priori. In principle inference should be done
jointly over f andθ which can only be approximated using Markov chain Monte Carlo sampling.

1681



KUSS AND RASMUSSEN

However, a model selection approach can be implemented by selectingθ maximising the marginal
likelihood (evidence):

p(D|θ) =
Z

p(y|f) p(f|X,θ)df (7)

which can be understood as a measure of the agreement between the modeland observed data
(Kass and Raftery, 1995; MacKay, 1999). This approach is called maximum likelihood II (ML-
II) type hyper-parameter estimation and motivates the need for computing the marginal likelihood.
Laplace’s method as well as Expectation Propagation provide an approximation to the marginal
likelihood (7) and so approximate ML-II hyper-parameter estimation can be implemented in both
approximation schemes.

3. Laplace’s Method

Williams and Barber (1998) describe Laplace’s method to find a GaussianN (f|m,A) approximation
to the posterior over latent function values (2) for fixedθ (although they use thelogit likelihood).
Let lnL(f) = ln p(y|f) denote the log likelihood and:

lnQ (f|D,θ) = lnL(f)− 1
2

ln |K |− 1
2

f>K−1f−m
2

ln(2π) (8)

the unnormalised log posterior. Laplace’s approximation is found by a second order Taylor expan-
sion:

lnQ (f|D,θ)' lnQ (m)− 1
2
(m− f)>A−1(m− f) (9)

around the mode of the (log) posterior:

m = argmax
f∈Rm

lnQ (f|D,θ). (10)

Since both the likelihood and the prior are log-concave the posterior is also log-concave and uni-
modal. Let:

∇f lnQ = ∇f lnL(f)−K−1f (11a)

∇∇f lnQ = ∇∇f lnL(f)−K−1 (11b)

denote the gradient and the Hessian. The mode is conveniently found usingNewton’s method,
iterating:

f ← f− (∇∇f lnQ (f))−1 ∇f lnQ (f), (12)

which usually converges rapidly tom. The covariance matrix:

A = −
(

∇∇f lnQ (m)
)−1

= (K−1 +W)−1 (13)

is approximated by the curvature at the mode, equal to the negative inverseHessian, whereW =
−∇∇f lnL .

This approximation also facilitates an approximation to the marginal likelihood:

p(D|θ) =
Z

p(y|f)p(f|X,θ)df =
Z

exp(lnQ (f))df. (14)
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Algorithm 1 Laplace’s approximation for GPC
Given: θ, D, x∗
Initialise f (e.g.f← 0), computeK from θ andX
repeat

f← f− (∇∇f lnQ (f))−1 ∇f lnQ (f)
until convergence off
m← f
A← (K−1−∇∇f lnQ (m))−1

Compute log marginal likelihood lnq(D|θ) by (15), and predictionsq(y∗=1|D,θ,x∗) using (6).

Substituting lnQ by its Taylor approximation (9) the Gaussian integral can be solved. The resulting
approximate log marginal likelihood is:

ln p(D|θ) ' lnq(D|θ) = lnQ (m)+
m
2

ln(2π)+
1
2

ln |A| (15)

and the derivative of this quantity w.r.t.θ can be derived and used for optimisation (e.g. using conju-
gate gradient methods) in an ML-II type setting. See Algorithm 1 for an overview and Appendix A
for details about our implementation.

4. Expectation Propagation

Minka (2001) proposed the iterative Expectation Propagation (EP) algorithm which can by applied
to GPC. EP finds a Gaussian approximationq(f|D,θ) = N (f|m,A) to the posteriorp(f|D,θ) by
moment matching of approximate marginal distributions. The starting point is an approximation
mimicking the factorising structure:

p(f|D,θ) =
p(f|X,θ)

p(D|θ)

m

∏
i=1

p(yi | fi) '
p(f|X,θ)

q(D|θ)

m

∏
i=1

t( fi ,µi ,σ2
i ,Zi) = q(f|D,θ), (16)

where throughout we usep to denote exact quantities andq approximations, and the terms:

t( fi ,µi ,σ2
i ,Zi) = ZiN ( fi |µi ,σ2

i ) (17)

are calledsite functions. Note that the site functions are approximating the likelihood (which nor-
malizes over observationsyi), with a Gaussian infi , so we cannot expect the site functions to
normalize, hence the explicit termZi is necessary. For notational convenience we hide thesite pa-
rameters µi , σ2

i andZi and writet( fi) instead. From (17) the Gaussian approximation (16) has mean
and covariance:

q(f|D,θ) = N (f|m,A), where m = AΣ
−1µ, and A = (K−1 +Σ

−1)−1, (18)

whereµ = (µ1, . . . ,µm)> andΣ = diag(σ2
1, . . . ,σ2

m) collect site function parameters. The EP algo-
rithm iteratively visits each site function in turn, and adjusts the site parameters tomatch moments
of an approximation to the posterior marginals. Thekth moment offi under the posterior is:

〈 f k
i 〉 =

1
p(D|θ)

Z

f k
i p(y|f)p(f|X,θ)df =

1
p(D|θ)

Z

f k
i p(yi | fi) p\i( fi)d fi (19)
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where:
p\i( fi) =

Z

∏
j 6=i

p(y j | f j)p(f|X,θ)df\i (20)

is called thecavity distributionandf\i denotesf without fi . The marginalisation required to compute
the exact cavity distribution is intractable for the GPC model. The key step in the EP algorithm is
to replace the intractable exact cavity distribution with a tractable approximation based on the site
functions:

q\i( fi) =
Z

∏
j 6=i

t( f j)p(f|X,θ)df\i. (21)

The approximate cavity function comes in the form of an unnormalised Gaussianq\i( fi) ∝ N ( fi |µ\i,σ2
\i).

Multiplying both sides byt( fi):

q\i( fi)t( fi) =
Z

N (f|0,K)
m

∏
j=1

t( f j)df\i ∝ N ( fi |mi ,A ii ), (22)

and basic Gaussian identities give the parameters:

σ2
\i =

(

(A ii )
−1−σ−2

i

)−1
and µ\i = σ2

\i

(

mi

A ii
− µi

σ2
i

)

, (23)

of the approximate cavity function.
The core idea of EP is to adjust the site parametersµi , σi andZi so that the approximate posterior

marginal using the exact likelihood approximates as well as possible the posterior marginal based
on the site function:

q\i( fi)p(yi | fi) ' q\i( fi)t( fi ,µi ,σ2
i ,Zi) (24)

by matching the zeroth, first and second moments. Recall that matching of momentsminimizes
Kullback-Leibler (KL) divergence.1 For the probit likelihoodp(yi | fi) = Φ(yi fi) thek = 0,1,2 mo-
ments of the left hand side can be computed analytically

m0 = Φ
( yµ\i√

1+σ2
\i

)

= Φ(z), (25a)

m1 = µ\i +
σ2
\iN (z|0,1)

Φ(z)y
√

1+σ2
\i

, (25b)

m2 = 2µ\im1−µ2
\i +σ2

\i−
zσ4
\iN (z|0,1)

Φ(z)(1+σ2
\i)

, (25c)

wherez= yµ\i/
√

1+σ2
\i. By equating these moments with those of the right hand side of (24) the

update equations for the site parameters become

σ2
i =

(

(m2−m2
1)
−1−σ−2

\i

)−1
, (26a)

µi = σ2
i

(

m1(σ−2
\i +σ−2

i )− µ\i
σ2
\i

)

, (26b)

Zi = m0

√

2π(σ2
\i +σ2

i )exp

(

(µi−µ\i)2

2(σ2
\i +σ2

i )

)

. (26c)

1. Although, the classical KL argument only applies to the first and second (and higher) moments fornormalized
distributions, it seems natural also to match zeroth moment.
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Algorithm 2 EP for Gaussian process classification
Given: θ, D, x∗
Initialise: A← K and site parametersσ2

i andµi

repeat
for i=1,. . . ,mdo

Compute parameters (23) of cavity
Compute moments (25)
Update the site parameters using (26)
Updatem andA according to (18)

end for
until The site parameters converged
Compute log marginal likelihood lnq(D|θ) by (27), and predictionsq(y∗=1|D,θ,x∗) using (6).

In the application of EP, one may generally not have a guarantee that the new site variance in (26a)
is non-negative; however, in the GPC model with probit likelihood, one canshow that variance is
always positive. Once we have new values forµi andσ2

i we have to updatem andA according to
(18), which in practise is done using rank-one updates, to save computation.

The EP algorithm iteratively updates the site parameters as shown in Algorithm 2. Although
we cannot prove the convergence of EP, we conjecture that it alwaysconverges for GPC with probit
likelihood, and have never encountered an exception.

Finally the approximate log marginal likelihood can be obtained from the normalization of (16),
giving

ln p(D|θ) ' lnq(D|θ) = ln
Z

q(f|X,θ)
m

∏
i=1

t( fi)df (27)

=
n

∑
i=1

lnZi−
1
2

ln |K+Σ|− 1
2
µ>(K+Σ)−1µ−m

2
ln(2π).

Perhaps this is not the standard way to compute an approximation to the marginallikelihood used
elsewhere, but it seems the most natural given the approximation. The derivatives of the log marginal
likelihood can be computed in order to implement ML-II parameter estimation ofθ. Algorithm 2
summarises the computations, more details on implementing EP for GPC can be foundin Ap-
pendix B.

5. Structural Properties of the Posterior

In the previous sections we described the GPC model and two alternative approximation schemes
for finding a Gaussian approximation to the posterior. This section providesmore details on the
properties of the posterior which is compared to the structure of the respective approximations.

Figure 1(a) provides a one-dimensional illustration. The priorN ( f |0,52) combined with the
probit likelihood (y = 1) results in a skewed posterior. Intuitively, the likelihood cuts off thef
values which have the opposite sign ofy. The mode of the posterior remains relatively close to the
origin, while the mass is placed over positive values in accordance with the observation. Laplace’s
approximation peaks at the posterior mode, but places far too much mass over negative values of
f and too little over large positive values. The EP approximation attempts to match the first two
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Figure 1: Panel (a) provides a one-dimensional illustration of approximations. The priorN ( f |0,52)
combined with the probit likelihood(y = 1) results in a skewed posterior. The likelihood
uses the right axis, all other curves use the left axis. In Panel (b) we caricature a high
dimensional zero-mean Gaussian prior as an ellipse. The gray shadow indicates that for
a high dimension Gaussian most of the mass lies in a thin shell. For large latent signals,
the likelihood essentially cuts off regions which are incompatible with the training labels
(hatched area), leaving the upper right orthant as the posterior. The dot represents the
mode of the posterior, which is relatively unaffected by the truncation and remains close
to the origin.

posterior moments, which results in a larger mean and a more accurate placement of probability
mass compared to Laplace’s approximation.

Structural properties of the posterior in higher dimensions can best be understood by examining
its construction. The prior is a correlatedm-dimensional GaussianN (f|0,K) centred at the origin.
Each likelihood termp(yi | fi) softly truncates the half-space from the prior that is incompatible with
the observed label, see Figure 1(b). The resulting posterior is unimodal and skewed, similar to a
multivariate Gaussian truncated to the orthant containingy. The mode of the posterior remains
close to the origin, while the mass is placed in accordance with the observed class labels. Addi-
tionally, high dimensional Gaussian distributions exhibit the property that mostprobability mass is
contained in a thin ellipsoidal shell—depending on the covariance structure—away from the mean
(MacKay, 2003, ch. 29.2). Intuitively this occurs since in high dimensionsthe volume grows ex-
tremely rapidly with the radius. As an effect the mode becomes less representative (typical) for the
prior distribution as the dimension increases. For the GPC posterior this property persists: the mode
of the posterior distribution stays relatively close to the origin, still being unrepresentative for the
posterior distribution, while the mean moves to the mass of the posterior making meanand mode
differ significantly.

As described, we cannot generally assume the posterior to be close to Gaussian, as in the often
studied limit of low-dimensional parametric models with large amounts of data. Therefore in GPC
we must be aware of making a Gaussian approximation to a non-Gaussian posterior. Laplace’s ap-
proximation is centred around the mode of the posterior, which lies in the right orthant but too close
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Figure 2: Panel (a) illustrates a bivariate normal distribution truncated to thepositive quadrant. The
lines describe slices through the probability density function for fixedx2-values. Panel (b)
shows the marginal distribution ofp(x1) (thick line) obtained by (numerical) integration
over x2, which—intuitively speaking—corresponds to an averaging of the slices (thin
lines) from Panel (a). Panel (c) shows a histogram of samples of a marginal distribution
of an high-dimensional truncated Gaussian. The line describes a Gaussian with mean and
variance estimated from the samples.

to the origin, such that the approximation will overlap with regions having practically zero posterior
mass. As an effect the amplitude of the approximate latent posterior GP will be underestimated
systematically, leading to overly cautious predictive distributions.

The EP approximation does not rely on a local expansion, but assumes that the marginal distri-
butions of the posterior can be well approximated by Gaussians. As described above the posterior
is similar to a high dimensional multivariate normal distribution truncated to one orthant. Although
the posterior is skew and truncated, marginals of such a distribution can be relatively similar to a
Gaussian.

As a low dimensional illustration the marginal distribution of a bivariate normal is shown in
Figure 2(a-b). Depending on the covariance structure, the mode of the marginal distribution moves
away from the origin and the distribution appear similar to a truncated univariate Gaussian.

In order to inspect the marginals of a truncated high-dimensional multivariatenormal distri-
bution we made an additional synthetic experiment. We constructed a 767 dimensional Gaussian
N (x|0,C) with a covariance matrix having one eigenvalue of 100 with eigenvector1, and all other
eigenvalues are 1. We then truncate this distribution such that allxi ≥ 0. Note that the mode
of the truncated Gaussian is still at zero, whereas the mean moved towards the remaining mass.
Metropolis-Hastings sampling was used to generate samples from this truncated multivariate distri-
bution. Figure 2(c) shows a normalised histogram of samples from a marginal distribution of one
xi . The samples agree very well with a Gaussian approximation. Note that Laplace’s method would
be completely inappropriate for approximating a truncated multivariate normal distribution.

In order to validate the above arguments we will use Markov chain Monte Carlo methods to
generate samples from the posterior and also to estimate the marginal likelihood.
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6. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) may be too slow for many practical applications, but has the
advantage that it becomes exact in the limit of long runs. Thus, MCMC can provide agold standard
by which to measure the two analytic methods of the previous sections. Computingthe predictions
via an MCMC estimate of (3) and (4) is relatively straight forward and covered in Section 6.1.

Good MCMC estimates of the marginal likelihood are, however, notoriously difficult to obtain,
being equivalent to the free-energy estimation problem in physics (Gelman and Meng, 1998). In
Section 6.2 we explain the use of Annealed Importance Sampling (AIS), whichcan be seen as a
sophisticated elaboration of Thermodynamic Integration, for this task.

6.1 Hybrid MCMC Sampling

Hybrid Monte Carlo (HMC) sampling as proposed by Duane et al. (1987) isa computationally
efficient sampling technique which exploits gradient information of the targetdistribution. Detailed
accounts are given by Neal (1993, ch. 5.2) and Liu (2001, ch. 9). MacKay (2003, ch. 30) also
provides pseudo-code; we do not repeat the details here.

HMC can be used to generate samples from the posteriorp(f|θ,D), while only the unnormalised
log posterior (8) and its derivatives are required. As described in the previous section, the exact
posterior (2) takes the form of a (correlated) Gaussian (the GP prior),which is (softly) truncated by
the constraints imposed by the training labels through the likelihood. To ease thesampling task by
reducing correlations, we first do a linear transformation into newg = L−1f variables, such thatg is
whitew.r.t. K , whereK = LL > is the Cholesky decomposition. Given samples from the posterior,
we generate test-latents from the Gaussianp( f∗|f,X,θ,x∗) for use in a simple Monte Carlo estimate
of (4).

6.2 Annealed Importance Sampling

The marginal likelihood (7) comes in the form of anm dimensional integral wherem is the number
of data points. A simple approach would be to use importance sampling with the EP or Laplace’s
approximation of the posterior as proposal distribution. However, for theGPC model the resulting
importance weights show enormous variances, making simple importance samplinguseless for this
task (MacKay, 2003, ch. 29).

Neal (2001) describes Annealed Importance Sampling (AIS), which we will use to estimate the
marginal likelihood in the GPC model. Instead of solving the integral (7) directly, a sequence of
easier quantities is computed. We define:

Zt =
Z

p(y|f)τ(t)p(f|X,θ)df (28)

whereτ(t) is an inverse temperature schedule such thatτ(0) = 0 andτ(T) = 1. The trick is to
rewrite the marginal likelihoodZ = p(D|θ) as a fraction and expand:

Z =
ZT

Z0
=

ZT

ZT−1

ZT−1

ZT−2
· · · Z1

Z0
, (29)
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Algorithm 3 Annealed Importance Sampling
Given: Temperature scheduleτ
for r = 1, . . . ,Rdo

Samplef0 from the priorN (f|0,K)
for t = 1, . . . ,T do

Sampleft from q(f|D,τ(t),θ) by HMC
Compute ln(Zt/Zt−1) using (31)

end for
ComputeZr using (32)

end for
Return lnZ = ln

(

1
R ∑R

r=1Zr
)

whereZ0 = 1 since the prior normalises. Each term in (29) is approximated using importance
sampling using samples fromq(f|D,θ,τ(t)) ∝ p(y|f)τ(t)p(f|X,θ):

Zt

Zt−1
=

Z

p(y|f)τ(t)p(f|X,θ)

p(y|f)τ(t−1)p(f|X,θ)
q(f|D,θ,τ(t−1))df (30a)

' 1
S

S

∑
i=1

p(y|f i)
τ(t)−τ(t−1) (30b)

wheref i are samples fromq(f|D,θ,τ(t)), which we generate using HMC. Using a single sample
S= 1 and a large number of temperatures, the log of each ratio is:

ln(Zt/Zt−1) '
(

τ(t)− τ(t−1)
)

ln p(y|ft) (31)

whereft is the only sample at temperatureτ(t). Combining (29) with (31) we obtain the desired:

lnZ'
T

∑
t=1

ln(Zt/Zt−1). (32)

In all our experiments we useτ(t) = (t/T)4 for t = 0, . . . ,8000. Using this temperature schedule
we found that the sampling spends most of its efforts at temperatures with highvariance of (31)
such that the variance of (32) is relatively small. Note that this was only examined on the data
sets we use below and only for certain values ofθ. So far, we have described Thermodynamic
Integration, which gives an unbiased estimate in the limit of slow temperature changes. In AIS the
bias caused by finite temperature schedules is removed by combining multiple estimates by their
geometric mean (see Algorithm 3). In the experiments we combine the estimates ofR= 3 runs of
Thermodynamic Integration.

7. Experiments

In this section we compare and inspect approximations for GPC using various benchmark data sets.
The primary focus is not to optimise the absolute performance of GPC models but to compare the
relative accuracy of approximations and to validate the arguments given in Section 5.

In all the GPC experiments we use a covariance function of the form:

k(x,x′,θ) = σ2exp
(

− 1
2`2

∥

∥x−x′
∥

∥

2)
, (33)
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Figure 3: Synthetic classification problem: Panel (a) illustrates the classification task, the gen-
erating p(y|x) and two approximations thereof obtained by Laplace’s method and
EP. Panel (b) illustrates the approximate predictive distributionsp( f∗|D,θ,x∗) '
N ( f∗|µ∗,σ2

∗) of latent function values showing the meanµ∗ and the range of±2σ∗.

such thatθ = [σ, `]. We refer toσ2 as the signal variance and to` as the characteristic length-
scale. Note that for many classification tasks it may be reasonable to use an individual length scale
parameter for every input dimension (ARD). Nevertheless, for the sakeof presentability we use the
above covariance function and we believe the conclusions to be independent of this choice.

Both analytic approximations have a computational complexity which is cubicO(m3) as com-
mon among non-sparse GP models due to inversionsm×m matrices. In our implementations
Laplace’s method and EP need similar running times, on the order of a few minutes for several
hundred data-points. Making AIS work efficiently requires some fine-tuning and a single estimate
of p(D|θ) can take several hours for data sets of a few hundred examples, but this could conceivably
be improved upon.

7.1 Synthetic Classification Problem

The first experiment is a synthetic classification problem with scalar inputs. The observations for
class 1 were generated from two normal distributions with means−6 and 2, each with a standard
deviation of 0.8. For class−1 the mean is 0 and the same standard deviation was used.
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We computed Laplace’s and the EP approximation for the ML-II estimated valueof θ that max-
imised Laplace’s approximation to the marginal likelihood (15). Note that this particular choice ofθ
should be in favour of Laplace’s method. Figure 3 shows the resulting classifiers and the underlying
latent functions. In Figure 3(a) the approximations top(y|x) appear to be similar for positivex but
we observe an appreciable discrepancy for negative values. Laplace’s approximation gives an un-
reasonably high predictive uncertainty, which is caused by a significantoverlap of the approximate
predictive distributionp( f∗|D,θ,x∗) ' N ( f∗|µ∗,σ2

∗) with zero as shown in Figure 3(b). However,
note that both approximations agree on the sign of the predictive mean.

7.2 Ionosphere Data

The data consists of 351 examples in 34 dimensions. We standardised the inputs X to zero mean
and unit variance. The training set is a random subset of sizem= 200 leaving the remaining 151
instances out as a test set.

We do an exhaustive investigation on a regular 21×21 grid of values for the log hyper-parameters.
For eachθ on the grid we compute the approximated log marginal likelihood by Laplace’s method
(15), EP (27) and AIS. Additionally we compute the predictive performance on the test set. As
performance measure we use the average information in bits of the predictions about the test targets
in excess of that of random guessing. Letp∗ = p(y∗= 1|x∗) be the model’s prediction, then we
average:

I(p∗i ,yi) = yi+1
2 log2(p∗i )+ 1−yi

2 log2(1− p∗i )+H (34)

over all test cases, whereH is the entropy of the training set labels. Results are shown in Figure 4.
For all three approximation techniques we see an agreement between marginal likelihood esti-

mates and test performance, which justifies the use of ML-II parameter estimation. But the shape of
the contours and the values differ between the methods. The contours forLaplace’s method appear
to beslantedcompared to EP. The estimated marginal likelihood estimates of EP and AIS agree
very well.2 The EP predictions contain as much information about the test cases as the MCMC
predictions and significantly more than for Laplace’s method.

Note that for small signal variances (roughly ln(σ2) < 0) Laplace’s method and EP give very
similar results. A possible explanation is that for small signal variances the likelihood does not
truncatethe prior but onlydown-weightsthe tail that disagrees with the observation. As an effect
the posterior will be less skewed and both approximations will lead to similar results.

7.3 USPS Digits

We define a binary sub-problem from the USPS digit data3 by considering 3’s vs. 5’s. We repeated
the experiments described in the previous section for a slightly modified grid ofθ. Comparing the
results shown in Figure 5 leads to similar results as mentioned above. The EP and MCMC results
agree very well, given that the marginal likelihood comes as a 767 dimensional integral.

We now take a closer look at the approximationsq(f|D,θ) = N (f|m,A) for a given value ofθ.
We have chosen the values ln(σ) = 3.35 and ln(`) = 2.85 which are between the ML-II estimates of
EP and Laplace’s method. Comparing the respective means of the approximations in Figure 6(a) we

2. Note that the agreement between the two seems to be limited by the accuracy of the AIS runs, as judged by the
regularity of the contour lines; the tolerance is less than one unit on a (natural) log scale.

3. Because the training and test partitions in the original data differ significantly, we pooled cases and randomly divided
them into new sets, with 767 cases for training and 773 for testing.
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Figure 4: Comparison of marginal likelihood approximations and predictive performances for the
Ionosphere data set. The first column shows the estimates of log marginal likelihood,
while the second column shows the performance on the test set measured bythe informa-
tion about test targets in bits (34).
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Figure 5: Comparison of marginal likelihood approximations and predictive performances of the
different methods for classifying 3’s vs. 5’s from the USPS image database. The plots are
arranged as in Figure 4.
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Figure 6: Comparison of approximationsq(f|D,θ) = N (f|m,A) for a given value ofθ. Panel (a)
shows a comparison of the meansmi . In Panel (b) we compare the elements of the diago-
nal matricesW ii andΣii . Panels (c) and (d) compare predictionsp∗ obtained by MCMC
(abscissa) to predictions obtained from Laplace’s method and EP (ordinate). Panel (c)
shows predictions on training cases and (d) shows predictions on test cases.

see that the magnitude of the means from the Laplace approximation is much smallerthan from EP.
The relation appears to be roughly linear. In Figure 6(b) we compare the elements ofW andΣ

−1

which cause the difference in the approximations (13) and (18) of the posterior covariance matrixA.
We observe that the relatively large entries inW are larger than the corresponding entries inΣ

−1,
but in totalW contains more small values thanΣ−1. The exact effect on the posterior covariance
is difficult to characterise due to the inversion, but intuitively the smaller the values the more the
posterior covariance will be similar to the prior.
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Figures 6(c-d) compare the predictive uncertaintyp∗ resulting from the respective approxima-
tions to MCMC predictions. For both training and test set we observe that EPand MCMC agree
very well, while Laplace’s method shows over-conservative predictions.
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Figure 7: Two marginal distributionsp( fi |D,θ) from the posterior. For Panel (a) we picked the
fi for which the posterior marginal is maximally skewed (see again Figure 1). The true
posterior is approximated by a normalised histogram of 9000 samples offi obtained by
MCMC sampling. Panel (b) shows a case where EP and Laplace’s approximation differ
significantly.

We now inspect the marginal distributionsp( fi |D,θ) of single latent function values under the
posterior approximation. We use hybrid MCMC to generate 9000 samples from the posterior off
for the aboveθ. For Laplace’s method and EP the approximated distribution isN ( fi |mi ,A ii ) where
m andA are found by the respective approximation techniques.

In general we observe that the marginal distributions of MCMC samples agree very well with
the respective marginal distributions of the EP approximation. This supportsthe claim made in
Section 5 where we argued that the marginal distributions of the posterior can be very similar to
Gaussians, even if the posterior is a skew distribution. For Laplace’s approximation we find the
mean to be underestimated and the marginal distributions to overlap with zero farmore than the
EP approximations. Figure 7(a) displays the marginal distribution and its approximations for which
the MCMC samples show maximal skewness. Figure 7(b) shows a typical example where the
EP approximation agrees very well with the MCMC samples. We show this particular example
because under the EP approximationq(yi = 1|D,θ) < 0.1% but Laplace’s approximation gives
q(yi = 1|D,θ)' 18%.

7.4 Lower Bound Approximation

In the context of sparse EP approximations Seeger (2003) proposed alower bound on the marginal
likelihood. The bound is obtained from the EP approximation of the posterior using Jensen’s in-
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Figure 8: Lower bound on marginal likelihood. Panel (a) shows the lowerbound eq. (35) on the
marginal likelihood for the Ionosphere data set (compare to left column of Figure 4).
Panel (b) shows the value of the lower bound for the USPS 3’s vs. 5’s (compare to left
column of Figure 5)

equality:

ln p(D|θ) = ln
Z

p(y|f)N (f|0,K)df (35a)

≥
Z

N (f|m,A) ln
p(y|f)N (f|0,K)

N (f|m,A)
df (35b)

=
m

∑
i=1

Z

N ( fi |mi ,A ii ) lnΦ(yi fi)d fi

−1
2

m>K−1m− 1
2

tr(K−1A)+
1
2

ln |K−1A|+ m
2

. (35c)

Note that the one dimensional integrals in eq. (35c) have to be solved using numerical integration
methods.

In sparse EP methods the Gaussian approximation is based on only a subsetof observations
and so the evidence (27) may be a bad approximation of the total evidence since it does not take
all available data into account. Assume that them points are only a subset of of a total ofm′

observations. The lower bound (35c) can be extended to a lower boundon all m′ observations by
including all points in the one dimensional integrals over the individual log likelihood terms.

Several authors maximise this lower bound instead of maximising (27) for ML-II hyper-parameter
estimation also in the case of non-sparse EP approximations, e.g. Chu and Ghahramani (2005). In
Figure 8 we show the value of the lower bound as a function of the hyper-parameters for the Iono-
sphere and USPS data described in the previous sections (for the full EPapproximation). Interest-
ingly, for both data sets the lower bounds appear to be more similar to the approximate evidence
obtained by Laplace’s method than by EP (compare to the upper left panel inFigures 4 and 5
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respectively). However, the maxima of the lower bounds correspond to sub-optimal predictive per-
formances compared to the maxima of the approximate marginal likelihood (27) (compare to the
second row in Figures 4 and 5 respectively). Therefore for non-sparse EP approximations the use
of (27) seems advisable, which is also computationally advantageous.

7.5 Benchmark Data Sets

In this section we compare the performance of Laplace’s method and Expectation Propagation for
GPC on several well known benchmark problems for binary classification.

The Ionosphere, theWisconsinBreast Cancer, and theSonardata sets are taken from Hettich
et al. (1998). The LeptograpsusCrabsand thePima Indians Diabetes data sets were described by
Ripley (1996). Note that for the Crabs data set we use the sex (not the colour) of the crabs as target
variable. The largest data set in the comparison are the 3’s vs. 5’s fromthe USPS handwritten digits
described above.

We standardise the inputsX to zero mean and unit variance. All data sets are randomly split
into 10 folds of which one at a time is left out as a test set to measure the predictive performance of
a model trained (or selected) on the remaining nine folds.

For GPC we implement model selection by ML-II hyper-parameter estimation. Weuse a con-
jugate gradient optimisation routine to find a minimum

θML = argmin
θ

− lnq(D|θ) (36)

of the negative log marginal likelihood approximated by Laplace’s method (15) and EP (27) respec-
tively. For the respectiveθML the approximationsN (f|m,A) are computed and predictions are made
for the left out test set. From the predictive distributions the average information (34) is computed
and averaged over the ten folds. Furthermore the average error rate Eis reported, which equals the
average percentage of erroneous class assignments if prediction is understood as a decision problem
with symmetric costs (thresholding the predictive uncertainty at 1/2).

In order to have a better absolute impression of the predictive performance we report the results
of support vector machines (SVM) (Schölkopf and Smola, 2002). We use the LIBSVM implemen-
tation of C-SVM by Chang and Lin (2001) with a radial basis function kernel which is equivalent
to the covariance function (33) up to the signal variance parameter. The values of the length scale
parameter̀ and the regularisation parameterC are found by aninner loopof 5-fold cross-validation
on the nine training folds respectively. We manually refine the parameter grids and repeat the cross-
validation procedure until the performance stabilises.

We use the technique described by Platt (2000) to estimate predictive probabilities from an
SVM. This is implemented by fitting a sigmoidal mapping from the unthresholded output of the
SVM to the unit interval. The parameters of the mapping are estimated on the test set in the inner
loop of 5-fold cross-validation.

Results are summarised in Table 1. Comparing Laplace’s method to EP the latter shows to be
more accurate both in terms of error rate and information. While the error rates are relatively similar
the predictive distribution obtained by EP shows to be more informative aboutthe test targets. As
to be expected by now, the length of the mean vector‖m‖ shows much larger values for the EP
approximations. Comparing EP and SVM the results are mixed.

At first sight it may seem surprising that Laplace’s method gives relatively similar error rates
compared to EP. Note that for both methods the error rate only depends on the sign of the latent
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Laplace EP SVM
Data Set m n E I ‖m‖ E I ‖m‖ E I

Ionosphere 351 34 8.84 0.591 49.96 7.99 0.661 124.94 5.69 0.681
Wisconsin 683 9 3.21 0.804 62.62 3.21 0.805 84.95 3.21 0.795

Pima Indians 768 8 22.77 0.252 29.05 22.63 0.253 47.49 23.01 0.232
Crabs 200 7 2.0 0.682 112.34 2.0 0.908 2552.97 2.0 0.047
Sonar 208 60 15.36 0.439 26.86 13.85 0.537 15678.55 11.14 0.567

USPS 3 vs 51540 256 2.27 0.849 163.05 2.21 0.902 22011.70 2.01 0.918

Table 1: Results for benchmark data sets. The first three columns give thename of the data set,
number of observationm and dimension of inputsn. For Laplace’s method and EP the
table reports the average error rate E, the average information I (34) and the average length
‖m‖ of the mean vector of the Gaussian approximation. For SVMs the error rate and the
average information about the test targets are reported.

mean function (5a) at the test locations, which in turn depend onm only. Therefore the error rate
is less sensitive to the accuracy of the approximation to the posterior, but ofcourse depends on the
ML-II estimated hyper-parameters, which differ between the methods. Alsoin the example shown
in Figure 3(b) it can be observed that the latent mean functions differ buttheir sign matches very
accurately.

For the Crabs data set all methods show the same error rate but the information content of the
predictive distributions differs dramatically. For some test cases the SVM predicts the wrong class
with large certainty. Because the mapping of the unthresholded output of theSVM to the predictive
probability is estimated from a left out set, the mapping can be poor if too few errors are observed
on this.

8. Conclusions

Our experiments reveal serious differences between Laplace’s methodand EP when used in GPC
models. The results corroborate the considerations about the two approximations based on the
structure of the posterior given in Section 5. Although only a handful of data sets have been used in
the study, we believe the conclusions to be well-founded and generally valid.

From the structural properties of the posterior we described why Laplace’s method systemati-
cally underestimates the meanm. The resulting approximate posterior GP over latent functions will
have too small amplitude, although the sign of the mean function will be mostly correct. As an ef-
fect Laplace’s method gives over-conservative predictive probabilities, and diminished information
about the test labels. This effect has been shown empirically on severalreal world examples. Large
resulting discrepancies in the actual posterior probabilities were found, even at the training loca-
tions, which renders the predictive class probabilities produced under this approximation grossly
inaccurate. Note, the difference becomes less dramatic if we only considerthe classification error
rates obtained by thresholdingp∗ at 1/2. For this particular task, we have seen the sign of the la-
tent function tends to be correct (at least at the training locations). However, the performance on
benchmark data sets also revealed the error rates obtained by Laplace’smethod to be inferior to EP
results.
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The EP approximation has shown to give results very close to MCMC both in terms of predictive
distributions and marginal likelihood estimates. We have shown and explained why the marginal
distributions of the posterior can be well approximated by Gaussians.

Further, the marginal likelihood values obtained by Laplace’s method and EPdiffer systemat-
ically which will lead to different results of ML-II hyper-parameter estimation. The discrepancies
are similar for different tasks. We were able to exemplify that the EP approximation of the marginal
likelihood is accurate. To show this we described how AIS can be used to obtain unbiased estimates
of the marginal likelihood for Gaussian process models.

In the experiments summarised in Table 1 we compared the predictive accuracy of GPC to sup-
port vector machines. While the SVMs show a tendency to give lower errorrates, the information
contained in predictive distributions seems comparable. Conceptually GPC comes with the advan-
tage that the Bayesian model selection can be used to set hyper-parameters by ML-II estimation,
while the parameters of an SVM usually have to be set by cross-validation (gradient based methods
exist, see e.g. Chapelle et al. (2002)).

In summary, we found that EP is the method of choice for approximate inference in binary GPC
models, when the computational cost of MCMC is prohibitive. Very good agreement is achieved
for both predictive probabilities and marginal likelihood estimates. In contrast, the Laplace approx-
imation is so inaccurate that we advise against its use, especially when predictive probabilities are
to be taken seriously.
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Appendix A. Implementation of Laplace’s Approximation

In Sections 3 we described Laplace’s method for approximate inference inthe GPC model and
sketched the corresponding computations in Algorithm 1. In this appendix wedescribe our imple-
mentation of the method in more detail. See also the appendices of Williams and Barber (1998).

Computing Laplace’s approximationN (f|m,A) for given θ the main computational effort is
involved in finding the maximum of the unnormalised log posterior lnQ (eq. (8)). Our implementa-
tion uses Newton’s method to find the mode. In each Newton step the vectorf is updated according
to

ft+1 = ft − (∇∇f lnQ (ft))−1∇f lnQ (ft) (37a)

= (K−1 +W)−1(Wf t +∇f lnL(ft)) (37b)

until convergence off to the modem. To ensure convergence the update is accepted if the value of
the target function increases, otherwise the the step size is shortened untillnQ (ft+1) > lnQ (ft).

Computationally Newtons’s method is dominated by the repeated inversion of the Hessian.
SinceK can be poorly conditioned we use the identity

(K−1 +W)−1 = K −KW
1
2 (I +W

1
2 KW

1
2 )−1W

1
2 K (38)
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such that only the well conditioned, positive definite matrix(I + W
1
2 KW

1
2 ) has to be inverted. In

our implementation the inverse is computed from a Cholesky decomposition of this matrix. Note
thatW is a diagonal matrix with positive entries, so computingW

1
2 is trivial.

Note that implementing the Newton updates (37) only requires theproductof the inverse Hes-
sian times the gradient which can be computed more efficiently using an iterativeconjugate gradient
method (Golub and Van Loan, 1989, ch. 10).

Having found the modem the marginal likelihood approximation (15) and its derivatives can be
computed. The approximate marginal likelihood takes the form

lnq(D|θ) = lnQ (m)+
m
2

ln(2π)+
1
2

ln |A| (39a)

= lnL(m)− 1
2

m>K−1m− 1
2

ln |I +KW | . (39b)

To avoid the direct inversion ofK in the second term of (39b) we use the recurrence relation (37b).
Let a = K−1m then by substituting (38) into (37b) we obtain:

a = (I −W
1
2 (I +W

1
2 KW

1
2 )−1W

1
2 K)(Wm +∇f lnL(m)) (40)

such thatm>K−1m = m>a. The determinant in eq. (39b) can be rewritten

ln |I +KW |= ln
∣

∣I +W
1
2 KW

1
2
∣

∣ (41)

and computed from the Cholesky decomposition, that was used to calculate theinverse in eq. (38).
Note that ifM = LL > is a Cholesky decomposition then ln|M |= 2∑ lnL ii .

During ML-II estimation (36) of hyper-parameters the approximate log marginal likelihood (39)
is maximised as a function ofθ. Our implementation is based on a conjugate gradient optimisation
routine such that we also need to compute the derivatives of (39b) with respect to the elements ofθ.

The dependency of the approximate marginal likelihood onθ is two-fold:

∂ lnq(D|θ)

∂θi
= ∑

k,l

∂ lnq(D|θ)

∂K kl

∂K kl

∂θi
+

∂ lnq(D|θ)

∂m>
∂m
∂θi

(42)

there is a direct dependency via the terms involvingK and an implicit dependency through the
change inm (see also Williams and Barber (1998, Appendix B)).

The explicit derivative of eq. (39b) due to the direct dependency of the covariance matrix is

∑
k,l

∂ lnq(D|θ)

∂K kl

∂K kl

∂θi
=

1
2

m>K−1 ∂K
∂θi

K−1m− 1
2

tr

(

(I +KW )−1 ∂K
∂θi

W
)

(43)

where the first term is computed usinga (40) and the inverse in the second term can be rewritten as

(I +KW )−1 = I − (K−1 +W)−1W (44)

where the inverse (38) is already known.
The implicit derivative accounts for the dependency of eq. (39b) onθ due to change in the mode

m. Differentiating eq. (39a) with respect tom reduces to∂ ln |A|/∂m sincem is the maximum of
lnQ and therefore∂ lnQ /∂m vanishes.

∂ lnq(D|θ)

∂m>
∂m
∂θi

= −1
2

∂|K−1 +W|
∂m>

∂m
∂θi

= −1
2
(K−1 +W)−1 ∂W

∂m>
∂m
∂θi

(45)
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The dependency ofm onθi is obtained by differentiating (11a) atm:

0 = ∇f lnL(m)−K−1m =⇒ m = K∇f lnL(m) (46)

so
∂m
∂θi

=
∂K
∂θi

∇f lnL(m)+K∇∇f lnL(m)
∂m
∂θi

= (I +KW )−1 ∂K
∂θi

∇f lnL(m) (47)

and we have both terms necessary to compute the gradient (42).
To compute the predictive probabilityp∗ = p(y∗=1|x∗) for a test inputx∗ the predictive distri-

bution (5) of the latent function value isN ( f∗|µ∗,σ2
∗) where

µ∗ = k>∗ K−1m = k>∗ a (48a)

σ2
∗ = k(x∗,x∗)−k>∗W

1
2 (I +W

1
2 KW

1
2 )−1W

1
2 k∗ (48b)

andp∗ can be computed from eq. (6).
Due to the Cholesky decomposition in (38) computing Laplace’s approximation isO(m3). How-

ever, following the implementation we described in this section a Cholesky decomposition has to be
computed once per Newton step and all other quantities can be computed fromit in at mostO(m2).
The number of Newton steps necessary depends on the convergence criterion, the initialisation off
and the hyper-parametersθ.

Appendix B. Implementation of Expectation Propagation

In this appendix we describe details of our implementation of EP as described inSection 4 and
summarised in Algorithm 2. See also the appendices of Seeger (2003).

In our implementation the site functions (17) are parameterised in terms of natural parameters
σ−2

i andσ−2
i µi . For givenθ the algorithm starts by initialisingA = K andσ−2

i = 0 andσ−2
i µi = 0.

The algorithm proceeds by updating the site parameters in random order. In each sweep every site
function is updated following equations (23), (25), and (26). After each update of a site function the
effect onm andA has to be computed according to (18). The change inA can be computed using a
rank one update. Letδ be the change inσ−2

i due to the update andei the vector whoseith entry is 1
and all other 0. The relation

(K−1 +Σ
−1 +δeie>i )−1 = A−Aei(A ii +δ−1)−1e>i A (49)

can be used to updateA. Each single update isO(m2) and repeatedm times per sweep, such that the
EP algorithm isO(m3) in time. Because of accumulating numerical errors, after a complete sweep
over all site functions we recompute the matrixA from scratch. For numerical stability we rewrite

A = (K−1 +Σ
−1)−1 = K −KΣ

− 1
2 (I +Σ

− 1
2 KΣ

− 1
2 )−1

Σ
− 1

2 K (50)

and compute the inverse from the Cholesky decomposition of(I +Σ
− 1

2 KΣ
− 1

2 ).
After convergence the approximate log marginal likelihood (27) can be computed and its partial

derivatives with respect to the hyper-parameters:

∂ lnq(D|θ)

∂θi
=−1

2
tr

(

∂K
∂θi

(

(K +Σ)−1− (K +Σ)−1µµ>(K +Σ)−1
)

)

. (51)
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which do not depend on theZi (Seeger, 2005).
The inverse ofK +Σ can be computed from the inverse in eq. (50):

(K +Σ)−1 = Σ
− 1

2 (I +Σ
− 1

2 KΣ
− 1

2 )−1
Σ
− 1

2 . (52)

For computing the log marginal likelihood (27) also the determinant|K +Σ| has to be computed.
By rewriting

ln |K +Σ|= ln(|Σ||I +Σ
−1K |) = ln |Σ|+ ln |I +Σ

− 1
2 KΣ

− 1
2 | (53)

we obtain an expression in which the first term is a determinant of a diagonalmatrix and the second
term can be computed from the Cholesky decomposition that was used to compute the inverse in
eq. (50).

To compute the predictive probabilityp∗ = p(y∗=1|x∗) for a test inputx∗ the predictive distri-
bution (5) of the latent function value isN ( f∗|µ∗,σ2

∗) where

µ∗ = k>∗ (K +Σ)−1µ (54a)

σ2
∗ = k(x∗,x∗)−k>∗ (K +Σ)−1k∗ (54b)

andp∗ can be computed from eq. (6).
The EP algorithm is of computational complexityO(m3) due to the computations for updat-

ing A. However, per sweep the computation ofA (50) and them rank one updates sum to more
computational effort compared to Laplace’s method.

Using a covariance function of the form (33) for some data sets we observed numerical problems
during ML-II hyper-parameter estimation because the optimisation algorithm asked to evaluate the
marginal likelihood for extremely large signal variancesσ2. The problem stems from the property
that for large values ofσ2 the marginal likelihood becomes insensitive to changes inσ2. At this
point it is recommended to take another look at Figure 1(b). Intuitively, forlarge signal variances
the prior becomes more spread, such that the likelihood becomes more and more similar to a hard
truncation. The marginal likelihood equals the probability mass of the prior in theorthant that is left
after truncation. But the probability mass in any of the orthants remains constant if only the signal
variance is changed for fixed correlation structure. This argument is based on the assumption that
the likelihood implements a hard truncation, which is only an approximation, but thisapproximation
becomes better the largerσ2 is. Note that this insensitivity of the marginal likelihood with respect
to changes in the signal variance can already be observed in the upper parts of of the marginal
likelihood plots for EP in Figures 4 and 5. A possible solution to this problem is to limitσ2 < 105,
say, since we wouldn’t typically expect any new interesting behaviour beyond this.
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Abstract

A wide variety of distortion functions, such as squared Euclidean distance, Mahalanobis distance,
Itakura-Saito distance and relative entropy, have been used for clustering. In this paper, we pro-
pose and analyze parametric hard and soft clustering algorithms based on a large class of distortion
functions known as Bregman divergences. The proposed algorithms unify centroid-based paramet-
ric clustering approaches, such as classicalkmeans, the Linde-Buzo-Gray (LBG) algorithm and
information-theoretic clustering, which arise by specialchoices of the Bregman divergence. The
algorithms maintain the simplicity and scalability of the classicalkmeans algorithm, while gener-
alizing the method to a large class of clustering loss functions. This is achieved by first posing
the hard clustering problem in terms of minimizing the loss in Bregman information, a quantity
motivated by rate distortion theory, and then deriving an iterative algorithm that monotonically de-
creases this loss. In addition, we show that there is a bijection between regular exponential families
and a large class of Bregman divergences, that we call regular Bregman divergences. This result
enables the development of an alternative interpretation of an efficient EM scheme for learning mix-
tures of exponential family distributions, and leads to a simple soft clustering algorithm for regular
Bregman divergences. Finally, we discuss the connection between rate distortion theory and Breg-
man clustering and present an information theoretic analysis of Bregman clustering algorithms in
terms of a trade-off between compression and loss in Bregmaninformation.

Keywords: clustering, Bregman divergences, Bregman information, exponential families, expectation maxi-
mization, information theory

1. Introduction

Data clustering is a fundamental “unsupervised” learning procedure that has been extensively stud-
ied across varied disciplines over several decades (Jain and Dubes,1988). Most of the existing
parametric clustering methods partition the data into a pre-specified number of partitions with a

c©2005 Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillonand Joydeep Ghosh.
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cluster representativecorresponding to every cluster, such that a well-defined cost functioninvolv-
ing the data and the representatives is minimized. Typically, these clustering methods come in two
flavors: hard andsoft. In hard clustering, one obtains a disjoint partitioning of the data such that
each data point belongs to exactly one of the partitions. In soft clustering,each data point has a
certain probability of belonging to each of the partitions. One can think of hardclustering as a
special case of soft clustering where these probabilities only take values0 or 1. The popularity of
parametric clustering algorithms stems from their simplicity and scalability.

Several algorithms for solving particular versions of parametric clusteringproblems have been
developed over the years. Among the hard clustering algorithms, the most well-known is the it-
erative relocation scheme for the Euclideankmeans algorithm (MacQueen, 1967; Jain and Dubes,
1988; Duda et al., 2001). Another widely used clustering algorithm with a similar scheme is the
Linde-Buzo-Gray (LBG) algorithm (Linde et al., 1980; Buzo et al., 1980) based on the Itakura-Saito
distance, which has been used in the signal-processing community for clustering speech data. The
recently proposed information theoretic clustering algorithm (Dhillon et al., 2003) for clustering
probability distributions also has a similar flavor.

The observation that for certain distortion functions, e.g., squared Euclidean distance, KL-
divergence (Dhillon et al., 2003), Itakura-Saito distance (Buzo et al., 1980) etc., the clustering
problem can be solved using appropriatekmeans type iterative relocation schemes leads to a natu-
ral question:what class of distortion functions admit such an iterative relocation scheme where a
global objective function based on the distortion with respect to cluster centroids1 is progressively
decreased?In this paper, we provide an answer to this question: we show thatsuch a scheme works
for arbitrary Bregman divergences. In fact, it can be shown (Banerjee et al., 2005) that such a sim-
ple scheme worksonlywhen the distortion is a Bregman divergence. The scope of this result is vast
since Bregman divergences include a large number of useful loss functions such as squared loss,
KL-divergence, logistic loss, Mahalanobis distance, Itakura-Saito distance, I-divergence, etc.

We pose the hard clustering problem as one of obtaining an optimal quantization in terms of
minimizing the loss inBregman information, a quantity motivated by rate distortion theory. A sim-
ple analysis then yields a version of the loss function that readily suggests anatural algorithm to
solve the clustering problem for arbitrary Bregman divergences. Partitional hard clustering to min-
imize the loss inmutual information, otherwise known as information theoretic clustering (Dhillon
et al., 2003), is seen to be a special case of our approach. Thus, this paper unifies several parametric
partitional clustering approaches.

Several researchers have observed relationships between Bregmandivergences and exponen-
tial families (Azoury and Warmuth, 2001; Collins et al., 2001). In this paper,we formally prove
an observation made by Forster and Warmuth (2000) thatthere exists a unique Bregman diver-
gence corresponding to every regular exponential family. In fact, we show that there is a bijection
between regular exponential families and a class of Bregman divergences, that we call regular Breg-
man divergences. We show that, with proper representation, the bijection provides an alternative
interpretation of a well known efficient EM scheme (Redner and Walker, 1984) for learning mixture
models of exponential family distributions. This scheme simplifies the computationallyintensive
maximization step of the EM algorithm, resulting in a general soft-clustering algorithm for all regu-
lar Bregman divergences. We also present an information theoretic analysis of Bregman clustering
algorithms in terms of a trade-off between compression and loss in Bregman information.

1. We use the term “cluster centroid” to denote the expectation of the data points in that cluster.
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1.1 Contributions

We briefly summarize the main contributions of this paper:

1. In the context of hard clustering, we introduce the concept ofBregman Information(Sec-
tion 3) that measures the minimum expected loss incurred by encoding a set of data points
using a constant, where loss is measured in terms of a Bregman divergence. Variance and
mutual information are shown to be special cases of Bregman information. Further, we show
a close connection between Bregman information and Jensen’s inequality.

2. Hard clustering with Bregman divergences is posed as a quantization problem that involves
minimizing loss of Bregman information. We show (Theorem 1 in Section 3) that for any
given clustering, the loss in Bregman information is equal to the expected Bregman diver-
gence of data points to their respective cluster centroids. Hence, minimizing either of these
quantities yields the same optimal clustering.

3. Based on our analysis of the Bregman clustering problem, we present ameta hard clustering
algorithm that is applicable toall Bregman divergences (Section 3). The meta clustering
algorithm retains the simplicity and scalability ofkmeans and is a direct generalization of all
previously known centroid-based parametric hard clustering algorithms.

4. To obtain a similar generalization for the soft clustering case, we show (Theorem 4, Section 4)
that there is a uniquely determined Bregman divergence corresponding toevery regular ex-
ponential family. This result formally proves an observation made by Forster and Warmuth
(2000). In particular, in Section 4.3, we show that the log-likelihood of anyparametric ex-
ponential family is equal to the negative of the corresponding Bregman divergence to the
expectation parameter, up to a fixed additive non-parametric function. Further, in Section 4.4,
we define regular Bregman divergences using exponentially convex functions and show that
there is a bijection between regular exponential families and regular Bregmandivergences.

5. Using the correspondence between exponential families and Bregman divergences, we show
that the mixture estimation problem based on regular exponential families is identical to a
Bregman soft clustering problem (Section 5). Further, we describe an EM scheme to effi-
ciently solve the mixture estimation problem. Although this particular scheme for learning
mixtures of exponential families was previously known (Redner and Walker, 1984), the Breg-
man divergence viewpoint explaining the efficiency is new. In particular,we give a correctness
proof of the efficient M-step updates using properties of Bregman divergences.

6. Finally, we study the relationship between Bregman clustering and rate distortion theory (Sec-
tion 6). Based on the results in Banerjee et al. (2004a), we observe thatthe Bregman hard and
soft clustering formulations correspond to the “scalar” and asymptotic ratedistortion prob-
lems respectively, where distortion is measured using a regular Bregman divergence. Further,
we show how each of these problems can be interpreted as a trade-off between compression
and loss in Bregman information. The information-bottleneck method (Tishby etal., 1999)
can be readily derived as a special case of this trade-off.

A word about the notation: bold faced variables, e.g.,x,µ, are used to represent vectors. Sets
are represented by calligraphic upper-case alphabets, e.g.,X ,Y . Random variables are represented
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by upper-case alphabets, e.g.,X,Y. The symbolsR,N,Z andRd denote the set of reals, the set of
natural numbers, the set of integers and thed-dimensional real vector space respectively. Further,
R+ andR++ denote the set of non-negative and positive real numbers. Forx,y ∈ Rd, ‖x‖ denotes
theL2 norm, and〈x,y〉 denotes the inner product. Unless otherwise mentioned, log will represent
the natural logarithm. Probability density functions (with respect to the Lebesgue or the counting
measure) are denoted by lower case alphabets such asp,q. If a random variableX is distributed
according toν, expectation of functions ofX are denoted byEX[·], or by Eν[·] when the random
variable is clear from the context. The interior, relative interior, boundary, closure and closed convex
hull of a setX are denoted by int(X ), ri(X ), bd(X ), cl(X ) and co(X ) respectively. The effective
domain of a functionf , i.e., set of allx such thatf (x) < +∞ is denoted by dom( f ) while the range
is denoted by range( f ). The inverse of a functionf , when well-defined, is denoted byf−1.

2. Preliminaries

In this section, we define the Bregman divergence corresponding to a strictly convex function and
present some examples.

Definition 1 (Bregman, 1967; Censor and Zenios, 1998) Letφ : S 7→ R,S = dom(φ) be a strictly
convex function defined on a convex setS ⊆ Rd such thatφ is differentiable on ri(S), assumed to
be nonempty. TheBregman divergence dφ : S × ri(S) 7→ [0,∞) is defined as

dφ(x,y) = φ(x)−φ(y)−〈x−y,∇φ(y)〉 ,

where∇φ(y) represents the gradient vector ofφ evaluated aty.

Example 1 Squared Euclidean distance is perhaps the simplest and most widely used Bregman
divergence. The underlying functionφ(x) = 〈x,x〉 is strictly convex, differentiable onRd and

dφ(x,y) = 〈x,x〉−〈y,y〉−〈x−y,∇φ(y)〉
= 〈x,x〉−〈y,y〉−〈x−y,2y〉
= 〈x−y,x−y〉= ‖x−y‖2.

Example 2 Another widely used Bregman divergence is the KL-divergence. Ifp is a discrete prob-
ability distribution so that∑d

j=1 p j = 1, the negative entropyφ(p) = ∑d
j=1 p j log2 p j is a convex

function. The corresponding Bregman divergence is

dφ(p,q) =
d

∑
j=1

p j log2 p j −
d

∑
j=1

q j log2q j −〈p−q,∇φ(q)〉

=
d

∑
j=1

p j log2 p j −
d

∑
j=1

q j log2q j −
d

∑
j=1

(p j −q j)(log2q j + log2e)

=
d

∑
j=1

p j log2

(

p j

q j

)

− log2e
d

∑
j=1

(p j −q j)

= KL(p‖q) ,

the KL-divergence between the two distributions as∑d
j=1q j = ∑d

j=1 p j = 1.
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Table 1: Bregman divergences generated from some convex functions.
Domain φ(x) dφ(x,y) Divergence
R x2 (x−y)2 Squared loss
R+ xlogx xlog( x

y)− (x−y)

[0,1] xlogx+(1−x) log(1−x) xlog( x
y)+(1−x) log( 1−x

1−y) Logistic loss3

R++ − logx x
y− log( x

y)−1 Itakura-Saito distance

R ex ex−ey− (x−y)ey

Rd ‖x‖2 ‖x−y‖2 Squared Euclidean distance
Rd xTAx (x−y)TA(x−y) Mahalanobis distance4

d-Simplex ∑d
j=1 x j log2 x j ∑d

j=1 x j log2(
x j

y j
) KL-divergence

Rd
+ ∑d

j=1 x j logx j ∑d
j=1 x j log(

x j

y j
)−∑d

j=1(x j −y j ) Generalized I-divergence

Example 3 Itakura-Saito distance is another Bregman divergence that is widely usedin signal pro-
cessing. IfF(ejθ) is the power spectrum2 of a signalf (t), then the functionalφ(F)=− 1

2π
R π
−π log(F(ejθ))dθ

is convex inF and corresponds to the negative entropy rate of the signal assuming it was generated
by a stationary Gaussian process (Palus, 1997; Cover and Thomas, 1991). The Bregman divergence
betweenF(ejθ) andG(ejθ) (the power spectrum of another signalg(t)) is given by

dφ(F,G) =
1
2π

Z π

−π

(

− log(F(ejθ))+ log(G(ejθ))− (F(ejθ)−G(ejθ))

(

− 1
G(ejθ)

))

dθ

=
1
2π

Z π

−π

(

− log

(

F(ejθ)

G(ejθ)

)

+
F(ejθ)

G(ejθ)
−1

)

dθ,

which is exactly the Itakura-Saito distance between the power spectraF(ejθ) andG(ejθ) and can
also be interpreted as the I-divergence (Csiszár, 1991) between the generating processes under the
assumption that they are equal mean, stationary Gaussian processes (Kazakos and Kazakos, 1980).

Table 1 contains a list of some common convex functions and their corresponding Bregman diver-
gences. Bregman divergences have several interesting and usefulproperties, such as non-negativity,
convexity in the first argument, etc. For details see Appendix A.

3. Bregman Hard Clustering

In this section, we introduce a new concept called the Bregman information ofa random variable
based on ideas from Shannon’s rate distortion theory. Then, we motivatethe Bregman hard cluster-
ing problem as a quantization problem that involves minimizing the loss in Bregman information
and show its equivalence to a more direct formulation, i.e., the problem of finding a partitioning and
a representative for each of the partitions such that the expected Bregman divergence of the data

2. Note thatF(·) is a function and it is possible to extend the notion of Bregman divergencesto the space of func-
tions (Csisźar, 1995; Gr̈unwald and Dawid, 2004).

3. For x ∈ {0,1} (Bernoulli) andy ∈ (0,1) (posterior probability forx = 1), we havexlog( x
y) + (1− x) log( 1−x

1−y) =

log(1+exp(− f (x)g(y))), i.e., the logistic loss withf (x) = 2x−1 andg(y) = log( y
1−y).

4. The matrixA is assumed to be positive definite;(x− y)TA(x− y) is called the Mahalanobis distance whenA is the
inverse of the covariance matrix.
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points from their representatives is minimized. We then present a clustering algorithm that gen-
eralizes the iterative relocation scheme ofkmeans to monotonically decrease the loss in Bregman
information.

3.1 Bregman Information

The dual formulation of Shannon’s celebrated rate distortion problem (Cover and Thomas, 1991;
Grünwald and Vit́anyi, 2003) involves finding a coding scheme with a given rate, i.e., average
number of bits per symbol, such that the expected distortion between the source random variable
and the decoded random variable is minimized. The achieved distortion is calledthe distortion
rate function, i.e., the infimum distortion achievable for a given rate. Now consider a random
variableX that takes values in a finite setX = {xi}ni=1⊂ S ⊆ Rd (S is convex) following a discrete
probability measureν. Let the distortion be measured by a Bregman divergencedφ. Consider a
simple encoding scheme that represents the random variable by a constantvectors, i.e., codebook
size is one, or rate is zero. The solution to the rate-distortion problem in this case is the trivial
assignment. The corresponding distortion-rate function is given byEν[dφ(X,s)] that depends on the
choice of the representatives and can be optimized by picking the right representative. We call this
optimal distortion-rate function theBregman informationof the random variableX for the Bregman
divergencedφ and denote it byIφ(X), i.e.,

Iφ(X) = min
s∈ri(S)

Eν[dφ(X,s)] = min
s∈ri(S)

n

∑
i=1

νi dφ(xi ,s) . (1)

The optimal vectors that achieves the minimal distortion will be called theBregman representative
or, simply therepresentativeof X. The following theorem states that this representative always ex-
ists, is uniquely determined and, surprisingly,does not dependon the choice of Bregman divergence.
In fact, the minimizer is just the expectation of the random variableX.

Proposition 1 Let X be a random variable that take values inX = {xi}ni=1 ⊂ S ⊆ Rd following
a positive probability measureν such that Eν[X] ∈ ri(S).5 Given a Bregman divergence dφ : S ×
ri(S) 7→ [0,∞), the problem

min
s∈ri(S)

Eν[dφ(X,s)] (2)

has a unique minimizer given bys† = µ = Eν[X].

Proof The function we are trying to minimize isJφ(s) = Eν[dφ(X,s)] = ∑n
i=1 νidφ(xi ,s). Since

µ = Eν[X] ∈ ri(S), the objective function is well-defined atµ. Now,∀s∈ ri(S),

Jφ(s)−Jφ(µ) =
n

∑
i=1

νidφ(xi ,s)−
n

∑
i=1

νidφ(xi ,µ)

= φ(µ)−φ(s)−
〈

n

∑
i=1

νixi−s,∇φ(s)

〉

+

〈

n

∑
i=1

νixi−µ,∇φ(µ)

〉

= φ(µ)−φ(s)−〈µ−s,∇φ(s)〉
= dφ(µ,s)≥ 0,

5. The assumption thatEν[X] ∈ ri(S) is not restrictive since a violation can occur only when co(X ) ⊂ bd(S), i.e., the
entire convex hull ofX is on the boundary ofS.
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with equality only whens= µ by the strict convexity ofφ (Appendix A, Property 1). Hence,µ is
the unique minimizer ofJφ.

Note that the minimization in (2) is with respect to the second argument ofdφ. Proposition 1 is
somewhat surprising since Bregman divergences are not necessarilyconvex in the second argument
as the following example demonstrates.

Example 4 Considerφ(x) = ∑3
j=1x3

j defined onR3
+ so thatdφ(x,s) = ∑3

j=1(x
3
j −s3

j −3(x j−sj)s2
j ).

For the random variableX distributed uniformly over the setX = {(1,1,1),(2,2,2),(3,3,3),(4,4,4),
(5,5,5)},

E[dφ(X,s)] = 135+2
3

∑
j=1

s3
j −9

3

∑
j=1

s2
j ,

which is clearly not convex inssince the Hessian∇2Jφ(s) = diag(12s−18) is not positive definite.
However,Jφ(s) is uniquely minimized bys= (3,3,3), i.e., the expectation of the random variable
X.

Interestingly, the converse of Proposition 1 is also true, i.e., for all random variablesX, if E[X]
minimizes the expected distortion ofX to a fixed point for a smooth distortion functionF(x,y) (see
Appendix B for details), thenF(x,y) has to be a Bregman divergence (Banerjee et al., 2005). Thus,
Bregman divergences areexhaustivewith respect to the property proved in Proposition 1.

Using Proposition 1, we can now give a more direct definition of Bregman information as fol-
lows:

Definition 2 Let X be a random variable that takes values inX = {xi}ni=1 ⊂ S following a proba-
bility measureν. Let µ = Eν[X] = ∑n

i=1 νixi ∈ ri(S) and letdφ : S × ri(S) 7→ [0,∞) be a Bregman
divergence. Then theBregman Informationof X in terms ofdφ is defined as

Iφ(X) = Eν[dφ(X,µ)] =
n

∑
i=1

νi dφ(xi ,µ) .

Example 5 (Variance) Let X = {xi}ni=1 be a set inRd, and consider the uniform measure, i.e.,
νi = 1

n, overX . The Bregman information ofX with squared Euclidean distance as the Bregman
divergence is given by

Iφ(X) =
n

∑
i=1

νidφ(xi ,µ) =
1
n

n

∑
i=1

‖xi−µ‖2,

which is just the sample variance.

Example 6 (Mutual Information ) By definition, the mutual informationI(U ;V) between two dis-
crete random variablesU andV with joint distribution{{p(ui ,v j)}ni=1}mj=1 is given by

I(U ;V) =
n

∑
i=1

m

∑
j=1

p(ui ,v j) log
p(ui ,v j)

p(ui)p(v j)
=

n

∑
i=1

p(ui)
m

∑
j=1

p(v j |ui) log
p(v j |ui)

p(v j)

=
n

∑
i=1

p(ui)KL( p(V|ui) ‖ p(V) ) .
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Consider a random variableZu that takes values in the set of probability distributionsZu = {p(V|ui)}ni=1
following the probability measure{νi}ni=1 = {p(ui)}ni=1 over this set. The mean (distribution) ofZu

is given by

µ = Eν[p(V|u)] =
n

∑
i=1

p(ui)p(V|ui) =
n

∑
i=1

p(ui ,V) = p(V) .

Hence,

I(U ;V) =
n

∑
i=1

νidφ(p(V|ui),µ) = Iφ(Zu) ,

i.e., mutual information is the Bregman information ofZu whendφ is the KL-divergence. Similarly,
for a random variableZv that takes values in the set of probability distributionsZv = {p(U |v j)}mj=1
following the probability measure{ν j}mj=1 = {p(v j)}mj=1 over this set, one can show thatI(U ;V) =
Iφ(Zv). The Bregman information ofZu andZv can also be interpreted as the Jensen-Shannon diver-
gence of the setsZu andZv (Dhillon et al., 2003).

Example 7 The Bregman information corresponding to Itakura-Saito distance also hasa useful
interpretation. LetF = {Fi}ni=1 be a set of power spectra corresponding ton different signals, and
let ν be a probability measure onF . Then, the Bregman information of a random variableF that
takes values inF following ν, with Itakura-Saito distance as the Bregman divergence, is given by

Iφ(F) =
n

∑
i=1

νidφ(Fi , F̄) =
n

∑
i=1

νi

2π

Z π

−π

(

− log

(

Fi(ejθ)

F̄(ejθ)

)

+
Fi(ejθ)

F̄(ejθ)
−1

)

dθ

= − 1
2π

Z π

−π

n

∑
i=1

νi log

(

Fi(ejθ)

F̄(ejθ)

)

dθ,

where F̄ is the marginal average power spectrum. Based on the connection betweenthe corre-
sponding convex functionφ and the negative entropy of Gaussian processes (Cover and Thomas,
1991; Palus, 1997), it can be shown that the Bregman informationIφ(F) is the Jensen-Shannon
divergence of the generating processes under the assumption that theyare equal mean, stationary
Gaussian processes. Further, consider an-class signal classification problem where each class of
signals is assumed to be generated by a certain Gaussian process. Now, ifPe(t) is the optimal Bayes
error for this classification problem averaged upto timet, thenPe(t) is bounded above and below by
functions of the Chernoff coefficientB(t) (Kazakos and Kazakos, 1980) of the generating Gaussian
processes. The asymptotic value of this Chernoff coefficient ast tends to∞ is a function of the
Bregman information ofF , i.e.,

lim
t→∞

B(t) = exp(−1
2

Iφ(F)).

and is directly proportional to the optimal Bayes error.

3.1.1 JENSEN’ S INEQUALITY AND BREGMAN INFORMATION

An alternative interpretation of Bregman information can also be made in terms ofJensen’s inequal-
ity (Cover and Thomas, 1991). Given any convex functionφ, for any random variableX, Jensen’s
inequality states that

E[φ(X)]≥ φ(E[X]) .
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A direct calculation using the definition of Bregman information shows that (Banerjee et al., 2004b)

E[φ(X)]−φ(E[X])
(a)
= E[φ(X)]−φ(E[X])−E[〈X−E[X],∇φ(E[X])〉]
(b)
= E[φ(X)−φ(E[X])−〈X−E[X],∇φ(E[X])〉]
= E[dφ(X,E[X])] = Iφ(X) ≥ 0 ,

where (a) follows since the last term is 0, and (b) follows from the linearity of expectation. Thus the
difference between the two sides of Jensen’s inequality is exactly equal tothe Bregman information.

3.2 Clustering Formulation

Let X be a random variable that takes values inX = {xi}ni=1 following the probability measureν.
WhenX has a large Bregman information, it may not suffice to encodeX using a single represen-
tative since a lower quantization error may be desired. In such a situation, anatural goal is to split
the setX into k disjoint partitions{Xh}kh=1, each with its own Bregman representative, such that
a random variableM over the partition representatives serves as an appropriate quantizationof X.
Let M = {µh}kh=1 denote the set of representatives, andπ = {πh}kh=1 with πh = ∑xi∈Xh

νi denote
the induced probability measure onM . Then the induced random variableM takes values inM
following π.

The quality of the quantizationM can be measured by the expected Bregman divergence be-
tweenX andM, i.e., EX,M[dφ(X,M)]. SinceM is a deterministic function ofX, the expectation is
actually over the distribution ofX, so that

EX[dφ(X,M)] =
k

∑
h=1

∑
xi∈Xh

νidφ(xi ,µh) =
k

∑
h=1

πh ∑
xi∈Xh

νi

πh
dφ(xi ,µh) = Eπ[Iφ(Xh)] ,

whereXh is the random variable that takes values in the partitionXh following a probability dis-
tribution νi

πh
, andIφ(Xh) is the Bregman information ofXh. Thus, the quality of the quantization is

equal to the expected Bregman information of the partitions.
An alternative way of measuring the quality of the quantizationM can be formulated from

an information theoretic viewpoint. In information-theoretic clustering (Dhillon et al., 2003), the
quality of the partitioning is measured in terms of the loss in mutual information resulting from the
quantization of the original random variableX. Extending this formulation, we can measure the
quality of the quantizationM by the loss in Bregman information due to the quantization, i.e., by
Iφ(X)− Iφ(M). Fork = n, the best choice is of courseM = X with no loss in Bregman information.
For k = 1, the best quantization is to pickEν[X] with probability 1, incurring a loss ofIφ(X). For
intermediate values ofk, the solution is less obvious.

Interestingly the two possible formulations outlined above turn out to be identical (see Theo-
rem 1 below). We choose the information theoretic viewpoint to pose the problem, since we will
study the connections of both the hard and soft clustering problems to rate distortion theory in Sec-
tion 6. Thus we define theBregman hard clustering problemas that of finding a partitioning of
X , or, equivalently, finding the random variableM, such thatthe loss in Bregman informationdue
to quantization,Lφ(M) = Iφ(X)− Iφ(M), is minimized. Typically, clustering algorithms assume a
uniform measure, i.e.,νi = 1

n,∀i, over the data, which is clearly a special case of our formulation.
The following theorem shows that the loss in Bregman information and the expected Bregman

information of the partitions are equal.
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Theorem 1 Let X be a random variable that takes values inX = {xi}ni=1 ⊂ S ⊆ Rd following
the positive probability measureν. Let{Xh}kh=1 be a partitioning ofX and letπh = ∑xi∈Xh

νi be the
induced measureπ on the partitions. Let Xh be the random variable that takes values inXh following
νi
πh

for xi ∈ Xh, for h= 1, . . . ,k. LetM = {µh}kh=1 with µh ∈ ri(S) denote the set of representatives

of {Xh}kh=1, and M be a random variable that takes values inM following π. Then,

Lφ(M) = Iφ(X)− Iφ(M) = Eπ[Iφ(Xh)] =
k

∑
h=1

πh ∑
xi∈Xh

νi

πh
dφ(xi ,µh) .

Proof By definition,

Iφ(X) =
n

∑
i=1

νidφ(xi ,µ) =
k

∑
h=1

∑
xi∈Xh

νidφ(xi ,µ)

=
k

∑
h=1

∑
xi∈Xh

νi {φ(xi)−φ(µ)−〈xi−µ,∇φ(µ)〉}

=
k

∑
h=1

∑
xi∈Xh

νi {φ(xi)−φ(µh)−〈xi−µh,∇φ(µh)〉+ 〈xi−µh,∇φ(µh)〉

+φ(µh)−φ(µ)−〈xi−µh +µh−µ,∇φ(µ)〉}

=
k

∑
h=1

∑
xi∈Xh

νi
{

dφ(xi ,µh)+dφ(µh,µ)+ 〈xi−µh,∇φ(µh)−∇φ(µ)〉
}

=
k

∑
h=1

πh ∑
xi∈Xh

νi

πh
dφ(xi ,µh)+

k

∑
h=1

∑
xi∈Xh

νidφ(µh,µ)

+
k

∑
h=1

πh ∑
xi∈Xh

νi

πh
〈xi−µh,∇φ(µh)−∇φ(µ)〉

=
k

∑
h=1

πhIφ(Xh)+
k

∑
h=1

πhdφ(µh,µ)+
k

∑
h=1

πh

〈

∑
xi∈Xh

νi

πh
xi−µh,∇φ(µh)−∇φ(µ)

〉

= Eπ[Iφ(Xh)]+ Iφ(M),

since∑xi∈Xh

νi
πh

xi = µh.

Note thatIφ(X) can be interpreted as the “total Bregman information”, andIφ(M) can be interpreted
as the “between-cluster Bregman information” since it is a measure of divergence between the clus-
ter representatives, whileLφ(M) can be interpreted as the “within-cluster Bregman information”.
Thus Theorem 1 states that the total Bregman information equals the sum of thewithin-cluster
Bregman information and between-cluster Bregman information. This is a generalization of the
corresponding result for squared Euclidean distances (Duda et al., 2001).

Using Theorem 1, the Bregman clustering problem of minimizing the loss in Bregman informa-
tion can be written as

min
M

(

Iφ(X)− Iφ(M)
)

= min
M

(

k

∑
h=1

∑
xi∈Xh

νidφ(xi ,µh)

)

. (3)
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Algorithm 1 Bregman Hard Clustering

Input: SetX = {xi}ni=1 ⊂ S ⊆ Rd, probability measureν overX , Bregman divergencedφ : S × ri(S) 7→ R,
number of clustersk.

Output: M †, local minimizer ofLφ(M ) = ∑k
h=1 ∑xi∈Xh

νidφ(xi ,µh) whereM = {µh}kh=1, hard partitioning
{Xh}kh=1 of X .

Method:
Initialize {µh}kh=1 with µh ∈ ri(S) (one possible initialization is to chooseµh ∈ ri(S) at random)
repeat
{The Assignment Step}
SetXh← /0, 1≤ h≤ k
for i = 1 ton do

Xh← Xh∪{xi}
whereh = h†(xi) = argmin

h′
dφ(xi ,µh′)

end for
{The Re-estimation Step}
for h = 1 tok do

πh← ∑xi∈Xh
νi

µh← 1
πh

∑xi∈Xh
νixi

end for
until convergence
returnM†←{µh}kh=1

Thus, the loss in Bregman information is minimized if the set of representativesM is such that the
expected Bregman divergence of points in the original setX to their corresponding representatives
is minimized. We shall investigate the relationship of this formulation to rate distortion theory in
detail in Section 6.

3.3 Clustering Algorithm

The objective function given in (3) suggests a natural iterative relocation algorithm for solving
the Bregman hard clustering problem (see Algorithm 1). It is easy to see that classicalkmeans,
the LBG algorithm (Buzo et al., 1980) and the information theoretic clustering algorithm (Dhillon
et al., 2003) are special cases of Bregman hard clustering for squared Euclidean distance, Itakura-
Saito distance and KL-divergence respectively. The following propositions prove the convergence
of the Bregman hard clustering algorithm.

Proposition 2 The Bregman hard clustering algorithm (Algorithm 1) monotonically decreases the
loss function in (3).

Proof Let {X (t)
h }kh=1 be the partitioning ofX after thetth iteration and letM (t) = {µ(t)

h }kh=1 be the
corresponding set of cluster representatives. Then,

Lφ(M
(t)) =

k

∑
h=1

∑
xi∈X

(t)
h

νidφ(xi ,µ
(t)
h )

(a)

≥
k

∑
h=1

∑
xi∈X

(t)
h

νidφ(xi ,µ
(t)
h†(xi)

)

(b)

≥
k

∑
h=1

∑
xi∈X

(t+1)
h

νidφ(xi ,µ
(t+1)
h ) = Lφ(M

(t+1)),
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where (a) follows from the assignment step, and (b) follows from the re-estimation step and Propo-
sition 1. Note that if equality holds, i.e., if the loss function value is equal at consecutive iterations,
then the algorithm will terminate.

Proposition 3 The Bregman hard clustering algorithm (Algorithm 1) terminates in a finite number
of steps at a partition that is locally optimal, i.e., the total loss cannot be decreased by either (a) the
assignment step or by (b) changing the means of any existing clusters.

Proof The result follows since the algorithm monotonically decreases the objectivefunction value,
and the number of distinct clusterings is finite.

In addition to local optimality, the Bregman hard clustering algorithm has the following inter-
esting properties.

Exhaustiveness:The Bregman hard clustering algorithm with cluster centroids as optimal repre-
sentatives works forall Bregman divergences andonly for Bregman divergences since the
arithmetic mean is the best predictoronly for Bregman divergences (Banerjee et al., 2005).
However, it is possible to have a similar alternate minimization based clustering algorithm
for distance functions that are not Bregman divergences, the primary difference being that
the optimal cluster representative, when it exists, will no longer be the arithmetic mean or
the expectation. Theconvex-kmeans clustering algorithm (Modha and Spangler, 2003) and
the generalizations of the LBG algorithm (Linde et al., 1980) are examples ofsuch alternate
minimization schemes where a (unique) representative exists because of convexity.

Linear Separators: For all Bregman divergences, the partitions induced by the Bregman hard
clustering algorithm are separated by hyperplanes. In particular, the locus of points that are
equidistant to two fixed pointsµ1,µ2 in terms of a Bregman divergence is given byX =
{x | dφ(x,µ1) = dφ(x,µ2)}, i.e., the set of points,

{x | 〈x,∇φ(µ2)−∇φ(µ1)〉= (φ(µ1)−〈µ1,∇φ(µ1)〉)− (φ(µ2)−〈µ2,∇φ(µ2)〉)} ,

which corresponds to a hyperplane.

Scalability: The computational complexity of each iteration of the Bregman hard clustering algo-
rithm is linear in the number of data points and the number of desired clusters for all Bregman
divergences, which makes the algorithm scalable and appropriate for large clustering prob-
lems.

Applicability to mixed data types: The Bregman hard clustering algorithm is applicable to mixed
data types that are commonly encountered in machine learning. One can choose different
convex functions that are appropriate and meaningful for different subsets of the features.
The Bregman divergence corresponding to a convex combination of the component convex
functions can then be used to cluster the data.

4. Relationship with Exponential Families

We now turn our attention tosoftclustering with Bregman divergences. To accomplish our goal, we
first establish that there is a unique Bregman divergence corresponding to every regular exponential
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family distribution. Later, we make this relation more precise by establishing a bijection between
regular exponential families andregular Bregman divergences. The correspondence will be used to
develop the Bregman soft clustering algorithm in Section 5. To present ourresults, we first review
some background information on exponential families and Legendre duality inSections 4.1 and 4.2
respectively.

4.1 Exponential Families

Consider a measurable space(Ω,B) whereB is a σ-algebra on the setΩ. Let t be a measurable
mapping fromΩ to a setT ⊆ Rd, whereT may be discrete (e.g.,T ⊂ N). Let p0 : T 7→ R+

be any function such that if(Ω,B) is endowed with a measuredP0(ω) = p0(t(ω))dt(ω), then
R

ω∈Ω dP0(ω) < ∞. The measureP0 is absolutely continuous with respect to the Lebesgue mea-
suredt(ω). WhenT is a discrete set,dt(ω) is the counting measure andP0 is absolutely continuous
with respect to the counting measure.6

Now, t(ω) is a random variable from(Ω,B,P0) to (T ,σ(T )), whereσ(T ) denotes theσ-algebra
generated byT . Let Θ be defined as the set of all parametersθ ∈ Rd for which

Z

ω∈Ω
exp(〈θ, t(ω)〉)dP0(ω) < ∞ .

Based on the definition ofΘ, it is possible to define a functionψ : Θ 7→ R such that

ψ(θ) = log

(

Z

ω∈Ω
exp(〈θ, t(ω)〉)dP0(ω)

)

. (4)

A family of probability distributionsFψ parameterized by ad-dimensional vectorθ ∈Θ⊆Rd such
that the probability density functions with respect to the measuredt(ω) can be expressed in the form

f (ω;θ) = exp(〈θ, t(ω)〉−ψ(θ)) p0(t(ω)) (5)

is called anexponential familywith natural statistict(ω), natural parameterθ andnatural param-
eter spaceΘ. In particular, if the components oft(ω) are affinely independent, i.e.,@ non-zero
a∈ Rd such that〈a, t(ω)〉= c (a constant)∀ω ∈ Ω, then this representation is said to beminimal.7

For a minimal representation, there exists a unique probability densityf (ω;θ) for every choice of
θ ∈ Θ (Wainwright and Jordan, 2003).Fψ is called afull exponential familyof order d in such a
case. In addition, if the parameter spaceΘ is open, i.e.,Θ = int(Θ), thenFψ is called aregular
exponential family.

It can be easily seen that ifx ∈Rd denotes the natural statistict(ω), then the probability density
functiong(x;θ) (with respect to the appropriate measuredx) given by

g(x;θ) = exp(〈θ,x〉−ψ(θ))p0(x) (6)

is such thatf (ω;θ)/g(x;θ) does not depend onθ. Thus,x is a sufficient statistic (Amari and Na-
gaoka, 2001) for the family, and in fact, can be shown (Barndorff-Nielsen, 1978) to be minimally

6. For conciseness, we abuse notation and continue to use the Lebesgueintegral sign even for counting measures. The
integral in this case actually denotes a sum overT . Further, the use of absolute continuity in the context of counting
measure is non-standard. We say the measureP0 is absolutely continuous with respect to the counting measureµc if
P0(E) = 0 for every set withµc(E) = 0, whereE is a discrete set.

7. Strictly speaking,@ non-zeroa such thatP0({ω : 〈t(ω),a〉= c}) = 1.
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sufficient. For instance, the natural statistic for the one-dimensional Gaussian distributions denoted
by f (ω;σ,µ) = 1√

2πσexp(− (ω−µ)2

2σ2 ) is given byx = [ω,ω2] and the corresponding natural parameter

turns out to beθ = [ µ
σ2 ,− 1

2σ2 ], which can be easily verified to be minimally sufficient. For our anal-
ysis, it is convenient to work with the minimal natural sufficient statisticx and hence, we redefine
regular exponential families in terms of the probability density ofx ∈ Rd, noting that the original
probability space can actually be quite general.

Definition 3 A multivariate parametric familyFψ of distributions{p(ψ,θ)|θ∈Θ = int(Θ)= dom(ψ)⊆
Rd} is called a regular exponential family if each probability density is of the form

p(ψ,θ)(x) = exp(〈x,θ〉−ψ(θ))p0(x), ∀x ∈ Rd,

wherex is a minimal sufficient statistic for the family.

The functionψ(θ) is known as thelog partition functionor thecumulant functioncorresponding
to the exponential family. Given a regular exponential familyFψ, the log-partition functionψ is
uniquely determined up to a constant additive term. It can be shown (Barndorff-Nielsen, 1978) that
Θ is a non-empty convex set inRd andψ is a convex function. In fact, it is possible to prove a
stronger result that characterizesψ in terms of a special class of convex functions called Legendre
functions, which are defined below.

Definition 4 (Rockafellar (1970)) Let ψ be a proper, closed8 convex function withΘ = int(dom(ψ)).
The pair(Θ,ψ) is called a convex function of Legendre type or a Legendre function if thefollowing
properties are satisfied:

(L1) Θ is non-empty,

(L2) ψ is strictly convex and differentiable onΘ,

(L3) ∀θb ∈ bd(Θ), lim
θ→θb

‖∇ψ(θ)‖→ ∞ whereθ ∈Θ.

Based on this definition, we now state a critical property of the cumulant function of any regular
exponential family.

Lemma 1 Let ψ be the cumulant function of a regular exponential family with natural parameter
spaceΘ = dom(ψ). Thenψ is a proper, closed convex function withint(Θ) = Θ and (Θ,ψ) is a
convex function of Legendre type.

The above result directly follows from Theorems 8.2, 9.1 and 9.3 of Barndorff-Nielsen (1978).

4.2 Expectation Parameters and Legendre Duality

Consider ad-dimensional real random vectorX distributed according to a regular exponential family
densityp(ψ,θ) specified by the natural parameterθ ∈Θ. The expectation ofX with respect top(ψ,θ),
also called theexpectation parameter, is given by

µ = µ(θ) = Ep(ψ,θ)
[X] =

Z

Rd
xp(ψ,θ)(x)dx. (7)

8. A convex functionψ is proper if dom(ψ) is non-empty and∀x ∈ dom(ψ),ψ(x) > −∞. A convex function is closed
if it is lower semi-continuous.
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It can be shown (Barndorff-Nielsen, 1978; Amari, 1995) that the expectation and natural parameters
have a one-one correspondence with each other and span spaces that exhibit a dual relationship. To
specify the duality more precisely, we first define conjugate functions.

Definition 5 (Rockafellar (1970)) Let ψ be a real-valued function onRd. Then itsconjugate func-
tion ψ∗ is given by

ψ∗(t) = sup
θ∈dom(ψ)

{〈t,θ〉−ψ(θ)}. (8)

Further, if ψ is a proper closed convex function,ψ∗ is also a proper closed convex function and
ψ∗∗ = ψ.

Whenψ is strictly convex and differentiable overΘ = int(dom(ψ)), we can obtain the uniqueθ†

that corresponds to the supremum in (8) by setting the gradient of〈t,θ〉−ψ(θ) to zero, i.e.,

∇(〈t,θ〉−ψ(θ)) |θ=θ† = 0 ⇒ t = ∇ψ(θ†) . (9)

The strict convexity ofψ implies that∇ψ is monotonic and it is possible to define the inverse
function(∇ψ)−1 : Θ∗ 7→ Θ, whereΘ∗ = int(dom(ψ∗)). If the pair (Θ, ψ) is of Legendre type, then
it can be shown (Rockafellar, 1970) that (Θ∗, ψ∗) is also of Legendre type, and(Θ,ψ) and(Θ∗,ψ∗)
are called Legendre duals of each other. Further, the gradient mappings are continuous and form a
bijection between the two open setsΘ andΘ∗. The relation between(Θ,ψ) and(Θ∗,ψ∗) result is
formally stated below.

Theorem 2 (Rockafellar (1970))Let ψ be a real-valued proper closed convex function with con-
jugate functionψ∗. LetΘ = int(dom(ψ)) andΘ∗ = int(dom(ψ∗)). If (Θ,ψ) is a convex function of
Legendre type, then

(i) (Θ∗,ψ∗) is a convex function of Legendre type,

(ii) (Θ,ψ) and(Θ∗,ψ∗) are Legendre duals of each other,

(iii) The gradient function∇ψ : Θ 7→ Θ∗ is a one-to-one function from the open convex setΘ onto
the open convex setΘ∗,

(iv) The gradient functions∇ψ,∇ψ∗ are continuous, and∇ψ∗ = (∇ψ)−1.

Let us now look at the relationship between the natural parameterθ and the expectation parameterµ

defined in (7). Differentiating the identity
R

p(ψ,θ)(x)dx = 1 with respect toθ gives usµ = µ(θ) =
∇ψ(θ), i.e., the expectation parameterµ is the image of the natural parameterθ under the gradient
mapping∇ψ. Let φ be defined as the conjugate ofψ, i.e.,

φ(µ) = sup
θ∈Θ
{〈µ,θ〉−ψ(θ)}. (10)

Since(Θ,ψ) is a convex function of Legendre type (Lemma 1), the pairs(Θ,ψ) and(int(dom(φ)),φ)
are Legendre duals of each other from Theorem 2, i.e.,φ = ψ∗ and int(dom(φ)) = Θ∗. Thus, the
mappings between the dual spaces int(dom(φ)) andΘ are given by the Legendre transformation

µ(θ) = ∇ψ(θ) and θ(µ) = ∇φ(µ) . (11)

Further, the conjugate functionφ can be expressed as

φ(µ) = 〈θ(µ),µ〉−ψ(θ(µ)), ∀µ ∈ int(dom(φ)) . (12)
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4.3 Exponential Families and Bregman Divergences

We are now ready to explicitly state the formal connection between exponential families of distri-
butions and Bregman divergences. It has been observed in the literature that exponential families
and Bregman divergences have a close relationship that can be exploitedfor several learning prob-
lems. In particular, Forster and Warmuth (2000)[Section 5.1] remarked that the log-likelihood of
the density of an exponential family distributionp(ψ,θ) can be written as the sum of the negative
of a uniquely determined Bregman divergencedφ(x,µ) and a function that does not depend on the
distribution parameters. In our notation, this can be written as

log(p(ψ,θ)(x)) =−dφ(x,µ(θ))+ log(bφ(x)) , (13)

whereφ is the conjugate function ofψ andµ = µ(θ) = ∇ψ(θ) is the expectation parameter cor-
responding toθ. The result was later used by Collins et al. (2001) to extend PCA to exponential
families. However, as we explain below, a formal proof is required to showthat (13) holds for all
instancesx of interest. We focus on the case whenp(ψ,θ) is aregularexponential family.

To get an intuition of the main result, observe that the log-likelihood of any exponential family,
considering only the parametric terms, can be written as

〈x,θ〉−ψ(θ) = (〈µ,θ〉−ψ(θ))+ 〈x−µ,θ〉
= φ(µ)+ 〈x−µ,∇φ(µ)〉 ,

from (11) and (12), whereµ ∈ int(dom(φ)). Therefore, for anyx ∈ dom(φ), θ ∈ Θ, andµ ∈
int(dom(φ)), one can write

〈x,θ〉−ψ(θ) = −dφ(x,µ)+φ(x) .

Then considering the density of an exponential family with respect to the appropriate measuredx,
we have

log(p(ψ,θ)(x)) = 〈x,θ〉−ψ(θ)+ logp0(x) = −dφ(x,µ)+ log(bφ(x)) ,

wherebφ(x) = exp(φ(x))p0(x).
Thus (13) follows directly from Legendre duality forx∈ dom(φ). However, for (13) to be useful,

one would like to ensure that it is true for all individual “instances”x that can be drawn following
the exponential distributionp(ψ,θ). Let Iψ denote the set of such instances. Establishing (13) can be
tricky for all x ∈ Iψ since the relationship betweenIψ and dom(φ) is not apparent. Further, there are
distributions for which the instances spaceIψ and the expectation parameter space int(dom(φ)) are
disjoint, as the following example shows.

Example 8 A Bernoulli random variableX takes values in{0,1} such thatp(X = 1) = q and
p(X = 0) = 1−q, for someq∈ [0,1]. The instance space forX is just Iψ = {0,1}. The cumulant
function forX is ψ(θ) = log(1+exp(θ)) with Θ = R (see Table 2). A simple calculation shows that
the conjugate functionφ(µ) = µlogµ+(1−µ) log(1−µ), ∀µ∈ (0,1). Sinceφ is a closed function,
we obtainφ(µ) = 0 for µ∈ {0,1} by taking limits. Thus, the effective domain ofφ is [0,1] andµ= q,
whereas the expectation parameter space is given by int(dom(φ)) = (0,1). Hence the instance space
Iψ and the expectation parameter space int(dom(φ)) are disjoint; howeverIψ ⊂ dom(φ).
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In this particular case, since the “instances” lie within dom(φ), the relation (13) does hold for all
x ∈ Iψ. However, it remains to be shown thatIψ ⊆ dom(φ) for all regular exponential family distri-
butions.

In order to establish such a result for all regular exponential family distributions, we need to
formally define the set of instancesIψ. If the measureP0 is absolutely continuous with respect to the
counting measure, thenx∈ Iψ if p(ψ,θ)(x) > 0. On the other hand, ifP0 is absolutely continuous with
respect to the Lebesgue measure, thenx ∈ Iψ if all sets with positive Lebesgue measure that contain
x have positive probability mass. A closer look reveals that the set of instancesIψ is independent of
the choice ofθ. In fact,Iψ is just the support ofP0 and can be formally defined as follows.

Definition 6 Let Iψ denote the set of instances that can be drawn followingp(ψ,θ)(x). Then,x0 ∈ Iψ
if ∀I such thatx0 ∈ I and

R

I dx > 0, we have
R

I dP0(x) > 0, whereP0 is as defined in Section 4.1;
also see footnote 6.

The following theorem establishes the crucial result that the set of instancesIψ is always a subset of
dom(φ).

Theorem 3 Let Iψ be the set of instances as in Definition 6. Then, Iψ ⊆ dom(φ) whereφ is the
conjugate function ofψ.

The above result follows from Theorem 9.1 and related results in Barndorff-Nielsen (1978). We
have included the proof in Appendix C.

We are now ready to formally show that there is a unique Bregman divergence corresponding to
every regular exponential family distribution. Note that, by Theorem 3, it is sufficient to establish
the relationship for allx ∈ dom(φ).

Theorem 4 Let p(ψ,θ) be the probability density function of a regular exponential family distribu-
tion. Letφ be the conjugate function ofψ so that(int(dom(φ)),φ) is the Legendre dual of(Θ,ψ). Let
θ ∈ Θ be the natural parameter andµ ∈ int(dom(φ)) be the corresponding expectation parameter.
Let dφ be the Bregman divergence derived fromφ. Then p(ψ,θ) can be uniquely expressed as

p(ψ,θ)(x) = exp(−dφ(x,µ))bφ(x), ∀x ∈ dom(φ) (14)

where bφ : dom(φ) 7→ R+ is a uniquely determined function.

Proof For allx ∈ dom(φ), we have

p(ψ,θ)(x) = exp(〈x,θ〉−ψ(θ))p0(x)

= exp(φ(µ)+ 〈x−µ,∇φ(µ)〉)p0(x) (using (11) and (12))

= exp(−{φ(x)−φ(µ)−〈x−µ,∇φ(µ)〉}+φ(x))p0(x)

= exp(−dφ(x,µ))bφ(x) ,

wherebφ(x) = exp(φ(x))p0(x)).
We observe thatp(ψ,θ) uniquely determines the log-partition functionψ to a constant additive

term so that the gradient space of all the possible functionsψ is the same, i.e., the expectation pa-
rameterµ = ∇ψ(θ) corresponding toθ is uniquely determined and the corresponding conjugate
functionsφ differ only by a constant additive term. Hence the Bregman divergencedφ(x,µ) derived
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from any of these conjugate functions will be identical since constant additive terms do not change
the corresponding Bregman divergence (Appendix A, Property 4). The Legendre duality between
φ andψ also ensures that no two exponential families correspond to the same Bregman divergence,
i.e., the mapping is one-to-one. Further, sincep(ψ,θ)(x) is well-defined on dom(φ), and the corre-
spondingdφ(x,µ) is unique, the functionbφ(x) = exp(dφ(x,µ))p(ψ,θ)(x) is uniquely determined.

4.4 Bijection with Regular Bregman Divergences

From Theorem 4 we note that every regular exponential family corresponds to a unique and dis-
tinct Bregman divergence (one-to-one mapping). Now, we investigate whether there is a regular
exponential family corresponding to every choice of Bregman divergence (onto mapping).

For regular exponential families, the cumulant functionψ as well as its conjugateφ are convex
functions of Legendre type. Hence, for a Bregman divergence generated from a convex functionφ
to correspond to a regular exponential family, it is necessary thatφ be of Legendre type. Further,
it is necessary that the Legendre conjugateψ of φ to beC∞, since cumulant functions of regular
exponential families areC∞. However, it is not clear if these conditions are sufficient. Instead, we
provide a sufficiency condition using exponentially convex functions (Akhizer, 1965; Ehm et al.,
2003), which are defined below.

Definition 7 A function f : Θ 7→R++, Θ⊆Rd is called exponentially convex if the kernelK f (α,β)=
f (α+β), with α+β ∈Θ, satisfies

n

∑
i=1

n

∑
j=1

K f (θi ,θ j)ui ū j ≥ 0

for any set{θ1, · · · ,θn} ⊆Θ with θi +θ j ∈Θ, ∀i, j, and{u1, · · · ,un} ⊂ C (ū j denotes the complex
conjugate ofu j ), i.e, the kernelK f is positive semi-definite.

Although it is well known that the logarithm of an exponentially convex function is a convex func-
tion (Akhizer, 1965), we are interested in the case where the logarithm is strictly convex with an
open domain. Using this class of exponentially convex functions, we now define a class of Bregman
divergences calledregular Bregman divergences.

Definition 8 Let f : Θ 7→ R++ be a continuous exponentially convex function such thatΘ is open
andψ(θ) = log( f (θ)) is strictly convex. Letφ be the conjugate function ofψ. Then we say that the
Bregman divergencedφ derived fromφ is aregular Bregman divergence.

We will now prove that there is a bijection between regular exponential familiesand regular
Bregman divergences. The crux of the argument relies on results in harmonic analysis connecting
positive definiteness to integral transforms (Berg et al., 1984). In particular, we use a result due
to Devinatz (1955) that relates exponentially convex functions to Laplace transforms of bounded
non-negative measures.

Theorem 5 (Devinatz (1955))Let Θ⊆ Rd be an open convex set. A necessary and sufficient con-
dition that there exists a unique, bounded, non-negative measureν such that f: Θ 7→ R++ can be
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represented as

f (θ) =
Z

x∈Rd
exp(〈x,θ〉)dν(x) (15)

is that f is continuous and exponentially convex.

We also need the following result to establish the bijection.

Lemma 2 Let ψ be the cumulant of an exponential family with base measure P0 and natural pa-
rameter spaceΘ⊆Rd. Then, if P0 is concentrated on an affine subspace ofRd thenψ is not strictly
convex.

Proof Let P0(x) be concentrated on an affine subspaceS= {x ∈ Rd|〈x,b〉 = c} for someb ∈ Rd

andc∈ R. Let I = {θ|θ = αb, α ∈ R}. Then, for anyθ = αb ∈ I , we have〈x,θ〉= αc ∀x ∈ Sand
the cumulant is given by

ψ(θ) = log

(

Z

x∈Rd
exp(〈x,θ〉)dP0(x)

)

= log

(

Z

x∈S
exp(〈x,θ〉)dP0(x)

)

= log

(

Z

x∈S
exp(αc)dP0(x)

)

= log(exp(αc)P0(S)) = αc+ log(P0(S))

= 〈x0,θ〉+ log(P0(S)) ,

for anyx0 ∈ S, implying thatψ is not strictly convex.

There are two parts to the proof leading to the bijection result. Note that we have already established
in Theorem 4 that there is a unique Bregman divergence correspondingto every exponential family
distribution. In the first part of the proof, we show that these Bregman divergences are regular (one-
to-one). Then we show that there exists a unique regular exponential family determined by every
regular Bregman divergence (onto).

Theorem 6 There is a bijection between regular exponential families and regular Bregman diver-
gences.

Proof First we prove the ‘one-to-one’ part, i.e., there is a regular Bregman divergence corresponding
to every regular exponential familyFψ with cumulant functionψ and natural parameter spaceΘ.
SinceFψ is a regular exponential family, there exists a non-negative bounded measureν such that
for all θ ∈Θ,

1 =
Z

x∈Rd
exp(〈x,θ〉−ψ(θ))dν(x)

⇒ exp(ψ(θ)) =
Z

x∈Rd
exp(〈x,θ〉)dν(x).

Thus, from Theorem 5, exp(ψ(θ)) is a continuous exponentially convex function with the open set
Θ as its domain. Further, being the cumulant of a regular exponential family,ψ is strictly convex.
Therefore, the Bregman divergencedφ derived from the conjugate functionφ of ψ is a regular
Bregman divergence.

Next we prove the ‘onto’ part, i.e., every regular Bregman divergencecorresponds to a unique
regular exponential family. Let the regular Bregman divergencedφ be generated byφ and letψ be
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the conjugate ofφ. Sincedφ is a regular Bregman divergence, by Definition 8,ψ is strictly convex
with dom(ψ) = Θ being an open set. Further, the function exp(ψ(θ)) is a continuous, exponentially
convex function. From Theorem 5, there exists a unique non-negativebounded measureν that
satisfies (15). SinceΘ is non-empty, we can choose some fixedb ∈Θ so that

exp(ψ(b)) =
Z

x∈Rd
exp(〈x,b〉)dν(x)

and sodP0(x) = exp(〈x,b〉−ψ(b))dν(x) is a probability density function. The set of allθ ∈Rd for
which

Z

x∈Rd
exp(〈x,θ〉)dP0(x) < ∞

is same as the set{θ ∈ Rd|exp(ψ(θ + b)−ψ(b)) < ∞} = {θ ∈ Rd|θ + b ∈ Θ} which is just a
translated version ofΘ itself. For anyθ such thatθ +b ∈Θ, we have

Z

x∈Rd
exp(〈x,θ +b〉−ψ(θ +b))dν(x) = 1 .

Hence, the exponential familyFψ consisting of densities of the form

p(ψ,θ)(x) = exp(〈x,θ〉−ψ(θ))

with respect to the measureν hasΘ as its natural parameter space andψ(θ) as the cumulant function.

Sinceψ is strictly convex onΘ, it follows from Lemma 2 that the measureP0 is not concentrated
in an affine subspace ofRd, i.e.,x is a minimal statistic forFψ. Therefore, the exponential family
generated byP0 andx is full. SinceΘ is also open, it follows thatFψ is a regular exponential family.

Finally we show that the family is unique. Since onlydφ is given, the generating convex function
could beφ̄(x) = φ(x)+ 〈x,a〉+ c for a ∈ Rd and a constantc ∈ R. The corresponding conjugate
function ψ̄(θ) = ψ(θ−a)− c differs fromψ only by a constant. Hence, the exponential family is
exactlyFψ. That completes the proof.

4.5 Examples

Table 2 shows the various functions of interest for some popular exponential families. We now look
at two of these distributions in detail and obtain the corresponding Bregman divergences.

Example 9 The most well-known exponential family is that of Gaussian distributions, in particular
uniform variance, spherical Gaussian distributions with densities of the form

p(x;a) =
1

√

(2πσ2)d
exp

(

− 1
2σ2‖x−a‖2

)

,
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Table 2: Various functions of interest for some popular exponential families. For all the cases shown
in the table,x is the sufficient statistic. Note that for the Gaussian examples the variance
σ is assumed to be constant. The number of trials,N, for the binomial and multinomial
examples is also assumed to be constant.

Distribution p(x;θ) µ φ(µ) dφ(x,µ)

1-D Gaussian 1√
(2πσ2)

exp(− (x−a)2

2σ2 ) a 1
2σ2 µ2 1

2σ2 (x−µ)2

1-D Poisson λx exp(−λ)
x! λ µlogµ−µ xlog( x

µ)− (x−µ)

1-D Bernoulli qx(1−q)1−x q µlogµ+(1−µ) log(1−µ) xlog( x
µ)+(1−x) log( 1−x

1−µ)

1-D Binomial N!
(x)!(N−x)! q

x(1−q)N−x Nq µlog( µ
N )+(N−µ) log( N−µ

N ) xlog( x
µ)+(N−x) log( N−x

N−µ)

1-D Exponential λexp(−λx) 1/λ − logµ−1 x
µ− log

(

x
µ

)

−1

d-D Sph. Gaussian 1√
(2πσ2)d

exp(− ‖x−a‖2
2σ2 ) a 1

2σ2 ‖µ‖2 1
2σ2 ‖x−µ‖2

d-D Multinomial N!
∏d

j=1 x j !
∏d

j=1 q
x j
j [Nqj ]

d−1
j=1 ∑d

j=1 µj log(
µj
N ) ∑d

j=1 x j log(
x j
µj

)

Distribution θ ψ(θ) dom(ψ) dom(φ) Iψ

1-D Gaussian a
σ2

σ2

2 θ2
R R R

1-D Poisson logλ exp(θ) R R+ N

1-D Bernoulli log( q
1−q) log(1+exp(θ)) R [0,1] {0,1}

1-D Binomial log( q
1−q) N log(1+exp(θ)) R [0,N] {0,1, . . . ,N}

1-D Exponential −λ − log(−θ) R−− R++ R++

d-D Sph. Gaussian a
σ2

σ2

2 ‖θ‖2 R
d

R
d

R
d

d-D Multinomial [log(
q j
qd

)]d−1
j=1 N log(1+∑d−1

j=1 exp(θ j )) R
d−1 {µ∈ R

d−1
+ , |µ| ≤ N} {x ∈ Z

d−1
+ , |x| ≤ N}

wherex,a∈Rd andσ ∈R is a constant. As shown below,p(x,a) can be expressed in the canonical
form for exponential families with natural parameterθ = a

σ2 and cumulant functionψ(θ) = σ2

2 ‖θ‖2,

p(x;a) =
1

√

(2πσ2)d
exp

(

− 1
2σ2‖x−a‖2

)

= exp

(

〈x,
a

σ2〉−
1

2σ2‖a‖
2− 1

2σ2‖x‖
2
)

1
√

(2πσ2)d

= exp

(

〈x,θ〉− σ2

2
‖θ‖2

)

exp

(

− 1
2σ2‖x‖

2
)

1
√

(2πσ2)d

= exp(〈x,θ〉−ψ(θ)) p0(x) ,

wherep0(x) is independent ofθ. By (11), the expectation parameter for this distribution is given by

µ = ∇ψ(θ) = ∇
(

σ2

2
‖θ‖2

)

= σ2θ = a .

By using (12), the Legendre dualφ of ψ is

φ(µ) = 〈µ,θ〉−ψ(θ) =
〈

µ,
µ

σ2

〉

− σ2

2
‖θ‖2 =

‖µ‖2
2σ2 .
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The corresponding Bregman divergence equals

dφ(x,µ) = φ(x)−φ(µ)−〈x−µ,∇φ(µ)〉 =
‖x‖2
2σ2 −

‖µ‖2
2σ2 −

〈

x−µ,
µ

σ2

〉

=
‖x−µ‖2

2σ2 .

The functionbφ(x) in Theorem 4 is given by

bφ(x) = exp(φ(x))p0(x) = exp

(‖x‖2
2σ2 −

‖x‖2
2σ2

)

1
√

(2πσ2)d
=

1
√

(2πσ2)d
,

and turns out to be a constant. Thus,p(ψ,θ)(x) = exp(−dφ(x,µ))bφ(x).

Example 10 Another exponential family that is widely used is the family of multinomial distribu-
tions:

p(x;q) =
N!

∏d
j=1x j !

d

∏
j=1

q
x j
j ,

where x j ∈ Z+ are frequencies of events,∑d
j=1x j = N and q j ≥ 0 are probabilities of events,

∑d
j=1q j = 1. As shown below,p(x;q) can be expressed as the density of an exponential distri-

bution in x = {x j}d−1
j=1 with natural parameterθ = {log(

q j

qd
)}d−1

j=1 and cumulant functionψ(θ) =

−N logqd = N log(1+∑d−1
j=1 eθ j ).

p(x;q) =
N!

∏d
j=1x j !

d

∏
j=1

q
x j
j

= exp

(

d

∑
j=1

x j logq j

)

N!

∏d
j=1x j !

= exp

(

d−1

∑
j=1

x j logq j +xd logqd

)

p0(x)

= exp

(

d−1

∑
j=1

x j logq j +(N−
d−1

∑
j=1

x j) logqd

)

p0(x)

= exp

(

d−1

∑
j=1

x j log

(

q j

qd

)

+N logqd

)

p0(x)

= exp(〈x,θ〉+N logqd)p0(x) = exp

(

〈x,θ〉−N log

(

d

∑
j=1

q j

qd

))

p0(x)

= exp

(

〈x,θ〉−N log

(

1+
d−1

∑
j=1

eθ j

))

p0(x) = exp(〈x,θ〉−ψ(θ))p0(x),

wherep0(x) is independent ofθ. The expectation parameterµ is given by

µ = ∇ψ(θ) = ∇

(

N log

(

1+
d−1

∑
j=1

eθ j

))

=

[

Neθ j

1+∑d−1
j=1 eθ j

]d−1

j=1

= [Nqj ]
d−1
j=1
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and the Legendre dualφ of ψ is

φ(µ) = 〈µ,θ〉−ψ(θ) =
d−1

∑
j=1

Nqj log

(

q j

qd

)

+N logqd

=
d

∑
j=1

Nqj logq j = N
d

∑
j=1

(µj

N

)

log
(µj

N

)

,

whereµd = Nqd so that∑d
i=1µj = N. Note thatφ(µ) is a constant multiple of negative entropy

for the discrete probability distribution given by{µj

N }dj=1. From Example 2, we know that the
corresponding Bregman divergence will be a similar multiple of KL-divergence, i.e.,

dφ(x,µ) = φ(x)−φ(µ)−〈x−µ,∇φ(µ)〉

= N
d

∑
j=1

x j

N
log
(x j

N

)

−N
d

∑
j=1

µj

N
log
(µj

N

)

−
d

∑
j=1

(x j −µj)
(

1+ log
(µj

N

))

= N
d

∑
j=1

x j

N
log

(

x j/N

µj/N

)

.

The functionbφ(x) for this case is given by

bφ(x) = exp(φ(x))p0(x) = exp

(

d

∑
j=1

x j log
(x j

N

)

)

N!

∏d
j=1x j !

=
∏d

j=1x
x j
j

NN

N!

∏d
j=1x j !

,

andp(ψ,θ)(x) = exp(−dφ(x,µ))bφ(x).

5. Bregman Soft Clustering

Using the correspondence between regular exponential families and regular Bregman divergences,
we now pose the Bregman soft clustering problem as a parameter estimation problem for mixture
models based on regular exponential family distributions. We revisit the expectation maximization
(EM) framework for estimating mixture densities and develop a Bregman soft clustering algorithm
(Algorithm 3) for regular Bregman divergences. We also present the Bregman soft clustering al-
gorithm for a set of data points with non-uniform non-negative weights (or measure). Finally, we
show how the hard clustering algorithm can be interpreted as a special case of the soft clustering al-
gorithm and also discuss an alternative formulation of hard clustering in termsof a dual divergence
derived from the conjugate function.

5.1 Soft Clustering as Mixture Density Estimation

Given a setX = {xi}ni=1 ⊂ Rd drawn independently from a stochastic source, consider the prob-
lem of modeling the source using a single parametric exponential family distribution. This is the
problem of maximum likelihood estimation, or, equivalently, minimum negative log-likelihood esti-
mation of the parameter(s) of a given exponential family distribution. From Theorem 4, minimizing
the negative log-likelihood is the same as minimizing the corresponding expectedBregman diver-
gence. Using Proposition 1, we conclude that the optimal distribution is the onewith µ = E[X] as
the expectation parameter, whereX is a random variable that takes values inX following (by the
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independence assumption) the empirical distribution overX . Further, note that the minimum neg-
ative log-likelihood ofX under a particular exponential model with log-partition functionψ is the
Bregman information ofX, i.e., Iφ(X), up to additive constants, whereφ is the Legendre conjugate
of ψ.

Now, consider the problem of modeling the stochastic source with a mixture ofk densities
of the same exponential family. The model yields a soft clustering where clusters correspond to
the components of the mixture model, and the soft membership of a data point in each cluster
is proportional to the probability of the data point being generated by the corresponding density
function. For regular Bregman divergences, we define theBregman soft clustering problemas that
of learning the maximum likelihood parametersΓ = {θh,πh}kh=1≡ {µh,πh}kh=1 of a mixture model
of the form

p(x|Γ) =
k

∑
h=1

πhp(ψ,θh)(x) =
k

∑
h=1

πhexp(−dφ(x,µh))bφ(x), (16)

where the last equality follows from Theorem 4. Since the mixture componentsare all assumed to
be from the same family, the above problem is a special case of the generalmaximum likelihood
parameter estimation problem for mixture models and can be solved by applying the EM algorithm.

5.2 EM for Mixture Models Based on Bregman Divergences

Algorithm 2 describes the well known application of EM for mixture density estimation. This
algorithm has the property that the likelihood of the data,LX (Γ) is non-decreasing at each iteration.
Further, if there exists at least one local maximum for the likelihood function, then the algorithm
will converge to a local maximum of the likelihood. For more details, the reader isreferred to
Collins (1997); McLachlan and Krishnan (1996) and Bilmes (1997).

The Bregman soft clustering problem is to estimate the maximum likelihood parameters for the
mixture model given in (16). Using the Bregman divergence viewpoint, we get a simplified version
of the above EM algorithm that we call the Bregman soft clustering algorithm (Algorithm 3). Using
Proposition 1, the computationally intensive M-step turns out to be straightforward to solve. In fact,
the Bregman divergence viewpoint gives an alternative interpretation ofa well known efficient EM
scheme applicable to learning a mixture of exponential distributions (Redner and Walker, 1984).
The resulting update equations are similar to those for learning mixture models ofidentity covari-
ance Gaussians. Note that these equations are applicable to mixtures of anyregular exponential
distributions, as long asx is the (minimal) sufficient statistic vector.

It is important to note that the simplification of the M-step is applicable only when theparam-
eterization is with respect to the expectation parameter space, i.e., whendφ corresponding to an
exponential family is known. Otherwise, if the parameterization is with respectto the natural pa-
rameter space, i.e., the functional form for a family is known in terms of its cumulant ψ and natural
parametersθ, the problem

φ(x) = sup
θ∈Rd

(〈θ,x〉−ψ(θ)) , (17)

needs to be solved to obtainφ(x). Since the function to be maximized in (17) is precisely the
log-likelihood of the exponential family density (with respect to an appropriatemeasure), the trans-
formation is equivalent to solving a maximum likelihood estimation problem (with a single sample),
which is computationally expensive for several exponential family distributions. In such a situation,
transforming the problem to the expectation space need not lead to any tangible computational bene-
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Algorithm 2 Standard EM for Mixture Density Estimation

Input: SetX = {xi}ni=1⊆ Rd, number of clustersk.
Output: Γ†: local maximizer ofLX (Γ) = ∏n

i=1(∑
k
h=1 πhpψ,θh(xi)) whereΓ = {θh,πh}kh=1, soft

partitioning{{p(h|xi)}kh=1}ni=1.
Method:

Initialize {θh,πh}kh=1 with someθh ∈Θ, and πh≥ 0, ∑k
h=1 πh = 1

repeat
{The Expectation Step (E-step)}
for i = 1 ton do

for h = 1 tok do
p(h|xi)←

πhp(ψ,θh)(xi)

∑k
h′=1 πh′ p(ψ,θh′ )

(xi)

end for
end for
{The Maximization Step (M-step)}
for h = 1 tok do

πh← 1
n ∑n

i=1 p(h|xi)
θh← argmax

θ
∑n

i=1 log(p(ψ,θ)(xi))p(h|xi)

end for
until convergence
returnΓ† = {θh,πh}kh=1

Algorithm 3 Bregman Soft Clustering

Input: SetX = {xi}ni=1⊂ S ⊆ Rd, Bregman divergencedφ : S × ri(S) 7→ R, number of clustersk.
Output: Γ†, local maximizer of∏n

i=1(∑
k
h=1 πhbφ(xi)exp(−dφ(xi ,µh))) whereΓ = {µh,πh}kh=1, soft

partitioning{{p(h|xi)}kh=1}ni=1
Method:

Initialize {µh,πh}kh=1 with someµh ∈ ri(S),πh≥ 0, and∑k
h=1 πh = 1

repeat
{The Expectation Step (E-step)}
for i = 1 ton do

for h = 1 tok do
p(h|xi)← πh exp(−dφ(xi ,µh))

∑k
h′=1 πh′ exp(−dφ(xi ,µh′ ))

end for
end for
{The Maximization Step (M-step)}
for h = 1 tok do

πh← 1
n ∑n

i=1 p(h|xi)

µh← ∑n
i=1 p(h|xi)xi

∑n
i=1 p(h|xi)

end for
until convergence
returnΓ† = {µh,πh}kh=1
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fits. However, if the Bregman divergencedφ corresponding to an exponential family is either known
or easy to compute from the natural parameterization, then Algorithm 3 is computationally much
more efficient. In fact, in some situations it may be easier to design regular Bregman divergences for
mixture modeling of data than to come up with an appropriate exponential family. Such situations
can take full advantage of the computationally efficient Bregman soft clustering algorithm.

The following result shows how Proposition 1 and Theorem 4 can be usedto simplify the M-
step of Algorithm 2. Using this result, we then show that Algorithms 2 and 3 are exactly equivalent
for regular Bregman divergences and exponential families. Note that Proposition 4 has appeared
in various forms in the literature (see, for example, Redner and Walker (1984); McLachlan and
Krishnan (1996)). We give an alternative proof using Bregman divergences.

Proposition 4 For a mixture model with density given by (16), the maximization step for the density
parameters in the EM algorithm (Algorithm 2),∀h,1≤ h≤ k, reduces to:

µh =
∑n

i=1 p(h|xi)xi

∑n
i=1 p(h|xi)

. (18)

Proof The maximization step for the density parameters in the EM algorithm,∀h,1≤ h≤ k, is
given by

θh = argmax
θ

n

∑
i=1

log(p(ψ,θ)(xi))p(h|xi).

For the given mixture density, the component densities,∀h,1≤ h≤ k, are given by

p(ψ,θh)(x) = bφ(x)exp(−dφ(x,µh)).

Substituting the above into the maximization step, we obtain the update equations forthe expectation
parametersµh, 1≤ h≤ k,

µh = argmax
µ

n

∑
i=1

log(bφ(xi)exp(−dφ(xi ,µ)))p(h|xi)

= argmax
µ

n

∑
i=1

(log(bφ(xi))−dφ(xi ,µ))p(h|xi)

= argmin
µ

n

∑
i=1

dφ(xi ,µ)p(h|xi) (asbφ(x) is independent ofµ)

= argmin
µ

n

∑
i=1

dφ(xi ,µ)
p(h|xi)

∑n
i′=1 p(h|xi′)

.

From Proposition 1, we know that the expected Bregman divergence is minimized by the expectation
of x, i.e.,

argmin
µ

n

∑
i=1

dφ(xi ,µ))
p(h|xi)

∑n
i′=1 p(h|xi′)

=
∑n

i=1 p(h|xi) xi

∑n
i=1 p(h|xi)

.

Therefore, the update equation for the parameters is just a weighted averaging step,

µh =
∑n

i=1 p(h|xi)xi

∑n
i=1 p(h|xi)

, ∀h,1≤ h≤ k.
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The update equations for the posterior probabilities (E-step)∀x ∈ X , ∀h,1≤ h≤ k, are given by

p(h|x) =
πhexp(−dφ(x,µh))

∑k
h′=1 πh′ exp(−dφ(x,µh′))

as thebφ(x) factor cancels out. The prior update equations are independent of the parametric form
of the densities and remain unaltered. Hence, for a mixture model with density given by (16), the
EM algorithm (Algorithm 2) reduces to the Bregman soft clustering algorithm (Algorithm 3).

So far we have considered the Bregman soft clustering problem for a set X where all the ele-
ments are equally important and assumed to have been independently sampled from some particular
exponential distribution. In practice, it might be desirable to associate weightsνi with the individual
samples such that∑i νi = 1 and optimize a weighted log-likelihood function. A slight modification
to the M-step of the Bregman soft clustering algorithm is sufficient to address this new optimization
problem. The E-step remains identical and the new update equations for the M-step,∀h,1≤ h≤ k,
are given by

πh =
n

∑
i=1

νi p(h|xi),

µh =
∑n

i=1 νi p(h|xi)xi

∑n
i=1 νi p(h|xi)

.

Finally, we note that the Bregman hard clustering algorithm is a limiting case of the above soft
clustering algorithm. For every convex functionφ and positive constantβ, βφ is also a convex func-
tion with the corresponding Bregman divergencedβφ = βdφ. In the limit, whenβ→∞, the posterior
probabilities in the E-step take values in{0,1} and hence, the E and M steps of the soft clustering
algorithm reduce to the assignment and re-estimation steps of the hard clustering algorithm.

5.3 An Alternative Formulation for Bregman Clustering

In earlier sections, the Bregman divergence was measured with the data points as the first argument
and the cluster representative as the second argument. Since Bregman divergences are not symmet-
ric (with the exception of squared Euclidean distance), we now consider an alternative formulation
of Bregman clustering where cluster representatives are the first argument of the Bregman diver-
gence. Using Legendre duality, we show that this alternate formulation is equivalent to our original
Bregman clustering problem in a dual space using a different, but uniquely determined Bregman
divergence.

We focus on the hard clustering case. LetX be a random variable that takes values inX =
{xi}ni=1 following a positive probability measureν. Then the alternative Bregman hard clustering
problem is to find clusters{Xh}kh=1 and corresponding representatives{µh}kh=1 that solve

min
{µh}kh=1

k

∑
h=1

∑
xi∈Xh

νidφ(µh,xi). (19)

As mentioned earlier, Bregman divergences are convex in the first argument and hence, the resulting
optimization problem for each cluster is convex so there is a unique optimal representative for each
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cluster. However, unlike in the original formulation, the optimal cluster representative is not always
the expectation and depends on the Bregman divergencedφ.

It is interesting to note that this alternative formulation, though seemingly different, reduces to
the original formulation with an appropriate representation. Letφ be the generating convex function
of dφ such that(int(dom(φ)),φ) is a convex function of Legendre type and let(int(dom(ψ)),ψ)
be the corresponding Legendre dual. Then for anyx,y ∈ int(dom(φ)), the Bregman divergence
dφ(x,y) = dψ(θy,θx) wheredψ is the Bregman divergence derived fromψ andθx = ∇φ(x),θy =
∇φ(y) (Appendix A, Property 6). Using the above property, we can restate thealternative Breg-
man clustering problem in the dual space. More specifically, letX θ = {θxi}ni=1 where θxi =
∇φ(xi), ∀xi ,1≤ i ≤ n, and letθh = ∇φ(µh), ∀µh,1≤ h≤ k. Then the hard clustering problem (19)
can be expressed as

min
{θh}kh=1

k

∑
h=1

∑
θxi∈X θ

h

νidψ(θxi ,θh). (20)

whereX θ
h correspond to clusterh in the dual space. It is now straightforward to see that this is our

original Bregman hard clustering problem for the setX θ consisting of the dual data points with the
same measureν and the dual Bregman divergencedψ. The optimal cluster representative in this
dual space is given by the expectation, which is easy to compute. The efficiency of this approach is
based on the same premise as the efficient EM scheme for exponential families, i.e, the M-step can
be simplified if there is an easy transition to the dual space.

6. Lossy Compression and Generalized Loss Functions

In this section, we study the connection between Bregman clustering algorithmsand lossy compres-
sion schemes. In particular, we focus on the relationship of our work with Shannon’s rate distortion
theory, showing connections between learning mixtures of exponential distributions, the Bregman
soft clustering problem and the rate distortion problem where distortion is measured using a reg-
ular Bregman divergence (Banerjee et al., 2004a). Then we show thatall these problems involve
a trade-off between compression and loss in Bregman information. The information bottleneck
method (Tishby et al., 1999) emerges as a special case of this viewpoint. Werestrict our attention
to regular exponential families and regular Bregman divergences in this section.

6.1 Rate Distortion Theory for Bregman Divergences

Rate distortion theory (Berger, 1971; Berger and Gibson, 1998) dealswith the fundamental limits
of quantizing a stochastic sourceX ∼ p(x), x∈ X , using a random variablêX over a reproduction
alphabetX̂ typically assumed to embed the source alphabetX , i.e., X ⊆ X̂ . In the rate distortion
setting, the performance of a quantization scheme is determined in terms of the rate, i.e., the average
number of bits for encoding a symbol, and the expected distortion between thesource and the
reproduction random variables based on an appropriate distortion function d : X × X̂ 7→ R+. The
central problem in rate distortion theory (Cover and Thomas, 1991) is to compute the rate distortion
function R(D), which is defined as the minimum achievable rate for a specified level of expected
distortionD, and can be mathematically expressed as

R(D) = min
p(x̂|x):EX,X̂ [d(X,X̂)]≤D

I(X; X̂) , (21)
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whereI(X; X̂) is the mutual information ofX andX̂.
The rate distortion problem is a convex problem that involves optimizing over the probabilistic

assignmentsp(x̂|x) and can be theoretically solved using the Blahut-Arimoto algorithm (Arimoto,
1972; Blahut, 1972; Csiszár, 1974; Cover and Thomas, 1991). However, numerical computation
of the rate distortion function through the Blahut-Arimoto algorithm is often infeasible in practice,
primarily due to lack of knowledge of the optimal support of the reproduction random variable.
An efficient solution for addressing this problem is the mapping approach (Banerjee et al., 2004a;
Rose, 1994), where one solves a related problem that assumes cardinality k for the support of the
reproduction random variable. In this setting, the optimization is over the assignments as well as
the support set, i.e.,

min
X̂s, p(x̂|x)
|X̂s|=k

I(X; X̂)+βDEX,X̂[d(X, X̂)] , (22)

whereβD is the optimal Lagrange multiplier that depends on the chosen tolerance levelD of the
expected distortion and̂Xs is the optimal support of the reproduction random variable with cardinal-
ity k. We shall refer to the above problem (22) as the rate distortion problem with asupport set of
finite cardinality (RDFC). It can be shown (Berger, 1971) that the RDFCproblem and the original
rate distortion problem have identical solutions when the cardinality of the optimal support set is
less than or equal tok, which is known to be true for cases without an analytical solution (Banerjee
et al., 2004a).

Our analysis connects the Bregman soft clustering problem to the RDFC problem following
results from Banerjee et al. (2004a), which extend previous work (Rose, 1994; Gray and Neuhoff,
1998) that relatedkmeans clustering to vector quantization and rate-distortion based on squared
Euclidean distortion. LetZ, Ẑ denote suitable sufficient statistic representations ofX, X̂ so that the
distortion can be measured by a Bregman divergencedφ in the sufficient statistic space. The RDFC
problem can now be stated directly in terms ofZ andẐ as

min
Ẑs, p(ẑ|z)
|Ẑs|=k

I(Z; Ẑ)+βDEZ,Ẑ[dφ(Z, Ẑ)] , (23)

whereẐs is the optimal support of the reproduction random variable with cardinalityk.
Unlike the basic rate distortion problem (21), the RDFC problem (23) is no longer a convex

problem since it involves optimization over bothẐs andp(ẑ|z). However, when either of the argu-
ments is fixed, the resulting sub-problem can be solved exactly. In particular, whenẐs is known,
then the RDFC problem reduces to that of optimizing overp(ẑ|z), which is a feasible convex prob-
lem and can be exactly solved by the Blahut-Arimoto algorithm (Csiszár, 1974). Similarly, when
the assignmentsp(ẑ|z) are known, the RDFC problem only involves minimizing the expected dis-
tortion measured in terms of a Bregman divergence and can be exactly solved using Proposition 1.
Thus the objective function in (23) can be greedily minimized by alternately optimizing over the
individual arguments, yielding a solution that is locally optimal. The details of this analysis and
resulting algorithm can be found in Banerjee et al. (2004a).

Interestingly, it can be shown (Banerjee et al., 2004a) that the RDFC problem based on a reg-
ular Bregman divergence is exactly equivalent to the the maximum likelihood mixture estimation
problem based on a uniquely determined exponential family when the sourcedistribution in the rate
distortion setting equals the empirical distribution over the sampled data points.
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Theorem 7 (Banerjee et al. (2004a))Consider a source Z∼ p(z), where p(z) is the empirical dis-
tribution over the samples. Then the RDFC problem (23) for the source Z withregular Bregman
divergence dφ, variational parameterβD, and reproduction random variablêZ with |Ẑ|= k is equiv-
alent to the maximum likelihood mixture estimation problem based on the regularexponential family
FβDψ with number of mixture components set to k (ψ is the conjugate ofφ).

From Section 5, we know that the maximum likelihood mixture estimation problem for any regu-
lar exponential family is equivalent to the Bregman soft clustering problem for the corresponding
regular Bregman divergence. Using this in conjunction with Theorem 7, weobtain the following
equivalence relation between the RDFC problem and the Bregman soft clustering problem.

Theorem 8 Consider a source Z∼ p(z), where p(z) is the empirical distribution over the samples.
Then the RDFC problem (23) for the source Z with regular Bregman divergence dφ, variational
parameterβD, and reproduction random variablêZ with |Ẑ| = k is equivalent to the Bregman soft
clustering problem (16) based on the Bregman divergence dβDφ with number of clusters set to k.

From the above theorem, it follows that Algorithm 3 can be used to solve the RDFC problem. Note
that the update steps forp(h|x) andπh in Algorithm 3 exactly correspond to the updates ofp(ẑ|z)
andp(ẑ) in the Blahut-Arimoto step in Algorithm 1 of Banerjee et al. (2004a) for solving the RDFC
problem. The update ofµh in Algorithm 3 is equivalent to the update ofẑ in the support estimation
step in Algorithm 1 of Banerjee et al. (2004a). From the viewpoint of alternate minimization,
the order of the three updatesp(ẑ|z), p(ẑ) and ẑ is interchangeable and does not affect the local
optimality guarantees, although different orderings may lead to different solutions.

The Bregman soft clustering problem corresponds to the RDFC problem and not to the basic rate
distortion problem (21). However, as mentioned earlier, both the problems yield the same solution
for the rate distortion function when the optimal support set|Ẑs| is finite andk is sufficiently large.
The solution is the rate distortion function and refers to the asymptotic rate (Cover and Thomas,
1991) that can be achieved for a given distortion, when we are allowed tocode the source symbols
in blocks of sizem with m→ ∞.

It is also possible to consider a related rate distortion problem where the source symbols are
coded using blocks of size 1. The resultant rate distortion function is referred to as the “scalar”
or “order 1” rate distortion functionR1(D) (Gray and Neuhoff, 1998). The problem is solved by
performing hard assignments of the source symbols to the closest codebook members, which is
similar to the assignment step in the Bregman hard clustering problem. In fact, the“order 1” or
“1-shot” rate distortion problem, assuming a known finite cardinality of the optimal reproduction
support set, turns out to be exactly equivalent to the Bregman hard clustering problem.

6.2 Compression vs. Bregman Information Trade-off

We now provide yet another view of the RDFC problem (and hence, Bregman soft clustering) as a
lossy compression problem where the objective is to balance the trade-offbetween compression and
preservation of Bregman information. Intuitively, the reproduction random variableẐ is a coarser
representation of the source random variableZ with less “information” thanZ. In rate distortion
theory, the loss in “information” is quantified by the expected Bregman distortion betweenZ and
Ẑ. The following theorem, which is along the same lines as Theorem 1, providesa direct way of
quantifying the intuitive loss in “information” in terms of Bregman information.
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Theorem 9 (Banerjee et al. (2004a))The expected Bregman distortion between the source and the
reproduction random variables is exactly equal to the loss in Bregman information due to compres-
sion, i.e.,

EZ,Ẑ[dφ(Z, Ẑ)] = Iφ(Z)− Iφ(Ẑ) ,

whereẐ = EZ|Ẑ[Z].

The RDFC problem (23) can, therefore, be viewed as an optimization problem involving a trade-off
between the mutual informationI(Z; Ẑ) that measures the compression, and the loss in Bregman
informationIφ(Z)− Iφ(Ẑ). Since the source random variableZ is known, the Bregman information
Iφ(Z) is fixed and minimizing the expected distortion is equivalent to maximizing the Bregman
information of the compressed random variableẐ. Hence, this constrained form of the RDFC
problem (23) can be written as:

min
p(ẑ|z)
{I(Z; Ẑ)−βIφ(Ẑ)}, (24)

whereβ is the variational parameter corresponding to the desired point in the rate distortion curve
andẐ = EZ|Ẑ[Z]. The variational parameterβ determines the trade-off between the achieved com-
pression and the preserved Bregman information.

6.2.1 INFORMATION BOTTLENECK REVISITED

We now demonstrate how the information bottleneck (IB) method of Tishby et al.(1999) can be
derived from the RDFC problem (24) for a suitable choice of Bregman divergence.

Let Y ∼ p(y), y ∈ Y be a random variable. Let the sufficient statistic random vectorZ cor-
responding to a sourceX be the conditional distribution ofY given X, i.e., Z = p(Y|X). Z is
just a concrete representation of the possibly abstract sourceX. Similarly, the random variable
Ẑ = p(Y|X̂) represents the reproduction random variableX̂. This choice of sufficient statistic map-
ping is appropriate when the joint distribution of the random variablesX andY contains all the
relevant information aboutX. For the above choice of sufficient statistic mapping, an additional
constraint that̂Z is the conditional expectation ofZ leads to the lossy compression problem (24)
where we need to find the optimal assignments that balance the trade-off between compression and
the loss in Bregman information. Now, from Example 6 in Section 3.1, the Bregmaninformation
Iφ(Ẑ) of the random variablêZ that takes values over the set of conditional distributions{p(Y|x̂)}
with probability p(x̂) is the same as the mutual informationI(X̂;Y) of X̂ andY (when the Bregman
divergence is the KL-divergence). Hence, the problem (24) reduces to

min
p(x̂|x)
{I(X; X̂)−βI(X̂;Y)}, (25)

sincep(x̂|x) = p(ẑ|z) andI(X; X̂) = I(Z; Ẑ), whereβ is the variational parameter. This is identical
to the IB formulation (Tishby et al., 1999). Our framework reveals that the IB assumption that the
mutual information with respect to another random variableY holds all the relevant information for
comparing the different source entities is equivalent to assuming that (a)p(Y|X) is the appropriate
sufficient statistic representation, and (b) the KL-divergence betweenthe conditional distributions of
Y is the appropriate distortion measure. Further, the assumption about the conditional independence
of Y andX̂ given X, i.e., the Markov chain conditionY↔ X↔ X̂, is equivalent to the constraint
thatẐ is the conditional expectation ofZ, i.e.,Ẑ = p(Y|X̂) = EX|X̂[p(Y|X)] = EZ|Ẑ[Z].
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Thus the information bottleneck problem is seen to be a special case of the RDFC problem (23),
and hence also of the Bregman soft clustering problem and mixture estimation problem for expo-
nential families. In particular, IB is exactly equivalent to the mixture estimation problem based
on the exponential family corresponding to KL-divergence, i.e., the multinomial family (Collins
et al., 2001). Further, the iterative IB algorithm is the same as the EM algorithmfor multinomial
distributions (Slonim and Weiss, 2002), and also the Bregman soft clustering algorithm using KL-
divergence.

7. Experiments

There are a number of experimental results in existing literature (MacQueen, 1967; Linde et al.,
1980; Buzo et al., 1980; Dhillon et al., 2003; Nigam et al., 2000) that illustrate the usefulness of
specific Bregman divergences and the corresponding Bregman clustering algorithms in important
application domains. The classicalkmeans algorithm, which is a special case of the Bregman hard
clustering algorithm for the squared Euclidean distance has been successfully applied to a large
number of domains where a Gaussian distribution assumption is valid. Besides this, there are at
least two other domains where special cases of Bregman clustering methods have been shown to
provide good results.

The first is the text-clustering domain where the information-theoretic clustering algorithm (Dhillon
et al., 2003) and the EM algorithm on a mixture of multinomials based on the naive Bayes as-
sumption (Nigam et al., 2000) have been applied. These algorithms are, respectively, special cases
of the Bregman hard and soft clustering algorithms for KL-divergence,and have been shown to
provide high quality results on large real datasets such as the 20-Newsgroups, Reuters and Dmoz
text datasets. This success is not unexpected as text documents can be effectively modeled using
multinomial distributions where the corresponding Bregman divergence is just the KL-divergence
between word distributions.

Speech coding is another domain where a special case of the Bregman clustering algorithm
based on the Itakura-Saito distance, namely the Linde-Buzo-Gray (LBG)algorithm (Linde et al.,
1980; Buzo et al., 1980), has been successfully applied. Speech power spectra tend to follow expo-
nential family densities of the formp(x) = λe−λx whose corresponding Bregman divergence is the
Itakura-Saito distance (see Table 2).

Since special cases of Bregman clustering algorithms have already been shown to be effective in
various domains, we do not experimentally re-evaluate the Bregman clustering algorithms against
other methods. Instead, we only focus on showing that the quality of the clustering depends on
the appropriateness of the Bregman divergence. In particular we studyBregman clustering of data
generated from mixture of exponential family distributions using the corresponding Bregman diver-
gence as well as non-matching divergences. The results indicate that thecluster quality is best when
the Bregman divergence corresponding to the generative model is employed.

We performed two experiments using datasets of increasing level of difficulty. For our first
experiment, we created three 1-dimensional datasets of 100 samples each,based on mixture models
of Gaussian, Poisson and Binomial distributions respectively. All the mixturemodels had three
components with equal priors centered at 10, 20 and 40 respectively. The standard deviationσ of
the Gaussian densities was set to 5 and the number of trialsN of the Binomial distribution was set
to 100 so as to make the three models somewhat similar to each other, in the sense that the variance
is approximately the same for all the models. Figure 1 shows the density functions of the generative
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models. The datasets were then each clustered using three versions of theBregman hard clustering
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Figure 1: Generative models for data sets used in experiment 1

Table 3: Clustering results for the first data set. Columns 2-4 correspondto the normalized mu-
tual information between original and predicted clusters obtained by applyingthe Breg-
man clustering algorithm corresponding to the Bregman divergencesdGaussian, dPoissonand
dBinomial respectively

Generative Model dGaussian dPoisson dBinomial

Gaussian 0.701±0.033 0.633±0.043 0.641±0.035
Poisson 0.689±0.063 0.734±0.057 0.694±0.059
Binomial 0.769±0.061 0.746±0.048 0.825±0.046

algorithm corresponding to the Bregman divergences obtained from the Gaussian (kmeans), Poisson
and Binomial distributions respectively. The quality of the clustering was measured in terms of
the normalized mutual information11 (Strehl and Ghosh, 2002) between the predicted clusters and
original clusters (based on the actual generating mixture component), andthe results were averaged
over 10 trials. Table 3 shows the normalized mutual information values for the different divergences
and datasets. From Table 3, we can see that clustering quality is significantlybetter when the
Bregman divergence used in the clustering algorithm matches that of the generative model.

The second experiment involved a similar kind of comparison of clustering algorithms for multi-
dimensional datasets drawn from multivariate Gaussian, Binomial and Poisson distributions respec-
tively. The datasets were sampled from mixture models with 15 overlapping components and had
2000 10-dimensional samples each. The results of the Bregman clustering algorithms shown in
Table 4 lead to the same conclusion as before, i.e., the choice of the Bregman divergence used for
clustering is important for obtaining good quality clusters.

In practice, an important issue that needs to be addressed is: what is the appropriate Bregman
divergence for a given application? In certain situations, it may be possible to realistically char-
acterize the data generative process using a mixture of exponential family distributions. In such a
scenario, especially in the absence of a better methodology, using the divergence corresponding to

11. It is meaningless to compare the clustering objective function values as they are different for the three versions of the
Bregman clustering algorithm.
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Table 4: Clustering results for the second set of data sets
Generative Model dGaussian dPoisson dBinomial

Gaussian 0.728±0.005 0.661±0.007 0.669±0.005
Poisson 0.792±0.013 0.815±0.014 0.802±0.013
Binomial 0.823±0.006 0.833±0.011 0.849±0.012

the exponential family seems appropriate. In general, however, the divergence used for clustering
need not necessarily have to be the one corresponding to the generative model. The final choice
should depend on the relevant application, i.e., the divergence should capture the similarity prop-
erties desirable in the application, and need not necessarily depend on how the data was actually
generated.

8. Related Work

This work is largely inspired by three broad and overlapping ideas. First,an information theo-
retic viewpoint of the clustering problem is invaluable. Such considerationsoccur in several tech-
niques, from classical vector quantization (Gersho and Gray, 1992) toinformation theoretic cluster-
ing (Dhillon et al., 2003) and the information bottleneck method (Tishby et al., 1999). In particular,
the information theoretic hard clustering (Dhillon et al., 2003) approach solved the problem of dis-
tributional clustering with a formulation involving loss in Shannon’s mutual information. In this
paper, we have significantly generalized that work by proposing techniques for obtaining optimal
quantizations by minimizing loss in Bregman information corresponding to arbitrary Bregman di-
vergences.

Second, our soft clustering approach is based on the relationship between Bregman divergences
and exponential family distributions and the suitability of Bregman divergences as distortion or loss
functions for data drawn from exponential distributions. It has been previously shown (Amari and
Nagaoka, 2001; Azoury and Warmuth, 2001) that the KL-divergence, which is the most natural
distance measure for comparing two membersp(ψ,θ) andp(ψ,θ̃) of an exponential family, is always

a Bregman divergence. In particular, it is the Bregman divergencedψ(θ, θ̃) corresponding to the
cumulant functionψ of the exponential family. In our work, we extend this concept to say that
the Bregman divergence of the Legendre conjugate of the cumulant function is a natural distance
function for the data drawn according to a mixture model based on that exponential family.

The third broad idea is that many learning algorithms can be viewed as solutionsfor minimiz-
ing loss functions based on Bregman divergences (Censor and Zenios, 1998). Elegant techniques
for the design of algorithms and the analysis of relative loss bounds in the online learning setting
extensively use this framework (Azoury and Warmuth, 2001). In the unsupervised learning setting,
use of this framework typically involves development of alternate minimization procedures (Csisźar
and Tusńady, 1984). For example, Pietra et al. (2001); Wang and Schuurmans (2003) analyze and
develop iterative alternate projection procedures for solving unsupervised optimization problems
that involve objective functions based on Bregman divergences undervarious kinds of constraints.
Further, Collins et al. (2001) develop a generalization of PCA for exponential families using loss
functions based on the corresponding Bregman divergences and propose alternate minimization
schemes for solving the problem.
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On a larger context, there has been research in various fields that has focussed on generalized
notions of distances and on extending known methodologies to the general setting (Rao, 1982).
Grünwald and Dawid (2004) recently extended the ‘redundancy-capacitytheorem’ of informa-
tion theory to arbitrary discrepancy measures. As an extension of Shannon’s entropy (Cover and
Thomas, 1991), they introduced generalized entropy measures that are(not necessarily differen-
tiable) concave functions of probability distributions. Just as Shannon’sentropy is the minimum
number of bits (on an average) required to encode a stochastic source,the generalized entropy mea-
sures correspond to the infimum of a general class of loss functions in a game theoretic setting.
Restricting their results to our setting, the generalized entropy is equivalentto the concave func-
tion −φ, whereφ determines the Bregman divergencedφ. However, our framework is applicable
to arbitrary vectors (or functions), whereas Grünwald and Dawid (2004) focus only on probability
distributions.

As we discussed in Section 6, our treatment of clustering is very closely tied torate distortion
theory (Berger, 1971; Berger and Gibson, 1998; Gray and Neuhoff, 1998). The results presented in
the paper extend vector quantization methods (Gersho and Gray, 1992) toa large class of distortion
measures. Further, building on the work of Rose (1994), our results provide practical ways of
computing the rate-distortion function when distortion is measured by a Bregmandivergence. In
addition, the results also establish a connection between the rate distortion problem with Bregman
divergences and the mixture model estimation problem for exponential families(Banerjee et al.,
2004a).

In the literature, there are clustering algorithms that involve minimizing loss functions based on
distortion measures that are somewhat different from Bregman divergences. For example, Modha
and Spangler (2003) present theconvex-kmeans clustering algorithm for distortion measures that
are always non-negative and convex in the second argument, using thenotion of a generalized cen-
troid. Bregman divergences, on the other hand, are not necessarily convex in the second argument.
Linde et al. (1980) consider distortion measures of the formd(x,y) = (x− y)TA(x)(x− y) where
x,y ∈ Rd and A(x) is a d× d positive definite matrix, as loss functions for vector quantization.
Although such distortions are Bregman divergences in some cases, e.g., whenA(x) is a constant
matrix, in general one has to solve a convex optimization problem to compute the optimal represen-
tative when using the aboved(x,y).

9. Concluding Remarks

In this paper, we have presented hard and soft clustering algorithms to minimize loss functions in-
volving Bregman divergences. Our analysis presents a unified view of an entire class of centroid
based parametric clustering algorithms. First, in the hard-clustering framework, we show that a
kmeans type iterative relocation scheme solves the Bregman hard-clustering problem for all Breg-
man divergences. Further, using a related result, we see that Bregman divergences are the only
distortion functions for which such a centroid-based clustering scheme is possible. Second, we
formally show that there is a one-to-one correspondence between regular exponential families and
regular Bregman divergences. This result is useful in developing an alternative interpretation of the
EM algorithm for learning mixtures of exponential distributions, eventually resulting in a class of
Bregman soft-clustering algorithms. Our formulation also turns out to be closely tied to the rate
distortion theory for Bregman divergences.
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As discussed in the paper, special cases of our analysis have been discovered and widely used
by researchers in applications ranging from speech coding to text clustering. There are three salient
features of this framework that make these results particularly useful forreal-life applications. First,
the computational complexity of each iteration of the entire class of Bregman clustering algorithms
is linear in the number of data-points. Hence the algorithms are scalable and appropriate for large-
scale machine learning tasks. Second, the modularity of the proposed classof algorithms is evident
from the fact that only one component in the proposed schemes, i.e., the Bregman divergence used
in the assignment step, needs to be changed to obtain an algorithm for a new loss function. This
simplifies the implementation and application of this class of algorithms to various data types. Third,
the algorithms discussed are also applicable to mixed data types that are commonlyencountered in
real applications. Since a convex combination of convex functions is always convex, one can have
different convex functions appropriately chosen for different subsets of features. The Bregman
divergence corresponding to a convex combination of the component functions can now be used to
cluster the data, thus vastly increasing the scope of the proposed techniques.
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Appendix A. Properties of Bregman Divergences

In this section, we list some well-known useful properties of Bregman divergences.

Properties of Bregman Divergences

Let φ : S 7→ R be a strictly convex, differentiable function defined on a convex setS = dom(φ) ⊆
Rd and letdφ : S × ri(S) 7→ [0,∞) be its Bregman divergence, i.e,dφ(x,y) = φ(x)− φ(y)−〈x−
y,∇φ(y)〉. Then, the following properties are true.

1. Non-negativity. dφ(x,y)≥ 0, ∀x ∈ S ,y ∈ ri(S), and equality holds if and only ifx = y.

2. Convexity. dφ is always convex in the first argument, but not necessarily convex in thesecond
argument. Squared Euclidean distance and KL-divergence are examples of Bregman diver-
gences that are convex in both their arguments, but the Bregman divergence corresponding to
the strictly convex functionφ(x) = x3, defined onR+, given bydφ(x,y) = x3−y3−3(x−y)y2

an example divergence that is not convex iny.

3. Linearity. Bregman divergence is a linear operator i.e.,∀x ∈ S ,y ∈ ri(S),

dφ1+φ2(x,y) = dφ1(x,y)+dφ2(x,y) ,

dcφ(x,y) = cdφ(x,y) (for c≥ 0) .
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4. Equivalence classes.The Bregman divergences of functions that differ only in affine terms
are identical i.e., ifφ(x) = φ0(x) + 〈b,x〉+ c where b ∈ Rd and c ∈ R, then dφ(x,y) =
dφ0(x,y),∀x ∈ S ,y ∈ ri(S). Hence, the set of all strictly convex, differentiable functions on a
convex setS can be partitioned into equivalence classes of the form

[φ0] = {φ |dφ(x,y) = dφ0(x,y) ∀ x ∈ S , y ∈ ri(S)}.

5. Linear separation. The locus of all the pointsx∈ S that are equidistant from two fixed points
µ1,µ2 ∈ ri(S) in terms of a Bregman divergence is a hyperplane, i.e., the partitions induced
by Bregman divergences have linear separators given by

dφ(x,µ1) = dφ(x,µ2)

⇒ φ(x)−φ(µ1)−〈x−µ1,∇φ(µ1)〉= φ(x)−φ(µ2)−〈x−µ2,∇φ(µ2)〉
⇒ 〈x,∇φ(µ2)−∇φ(µ1)〉= (φ(µ1)−φ(µ2))− (〈µ1,∇φ(µ1)〉−〈µ2,∇φ(µ2)〉)

6. Dual Divergences.Bregman divergences obtained from a Legendre functionφ and its conju-
gateψ satisfy the duality property:

dφ(µ1,µ2) = φ(µ1)+ψ(θ2)−〈µ1,θ2〉= dψ(θ2,θ1),

whereµ1,µ2 ∈ ri(S) are related toθ1,θ2 ∈ ri(Θ) by the Legendre transformation.

7. Relation to KL-divergence. Let Fψ be an exponential family withψ as the cumulant func-
tion. Then the KL divergence between two membersp(ψ,θ1) andp(ψ,θ2) in Fψ corresponding
to natural parametersθ1 andθ2 can be expressed as a Bregman divergence in two possible
ways. In particular,

KL(p(ψ,θ1)||p(ψ,θ2)) = dφ(µ1,µ2) = dψ(θ2,θ1)

whereµ1 and µ2 are the expectation parameters corresponding toθ1 and θ2. Further, if
ψ(0) = 0, thenp(ψ,0)(x) = p0(x) is itself a valid probability density andKL(p(ψ,θ)‖ p(ψ,0)) =
φ(µ), whereµ = ∇ψ(θ).

8. Generalized Pythagoras theorem.For anyx1 ∈ S andx2,x3 ∈ ri(S), the following three-
point property holds:

dφ(x1,x3) = dφ(x1,x2)+dφ(x2,x3)−〈x1−x2,∇φ(x3)−∇φ(x2)〉. (26)

Whenx1,x2 andx3 are such thatx1 ∈ S ′ whereS ′ is a convex subset ofS andx2 is given by

x2 = argmin
x∈S ′

dφ(x,x3),

then the inner product term in (26) becomes negative and we have,

dφ(x1,x2)+dφ(x2,x3)≤ dφ(x1,x3).

When the convex subsetS ′ is an affine set, then the inner product term is zero giving rise to
an equality.
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Necessary and Sufficient Conditions for a Bregman Divergence

A divergence measured : S × ri(S) 7→ [0,∞) is a Bregman divergence if and only if there exists
a∈ ri(S) such that the functionφa(x) = d(x,a) satisfies the following conditions:

1. φa is strictly convex onS and differentiable on ri(S).

2. d(x,y) = dφa(x,y), ∀x ∈ S ,y ∈ ri(S) wheredφa is the Bregman divergence associated with
φa.

It is easy to see the sufficiency property from the second condition. To prove that the conditions
are necessary as well, we note that for any strictly convex, differentiable functionφ, the Bregman
divergence evaluated with a fixed value for the second argument differs from it only by a linear
term, i.e.,

φa(x) = dφ(x,a) = φ(x)−φ(a)−〈x−a,∇φ(a)〉
= φ(x)+ 〈b,x〉+c,

whereb = −∇φ(a) andc = 〈a,∇φ(a)〉−φ(a). Hence,φa is also strictly convex and differentiable
and the Bregman divergences associated withφ andφa are identical.

Appendix B. Proof of Exhaustiveness Result

This appendix is based on results reported in Banerjee et al. (2005) andis included in this paper
for the sake of completeness. The results discussed here show the exhaustiveness of Bregman
divergences with respect to the property proved in Proposition 1.

Theorem 10 ( Banerjee et al. (2005))Let F : R×R 7→R+ be a continuous and differentiable func-
tion F(x,y) with continuous partial derivatives∂F

∂x and ∂F
∂y such that F(x,x) = 0,∀x∈R. For all sets

X ⊆R and all probability measuresν overX , if the random variable X takes values inX following
ν such that y∗ = Eν[X] is the unique minimizer of Eν[F(X,y)] over all y∈ R, i.e., if

argmin
y∈R

Eν[F(X,y)] = Eν[X] (27)

then F(x,y) is a Bregman divergence, i.e., F(x,y) = dφ(x,y) for some strictly convex, differentiable
functionφ : R 7→ R.

Proof Since the optimality property in (27) is true for allX andν, we give a constructive argument
with a particular choice ofX andν. Let X = {a,b} ⊂ R wherea 6= b, and letν be {p,q}, with
p,q∈ (0,1) andp+q = 1 so thatEν[X] = pa+qb. Then from (27),

pF(a,y)+qF(b,y) = Eν[F(X,y)]≥ Eν[F(X,Eν[X])] = pF(a, pa+qb)+qF(b, pa+qb)

∀y∈R. If we consider the left-hand-side as a function ofy, it equals the right-hand-side aty= y∗
.
=

Eν[X] = pa+qb. Therefore, we must have

p
∂F(a,y∗)

∂y
+q

∂F(b,y∗)
∂y

= 0. (28)
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Substitutingp = (y∗−b)/(a−b) and rearranging terms yields

1
(y∗−a)

∂F(a,y∗)
∂y

=
1

(y∗−b)

∂F(b,y∗)
∂s

.

Sincea,b andp are arbitrary, the above equality implies that the function

1
(y−x)

∂F(x,y)
∂y

is independent ofx. Thus we can write, for some functionH,

∂F(x,y)
∂y

= (y−x)H(y), (29)

for some continuous functionH.
Now define functionφ by

φ(y) =
Z y

0

Z y′

0
H(t)dtdy′.

Thenφ is differentiable withφ(0) = φ′(0) = 0, φ′′(y) = H(y). Integration by parts for (29) leads to

F(x,y)−F(x,x) =
Z y

x
(y′−x)H(y′)dy′ = φ(x)−φ(y)−φ′(y)(x−y).

SinceF(x,x) = 0, the non-negativity ofF implies thatφ is a convex function.
It remains to show thatφ is strictly convex. Supposeφ is not strictly convex. Then there exists

an intervalI = [`1, `2] such that̀ 1 < `2 andφ′(y) = (φ(`1)−φ(`2))/(`1− `2) for all y∈ I . Consider
the setX = {`1, `2} with ν = {1

2, 1
2}. It is easy to check that anyy∈ I is a minimizer ofEν[F(X,y)].

This is a contradiction, and soφ must be strictly convex.

It is possible to get rid of the condition that∂F
∂y has to be continuous by proper mollification argu-

ments (Banerjee et al., 2005). Further, it is possible to generalize the result to functions in more
than one dimension, i.e.,F : Rd×Rd 7→ R+.

Theorem 11 ( Banerjee et al. (2005))Let F : Rd×Rd 7→ R+ be a continuous function such that
F(x,x) = 0,∀x∈Rd, and the second order partial derivatives∂

2F
∂xi∂x j

,1≤ i, j,≤ d, are all continuous.

For all setsX ⊆Rd and all probability measuresν overX , if the random variable X takes values in
X following ν such thaty = Eν[X] is the unique minimizer of Eν[F(X,y)] over ally ∈ Rd, i.e., if

argmin
y∈Rd

Eν[F(X,y)] = Eν[X] ,

then F(x,y) is a Bregman divergence, i.e., F(x,y) = dφ(x,y) for some strictly convex, differentiable
functionφ : Rd 7→ R.

The proof of Theorem 11 builds on the intuition of the proof of Theorem 10, but is more involved
and hence skipped; the interested reader is referred to Banerjee et al.(2005).
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Appendix C. Proof of Theorem 3

This appendix provides a proof of Theorem 3 in Section 4.3 and related results. Most of the ideas
used in our analysis are from Section 9.1 of Barndorff-Nielsen (1978). For the sake of completeness,
we give detailed proofs of the results. We begin with definitions. LetP0 be any non-negative
bounded measure onRd and Fψ = {p(ψ,θ), θ ∈ Θ ⊆ Rd} be a regular exponential family with
cumulant functionψ and base measureP0, as discussed in Section 4.1. Without loss of generality,
let P0 be a probability measure.12 Let Iψ be the support ofP0 (Definition 6) and hence, of all the
probability distributions inFψ. Let φ be the conjugate ofψ so that(int(dom(φ)),φ) and(Θ,ψ) are
Legendre duals of each other.

Lemma 3 For anyθ ∈Θ andx ∈ Rd,

〈θ,x〉−ψ(θ)≤− log

(

inf
u∈Rd,‖u‖2=1

P0 [〈u,X〉 ≥ 〈u,x〉]
)

(30)

where X∼ P0. Hence

inf
u∈Rd,‖u‖2=1

P0[〈u,X〉 ≥ 〈u,x〉] > 0 implies that x ∈ dom(φ) .

Proof Let uθ be the unit vector in the direction ofθ. Given anyx ∈ Rd, it is possible to divideRd

into two half spacesG1 = {x′ ∈Rd| 〈uθ,x′〉< 〈uθ,x〉} andG2 = {x′ ∈Rd| 〈uθ,x′〉 ≥ 〈uθ,x〉}. For
anyθ, we have

1 =
Z

x′∈Rd
exp(〈θ,x′〉−ψ(θ))dP0(x′)

⇒ exp(ψ(θ)) =
Z

x′∈Rd
exp(〈θ,x′〉)dP0(x′) .

Partitioning the integral overRd into G1 andG2, we obtain

exp(ψ(θ)) =
Z

x′∈G1

exp(〈θ,x′〉)dP0(x′)+
Z

x′∈G2

exp(〈θ,x′〉)dP0(x′)

≥
Z

x′∈G2

exp(〈θ,x′〉)dP0(x′)

≥ exp(〈θ,x〉)
Z

x′∈G2

dP0(x′) (since〈uθ,x′〉 ≥ 〈uθ,x〉 for x′ ∈ G2 )

= exp(〈θ,x〉)P0[〈uθ,X〉 ≥ 〈uθ,x〉]
≥ exp(〈θ,x〉) inf

u
P0[〈u,X〉 ≥ 〈u,x〉] .

On taking logarithms and re-arranging terms, we obtain (30).
From (30), inf

u
P0[〈u,X〉 ≥ 〈u,x〉] > 0 implies that∀θ,〈θ,x〉−ψ(θ) < ∞, so that

φ(x) = sup
θ

(〈θ,x〉−ψ(θ)) < ∞,

12. Since any non-negative bounded measure can be simply converted to a probability measure by a multiplicative con-
stant, our analysis remains practically unchanged in the general case, except for an additive constant to the cumulant
function.
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i.e.,x ∈ dom(φ).

We now prove the claim of Theorem 3 thatIψ ⊆ dom(φ).

Proof of Theorem 3 Let x0 ∈ Iψ and letu be any unit vector. LetH(u,x0) be the hyperplane
throughx0 with unit normalu. Let H (u,x0) be the closed half-space determined by the hyperplane
H(u,x0), i.e.,H (u,x0) = {x∈Rd|〈u,x〉 ≥ 〈u,x0〉}. Using this notation, we give separate proofs for
the cases whenP0 is absolutely continuous with respect to the counting measure and with respect to
the Lebesgue measure.

Let P0 be absolutely continuous with respect to the counting measure. By definition,x0 ∈
H (u,x0). Sincex0 ∈ Iψ, applying Definition 6 to the setI = {x0} we havep(ψ,θ)(x0) > 0. Hence
p0(x0) > 0 as the exponential family distribution is absolutely continuous with respect toP0. There-
fore, the closed half-spaceH (u,x0) has a positive measure of at leastp0(x0) for any unit vectoru,
i.e.,

P0 [〈u,X〉 ≥ 〈u,x0〉] ≥ p0(x0) > 0 ∀u
so that inf

u
P0 [〈u,X〉 ≥ 〈u,x0〉] ≥ p0(x0) > 0 .

From Lemma 3, it follows thatx0 ∈ dom(φ). Therefore,Iψ ⊆ dom(φ).
Now we consider the case whenP0 is absolutely continuous with respect to the Lebesgue mea-

sure. Ifx0 ∈ Iψ, then∀I ⊆ Rd with x0 ∈ I and
R

I dx > 0, we have
Z

I
dP0(x) > 0 .

Note that sincex0 ∈H (u,x0) and
R

H (u,x0)
dx > 0, we must have

Z

H (u,x0)
dP0(x) > 0 ∀u.

Hence,P0(〈u,X〉≥ 〈u,x0〉)> 0,∀u. Since the set of unit vectors is a compact set, infu P0(〈u,X〉≥
〈u,x0〉) is achieved at some unit vectoru∗, so that

inf
u

P0(〈u,X〉 ≥ 〈u,x0〉) = P0(〈u∗,X〉 ≥ 〈u∗,x0〉) > 0 .

Again, Lemma 3 implies thatx0 ∈ dom(φ) so thatIψ ⊆ dom(φ).

Finally, we present a related result from Barndorff-Nielsen (1978) involving the closed convex hull
of Iψ and dom(φ). The result is not essential to the paper, but is relevant, and interesting inits own
right.

Theorem 12 (Barndorff-Nielsen (1978))Let Iψ be as in Definition 6. Let Cψ be the closure of the
convex hull of Iψ, i.e., Cψ = co(Iψ). Then,

int(Cψ)⊆ dom(φ)⊆Cψ

whereφ is the conjugate ofψ.

Note that Theorem 12 does not imply Theorem 3.
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Abstract 
This article investigates the effectiveness of voting and stacked generalization -also known as 
stacking- in the context of information extraction (IE). A new stacking framework is proposed that 
accommodates well-known approaches for IE. The key idea is to perform cross-validation on the 
base-level data set, which consists of text documents annotated with relevant information, in order 
to create a meta-level data set that consists of feature vectors. A classifier is then trained using the 
new vectors. Therefore, base-level IE systems are combined with a common classifier at the meta-
level. Various voting schemes are presented for comparing against stacking in various IE domains. 
Well known IE systems are employed at the base-level, together with a variety of classifiers at the 
meta-level. Results show that both voting and stacking work better when relying on probabilistic 
estimates by the base-level systems. Voting proved to be effective in most domains in the 
experiments. Stacking, on the other hand, proved to be consistently effective over all domains, 
doing comparably or better than voting and always better than the best base-level systems. 
Particular emphasis is also given to explaining the results obtained by voting and stacking at the 
meta-level, with respect to the varying degree of similarity in the output of the base-level systems. 

Keywords: stacking, voting, information extraction, cross-validation 

1 Introduction 
One of the most interesting topics in supervised machine learning is learning how to combine the 
individual predictions of multiple classifiers. The motivation derives from the opportunity of 
obtaining higher prediction accuracy at meta-level, while treating classifiers as black boxes, i.e., 
using only their output, without considering the details of their implementation. Stacked 
generalization or stacking (Wolpert, 1992) is a common scheme that deals with the task of 
learning a meta-level classifier to combine the predictions of multiple base-level classifiers. The 
success of stacking arises from its ability to exploit the diversity in the predictions of base-level 
classifiers and thus predicting with higher accuracy at meta-level. In contrast, no learning takes 
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place when voting on the predictions of multiple classifiers. Voting is typically used as a baseline 
against which the performance of stacking is compared.  

Research on voting and stacking has primarily focused on classification. Each training 
instance in the domain of interest is represented by a vector >< yxx n ,...1 , where n  is a set 
of attribute values or features, and  is the class value describing a particular event in the 
domain, which is to be recognized at runtime. In order to classify a new vector , the 
predictions of the base-level classifiers form a new feature vector, which is assigned the class 
value  either by the meta-level classifier or by voting. Cross-validation in the base-level set of 
feature vectors is required by stacking, in order to create the entire set of meta-level vectors by 
the predictions of the base-level classifiers, and thus train the meta-level classifier. 

xx ...1
y

>< nxx ...1

y

In this article we investigate the effectiveness of voting and stacking on the task of 
Information Extraction (IE). IE is a form of shallow text processing that involves the population 
of a predefined template with relevant fragments extracted from a text document. The 
proliferation of the Web and the other Internet services in the past few years intensified the need 
for developing systems that can effectively recognize relevant information in the enormous 
amount of text that is available online. A variety of systems have been developed in the context of 
IE from online text (e.g. Freitag and Kushmerick, 1999; Sonderland, 1999; Freitag, 2000; 
Ciravegna, 2001; Califf and Mooney, 2003). The key idea behind combining a set of IE systems 
through stacking is to learn a common meta-level classifier, such as a decision tree or a naive-
Bayes classifier, based on the output of the IE systems, towards higher extraction performance. 
On the other hand, a simpler approach is to vote on the predictions of different IE systems. 

In order to apply voting and stacking to IE, the base-level classifiers should be normally 
replaced by systems that model IE as a classification task. The main problem, however, is that IE 
is not naturally a classification task (Thompson et al., 1999). A typical IE system is trained using 
a set of sample documents, paired with templates that are filled with relevant text fragments from 
the documents. IE could be mapped to a common classification problem by classifying almost 
every possible unbroken sequence of tokens (usually up to a predefined maximum length) that 
can be found within a document, as relevant or not (Freitag, 2000). This way of modelling the IE 
task, however, results in an enormous increase in the number of candidate text fragments, where 
only the small number of annotated fragments is considered as positive examples, while all the 
other fragments are considered as negative examples during training. Table 1 shows the examples 
that are constructed from a hypothetical text fragment within a page describing laptop products. 
 

Text Fragment: …processor <br> <b> 256 MB SDRAM… 
Positive Examples: 256 MB 
Negative Examples: processor  

processor  <br>  
…. 
processor  <br> <b> 256 MB 
… 

256 
MB 
256 MB SDRAM 
MB SDRAM  
… 

Table 1. An indicative example of recognizing an instance of the field ram (highlighted in bold) from 
a page that describes a laptop product and the set of examples it generates. 

 
Although the size of the candidate text fragments can be somehow reduced by using various 
heuristics (Freitag, 2000), modelling IE in this manner, does not seem natural.  

Alternative approaches of modelling the IE task exist in the literature. Systems like BWI 
(Freitag and Kushmerick, 1999), (LP)2 (Ciravegna, 2001) and STALKER (Muslea et al., 2001), 
model IE as a boundary detection task. A boundary is the virtual space between two adjacent 
tokens. The task here is to recognize starting and ending token boundaries of relevant fragments 
within a document and then extract the enclosed content.  In Table 1, the boundary between 
“<b>” and “256” and the one between “MB” and “SDRAM” are the starting and ending index 
respectively, of the fragment “256 MB”. Some approaches (Freitag and McCallum, 1999, 2000; 
McCallum et al., 2000; Lafferty et al., 2001) model IE as the task of labelling the linear sequence 
of tokens that a text document is parsed into. Fragments consisting of (contiguous) tokens that 
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have been marked as relevant for a field (e.g. “256“, “MB”) are extracted. A variety of other 
approaches (e.g. Sonderland, 1999; Califf and Mooney, 2003) induce matching rules that extract 
whole fragments from a text document at runtime and fill the corresponding slots in the template. 

This article initially introduces the idea of merging the templates filled by different IE 
systems into a single merged template, which facilitates the application of voting and stacking to 
IE. The merged template contains those text fragments that have been identified by at least one IE 
system, along with the individual predictions by the systems. Various voting schemes are then 
presented that rely either on the nominal or the probabilistic predictions of the IE systems that are 
available at the base-level. 

A new stacking framework is then introduced that combines a wide range of base-level IE 
systems with a common classifier at the meta-level. Only the output of the IE systems is 
combined, i.e., the filled templates, which are merged into a single template, independently of 
how the instances that populate the templates were identified. In the new framework, only the 
meta-level data set consists of feature vectors that are constructed by the predictions of the IE 
systems, while the base-level data set consists of text documents, paired with filled templates. In 
contrast, both base-level and meta-level data sets in stacking for classification consist of feature 
vectors. An extension of the stacking framework for IE is also proposed that is based on using 
probabilistic estimates of correctness in the predictions of the IE systems.  

Extensive experiments were conducted for comparing voting against stacking. Particular 
emphasis was given to analyzing the results obtained by voting and stacking with respect to how 
the base-level IE systems correlate in their output. Three well known IE systems were employed 
at the base-level, each drawn from a different learning paradigm: (LP)2, a sequential covering 
rule-induction algorithm, Hidden Markov Models (HMMs), a finite-state approach to IE, and 
Boosted Wrapper Induction (BWI) that introduces the application of boosting to IE. A diverse set 
of classifiers were comparatively evaluated at the meta-level. Experiments were conducted on 
five collections of pages from five different domains.  

The remainder of this article is structured as follows: Section 2 presents some background in 
the areas of voting, stacking and IE. Section 3 introduces the concept of the merged template and 
describes various voting schemes for IE. Section 4 describes the new stacking framework for IE. 
Section 5 describes the experimental design. Section 6 presents the results obtained by voting and 
stacking, and compares all IE systems at both base-level and meta-level. Section 7 explains the 
results obtained at the meta-level, with respect to the varying degree of correlation in the output 
of the base-level systems. Section 8 presents our conclusions, discussing potential extensions. 

2 Background 
Sections 2.1 to 2.3 provide background in the areas of voting, stacking and information extraction 
respectively. 

2.1  Voting 
The simplest way to combine the output of multiple classifiers is within a voting framework. Let 

 be the set of classifiers that are induced by training  different learning algorithms 
 on a data set  consisting of feature vectors. To classify a new instance at runtime, the 

classifiers  are queried for a class value and the class with the highest count is finally 
selected. This scheme is known as majority (or plurality) voting. Variations include weighted 
majority voting and voting using class probability distributions (Dietterich, 1997). In the former 
approach, each classifier’s vote is weighted by its accuracy, as measured by either using a holdout 
data set or the entire training data set by cross-validation. In the probabilistic approach, each 
classifier outputs a probability distribution vector over all relevant classes. For each class, the 
individual probability values are averaged (or summed) by all classifiers, and the class with the 
maximum value is finally selected.  

NCC ...1 N
NLL ...1 D

NCC ...1

Note that methods like boosting (Freund and Schapire, 1996) and bagging (Breiman, 1996) 
vote on a set  of classifiers that are generated by applying a single learning algorithm to 

 different versions of a given data set, rather than training  different algorithms. 
NCC ...1

N N
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2.2 Stacking 
Section 2.2.1 presents stacking, while Section 2.2.2 describes some related work. 
2.2.1 Definition 
Wolpert (1992) introduced a novel approach for combining multiple classifiers, known as stacked 
generalization or stacking. The key idea is to learn a meta-level (or level-1) classifier based on the 
output of base-level (or level-0) classifiers, estimated via cross-validation as follows: 

Define D  a data set consisting of feature vectors, also referred to as level-0 data, and  
a set of  different learning algorithms. During a -fold cross-validation process, 

NLL ...1

N J D  is 
randomly split into  disjoint parts  of almost equal size. At each th fold, , the 

 learning algorithms are applied to the training part  and the induced classifiers 
 are applied to the test part 

J JDD ...1 j Jj ..1=
NLL ...1 jDD \

)()...(1 jCjC N jD . The concatenated predictions of the induced 
classifiers on each feature vector i  in x jD , together with the original class value , form a 
new set 

)( ii xy
jMD  of meta-level vectors.  

At the end of the entire cross-validation process, the union =MD ∪ jMD , Jj ..1=  
constitutes the full meta-level data set, also referred to as level-1 data, which is used for applying 
a learning algorithm  and inducing the meta-level classifier . The learning algorithm  
that is employed at meta-level could be one of the  or a different one. Finally, the  
learning algorithms are applied to the entire data set 

ML MC ML
NLL ...1 NLL ...1

D  inducing the final base-level classifiers 
 to be used at runtime. In order to classify a new instance, the concatenated predictions of 

all base-level classifiers  form a meta-level vector that is assigned a class value by the 
meta-level classifier . Figure 1(a) illustrates the cross-validation methodology, while Figure 
1(b) illustrates the stacking framework at runtime. 

NCC ...1

NCC ...1

MC

 

jD  jDD \  

NLL ...1
 

Base-level data set D

 jMD  

Meta-level data set MD

)()...(1 jCjC N

Feature vectors 

NLL ...1
 

NCC ...1
 

 

New instance x  

ML MC
 

Class value y  

 
(a)            (b) 

Figure 1. (a) Illustration of the J-fold cross-validation process for creating the meta-level data set. 
(b) The stacking framework at runtime. 

 

2.2.2 Related Work 
Research on stacking concerns two major issues, initially described as black art by Wolpert 
(1992). The first is the choice of classifiers at both base-level and meta-level that will lead to the 
best empirical results. The second issue, which has generally received more attention in the 
literature, concerns the combination of the predictions of the base-level classifiers and their 
mapping to attributes for the features vectors at the meta-level. Typical attributes that are used at 
the meta-level are the class predictions of the  base-level classifiers.  N

Chan (1996) experimented with various representations including the class-attribute-
combiner scheme, where the class predictions of the base-level classifiers are appended with the 
attributes of the base-level vectors, together with the correct class for each vector. Chan (1996) 
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also experimented with an arbiter scheme, where a meta-classifier is only trained on a subset of 
the base-level vectors, in which the base-level classifiers disagree in their predictions. A hybrid 
scheme was also evaluated, in which a meta-classifier is only trained on a subset of the meta-level 
data set that follows the class-attribute-combiner scheme, where the base-level classifiers 
disagree in their predictions. Experimental results showed that the class-attribute-combiner is the 
best scheme. A slight improvement in the accuracy was obtained at meta-level over the best base-
level results, but the differences were not measured as statistically significant.  

Ting and Witten (1999) introduced a variant of stacking where each base-level classifier 
predicts a probability distribution vector over all classes, instead of predicting a single nominal 
value. The individual vectors by the  classifiers are concatenated, thus resulting in 
attributes at meta-level, where  the number of relevant classes. Ting and Witten (1999), 
suggested also the use of multi-response linear regression (MLR) for meta-level learning that 
proved to be highly effective. MLR is an adaptation of linear regression (Breiman, 1996a) which 
transforms the classification problem into  different binary prediction problems: for each 
relevant class, a linear equation is constructed to predict one if the class value equals the class 
under consideration or zero otherwise. 

N QN *  
Q

Q

Seewald (2003) suggested a modification of the approach described by Ting and Witten 
(1999), where different sets of meta-level features should be used for each of the Q  binary 
prediction problems. In particular, only the probability values for the class under consideration 
should be used at meta-level, instead of concatenating the probability distributions of all 
classifiers, and thus reducing the number of meta-level attributes to . Experimental results 
showed an improvement over stacking with probability distributions.  

N

Džeroski and Ženko (2004) investigated the use of MLR in conjunction with class probability 
distributions augmented with an additional set of attributes that is based on the entropies of the 
class probability distributions and the maximum probability returned by each classifier. This 
scheme was found to perform better than using only probability distributions. 

Stacking typically outperforms voting. However, voting does not involve cross-validation and 
the training of a meta-level classifier, and thus it is computationally cheaper than stacking. 

2.3  Information Extraction 
Sections 2.3.1 and 2.3.2 provide background on the task of Information Extraction (IE), while 
Section 2.3.3 describes an existing framework for combining multiple IE systems. 
2.3.1 Definition 

 

)

Let  be a set of Q  extraction fields for a particular domain of interest, and  a text 
document annotated by the domain experts with instances of those fields. A field instance is a 
pair  where t  is a text fragment, with s and e be the boundaries of the fragment 
in a document’s token table and  the associated field. A boundary has been defined 
above as the virtual space between two adjacent tokens. Define 

}...{ 1 Qff d

>< fest ),,( , ,( es
∈f }...{ 1 Qff

T  a template that is filled with 
pairs . A field is typically a target-slot in template >< fest ),,( T , while  is a slot-filler. A 
field may also have multiple or no instantiations within a document. Table 2(a) shows a part of a 
Web page describing laptop products where the relevant text is highlighted in bold. Table 2(b) 
shows the hand-filled template for this page. 

),( est

The Information Extraction (IE) task can be defined as follows: given a new document  
find all possible instances for each relevant field within  and populate a template  This 
definition states that each field learning problem is considered in isolation, and thus modelled as a 
binary learning task: given a learning algorithm designed for IE, then for each relevant field 

, a target concept is learned that identifies relevant instances  within 
text. At runtime, all target concepts are applied separately to and used to populate .T  

,d
d .T

∈f }...{ 1 Qff >< fe),t(s,
d

An extended approach to IE is to study interactions among relevant fields, and thus 
grouping field instances into higher-level concepts, also referred to as multi-slot extraction 
(Sonderland, 1999). In this article we handle the simpler single-slot approach, which covers a 
wide range of IE tasks and motivated the development of a variety of learning algorithms (e.g. 
Freitag and Kushmerick, 1999; Freitag, 2000; Ciravegna, 2001; Califf and Mooney, 2003). 
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…TransPort ZX <br> <font size="1"> <b> 15" XGA TFT Display </b> <br> Intel <b> Pentium 
III 600 MHZ </b> 256k Mobile processor <br> <b> 256 MB SDRAM up to 1GB </b> <br> <b> 40 
GB hard drive </b> ( removable ) <br> … 

(a) 

 
T  Short description for field  f

),( est  es,  Field  f  
TransPort ZX 47, 49 model Name of the laptop’s model 

15'' 56, 58 screenSize Size of the laptop’s screen 
TFT 59, 60 screenType Type of laptop’s screen 

Intel<b>Pentium III 63, 67 procName Name of the laptop’s processor 
600 MHZ 67, 69 procSpeed Speed of the laptop’s processor 
256 MB 76, 78 ram The RAM capacity of the laptop 
40 GB 86, 88 HDcapacity The hard disk capacity of the laptop 

(b) 
Table 2. (a) Part of a Web page describing laptop products (b) The hand-filled template for this 

page. 
 

2.3.2 Related Work 
The IE task from free text has been the focus of the Message Understanding Conferences (e.g. 
DARPA 1995, 1996). On the other hand, the advent of the Web intensified the need for 
developing systems that help people to cope with the large amount of text that is available online. 
Systems that perform IE from online text, should generally meet the requirements of low cost and 
high flexibility in development, and adaptation to new domains. MUC-level systems fail to meet 
those criteria, in addition to the fact that the linguistic analysis performed for free text does not 
exploit the extra-linguistic information (e.g. HTML/XML tags, layout format) that is available in 
online text. Therefore, this type of system has not found wide applicability in the context of 
online sources. 

As a result, less linguistically intensive approaches have been developed for IE on the Web 
using wrappers, which are sets of highly accurate rules that extract a particular resource’s 
content. The manual development of wrappers (Chawathe et al., 1994) has proved to be a time-
consuming task, requiring a high-level of expertise. Machine-learning techniques that learn 
wrappers for IE, either using supervised learning (e.g. Kushmerick, 1997; Muslea et al., 2001; 
Cohen et al., 2002) or unsupervised learning (e.g. Crescenzi et al., 2001; Chang and Lui, 2001), 
have been designed to handle highly structured collections of Web pages, such as telephone 
directories and product catalogues. Those approaches, however, fail when the text type is less-
structured, which is also common on the Web. 

Recent effort on adaptive IE (Ciravegna, 2001; Ciravegna and Lavelli, 2003), motivates the 
development of IE systems that can handle different text types, from rigidly structured to almost 
free text -where common wrappers fail- including mixed types. For example, the algorithms 
presented in (Sonderland, 1999; Ciravegna, 2001; Califf and Mooney, 2003) learn IE rules that 
exploit shallow natural language knowledge and thus can be applied to less structured text. The 
BWI algorithm (Freitag and Kushmerick, 1999) relies on a method called boosting (Freund and 
Schapire, 1996) for improving the extraction performance of the learned IE rules, which allows 
the applicability of the algorithm to less structured text. Hidden Markov modelling (Rabiner, 
1989) is a powerful statistical learning technique that has found wide applicability in IE from both 
structured and unstructured text (Seymore et al., 1999; Freitag and McCallum, 1999, 2000).  

In this article we focus on adaptive IE systems and investigate how their performance can be 
further improved, by combining their output at meta-level. The presence of the token boundaries 
s  and  is essential, as we will show, for combining different IE systems. In some cases (e.g. e
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Ciravegna, 2001), information about token boundaries is implicitly represented by inserting 
appropriate start and end XML tags within documents, i.e. >< f  and >< /f  tags for each 
relevant field . A template such as the one in Table 2(b) can then be easily 
constructed. Thus, we assume in the remaining of this article that we deal with templates that 
include information about token boundaries, as in Table 2(b), which is a realistic assumption, 
since such information is typically available. 

∈f }...{ 1 Qff

2.3.3 Multistrategy Learning 
Despite the growing interest in combining machine learning algorithms and the application to 
some natural language parsing tasks such as part-of-speech tagging (Halteren et al., 2001) and 
word-sense disambiguation (Florian et al., 2002), this topic has received little attention by the IE 
community. The only relevant work is described in (Freitag, 2000), where the IE task was 
modelled as a classification one, using a set of four base-level systems, which were then 
combined by multistrategy learning.  

The term multistrategy learning generally refers to the combination of multiple learning 
approaches under a single algorithm and was mainly used for combining inductive with analytical 
learning (Michalski and Tecuci, 1994). Domingos (1996) used the term empirical multistrategy 
learning for distinguishing the case where all learning components are inductive. The basic 
notion behind empirical multistrategy learning was to design a new complex algorithm that 
heuristically combines a set of learning components by requiring, however, implementation 
details of each individual component. For example, the RISE algorithm in (Domingos, 1996) 
unifies an instance-based learner with a rule-based learner under a new implementation, aiming to 
overcome the limitations of both approaches.  

Stacking combines a set of multiple learning components in a more loose fashion, by only 
learning to integrate their output at meta-level, and thus treating them as black boxes. Despite its 
simplicity, stacking offers the advantage of being highly extensible to more algorithms at both 
base-level and meta-level, regardless of their internal structure. On the other hand, voting is the 
simplest form of loosely integrating the output of multiple components.  

Freitag (2000) followed the voting paradigm in the context of IE, which he called 
“multistrategy learning for IE” and it is based on using probabilistic estimates produced by the IE 
systems. Specifically, for each relevant field ∈f }...{ 1 Qff , the confidence scores that are 
produced by the base-level systems are mapped into probabilistic estimates of correctness in the 
predictions of the systems. In case of more than one predictions of the field  for a fragment 

, a combined probability is estimated for 
f

),( est >< fe),t(s,  using (1).  

                                                       ∏ −−=
j

jC pP )1(1 ,                                                      (1) 

where CP  is the combined probabilistic estimate that the text fragment  belongs to the 
field , and  the probabilistic estimate that some IE system 

),( est
f jp jE  has predicted the field  for 
. Actually, 

f
),( est CP  measures the probability that at least one of those IE systems that have 

predicted the field  for , has predicted correctly, which equals the probability that not all 
predictions for  are wrong.  

f ),( est
f

Finally, the constraint of “one per document” (OPD) is imposed on some fields. This means 
that only one instance of OPD fields is allowed for each page. For example, a page in the domain 
of computer science (CS) courses should describe only one course, and thus should contain only 
one instance of the field course title. Therefore, if more are identified, then the one with the 
highest (combined) probability is selected, while all others are rejected. The example in Table 3 
illustrates the usefulness of the OPD constraint. 

Assuming in Table 3 that one hypothetical IE system predicts “256 MB” and “1 GB” as ram 
instances, while another system predicts only “256 MB” as ram. The combination of the two 
systems, under the OPD constraint, produces a single instance >< ram , MB""256 , the one that 
has the highest combined probability.  
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),( est  Probability by the 
first system 

Probability by the 
second system 

Combined 
probability 

256 MB 0.4 0.5 0.7 
1GB 0.6 - 0.6 

Table 3. Combining the predictions of two hypothetical IE systems for a “ram” instance. 
Supposing that the correct instance is >< ram , MB""256  

 
The OPD field constraint, though useful in certain cases, is restrictive for IE in general and does 
not hold for all relevant fields. For example, a Web page may describe more than one laptop 
products, and thus more than one ram instances may exist. The OPD constraint was also applied 
for fields that allow many instances per page, without significant loss of performance1. For 
example, a page may rarely describe more than one CS courses. This approach is still restrictive 
for IE, since a Web page very often describes more than one laptop products. 

Finally, converting confidence scores to probabilistic estimates takes place by validating the 
performance of each IE system on a hold-out set, or by cross-validation in the entire training data 
set and using a form of regression modelling which is described in more detail by Freitag (2000). 
The motivation behind mapping confidence scores to probabilistic estimates is that confidence 
scores are not always reliable, since incorrect matches may be assigned high scores. Thus voting 
on different IE systems using confidence scores may not always be reliable. The correlation 
among confidences and probabilities has been also investigated by Kauchak et al. (2004) in the 
context of the BWI algorithm for IE, and found to be weaker for more difficult IE tasks, e.g. from 
free-text domains.  

In the remainder of this article, the term “multistrategy learning” will be used to refer to the 
work in (Freitag, 2000). 

3 Voting for Information Extraction 
Section 3.1 presents an example of combining IE systems. The concept of the merged template is 
introduced, which is important for combining different IE systems either through voting or 
stacking. Various voting schemes for IE are then presented in Sections 3.2 and 3.3, against which 
the performance of stacking for IE will be compared. 

3.1 Example of Combining Different Systems – The Merged Template 
Let  be a set of  learning algorithms, designed for IE, which are given a corpus  of 
training documents, annotated with relevant field instances. The algorithms  typically 
generalize from the training corpus, towards a set of pattern-matching extraction rules. Define 

 the corresponding set of IE systems that exploit the acquired knowledge, to identify 
relevant instances in new documents. Each trained IE system consists of a set of target concepts 
that have been learned for the relevant fields. Finally, define  a set of templates for a 
document  populated by  respectively with relevant field instances.  

NLL ...1 N D
NLL ...1

NEE ...1

NTT ...1

,d NEE ...1

We suggest in this article that a merged template can be constructed from  as follows: 
all text fragments  identified by  in  are inserted to an initial pool. 
Duplicate fragments are removed: two fragments differ if either their start or end boundary 
differs. For the remaining distinct fragments, the fields predicted by  are collected and 
inserted together with the correct field in the template. If some IE system does not predict a field 
for a text fragment, then the corresponding cell in the merged template is empty. If a text 
fragment does not exist in the hand-filled template, then the corresponding cell in the last column 
is also empty. Table 4 shows an illustrative example of a merged template that has been 
constructed by the output  of two IE systems , for the page of Table 2(a). 

NTT ...1

),( est NEE ...1 NTT ...1

NEE ...1

21 ,TT 21 , EE
 
 

                                                 
1 This is a remark by Dayne Freitag, based on personal contact. 
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es,  ),( est  Output  by 1E  Output  by 2E  Correct field 
47, 49 TransPort ZX model manuf model 
56, 58 15'' screenSize - screenSize 
59, 60 TFT screenType screenType screenType 
63, 66 Intel<b>Pentium - procName - 
63, 67 Intel<b>Pentium III procName - procName 
67, 69 600 MHz procSpeed procSpeed procSpeed 
76, 78 256 MB ram ram ram 
81, 83 1 GB ram HDcapacity - 
86, 88 40 GB - HDcapacity HDcapacity 

Table 4. Merged template, based on the output of two IE systems. Each entry corresponds to a text 
fragment that has been identified by at least one system. 

 
Examining Table 4, we note some disagreement in the predictions of the two systems. For two 
text fragments (“TransPort ZX”, “1GB”) the predicted fields by 1E  and 2E  differ. Comparing to 
the hand-filled template of Table 2(b), we conclude that “TransPort ZX” has been correctly 
identified as model only by 1E , while 2E  identified the same fragment as manuf (the 
manufacturer of the laptop). On the other hand, the fragment “1GB” does not exist in the hand-
filled template. Therefore, the fields predicted by the two systems for this fragment are false. 
Furthermore, some text fragments have been identified by only one of the two IE systems. The 
fragment “15''” has been identified only by 1E , while the fragment “40 GB” has been identified 
only by 2E . The fields predicted for both fragments are correct.  

Examining again Table 4, we wonder whether we can exploit, at some higher level, the 
disagreement in the predictions of the different IE systems, aiming to achieve superior extraction 
performance. The desirable result is to automatically fill the last column in the merged template 
of Table 4 with the correct fields. In other words, we would like to assign the correct field to each 
text fragment that has been identified by at least one base-level system. 

3.2 Majority Voting 
A simple idea for combining the predictions of different IE systems is to use majority voting: for 
each entry in the merged template, we count the predicted fields by the available systems and 
select the field with the highest count. In the case of a tie, a random selection is typically 
performed among even fields. 

Note that Table 4 contains missing values, reflecting the natural fact that some system may 
not have predicted a field for a text fragment that has been identified by another system. The 
significance of missing values has to be carefully considered. For example, if some system 
predicts an incorrect field  for a text fragment , while the remaining systems do not 
predict any field at all, then ignoring missing values during voting harms precision, since the 
incorrect field is returned. An alternative is to record a missing value as “false”, providing 
evidence that no field should be predicted for . If the value with the highest count is “false” 
then no field is assigned to . If, however,  is the correct field for , interpreting the 
missing predictions by the remaining systems as “false” values harms overall extraction 
performance, since the correct field is rejected.  

f ),( est

),( est
),( est f ),( est

Therefore, two different settings of majority voting are defined, depending on whether 
missing values are ignored or encoded as “false” values that indicate rejection of prediction. 

3.3 Voting Using Probabilities 
The voting with probabilities scheme that is presented in this section shares many features with 
multistrategy learning, as described in (Freitag, 2000) and was briefly outlined in Section 2.3.3. 
Both schemes share the same method for mapping confidence scores to probabilistic estimates 
and the same Equation (1) that estimates the combined probability of correctness for an instance 

. However, the two schemes differ in how they model the IE task. >< fest ),,(

 

Multistrategy learning considers each field in isolation during combination and relies on the 
OPD constraint for improving the extraction accuracy, as demonstrated by the example of Table 
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3. On the other hand, voting using probabilities takes place on a merged template, like the one in 
Table 4, while no OPD assumption is required for any relevant field. This allows the case of 
contradictory field predictions among different systems during combination, as demonstrated in 
Table 4, where the fragment “1GB” has been identified as ram by the first system and as 
HDcapacity by the second one. The field with the highest probability should be selected. 
Multistrategy learning for IE ignores contradictory field predictions.  

In Section 3.2 two different settings of majority voting were defined, depending on whether 
absence of prediction by some system for a text fragment, i.e. a missing value in the merged 
template, is ignored or encoded as “false” that indicates rejection of prediction. The problem here 
is that there is no probability for “false”. If we assume that “false” corresponds to probability 1, 
then voting will lead to spurious results. Thus, two different settings for voting using probabilities 
are defined as follows: 

In the first setting, missing values are ignored, similar to the first setting of majority voting. 
Given a fragment , the field  with the highest probabilistic estimate by those systems that 
have predicted a field for  is returned. In the second setting, however, a constraint is 
imposed on whether  should be accepted or not. If the probability that is attached to  is less 
than 0.5, then  is rejected. Otherwise,  is returned, as in the first setting. The motivation 
behind using this constraint, is that if  has been predicted with low degree of confidence by the 
base-level systems, then it should not be accepted. The value of 0.5 is the natural choice of a 
threshold for deciding whether  should be accepted or not.  

),( est f
),( est

f f
f f

f

f

4 Stacked Generalization for Information Extraction 
This section starts with the motivation for performing learning, rather than simply voting. Then a 
new stacking framework for IE is presented, along with an extension that relies on using 
probabilistic estimates on the output of the base-level systems. 

4.1 Motivation for Performing Learning 
Examining the merged template of Table 4, we wonder whether we can learn to predict the 
correct field, based on the fields predicted by the available systems, rather than simply voting. A 
simple motivation for preferring learning, rather than voting, is that the latter cannot handle 
situations where most of the systems make an error. For example, if a system correctly predicts 
ram for the hypothetical fragment “1,5 GB”, while the other systems erroneously predict 
HDcapacity, then voting chooses the latter value. Therefore, it would be desirable to perform 
learning in order to induce a rule of the form: if the first IE system predicts “ram” and the other 
systems predict “HDcapacity”, then the correct field is “ram”.  

In order to train a common classifier, a set of feature vectors should be provided as training 
data. The idea suggested in this article is to create a feature vector for every row entry of the 
merged template, i.e. for each text fragment that has been identified by at least one base-level 
system. Table 5 shows the new feature vectors created by the merged template of Table 4.  

 
Feature vectors es,  ),( est  

Output by 1E  Output by 2E Class 
47, 49 TransPort ZX model, manuf, model 
56, 58 15'' screenSize, ?, screenSize 
59, 60 TFT screenType,  screenType, screenType 
63, 66 Intel<b>Pentium ?, procName, false 
63, 67 Intel<b>Pentium III procName, ?, procName 
67, 69 600 MHz procSpeed, procSpeed, procSpeed 
76, 78 256 MB ram, ram, ram 
81, 83 1 GB ram, HDcapacity, false 
86, 88 40 GB ?, HDcapacity, HDcapacity 

Table 5.  Feature vectors created by the merged template of Table 4. 
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Absence of prediction by an IE system is indicated by “?”. If a text fragment does not exist in the 
hand-filled template, the class attribute of the corresponding vector takes the value “false” that 
indicates rejection of prediction. At runtime, the class value is to be assigned by the classifier. 

Having specified the format of the feature vector, the remaining issue is to construct the full 
set of vectors for training the meta-level classifier using cross-validation, as described for the 
stacking framework in Section 2.2. However, in IE we deal with collections of text documents, 
annotated with relevant instances, rather than feature vectors. This disparity between base-level 
and meta-level data sets is handled by sampling from documents during cross-validation, rather 
than from feature vectors as in stacking for classification. 

4.2 Stacking Using Nominal Values 
The key idea behind stacking for IE, is to learn a meta-level classifier based on the output of base-
level systems via cross-validation as follows: 

At the jth fold, , of cross-validation, the  learning algorithms  are trained on 
the document set  and the induced IE systems  are applied to the test set 

Jj ..1= N NLL ...1

jDD \ )()...(1 jEjE N jD . 
For each document  in d jD , let  be the populated templates by  
respectively. A merged template 

NTT ...1 )()...(1 jEjE N

MT  is assembled from , as shown in Section 3.1. A new 
feature vector is produced for each entry in the merged template, which is added to the meta-level 
data set 

NTT ...1

jMD . At the end of the cross-validation process, the union =MD ∪ jMD  constitutes the 
full meta-level data set, which is used by a learning algorithm  to train the meta-level 
classifier . Finally, the  learning algorithms are applied to the entire data set  inducing 
the base-level systems  to be used at runtime.  

ML
MC N ,D

NEE ...1

Figure 2 presents an algorithmic description of the new stacking framework for IE. The 
vectors in the new meta-level data set MD  belong to 1+Q  classes, where Q  is the number of 
relevant fields in the domain of interest plus the value “false”. A vector classified as “false” 
indicates that the corresponding fragment  does not exist in the hand-filled template, and 
thus the available base-level systems should not have predicted a field for it (for example the 
fragment “1 GB” in Table 5). 

),( est

 
procedure stacking_for_IE ( D , , , J NLL ...1 ML ) begin 

JDD ...1  = partition of D  into  document collections of almost equal size J
for  = 1 to  do begin     j J
     jMD  = {} 
     for i  = 1 to  do  = the system obtained by training N )( jE i iL  on jDD \  

      foreach document  in d jD  do begin 
  for i  = 1 to  do  = the template, populated by applying  to  N iT )( jE i d

MT  = create_merged_template ( , )    d NTT ...1

  foreach entry, i.e., for each distinct , in ),( est MT  do begin 
                                      for i  = 1 to  do  = the field by  for  N ∈if }?"",,...{ 1 Qff )( jE i ),( est
                                      = the correct field for  },,...{ f 1 falseff Q∈ ),( est
                                     jMD = jMD  ∪ vector   >< fff N ,,...1

  end 
      end 
 end   // end of cross validation 
 MD  = ∪ jMD ,  Jj ...1=

MC  = meta-level classifier obtained by applying ML  on MD  
// Train the base-level IE systems  

 for  = 1 to  do i N iE  = the base-level system obtained by training iL  on D  
end 

Figure 2. The new stacking framework for information extraction. 
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The key difference among stacking for IE and common stacking is that cross-validation operates 
on text documents paired with hand-filled templates, instead of feature vectors labelled with class 
values. This removes the constraint of performing common classification at base-level, thus 
allowing the application of stacking to IE. The base-level algorithms  are designed for IE, 
while the learning algorithm 

NLL ...1

ML  that is applied at meta-level is designed for classification, and 
thus cannot be one of  as in stacking for classification. NLL ...1

The size of the meta-level data set is not a-priori known in stacking for IE, unlike common 
stacking where there is a one-to-one correspondence between base-level and meta-level vectors. 
Here, the size of the meta-level data set is determined by the output of the base-level systems, i.e. 
by the individual templates  that assemble a merged template, as shown in Figure 2. NTT ...1

The one-to-one correspondence between base-level and meta-level features vectors in 
common stacking, results in identical class values at both base-level and meta-level. In IE, 
however, a text fragment that is relevant to our task may not have been identified by any of the 
available base-level systems. In that case, there is no possibility of identifying that fragment at 
meta-level, since no feature vector is created and thus resulting in loss of information. This 
observation suggests that IE systems biased towards recall (percentage of the annotated field 
instances that were identified), should be generally preferred for combination, expecting to reduce 
the loss of information at meta-level.  

Moreover, a meta-level vector in common stacking for classification does not contain missing 
values, since each base-level classifier predicts a nominal class value or a probability distribution 
over the relevant classes. On the other hand, a meta-level vector in stacking for IE may contain 
missing values, as shown in Table 5, since some system may not have predicted a field for a 
fragment that has been identified by another system. In correspondence to majority voting, 
missing values in Table 5 can be handled by recording them as “false”, which indicates rejection 
of prediction. In that case, all attribute values, should share the same set of values 

, thus replacing the set  in Figure 2. },...{ 1 falseff Q }?"",,...{ 1 Qff
Another issue in stacking for IE is the choice of  in the -fold cross-validation process 

depicted in Figure 2. The choice of  usually depends on the size of the training data and the 
computational cost of training. The choice of also affects the difference in the number of 
documents for training the base-level systems and the meta-level classifiers. According to Figure 
2, the base-level systems  that will be used at runtime are retrained on the entire 
collection 

J J
J

J

NEE ...1

D  of training documents. On the other hand, the meta-level vectors on each jth fold are 
created by the predictions of the systems , as trained on a lower proportion of the 
training documents . The larger the value of , the smaller the size of  and therefore 
the smaller the difference between the size of the training data set  for  and 
the complete data set 

)()...(1 jEjE N

jDD \ J jD
jDD \ )()...(1 jEjE N

D .  
To illustrate this point, for a collection of 40 training documents, the final base-level systems 

 are trained on the full data set. If we assume a five-fold cross validation process, then on 
each fold 

NEE ...1

j , the  are trained on 32 documents. An alternative is to use a higher 
value for , suffering however a higher computational cost.  

)()...(1 jEjE N

J

4.3  Stacking at Runtime 
Given a new document d, the systems  are used to identify relevant field instances and fill 
the corresponding templates . A merged template is then created from . For each 
row entry in the merged template, i.e., for each distinct , a feature vector is created by the 
predicted fields of  for  (absence of prediction by an IE system is indicated by “?” 
or “false”). The new vectors are finally classified by the meta-level classifier  into 

NEE ...1

NTT ...1 NTT ...1

),( est
NEE ...1 ),( est

MC 1+Q  
predefined categories . If a vector is classified into one of the relevant fields 

 then the corresponding instance 
},...{ 1 falseff Q

Qff ...1 >< fe),t(s,  is inserted in the final template for  
Otherwise (“false” prediction) the entry is excluded from the final template. For example, if we 
assume that the class column in Table 5 has been filled by  then for the two vectors that 
have been classified as “false”, the corresponding entries will be excluded from the final 
template. At runtime, the stacking framework for IE is graphically depicted in Figure 3.  

.d

,MC
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Figure 3. The stacking framework for information extraction at runtime. 
 
According to Figure 3, the input to the systems is a new text document while the output is the 
corresponding filled template. In contrast, both input and output in the runtime stacking for 
classification architecture of Figure 1(b), consist of a single feature vector. 

4.4 Stacking Using Probabilities 
A straightforward extension of stacking with nominal values is to rely on the confidence scores 
by the base-level systems that have been converted into probabilistic estimates of correctness. 
The new framework is described as follows: 
• Instead of predicting one of the Q  relevant fields for each fragment , each system 

generates a confidence score  for the predicted field k . This is modelled by a -element 
vector that contains zero values, except for the kth position where  appears, i.e., 

. If a system does not predict a field, all elements are zero. 

),( est
kc f Q

kc
>< 0,...,...,0 kc

• Each vector is converted to a new one , where  is a probabilistic estimate 
that corresponds to k  and reflects the probability of correctness of the prediction. The 
conversion process is described in more detail in (Freitag, 2000).  

N

>< 0,...,...0 kp kp
c

• Finally, the output vectors by  for  form a single vector of  elements, 
appended by the correct field, according to the hand-filled template. 

EE ...1 ),( est QN *

Table 6 shows an illustrative example of the new feature vectors at the meta-level, using 
probabilistic estimates of correctness.  

 
Feature vectors using probabilistic estimates es,  ),( est  

Output by  
1E Output by  

2E Class  
47, 49 TransPort ZX 0, 0, 0.92, 0, 0, 0, 0, 0, 0, 0.34, 0, 0, 0, 0, 0, 0, model 
56, 58 15'' 0, 0, 0, 0, 0, 0, 0.83, 0, 0, 0, 0, 0, 0, 0, 0, 0, screenSize 
59, 60 TFT 0, 0, 0, 0, 0, 0, 0, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.91, screenType 
63, 66 Intel<b>Pentium 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61, 0, 0, 0, 0, false 
63, 67 Intel<b>Pentium III 0, 0, 0, 0.67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, procName 
67, 69 600 MHz 0, 0, 0, 0, 0.82, 0, 0, 0, 0, 0, 0, 0, 0.79, 0, 0, 0, procSpeed 
76, 78 256 MB 0, 0, 0, 0, 0, 0.91, 0, 0, 0, 0, 0, 0, 0, 0.77, 0, 0, ram 
81, 83 1 GB 0, 0, 0, 0, 0, 0.55, 0, 0, 0.89, 0, 0, 0, 0, 0, 0, 0, false 
86, 88 40 GB 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 0, 0, 0, 0, 0, 0, 0, HDcapacity 

Table 6. The new meta-level vectors using probabilistic estimates of correctness. 
 
The same vector representation used in Table 6 was also used in the extension of stacking for 
classification proposed in (Ting and Witten, 1999). The only difference is that class (or field) 
probability distributions, as they suggest, are not typically produced by IE systems. Given a text 
fragment , either a field  is predicted for  or no field is predicted at all. Thus, 
except for the vector elements that correspond to the predicted fields, all other values are set to 
zero, as shown in Table 6. 

),( est f ),( est

In stacking with probabilities, a missing value is indicated by a vector of which all elements 
take zero values. Missing values can be handled by augmenting the output of each of the  N

 
base-level systems with an additional attribute, indicating the probability for “false”. The total 
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number of meta-level attributes will be then )1( +QN . The probability value of the extra 
attribute will be complementary to the value of the non-zero element of the vector. For example, 
in the first row entry of Table 6, the value of the extra attribute for the system 1E  will be 0.08, 
while for each absent prediction the extra attribute takes the value “1”. The significance of 
handling the missing values in stacking is empirically evaluated by comparing the performance of 
the trained classifiers over the new vectors against the trained classifiers over the vectors with 
missing values. 

5 Experimental Setup 
 ive experiments i  real-world domains, using well-known 

5.1 Domains 
r re conducted using five collections of text documents from five different 

ages, describing laptop pr  
from

 job announcements from the 
aus

ents (Califf and Mooney, 
200

uring the training of the 
bas

                                                

We have performed extens n five
algorithms at both base-level and meta-level. The primary target was to determine whether 
stacking provides added value over the base-level systems and voting in the examined domains. 
Therefore, we comparatively evaluated all combination methods (voting and stacking) for IE, as 
described in Sections 3 and 4, while also comparing against the best base-level system for each 
domain of interest. Since the success of stacking relies on the disagreement in the output of the 
base-level components, we were particularly interested in how stacking behaves with respect to 
the diversity in the output of the base-level systems, and how that compares to voting.  

Expe iments we
domains. The first two collections consist of 101 Web pages describing computer science (CS) 
courses and 96 Web pages describing research projects respectively, and were constructed in the 
context of the WebKB project (Craven et al., 1998). Both collections were hand-filled for three 
and two extraction fields respectively: crsNumber, the official number of the course (for example, 
“CS 305”), crsTitle, the title of the course (for example, “Operating Systems”), crsInst, the name 
of the course instructor, projTitle, the title of the project (for example, “WebKB”) and 
projMember, the name of a project member.  

The third collection consists of 50 Web p oducts that were collected
 various vendor sites. A total of 19 fields were hand-filled, including the manufacturer of the 

laptop, model name, processor name, speed, ram, hard disk capacity, etc. This collection was 
constructed in the context of building a shopping comparison agent2  that visits various vendor 
sites, extracts laptop descriptions and presents the results to user. 

The last two collections consist of 300 pages describing
tin.jobs newsgroup at Austin and 485 pages describing seminar announcements from the 

Carnegie Mellon University, respectively. Both collections were obtained from RISE (1998) and 
have been widely used in information extraction research. A total of 17 fields were hand-filled for 
job announcements, including the title of the available position, the salary, the name of the 
company, the identifier code of the announcement, etc. Four fields were hand-filled for seminar 
announcements: stime, the starting time of the seminar, etime, the ending time of the seminar, 
speaker, the speaker’s name and location, the location of the seminar.  

Note that the available hand-filled templates for job announcem
3) do not contain information about the starting and ending token boundaries of the annotated 

instances, which is however essential for combining different IE systems. Therefore, the entire 
corpus was re-annotated, using the available hand-filled templates as a guide, so that the new 
templates include token boundary information, as the one in Table 2(b).  

Finally, the HTML tags in the three Web domains were not omitted d
e-level systems, but appropriately tokenized, including their attributes and values. For 

example, the stream <td valign="top"> corresponds to the subsequence “td_start_tag”, 
“attrib_valign”, “value_top” in the token table of a Web page.  

 
2 CROSSMARC, R&D project, IST-2000-25366, http://www.iit.demokritos.gr/skel/crossmarc 
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5.2 Base-level Information Extraction Systems 
At the base-level we employed three systems that are well known in the literature for information 
extraction: the (LP)2 system, the BWI system and a HMM-based IE system. 

The Learning Pattern by Language Processing or (LP)2 system implements a sequential 
covering algorithm that learns symbolic pattern-matching rules for IE. For each interesting field, a 
set of start-rules and another one of end-rules are induced that identify the starting and ending 
boundaries respectively of the relevant instances. Shallow natural language knowledge is used 
during the induction process such as lexical information (e.g. capitalized, numerical), part-of-
speech tagging (for example, noun) and stemming information. Additional contextual and 
correction rules are learned that improve the performance of the previously induced rules. Each 
instance  that is recognized at runtime is assigned a confidence score 

, where  is the number of erroneous matches, as estimated during 
training, of the rules that matched , and  is the total number of matches by the 
rules. The lower this score, the higher the confidence attached to the instance. A detailed 
description of (LP)

>< fest ),,(
matchedwrongLS /= wrong

),( est matched

2 can be found in (Ciravegna and Lavelli, 2003). 
The Boosted Wrapper Induction or BWI system learns also symbolic starting and ending 

pattern-matching rules for each relevant field. Each rule is assigned a confidence score according 
to a boosting methodology, which is described in more detail in (Freitag and Kushmerick, 1999). 
The induced rules exploit lexical information (e.g. capitalized, numerical). Each instance 

 recognized at runtime is assigned the product of confidences of the start and end 
rules that match . The more rules match , the higher is the value of the score that is 
assigned to the instance. A comprehensive analysis of the performance of BWI in a variety of IE 
tasks can be found in (Kauchak et al., 2004). 

>< fest ),,(
),( est ),( est

Finally, our HMM-based IE is inspired by work described in (Freitag and McCallum 1999; 
Seymore et al., 1999), whereby a separate HMM is trained for each relevant field. The entire 
training page is probabilistically modelled by the HMM, by assuming that the first token of the 
page is emitted by the initial state of the model, then transitioning to the next state that emits the 
second token, etc. until the ending token of the page is emitted. Special prefix, suffix and target 
states model the immediate prefix, suffix and the internal structure of the relevant instances 
respectively. Inducing a HMM for each field involves the calculation of the state-transition and 
token-emission probabilities over all training pages, based on simple ratios of counts. The Viterbi 
algorithm is used at runtime to identify relevant instances and assign to them a confidence score. 
More details on how HMMs assign confidence scores for IE can be found in (Sigletos, 2005). An 
excellent tutorial on HMMs can be found in (Rabiner, 1989). 

5.3 Meta-level Algorithms for Classification 
At meta-level, we employ the following algorithms, implemented in the WEKA data mining 
platform (Witten and Frank 2000): 
• J48, the well known C4.5 (Quinlan, 1993) decision tree algorithm. 
• NaiveBayes, the well known Naïve Bayes classifier (John and Langley, 1995). 
• IB1, the 1-nearest-neighbor algorithm. 
• Multi-response linear regression (MLR), an adaptation of least-squares linear regression 

(Breiman, 1996a). 
• SMO, a fast implementation of Support Vector Machines (Platt, 1999).  
• LogitBoost, an implementation of the corresponding algorithm (Friedman et al., 1999), using 

decision stumps as weak-classifier. 
Most of these algorithms have already been evaluated as meta-level classifiers in recent studies 
for stacking (Ting and Witten, 1999; Seewald, 2003; Džeroski and Ženko, 2004). 

5.4 Evaluation Methodology and Metrics 
For the evaluation, cross-validation was used to obtain an unbiased estimate of performance over 
unseen data. For the domains of laptop products and job announcements, the corpus was 
randomly split into 5 equally populated parts. At each fold, a different part of pages was kept for 
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evaluation, and the pages in the remaining four parts were used in order to induce the base-level 
systems and the meta-level classifiers. Results on the test parts were averaged over all 5 folds. 
Notice that within the training part at each of the 5 folds, a separate 5-fold cross-validation 
procedure was used in order to create the meta-level set of feature vectors and thus train the 
classifiers, as described in Section 4.2.  

For the two WebKB domains and seminar announcements, a different evaluation 
methodology was followed that was also applied in (Freitag, 2000). Each corpus was randomly 
split into 2 parts of almost equal size. The first part was used to induce the base-level systems and 
the meta-level classifiers, while the second part was used for evaluation. An internal 3-fold cross-
validation process was followed in the training part in order to collect the meta-level set of feature 
vectors and then train the classifiers. The whole process was repeated 5 times, averaging the 
results at the end. Moreover, the constraint of “one instance per document” (OPD) was applied 
for the fields crsNumber and crsTitle in CS courses, for the field projTitle in research projects, 
and for all four fields in seminar announcements, towards an objective comparison against 
multistrategy learning for information extraction and the results presented in (Freitag, 2000). 
Therefore, whenever two or more instances of an OPD field were present within a page, only the 
instance with the highest score was selected. 

Three metrics were used for measuring the performance: precision (P), the percentage of the 
identified field instances that are correct, recall (R), the percentage of the annotated field 
instances (in the hand-filled templates) that were identified, and finally 1F , the harmonic mean 
of recall and precision defined as )/(21 PRRPF += . Our definition of recall and precision is 
equivalent to micro-average recall and micro-average precision (Sebastiani, 2002), formally 
defined as: 
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where iTP  is the number of instances of the field  that have been correctly 
identified (true positive), 

},...{ 1 Qi fff ∈
iFP  is the number of  instances that have been incorrectly identified 

(false positive), and finally  is the number of  instances that were not identified (false 
negative). Choosing micro-average metrics allows for an objective overall comparison among 
different systems, by considering all target instances by all relevant fields. Statistical significance 
in the conducted comparisons was evaluated using the well-known paired t-test (Dietterich, 1998) 
with a significance level of 95%. 

if
iFN if

6 Results and Comparisons 
The results obtained by all base-level systems in the domains of interest are initially presented in 
this section, while also investigating whether any improvement in the best results for each domain 
is possible at meta-level. Then, the meta-level data is analyzed, in order to determine whether and 
how the predictions of the base-level systems are correlated. This study is intended to serve as a 
basis for a comparative evaluation of voting against stacking. Then all combination methods are 
comparatively evaluated, while also comparing against the best base-level results. More detailed 
analysis of the experimental results is provided in Section 7. 

6.1 Results of Base-level 
Table 7 shows the 1F  scores (%) obtained by the base-level systems in the domains of interest. 
Only the highest 1F  score for research projects was measured as statistically insignificant. 
Appendix B.1 shows the scores obtained in all three measures of performance. 
 

 CS courses Projects Laptops Jobs Seminars 
BWI 51.30 60.75 62.26 80.01 83.09 
HMM 59.39 61.64 63.81 75.71 79.20 
(LP)2 65.73 58.82 61.26 83.22 86.23 

Table 7.  Base-level 1F  scores (%) for the five domains. 
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The simple choice is to select the best base-level system for each domain. On the other hand, a 
more desirable approach is to try to exploit the diversity in the output of all systems, hoping to 
improve the best base-level results. Note that there is no generally accepted measure for diversity, 
but a variety of measures exist in the literature (Kuncheva and Whitaker, 2003). Ali and Pazzani 
(1996) define the similarity between two classifiers, as the conditional probability that both 
classifiers make an error, given that either of them makes an error.  

Tables 8(a) to 8(e) are instances of the “contingency table” that was introduced by Freitag 
(2000) for measuring the similarity in the output of pairs of systems, and inspired by Ali and 
Pazzani’s measure. Each cell in a contingency table measures the conditional probability that the 
row system makes the correct prediction, given that the column system also predicts correctly. 
Tables 8(a) to 8(e) suggest that there is space for improving the best base-level system in each 
domain. For example, in CS courses we notice that only in 69% of the meta-level instances where 
HMMs yield a correct prediction, (LP)2 also predicts correctly. Thus, in the remaining 31%, 
where HMMs predict correctly, (LP)2 either predicts an incorrect field, or does not predict any 
field. Therefore, the performance of (LP)2, which is the best system for this domain, can be 
further improved. 

 
 BWI HMM (LP)2

BWI 1 0.46 0.44 
HMM 0.70 1 0.52 
(LP)2 0.89 0.69 1 

(a) Courses 
 

 BWI HMM (LP)2

BWI 1 0.82 0.79 
HMM 0.90 1 0.79 
(LP)2 0.69 0.62 1 

(b) Projects 

 BWI HMM (LP)2

BWI 1 0.73 0.78 
HMM 0.89 1 0.83 
(LP)2 0.87 0.76 1 

(c) Laptops 

 BWI HMM (LP)2

BWI 1 0.83 0.86 
HMM 0.91 1 0.85 
(LP)2 0.93 0.85 1 

(d) Jobs 

 BWI HMM (LP)2

BWI 1 0.87 0.83 
HMM 0.91 1 0.84 
(LP)2 0.95 0.92 1 

(e) Seminars 

Table 8.  Contingency tables, measuring the agreement in the predictions of the base-level 
systems. Each cell is the probability that the row system makes a correct prediction, given 
that the column system makes a correct prediction. 

6.2  Analysis of the Meta-level Instances 
Each meta-level instance corresponds to a text fragment  that has been identified by at least 
one base-level system, together with the predicted fields for  by the base-level systems, the 
associated probabilistic estimates, and finally the correct human-annotated field for . 
Figure 4 shows a partition of the meta-level instances in the testing corpus, according to whether 
all systems agree on the same field for a fragment  or not.  

),( est
),( est

),( est

),( est
The leftmost column for each domain in Figure 4 shows that there are regularities in the text 

documents that can be easily recognized by all available IE systems. For example, the fragment 
“TFT” is a typical instance of the field screen type in the domain of laptops that commonly 
appears in both training and testing corpus and thus easily detected by all systems.  

Observing the rightmost column for each domain in Figure 4, leads to the interesting 
conclusion that situations where at least two base-level systems predict different fields for a text 
fragment are not frequent. In order to explain that, one should note that the IE systems exploit 
both the target content and the surrounding context of the relevant instances, and thus are capable 
of disambiguating among field instances with similar content. For example, instances of the fields 
cdromSpeed and dvdspeed contain similar content, e.g. “24x”. A system that simply memorizes 
field instances verbatim predicts both fields for “24x”. Our base-level systems, on the other hand, 
are capable of examining surrounding tokens such as “cd” or “dvd”, and thus distinguish among 
the two fields. In some cases, however, those regularities in the context were difficult to find, 
either because they are less apparent, or due to limitations in the context that the base-level 
systems search for, thus resulting in contradictory fields. 
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Figure 4. Partitioning the meta-level instances for each domain into three disjoint sets, according to 

whether all systems agree on the same field for a text fragment (left column), or some 
system(s) predict the same field while the other(s) abstain from prediction (middle column), 
or there are at least two contradictory predictions (right column). 

 
For example, (LP)2 explores a window of w tokens to the left and  tokens to the right of the 
starting and ending boundaries of the annotated field instances, where the value of  is 
predefined. Also in HMMs, a predefined number of prefix and suffix states model the immediate 
prefix and suffix respectively of the annotated field instances. The largest rate of disagreement 
appears in seminars (9.9%). This is because the ending time (field etime) of a seminar was many 
times confused with the starting one (field stime), thus increasing the size of the rightmost column 
in Figure 4 for this domain. In CS courses and research projects, contradictory predictions do not 
exceed 0.5% of all meta-level data, in laptops they are 3.7%, while for jobs they are 5.5%. 

w
w

Since differences in the predicted fields for a text fragment are not frequent, the interesting 
question is what kind of disagreement can both voting and stacking exploit in pursuit of improved 
performance at meta-level? The answer lies in the middle column for each domain, which 
indicates that the majority of the meta-level instances derive from text fragments that have been 
assigned identical fields by some, but not all, system(s), while the remaining system(s) abstain 
from prediction. Since we deal with three systems, this corresponds to situations where either two 
systems predict the same field, plus a missing prediction by the third system or only one system 
predicts a field, plus two missing predictions. Therefore, we expect voting and stacking to exploit 
this kind of disagreement, leading to better results at meta-level. It is also interesting to observe 
the behaviour of stacking when the predictions by all systems are identical, according to the left 
column for each domain in Figure 4. 

Note finally that the partition of meta-level data as shown in Figure 4, will allow for a more 
comprehensive comparison of stacking against voting, while also exploring the various aspects of 
the behaviour of stacking and voting, with respect to the varying degree of correlation in the 
output of the base-level systems. On the other hand, Table 8 shows a quantitative analysis of the 
disagreement among pairs of different IE systems that helps in determining whether there is space 
for improving the best system for each domain. 

6.3 Results of Meta-level and Comparisons 

 

Let MVotM and MVotF be the two majority voting settings, as defined in Section 3.2. The former 
setting ignores missing field prediction by some system, while the latter setting records missing 
prediction as “false”. Let also PVotM and PVotF be the two corresponding settings of voting 
using probabilities, as defined in Section 3.3. In PVotM, missing predictions are ignored. In 
PVotF, if the highest probability for a field  is less than 0.5, then  is rejected. Table 9 shows 
the best 

f f
1F  scores obtained by all voting settings, stacking with nominal values, stacking with 

probabilities, and by the best base-level systems. Appendix A summarizes again all combination 
methods, along with a short description for each method. 
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. Base MVotM MVotF PVotM PVotF Stacking  
Nominal 

Stacking 
 Probs 

Courses 65.73 65.59 60.29 65.65 70.64 63.92 71.93 
Projects 61.64 60.71 67.39 60.75 65.75 66.05 70.66 
Laptops 63.81 62.37 67.60 62.76 71.03 68.46 71.55 
Jobs 83.22 79.90 83.85 79.99 83.15 85.67 85.94 
Seminars 86.23 86.87 87.13 86.90 88.02 88.48 90.03 

Table 9. Best  1F  scores  (%) obtained by all combination methods (voting and stacking) and by the 
best base-level system for each domain of interest. For fair comparisons, the results of a 
single classifier (LogitBoost) were used by both stacking settings. 

 
Tables 10 to 12 compare all combination methods and the best base-level system, based on 
statistically significant wins against losses, in the five examined domains. Appendices B.2 to B.4 
show detailed numerical values for the three measures of performance by all combination 
methods in each domain of interest. Detailed results per field can be found in (Sigletos, 2005). 
 

 
Best 
Base MVotM MVotF PVotM PVotF Stacking 

Nominal 
Stacking 

Probs 
Best Base  5\0 0\5 5\0 2\2 0\5 0\5 
MVotM 0\5  0\5 0\1 0\5 0\5 0\5 
MVotF 5\0 5\0  5\0 5\0 2\0 3\1 
PVotM 0\5 1\0 0\5  0\5 0\5 0\5 
PVotF 2\2 5\0 0\5 5\0  0\5 0\5 
Stacking Nominal 5\0 5\0 0\2 5\0 5\0  0\3 
Stacking Probs 5\0 5\0 1\3 5\0 5\0 3\0  

Table 10. Statistically significant wins against losses in the five domains, based on precision, of the 
row system against the column one. 

 

 
Best 
Base MVotM MVotF PVotM PVotF Stacking 

Nominal 
Stacking 

Probs 
Best Base  0\5 4\0 0\5 0\4 2\2 2\3 
MVotM 5\0  5\0 0\1 5\0 5\0 5\0 
MVotF 0\4 0\5  0\5 0\5 0\4 0\4 
PVotM 5\0 1\0 5\0  5\0 5\0 5\0 
PVotF 4\0 0\5 5\0 0\5  4\0 4\0 
Stacking Nominal 2\2 0\5 4\0 0\5 0\4  0\3 
Stacking Probs 3\2 0\5 4\0 0\5 0\4 3\0  

Table 11. Statistically significant wins against losses in the five domains, based on recall, of the row 
system against the column one. 

 

 
Best 
Base MVotM MVotF PVotM PVotF Stacking 

Nominal 
Stacking 

Probs 
Best Base  2\0 1\2 1\0 0\4 0\2 0\5 
MVotM 0\2  1\3 0\1 0\5 0\3 0\5 
MVotF 2\1 3\1  3\1 1\3 0\3 0\5 
PVotM 0\1 1\0 1\3  0\5 0\3 0\5 
PVotF 4\0 5\0 3\1 5\0  2\2 0\3 
Stacking Nominal 2\0 3\0 3\0 3\0 2\2  0\4 
Stacking Probs 5\0 5\0 5\0 5\0 3\0 4\0  

Table 12. Statistically significant wins against losses in the five domains, based on 1F , of the row 
system against the column one. 
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6.4 Discussion 
We observe that stacking with probabilities obtains a higher 1F  score than the best base-level 
system for each domain. Precision is also improved (substantially for the domains of research 
projects and laptop products) in all five domains. Recall is improved in three domains but harmed 
in the remaining two. Stacking with simple nominal values, on the other hand, outperforms the 
best base-level 1F  score in only two of the five domains. Note that the large improvement 
obtained by stacking with nominal values in projects and laptops is not consistent across all folds 
during evaluation, and thus measured as statistically insignificant. Overall, stacking with 
probabilities outperforms simple stacking with nominal values. Only for job offers, the obtained 
improvement in 1F  against simple stacking was measured as statistically insignificant. Handling 
missing values in stacking did not significantly influence the results. 

Regarding voting, PVotF performs comparably or better than the best base-level system for 
each domain. Recall is improved by PVotF at meta-level in most domains. Precision is however 
improved only in two domains (projects and laptops). Among all voting settings, PVotF is best 
for courses, laptops and seminars, while MVotF is slightly better only for jobs. For projects, the 
improvement obtained by MVotF against PVotF was measured as statistically insignificant. 
Overall, PVotF is the best among all voting settings. 

By comparing voting against stacking, we observe that stacking with probabilities 
outperforms PVotF in all five domains, although the difference is statistically significant only in 
three domains. Unlike PVotF, stacking with probabilities is also consistently effective across all 
five domains, always outperforming the best base-level system for each domain. Moreover, 
stacking with probabilities always obtains more precise results than PVotF, at the cost of 
somewhat lower recall. Overall, stacking with probabilities achieves the best results among the 
combination methods that were evaluated. 

6.4.1 Best Classifiers at Meta-level 
An interesting result in the stacking with probabilities setting is that the highest 1F  scores in all 
domains were obtained by the same classifier: LogitBoost. Only for projects, the classifier j48 
obtained a higher, but statistically insignificant, 1F . On the other hand, LogitBoost using nominal 
values has not been consistently effective over all five domains. The best classifier using nominal 
values in CS courses was IB1, achieving however an insignificantly higher 1F  score than the best 
base-level system for this domain.  

Table 13 compares the six classifiers in stacking with probabilities, the setting that leads to 
the best meta-level results, based on statistically significant wins against losses, in the five 
examined domains. Appendix B.5 shows the 1F  scores obtained for the five domains by all 
classifiers in both simple stacking with nominal values and stacking with probabilities.  

 
 IB1 J48 LogitBoost MLR NaiveBayes SMO 
IB1  0\3 0\5 1\1 3\0 0\2 
j48 3\0  0\3 2\0 5\0 1\0 
LogitBoost 5\0 3\0  5\0 5\0 5\0 
MLR 1\1 0\2 0\5  3\1 0\2 
NaiveBayes 0\3 0\5 0\5 1\3  0\2 
SMO 2\0 0\1 0\5 2\0 2\0  

Table 13. Stacking with probabilities. Statistically significant wins against losses in the five domains, 
based on 1F , of the row classifier against the column one. 

 
Clearly a variety of other classifiers could also be evaluated at meta-level. The aim of our 
experiments was to demonstrate the effectiveness of utilizing a common classifier in the context 
of combining multiple IE systems. Most of the employed classifiers have been also evaluated in 
recent studies for stacking, with MLR to be a state-of-the art approach (Ting and Witten, 1999; 
Seewald, 2003; Džeroski and Ženko, 2004). MLR did not prove to be that effective in our 
experiments for IE as in the cited studies for common classification. Nevertheless, all meta-level 
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classifiers in the cited studies, including MLR, have access to full probability distributions over all 
relevant classes, produced by the base-level classifiers. Such distributions are not typical for IE 
systems.  

On the other hand, Table 13 shows that boosting simple decision stumps, through LogitBoost, 
was particularly effective at meta-level. Only for projects and seminars, the difference among 
LogitBoost and j48 was measured as statistically insignificant. 

6.4.2 Majority Voting 
Tables 10 and 11 show that MVotM improves recall but hurts precision, as compared to the best 
base-level system for each domain, while MVotF improves precision but hurts recall. This 
contradicting behaviour is mainly due to situations where only one system predicts a field  for 
a text fragment, while the remaining two systems abstain. In such cases, if  is not the correct 
field for the fragment, this harms precision for MVotM, which always accepts . If  is the 
correct field, then this harms recall for MVotF, which always returns “false”, which is the value 
with the highest count. Recall is harmed the most in CS courses by MVotF, thus also harming 

f
f

f f

1F , 
as it is shown in Appendix B.2, which is due to the fact that single predictions are mostly correct 
for this domain. 

Note that since contradictory field predictions for a text fragment are not frequent, according 
to Figure 4, MVotM does not actually behave like voting. In the overwhelming majority of meta-
level data, only one field  participates in the vote counting process. The more systems predict 

 the higher the count is for , which is then returned. However, if  is not the correct field, 
then there is no way to reject it, since missing predictions are ignored and thus precision is 
harmed. Nevertheless, the recall obtained by MVotM approximates the maximum recall that can 
be obtained at meta-level for each domain, since each base-level system also contributes its 
uniquely identified correct instances. On the other hand, MVotF does behave more like voting, 
since each missing prediction for a fragment is encoded with the value “false”, which then 
participates in the vote counting.  

f
f f f

The overall conclusion is that neither majority voting setting has been consistently effective, 
based on 1F , over all five domains. MVotF achieves a higher 1F  score at meta-level that is 
statistically significant only for projects and seminars, while MVotM does not significantly 
improve the best base-level 1F  score in any of the five domains. The large improvement that 
MVotF obtains for laptops is not consistent over all folds during evaluation, and thus measured as 
statistically insignificant. In addition, we would like to learn when a field  is correct, instead of 
accepting  by MVotM, if it has the highest count, or rejecting  by MVotF , if the value with 
the highest count is “false”. Stacking using probabilities achieves this goal, outperforming both 
settings of majority voting in the five examined domains. 

f
f f

6.4.3 Voting Using Probabilities 
Tables 9 to 12 show that the performance of PVotM is similar to MVotM. Since the overwhelming 
majority of meta-level instances contain no contradictory field predictions for a text fragment, 
according to Figure 4, the additional use of probabilities has not proved particularly useful for 
PVotM. The higher the number of votes for , the higher is the combined probabilistic estimate 
for the field. Only for laptops, the slight improvement in 

f
1F  by PVotM is statistically significant. 

As a result, PVotM approximates, slightly better than MVotM, the maximum recall that can be 
obtained at meta-level for each domain. 

Note that PVotF performs an additional test to the field  that is returned by PVotM, by 
examining whether or not the probability associated with  is greater than 0.5, and thus accepts 
or rejects . This leads to more precise results for PVotF, as compared to PVotM, suffering a 
lower recall. The improvement in precision is however substantial and leads to higher 

f
f

f
1F  score 

for PVotF, since most incorrect predictions are associated with a probability that is less than 0.5. 
Moreover, if the value with the highest count is “false”, i.e. two systems abstain from prediction, 
PVotF examines the probability of the field  with the next highest count, i.e. the prediction of 
the remaining system. This explains both the higher recall and lower precision for PVotF, against 

f
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MVotF that always returns “false” in this case. Although PVotF does significantly better than 
MVotF in three domains, the decrease in precision by PVotF is higher than the increase in recall 
for the remaining two (projects and jobs), thus resulting in a comparable or better 1F  score for 
MVotF. This is due to more situations for the two domains where single predictions are both 
incorrect and assigned a high probability, and thus correctly rejected by MVotF, while incorrectly 
accepted by PVotF. 

Although the calibrated probabilities of correctness are more meaningful and consistent than 
confidence scores, choosing 0.5 as a threshold below which to reject predictions may not always 
be an optimal choice, as showed in Figure 5 for CS courses.  
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Figure 5. Precision, recall and 1F  by PVotF for the domain of CS courses, regarding the threshold 

below which, the predicted instances are removed. 
 
The performance of PVotF for a probability threshold zero equals that of PVotM, where no 
prediction is rejected. Increasing the threshold, below which predictions are rejected, a tradeoff 
between recall and precision is observed, reflecting the natural fact that a rejected prediction may 
be either a correct one, thus harming both precision and recall, or incorrect and thus improving 
precision. Nevertheless, incorrect predictions are mostly rejected as threshold increases, since 
most correct predictions are assigned a high probability. 

As already mentioned in Section 2.3.3, the mapping of confidences to probabilities takes 
place by validating the performance of each base-level system on a hold-out set or by cross-
validation. This only approximates the true probability distribution in the predictions of an IE 
system over the space of all possible relevant pages. As a result, the optimal threshold below 
which to reject predictions may vary for different collections of pages. In Figure 5, despite the 
fact that both precision and recall are almost equally balanced at threshold 0.5, the optimal 1F  
score (73.5%) is achieved at threshold 0.7. For jobs, the optimal 1F  score (84.08%) is also 
achieved at threshold 0.7. All differences were measured as statistically significant. For research 
projects, seminars and laptops, the best 1F  score remains at threshold 0.5. 

However, instead of optimizing the threshold empirically, e.g. in a jack-knifing procedure, it 
is much more interesting to try to learn whether or not to accept a prediction. In other words, we 
would like to learn the correlation among the probabilistic estimates, returned by the individual 
base-level systems, towards better meta-level results. Stacking using probabilities achieves this 
goal in most domains by outperforming PVotF, while obtaining more precise results even when 
both settings perform comparably. 

6.4.4 Multistrategy Learning for Information Extraction 

 

Table 14 compares the 1F  scores obtained by the multistrategy learning setting, as described in 
Section 2.3.3, against the best obtained scores at the base-level, voting using probabilities, and the 
results presented in (Freitag, 2000). Results are only presented for the domains of CS courses, 
research projects and seminars, since these domains were used by Freitag (2000).  
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 Best Base PVotM PVotF Multistrategy Multistrategy 
(Freitag, 2000) 

crsNumber 94.46 95.72 95.92 94.91 88.9 
crsTitle 70.05 73.50 72.34 73.29 62.0 
crsInst 48.21 50.81 57.76 50.81 49.8 
projMember 65.00 63.16 68.94 63.09 45.5 
projTitle 39.66 34.26 32.88 35.65 34.1 
stime 99.09 99.51 99.51 99.42 99.3 
etime 97.62 89.09 96.68 67.15 94.3 
speaker 73.41 75.88 75.40 75.58 66.2 
location 77.43 81.82 81.83 81.82 79.7 

Table 14.  Best per field 1F  scores (%) by base-level, voting and multistrategy learning for the 
domains of CS courses, research projects and seminar announcements. 

 
Our results for multistrategy perform comparably or better for most fields against the ones in 
(Freitag, 2000), which is partially due to the higher performance of our systems. Multistrategy 
learning and PVotM behave similarly for all fields but for etime. Instances of etime are many 
times confused with instances of stime by our IE systems, thus resulting in contradictory field 
predictions. Multistrategy, however, considers each field in isolation and thus fails to distinguish 
among the two fields. Voting handles better field ambiguities, by selecting the one with the 
highest probability, thus leading in significantly higher 1F  score than multistrategy for 
ambiguous fields. In some cases the highest probability does not correspond to a correct 
prediction, which justifies why the 1F  for etime is not improved monotonically at meta-level. 

Contradictory field predictions do not occur frequently in most fields, and thus PVotM mostly 
handles each field in isolation, as multistrategy does by default. In such cases, and just like 
PVotM, the success of multistrategy strongly depends on how the incorrect predictions by all 
base-level systems correlate. The more incorrect instances each system uniquely identifies, the 
higher the decrease in precision is, since missing predictions are ignored and there is no correct 
field to contradict the incorrect one during voting. This may lead to a worse 1F  score, compared 
to the best base-level system, as in research projects. Overall, PVotF is the best of the voting 
settings that were evaluated in this article. 

7 Explaining the Results 
In Section 6.2, we partitioned the meta-level instances according to how the base-level systems 
correlate in their output. In this section we compare stacking against voting with respect to this 
diversity analysis. The aim is to provide useful insight into the behaviour of voting and stacking 
by comparatively studying their performance, based on the varying degree of disagreement in the 
output of the base-level systems. In the interest of conducting a fair analysis, the results of a 
single classifier (LogitBoost) are used for stacking. 

7.1 Analyzing Cases of Complete Agreement in the Output of the Base-level Systems 
Figure 6 compares all combination methods, based on the number of correctly classified meta-
level instances, when all base-level systems agree. These instances correspond to the left column 
in Figure 4 for each domain. Recall that each meta-level instance can be classified into one of the 
values , where  the relevant fields and false a special value indicating 
that the text fragment, which corresponds to the meta-level instance, is irrelevant, and thus none 
of the base-level systems should have predicted a field for it.  

},...{ 1 falseff Q }...{ 1 Qff

Stacking with probabilities performs slightly better than all other combination methods, while 
PVotF follows. In other words, stacking proved to be slightly more useful even when the 
predictions by the base-level systems are identical. Note that since all three systems agree on the 
same field, all voting settings except PVotF return the same value. Only PVotF has the additional 
option of rejecting a prediction by all systems, if the combined estimate is less than a given 
threshold, which has proven slightly useful only for projects and laptops. 
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Figure 6.  Comparing all combination methods, when all three base-level systems agree on the 

same field. Sum of correctly classified meta-level instances over all five domains. 
 
Comparing the total number of meta-level instances where all three base-level systems agree 
(leftmost column in Figure 6) and the results obtained by all combination methods, we conclude 
that the returned field is not always correct. This was mostly observed in the Web domains and it 
is partly due to errors during annotation, and mainly due to captured regularities in the text that 
are not always reliable. For example, “TFT” may be the type of a separate screen product that is 
described in the same page with a laptop. Similarly for projects, some faculty or student names 
are former project members, and thus have not been annotated by the human expert. In such 
cases, stacking with probabilities learned to reject, i.e. classify as “false”, some of those erroneous 
predictions. We did not expect to do much better without encoding other features in the meta-
level vectors.  

The last observation indicates a limitation of our base-level systems which is not unknown in 
the literature. The limitation is that the IE systems parse a document as a linear sequence of 
tokens and thus ignore hierarchical structure available within an HTML or XML document, e.g. 
through using the document object model (DOM). Therefore, our IE systems only capture 
regularities in text that concern sequences of tokens within the target content and surrounding 
content of the relevant instances and thus fail to generalize over hierarchical information. For 
example, we would like to exploit HTML information to separate laptops from other products that 
are described within the same page. 

There exist approaches in the literature that exploit HTML or XML structure in the context of 
IE, but they mostly suffer from the need of extensive manual effort and/or the lack of adaptability 
to different structure formats. For example, STALKER (Muslea et al., 2001) learns patterns that 
match certain sequences of tokens/wildcards, separated by irrelevant intermediate text. This 
however requires the manual construction and use of an “embedded-catalog” (EC) tree for Web 
pages that share the same structure in their content, and thus separate trees have to be manually 
constructed for different structure formats.  

Davulcu et al. (2002) exploit DOM-based information in conjunction with a hand-crafted 
ontology for IE from Web pages with different structure. Incorporating combination methods for 
IE with their techniques is an issue to be investigated. For example, the hand-crafted patterns for 
the item-identifiers within the ontology could be replaced by more complex patterns induced by 
combining a set of IE systems, and thus reduce the effort required for engineering the ontology. 
Initial efforts towards incorporating machine learning into ontology engineering already exist 
(Valarakos et al., 2004).  

7.2 Analyzing Cases of Partial Agreement in the Output of the Base-level Systems 

 

Figure 7 compares all combination methods based on the number of correctly classified meta-
level instances, when some base-level system(s) agree on the same field, while the remaining 
one(s) abstain from prediction. These instances correspond to the middle column for each domain 
in Figure 4. In order to analyze the results into greater depth, Figure 7 presents separately the 
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results, based on whether a single base-level system predicts a field, or exactly two out of the 
three systems agree on the same field. 
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Figure 7. Comparing all combination methods, when either a single or exactly two base-level 

systems agree on the same field (set of columns on the left and right respectively). Sum of 
correctly classified meta-level instances over all five domains. 

 
Figure 7 shows the superiority of stacking with probabilities in both situations. Handling missing 
values does not significantly influence the results. The left part in Figure 7 also confirms the 
complementary behaviour of MVotM/PVotM with MVotF. When only one system predicts a field 
for a text fragment, then the column size of MVotM/PVotM equals the number of cases where the 
predicted field is correct. The size of MVotF equals the number of cases where the predicted field 
is incorrect, and thus “false” is returned. The large size of the MVotF column in the left part of 
Figure 7 indicates that single-field predictions are more probably incorrect. The left part of Figure 
7 shows that stacking with probabilities learns more than simple stacking with nominal values 
does and goes beyond what MVotM/PVotM and MVotF straightforwardly deduce in a 
contradicting manner, by obtaining a higher accuracy than all settings. 

When two predictions agree on the same field and the third one is missing, all voting settings, 
except PVotF, obviously return the same field, as also shown in the right part of Figure 7. 
Stacking with nominal values and PVotF perform slightly better than the other voting settings. On 
the other hand, stacking with probabilities again learns something more than simple stacking does 
and goes beyond what all voting settings straightforwardly deduce. 

7.3 Analyzing Cases of Disagreement in the Output of the Base-level Systems 
Figure 8 compares all combination methods, based on the number of correctly classified meta-
level instances, when at least two base-level systems contradict in their field predictions. These 
nstances correspond to the right column in Figure 4 for each domain.  i 
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Figure 8.  Comparing all combination methods when the base-level systems disagree. Sum of 

correctly classified meta-level instances over all five domains.  
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Figure 8 confirms the superiority of stacking with probabilities. Figures 6 to 8 indicate that there 
is enough room for further improving the results. On the other hand, the presented results are very 
positive, considering the exploitation at meta-level of simple nominal values and probabilities of 
correctness in the output of the base-level systems. 

7.4 Comparing by Meta-level Classification Accuracy 
Figures 6 to 8 compare voting and stacking using the number of correctly classified meta-level 
instances, summed over all domains, with respect to the different degree of agreement in the 
output of the base-level systems. Classification accuracy can then be defined as the fraction of 
meta-level instances that have been correctly classified. Table 15 compares again all combination 
methods, using classification accuracy as a measure of performance when estimating the 
statistically significant wins against losses.  

 

 MVotM MVotF PVotM PVotF Stacking 
Nominal 

Stacking 
Probs 

MVotM  0\4 0\1 0\5 0\5 0\5 
MVotF 4\0  4\0 2\0 0\3 0\5 
PVotM 1\0 0\4  0\5 0\5 0\5 
PVotF 5\0 0\2 5\0  0\3 0\5 
Stacking Nominal 5\0 3\0 5\0 3\0  0\4 
Stacking Probs 5\0 5\0 5\0 5\0 4\0  

Table 15.  Statistically significant wins against losses, based on classification accuracy, in the five 
domains, of the row IE system against the column one.  

 
Table 15 shows the clear superiority of stacking with probabilities over all voting settings. This is 
in contrast to Table 12, which shows that PVotF performs comparably to stacking with 
probabilities in two of the five examined domains. Moreover, MVotF seems to be the best voting 
setting, which also contradicts Table 12, where PVotF is the best setting. Those contradicting 
conclusions are due to the different metrics that are employed in the two tables. Table 12 shows 
statistically significant wins against losses, based on the micro-average 1F  that is measured over 
the relevant fields  for each domain. On the other hand, the classification accuracy that 
is used in Table 15 is defined over all possible values  that a meta-level instance 
can be classified into, including the false value. Actually, classification accuracy is identical to 
micro-average precision over all classes  for a domain of interest. 

}...{ 1 Qff
},...{ 1 falseff Q

},...{ 1 falseff Q

Classification accuracy is typically used for comparing different classifiers over all class 
values. In IE, however, the class value false has a special interpretation, since no such field is 
annotated by the human expert. Similarly none of the employed systems at the base-level predict 
the value false for a text fragment. The value false is, however, an option for the meta-level 
classifier, indicating that at least one of the base-level systems has incorrectly predicted a field for 
an irrelevant text fragment. However, the evaluation takes place by comparing the relevant 
instances in the hand-filled templates and the corresponding templates filled by the IE systems, at 
either base or meta-level. Therefore, the evaluation metrics precision, recall and 1F , are 
naturally defined over the relevant domain fields  ignoring false. }...{ 1 Qff

7.5 Stacking Pairs of Information Extraction Systems 
Experiments were also conducted on stacking and voting of pairs of base-level systems, trying to 
investigate whether combining all three systems provides added value over combining pairs of 
systems. Table 16 compares stacking with probabilities (again using the same classifier, 
LogitBoost, for fair comparisons) for all possible combinations of base-level systems. The 
comparison is based on statistically significant wins against losses, based on 1F , in the five 
examined domains. Voting on pairs of base-level systems did not provide any statistically 
significant added value over stacking in the domains of interest. Therefore, the results of voting 
on pairs are omitted here. 
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 BWI +HMM BWI+(LP)2 HMM+(LP)2 BWI+HMM+(LP)2

BWI +HMM  0\4 0\5 0\5 
BWI+(LP)2 4\0  0\4 0\5 
HMM+(LP)2 5\0 4\0  0\4 
BWI+HMM+(LP)2 5\0 5\0 4\0  

Table 16. Statistically significant wins against losses, based on 1F , in the five examined domains, 
of stacking with probabilities the row base-level systems, against stacking the column ones. 

 
In one domain (CS courses), stacking HMMs with (LP)2 results in a statistically insignificant 
difference in 1F  against stacking all three systems. This concludes that the contribution of BWI 
to the performance of stacking is not significant for this domain. Moreover, stacking HMMs with 
(LP)2 proves better than stacking BWI with (LP)2, which is not always justified by the 
performance of the individual base-level systems. For example, BWI obtains a higher 1F  than 
HMMs in jobs and seminars. Table 8 explains this behaviour, by observing a higher degree of 
correlation among (LP)2, which is the best system for jobs and seminars, and BWI, than the 
corresponding one among (LP)2 and HMMs.  

The results of Appendix B.1 show that BWI suffers from lower recall in most domains, as 
compared to HMMs and (LP)2. A general guideline for choosing which base-level systems to 
stack would be therefore to prefer systems biased towards recall, rather than precision, since 
stacking always obtains more precise results at meta-level. Higher recall suggests higher chance 
of covering instances that have not been identified by other systems, and thus leading to a higher 
degree of disagreement, in favour of stacking. For example, HMMs obtain higher recall, yet 
lower precision, than BWI in all five domains. Nevertheless, stacking HMMs with (LP)2 is the 
best pair-wise combination scheme, according to Table 16. In Section 4.2, the choice of systems 
biased towards recall is also suggested, since higher recall leads to higher chance of minimizing 
the number of cases where relevant text fragments have not been identified by any base-level 
system and thus cannot be also identified at the meta-level. 

The only exception to the above rule of thumb for high-recall base-level systems is in the 
domain of research projects, where (LP)2 obtains a significantly lower recall than HMMs, but 
stacking BWI with (LP)2 performs better than stacking BWI with HMMs. Table 8 explains again 
this behaviour, by observing a higher degree of correlation among HMMs and BWI, than the 
corresponding one among (LP)2 and BWI. 

8 Concluding Remarks 
Though effective in improving the performance of multiple learning algorithms, typically voting 
and stacking restrict their applicability to common classification. This article extended the 
applicability of voting and stacking to information extraction (IE), and demonstrated their 
effectiveness using a variety of different algorithms and domains. The disagreement in the output 
of the IE systems that were employed at base-level has been successfully exploited by voting and 
stacking, leading to higher extraction performance at meta-level. 

Experimental results have also shown that voting and stacking work best when using the 
confidence scores by the individual base-level systems that have been converted into probabilistic 
estimates of correctness. Voting using probabilities and setting a threshold, below which meta-
level instances are rejected, proved particularly effective in most domains by outperforming the 
best base-level systems. Stacking using probabilities, on the other hand, proved consistently 
effective over all domains of interest, doing comparably or significantly better than voting. 
Precision was always improved by stacking at meta-level, as compared to the best base-level 
systems, while recall was improved in most domains. Whenever voting and stacking were doing 
comparably, stacking still obtained more precise results. 

Since IE has been transformed into a common classification task at the meta-level, there are 
many opportunities for further improving the extraction performance. The experimental results 
that were presented for stacking in this article are encouraging, considering also the simplicity of 
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the features in the meta-level vectors that represent only the output of the base-level systems. 
Additional information could be exploited by stacking towards better results that further justify 
the additional computational cost over voting. In the domain of laptop products, for example, 
instances of “processor speed” appear typically after “processor name” instances, while instances 
of “ram” usually follow. Exploring such dependencies among extraction fields, or possibly other 
sources of information, could lead to useful extra features within the meta-level vectors to be 
exploited by the classifiers. The combination of different classifiers at a higher meta-level could 
also be examined. 

A different stacking strategy could be applied by considering each field in isolation during 
combination, as proposed in (Freitag, 2000). In that case, a separate cross-validation process 
would take place in the base-level data set for each relevant field, and the problem would be 
transformed into a binary-learning task at the meta-level. Such a strategy would also deal with a 
limitation of cross-validation procedures over text documents that concerns stratification. In 
common classification over feature vectors, a similar distribution of classes is maintained in each 
fold. In IE, however, typically there is a different distribution of fields in each document and thus 
it is hard to approximate the same distribution of the fields in each fold. The penalty of stacking 
separately each field is that we cannot take advantage of the cases of contradictory field 
predictions in the output of the base-level systems. 

Creating feature vectors is just one method of handling the meta-level data. Alternative 
methods can be investigated. An interesting extension is to appropriately encode the information 
available at the meta-level as special tags, which can be either embedded within the text or used 
as additional token features. This would allow the training of common IE systems also at the 
meta-level, since the meta-level data set would again consist of the same set of annotated text 
documents, including the additional meta-level information embodied within the text. This would 
also be aligned with Wolpert’s two major features of stacking: that data sets at both base-level 
and meta-level are of equal size, while a learning algorithm which is applied at the base-level can 
also be applied at the meta-level. 

This article contributes to the direction of realizing the high potential of combination methods 
in the context of accurately identifying relevant information within the abundant of online text, 
aiming at a framework that can be easily adapted to new domains. 
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Appendix A: Summary of the Combination Methods for Information Extraction 

Combination method Short description Described in section 
MVotM Majority voting. Missing values are ignored 3.2 

MVotF Majority voting. Missing values are encoded as special 
“false” values, indicating rejection of prediction 3.2 

PVotM Voting with probabilities. Missing values are ignored 3.3 

PVotF Voting with probabilities. A threshold is set (typically 
0.5), for accepting/rejecting predictions 3.3 

Stacking Nominal Stacking using simple nominal values 4.2, 4.3 
Stacking Probs Stacking using probability values 4.4 
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Appendix B: Results of Base-level and Meta-level for the Five Domains of Interest 

B.1 Results of Base-level 
CS courses Research projects Laptop products % Precision Recall F1 Precision Recall F1 Precision Recall F1 

BWI 74.55 39.10 51.30 60.05 61.47 60.75 74.99 53.23 62.26 
HMM 60.50 58.29 59.39 56.24 68.18 61.64 62.29 65.42 63.81 
(LP)2 71.39 60.90 65.73 63.31 54.92 58.82 63.24 59.41 61.26 

 
Job announcements Seminar announcements % Precision Recall F1 Precision Recall F1 

BWI 89.42 72.39 80.01 93.26 74.92 83.09 
HMM 72.42 79.31 75.71 78.34 80.09 79.20 
(LP)2 87.70 79.18 83.22 91.39 81.63 86.23 

B.2 Results of Majority Voting 
Precision Recall F1 

% Best 
Base MVotM MVotF Best 

Base MVotM MVotF Best 
Base MVotM MVotF

Courses 71.39 58.68 82.05 60.90 74.35 47.65 65.73 65.59 60.29 
Projects 56.24 49.17 68.88 68.18 79.32 65.96 61.64 60.71 67.39 
Laptops 62.29 52.89 80.41 65.42 76.00 59.05 63.81 62.37 67.60 
Jobs 87.70 71.29 93.06 79.18 90.88 76.31 83.22 79.90 83.85 
Seminars 91.39 86.93 97.55 81.63 86.82 78.72 86.23 86.87 87.13 

B.3 Results of Voting Using Probabilities 
Precision Recall F1 

% Best 
Base PVotM PVotF Best 

Base PVotM PVotF Best 
Base PVotM PVotF 

Courses 71.39 58.78 70.16 60.90 74.35 71.12 65.73 65.65 70.64 
Projects 56.24 49.20 63.31 68.18 79.37 68.38 61.64 60.75 65.75 
Laptops 62.29 53.21 72.86 65.42 76.47 69.30 63.81 62.76 71.03 
Jobs 87.70 71.37 80.08 79.18 90.98 86.45 83.22 79.99 83.15 
Seminars 91.39 86.99 90.69 81.63 86.82 85.50 86.23 86.90 88.02 

B.4 Results of Stacking Using a Single Classifier 
Precision Recall F1 

% Best 
Base 

Stacking 
Nominal 

Stacking 
Probs 

Best 
Base 

Stacking 
Nominal

Stacking 
Probs 

Best 
Base 

Stacking 
Nominal 

Stacking 
Probs 

Courses 71.39 81.32 79.03 60.90 52.66 66.01 65.73 63.92 71.93 
Projects 56.24 68.84 78.21 68.18 63.59 64.45 61.64 66.05 70.66 
Laptops 62.29 79.52 84.49 65.42 60.10 62.04 63.81 68.46 71.55 
Jobs 87.70 89.89 90.27 79.18 81.82 82.00 83.22 85.67 85.94 
Seminars 91.39 92.56 94.69 81.63 84.74 85.80 86.23 88.48 90.03 

B.5 Results of All Classifiers in Stacking 
Comparison of classifiers is based on 1F . For readability, LB=LogitBoost, NB=NaiveBayes 

Stacking with nominal values Stacking with probabilities % IB1 j48 LB MLR NB SMO IB1 j48 LB MLR NB SMO
Courses 66.03 50.79 63.92 54.62 60.11 56.76 70.23 70.24 71.93 70.38 65.16 70.41
Projects 61.18 55.36 66.05 60.89 60.99 55.98 66.77 71.41 70.66 62.17 65.63 62.65
Laptops 64.43 62.56 68.46 66.23 67.29 66.65 69.49 70.66 71.55 70.00 61.36 71.02
Jobs 80.58 83.93 85.67 84.61 81.77 84.52 83.88 85.22 85.94 84.95 77.23 84.75
Seminars 87.34 87.63 88.48 88.22 87.06 88.09 88.45 89.66 90.03 88.78 88.49 88.82

 
1779



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

References 

Ali, K.M., Pazzani, M.J., Error reduction through learning multiple descriptions. Machine 
Learning, 24, 173-202, 1996. 

Breiman, L., Bagging Predictors, Machine Learning, 24(2), 123-140, 1996. 

Breiman, L., Stacked Regressions, Machine Learning, 24, 41-48, 1996a. 

Califf, M.E., Mooney, R.J., Bottom-up Relational Learning of Pattern Matching Rules for 
Information Extraction, Journal of Machine Learning Research (JMLR), 4, 177-210, 2003. 

Chan, P., An Extensive Meta-Learning Approach for Scalable and Accurate Inductive Learning, 
PhD Thesis, Columbia University, 1996. 

Chang, C.H., Lui, S.C., IEPAD : Information Extraction based on Pattern Discovery, In 
Proceedings of the Tenth International WWW conference, 509-516, New York, USA, 2001. 

Chawathe, S., Molina, H-C., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., Widom, 
J., The TSIMMIS Project: Integration of Heterogeneous Information Sources, In Proceedings 
of the Tenth Meeting of Information Processing Society of Japan (IPSJ), 7-18, 1994. 

Ciravegna, F., Adaptive Information Extraction from Text by Rule Induction and Generalization, 
In Proceedings of the Seventeenth IJCAI Conference. Seattle, 1251-1256, 2001. 

Ciravegna, F., Lavelli, A., LearningPinochio: Adaptive Information Extraction for Real World 
Applications, Natural Language Engineering, 1(1), 1-21, 2003. 

Cohen, W., Hurst, M., Jensen, L.S., A Flexible Learning System for Wrapping Tables and Lists in 
HTML Documents, In Proceedings of the Eleventh International WWW conference, Hawaii, 
USA, 2002. 

Craven, M., DiPasquo, D., Freitag, D., McCallum, A.K., Mitchell, T., Nigam, K., Slattery, S., 
Learning to extract symbolic knowledge from the World Wide Web, In Proceedings of the 
Fifteenth National Conference on Artificial Intelligence (AAAI-98), 509-516, 1998. 

Crescenzi, V., Mecca, G., Merialdo, P., RoadRunner: Towards automatic data extraction from 
large Web sites, In Proceedings of the Twenty-seventh International Conference on Very 
Large Data Bases (VLDB), 109-118, Rome, Italy, 2001. 

Davulcu, H., Mukherjee, S., Ramakrishman, I.V., Extraction Techniques for Mining Services 
from Web Sources, IEEE International Conference on Data Mining (ICDM), 601-604, 2002. 

Defense Advanced Research Projects Agency (DARPA), Proceedings of the Sixth Message 
Understanding Conferences (MUC-6), Morgan Kaufmann, 1995. 

Defense Advanced Research Projects Agency (DARPA), Proceedings of the Seventh Message 
Understanding Conferences (MUC-7), Morgan Kaufmann, 1996. 

Dietterich, T.G., Machine Learning research: Four current directions. AI Magazine, 18(4), 97-
136, 1997. 

Dietterich, T.G., Approximate Statistical Tests for Comparing Supervised Machine Learning 
Algorithms, Neural Computing, 10(7), 1895-1924, 1998. 

Domingos, P., Unifying instance-based and rule-based induction, Machine Learning, 24(2), 141-
168, 1996. 

Džeroski, S., Ženko, B., Is Combining Classifiers Better than Selecting the Best One? Machine 
Learning, 54(3), 255-273, 2004. 

Florian, R., Cucerzan, S., Schafer, C., Yarowsky, D., Combining Classifiers for Word Sense 
Disambiguation, Natural Language Engineering, 1(1), 1-14, 2002. 

 
1780



INFORMATION EXTRACTION USING VOTING AND STACKING 

Freitag, D., Machine Learning for Information Extraction in Informal Domains, Machine 
Learning, 39, 169-202, 2000. 

Freitag, D., Kushmerick, N., Boosted Wrapper Induction, In Proceedings of the Sixteenth 
National  conference on Artificial Intelligence (AAAI-99), 59-66, 1999.  

Freitag, D., McCallum, A.K., Information extraction with HMMs and shrinkage, AAAI-99 
workshop on machine learning for information extraction, 1999. 

Freitag, D., McCallum, A.K., Information extraction with HMM structures learned by stochastic 
optimization, In Proceedings of the Seventeenth National conference on Artificial Intelligence 
(AAAI-00), 584-589, 2000. 

Freund, Y., Schapire, R., Experiments with a new boosting algorithm, In Proceedings of the 
Thirteenth International Conference on Machine Learning (ICML), 148-156, Bari, Italy, 1996. 

Friedman, J., Hastie, T., Tibshirani, R., Additive Logistic Regression: a Statistical View Of 
Boosting, Technical Report, Stanford University, 1999. 

Halteren, H., Zavrel J., Daelemans, W., Improving Accuracy in Word Class Tagging through 
Combination of Machine Learning Systems, Computational Linguistics, 27(2), 199-230, 2001. 

John, G.H., Langley, P., Estimating Continuous Distributions in Bayesian Classifiers, In 
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI), 338-
345, Morgan Kaufmann, 1995. 

Kauchak, D., Smarr, J., Elkan, C., Sources of Success for Boosted Wrapper Induction, Journal of 
Machine Learning Research (JMLR), 5, 499-527, 2004. 

Kuncheva, L.I., Whitaker, C.J., Measures of Diversity in Classifier Ensembles and their 
Relationship with the Ensemble Accuracy, Machine Learning, 51, 181-207, 2003. 

Kushmerick, N., Wrapper Induction for Information Extraction, PhD Thesis, University of 
Washington, 1997. 

Lafferty, J., McCallum, A.K., Pereira, F., Conditional random fields: Probabilistic models for 
segmenting and labeling sequence data, In Proceedings of the Eighteenth International 
Conference on Machine Learning (ICML), 282-289, Williamstown, MA, USA, 2001. 

McCallum, A.K., Freitag, D., Pereira, F., Maximum entropy markov models for information 
extraction and segmentation, In Proceedings of the Seventeenth International Conference on 
Machine Learning (ICML), 591-598, Stanford University, CA, USA, 2000. 

Michalski, R., Tecuci, G., Machine learning: A multistrategy approach, Morgan Kaufmann, 1994. 

Muslea, I., Minton, S., Knoblock, C., Hierarchical Wrapper Induction for Semistructured 
Information Sources, Journal Of Autonomous Agents and Multi-Agent Systems, 4, 93-114, 
2001. 

Platt, J., Fast Training of Support Vector Machines using Sequential Minimal Optimization, 
Advances in Kernel Methods - Support Vector Learning, 185-208, MIT Press, 1999.  

Quinlan, R.J., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993. 

Rabiner, L., A tutorial on hidden Markov models and selected applications in speech recognition, 
In Proceedings of the IEEE 77-2, 257-286, 1989. 

RISE, A repository of online information sources used in information extraction tasks, URL: 
http://www.isi.edu/info-agents/RISE, 1998. 

Sebastiani, F., Machine Learning for Automated Text Categorization, ACM Computing Surveys 
(CSUR), 34 (1), 1-47, 2002. 

 
1781



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

Seewald, A., Towards understanding stacking, PhD Thesis, Department of Informatics, Technical 
University of Wien, Austria, 2003. 

Seymore, K., McCallum, A.K., Rosenfeld, R., Learning hidden Markov model structure for 
Information Extraction, Journal of Intelligent Information Systems (JIIS), 8(1), 5-28, 1999. 

Sigletos, G., Voting and stacking for information extraction: Extended results, Technical Report 
DEMO 2005/3, NCSR Demokritos, 2005. 

Sonderland, S., Learning Information Extraction Rules for Semi-structured and Free Text, 
Machine Learning, 34-(1/3), 233-272, 1999. 

Ting, K., Witten, M., Issues in stacked generalization, Journal of Artificial Intelligence Research 
(JAIR), 10, 271-289, 1999. 

Thompson, C.A., Califf, M.E., Mooney, R.J., Active Learning for Natural Language Parsing and 
Information Extraction, In Proceedings of the Sixteenth International Machine Learning 
Conference (ICML), 406-414, Bled, Slovenia, 1999. 

Valarakos, A., Paliouras, G., Karkaletsis, V., Vouros G., Enhancing Ontological Knowledge 
through Ontology Population and Enrichment, In Proceedings of the Fourteenth International 
Conference on Knowledge Engineering and Knowledge Management (EKAW), LNAI-3257, 
144-156, Springer, 2004. 

Witten, I., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques with Java 
Implementations, Morgan Kaufmann, 2000. 

Wolpert, D., Stacked Generalization, Neural Networks, 5(2), 241-260, 1992. 

 
1782



Journal of Machine Learning Research 6 (2005) 1783–1816 Submitted 4/05; Revised 10/05; Published 11/05

Probabilistic Non-linear Principal Component Analysis with
Gaussian Process Latent Variable Models

Neil Lawrence NEIL@DCS.SHEF.AC.UK

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street
Sheffield, S1 4DP, U.K.

Editor: Aapo Hyvärinen

Abstract

Summarising a high dimensional data set with a low dimensional embedding is a standard approach
for exploring its structure. In this paper we provide an overview of some existing techniques for
discovering such embeddings. We then introduce a novel probabilistic interpretation of principal
component analysis (PCA) that we term dual probabilistic PCA (DPPCA). The DPPCA model has
the additional advantage that the linear mappings from the embedded space can easily be non-
linearised through Gaussian processes. We refer to this model as a Gaussian process latent variable
model (GP-LVM). Through analysis of the GP-LVM objective function, we relate the model to
popular spectral techniques such as kernel PCA and multidimensional scaling. We then review a
practical algorithm for GP-LVMs in the context of large datasets and develop it to also handle
discrete valued data and missing attributes. We demonstrate the model on a range of real-world and
artificially generated data sets.

Keywords: Gaussian processes, latent variable models, principal component analysis, spectral
methods, unsupervised learning, visualisation

1. Introduction

Machine learning is often split into three categories: supervised learning,where a data set is split
into inputs and outputs; reinforcement learning, where typically a reward isassociated with achiev-
ing a set goal, and unsupervised learning where the objective is to understand the structure of a data
set. One approach to unsupervised learning is to represent the data,Y, in some lower dimensional
embedded space,X. In a probabilistic model the variables associated with such a space are often
known as latent variables. In this paper our focus will be on methods that represent the data in this
latent (or embedded, we shall use the terms interchangeably) space.

Our approach is inspired by probabilistic latent variable models. It has roots in previously pro-
posed approaches such as density networks (MacKay, 1995) wherea multi-layer perceptron (MLP)
is used to provide a mapping from the latent projections,X, to the observed data,Y. A prior distri-
bution is placed over the latent-space and the latent-space’s posterior distribution is approximated
by sampling. Density networks made use of the MLP to perform the mapping, Bishop et al. (1996)
replaced the MLP with a radial basis function (RBF) network with the aim of decreasing the training
time for the model. This model evolved (Bishop et al., 1998) into the generativetopographic map-
ping (GTM) where the latent-space was now sampled on a uniform grid, andimportance sampling
is reinterpreted as the fitting of a mixture model via the expectation-maximisation (EM) algorithm.

c©2005 Neil D. Lawrence.
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This allows the points in the latent-space to be laid out on a uniform grid1 (rather than sampled).
This grid layout is shared with the self organising map (SOM) (Kohonen, 1990) and in Bishop et al.
(1997) it was argued that the GTM provides a principled alternative to the self organising map.

The models outlined above are typically designed to embed a data set in two dimensions, they
rely on either importance sampling, or a grid of points in the latent-space to achieve this embedding,
this causes problems when the dimensionality of the latent-space increases. Point representations
of the latent-space are useful because they allow for non-linear models:each point is easy to propa-
gate through the non-linear mapping to the data-space. These non-linear mappings are designed to
address the weaknesses in visualising data sets that arise when using standard statistical tools that
rely on linear mappings, such as principal component analysis (PCA) andfactor analysis (FA): with
a linear mapping it may not be possible to reflect the structure of the data through a low dimensional
embedding.

Principal component analysis seeks a lower dimensional sub-space (typically represented by its
orthonormal basis) in which the projected variance of the data is maximised. Ifa two dimensional
sub-space is sought then the projections may be visualised; but it may be necessary to include more
latent dimensions to capture the variability (and therefore hopefully, but byno means necessarily the
structure) in the data. Principal component analysis also has a latent variable model representation
(Tipping and Bishop, 1999) which is strongly related to Factor Analysis (FA) (Bartholomew, 1987;
Basilevsky, 1994). Both are linear-Gaussian latent variable models, butFA allows for a richer noise
model than PCA (for recent work on non-linear factor analysis see Honkela and Valpola, 2005).

Naturally statisticians have not constrained themselves to linear methods when visualising data
and in the next section we shall briefly review multidimensional scaling and related techniques that
rely onproximity data.

1.1 Multidimensional Scaling and Kernel PCA

We have already mentioned several visualisation techniques which rely on learning a mapping from
a latent-space (the embedded space) to the data-space. In this section we will briefly review methods
that useproximity datato obtain a visualisation or embedding. Broadly speaking these methods
are all variants or enhancements of the technique known as multidimensional scaling (MDS). In
these methods, rather than observing data directly, information about the data set is summarised
in anN×N matrix of either similarities or dissimilarities. Examples include distance matrices (a
dissimilarity matrix) and kernel matrices (a similarity matrix). Each method we review provides
answers to at least one of two questions.

1. How is the proximity matrix compiled?

2. How is the embedding developed from the proximity matrix?

Most of the variants of multidimensional scaling (Mardia et al., 1979) appearto focus on the sec-
ond question. In classical MDS (Torgerson, 1952) an eigendecomposition of the centred similarity
matrix2 is performed. This is sometimes viewed as minimising a particularstress functionwhere
distances in the visualised space are matched to those in the data space. Attempting to preserve these
distances is known asmetricMDS, in non-metricMDS only the ordering of distances is preserved.

1. When sampling techniques are used the latent points will be in random positions.
2. When the data is presented in the form of a distance or dissimilarity matrix a simple conversion may be performed to

obtain a similarity matrix.
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There are strong connections between MDS and kernel PCA (Schölkopf et al., 1998), some
of which are formalised in Williams (2001). Kernel PCA also provides an answer to the first
question—the suggestion is that the proximity data is provided by a positive semi-definite Mercer
kernel that is computed on the data,Y. The use of this kernel implies the existence of a non-linear
mapping3 from the data-space to the latent-space (recall that the GTM and density networks per-
form the non-linear mapping in the opposite direction). The existence of this function is important
as it allows data points which were not in the training set to be mapped to a positionin the latent
space without re-solving the eigenvalue problem. However, for both kernel PCA and MDS meth-
ods, it is not obvious how to project back from the latent-space to the data-space (this is known as
the pre-image problem). Neither is it clear how to handle missing data4 as the proximity data matrix
cannot normally be computed consistently if a particular attribute is not available.

Sammon mappings (Sammon, 1969) also attempt to match the embedded distances between
points with the distances in the observed space (therefore they are a formof MDS). They suffer
from the same weakness as MDS in that projection of data points which were not in the original
data set can be computationally demanding,i.e. despite their name they do not provide an explicit
mapping between the data and latent-space. The lack of a mapping was addressed by the Neuroscale
algorithm of Lowe and Tipping (1996) a version of which was also suggested for MDS (Tipping,
1996).

Other recent work of importance which has focussed on forming the proximity matrix includes
Isomap (Tenenbaum et al., 2000), where an approximation to geodesic distance is used and spectral
clustering (seee.g.Shi and Malik, 2000) where the proximity data is derived from a graph.

In Table 1 we have summarised some of the properties of these algorithms/models. We have
also included the model that is the subject of this paper, the Gaussian process latent variable model
(GP-LVM).

In the remainder of this paper we will introduce the GP-LVM from the latent variable model
perspective. The GP-LVM belongs to the same class of methods as density networks and the GTM,
however there are also connections to classical MDS and kernel PCA. In particular, in the next sec-
tion, we show that the approaches share an objective function. In Section 3 we will cover some of
the algorithmic issues that arise with the model. The framework within which our GP-LVM is de-
veloped makes it straightforward to modify the approach for data for whicha Gaussian noise model
is not appropriate (such as binary or ordinal), this is discussed in Section5. Handling of miss-
ing data attributes is also straightforward (Section 6). The algorithm’s characteristics are explored
empirically in Section 7.

2. Gaussian Process Latent Variable Models

In this paper we present the Gaussian process latent variable model. As we shall see, the model is
strongly related to many of the approaches that we have outlined above. There is a point represen-
tation in the latent-space (as there was for the GTM and density networks) and we will minimise
an objective function that can be related to classical MDS and kernel PCA(see Section 2.6). Our
starting point, however, will be a novel probabilistic interpretation of principal component analysis

3. A good reference which introduces Mercer kernels is Schölkopf and Smola (2001) Chapter 2.
4. Here, by missing data, we mean missing attributes which would normally beused in computing the proximity data

matrix. For proximity data methods missing data can also mean elements missing from the proximity matrix, we do
not discuss this case.
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Proximity X → Y Y → X Non-linear Probabilistic Convex

PCA I Y Y I Y
FA Y Y Y Y

Kernel PCA Y Y Y Y
MDS Y Y

Sammon mapping Y Y
Neuroscale Y Y Y

Spectral clustering Y Y Y
Density Networks Y Y Y

GTM Y Y Y
GP-LVM I Y Y Y

Table 1: Overview of the relationship between algorithms. A ‘Y’ indicates the algorithm exhibits
that property, an ‘I’ indicates that there is an interpretation of the algorithmthat exhibits
the associated property. The characteristics of the algorithm are:proximity: is the method
based on proximity data?X → Y: does the method lead to a mapping from the embedded
to the data-space?Y → X: does the method lead to a mapping from data to embedded
space?Non-linear: does the method allow for non-linear embeddings?Probabilistic: is
the method probabilistic?Convex:algorithms that are considered convex have a unique
solution, for the others local optima can occur.

which we will refer to as dual probabilistic principal component analysis (DPPCA). Dual proba-
bilistic principal component analysis turns out to be a special case of the more general class of
models we refer to as GP-LVMs.

2.1 Latent Variable Models

Typically we specify a latent variable model relating a set of latent variables, X ∈ ℜN×q, to a set of
observed variables,Y ∈ ℜN×D, through a set of parameters. The model is defined probabilistically,
the latent variables are then marginalised and the parameters are found through maximising the
likelihood.

Here we consider an alternative approach: rather than marginalising the latent variables and
optimising the parameters we marginalise the parameters and optimise the latent variables. We will
show how the two approaches can be equivalent: for a particular choiceof Gaussian likelihood and
prior both approaches lead to a probabilistic formulation of principal component analysis (PCA). In
the next section we will review the standard derivation of probabilistic PCA (Tipping and Bishop,
1999), then we will show how an alternative probabilistic formulation may be arrived at (see also
Appendix A).

2.2 Probabilistic PCA

Probabilistic PCA (PPCA) is a latent variable model in which the maximum likelihood solution
for the parameters is found through solving an eigenvalue problem on the data’s covariance matrix
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(Tipping and Bishop, 1999). Let’s assume that we are given a set of centredD-dimensional data
Y = [y1 . . .yN]T. We denote theq-dimensional latent variable associated with each data point byxn.
The relationship between the latent variable and the data point is linear with noise added,

yn = Wxn +ηn

where the matrixW ∈ ℜD×q specifies the linear relationship between the latent-space and the data
space and the noise values,ηn ∈ ℜD×1, are taken to be an independent sample from a spherical
Gaussian distribution5 with mean zero and covarianceβ−1I ,

p(ηn) = N
(

ηn|0,β−1I
)

.

The likelihood for a data point can then be written as

p(yn|xn,W,β) = N
(

yn|Wxn,β−1I
)

. (1)

To obtain the marginal likelihood we integrate over the latent variables,

p(yn|W,β) =
Z

p(yn|xn,W,β) p(xn)dxn, (2)

which requires us to specify a prior distribution overxn. For probabilistic PCA the appropriate prior
is a unit covariance, zero mean Gaussian distribution,

p(xn) = N(xn|0, I) .

The marginal likelihood for each data point can then be found analytically (through the marginali-
sation in (2)) as

p(yn|W,β) = N
(

yn|0,WWT +β−1I
)

.

Taking advantage of the independence of the data points, the likelihood of the full data set is given
by

p(Y|W,β) =
N

∏
n=1

p(yn|W,β) . (3)

The parametersW can then be found through maximisation of (3). Tipping and Bishop (1999)
showed that there is an analytic solution to this maximisation. This solution is achieved when the
matrix W spans the principal sub-space of the data. This model therefore has aninterpretation as a
probabilisticversion of PCA.

Marginalising the latent variables and optimising the parameters via maximum likelihood is
a standard approach for fitting latent variable models. In the next section we will introduce an
alternative approach. Instead of optimising parameters and marginalising latent variables we will
suggest the dual approach of marginalising parameters,W, and optimising with respect to latent
variables,X. For a particular choice of prior distribution onW this probabilistic model will also
turn out to be equivalent to PCA.

5. We use the notationN(z|µ,Σ) to denote a Gaussian distribution overz with meanµ and covarianceΣ.
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2.3 Probabilistic PCA through Latent Variable Optimisation

In the Bayesian framework parameters, such asW, are viewed as random variables. The Bayesian
methodology requires a suitable choice of prior forW, and then proceeds to treat the parameters
as latent variables. A simple choice of prior that is conjugate to (1) would be aspherical Gaussian
distribution:

p(W) =
D

∏
i=1

N(wi |0, I)

wherewi is the ith row of the matrixW. Unfortunately6 marginalisation of bothW and X =
[x1 . . .xN]T is intractable. If we wish to proceed without turning to approximate methods we are
faced with a choice over what to marginalise. The natural choice seems to beto marginaliseX ∈
ℜN×q as typically it will be of larger dimension7 thanW ∈ ℜD×q. In practice though, it turns out
that the two approaches are equivalent.

Marginalisation ofW is straightforward due to our choice of a conjugate prior. The resulting
marginalised likelihood takes the form

p(Y|X,β) =
D

∏
d=1

p(y:,d|X,β) , (4)

where we usey:,d to represent thedth column ofY and

p(y:,d|X,β) = N
(

y:,d|0,XXT +β−1I
)

. (5)

We now look to optimise with respect to the latent variables. As might be expectedfrom the duality
of (3) and (4), this optimisation is very similar to that presented in Tipping and Bishop (1999). Our
objective function is the log-likelihood,

L = −
DN
2

ln2π−
D
2

ln |K |−
1
2

tr
(

K−1YYT)
, (6)

where
K = XXT +β−1I .

The gradients of (6) with respect toX may be found (Magnus and Neudecker, 1999) as,

∂L
∂X

= K−1YYTK−1X−DK−1X,

a fixed point where the gradients are zero is then given by

1
D

YYTK−1X = X.

In Appendix B we show how the values forX which maximise the likelihood are given by

X = ULV T

6. If it were possible to marginalise both the parameters and latent variables analytically we could use Bayes factors to
perform model selection (see, for example, Bishop, 1999).

7. The matrixX will be of larger dimension thanW unlessD > N, i.e. there are more features than data points.
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whereU is anN×q matrix whose columns are the firstq eigenvectors ofYYT, L is aq×q diagonal

matrix whosejth element isl j =
(

λ j −
1
β

)− 1
2

whereλ j is the eigenvalue associated with thejth

eigenvector ofD−1YYT andV is an arbitraryq×q rotation matrix. Here, and in what follows, we
will assume that these eigenvalues are ordered according to magnitude with the largest being placed
first. Note that the eigenvalue problem we have developed can easily be shown to be equivalent
to that solved in PCA (see Appendix C), indeed the formulation of PCA in this manner is a key
step in the development of kernel PCA (Schölkopf et al., 1998) where thematrix of inner products
YYT is replaced with a kernel (see Tipping (2001) for a concise overview ofthis derivation). Our
probabilistic PCA model shares an underlying structure with that of Tipping and Bishop (1999) but
differs in that where they optimise we marginalise and where they marginalise weoptimise.

2.4 Gaussian Processes

Gaussian processes (O’Hagan, 1992; Williams, 1998) are a class of probabilistic models which
specify distributions over function spaces. While a function is an infinite dimensional object, a dis-
tribution over the function space can be considered by focussing only onpoints where the function is
instantiated. In Gaussian processes the distribution over these instantiations istaken to be Gaussian.
Modelling with Gaussian processes consists of first specifying a Gaussian process prior. Usually
a Gaussian distribution is parameterised by a mean and a covariance. In the case of Gaussian pro-
cesses the mean and covariance must be functions of the space on which the process operates. Typi-
cally the mean function is taken to be zero, while the covariance function is necessarily constrained
to produce positive definite matrices.8

Consider a simple Gaussian process prior over the space of functions that are fundamentally
linear, but are corrupted by Gaussian noise of varianceβ−1I . The covariance function, or kernel, for
such a prior is given by

k(xi ,x j) = xT
i x j +β−1δi j , (7)

wherexi andx j are vectors from the space of inputs to the function andδi j is the Kronecker delta. If
these inputs were taken from our embedding matrix,X, and the covariance function was evaluated
at each of theN points we would recover a covariance matrix of the form

K = XXT +β−1I , (8)

where the element at theith row and jth column ofK is given by (7). This is recognised as the
covariance associated with each factor of the marginal likelihood for dualprobabilistic PCA (5).
The marginal likelihood for dual probabilistic PCA is therefore a product of D independent Gaussian
processes. In principal component analysis we are optimising the parametersand input positions of
a Gaussian process prior distribution where the (linear) covariance function for each dimension is
given byK .

2.5 Gaussian Process Latent Variable Models

The dual interpretation of probabilistic PCA described above points to a newclass of models which
consist of Gaussian process mappings from a latent space,X, to an observed data-space,Y. Dual

8. The positive definite constraint implies that these covariance functionsare also valid Mercer kernels. It is therefore
common to refer to the covariance function as a kernel. In this paper we shall use the two terms interchangeably.
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probabilistic PCA is the special case where the output dimensions area priori assumed to be linear,
independent and identically distributed. However, each of these assumptions can be infringed to ob-
tain newprobabilistic models. Independence can be broken, for example, by allowing an arbitrary
rotation on the data matrixY, the ‘identically distributed’ assumption can be broken by allowing
different covariance functions for each output dimension.9 In this paper we focus on the third as-
sumption, linearity. By replacing the inner product kernel with a covariance function that allows
for non-linear functions we can obtain a non-linear latent variable model. Due to the close relation-
ship with the linear model, which has an interpretation as probabilistic PCA, sucha model can be
interpreted as a non-linear probabilistic version of PCA.

2.6 Proximity Data and the GP-LVM

We indicated in the introduction that the GP-LVM has connections with proximity data based meth-
ods such as kernel PCA and classical MDS. These connections are through a unifying objective
function which embraces all three models. In the next section we briefly introduce this objective
function.

2.6.1 A UNIFYING OBJECTIVE FUNCTION

Classical MDS and kernel PCA rely on proximity data, such as similarity matrices. Let’s denote the
matrix of similarities for these methods byS. For the case of positive definite10 similarity measures
the matrixScan be interpreted as a covariance (or covariance function). The cross entropy between
this Gaussian and the Gaussian process whose marginal likelihood was given in (4) is

−
Z

N(z|0,S) lnN(z|0,K)dz =
N
2

ln2π+
1
2

ln |K |+
1
2

tr
(

K−1S
)

. (9)

If we substituteS = D−1YYT we see, up to a scaling of−D, that (9) becomes identical to (6).
TakingK = XXT +β−1I and minimising (9) with respect toX leads to a solution (Appendix B) of
the form

X = ULV T
.

Where the matrixU ∈ ℜN×q has columns which are the eigenvectors ofS. For the specific case11

whereS= D−1YYT the optimisation is identical to that of dual probabilistic PCA. However in the
more general case whereS is either a kernel function or simply a positive definite matrix of simi-
larities kernel PCA and classical MDS are recovered. We also note that the entropy ofN(z|0,S) is
constant inX, we therefore may subtract it from our objective function without affecting the opti-
misation with respect toX. The resulting objective function is then the Kullback-Leibler divergence
(Kullback and Leibler, 1951) between the two Gaussians,

KL (N(z|0,S) ||N(z|0,K)) = −
Z

N(z|0,S) ln
N(z|0,K)

N(z|0,S)
dz

=
1
2

ln |K |−
1
2

ln |S|+
1
2

tr
(

SK−1)−
N
2

.

9. A very simple example of this idea would be to allow different noise distributions on each output direction. The
probabilistic model underlying factor analysis allows this flexibility (see, forexample, Tipping and Bishop 1999).

10. The analysis that follows can be extended to positive semi-definiteSby adding a diagonal term,σ2I to Sand consid-
ering the limit asσ2 → 0.

11. In the MDS literature this is also sometimes referred to as principal co-ordinate analysis.
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With appropriate choice ofSandK this is a valid objective function for PCA, kernel PCA, classical
MDS and the GP-LVM. For kernel PCAS is a ‘non-linear kernel’ andK is the ‘linear kernel’. For
the GP-LVMS is the ‘linear kernel’ whereasK is a ‘non-linear kernel’. In practice this means that
the GP-LVM is harder to optimise (solving an eigenvalue problem is no longer sufficient) but the
GP-LVM maintains a probabilistic interpretation that kernel PCA doesn’t have.

The methods overlap when bothK andS are based on inner product matrices (as outlined for
DPPCA above).

Note that when the similarity measure,S, is not of the form of the inner product kernel the
objective function no longer has an interpretation as a likelihood. Therefore our approach isnot a
probabilistic interpretation of multidimensional scaling: we refer the reader to MacKay and Zinnes
(1986) and Oh and Raftery (2001) for details of probabilistic MDS methods.

2.6.2 A NOTE ON REVERSING THEKULLBACK -LEIBLER DIVERGENCE

The Kullback-Leibler divergence is an asymmetric measure of distribution divergence so it is natural
to consider the effect of reversing the role of the distributions and taking expectations under the
distribution governed byK rather than that governed byS. For this special case, the reversed KL
divergence is very similar to the original, only all matricesK andS are now replaced with their
inverses. So the new objective function is

L =
1
2

ln |S|−
1
2

ln |K |+
1
2

tr
(

KS−1)−
N
2

,

The minimum can again be found through an eigenvalue problem, but now the retained eigenvalues
from K are the smallest, rather than the largest. In this respect the model leads tominor component
analysis.

3. Fitting a Non-linear GP-LVM

We saw in the previous section how PCA can be interpreted as a Gaussian process that maps latent-
space points to points in data-space. The positions of the points in the latent-space can be determined
by maximising the process likelihood with respect toX. It is natural, therefore, to consider alter-
native GP-LVMs by introducing covariance functions which allow for non-linear processes. The
resulting models will not, in general, be optimisable through an eigenvalue problem.

3.1 Optimisation of the Non-linear Model

In the previous section we saw for the linear kernel that a closed form solution could be obtained
up to an arbitrary rotation matrix. Typically, for non-linear kernels, there will be no such closed
form solution and there are likely to be multiple local optima. There is a wide choiceof non-linear
covariance functions, some of which will be reviewed in Section 7.1. To usea particular kernel in
the GP-LVM we first note that gradients of (6) with respect to the latent points can be found through
first taking the gradient with respect to the kernel,

∂L
∂K

= K−1YYTK−1−DK−1
, (10)

and then combining it with∂K
∂xn, j

through the chain rule. As computation of (10) is straightforward
and independent of the kernel choice we only require that the gradientof the kernel with respect to
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the latent points can be computed. These gradients may then be used in combination with (6) in a
non-linear optimiser to obtain a latent variable representation of the data. Furthermore, gradients
with respect to the parameters of the kernel matrix may be computed and used tojointly optimiseX
and the kernel’s parameters.

The log-likelihood is a highly non-linear function of the embeddings and the parameters. We are
therefore forced to turn to gradient based optimisation of the objective function. Scaled conjugate
gradient (Møller, 1993) is an approach to optimisation which implicitly considerssecond order
information while using a scale parameter to regulate the positive definitiveness of the Hessian at
each point. We made use of scaled conjugate gradient (SCG) for our experiments.

3.2 Illustration of GP-LVM via SCG

To illustrate a simple Gaussian process latent variable model we turn to the ‘multi-phase oil flow’
data (Bishop and James, 1993). This is a twelve dimensional data set containing data of three known
classes corresponding to the phase of flow in an oil pipeline: stratified, annular and homogeneous.
In Bishop et al. (1998), see also Section 7.2.1, this data was used to demonstrate the GTM algorithm.
The data set is artificially generated and therefore is known to lie on a lower dimensional manifold.
Here we use a sub-sampled version of the data (containing 100 data points)to demonstrate the fitting
of a GP-LVM with a simple radial basis function (RBF) kernel.

As we saw in Section 2.3, seeking a lower dimensional embedding with PCA is equivalent to a
GP-LVM model with a linear kernel,

k(xi ,x j) = xT
i x j +β−1δi j ,

wherek(xi ,x j) is the element in theith row and thejth column of the kernel matrixK andδi j is the
Kronecker delta function.

For comparison we visualised the data set using several of the approaches mentioned in the
introduction. In Figure 1(a) we show the first two principal components ofthe data. Figure 1(b)
then shows the visualisation obtained using the GP-LVM with the RBF kernel,

k(xi ,x j) = θrbf exp
(

−
γ
2

(xi −x j)
T (xi −x j)

)

+θbias+θwhiteδi j .

To obtain this visualisation the log likelihood was optimised jointly with respect to the latent posi-
tionsX and the kernel parametersθbias, θwhite, θrbf andγ. The kernel was initialised using PCA to
setX, the kernel parameters were initialised asθrbf = γ = 1 andθwhite = θbias= exp(−1).

Note that there is a redundancy in the representation between the overall scale of the matrixX
and the value ofγ. This redundancy was removed by penalising the log likelihood (6) with half the
sum of the squares of each element ofX: this implies we were actually seeking a MAP solution12

with a Gaussian prior forX,

p(X) =
N

∏
n=1

N(xn|0, I) .

The likelihood for the RBF kernel was optimised using scaled conjugate gradient (seehttp:
//www.dcs.shef.ac.uk/~neil/gplvmapp/ for the code used).

12. Multiplying the likelihood by this prior leads to a joint distribution over data points and latent points. As a func-
tion of X this joint distribution is proportional to the posterior distributionp(X|Y), therefore maximising the joint
distribution is equivalent to seeking a MAP solution.

1792



PROBABILISTIC NON-LINEAR PCA

−2 −1 0 1 2

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

(a)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

(b)

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

(c)

−8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

(d)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(e)

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

(f)

Figure 1: Visualisation of the Oil data with (a) PCA (a linear GP-LVM) and (b)A GP-LVM which
uses an RBF kernel, (c) Non-metric MDS using Kruskal’s stress, (d) Metric MDS using
the ‘Sammon Mapping’, (e) GTM and (f) kernel PCA. Red crosses, green circles and
blue plus signs represent stratified, annular and homogeneous flows respectively. The
greyscales in plot (b) indicate the precision with which the manifold was expressed in
data-space for that latent point. 1793
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Method PCA GP-LVM Non-metric MDS Metric MDS GTM* kernel PCA*
Errors 20 4 13 6 7 13

Table 2: Errors made by the different methods when using the latent-spacefor nearest neighbour
classification in the latent space. Both the GTM and kernel PCA are given asterisks as the
result shown is the best obtained for each method from a range of different parameterisa-
tions.

We also provide visualisations of the data using the range of algorithms we reviewed in the intro-
duction. In Figure 1(c) we show the result of non-metric MDS using the stress criterion of Kruskal
(1964). Figure 1(d) shows the result from metric MDS using the criterion of Sammon (1969). To
objectively evaluate the quality of the visualisations we classified each data point according to the
class of its nearest neighbour in the two dimensional latent-space supplied by each method. The er-
rors made by such a classification are given in Table 2. For the GTM and kernel PCA some selection
of parameters is required. For GTM we varied the size of the latent grid between 3×3 and 15×15,
and the number of hidden nodes in the RBF network was varied between 4 and 36. The best result
was obtained for a 10×10 latent grid with 25 nodes in the RBF network, it is shown in Figure 1(e).
Note the characteristic gridding effect in the GTM’s visualisation which arises from the layout of
the latent points. For kernel PCA we used the RBF kernel and varied the kernel width between 0.01
and 100. The best result was obtained for a kernel width of 0.75, the associated visualisation is
shown in Figure 1(f).

The gradient based optimisation of the RBF based GP-LVM’s latent-space shows results which
are clearly superior (in terms of separation between the different flow phases) to those achieved
by the linear PCA model. The GP-LVM approach leads to a number of errorsthat is the smallest
of all the approaches used. Additionally the use of a Gaussian process toperform our ‘mapping’
means that we can express uncertainty about the positions of the points in thedataspace. For our
formulation of the GP-LVM the level of uncertainty is shared across allD dimensions and thus may
be visualised in the latent-space.

3.2.1 VISUALISING THE UNCERTAINTY

Recall that the likelihood (4) is a product ofD separate Gaussian processes. In this paper we chose
to retain the implicit assumption in PCA thata priori each dimension is identically distributed by
assuming that the processes shared the same covariance/kernel function K . Sharing of the covari-
ance function also leads to ana posteriorishared level of uncertainty in each process. While it is
possible to use different covariance functions for each dimension and may be necessary when each
of the data’s attributes have different characteristics;13 the more constrained model implemented
here allows us to visualise the uncertainty in the latent space and will be preferred for our empirical

13. A simple example of this is given by Grochow et al. (2004) with the ‘scaled GP-LVM’, where a scale parameter is
associated with each dimension of the data.
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studies.14 In Figure 1(b) (and subsequently) the uncertainty is visualised by varying the intensity of
the background pixels. The lighter the pixel the higher the precision of the mapping.

3.2.2 COMPUTATIONAL COMPLEXITY

While the quality of the results seem good, a quick analysis of the algorithmic complexity shows
that each gradient step requires an inverse of the kernel matrix (see (10)), anO

(

N3
)

operation,
rendering the algorithm impractical for many data sets of interest. In the nextsection we will show
how a practical algorithm may be developed which circumvents this problem through maximising
a sparse approximation to (6).

4. A Practical Algorithm for GP-LVMs

So far we have shown that PCA can be viewed probabilistically from two perspectives, the first
involves integrating latent variables and the second optimising them. Using the latter perspective
we can develop a non-linear probabilistic version of PCA. Unfortunately the optimisation problem
we are faced with is then non-linear and high dimensional (Nq interdependent parameters/latent-
variables before we consider the parameters of the kernel). In this section we will describe an
approximation that relies on a forced ‘sparsification’ of the model. The resulting computational
advantages make visualisation of large numbers of data points practical. We base our approach on
the informative vector machine algorithm (Lawrence et al., 2003). As we willsee in Section 5,
this machinery has the added advantage of allowing us to extend our non-linear PCA model to
non-Gaussian noise models.

4.1 Sparsification

Kernel methods may be sped up through sparsification,i.e. representing the data set by a subset,I ,
of d points known as theactive set.The remaining points are denoted byJ. We make use of the
informative vector machine (IVM) which selects points sequentially according to the reduction in
the posterior process’s entropy that they induce: implementation details for the IVM algorithm are
given in Lawrence et al. (2003).

A consequence of this enforced sparsification is that optimisation of the points in the active set
(with d < N) proceeds much quicker than the optimisation of the full set of latent variables: the
likelihood of the active set is given by

p(YI ) =
1

(2π)
D
2 |K I ,I |

1
2

exp

(

−
1
2

tr
(

K−1
I ,I YI YT

I

)

)

, (11)

which can be optimised with respect to the kernel’s parameters andXI with gradient evaluations
costingO

(

d3
)

rather than the prohibitiveO
(

N3
)

which would arise in the full model. The dominant
cost (asymptotically) becomes that of the active selection which isO

(

d2N
)

.

14. The two approaches, constraining each data direction to the same kernel and allowing each data dimension to have
its own kernel are somewhat analogous to the difference between probabilistic PCA, where each output data shares a
variance, and factor analysis, where each data dimension maintains its own variance.

1795



LAWRENCE

Algorithm 1 An algorithm for visualisation with a GP-LVM.
Require: A size for the active set,d. A number of iterations,T.

InitialiseX through PCA.
for T iterations.do

Select a new active set using the IVM algorithm.
Optimise (11) with respect to the parameters ofK (and optionally the latent positionsXI ) using
scaled conjugate gradients.
Select a new active set.
for each point not in active setj. do

Optimise (12) with respect tox j using scaled conjugate gradients.
end for

end for

4.2 Latent Variable Optimisation

We are interested in visualising all points in the data set, so while there is a significant speed ad-
vantage to selecting an active set, we still need to optimise theinactive points.Fortunately, active
set selection allows us to optimise each of these points independently as, given a fixed active set,
the individual data points are no longer interdependent. A standard result for Gaussian processes
(seee.g.Williams, 1998) is that a point,j, from the inactive set can be shown to project into the
data-space as a Gaussian distribution

p(y j |x j) = N
(

y j |µj ,σ
2
j I
)

(12)

whose mean is

µj = YTK−1
I ,I kI , j

whereK I ,I denotes the kernel matrix developed from the active set andkI , j made up of rows inI
from the jth column ofK , and the variance15 is

σ2
j = k(x j ,x j)−kT

I , jK
−1
I ,I kI , j .

Gradients with respect tox j do not depend on other data inJ, we can therefore independently
optimise the likelihood of eachy j with respect to correspondingx j . Thus the full setXJ can be
optimised with one pass through the data. The active set is then reselected, and the process is
repeated again.

Algorithm 1 summarises the order in which we implemented these steps. The activeset is
first selected, then the kernel parameters and active set positions are optimised. The active set is
then re-selected and then the latent positions of the points not in the active set are optimised. In
each iteration we perform two active set selections because the choice ofactive set is dependent on
both the kernel parameters and the latent point positions. Note also, that for some data sets (when
N >> d) it may not be necessary to optimiseXI because the active set is regularly being reselected.

15. This fixed variance for all output dimensions is a consequence of sharing the same kernel for each output as was
discussed in Section 3.2.1.
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Figure 2: The Gaussian process as a latent variable model.

5. Alternative Noise Models

So far we have considered the GP-LVM for the particular case where wehave Gaussian noise in
each dimension with varianceβ−1. In this section we consider extensions to this noise model. To
this end we firstly reformulate our Gaussian process so that it contains an additional latent variable
F = [f1 . . . fN]T betweenX andY.

p(Y|X,θ) =
Z N

∏
n=1

p(yn|fn) p(F|X,θ)dF. (13)

Thus far we have been considering the case where

p(yn|fn) =
D

∏
i=1

N
(

yni| fni,β−1)
,

it is also straightforward to realise the slightly more general case where the variance is dependent
on both the data point and the output dimension,

p(yn|fn) =
D

∏
i=1

N
(

yni| fni,β−1
ni

)

. (14)

Our approach to different noise models will be to approximate them with a Gaussian noise model
of this form (see also Csató, 2002; Minka, 2001). The noise models we consider in this paper will
be independent across the dimensions,

p(yn|fn) =
D

∏
i=1

p(yni| fni) ,

giving approximations of the form

p(yni| fni) ≈ N
(

mni| fni,β−1
ni

)

.
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The approximation to the noise model leads to a Gaussian approximation to the posterior distribu-
tion,

q(F) ≈ p(F|X,Y) ,

where

q(F) = N
(

f|f̄,Σ
)

wheref is a vector constructed by stacking the columns ofF, and f̄ is constructed by stacking the
columns of the matrix̄F =

[

f̄1 . . . f̄N
]T

. The covariance matrix has a block diagonal structure16

Σ =







Σ1 0 0

0
. . . 0

0 0 ΣD






.

It can be shown (seee.g.Csató 2002; Minka 2001) that the parameters of the approximation are
given by

βni =
νni

1−νniςni
(15)

mni =
gni

νni
+ f̄ni (16)

whereςni is nth diagonal element ofΣi , gni =
∂

∂ f̄ni
lnZni andνni = g2

ni −2 ∂
∂ςni

lnZni where

Zni =
Z

p(yni| fni)q(F)dF. (17)

To prevent cluttering our notation we have not indicated that the approximation q(F) is typically
formed in a sequential manner: its parametersF̄ and Σ change as data points are incorporated.
This approach to approximating the posterior distribution is known as assumed density filtering (see
Maybeck, 1979, Chapter 12 and Minka, 2001, Chapter 3) .

6. Missing Values

In many applications attributes are missing for particular data points. The ability tohandle these
missing values in a principled way is a desirable characteristic of any algorithm.One motivation
behind a probabilistic interpretation of PCA was that the resulting algorithm could handle missing
data in a principled manner. This is a characteristic which the Gaussian process latent variable
model shares. This should be contrasted with kernel PCA where handlingmissing values is not so
straightforward.

Given the formalism we have described for using different noise models it isstraightforward to
handle a missing attribute. The corresponding variance from (14) is set toinfinity by takingβni = 0.

16. For the special case of Gaussian noise with fixed varianceβ−1 (i.e. spherical noise) and shared kernels for each data
dimension we find that these blocks are all equal. This leads to computational and memory savings. If the kernels are
different or more general noise models are used the blocks will not beequal.
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7. Results

In this section we present a range of empirical evaluations with different data sets, each explores a
different characteristics of the GP-LVM. Note that for these visualisationalgorithms over-fitting is
not a problem as long as the latent-space is of lower dimensionality than the data-space. This is a
consequence of the integration over the mapping between the latent and the data-space.

So far we have briefly considered two different kernel/covariance functions, before proceeding
further we will reconsider these and introduce further kernels which willbe used in the experiments
that follow.

7.1 Kernels to Be Used

A Gaussian process covariance function can be developed from any positive definite kernel, new
kernels can also be formed by adding kernels together. In our experiments we principally make use
of three different kernel functions.

7.1.1 LINEAR KERNEL

We have already briefly discussed the linear kernel, it is simply the matrix of inner products,

klin (xi ,x j) = θlinxT
i x j ,

where we have introducedθlin , the process variance, which controls the scale of the output functions.

7.1.2 RBF KERNEL

We also made use of the popular RBF kernel, it leads to smooth functions that fall away to zero in
regions where there is no data.

krbf (xi ,x j) = θrbf exp
(

−
γ
2

(xi −x j)
T (xi −x j)

)

whereγ is the inverse width parameter.

7.1.3 MLP KERNEL

The MLP kernel (Williams, 1997) is derived by considering a multi-layer perceptron (MLP) with
an infinite number of hidden units,

kmlp(xi ,x j) = θmlpsin−1









wxT
i x j +b

√

(

wxT
i xi +b+1

)

(

wxT
j x j +b+1

)









where we callw the weight variance andb the bias variance (they have interpretations as the vari-
ances of prior distributions in the neural network model). This covariancefunction also leads to
smooth functions, but they have an important characteristic that differentiates them from the RBF
kernel: outside regions where the data lies functions will not fall to zero, but tend to remain at the
same value.
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7.1.4 THE NOISE TERM

In the experiments in Section 3 we also made use of a ‘white noise term’. A white noise process has
a kernel of the form

kwhite(xi ,x j) = θwhiteδi j

whereδi j is the Kronecker delta which is zero unlessi = j when it takes the value 1. Note that the
use of white noise in the kernel is often redundant with some parameters in thenoise model, for
example with a Gaussian noise model, leaving out the white noise term and setting

p(yin| fin) = N(yin| fin,θwhite)

is equivalent to including the white noise kernel and setting

p(yin| fin) = lim
σ2→0

N
(

yin| fin,σ2)
.

In our experiments we preferred to include the noise term with the kernel asthe noise level,θwhite,
can then be jointly optimised with the kernel parameters and the latent point positions.

7.1.5 PARAMETER CONSTRAINTS AND INITIALISATION

All the kernels we have mentioned so far have parameters that need to be constrained to be positive.
In our experiments this was implemented by reparameterising:

θ = ln
(

1+exp
(

θ′
))

.

Note that as our transformed parameterθ′ →−∞ the parameterθ → 0 and asθ′ → ∞ we see that
θ → θ′.

We used a consistent initialisation of the parameters for all experiments. This was θlin = 1,
θrbf = 1, γ = 1, θmlp = 1, w = 10 andb = 10 .

7.2 Overview of Experiments

For the experiments that follow we used Algorithm 1 withT = 15 iterations and an active set of size
d = 100. The experiments were run on a ‘one-shot’ basis,i.e. each experiment was only run once
with one setting of the random seed and the values ofT andd given.

The remainder of this section is structured as follows, firstly, in Section 7.2.1 we revisit the oil
data first introduced in Section 3.2, but with the revised algorithm which allowsus to efficiently
visualise all the data points. As well as comparing the sparse algorithm to the GTM and PCA we
also include a full GP-LVM model. For each of the different algorithms we explore the quality of
the visualisation in terms of the ease with which the different flow regimes can beseparated in the
embedded space. In Section 7.3.1 we turn to a much higher (256) dimension data set of hand-written
digits. Again we compare the GTM and PCA with the sparse GP-LVM algorithm byseeing how
well the different digits are separated in the latent-space.

In both of the preceding data sets we made use of the Gaussian noise model, our final experiment
with this noise model concerns issues with initialisation. In the data sets presented above we have
no simple ‘ground truth’ which the algorithm hopes to recover. In Section 7.2.3 we consider the
Swiss-roll data Tenenbaum et al. (2000). For this data the ground truth isknown and it turns out that
using PCA to initialise the GP-LVM the ground truth is not recovered, however by initialising using
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Model PCA Sparse GP-LVM (RBF) GP-LVM (RBF) Sparse GP-LVM (MLP) GTM
Errors 162 24 1 14 11

Table 3: Number of errors for nearest neighbour classification in the latent-space for the full oil
data set (1000 points).

Isomap (which is known to give the ground truth) we can recover a probabilistic representation of
this data.

In Section 7.3.1 we move on to non-Gaussian data sets. We consider a binarydata set of hand-
written 2s. We compare a binary model with a Gaussian model and show that thebinary model is
more effective at reconstructing twos when pixels are obscured from the model.

7.2.1 OIL FLOW DATA

In this section we return to the twelve dimensional oil data set that we first introduced in Section 3.2.
We now visualise all 1000 of the data points. For this data set we are interested in evaluating two
different things: the effect of using the different non-linear kernelsand the effect of the sparse
GP-LVM algorithm relative to the full model.

In Figure 3(a) and (b) we present visualisations of the data using sparse GP-LVM algorithm
with the RBF and MLP kernels respectively. In Figure 4(a) we show the data visualised with the
non-sparse GP-LVM algorithm and in Figure 4(b) we have recreated thevisualisation in (Bishop
et al., 1998) which uses the GTM algorithm.

Again we considered a nearest neighbour classifier in the latent-space toquantify the quality of
the visualisations.

We note that there appears to be a degradation in the quality of the GP-LVM model associated
with the sparsification, in comparision to the full GP-LVM algorithm and the GTM the sparse GP-
LVM performs worse.

7.2.2 HANDWRITTEN DIGITS

The oil flow data has twelve attributes, twelve dimensions is too many for the structure of the
data set to be visualised without resorting to displaying embedded spaces, but there are many data
sets with much greater dimensionality. One popular data set for visualisation algorithms has been
handwritten digits. We therefore followed Hinton and Roweis (2003) in our 2-D visualisation of a
sub-set of 3000 of the digits 0-4 (600 of each digit) from a 16×16 greyscale version of the USPS
digit data set (Figure 5). Again we made use of the RBF and the MLP kernel.As well as visualising
with the GP-LVM we present visualisations from a GTM and PCA (Figure 6).

As for the oil data we looked for an objective assessment of the quality of the visualisation
by evaluation errors on a nearest neighbour classifier in the latent-space. The performance bene-
fits associated with the non-linear visualisations are more apparent here than they were for the oil
data (Table 4). The sparse GP-LVM is once again outperformed by the GTM algorithm under this
criterion. Comparision with the full GP-LVM model for this data set is not currently practical.
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Figure 3: The full oil flow data set visualised with (a) an RBF based sparse GP-LVM, (b) an MLP
based sparse GP-LVM.
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Figure 4: (a) The full GP-LVM algorithm with RBF kernel on the oil flow data. (b) GTM with 225
latent points laid out on a 15×15 grid and with 16 RBF nodes.1803
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Figure 5: The digit images visualised in the 2-D latent-space. ‘0’ is represented by red crosses; ‘1’:
green circles; ‘2’: blue pluses; ‘3’: cyan stars and ‘4’: magenta squares. (a) Visualisation
using an RBF kernel. (b) Visualisation using an MLP kernel.1804
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Figure 6: The digit images visualised in the 2-D latent-space. ‘0’ are red crosses, ‘1’ are green cir-
cles, ‘2’ are blue pluses, ‘3’ are cyan stars and ‘4’ are magenta squares. (a) Visualisation
using the GTM algorithm. (b) Visualisation using PCA.
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Model PCA Sparse GP-LVM (RBF) Sparse GP-LVM (MLP) GTM
Errors 780 208 202 158

Table 4: Errors for nearest neighbour classification in the latent-spacefor the digit data.

7.2.3 INITIALISATION OF THE MODEL

In the experiments we described above PCA was used to initialise the positions of the points in
latent-space, however, there are data sets for which PCA can provide apoor initialisation, causing
the GP-LVM to become caught in a local minima. In Figure 7(a) we show a result from modelling
the ‘Swiss-roll’ data set (Tenenbaum et al., 2000, data available on line).For this data the true
structure is known—the manifold is a two dimensional square twisted into a spiralalong one of its
dimensions and living in a three dimensional space. We follow Roweis and Saul (2000) in using
colour to show the position along the sheet.

When the GP-LVM is initialised with PCA it becomes stuck in an optimum that does notre-
cover the true embedded space. However, by initialising using the Isomap algorithm, we are able to
recover the underlying structure and then provide a probabilistic description of the data through the
GP-LVM (Figure 7(b)). In this way we can combine the strengths of the two different approaches—
Isomap (and related proximity data based algorithms) provide a unique solutionwhich can recover
the structure of the manifold on which the data lies, the GP-LVM provides an underlying proba-
bilistic model and an easy way to compute the mapping from the latent to the observed space. Due
to the probabilistic nature of the GP-LVM we can also compare the resulting models through their
log likelihood. The log likelihood of the Isomap initialised model (-45.19) is over afactor of ten
smaller than that of the PCA initialised model (-534.0) further demonstrating the advantage of the
Isomap initialisation for this data set.

7.3 Missing Data and Non-Gaussian Noise Models

The examples we have presented so far are for Gaussian noise models. In cases where the data is
not continuous a Gaussian noise model is no longer appropriate. Non-Gaussian,linear, latent trait
models have already been proposed (Bartholomew, 1987; Tipping, 1999), in this section we use the
ADF approach described in Section 5 to explore two non-Gaussian data sets with GP-LVM models
based around non-Gaussian noise models.

7.3.1 VISUALISATION OF BINARY DATA

In our first example we follow Tipping (1999) in visualising binary handwritten twos. In Figure 8
we show visualisations from an 8×8 data set derived from the USPS Cedar CD-ROM. The data
contains 700 examples, these examples were taken from the complete data setof all digits used in
Hinton et al. (1995). For both visualisations an RBF kernel was used in combination with a Gaussian
prior over the latent-space, however the two visualisations make use of different noise models. In
Figure 8(a) a Gaussian noise model was used, in Figure 8(b) a Bernoullinoise model was used.

There are certainly differences between the two visualisations in Figure 8,however we again
wish to make an objective assessment of the qualities of the embedded spaces. To this end, we
turned to a test set containing 400 hundred digits. For each digit in the test set we removed 20% of
the pixel values. The digit was then presented to the model and its position in theembedded space
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Figure 7: The effect of a poor initialisation. (a) GP-LVM initialised using PCA. The log-likelihood
of the resulting model was -534.0 (b) GP-LVM initialised using Isomap. The loglikeli-
hood of the resulting model was -45.19.

Reconstruction method pixel error rate
GP-LVM with Bernoulli noise 23.5%
GP-LVM with Gaussian noise 35.9%
Assume pixels are ‘not ink’ 51.5%

Table 5: Pixel reconstruction error rates.

optimised. The missing pixels were then filled in by using the mapping from the embedded to the
data-space. Note that there can be local minima in the embedded space, we therefore optimised the
embedded space location ten times with different starting positions and selectedthat with the largest
likelihood. Since we know the original pixel values we can compute the pixel reconstruction error
rate. These rates are summarised in Table 5. Results are shown for the Bernoulli noise model, the
Gaussian noise model and a baseline approach (which is simply to assume thatthe missing pixels
do not contain ink).

As might be hoped, both approaches considerably outperform the baseline approach. We also
note that using the Bernoulli noise model leads to far better results than the Gaussian noise model.
To illustrate the type of mistakes that are made we show some randomly sampled results in Figure 9.
For each test digit we present: the original digit, an image showing which pixels are removed and
reconstruction using the three methods outlined above. Note that for the GP-LVM reconstructions,
particularly for the Bernoulli noise model, even when mistakes are made the resulting image often
still looks like a handwritten 2.
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Figure 8: The two images visualised in the 2-D latent-space. (a) Visualisation using an Gaussian
noise model. (b) Visualisation using a Bernoulli noise model.
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Figure 9: Randomly sampled examples from the test data for the ‘twos’ problem. Top row: test
images from the data set of twos,second row: pixels removed from the test images are
shown in red,third row: reconstruction which assumes missing pixels are ‘not ink’,fourth
row: reconstruction by the Gaussian GP-LVM,fifth row: reconstruction by the binary
noise model.

8. Discussion

We have presented the Gaussian process latent variable model, which is a non-linear probabilistic
extension of PCA. Our experiments show that the GP-LVM is a viable alternative to other non-
linear visualisation approaches for small data sets. We reviewed a practical algorithm for fitting
the GP-LVM (Lawrence, 2004) in large data sets, but noted that it is associated with a degradation
in performance of the method. The GP-LVM model was extended in a principled manner to take
account of missing data and binary data. The advantage of explicitly modelling the data type was
shown by a missing data problem in handwritten digits.

8.1 Computing the Likelihood of Test Data

One key advantage of the GP-LVM is that it is probabilistic. There is a likelihood associated with
the training data. The model can be viewed as a non-parametric density estimator: the size ofX
grows proportionally with the size ofY. However this introduces particular problems when we are
interested in computing the likelihood of a previously unseen (test) data point. In the traditional
probabilistic PCA model when a new data point,y∗, is presented its likelihood under the marginal
distribution,

p(y∗|W,β) = N
(

y∗|0,WWT +β−1I
)

, (18)

is easily computed. Therefore the likelihood of a previously unseen test data set is straightforward
to compute. In the GP-LVM the likelihood takes a different form. The new datum has an associated
latent variable,x∗. The likelihood ofy∗, for the special case where variances over each output
direction are constant, is given by

p(y∗|X,x∗) = N
(

y∗|µ,σ2)
, (19)

where
µ= YTK−1

I ,I kI ,∗, (20)

kI ,∗ being a column vector developed from computing the elements of the kernel matrix between
the active set and the new pointx∗. The variance is then given by

σ2 = k(x∗,x∗)−kT
I ,∗K

−1
I ,I kI ,∗. (21)
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To determine the likelihood of the new point, we first find the MAP solution for thisnew latent
point. The likelihood could then approximated by computing the probability of the observed data
under the distribution given by projecting the MAP solution forx∗ back into data-space. However,
since the posterior overX can be multi-modal with respect tox∗, this solution will not necessarily
be unique. In an ideal world, we would integrate out the latent-space to determine this marginal
likelihood, and the problem with multiple modes would not arise. In practice it may be necessary to
seek several modes by random restarts within the latent-space, if the likelihood is strongly peaked
around each of these modes and there is a large difference between the magnitude of the two largest
modes it is enough to approximate the solution with the largest mode. In other cases it may be
necessary to turn to sampling methods to evaluate the likelihood.

9. Conclusions

We have presented a new class of models for probabilistic modelling and visualisation of high
dimensional data. We provided theoretical groundings for these models byproving that principal
component analysis is a special case. We showed there is a general objective function based on
the Kullback-Leibler divergence that connects these models with proximity data based methods
such as kernel PCA and multidimensional scaling. Further analysis of this objective function is
expected to provide deeper insights into the behaviour of these algorithms. On real world data sets
we showed that visualisations provided by the model placed related data points close to each other.
We demonstrated empirically that the model performed well in traditionally difficultdomains that
involve missing and discrete data in high dimensions.

Our approach is related to density networks and the generative topographic mapping in that
these models all provide a non-linear mapping from the embedded space to theobserved space.
In all these cases the embedded space is treated as a latent variable and problems of propagating
distributions through the non-linear mapping are avoided by using point representations of the data
within the latent space. A novel characteristic of the GP-LVM is that we can visualise the uncertainty
with which the manifold is defined in the data-space.
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Appendix A. Probabilistic Interpretations of PCA

The standard probabilistic interpretation of PCA (Tipping and Bishop, 1999) involves a likelihood,

p(Y|W,X,β) =
N

∏
n=1

p(yn|W,xn,β)

which is taken to be Gaussian,

p(yn|W,xn,β) = N
(

yn|Wxn,β−1I
)

,

1810



PROBABILISTIC NON-LINEAR PCA
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Figure 10: Graphical representation of (a) the standard probabilistic PCA model and (b) its dual
representation which also leads to a probabilistic interpretation of PCA. The nodes
are shaded to represent different treatments.Black shaded nodes are optimised,white
shaded nodes are marginalised andgreyshaded nodes are observed variables.

the prior distribution for the latent variables is then taken to be Gaussian,

p(xn) = N(xn|0, I) ,

and is duly marginalised to recover the marginal likelihood for the data,

p(Y|W,β) =
N

∏
n=1

p(yn|W,β) , (22)

where
p(yn|W,β) = N

(

yn|0,WWT +β−1I
)

. (23)

The structure of this model is shown graphically in Figure 10(a).
The dual representation of probabilistic PCA involves integrating outW and maximising with

respect toxn

p(Y|X,β) =
Z N

∏
n=1

p(yn|xn,W,β) p(W)dW.

By first specifying a prior distribution,

p(W) = ∏
i

N(wi |0, I)

wherewi is the ith row of the matrixW, and then integrating overW we obtain a marginalised
likelihood forY,

p(Y|X,β) =
1

(2π)
DN
2 |K |

D
2

exp

(

−
1
2

tr
(

K−1YYT)
)

, (24)

whereK = XXT +β−1I andX =
[

xT
1 . . .xT

N

]T
. The structure of this model is shown in 10(b). Note

that by takingC = WWT +β−1I we and substituting (23) into (22) as

p(Y|X,β) =
1

(2π)
DN
2 |C|

N
2

exp

(

−
1
2

tr
(

C−1YTY
)

)

,
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which highlights to a greater extent the duality between (24) and (22). Optimisation of (24) is
clearly highly related to optimisation of (22). Tipping and Bishop (1999) showed how to optimise
(22), in the next section we review this optimisation for DPPCA, but generalise it slightly so that
it applies for any symmetric matrixS, rather than only the inner product matrixYYT. Thereby the
derivation also covers the kernel PCA and multidimensional scaling cases outlined in Section 2.6.

Appendix B. Optimisation of Dual PCA, KPCA and MDS Objective functions

Maximising (24) is equivalent to minimising

L =
N
2

ln2π+
1
2

ln |K |+
1
2

tr
(

K−1S
)

, (25)

whereS= D−1YYT. The derivation that follows holds regardless of the form ofS and therefore
also applies to the objective function outlined in Section 2.6. However,S needn’t be constrained to
this form, we outlined an objective function (for kernel PCA) in whereS was any positive definite
kernel.

The gradient of the likelihood with respect toX can be found as

∂L
∂X

= −K−1SK−1X +K−1X,

setting the equation to zero and pre-multiplying byK gives

S
[

β−1I +XXT]−1
X = X.

We substituteX with its singular value decomposition,X = ULV T, giving

SU
[

L +β−1L−1]−1
VT = ULV T

Right multiplying both sides byV (note that the solution is invariant toV) we have, after some
rearrangement,

SU= U
(

β−1I +L2)
,

which, since
(

β−1I +L2
)

is diagonal can be solved by an eigenvalue problem whereU are eigen-
vectors ofS and Λ =

(

β−1I +L2
)

are the eigenvalues. This implies that the elements from the
diagonal ofL are given by

l i =
(

λi −β−1)
1
2
. (26)

B.1 The Retained Eigenvalues

The natural follow up question is which of theN possible eigenvalues/vector pairs should be re-
tained? For convenience let us ignore our previously defined orderingof the eigenvalues in terms of
their magnitude and assume that we keep the firstq eigenvalues.

First note that

K = U
[

L2 +β−1I
]

UT
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whereU is all the eigenvectors ofS. The full KL divergence is

KL (S||K) =
1
2

ln |K |−
1
2

ln |S|+
1
2

tr
(

K−1S
)

−
N
2

=
1
2

q

∑
i=1

lnλi −
N−q

2
lnβ−

1
2

N

∑
i=1

lnλi +
1
2

tr
(

[

L2 +β−1I
]−1 Λ

)

= −
1
2

N

∑
i=q+1

lnλi −
N−q

2
lnβ−

N−q
2

+
β
2

N

∑
i=q+1

λi

where we have used the fact thatS= UΛUT. Differentiating with respect toβ and setting the result
to zero to obtain a fixed point equation then gives

β =
N−q

∑N
i=q+1 λi

which when substituted back leads to

KL (S||K) =
N−q

2

(

ln
∑N

i=q+1 λi

N−q
−

1
N−q

N

∑
i=q+1

lnλi

)

, (27)

which is recognised as the difference between the log ratio of the arithmetic and geometric means
of the discarded eigenvalues. This difference will be zero if and only if the discarded eigenvalues
are constant (when the arithmetic and geometric means become equal) otherwise it is positive. The
difference is minimised by ensuring that the eigenvalues we discard are adjacent to each other in
terms of magnitude.

Which eigenvalues should we then discard? From (26) we note that the retained eigenvalues
must be larger thanβ, otherwisel i will be complex. The only way this can be true is if we discard
the smallestN−q eigenvalues, as retaining any others would force at least one eigenvalue of X to
be negative.

Appendix C. Equivalence of Eigenvalue Problems

In this section we review the equivalence of the eigenvalue problems associated with DPPCA and
PPCA. For DPPCA the eigenvalue problem is of the form

YYTU = UΛ.

Premultiplying byYT then gives
YTYYTU = YTUΛ (28)

Since theU are the eigenvectors ofYYT (see the previous section) the matrixUTYYTU = Λ, there-
fore matrixU′ = YTUΛ− 1

2 is orthonormal. Post multiplying both sides of (28) byΛ− 1
2 gives

YTYU′ = U′Λ

which is recognised as the form of the eigenvalue problem associated with PPCA, where the eigen-
vectors ofYTY are given byU′ = YTUΛ− 1

2 and the eigenvalues are given byΛ (as they were for
DPPCA).
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Abstract

One of the most important issues in machine learning is whether one can improve the
performance of a supervised learning algorithm by including unlabeled data. Methods that
use both labeled and unlabeled data are generally referred to as semi-supervised learning.
Although a number of such methods are proposed, at the current stage, we still don’t have
a complete understanding of their effectiveness. This paper investigates a closely related
problem, which leads to a novel approach to semi-supervised learning. Specifically we
consider learning predictive structures on hypothesis spaces (that is, what kind of classifiers
have good predictive power) from multiple learning tasks. We present a general framework
in which the structural learning problem can be formulated and analyzed theoretically, and
relate it to learning with unlabeled data. Under this framework, algorithms for structural
learning will be proposed, and computational issues will be investigated. Experiments will
be given to demonstrate the effectiveness of the proposed algorithms in the semi-supervised
learning setting.

1. Introduction

In machine learning applications, one can often find a large amount of unlabeled data
without difficulty, while labeled data are costly to obtain. Therefore a natural question
is whether we can use unlabeled data to build a more accurate classifier, given the same
amount of labeled data. This problem is often referred to as semi-supervised learning.

In general, semi-supervised learning algorithms use both labeled and unlabeled data to
train a classifier. Although a number of methods have been proposed, their effectiveness
is not always clear. For example, Vapnik introduced the notion of transductive inference
(Vapnik, 1998), which may be regarded as an approach to semi-supervised learning. Al-
though some success has been reported (e.g., see Joachims, 1999), there has also been
criticism pointing out that this method may not behave well under some circumstances
(Zhang and Oles, 2000). Another popular semi-supervised learning method is co-training
(Blum and Mitchell, 1998), which is related to the bootstrap method used in some NLP
applications (Yarowsky, 1995) and to EM (Nigam et al., 2000). The basic idea is to label
part of unlabeled data using a high precision classifier, and then put the “automatically-
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labeled” data into the training data. However, it was pointed out by Pierce and Cardie
(2001) that this method may degrade the classification performance when the assumptions
of the method are not satisfied (that is when noise is introduced into the labels through
non-perfect classification). This phenomenon is also observed in some of our experiments
reported in Section 5.

Another approach to semi-supervised learning is based on a different philosophy. The
basic idea is to define good functional structures using unlabeled data. Since it does not
bootstrap labels, there is no label noise which can potentially corrupt the learning procedure.
An example of this approach is to use unlabeled data to create a data-manifold (graph
structure), on which proper smooth function classes can be defined (Szummer and Jaakkola,
2002; Zhou et al., 2004; Zhu et al., 2003). If such smooth functions can characterize the
underlying classifier very well, then one is able to improve the classification performance.

It is worth pointing out that smooth function classes based on graph structures do not
necessarily have good predictive power. Therefore a more general approach, based on the
same underlying principle, is to directly learn a good underlying smooth function class (that
is, what good classifiers are like). If the learning procedure takes advantage of unlabeled
data, then we obtain a semi-supervised learning method that is specifically aimed at finding
structures with good predictive power.

This motivates the general framework we are going to develop in this paper. That is,
we want to learn some underlying predictive functional structures (smooth function classes)
that can characterize what good predictors are like. We call this problem structural learn-
ing. Our key idea is to learn such structures by considering multiple prediction problems
simultaneously. At the intuitive level, when we observe multiple predictors for different
problems, we have a good sample of the underlying predictor space, which can be analyzed
to find the common structures shared by these predictors. Once important predictive struc-
tures on the predictor space are discovered, we can then use the information to improve
upon each individual prediction problem. A main focus of this paper is to formalize this
intuitive idea and analyze properties of structural learning more rigorously.

The idea that one can benefit by considering multiple problems together has appeared
in the statistical literature. In particular, Bayesian hierarchical modeling is motivated from
the same principle. However, the framework developed in this paper is under the frequentist
setting, and the most relevant statistical studies are shrinkage methods in multiple-output
linear models (see Section 3.4.6 of Hastie et al., 2001). In particular, the algorithm proposed
in Section 3 has a form similar to a shrinkage method proposed by Breiman and Friedman
(1997). However, the framework presented here (as well as the specific algorithm in Sec-
tion 3) is more general than the earlier statistical studies. In the machine learning literature,
related work is sometime referred to as multi-task learning, for example, see (Baxter, 2000;
Ben-David and Schuller, 2003; Caruana, 1997; Evegniou and Pontil, 2004; Micchelli and
Ponti, 2005) and references therein. We shall call our procedure structural learning since it
is a more accurate description of what our method does in the semi-supervised learning set-
ting. That is, we transfer the predictive structure learned from multiple tasks (on unlabeled
data) to the target supervised problem. In the literature, this idea is also referred to as
inductive transfer. The success of this approach depends on whether the learned structure
is helpful for the target supervised problem.
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It follows that although this work is motivated by semi-supervised learning, the general
structural learning (or multi-task learning) problem considered in the paper is of indepen-
dent interest. For semi-supervised learning, as we shall show later, the multiple prediction
problems needed for structural learning can be generated from unlabeled data. However,
the basic framework can also be applied to other applications where we have multiple pre-
diction problems that are not necessarily derived from unlabeled data (as in the earlier
statistical and machine learning studies). Because of this, the first part of the paper focuses
on the development of a general structural learning paradigm as well as our algorithm. The
main implication is that one can reliably learn a good underlying structure if it is shared by
multiple prediction problems. In the second part, we shall demonstrate how to apply the
idea of learning structure to semi-supervised learning, and demonstrate the effectiveness of
the proposed method in this context.

A short version of this paper, mainly reporting some empirical results, appeared in
ACL (Ando and Zhang, 2005). This version includes a more complete derivation of the
proposed algorithm, with theoretical analysis and several additional experimental results.
In Section 2, we formally introduce the structural learning problem under the framework
of standard machine learning. We then propose a specific algorithm that finds a common
low-dimensional feature space shared by the multi-problems. The algorithm will be stud-
ied in Section 3, with theoretical analysis given in Appendix A. Section 4 shows how to
apply structural learning in the context of semi-supervised learning. The basic idea is to
use unlabeled data to generate auxiliary prediction problems that are useful for discovering
important predictive structures. Such structures can then be estimated using the algorithm
developed in Section 3. We will also give intuitive justifications on why the structure shared
by the artificially created auxiliary problems is helpful for the supervised problem. Experi-
ments are provided in Section 5 to illustrate the effectiveness of the algorithm proposed in
Section 3 on several semi-supervised tasks. Section 6 presents a high level summary of the
main ideas developed in the paper.

2. The Structural Learning Problem

This section introduces the problem of learning predictive functional structures. Although
related ideas have been explored in some earlier statistical and machine learning studies,
for completeness, we shall include a self-contained description. The framework considered
here will be the basis of our algorithm presented in Section 3.

2.1 Supervised Learning

In the standard formulation of supervised learning, we seek a predictor that maps an input
vector x ∈ X to the corresponding output y ∈ Y. Usually, one selects the predictor from a
set H of functions based on a finite set of training examples {(Xi, Yi)} that are independently
generated according to some unknown probability distribution D. The set H, often called
the hypothesis space, consists of functions from X to Y that can be used to predict the
output in Y of an input datum in X . Our goal is to find a predictor f so that its error
with respect to D is as small as possible. In this paper, we assume that the quality of the
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predictor p is measured by the expected loss with respect to D:

R(f) = EX,Y L(f(X), Y ).

Given a set of training data, a frequently used method for finding a predictor f̂ ∈ H is to
minimize the empirical error on the training data (often called empirical risk minimization
or ERM):

f̂ = arg min
f∈H

n
∑

i=1

L(f(Xi), Yi).

It is well-known that with a fixed sample size, the smaller the hypothesis space H, the
easier it is to learn the best predictor in H. The error caused by learning the best predictor
from finite sample is called the estimation error. However, the smaller the hypothesis space
H, the less accurate the best predictor in H becomes. The error caused by using a restricted
H is often referred to as the approximation error. In supervised learning, one needs to select
the size of H to balance the trade-off between approximation error and estimation error.
This is typically done through model selection, where we learn a set of predictors from a
set of candidate hypothesis spaces Hθ, and then pick the best choice on a validation set.

2.2 Learning Good Hypothesis Spaces

In practice, a good hypothesis space should have a small approximation error and a small
estimation error. The problem of choosing a good hypothesis space is central to the perfor-
mance of the learning algorithm, but often requires specific domain knowledge or assump-
tions of the world.

Assume that we have a set of candidate hypothesis spaces. If one only observes a single
prediction problem X → Y on the underlying domain X , then a standard approach to
hypothesis space selection (or model selection) is by cross validation. If one observes multiple
prediction problems on the same underlying domain, then it is possible to make better
estimate of the underlying hypothesis space by considering these problems simultaneously.

We now describe a simple model for structural learning, which is the foundation of
this paper. A similar point of view can also be found in (Baxter, 2000). Consider m
learning problems indexed by ` ∈ {1, . . . , m}, each with n` samples (X`

i , Y
`
i ) indexed by

i ∈ {1, . . . , n`}, which are independently drawn from a distribution D`. For each problem
`, assume that we have a set of candidate hypothesis spaces H`,θ indexed by a common
structural parameter θ ∈ Γ that is shared among the problems.

Now, for the `-th problem, we are interested in finding a predictor f` : X → Y in
H`,θ that minimizes the expected loss over D`. For notational simplicity, we assume that
the problems have the same loss function (although the requirement is not essential in our
analysis). Given a fixed structural parameter θ, the predictor for each problem can be
estimated using empirical risk minimization (ERM) over the hypothesis space H`,θ:

f̂`,θ = arg min
f∈H`,θ

n
∑̀

i=1

L(f(X`
i), Y

`
i ), (` = 1, . . . , m). (1)

The purpose of structural learning is to find an optimal structural parameter θ such that
the expected risks of the predictors f̂`,θ (each with respect to the corresponding distribution
D`), when averaged over ` = 1, . . . , m, are minimized.
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If we use cross-validation for structural parameter selection, then we can immediately
notice that a more stable estimate of the optimal θ can be obtained by considering multiple
learning tasks together. In particular, if for each problem `, we have a validation set
(X̄`

j , Ȳ
`
j ) for j = 1, . . . , n̄`, then for structural learning, the total number of validation data

is
∑m

`=1 n̄`. Therefore effectively, we have more data for the purpose of selecting the optimal
shared hypothesis space structure. This implies that even if the sample sizes are small for
the individual problems, as long as m is large, we are able to find the optimal θ accurately.
A PAC style analysis will be provided in Appendix A, where we can state a similar result
without cross-validation.

In general, we expect that the hypothesis space H`,θ determines the functional structure
of the learned predictor. The θ parameter can be a continuous parameter that encodes our
assumption of what a good predictor should be like. If we have a large parameter space,
then we can explore many possible functional structures. This argument (more rigorous
results are given in Appendix A) implies that it is possible to discover the optimal shared
structure when the number of problems m is large.

2.3 Good Structures on the Input Space

The purpose of this section is to provide an intuitive discussion on why in principle, there
exist good functional structures (good hypothesis spaces) shared by multiple tasks. Concep-
tually, we may consider the simple case H`,θ = Hθ, where different problems share exactly
the same underlying hypothesis space.

Given an arbitrary input space X without any known structure, we argue that it is often
possible to learn what a good predictor looks like from multiple prediction problems. The
key reason is that in practice, not all predictors are equally good (or equally likely to be
observed). In real world applications, one usually observes “smooth” predictors where the
smoothness is with respect to a certain intrinsic underlying distance on the input space.
In general, if two points are close in this intrinsic distance, then the values that a good
predictor produces at these points are also likely to be similar. In particular, completely
random predictors are likely to be bad predictors, and are rarely observed in practical
applications.

In machine learning, the smoothness condition is often enforced by the hypothesis space
we select. For example, kernel methods constrain the smoothness of a function using a
certain reproducing kernel Hilbert space (RKHS) norm. For such functions (in a RKHS),
closeness of two points under a certain metric often implies closeness in predictive values.
One may also consider more complicated smoothness conditions that explore the observed
data-manifold (e.g. graph-based semi-supervised learning methods mentioned in the intro-
duction). Such a smoothness condition will be useful if it correlates well with predictive
ability.

In general, a good distance measure on X induces a good hypothesis space which enforces
smoothness with respect to the underlying distance. However, in reality, it is often not
clear what is the best distance measure in the underlying space. For example, in natural
language processing, the space X consists of discrete points such as words, for which no
appropriate distance can be easily defined. Even for continuous vector-valued input points,
it is difficult to justify that the Euclidean distance is better than something else. Even after
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a good distance function can be selected, it is not clear whether we can define appropriate
smoothness conditions with respect to the distance.

If we observe multiple tasks, then important common structures can be discovered simply
by analyzing the multiple predictors learned from the data. If these tasks are very similar
to the actual learning task which we are interested in, then we can benefit significantly
from the discovered structures. Even if the tasks are not directly related, the discovered
structures can still be useful. This is because in general, predictors tend to share similar
smoothness conditions with respect to a certain distance that is intrinsic to the underlying
input space.

As an example to illustrate the main argument graphically, we consider a discrete input
space of six points X = {A, B, C, D, E, F}. Assume we obtain estimates of three functions
from three different prediction problems, and plot the obtained function values against the
input points in Figure 1. In this example, we can notice that function values at points
A, C, and D are similar, while function values at points F and E are similar. Therefore
by observing the estimated functions, we may conclude that under some intrinsic distance
metric on X , points A, C, and D are “close” to each other, and points E and F are “close” to
each other. A good function on X should be smooth with respect to this intrinsic distance.
We will come back to the argument presented in this section using text data as a more
concrete example, when we discuss semi-supervised learning in Section 4.

Figure 1: An Illustration of Discovering Functional Structure From Multiple Prediction
Tasks
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2.4 A More Abstract Form of Structural Learning

We may also pose structural learning in a slightly more abstract form, which is useful when
we don’t use empirical risk minimization as the learner.

Assume that for each problem `, we are given a learning algorithm A` that takes a set
of training samples S` = {(X`

i , Y
`
i )}i=1,...,n`

and a structural parameter θ ∈ Γ, and produce

a predictor f̂`,θ: f̂`,θ = A`(S`, θ). Note that if the algorithm estimates the predictor from a

hypothesis space H`,θ by empirical risk minimization, then we have f̂`,θ ∈ H`,θ.

Assume further that there is a procedure that estimates the performance of the learned
predictor f̂`,θ using possibly additional information T` (which for example, could be a val-

idation set) as O`(S`, T`, θ). Then in structural learning, we find θ̂ by using a regularized
estimator

θ̂ = arg min
θ∈Γ

[

r(θ) +
m
∑

`=1

O`(S`, T`, θ)

]

, (2)

where r(θ) is a regularization parameter that encodes our belief on what θ value is preferred.
The number of problems m behaves like the sample size in standard learning. This is our
fundamental estimation method for structural learning. Once we obtain an estimate θ̂ of
the structural parameter, we can use the learning algorithm A`(S`, θ̂) to obtain predictor
f̂`,θ for each `.

As an example, assume that we estimate the accuracy of f̂`,θ using a validation set

T` = {(X̄`
j , Ȳ

`
j )}j=1,...,n̄`

, then we may simply let O(S`, T`, θ) = α`
∑n̄`

j=1 L(f̂`,θ(X̄
`
j), Ȳ

`
j ),

where α` > 0 are weighting parameters. It is also possible to estimate the accuracy of the
learned predictor based on the training set alone using the standard learning theory for
empirical risk minimization. This approach will be employed in Section 3, and leads to
practical algorithms that can be formulated as optimization problems.

3. Algorithms

In this section, we develop a specific learning algorithm under the standard machine learning
framework. The basis of our learner is joint empirical risk minimization, which will be an-
alyzed in Appendix A. We consider linear prediction models since they have been shown to
be effective in many practical applications. These methods include state-of-the-art machine
learning algorithms such as kernel machines and boosting.

3.1 Joint Empirical Risk Minimization

Based on the framework outlined in Section 2, we are interested in finding a hypothesis space
H·,θ, using an estimator of the form (2). As being pointed out in Section 2, conceptually
this could be achieved using a validation set. However, such an approach can lead to a
quite difficult computational procedure since we have to optimize the empirical risk on the
training data for each possible value of θ, and then choose an optimal θ on the validation
set. Therefore for complicated structures with continuous θ parameter such as the model
we consider in Section 3, this approach is not feasible.

A more natural method is to perform a joint optimization on the training set, with
respect to both the predictors {f`}, and the structural parameter θ. To this end, we will
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consider the model given by equation (1), and pose it as a joint optimization problem over
the m problems, where θ is the shared structural parameter:

[θ̂, {f̂`}] = arg min
θ∈Γ,{f`∈H`,θ}

m
∑

`=1

1

n`

n
∑̀

i=1

L(f`(X
`
i), Y

`
i ). (3)

Since the shared structural parameter θ depends on m problems, it can be more reliably
estimated by joint minimization. For completeness, we include a theoretical analysis in
Appendix A.

3.2 Structural Learning with Linear Predictors

In order to derive a practical algorithm from (3), we shall consider a specific joint model
which can be solved numerically. Specifically, we employ linear prediction models for the
multiple tasks, and assume that the underlying structure is a shared low-dimensional sub-
space. Although not necessarily most general, this model leads to a simple and intuitive
computational procedure. As we shall also see later, it is quite effective for semi-supervised
learning problems that we are interested in.

Given the input space X , a linear predictor is not necessarily linear on the original space,
but rather can be regarded as a linear functional on a high dimensional feature space F .
We assume there is a known feature map Φ : X → F . A linear predictor f is determined by
a weight vector w: f(x) = wTΦ(x). In order to apply the structural learning framework,
we consider a parameterized family of feature maps. In this setting, the goal of structural
learning may be regarded as learning a good feature map. For the specific formulation which
we consider in this paper, we assume that the overall feature map contains two components:
one component is with a known high-dimensional feature map, and the other component is
a parameterized low-dimensional feature map. That is, the linear predictor has a form

f(x) = wTΦ(x) + vTΨθ(x),

where w and v are weight vectors specific for each prediction problem, and θ is the common
structure parameter shared by all problems.

In order to simplify numerical computation, we further consider a simple linear form of
feature map, where θ = Θ is an h × p dimensional matrix, and Ψθ(x) = ΘΨ(x), with Ψ a
known p-dimensional vector function. We now can write the linear predictor as:

fΘ(w,v;x) = wTΦ(x) + vT ΘΨ(x).

This hypothesis space (with appropriate regularization conditions) is analyzed in Appendix A
after Theorem 4. We point out there that the key idea of this formulation is to discover a
shared low-dimensional predictive structure parameterized by Θ.

Applying (2) with O(S`, T`, θ) given by regularized empirical risk, we obtain the following
formulation:

[{ŵ`, v̂`}, Θ̂] = arg min
{w`,v`},Θ

[

r(Θ) +
m
∑

`=1

(

g(w`,v`) +
1

n`

n
∑̀

i=1

L(fΘ(w`,v`;X
`
i), Y

`
i )

)]

, (4)
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where g(w,v) is an appropriate regularization condition on the weight vector (w,v), and
r(Θ) is an appropriate regularization condition on the structural parameter Θ. In this for-
mulation, we weight each problem equally (by dividing the number of instances n`) so that
no problem will dominate the others. One may also choose other weighting schemes. Note
that the regularized ERM method in (4) has the same form as (3). The main difference
is that we replaced the hard-constrained regularization (picking the predictors from a hy-
pothesis space) by its computationally more convenient version of penalized regularization.
Up to appropriately defined Lagrangian multipliers, these two formulations are equivalent.

If we consider kernel learning, and assume that the feature map Φ(x) belongs to a
reproducing kernel Hilbert space, then equation (4) can be kernelized. There are several
ways to do so. One possibility is to kernelize in the w parameter — we simply replace
the vector parameter w` by n` dual parameters α`

j (j = 1, . . . , n`), and the linear score

wT
` Φ(X`

i) by
∑n`

j=1 α`
jK(X`

j ,X
`
i). For simplicity, we do not consider kernel methods in this

paper.

3.3 Alternating Structure Optimization

It is possible to solve (4) using general purpose optimization methods. However, in this
section, we show that by exploring the special structure of the formulation, we can develop
a more interesting and conceptually appealing computational procedure. In general, we
should pick L and g such that the formulation is convex for fixed Θ. However, the joint
optimization over {w`,v`} and Θ will become non-convex. Therefore, one typically can only
find a local minimum with respect to Θ. This usually doesn’t lead to serious problems since
given the local optimal structural parameter Θ, the solution {w`,v`} will still be globally
optimal for every `. Moreover, the algorithm which we propose later in section uses SVD
for dimension reduction. At the conceptual level, the possible local optimality of Θ is not
a major issue simply because the SVD procedure itself is already good at finding globally
optimal low dimensional structure.

With fixed Θ, the computation of {w`,v`} for each problem ` becomes decoupled, and
various optimization algorithms can be applied for this purpose. The specific choice of
such algorithms is not important for the purpose of this paper. In our experiments, for
convenience and simplicity, we employ stochastic gradient descent (SGD), widely used in
the neural networks literature. It was recently argued that this simple method can also
work well for large scale convex learning formulations (Zhang, 2004).

In the following, we consider a special case of (4) which has a simple iterative SVD
solution. Let Φ(x) = Ψ(x) = x ∈ Rp with square regularization of weight vectors. Then
we have

[{ŵ`, v̂`}, Θ̂] = arg min
{w`,v`},Θ

m
∑

`=1

(

1

n`

n
∑̀

i=1

L((w` + ΘTv`)
TX`

i , Y
`
i ) + λ`‖w`‖2

2

)

, (5)

s.t. ΘΘT = Ih×h ,

with given constants {λ`}. Note that in this formulation, the regularization condition r(Θ)
in (4) is absorbed into the orthonormal constraint ΘΘT = Ih×h, and thus does not need to
be explicitly included.
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In order to solve this optimization problem, we may introduce an auxiliary variable u`

for each problem ` such that u` = w` + ΘTv`. Therefore we may eliminate w using u to
obtain:

[{û`, v̂`}, Θ̂] = arg min
{u`,v`},Θ

m
∑

`=1

(

1

n`

n
∑̀

i=1

L(uT
` X`

i , Y
`
i ) + λ`‖u` − ΘTv`‖2

2

)

, (6)

s.t. ΘΘT = Ih×h .

At the optimal solution, we let ŵ` = û` − Θ̂T v̂`.
In order to solve (6), we use the following alternating optimization procedure:

• Fix (Θ,v), and optimize (6) with respect to u.

• Fix u, and optimize (6) with respect to (Θ,v).

• Iterate until convergence.

One may also propose other alternating optimization procedures. For example, in the first
step, we may fix Θ and optimize with respect to (u,v).

In the alternating optimization procedure outlined above, with a convex choice of L,
the first step becomes a convex optimization problem. There are many well-established
methods for solving it (as mentioned earlier, we use SGD for its simplicity). We shall focus
on the second step, which is crucial for the derivation of our method. It is easy to see that
the optimization of (6) with fixed {u`} = {û`} is equivalent to the following problem:

[{v̂`}, Θ̂] = arg min
{v`},Θ

∑

`

λ`‖û` − ΘTv`‖2
2, s.t. ΘΘT = Ih×h. (7)

Using simple linear algebra, we know that with fixed Θ,

min
v`

‖û` − ΘTv`‖2
2 = ‖û`‖2

2 − ‖Θû`‖2
2,

and the optimal value is achieved at v̂` = Θû`. Now by eliminating v` and use the above
equality, we can rewrite (7) as

Θ̂ = arg max
Θ

m
∑

`=1

λ`‖Θû`‖2
2, s.t. ΘΘT = Ih×h.

Let U = [
√

λ1û1, . . . ,
√

λmûm] be an p × m matrix, we have

Θ̂ = arg max
Θ

tr(ΘUUT ΘT ), s.t. ΘΘT = Ih×h,

where tr(A) is the trace of matrix A. It is well-known that the solution of this problem is
given by the SVD (singular value decomposition) of U: let U = V1DV T

2 be the SVD of U
(assume that the diagonal elements of D are arranged in decreasing order), then the rows
of Θ̂ are given by the first h rows of V T

1 (left singular vectors corresponding to the largest h
singular values of U). We now summarize the above derivation into an algorithm described
in Figure 2, which solves (5) by alternating optimization of u and (Θ,v).
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Input: training data {(X`
i , Y

`
i )} (` = 1, . . . , m)

Parameters: h and λ1, . . . , λm

Output: h × p dimensional matrix Θ
Initialize: u` = 0 (` = 1 . . . m), and arbitrary Θ
iterate

for ` = 1 to m do
With fixed Θ and v` = Θu`, approximately solve for ŵ`:

ŵ` = arg minw`

[

1
n`

∑n`

i=1 L(wT
` X`

i + (vT
` Θ)X`

i , Y
`
i ) + λ`‖w`‖2

2

]

Let u` = ŵ` + ΘTv`

endfor
Compute the SVD of U = [

√
λ1u1, . . . ,

√
λmum]:

U = V1DV T
2 (with diagonals of D in descending order)

Let the rows of Θ be the first h rows of V T
1

until converge

Figure 2: SVD-based Alternating Structure Optimization Algorithm

Note that since the objective value in (5) decreases at each iteration, the procedure pro-
duces parameters {ŵ`, v̂`}, Θ̂ with converging objective values. In general, the parameters
{ŵ`, v̂`}, Θ̂ will also converge (to a local optimal solution). However, in reality, it is usually
sufficient to use the Θ parameter from the first iteration of the procedure. This is because
the performance of our model is not very sensitive to a small perturbation of the structural
parameter Θ. The main dimensional reduction effect is already well captured by SVD in
the first iteration.

It is important to point out that our SVD-based alternating structure optimization
(SVD-ASO) procedure is fundamentally different from the usual principal component anal-
ysis (PCA) which can be regarded as dimension reduction in the data space X . However,
the dimension reduction performed in the SVD-ASO algorithm is on the predictor (classi-
fier) space instead of the data space. This is possible because we observe multiple predictors
from multiple learning tasks. If we regard the observed predictors as sample points of the
predictor distribution in the predictor space (corrupted with estimation error, or noise),
then our algorithm can be interpreted as finding the “principal components” of these pre-
dictors. Consequently the method directly looks for low-dimensional structures with the
highest predictive power. By contrast, the principal components of input data in the data
space do not necessarily have good predictive power.

3.4 An Extension of the Basic SVD-ASO Algorithm

One may extend (5) and the SVD-ASO procedure in various ways. For example, if x belongs
to an infinite dimensional Hilbert space, then the SVD in Figure 2 can be replaced by the
corresponding kernel principal component analysis. However, this generalization is outside
the scope of the analysis given in the paper.
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In our experiments, we use another extension, where features (components of x) are
grouped into different types and the SVD dimension reduction is computed separately for
each group. This is important since in applications, features are not homogeneous. If we
know that some features are more similar to each other (e.g. they have the same type),
then it is reasonable to perform a more localized dimension reduction among these similar
features. To formulate this idea, we divide input features into G groups, and rewrite each
input data-point X`

i as [X`
i,t]t=1,...,G, where t is the feature type which specifies which group

the feature is in. Each X`
i,t ∈ Rpt , and thus X`

i ∈ Rp with p =
∑G

t=1 pt. We associate

each group t with a structural parameter Θt ∈ Rht×pt , which is a projection operator of
this feature type into ht dimensional space. Equation (5) can be replaced by the following
structural learning method:

[{ŵ`,t, v̂`,t}, {Θ̂t}] = arg min
{w`,t,v`,t}{Θt}

m
∑

`=1

(

1

n`

n
∑̀

i=1

L(
G
∑

t=1

(w`,t + ΘT
t v`,t)

TX`
i,t, Y

`
i )

+

G
∑

t=1

λ`,t‖w`,t‖2
2

)

, (8)

s.t. ∀t ∈ {1, . . . , G} : ΘtΘ
T
t = Iht×ht

.

Similarly as before, we can introduce auxiliary variables u`,t = w`,t + ΘT
t v`,t, and perform

alternating optimization over u and (Θ,v). The resulting algorithm is essentially the same
as the SVD-ASO method in Figure 2, but with the SVD dimension reduction step performed
separately for each feature group t.

Some other extensions of the basic algorithm can also be useful for certain applications.
For example, we may choose to regularize only those components of w` which correspond
to the non-negative part of u` (we may still regularize the negative part of u`, but using the
corresponding components of u` instead of w`). The reason for doing so is that the positive
weights of a linear classifier are usually directly related to the target concept, while the
negative components often yield much less specific information. The resulting method can
be easily formulated and solved by a variant of the basic SVD-ASO algorithm. In effect, in
the SVD computation, we only use the positive components of u`.

4. Semi-Supervised Learning

We are now ready to illustrate how to apply the structural learning paradigm developed
earlier in the paper to the semi-supervised learning setting. The basic idea is to create
auxiliary problems using unlabeled data, and then employ structural learning to reveal
predictive structures intrinsic to the underlying input space X .

4.1 Learning from Unlabeled Data Through Structural Learning

We systematically create multiple prediction problems from unlabeled data. We call these
created prediction problems auxiliary problems, while we call the original supervised predic-
tion problem (which we are interested in) the target problem.

Our method consists of the following two steps:
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1. Learn a good structural parameter θ by performing a joint empirical risk minimization
on the auxiliary problems, using originally unlabeled data that are automatically
‘labeled’ with auxiliary class labels.

2. Learn a predictor for the target problem by empirical risk minimization on the origi-
nally labeled data, using θ computed in the first step. In particular, in our bi-linear
formulation (Section 3), we fix Θ and optimize (8) with respect to w and v for the
target problem.

The first step seeks a hypothesis space Hθ through learning the predictive functional struc-
ture shared by auxiliary predictors. If auxiliary problems are, to some degree, related to
the target task, then the obtained hypothesis space Hθ, which improves the average perfor-
mance of auxiliary predictors, will also help the target problem. Therefore, the relevancy
of auxiliary problems plays an important role in our method. We will return to this issue
in the next section.

An alternative to the above two-step procedure is to perform a joint empirical risk
minimization on the target problem (with labeled data) and on the auxiliary problems (with
unlabeled data) at once. However, in our intended applications, the number of labeled data
available for the target problem is usually small. Therefore the inclusion of the target
predictor in the joint ERM will not have a significant impact.

4.2 Auxiliary Problem Creation

Our approach to semi-supervised learning requires auxiliary problems with the following
characteristics:

• Automatic labeling: we need to automatically generate various “labeled” data for the
auxiliary problems from unlabeled data.

• Relevancy: auxiliary problems should be related to the target problem (that is, they
share a certain predictive structure) to some degree.

We consider two strategies for automatic generation of auxiliary problems: one in a com-
pletely unsupervised fashion, and the other in a partially supervised fashion. Some of the
example auxiliary problems introduced in this section are used in our experiments described
in Section 5.

We have briefly discussed the relationship of PCA and SVD-ASO in Section 3. In the
above mentioned framework of semi-supervised learning, the standard PCA (applied to
unlabeled data) can also be roughly regarded as a result of generating k auxiliary problems
from k unlabeled data points so that the i-th problem has only one positive example (the
i-th data point). In general, the strategies which we will suggest below are more flexible
and more effective.

For clarity, we introduce the following two mini target tasks as running examples.

Text genre categorization Consider the task of assigning one of the three categories in
{ science, sports, economy } to text documents. For this problem, suppose that we use
frequencies of content words as features.
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Word tagging Consider the task of assigning one of the three part-of-speech tags { noun,
verb, other } to words in English sentences. For instance, the word “test” in “... a test
procedure ...” should be assigned the tag noun, and that in “We will test it ...” should be
assigned the tag verb. For this problem, suppose that we use strings of the current and
surrounding words as features.

4.2.1 Unsupervised-Strategy: Predicting Observable Sub-structures

In the first strategy, we regard some observable substructures of the input data X as aux-
iliary class labels, and try to predict these labels using other parts of the input data. For
instance, for the word tagging task mentioned above, at each word position, we can create
auxiliary problems by regarding the current word as auxiliary labels, which we want to
predict using the surrounding words. We create one binary classification problem for each
possible word value, and hence can obtain many auxiliary problems using this idea.

More generally, if we have a feature representation of the input data, then we may mask
some features as unobserved, and learn classifiers to predict these ‘masked’ features (or
some functional mapping of the masked features, e.g., bi-grams of left and current words)
based on other features that are not masked. In the actual implementation, we just replace
the masked feature values by zero, which has the same effect.

The automatic-labeling requirement is satisfied since the auxiliary labels are observable
to us. To see why this technique may naturally meet the relevancy requirement, we note
that feature components that can predict a certain masked feature are correlated to the
masked feature, and thus are correlated among themselves. Therefore this technique helps
us to identify correlated features with predictive power.

However, for optimal performance, it is clear that we should choose to mask (and pre-
dict) features that have good correlation to the target classes as auxiliary labels. The
creation of auxiliary problems following this strategy is thus as easy or hard as designing
features for usual supervised learning tasks. We can often make an educated guess based
on task-specific knowledge. A wrong guess would result in adding some irrelevant features
(originating from irrelevant θ-components), but it would not hurt ERM learners severely.
On the other hand, potential gains from a right guess can be significant. Also note that
given the abundance of unlabeled data, we have a wider range of choices than standard
feature engineering in the supervised setting. For example, high-order features that suffer
from the data sparseness problem in the supervised setting may be used in auxiliary prob-
lems due to the vast amount of unlabeled data that can provide more reliable statistics.
The low-dimensional predictive structure discovered from the high-order features can then
be used in the supervised task without causing the data-sparseness problem. This is be-
cause the rare features will be properly combined in the projection matrix Θ, so that the
combined low-dimension directions will appear more frequently (and more correlated to the
class-label). The example provided in Section 4.3 demonstrates this point.

The following examples illustrate auxiliary problems potentially useful for our example
mini tasks.

Ex 1. Predict frequent words for text genre categorization. It is intuitive that
content words that occur frequently in a document are often good indicators of the genre
of that document. Let us split content words into two sets W1 and W2 (after removing
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appropriate stop words). An auxiliary task we define is as follows. Given document x,
predict the word that occurs most frequently in x, among the words in set W1. The learner
only uses the words in W2 for this prediction. This task breaks down to |W1| binary
prediction problems, one for each content word in W1.

1

For example, let

W1 = {“stadium”, “scientist”, “stock”} ,

W2 = {“baseball”, “basketball”, “physics”, “market”} .

We treat members of W1 as unobserved, and learn to predict whether the word “stadium”
occurs more frequently in a document than “scientist” and “stock” by observing the occur-
rences of “baseball”, “basketball”, “physics”, and “market”. Similarly, the second problem
is to predict whether “scientist” is more frequent than “baseball” and “stock”. Essentially,
through this auxiliary problem, we learn the textual context in W2 that implies that the
word “stadium” occurs frequently in W1. Assuming that “stadium” is a strong indicator of
sports, the problem indirectly helps to learn the correlation of W2 members to the target
class sports from unlabeled data.

Ex 2. Predict word strings for word tagging. As we have already discussed above,
an example auxiliary task for word tagging is to predict the word string at the current
position by observing the corresponding words on the left and the right. Using this idea,
we can obtain |W | binary prediction problems where W is a set of all possible word strings.
Another example is to predict the word on the left by observing the words at the current
and right positions. The underlying assumption is that word strings (at the current and
left positions) have strong correlations to the target problem – whether a word is noun or
verb.

4.2.2 Partially Supervised-Strategy: Predicting the Behavior of Target
Classifier

The second strategy is motivated by co-training. We use two (or more) distinct feature
maps: Φ1 : X → F and Φ2 : X → F . First, we train a classifier for the target task, using
the feature map Φ1 and the labeled data. The auxiliary tasks are to predict the behavior of
this classifier (such as predicted labels, assigned confidence values, and so forth), by using
the other feature map Φ2. Note that unlike co-training, we only use the classifier as a
means of creating auxiliary problems that meet the relevancy requirement, instead of using
it to bootstrap labels. The semi-supervised learning procedure following this strategy is
summarized as follows.

1. Train a classifier T1 with labeled data Z for the target task, using feature map Φ1.

2. Generate labeled data for auxiliary problems by applying T1 to unlabeled data.

3. Learn structural parameter θ by performing joint ERM on the auxiliary problems,
using only the feature map Φ2.

1. One may also consider variations of this idea, such as predicting whether a content word in W1 appears
more often than a certain threshold, or in the top-k most frequent list of x.
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4. Train a final classifier with labeled data Z, using θ computed above and some appro-
priate feature map Ψ.

Ex 3. Predict the prediction of classifier T1. The simplest auxiliary task created by
following this strategy is the prediction of the class labels proposed by classifier T1. When
the target task is c-way classification, c binary classification problems are obtained in this
manner. For example, suppose that we train a classifier using only one half of content words
for the text genre categorization task. Then, one of auxiliary problems will be to predict
whether this classifier would propose sports category or not, based on the other half of
content words only.

Ex 4. Predict the top-k choices of the classifier. Another example is to predict
the combinations of k (a few) classes to which T1 assigns the highest confidence values.
Through this problem, fine-grained distinctions (related to intrinsic sub-classes of target
classes) can be learned. From a c-way classification problem, c!/(c − k)! binary prediction
problems can be created. For instance, predict whether T1 assigns the highest confidence
values to sports and economy in this order.

Ex 5. Predict the range of confidence values produced by the classifier. Yet
another example is to predict the proposed labels in conjunction with the range of confidence
values. For instance, predict whether T1 would propose sports with confidence greater than
0.5.

4.3 Discussions

We have introduced two strategies for creating auxiliary problems in this section. One is
unsupervised, and the other partially supervised.

For the unsupervised strategy, we try to predict some sub-structures of the input using
some other parts of the input. This idea is related to the discussion in Section 2.3, where
we have argued that there are often good structures (or smoothness conditions) intrinsic
to the input space. These structures can be discovered from auxiliary problems. For text
data, some words or linguistic usages will have similar meanings. The smoothness condition
is related to the fact that interesting predictors for text data (often associated with some
underlying semantic meanings) will take similar values when a linguistic usage is substituted
by one that is closely related. This smoothness structure can be discovered using structural
learning, and specifically by the method we proposed in Section 3. In this case, the space
of smooth predictors corresponds to the most predictive low dimensional directions which
we may discover using the SVD-ASO algorithm. An example of computed Θ is given in
Section 5.2.8, which supports the argument. It is also easy to see that this reasoning is
not specific to text. Therefore the idea can be applied to other data such as images. In
the following, we will briefly explain the underlying intuition on why the un-supervised
auxiliary problems we create are helpful for the supervised task, and leave the development
of a more rigorous and general theory to future investigation.

Suppose we split the features into two parts W1 and W2, and then predict W1 based on
W2. Suppose features in W1 are correlated to the class labels (but not necessarily correlated
among themselves). Then, the auxiliary prediction problems are related to the target task,
and thus can reveal useful structures of W2. Under appropriate conditions, features in W2
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with similar predictive performance tend to map to similar low-dimensional vectors through
Θ. This effect can be empirically observed in Section 5.2.8. We shall only use a simple but
concrete example to illustrate the main idea. Assume that words are divided into five
disjoint sets Tj : −2 ≤ j ≤ 2 , with binary label y ∈ {−1, 1}. Assume also for simplicity
that every document contains only two words x1 and x2, where x1 ∈ W1 = ∪j=−1,0,1Tj ,
and x2 ∈ W2 = ∪j=−2,2Tj . Assume further that given class label y = ±1, x1 and x2 are
independent, where x1 is uniformly distributed over T0 ∪Ty and x2 is uniformly distributed
over T2y. Then by predicting x1 = ` based on x2 with least squares, we obtain for each
y ∈ {±1}, identical weight-components for all words in T2y (due to the exchangeability of
words in each T2y). Thus after dimension reduction, only two rows of Θ have non-zero
singular values. The Θ-feature reduces all words in T2 to a single vector in R2, and all
words in T−2 into another single vector in R2. This gives a helpful grouping effect (words
with similar predictive performance are grouped together). It is clear that in this example,
we gain predictive ability by using unsupervised structure discovery. This is because the
original word-spaces T2 and T−2 may be extremely large, which means that one will not be
able to learn very well from a small number of training examples (since each word does not
occur often enough). By grouping all words in T2 (also in T−2) together, we obtain a feature
that is completely correlated to the class label due to our data generation process. Therefore
the grouping effect makes the originally hard problem much easier to learn. This example
can be extended to a more general theory, which we shall leave to further exploration. The
consequence of the example is observable in practice, as demonstrated in Section 5.2.8.

Although the above discussion implies that it is possible to find useful predictive struc-
tures even if we do not intentionally create problems to mimic the target problem, it is
also clear that auxiliary problems more closely related to the target problem will be more
beneficial. This is our motivation to propose the partially supervised strategy for creating
auxiliary problems. Using this idea, it is always possible to create relevant auxiliary prob-
lems that are closely related to the supervised problem without knowing the effectiveness
of the individual features. In practical applications, we observe that it can be desirable to
create as many auxiliary problems as possible, as long as there is some reason to believe
in their relevancy to the target task. This is because the risk is relatively minor, while the
potential gain from a good structure is large.

Moreover, the auxiliary problems introduced above (and used in our experiments of
the next section) are merely possible examples. One advantage of this approach to semi-
supervised learning is that one may design a wide variety of auxiliary problems for learning
various aspects of the target problem from unlabeled data. Structural learning provides a
theoretical foundation and a general framework for carrying out possible new ideas.

5. Experiments

We study the performance of our structural learning-based semi-supervised method on text
categorization, natural language tagging/chunking, and image classification tasks. The
experimental results show that we are able to improve state-of-the-art supervised learning
methods even for some problems with relatively large number of labeled data (e.g. 200K
labeled data for named entity recognition).
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5.1 Implementation

We experiment with the following semi-supervised learning procedure:

1. If required for auxiliary label generation, train classifiers Ti using labeled data Z and
appropriate feature maps Ψi.

2. For all the auxiliary problems, assign auxiliary labels to unlabeled data.

3. Compute structure matrix Θ by performing the SVD-ASO procedure (Section 3) using
all auxiliary problems on the data generated above. We use the extended version to
take advantage of natural feature splits, and iterate once.

4. Fix Θ and obtain the final classifier by optimizing (8) with respect to w and v, using
labeled data Z.

In all settings (including baseline methods), the loss function is a modification of the
Huber’s robust loss for regression:

L(p, y) =

{

max(0, 1 − py)2 if py ≥ −1
−4py otherwise

,

with square regularization (λ = 10−4). It is known that the modified Huber loss works well
for classification, and has some advantages, although one may select other loss functions
such as SVM or logistic regression. The specific choice is not important for the purpose
of this paper. The training algorithm is stochastic gradient descent (SGD) as in (Zhang,
2004). We fix ht (dimension of Θt) to 50, and use it for all the settings unless otherwise
specified.

5.2 Text Categorization Experiments

We report text categorization performance on the 20-newsgroup corpus and the Reuters-
RCV1 corpus (also known as “new Reuters”).

5.2.1 Feature Representation

Our feature representation uses word frequencies after removing function words and common
stopwords, and normalizes feature vectors into unit vectors.

5.2.2 Auxiliary Problems for Text Categorization

We experiment with the following types of auxiliary problems:

• Freq: predicts the most frequent word by observing one half of the words (as in Section
4.2.1. Ex 1).

• Top-k: predicts combinations of the top-k choices of the classifier trained with labeled
data (as in Section 4.2.2. Ex 4).

• Multi-k: for the multi-category target task, predicts the top-k choices of the classifier
(trained with labeled data), regarding them as multi-category auxiliary labels. The
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number k is set to the average number of categories per instance, obtained from the
labeled data.

Feature splits are randomly generated.

5.2.3 Data

20-newsgroup corpus The 20-newsgroup corpus is one of the standard data sets for text
categorization, which consists of 20K documents from 20 newsgroups, with 1K documents
per group. The task is to classify documents into these 20 newsgroups ranging over a variety
of topics – computer hardware, baseball, bikes, religions, middle east issues, and so on. In
pre-processing, we removed the header lines (subjects, newsgroup names, senders, and so
forth) from all documents. We held out 1K documents as the test set, and arbitrarily split
the rest of the corpus into the training set (2K documents) and the unlabeled data set (17K
documents).

Reuters-RCV1 corpus (new Reuters) From the Reuters-RCV1 corpus, we randomly
generate disjoint sets of labeled (1K), unlabeled (20K), and test (3K) examples. The
Reuters-RCV1 corpus differs from the 20-newsgroup corpus in several ways. The num-
ber of categories is 102, which is five times larger than that of the 20-newsgroup corpus;
the categories are organized into three-level hierarchies; each document may be assigned
multiple categories — about three categories per document on average. The Reuters-RCV1
corpus preserves the natural distribution of the categories whereas the 20-newsgroup corpus
has a completely uniform distribution, generated by intentionally choosing the same number
of documents from each newsgroup.

5.2.4 Evaluation Metric

To measure the performance of the final classifier on the test sets, for singly-labeled tasks,
we choose one category that produces the highest confidence value (inner product) and
report classification accuracy. For multiply-labeled tasks, we choose categories that produce
positive confidence values, and report the micro-averaged F-measure.

5.2.5 Text Categorization Performance Results

20-newsgroup results Figure 3 (a) shows the accuracy results on the 20-newsgroup data
in comparison with the supervised setting as the baseline. We show the averaged results over
10 runs, each with labeled examples randomly drawn from the training set. The vertical
bars are ‘one’ standard deviations. The symbol ‘semi’ stands for semi-supervised, followed
by the types of auxiliary problems used. The semi-supervised methods obtain significant
performance improvements (up to 22.2%) over the supervised method in all settings.

Reuters-RCV1 results Figure 3 (b) shows micro-averaged F-measure on the Reuters-
RCV1 data in comparison to the supervised baseline. The performance trend is similar
to that of the 20-newsgroup experiments. Significant performance improvements (up to
11.6%) over the supervised method are obtained in all settings.

Auxiliary problems: unsupervised vs. partially-supervised From the results
in Figure 3, we observe that when a relatively small number of labeled data are used,

1835



Ando and Zhang

(a) Text categorization, 20 newsgroup

25
30
35
40
45
50

55
60
65
70
75

100 200 500 1000
# of labeled examples

A
cc

ur
ac

y 
(%

)

supervised semi:freq semi:top-1
semi:top-2 semi:freq+top-2

(b) Text categorization , new Reuters

45

50

55

60

65

70

75

100 200 500 1000
# of labeled examples

F
-m

ea
su

re
 (

%
)

supervised semi:freq
semi:multi-3 semi:multi-3+freq

Figure 3: Text categorization performance results. Average over 10 runs. Vertical bars are
standard deviations. (a) 20-newsgroup, (b) Reuters-RCV1.

freq (which uses auxiliary problems created in an unsupervised manner) outperforms top-
k/multi-k (partially-supervised). However it underperforms top-k/multi-k when a relatively
large number of labeled data are used. Since freq learns from unlabeled data in an unsu-
pervised fashion, its effectiveness is insensitive to the number of labeled data. In contrast,
top-k/multi-k can take advantage of information in the labeled data when there is a reason-
able amount of them. The best performance is often achieved when both types of auxiliary
problems are used.

5.2.6 Performance Comparison with Other Methods

As we have mentioned, the idea of using partially supervised auxiliary problems is motivated
by co-training. Therefore we test co-training for comparison.

Co-training implementation Our implementation follows the original work (Blum and
Mitchell, 1998), with the same feature splits as used in our auxiliary problems. Initial
classifiers are trained with labeled instances drawn from the training sets. We maintain
a pool of 10K unlabeled instances while refilling it by randomly choosing instances from
the unlabeled set. The two classifiers propose labels for the unlabeled instances in this
pool. For each classifier, we choose 1000 instances with high confidence while preserving
the class distribution observed in the initial labeled data. This is done by choosing the
class label with probabilities according to the distribution, and then the highest confident
instance for that class label. The chosen instances are added to the pool of labeled data
with their automatically proposed labels. The process repeats until the unlabeled instances
are exhausted.

Comparison with co-training Figure 4 shows the best possible performance of co-
training (the optimally stopped co-training procedure) averaged over 10 runs, with 100
and 200 labeled examples on the 20-newsgroup and the Reuters-RCV1 data. Our method
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Figure 4: Comparison with co-training: averaged performance over 10 runs with standard
deviations.
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Figure 5: Co-training performance in typical runs, versus the number of iterations.
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# of labeled BN04 best ASO-semi
examples (manifold)

100 39.8 54.1
200 – 61.6
500 59.9 68.5

1000 64.0 72.3

Figure 6: Comparison with similar settings in BN04 (Belkin and Niyogi, 2004) on 20 news-
group.

outperforms the best co-training performance in all of the four settings by up to 8.4%. In
Figure 5, we plot the co-training performance versus co-training iterations in typical runs.

As shown in Figure 6, our results outperform BN04 (Belkin and Niyogi, 2004)’s manifold-
based semi-supervised learning method. They are also consistent with NMTM00 (Nigam
et al., 2000)’s EM results. Since NMTM00 didn’t report the exact numbers (we can only
approximately read their results from a graph), we cannot include them in Figure 6. The
performance of EM is usually similar to that of co-training as well as sel-training frequently
used in NLP. Although quite successful for the 20 newsgroup data, as we shall see later,
co-training and self-training do not perform very well for more difficult tasks.

5.2.7 Performance Dependency on h

Recall that throughout the experiments, we fix the number of rows of Θt to a constant ht =
50, as described in Section 5.1. Also recall that on text categorization, Θt is derived from
auxiliary problems that use the t-th feature map. In this section, we study the performance
dependency on the dimensionality ht.

We are interested in the range of ht roughly from 10 to 100. Figure 7 plots the
performance on the 20-newsgroup and the Reuters-RCV1 corpora, in relation to ht =
5, 10, 15, 20, 30, · · · , 100. The results show that the method is insensitive to the change
of dimension ht in a relatively large range. In practice, this is a significant advantage
over other dimension reduction approaches, which are typically sensitive to the choice of
dimensions, or bootstrapping approaches, which are often sensitive to parameter settings.

5.2.8 Interpretation of Θ

In order to gain some insights into the information obtained from unlabeled data, we show
several significant entries of matrix Θ – the entries whose absolute values are:

• the largest in the columns (corresponding to features), and

• within the 100 largest among the positive (or negative) entries in the rows.

In the table below, we show at most ten entries chosen in this manner from the rows
corresponding to the five most significant singular values. Θ was computed from the freq
(unsupervised) auxiliary problems on the 20-newsgroup unlabeled data.
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Figure 7: Performance dependency on ht (the rank of Θt) in particular runs.

The second row appears to capture the distinctions between computers and religion.
The third row distinguishes sports and the middle east issues. The positive entries of the
fifth row appear to be about motor vehicles, and the negative entries are about printers.
These topics are, indeed, relevant to the themes of the twenty newsgroups.

row# features

2 + pc, vesa, ibm, boards
− god, christian, bible, exist, doctrine, nature, worship, athos.rutgers.edu

3 + team, detroit, series, leafs, play, cup, playoffs, played, penguins, devils
− israel, peace, jewish, lebanese, israelis, land, gaza, civilians, palestine, syria

4 + files, jpeg, pov, utility, ms-windows, icon
− eisa, nubus, agents, attorney

5 + oil, bikes, front, brake, rear, transmission, owner, driving, dogs, highway
− printer, hp, ink, appreciate, bj-200, toner, printing, bubblejet, laserjet, gcc

5.3 Named Entity Chunking Experiments

We report named entity chunking performance on the CoNLL’03 shared-task2 corpora (En-
glish and German). We choose this task because the original intention of this shared task
was to test the effectiveness of semi-supervised learning methods (such as label bootstrap
or co-training), and hence a large number of unlabeled data were made available. However,
it turned out that none of the top performing systems used unlabeled data. One possible
reason may be that the number of labeled data is relatively large (>200K). We show that
by contrast, through our structural-learning based semi-supervised learning, it is possible
to obtain results better than any of the top systems, using unlabeled data as the only ad-
ditional resource. In particular, we do not use gazetteer information, which was used in all
other systems.

The CoNLL corpora are annotated with four types of named entities: persons, organiza-
tions, locations, and miscellaneous names (e.g., “World Cup”). As is commonly done, we en-

2. http://cnts.uia.ac.be/conll2003/ner.
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code chunk information into word tags to cast the chunking problem to that of word tagging,
and perform Viterbi-style decoding. We use the official training/development/test splits, as
provided by the shared-task organizers. Our unlabeled data sets consist of 27 million words
(English) and 35 million words (German), respectively. They were chosen from the same
sources – Reuters and ECI Multilingual Text Corpus – as the training/development/test
sets but disjoint from them.

5.3.1 Feature Representation

Our feature representation is a slight modification of a simpler configuration reported in
(Zhang and Johnson, 2003), which uses: token strings, parts-of-speech, character types,
several characters at the beginning and the ending of the tokens, in a 5-token window
around the current position; token strings in a 3-syntactic chunk window; labels of two
tokens on the left to the current position; bi-grams of the current token and the label on
the left; and the labels assigned to previous occurrences of the current word. These features
are easily obtained without deep linguistic processing.

5.3.2 Auxiliary Problems for Named Entity Chunking

We use four types of auxiliary problems and their combinations:

• Word prediction: predicts the word at the current (or left or right) position, using the
features derived from the other tokens.

• Top-2: predicts the top-2 choices of the classifier. We split features into “left-context
vs. the others” and “right-context vs. the others”. The rest is the same as Ex 4 in
Section 4.2.2.

SVD is applied to each of the feature types separately. As for the word-prediction auxiliary
problems, we only consider the instances whose current words are either nouns or adjectives
since named entities mostly consist of these types. Also, we leave out all but 1000 auxiliary
problems of each type that have the largest numbers of positive examples. This is to ensure
that auxiliary predictors can be adequately learned from unlabeled data.

5.3.3 Performance Results on the CoNLL English/German Corpora

Figures 8 (a) and (b) show the English F-measure results – (a) with small (10K-word)
labeled data, and (b) with the entire training set (204K words). German results using the
entire training set are shown in Figure 8 (c). Precision and recall results in the same settings
are found in Figure 15.

Note that to facilitate comparisons with the supervised baselines, we do not use any
gazetteers or any name lexicons. Thus, there are only two kinds of information sources:
labeled data and unlabeled data. We confirm that performance improvements gained by
unlabeled data are significant in all of the semi-supervised settings: up to 10.10% gains
with small English labeled data, up to 3.86% with larger English labeled data, and up to
9.22% improvements on the German data.

We note that word-prediction (unsupervised) auxiliary problems are particularly effec-
tive when the number of labeled examples is relatively small or the training data differ
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Figure 8: Named entity chunking F-measure performance. Without any gazetteer. For co-
and self-training, the performance best among all the parameter settings (includ-
ing the number of iterations) is shown. (a) CoNLL English corpus, 10K labeled
examples. (b) CoNLL English corpus, 204K (the entire) labeled examples. (c)
CoNLL German corpus, 207K (the entire) labeled examples.
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Figure 9: Co- and self-training named entity chunking performance in typical runs, versus
the number of iterations. Tested on the German development set. In the legend,
C, L, and R stand for current words, left context, and right context, respectively.

significantly from the test data. (The English test set is known to be less similar to the
training set than the development set is, apparently because of the time periods from which
the articles were drawn.) The best performance is achieved by combining all of the aux-
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iliary problems. This performance trend is in line with that in the text categorization
experiments.

Comparison with co- and self-training For comparison, we test co-training explor-
ing parameter settings: pool size {50K,100K}, increment size {50, 100, 50K, 100K}, and
commonly-used feature splits “current+left-context vs. current+right-context” and “cur-
rent vs. context”. Single-view bootstrapping is sometimes called self-training. In addition,
we test the basic self-training, which replaces multiple classifiers in the co-training procedure
with a single classifier that employs all the features. The co- and self-training performance
shown in Figures 8 and 15 is the best possible performance among all the parameter settings
(including the number of iterations). Co- and self-training at their best improve recall but
often degrades precision. Consequently, their F-measure improvements are relatively low,
which demonstrates that it is not easy to benefit from unlabeled data on this task. More-
over, as shown in Figure 9, co- and self-training may rather degrade performance severely
unless the iteration is optimally stopped. Such performance degradation (caused by con-
tamination of automatically assigned labels) has also been observed in previous co-training
studies on NLP tasks (e.g., Pierce and Cardie, 2001).

5.3.4 Comparison with Previous Best Results

English test set

System F-measure Additional resources

semi:word+top-2 89.31 unlabeled data

FIJZ03(Florian et al., 2003) 88.76 gazetteers; 1.7M-word labeled data

CN03(Chieu and Ng, 2003) 88.31 gazetteers (also very elaborated features)

KSNM03(Klein et al., 2003) 86.31 rule-based post processing

German test set

Systems F-measure Additional resources

semi:word+top-2 75.27 unlabeled data

FIJZ03 72.41 gazetteers

KSNM03 71.90 rule-based post processing

ZJ03(Zhang and Johnson, 2003) 71.27 gazetteers

Figure 10: Comparison with previous best results on CoNLL’03 shared task

In Figure 10, we compare our performance results with those of the previous top systems
among the CoNLL’03 shared-task participants.

On both English and German data, we are able to achieve performance better than those
of the top participants, although they used more elaborated features. We note that the
previous best English results were achieved with the help of knowledge intensive resources –
such as gazetteers provided by the organizer plus additional gazetteers of a large number of
names (FIJZ03, CN03); and a large amount (1.7 million words) of labeled data annotated
with finer-grained named entities (FIJZ03); and rule-based post processing (KSNM03).
Recall that the study of semi-supervised learning is motivated by the potential unavailability

1842



Learning Predictive Structures

of such labor intensive resources. Hence, we feel that our results, which were obtained by
using unlabeled data as the only additional resource, are very encouraging.

5.4 Part-of-Speech Tagging

We report part-of-speech (POS) tagging results on the Brown corpus. This corpus, anno-
tated with 46 parts-of-speech, is one of the standard corpora for POS tagging research. We
arbitrarily split the corpus into the labeled set (23K words), unlabeled set (1M words), and
the test set (60K words).

The same auxiliary problems and feature representation (as in the named entity chunking
experiments) are used, except for part-of-speech and syntactic chunk information. Following
the convention, we use error rate to measure the performance. It can be seen from Figure
11 that over 20% error reductions are achieved by learning from unlabeled data.

supervised 8.9

semi:left+curr 7.0 (21.3%)
semi:top-1 6.9 (22.5%)
semi:left+curr+top-1 6.9 (22.5%)

Figure 11: Part-of-speech tagging error rates (%). The numbers in parentheses are error
reduction ratio with respect to the supervised baseline.

5.5 Hand-Written Digit Image Classification

This experiment uses the MNIST data downloaded from http://yann.lecun.com/exdb/mnist/.
It consists of a training set (60K examples) and a test set (10K examples) of 28-by-28 gray-
scale hand-written digits. The task is to classify the image data into 10 digits,‘0’– ‘9’.

We use a feature representation composed of location-sensitive bags of pixel blocks,
similar to the bag-of-word model in text categorization. It consists of normalized counts of
pixel blocks of various shapes in the four regions (top-left, top-right, bottom-right, bottom-
left). (Normalization was done by scaling the vector for each shape/region into a unit
vector.) The pixel blocks are black-white patterns of 16 pixels in the shape of: squares(4×4),
rectangles(2 × 8, 8 × 2), crossing lines (from top-left to bottom-right; from top-right to
bottom-left), and dotted lines (horizontal and vertical). Using these features and trained
with the entire training set (60K examples), the error rate in the supervised setting is
0.82%. This matches/surpasses state-of-the-art algorithms on the same data (reported on
the MNIST data website) without additional image processing or transformation such as
distortion or deskewing.

Auxiliary problems we used are partially-supervised. Feature splits were made by halv-
ing each image: features derived from top-left+top-right regions vs. those from bottom-
left+bottom-right; top-left+bottom-left vs. top-right+bottom-right; and top-left+bottom-
right vs. top-right+bottom-left.

In each run, labeled examples were randomly chosen from the training set, with the
remaining training set used as unlabeled data. ASO-semi (Figure 12) consistently produced
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significant performance improvements over the supervised baseline.3 It also outperforms
a manifold-based semi-supervised learning method BN04 (Belkin and Niyogi, 2004) except
when the number of labeled data is 100. The method in BN04 performs well for small
labeled data. However, a disadvantage is that their method (which also requires dimension
reduction) is more sensitive to the number of reduced dimensions. For example, with 100
labeled data, they achieved an error rate of 6.4 with 20 dimensions, but an error rate of
22.0 with 10 dimensions, and an error rate of 14.4 with 50 dimensions.

#labeled supervised ASO-semi BN04 best (2nd best)

100 14.22 ± 2.90 9.13 ± 1.95 6.4 (14.4)
500 3.93 ± 0.22 3.05 ± 0.20 3.5 (3.6)

1000 2.83 ± 0.16 2.26 ± 0.11 3.2 (3.4)
5000 1.64 ± 0.07 1.47 ± 0.07 2.7 (2.9)

Figure 12: Error rates (%); average over 10 runs and standard deviation. MNIST hand-written
digit image classification results on the test set. BN04 results (Belkin and Niyogi, 2004)
are on the unlabeled portion of the training set.

(a) 20-newsgroup
# of labeled examples 100 200 500 1000

supervised 32.0 42.7 56.9 66.0
semi:freq 53.6 (+21.6) 60.0 (+17.3) 65.8 (+8.9) 69.1 (+3.1)
semi:top-1 46.6 (+14.6) 55.9 (+13.2) 67.6 (+10.7) 72.9 (+6.9)
semi:top-2 47.4 (+15.4) 58.4 (+15.7) 68.3 (+11.4) 72.5 (+6.5)
semi:top-2+freq 54.1 (+22.1) 61.6 (+18.9) 68.5 (+11.6) 72.3 (+6.3)

(b) Reuters-RCV1 corpus
# of labeled examples 100 200 500 1000

supervised 48.5 56.3 65.4 71.4
semi:freq 59.6 (+11.1) 64.8 (+8.5) 69.6 (+4.2) 72.8 (+1.4)
semi:multi-3 58.7 (+10.2) 65.5 (+9.2) 71.2 (+5.8) 74.6 (+3.2)
semi:multi-3+freq 60.1 (+11.6) 65.8 (+9.5) 70.7 (+5.3) 73.7 (+2.3)

Figure 13: Text categorization. Average over 10 runs. For each run, labeled examples
were randomly drawn from the training set. (a) Accuracy on the 20-newsgroup
corpus, (b) F-measure (micro-averaged) on Reuters-RCV1 corpus. Numbers in
parentheses are performance improvements obtained from unlabeled data. The
best performance in each column is italicized.

3. By contrast, co-training (with the same feature splits) sometimes rather degraded performance.
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Data set 20-newsgroup Reuters-RCV1
# of labeled examples 100 200 100 200

co-training:highest 49.6 (+17.6) 58.5 (+15.8) 51.9 (+2.4) 57.4 (+1.1)
co-training:lowest 34.5 (+2.5) 45.5 (+2.8) 46.8 (−1.7) 53.9 (−2.4)

Figure 14: Co-training text categorization performance. The highest and lowest perfor-
mance among the iterations, averaged over 10 runs. Accuracy on 20-newsgroup
and micro-averaged F-measure on Reuters-RCV1 are shown. The numbers in
parentheses are improvements over the supervised settings.

(a) English (10K labeled examples)
development set test set

prec. recall Fβ=1 prec. recall Fβ=1

supervised 72.04 73.46 72.74 70.52 66.25 68.32
co/self best 72.36 73.85 73.10 (+0.36) 71.12 68.20 69.63 (+1.31)
semi:word 82.16 79.45 80.78 (+8.04) 78.66 74.96 76.77 (+8.45)
semi:top-2 80.78 78.31 79.52 (+6.78) 77.60 73.58 75.54 (+7.22)
semi:word+top-2 82.06 80.46 81.25 (+8.51) 79.91 76.98 78.42 (+10.10)

(b) English (204K labeled examples)
development set test set

prec. recall Fβ=1 prec. recall Fβ=1

supervised 91.59 89.48 90.53 86.34 84.58 85.45
co/self best 91.63 89.68 90.64 (+0.11) 86.30 84.53 85.40 (−0.05)
semi:word 93.45 91.75 92.60 (+2.07) 89.04 88.05 88.54 (+3.09)
semi:top-2 93.05 91.89 92.46 (+1.93) 88.49 87.80 88.14 (+2.69)
semi:word+top2 93.84 92.48 93.15 (+2.62) 89.54 89.09 89.31 (+3.86)

(c) German (207K labeled examples)
development set test set

prec. recall Fβ=1 prec. recall Fβ=1

supervised 74.61 57.33 64.84 78.65 62.07 69.39
co/self best 72.02 61.72 66.47 (+1.63) 77.39 64.66 70.45 (+1.06)
semi:word 82.04 65.80 73.03 (+8.19) 82.23 66.78 73.71 (+4.32)
semi:top-2 82.00 63.60 71.64 (+6.80) 82.74 65.91 73.37 (+3.98)
semi:word+top2 82.01 67.52 74.06 (+9.22) 83.29 68.66 75.27 (+5.88)

Figure 15: Named entity chunking results on the CoNLL’03 corpus. Without any gazetteer.
For co-training and self-training (baseline), the best performance among all their
parameter settings (including the number of iterations) is shown. (a) English,
10K labeled examples. (b) English, 204K (entire) labeled examples. (c) Ger-
man, 207K (entire) labeled examples. The best performance in each column is
italicized.
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6. Discussions

This paper presents a general framework for learning predictive functional structures from
multiple tasks. The idea is based on the concept that if multiple problems share a common
predictive structure, then the structure can be more reliably estimated by considering these
problems together. The process of learning the shared functional structure is referred to
as structural learning. In the learning theory framework, structural learning is to discover
a common structure of the hypothesis spaces shared by the problems. The main theoret-
ical justification of this approach is that the shared structural parameter can be reliably
estimated when m is large. Using the optimally estimated structural parameter, better
generalization performance (averaged over the problems) can be achieved.

Moreover, we showed that the framework of structural learning can be applied to semi-
supervised learning. This is achieved by creating auxiliary problems from unlabeled data
that can reveal important underlying predictive structures of the data. Some examples of
auxiliary problems were provided, and experimental results demonstrated that the discov-
ered structures are very useful. Rigorously speaking, the theory we developed in Appendix A
does not directly apply to semi-supervised learning. This is because in our theory, the per-
formance is measured by averaged generalization ability over multiple prediction problems.
However, in the setting of semi-supervised learning, we are only interested in the perfor-
mance of the original supervised task, and not any of the auxiliary problems. For semi-
supervised learning, a more relevant consequence of our analysis is that the shared structure
can be stably estimated from multiple tasks. The usefulness of the shared structure is a
different issue which is not directly answered by Appendix A. An intuitive justification
of auxiliary problems we created is given in Section 4.3, although a more complete theory
requires further investigation.

In summary, our approach to semi-supervised learning makes a bet on the existence of
a shared predictive structure useful both for the supervised problem and for the auxiliary
problems. The method proposed in Section 3 is robust since even if the discovered structure
does not help on the supervised problem, the only potential negative effect is the introduc-
tion of some non-predictive features. Using typical discriminative learning methods with
appropriate regularization, a small number of bad features only have a minor impact on the
performance. However, if some of the features discovered from the auxiliary problems are
useful, then the performance improvement can be significant.

The method derived in Section 3 has the intuitive interpretation of discovering low
dimensional predictive structures on the classifier space. In our model, the most predictive
dimensions correspond to the principal components of the multiple classifiers. Although
our algorithm is based on the joint empirical risk minimization method which has a strong
foundation in learning theory (see Appendix A), in principle, we can consider a more general
approach of mining structures in the classifier space. Based on this general principle, one
can design other structural learning algorithms that are not necessarily based on the joint
empirical risk minimization method proposed in the paper. In fact, this general principle,
which we may call structural mining, is the heart of our analysis. We shall thus conclude
this paper by comparing some underlying concepts of structural mining to those of data-
mining in Figure 16. In the table, a predictor can be regarded as a real-valued function
defined on the data-space. The final row points out that we may also consider a data point
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x as a predictor on the predictor space by associating with each predictor p the functional
value x(p) := p(x). In this sense, data-mining can be viewed as a special structural mining.

data-mining structural-mining

space of interest data space predictor space

instances data-points predictors from multiple tasks

uncertainty measurement error estimation error

goal find patterns in data find structures of the predictors

predictive power maybe yes

duality a data point is a predictor of points in the predictor-space

Figure 16: Data mining versus structural mining
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Appendix A. Analysis of Structural Learning

We include a theoretical analysis of the joint empirical risk minimization method (3) for
structure learning. The main purpose is to demonstrate that by joint minimization, the
shared structure θ can be more reliably estimated. We consider the idealized case, where
the performance of interests is the averaged loss over the m tasks. In particular, we are
interested in the behavior when m becomes large. Our bound shows that using the joint
empirical risk minimization method, it is possible to estimate the shared hypothesis space
H·,θ more reliably as m → ∞.

Note that in practice, we are often interested in the performance on one particular task
instead of the averaged performance over multiple tasks. This non-idealized scenario is
not directly covered by our analysis. In particular, in the semi-supervised learning setting,
additional theoretical analysis is needed to show that structure shared by the artificially
created tasks can improve the performance of the supervised task (see Section 4.3). Still,
the analysis presented here is relevant because it implies that the shared structure can be
reliably estimated by the joint empirical risk minimization method, which we employ.

Instead of providing the most general analysis with the tightest possible generalization
bounds, we adopt a relatively simple approach. Our purpose is to illustrate the main
benefit of structural learning, that is, the ability to obtain an accurate estimate of the best
hypothesis class H·,θ (θ ∈ Γ) when the number of problems m is large. The analysis is closely
related to that of Baxter (2000) (also see Ben-David and Schuller, 2003). We use a different
(although related) technical approach with a different covering number definition. The
modifications are necessary to make our results directly applicable to the specific method
proposed in Section 3.
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For clarity, in the following analysis, we simplify (3) as

[θ̂, {f̂`}] = arg min
θ∈Γ,{f`∈Hθ}

m
∑

`=1

n
∑

i=1

L(f`(X
`
i), Y

`
i ), (9)

where we only consider the case n1 = n2 = · · · = nm = n, and H1,θ = H2,θ = · · · =
Hm,θ = Hθ. This simplification is not critical, but allows us to consider the behavior of (9)
as m → ∞ under fixed n.

For simplicity, we use a covering-number approach in our analysis. The treatment is
very similar to the case of m = 1, which is the standard empirical risk minimization. We
need to introduce some definitions in order to state the main theorem.

Definition 1 Consider a set V with a distance function d : V × V → {0} ∪ R+. Given
ε > 0, the ε-covering number of V , denoted by N (ε, V, d(·, ·)), is the minimal number of
balls B(f) = {g : d(f, g) ≤ ε} of radius ε needed to cover V .

Definition 2 Let S(n) = {(X1, Y1), . . . , (Xn, Yn)} be a set of n points. We define the
`2(S

(n)) distance between any two functions f(x, y) and g(x, y) on S(n) as

`2(S
(n))(f, g) =

(

1

n

n
∑

i=1

|f(Xi, Yi) − g(Xi, Yi)|2
)1/2

.

Let F be a class of functions of (x, y). The empirical `2-covering number of F is the
covering number N (ε,F , `2(S

(n))) of F with respect to the `2(S
(n)) distance. The uniform

`2 covering number is given by

N2(ε,F , n) = sup
S(n)

N (ε,F , `2(S
(n))),

where the supremum is over all samples S(n) of size n.

Definition 3 Define distance d∞ between hypothesis spaces Hθ (θ ∈ Γ) as

d∞(θ1, θ2) = sup
f∈Hθ2

inf
g∈Hθ1

sup
x,y

|f(x, y) − g(x, y)|.

We define the d∞-covering number of Γ as N (ε, Γ, d∞).

The following theorem gives a (one-sided) uniform convergence result for the joint ERM
method (9).

Theorem 4 For each ` = 1, . . . , m, let S` = {(X`
i , Y

`
i ), . . . , (X`

n, Y `
n)} be a set of n points

for problem `, independently drawn from a distribution D`. Assume that L(f(x), y) is a
bounded Lipschitz function of f(x) ∈ Hθ. That is, there are θ-independent constants γ and
M such that ∀θ1, θ2 ∈ Γ and ∀f1 ∈ Hθ1 , f2 ∈ Hθ2:

∀(x, y) : |L(f1(x), y) − L(f2(x), y)| ≤ γ|f1(x) − f2(x)|,
∀(x1, y1), (x2, y2) : |L(f1(x1), y1) − L(f1(x2), y2)| ≤ M.
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Then there is a universal constant C such that ∀η ∈ [0, 1], with probability 1 − η, we have
∀θ̂, {f̂` ∈ Hθ̂}:

1

m

m
∑

`=1

R`(f̂`) ≤
1

m

m
∑

`=1

R̂`(f̂`, S`) + γC inf
ε0≥0

[

ε0 +

∫ ∞

ε0

√

lnN (ε)

n
dε

]

+ M

√

ln 1
η

nm
,

where R` and R̂` are the true and empirical risks for problem `:

R`(f̂`) = E(X`,Y `)∼D`
L(f̂`(X

`), Y `), R̂`(f̂`, S`) =
1

n

n
∑

i=1

L(f̂`(X
`
i), Y

`
i ),

and

lnN (ε) = sup
θ

lnN2(ε,Hθ, n) +
1

m
lnN (ε, Γ, d∞).

We shall delay the proof to the end of this appendix, and discuss the implications
of the theorem first. In summary, this result justifies the joint ERM method (9), which
minimizes the empirical risk on the right hand side of Theorem 4. The theorem implies
that this method implicitly minimizes an upper bound of the true risk (averaged over the m
problems) on the left hand side, which leads to a theoretical guarantee of the performance
of this method.

The statistical complexity of the joint ERM method depends on the joint entropy
lnN (ε), which has two components: the first term supθ lnN2(ε,Hθ, n) is the learning com-
plexity associated with individual estimation problems (with fixed θ). The second term
1
m lnN (ε, Γ, d∞) is the complexity of estimating the best structural parameter θ. The most
important consequence of our analysis is that the complexity of the structural space Γ,
measured by the discounted entropy 1

m lnN (ε, Γ, d∞), approaches zero when m → ∞. This
implies that we are able to find a near optimal (as measured by the generalization bound)
shared structural parameter θ when m is large.

This theorem can be used to analyze the method we propose in Section 3, where in (4)
and (5), a bi-linear structural model of the following form is used:

HΘ =

{

wTΦ(x) + vT ΘΨ(x) : ‖w‖2 ≤ A

supx ‖Φ(x)‖2
, ‖v‖2 ≤ B

supx ‖Ψ(x)‖2

}

,

Γ ={Θ ∈ Rh×p : ΘΘT = Ih×h},

where Φ(x) and Ψ(x) are pre-defined vector functions (feature maps) of x; v is an h-
dimensional vector; Ψ(x) is a p-dimensional vector; and Θ is an orthonormal h × p dimen-
sional matrix. We also use Ih×h to denote the h-dimensional identity matrix.

For this model, the matrix Θ, shared by the different prediction problems, is the struc-
tural parameter. When we fix Θ, the hypothesis space HΘ is parameterized by weight
vectors w and v, where w can be a high dimensional vector (regularized using A), and
v is a low dimensional vector (of dimensionality h). The idea of this model is to find a
common low-dimensional predictive structure (shared by the m problems) parameterized
by the projection matrix Θ. If we can discover such a structure, then we only need to use
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a very small A to regularize the w vector, which leads to improved generalization perfor-
mance. In other words, there is a trade-off between the dimensionality h of the common
low-dimensional predictive structure, and the regularization size A. The optimal trade-off
is through the shared structural parameter Θ, which can be more reliably estimated using
structural learning formulation (3) when m is large.

This intuitive argument can be more rigorously justified using Theorem 4 with appro-
priate covering number estimates. Specifically, it can be shown that there are universal
constants C1, C2 and C3 such that

sup
θ

lnN2(ε,Hθ, n) ≤ C1A
2

ε2
+ C2h ln

(

1 +
B

ε

)

, lnN (ε, Γ, d∞) ≤ C3hp ln

(

1 +
B

ε

)

.

We shall not include a detailed proof of these estimates (which is not essential for the purpose
of this paper) but only outline the basic ideas used in our derivation. The term C1A

2/ε2

follows from a simple estimate of the Rademacher complexity of the sub function class
in HΘ corresponding to wTΦ(x) as A/

√
n, and a straight-forward application of Sudak’s

minoration (e.g., see Ledoux and Talagrand, 1991, Chapter 12). The two ln(1+B/ε) terms
can be obtained by explicit discretization of the corresponding finite dimensional parameter
spaces — one for the h-dimensional sub function class in HΘ corresponding to vT ΘΨ(x)
(with fixed Θ and variable v), and the other for a direct discretization of the hp-dimensional
variable Θ. We simply note that a bounded set in a d-dimensional parameter space can be
covered by O(ε−d) grid points with width no greater than ε in every direction.

By using the above covering number estimates, the complexity term in Theorem 4
becomes

lnN (ε) ≤ C1A
2

ε2
+ C2h ln

(

1 +
B

ε

)

+
1

m
C3hp ln

(

1 +
B

ε

)

.

The third term is the complexity of estimating the structural parameter Θ, which vanishes
as m → ∞. The first and second terms characterize the trade-off between the regulariza-
tion size A for the w parameter, and the dimensionality h for the v parameter. With the
estimated Θ, the model approximates the underlying true predictor better for a fixed reg-
ularization size A (and thus a fixed complexity term lnN (ε) in Theorem 4), which implies
better generalization behavior.

Proof of Theorem 4 Given training data S = ∪`S`, we define a vector function class on
S:

FS = {f = [f`] : f(X`
i) = f`(X

`
i), f` ∈ Hθ, θ ∈ Γ},

where we use the notation [f`] = [f`]`=1,...,m = [f1, . . . , fm]. Similarly, define

FL
S = {[L(f(X`

i ), Y
`
i )]`=1,...,m : f ∈ FS}.

We introduce two lemmas.

Lemma 5 We have the following bounds:

ln N (2γε,FL
S , `2(S)) ≤ ln N (2ε,FS , `2(S)) ≤

m
∑

`=1

sup
θ

ln N (ε,Hθ, `2(S`)) + lnN (ε, Γ, d∞).
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Proof The first inequality is a direct consequence of the Lipschitz condition in Theorem 4.
We shall prove the second inequality. Consider an ε-cover of Γ in the d∞ metric. For
simplicity, we denote the cover by θ̄1, . . . , θ̄NΓ

, where NΓ = N (ε, Γ, d∞). For each θ̄j , we
can find an ε-cover of Hθ̄j

on S` as f̄`,j,1, . . . , f̄`,j,N`
, where N` = N (ε,Hθ, `2(S`)).

Now given any f = [f`] ∈ FS , where f` ∈ Hθ for some θ ∈ Γ, we can find 1 ≤ J ≤ NΓ,
and f ′ = [f ′

`] ∈ FS such that each f ′
` ∈ Hθ̄J

and `2(S)(f, f ′) ≤ ε. We can further approx-
imate each f ′

` by a f̄`,J,K`
where 1 ≤ K` ≤ N` such that `2(S`)(f

′
`, f̄`,J,K`

) ≤ ε. It follows
that if we let f̄ = [f̄`,J,K`

]`=1,...,m, then `2(S)(f ′, f̄) ≤ ε. Therefore we have `2(S)(f, f̄) ≤ 2ε.
This means that FS has a 2ε-cover of the form f̄ = [f̄`,J,K`

] (J = 1, . . . , NΓ, K` = 1, . . . , N`

for ` = 1, . . . , m). The size of this cover is NΓ
∏

` N`.

Lemma 6 Let

Q(S) = sup
[f`]∈FS

1

m

m
∑

`=1

(R`(f`) − R̂`(f`, S`)),

then ∀η ∈ [0, 1], with probability 1 − η:

Q(S) ≤ ES Q(S) + M

√

ln 1
η

mn
.

Proof For a given 1 ≤ ¯̀≤ m and 1 ≤ ī, we create a new dataset S̄ = ∪`S̄` by changing
the ī-th datum of the ¯̀-th problem in S = ∪`S` from (X

¯̀

ī
, Y

¯̀

ī
) to (X̄

¯̀

ī
, Ȳ

¯̀

ī
) (and keep all the

other data points identical). Then it is easy to verify that

Q(S) − Q(S̄) ≤ sup
θ

sup
f∈Hθ

1

mn
|L(f(X

¯̀

ī ), Y
¯̀

ī ) − L(f(X̄
¯̀

ī ), Ȳ
¯̀

ī )| ≤ M

mn
.

The lemma is a direct consequence of McDiarmid’s concentration inequality (McDiarmid,
1989).

We are now ready to prove the main theorem. Consider a sequence of binary random
variables σ = {σ`

i} such that each σ`
i = ±1 is independent with probability 1/2. The

Rademacher complexity of FL
S under empirical sample S, is given by

R(FL
S , S) = Eσ sup

f∈FS

(

1

mn

m
∑

`=1

n
∑

i=1

σ`
iL(f(X`

i), Y
`
i )

)

.

It is well known that there exists a universal constant C (a variant of Corollary 2.2.8 in
van der Vaart and Wellner, 1996):

R(FL
S , S) ≤ C

2
inf
ε0

[

ε0 +
1√
mn

∫ ∞

ε0

√

lnN2(2ε,FL
S , nm)dε

]

.
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Applying Lemma 5, we obtain

R(FL
S , S) ≤ C

2
inf
ε0

[

ε0 +

∫ ∞

ε0

√

lnN (ε/γ)

n
dε

]

=
γC

2
inf
ε0

[

ε0 +

∫ ∞

ε0

√

lnN (ε)

n
dε

]

.

Using the standard symmetrization argument (for example, see Lemma 2.3.1 of (van der
Vaart and Wellner, 1996)), we have

ES Q(S) ≤ 2ES R(FL
S , S) = γC inf

ε0

[

ε0 +

∫ ∞

ε0

√

lnN (ε)

n
dε

]

.

The theorem is now a direct consequence of Lemma 6.
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Abstract
The problem of selecting a subset of relevant features in a potentially overwhelming quantity of

data is classic and found in many branches of science. Examples in computer vision, text processing
and more recently bio-informatics are abundant. In text classification tasks, for example, it is not
uncommon to have 104 to 107 features of the size of the vocabulary containing word frequency
counts, with the expectation that only a small fraction of them are relevant. Typical examples
include the automatic sorting of URLs into a web directory and the detection of spam email.

In this work we present a definition of “relevancy” based on spectral properties of the Laplacian
of the features’ measurement matrix. The feature selectionprocess is then based on a continuous
ranking of the features defined by a least-squares optimization process. A remarkable property
of the feature relevance function is that sparse solutions for the ranking values naturally emerge
as a result of a “biased non-negativity” of a key matrix in theprocess. As a result, a simple least-
squares optimization process converges onto a sparse solution, i.e., a selection of a subset of features
which form a local maximum over the relevance function. The feature selection algorithm can be
embedded in both unsupervised and supervised inference problems and empirical evidence show
that the feature selections typically achieve high accuracy even when only a small fraction of the
features are relevant.

1. Introduction

As visual recognition, text classification, speech recognition and more recently bio-informatics aim
to address larger and more complex tasks the problem of focusing on the most relevant information
in a potentially overwhelming quantity of data has become increasingly important. Examples from
computer vision, text processing and Genomics are abundant. For instance, in visual recognition
the pixel values themselves often form a highly redundant set of features; methods using an “over-
complete” basis of features for recognition are gaining popularity (Olshausen and Field, 1996), and
recently methods relying on abundance of simple efficiently computable features of which only
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a fraction of are relevant were proposed for face detection (Viola andJones, 2001) — and these
are only few examples from the visual recognition literature. In text classification tasks it is not
uncommon to have 104 to 107 features of the size of the vocabulary containing word frequency
counts, with the expectation that only a small fraction of them are relevant (Lewis, 1992). Typical
examples include the automatic sorting of URLs into a web directory and the detection of spam
email. In Genomics, a typical example is gene selection from micro-array data where the features
are gene expression coefficients corresponding to the abundance ofcellular mRNA taken from sam-
ple tissues. Typical applications include separating tumor from normal cells or discovery of new
subclasses of Cancer cells based on the gene expression profile. Typically the number of samples
(expression patterns) is less than 100 and the number of features (genes) in the raw data ranges from
5000 to 50000. Among the overwhelming number of genes only a small fractionis relevant for the
classification of tissues whereas the expression level of many other genes may be irrelevant to the
distinction between tissue classes — therefore, identifying highly relevant genes from the data is a
basic problem in the analysis of expression data.

From a practical perspective, large amounts of irrelevant features affects learning algorithms at
three levels. First, most learning problems do not scale well with the growth ofirrelevant features —
in many cases the number of training examples grows exponentially with the number of irrelevant
features (Langley and Iba, 1993). Second, is a substantial degradation of classification accuracy for
a given training set size (Almuallim and Dietterich, 1991; Kira and Rendell, 1992). The accuracy
drop affects also advanced learning algorithms that generally scale well with the dimension of the
feature space such as the Support Vector Machines (SVM) as recentlyobserved in (Weston et al.,
2001). The third aspect has to do with the run time of the learning algorithm on test instances. In
most learning problems the classification process is based on inner-products between the features
of the test instance and stored features from the training set, thus when thenumber of features is
overwhelmingly large the run-time of the learning algorithm becomes prohibitively large for real
time applications, for example. Another practical consideration is the problemof determining how
many relevant features to select. This is a difficult problem which is hardly ever addressed in the
literature and consequently it is left to the user to choose manually the number of features. Finally,
there is an issue of whether one is looking for theminimal set of (relevant) features, or simply a
possibly redundant but relevant set of features.

The potential benefits of feature selection include, first and foremost, better accuracy of the in-
ference engine and improved scalability (defying the curse of dimensionality). Secondary benefits
include better data visualization and understanding, reduce measurement and storage requirements,
and reduce training and inference time. Blum and Langley (1997) in a survey article distinguish
between three types of methods:Embedded, FilterandWrapperapproaches. The filter methods
apply a preprocess which is independent of the inference engine (a.k.athe predictor or the classifi-
cation/inference engine) and select features by ranking them with correlation coefficients or make
use of mutual information measures. The Embedded and Wrapper approaches construct and select
feature subsets that are useful to build a good predictor. The issue being the notion ofrelevancy, i.e.,
what constitutes a good set of features. The modern approaches, therefore, focus on building feature
selection algorithms in the context of aspecificinference engine. For example, (Weston et al., 2001;
Bradley and Mangasarian, 1998) use the Support Vector Machine (SVM) as a subroutine (wrapper)
in the feature selection process with the purpose of optimizing the SVM accuracy on the resulting
subset of features. These wrapper and embedded methods in generalare typically computationally
expensive and often criticized as being “brute force”. Further details on relevancy versus usefulness
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of features and references to historical and modern literature on feature selection can be found in
the survey papers (Blum and Langley, 1997; Kohavi and John, 1997; Guyon and Elissef, 2003).

In this paper the inference algorithm is not employed directly in the feature selection process
but instead general properties are being gathered which indirectly indicate whether a feature sub-
set would be appropriate or not. Specifically, we use clustering as the predictor and use spectral
properties of the candidate feature subset to guide the search. This leads to a “direct” approach
where the search is conducted on the basis of optimizing desired spectral properties rather than on
the basis of explicit clustering and prediction cycles. The search is conducted by the solution of a
least-squares optimization function using a weighting scheme for the ranking of features.A remark-
able property of the energy function is that the feature weights come out positive as a result of a
“biased non-negativity” of a key matrix in the process and sharply decayat the border between rel-
evant and non-relevant features. These properties make the algorithm ideal for “feature weighting”
applications and for feature selection as the boundary between relevantand non-relevant features is
typically clearly expressed by the decaying property of the feature weights. The algorithm, called
Q−α, is iterative, very efficient and achieves remarkable performance on avariety of experiments
we have conducted.

There are many benefits of our approach: First, we avoid the expensive computations associated
with Embedded and Wrapper approaches, yet still make use of a predictorto guide the feature
selection. Second, the framework can handle both unsupervised and supervised inference within the
same framework and handle any number of classes. In other words, since the underlying inference
is based on clustering class labels are not necessary, but on the other hand, when class labels are
provided they can be used by the algorithm to provide better feature selections. Third, the algorithm
is couched within a least-squares framework — and least-squares problems are the best understood
and easiest to handle. Finally, the performance (accuracy) of the algorithm is very good on a large
number of experiments we have conducted.

2. Algebraic Definition of Relevancy

A key issue in designing a feature selection algorithm in the context of an inference is defining the
notion of relevancy. Definitions of relevancy proposed in the past (Blumand Langley, 1997; Kohavi
and John, 1997) lead naturally to a explicit enumeration of feature subsetswhich we would like to
avoid. Instead, we take an algebraic approach and measure the relevance of a subset of features
against its influence on the cluster arrangement of the data points with the goal of introducing an
energy function which receives its optimal value on the desired feature selection. We will consider
two measures of relevancy based on spectral properties where the first is based on the Standard
spectrum and the second on the Laplacian spectrum.

2.1 The Standard Spectrum

Consider an×q data setM consisting ofq samples (columns) over n-dimensional feature spaceRn

representingn featuresx1, ...,xn overq samples. Let the row vectors ofM be denoted bym>
1 , ...,m>

n
pre-processed such that each row is centered around zero and is ofunit L2 norm ‖mi‖ = 1. Let
S = {xi1, ...,xi l} be a subset of (relevant) features from the set ofn features and letαi ∈ {0,1} be
the indicator value associated with featurexi , i.e.,αi = 1 if xi ∈ S and zero otherwise (see Fig. 1).
Let As be the correspondingaffinity matrix whose(i, j) entries are the inner-product between the
i’th and j’th data points restricted to the selected coordinate features, i.e.,As = ∑n

i=1 αimim>
i where
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Figure 1: An illustration of variable-selection using our matrix notation. The large array on the left rep-
resents the matrixM, which containsq columns that represent theq data- points (M1, ...,Mq).
Each row of this matrix is a feature-vectorm>

1 , ...,m>
n . In an idealized variable selection process,

rows of the matrixM are selected to construct the matrixM̂ (middle), whose columns form well
coherent clusters.

mim>
i is the rank-1 matrix defined by the outer-product betweenmi and itself. Finally, letQs be a

q×k matrix whose columns are the firstk eigenvectors ofAs associated with the leading (highest)
eigenvaluesλ1 ≥ ... ≥ λk.

We define “relevancy” as directly related to the clustering quality of the data points restricted
to the selected coordinates. In other words, we would like to measure the quality of the subsetS
in terms of cluster coherence of the firstk clusters, i.e., we make a direct linkage between cluster
coherence of the projected data points and relevance of the selected coordinates.

We measure cluster coherence by analyzing the (standard) spectral properties of the affinity ma-
trix As. Considering the affinity matrix as representing weights in an undirected graph, it is known
that maximizing the quadratic formx>Asx wherex is constrained to lie on the standard simplex
(∑xi = 1 andxi ≥ 0) provides the identification of the maximalclique of the (unweighted) graph
(Motzkin and Straus, 1965; Gibbons et al., 1997), or the maximal “dominant”subset of vertices
of the weighted graph (Pavan and Pelillo, 2003). Likewise there is evidence (motivated by finding
cuts in the graph) that solving the quadratic form above wherex is restricted to the unit sphere pro-
vides cluster membership information (cf. Ng et al., 2001; Weiss, 1999; Perona and Freeman, 1998;
Shi and Malik, 2000; Brand and Huang, 2003; Chung, 1998). In this context, the eigenvalue (the
value of the quadratic form) represents the cluster coherence. In the case ofk clusters, the highestk
eigenvalues ofAs represent the corresponding cluster coherences and the componentsof an eigen-
vector represent the coordinate (feature) participation in the corresponding cluster. The eigenvalues
decrease as the interconnections of the points within clusters get sparser(see (Sarkar and Boyer,
1998)). Therefore, we define the relevance of the subsetS as:

rel(S) = trace(Q>
s A>

s AsQs)

= ∑
r,s

αir αis(m
>
ir mis)m

>
ir QsQ

>
s mis
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=
k

∑
j=1

λ2
j ,

whereλ j are the leading eigenvalues ofAs. Note that the proposed measure of relevancy handles
interactions among features up to a second order. To conclude, achieving a high score on the com-
bined energy of the firstk eigenvalues ofAs indicate (although indirectly) that theq input points
projected onto thel -dimensional feature space are “well clustered” and that in turn suggests thatS
is a relevant subset of features.

Maximizing the relevancy above for all possible feature subsets in infeasible. Therefore, we
relax the problem, i.e., instead of enumerating the feature subsetsS and ranking them according to
the value ofrel(S) we consider the prior weightsα1, ...,αn as unknownreal numbersand define the
following optimization function:

Definition 1 (Relevant Features Optimization) Let M be an n×q input matrix with rowsm>
1 , ...,m>

n .
Let Aα = ∑n

i=1 αimim>
i for some unknown scalarsα1, ...,αn. The weight vectorα = (α1, ...,αn)

>

and the orthonormal q×k matrix Q are determined at the maximal point of the following optimiza-
tion problem:

max
Q,αi

trace(Q>A>
α AαQ) (1)

sub ject to
n

∑
i=1

α2
i = 1, Q>Q = I

Note that the optimization function does not include the inequality constraintαi ≥ 0 and neither
a term for “encouraging” a sparse solution of the weight vectorα — both of which are necessary
for a “feature selection”. As will be shown later in Section 4, the sparsity and positivity conditions
are implicitly embedded in the nature of the optimization function and therefore “emerge” naturally
with the optimal solution.

Note also that it is possible to maximize the gap∑k
i=1 λ2

i −∑q
j=k+1 λ2

j by definingQ = [Q1|Q2]
whereQ1 contains the firstk eigenvectors andQ2 the remainingq− k eigenvectors (sorted by de-
creasing eigenvalues) and the criterion function (1) would be replaced by:

max
Q=[Q1|Q2],αi

trace(Q>
1 A>

α AαQ1)− trace(Q>
2 A>

α AαQ2).

We will describe in Section 3 an efficient algorithm for finding a local maximum of the op-
timization (1) and later address the issue of sparsity and positivity of the resulting weight vector
α. The algorithms are trivially modified to handle the gap maximization criterion and those will
not be further elaborated here. We will describe next the problem formulation using an additive
normalization (the Laplacian) of the affinity matrix.

2.2 The Laplacian Spectrum

Given the standard affinity matrixA, consider the Laplacian matrix:L = A−D+dmaxI whereD is
a diagonal matrixD = diag(∑ j ai j ) anddmax is a scalar larger or equal to the maximal element of
D.1 The matrixL normalizesA in an additive manner and there is much evidence to support such

1. Note that in applications of algebraic graph theory the Laplacian is defined asD−A. The reason for the somewhat
different definition is that we wish to maintain the order of eigenvectors as inthose ofA (where the eigenvectors
associated with the largest eigenvalues come first).
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a normalization both in the context of graph partitioning (Mohar, 1991; Hall, 1970) and spectral
clustering (Weiss, 1999; Ng et al., 2001).

It is possible to reformulate the feature selection problem (1) using the Laplacian as follows.
Let Ai = mim>

i andDi = diag(mim>
i 1). We defineLα = ∑i αiLi whereLi = Ai −Di + dmaxI . We

have, therefore:
Lα = Aα −Dα +(∑

i

αi)dmaxI ,

whereDα = diag(A>
α 1). Note that sinceα is a unit norm vector that contains positive elements,

then∑i αi > 1. The feature selection problem is identical to (1) whereLα replacesAα.

3. An Efficient Algorithm

We wish to find an optimal solution for the non-linear problem (1). We will focus on the Standard
spectrum matrixAα and later discuss the modifications required forLα. If the weight vectorα
is known, then the solution for the matrixQ is readily available by employing a Singular Value
Decomposition (SVD) of the symmetric (and positive definite) matrixAα. Conversely, ifQ is known
thenα is readily determined as shown next. We already saw that

trace(Q>A>
α AαQ) = ∑

i, j

αiα j(m>
i m j)m>

i QQ>m j

= α>Gα

whereGi j = (m>
i m j)m>

i QQ>m j is symmetric and positive definite. The optimalα is therefore the
solution of the optimization problem:

max
α

α>Gα sub ject toα>α = 1,

which results inα being the leading eigenvector ofG, i.e., the one associated with its largest eigen-
value. A possible scheme, guaranteed to converge to a local maxima, is to start with some initial
guess forα and iteratively interleave the computation ofQ givenα and the computation ofα given
Q until convergence. We refer to this scheme as theBasicQ−α Method.

In practice, the number of iterations is rather small — typically between 5 to 10. The runtime
complexity as a function of the number of featuresn is therefore governed by the complexity of
finding the leading eigenvector ofG — typically in the order ofn2 assuming a “reasonable” spectral
gap (for example, ifG were a random matrix then the spectral gap is large — asymptotically in the
order of

√
n — as we know from the semi-circle law (Wigner, 1958)). A quadratic complexity is

the best that one can expect when performing feature selection in an unsupervised manner since all
pairs of feature vectors need to be compared to each other.

A more advanced scheme with superior convergence rate and more importantly accuracy of
results (based on empirical evidence) is to embed the computation ofα within the “orthogonal
iteration” (Golub and Loan, 1996) cycle for computing the largestk eigenvectors, described below:

Definition 2 (Standard Power-EmbeddedQ−α Method) Let M be an n× q input matrix with
rowsm>

1 , ...,m>
n , and some orthonormal q×k matrix Q(0), i.e., Q(0)>Q(0) = I. Perform the following

steps through a cycle of iterations with index r= 1,2, ...

1. Let G(r) be a matrix whose(i, j) components are(m>
i m j)m>

i Q(r−1)Q(r−1)>m j .
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2. Letα(r) be the largest eigenvector of G(r).

3. Let A(r) = ∑n
i=1 α(r)

i mim>
i .

4. Let Z(r) = A(r)Q(r−1).

5. Z(r) QR−→ Q(r)R(r).

6. Increment index r and go to step 1.

The method is considerably more efficient than the basic scheme above and achieves very good
performance (accuracy). Note that steps 4,5 of the algorithm consist ofthe “orthogonal iteration”
module, i.e., if we were to repeat steps 4,5only we would converge onto the eigenvectors ofA(r).
However, note that the algorithm does not repeat steps 4,5 in isolation and instead recomputes the
weight vectorα (steps 1,2,3) before applying another cycle of steps 4,5. We show below that the
recomputation ofα does not alter the convergence property of the orthogonal iteration scheme, thus
the overall scheme converges to a local maxima:

Proposition 3 (Convergence of Power-EmbeddedQ−α) The Power Embedded Q− α method
convergence to a local maxima of the criterion function (1).

Proof: We will prove the claim for the casek = 1, i.e., the scheme optimizes over the weight vector
α and the largest eigenvectorq of Aα.

Because the computation ofα is analytic (the largest eigenvector ofG) and because the opti-
mization energy is bounded from above, it is sufficient to show that the computation ofq monoton-
ically increases the criterion function. It is therefore sufficient to show that:

q(r)A2q(r) ≥ q(r−1)A2q(r−1), (2)

for all symmetric matricesA. Since steps 4,5 of the algorithm are equivalent to the step:

q(r) =
Aq(r−1)

‖Aq(r−1)‖ ,

we can substitute the right hand side into (2) and obtain the condition:

q>A2q ≤ q>A4q
q>A2q

, (3)

which needs to be shown to hold for all symmetric matricesA and unit vectorsq. Let q = ∑i γivi

be represented with respect to the orthonormal set of eigenvectorsvi of the matrixA. Then,Aq =

∑i γiλivi whereλi are the corresponding eigenvalues. Sinceq>A2q ≥ 0, it is sufficient to show that:
‖Aq‖4 ≤ ‖A2q‖2, or equivalently:

(∑
i

γ2
i λ2

i )
2 ≤ ∑

i

γ2
i λ4

i . (4)

Let µi = λ2
i and let f (x) = x2. We then have:

f (∑
i

γ2
i µi) ≤ ∑

i

γ2
i f (λ2

i ),

which follows from convexity off (x) and the fact that∑i γ2
i = 1.

A faster converging algorithm is possible by employing the “Ritz” acceleration(Golub and
Loan, 1996) to the basic power method as follows:
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Definition 4 (Q−α with Ritz Acceleration) Let M be an n×q input matrix with rowsm>
1 , ...,m>

n ,

and some orthonormal n×k matrix Q(0), i.e., Q(0)>Q(0) = I. Perform the following steps through a
cycle of iterations with index r= 1,2, ...

1. Let G(r),α(r) and A(r) be defined as in the Standard Power-Embedded Q−α algorithm.

2. Z(r) = A(r)Q(r−1).

3. Z(r) QR−→ Q̄(r)R(r).

4. LetḠ(r) be a matrix whose(i, j) components arem>
i Q̄(r)>Q̄(r)m j .

5. Recomputeα(r) as the largest eigenvector of̄G(r), and recompute A(r) accordingly.

6. Let S(r) = Q̄(r)>A(r)Q̄(r).

7. Perform SVD on S(r): [U (r)>S(r)U (r)] = svd(S(r)).

8. Q(r) = Q̄(r)U (r).

9. Increment index r and go to step 1.

The Q−α algorithm for the Laplacian spectrumLα follows the Standard spectrum with the
necessary modifications described below.

Definition 5 (Laplacian Power-EmbeddedQ−α Method) In addition to the definition of the Stan-

dard method, let di = maxdiag(mim>
i ) and L(0)

i = mim>
i −diag(mim>

i 1)+ di I. Perform the fol-
lowing steps with index r= 1,2, ...

1. Let F(r) be a matrix whose(i, j) components are trace(Q(r−1)>L(r−1)>
i L(r−1)

j Q(r−1)).

2. Letα(r) be the largest eigenvector of F(r).

3. Let d(r) = (maxdiag(∑n
i=1 α(r)

i mim>
i ))/(∑n

i=1 αi)

4. For each i let L(r)i = mim>
i −diag(mim>

i 1)+d(r)I

5. Let L(r) = ∑n
i=1 α(r)

i L(r)
i .

6. Let Z(r) = L(r)Q(r−1).

7. Z(r) QR−→ Q(r)R(r).

8. Increment index r and go to step 1.

3.1 The Supervised Case

TheQ−α algorithms and the general approach can be extended to handle data with class labels. One
of the strengths of our approach is that the feature selection method can handle both unsupervised
and supervised data sets. In a nutshell, the supervised case is handled as follows. Givenc classes,
we are givenc data matricesMl , l = 1, ...,c, each of sizen×ql .

Definition 6 (Supervised Relevant Features Optimization)Let Ml be an n× ql input matrices
with rowsml>

1 , ...,ml>
n . Let Agh

α = ∑n
i=1 αim

g
i mh>

i for some unknown scalarsα1, ...,αn. The weight
vectorα = (α1, ...,αn)

> and the orthonormal qh×kgh matrices Qgh are determined at the maximal
point of the following optimization problem:
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max
Qgh,αi

∑
l

trace(Qll>All>
α All

αQll )

−γ ∑
g6=h

trace(Qgh>Agh>
α Agh

α Qgh) (5)

sub ject to
n

∑
i=1

α2
i = 1, Qgh>Qgh = I

Where the weightγ and the parameters kgh are determined manually (see below).

The criterion function seeks a weight vectorα such that the resulting affinity matrix of all
the data points (sorted) would be semi-block-diagonal, i.e., high inter-class eigenvalue energy and
low intra-class energy. Therefore, we would like to minimize of the intra-classeigenvalue energy
trace(Qgh>Agh>

α Agh
α Qgh) (off-block-diagonal blocks) and maximize the inter-class eigenvalue en-

ergy trace(Qll>All>
α All

αQll ). The parameterskgh control the complexity of each affinity matrix. A
typical choice of the parameters would bekgh = 2 wheng = h, kgh = 1 otherwise, andγ = 0.5.

The solution to the optimization function follows step-by-step theQ−α algorithms. At each
cycle Qgh is computed using the current estimatesAgh

α andα is optimized by maximizing the ex-
pression: ∑

l

α>Gll α− γ ∑
g6=h

α>Gghα = α>Gα ,

whereGgh
i j = (mg>

i mg
j )m

h>
i Qgh>Qghmh

j andG = ∑l G
ll −γ∑g6=hGgh. We analyze next the prop-

erties of the unsupervisedQ−α algorithm with regard to sparsity and positivity of the weight vector
α and then proceed to experimental analysis.

4. Sparsity and Positivity ofα

The optimization criteria (1) is formulated as a least-squares problem and as such there does not
seem to be any apparent guarantee that the weightsα1, ...,αn would come outnon-negative(same
sign condition), and in particularsparsewhen there exists a sparse solution (i.e., there is a relevant
subset of features which induces a coherent clustering).

The positivity of the weights is a critical requirement for theQ−α to form a “feature weighting”
scheme. In other words, if one could guarantee that the weights would comeout non-negative then
Q−α would provide feature weights which could be used for selection or for simply weighting
the features as they are being fed into the inference engine of choice. Ifin addition the feature
weights exhibit a “sparse” profile, i.e., the gap between the high and low values of the weights is
high, then the weights could be used for selecting the relevant features aswell. We will refer to the
gap between the high and low weights as “sparsity gap” and discuss later in the paper the value of
the gap in simplified domains. With the risk of abusing standard terminology, we willrefer to the
property of having the weight vector concentrate its (high) values around a number of coordinates
as a sparsity feature. Typically, for our algorithm, none of the values of the weight vector strictly
vanish.

For most feature weighting schemes, the conditions of positivity and sparsityshould be specif-
ically presented into the optimization criterion one way or the other. The possiblemeans for doing
so include introduction of inequality constraints, use ofL0 or L1 norms, adding specific terms to
the optimization function to “encourage” sparse solutions or use a multiplicativescheme of itera-
tions which preserve the sign of the variables throughout the iterations (for a very partial list see
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Olshausen and Field, 1996; Kivinen and Warmuth, 1997; Lee and Seung, 1999; Vapnik, 1998). It is
therefore somewhat surprising, if not remarkable, that the least-squares formulation of the feature
selection problem could consistently converge onto same-sign and sparsesolutions.

Before we proceed with the technical issues, it is worthwhile to make qualitative arguments
(which were the basis of developing this approach to begin with) as to the underlying reason for
sparsity. Consider rewriting the optimization criterion (1) by an equivalent criterion:

min
α,Q

{

‖Aα −QQ>Aα‖2
F −‖Aα‖2

F

}

(6)

where‖ · ‖2
F is the square Frobenius norm of a matrix defined as the sum of squares ofall entries

of the matrix. The first term of (6) measures the distance between the columnsof Aα and the
projection of those columns onto ak-dimensional subspace (note thatQQ> is a projection matrix).
This term receives a low value if indeedAα has a small (k) number of dominant eigenvectors, i.e.,
the spectral properties of the feature subset represented byAα are indicative to a good clustering
score. SinceAα = ∑i αimim>

i is represented by the sum of rank-1 matrices one can combine only a
smallnumber of them if the first term is desired to be small. The second term (which may be viewed
also as a regularization term) encourages addition of more rank-1 matrices tothe sum provided they
areredundant, i.e., are already spanned by the previously selected rank-1 matrices. This makes the
point that the feature selection scheme looks for relevant features but not necessarily the minimal set
of relevant features. To summarize, from a qualitative point of view the selection of values for the
weightsαi is directly related to the rank of the affinity matrixAα which should be small if indeed
Aα arises from a clustered configuration of data points. A uniform spread of valuesαi would result
in a high rank forAα, thus the criteria function encourages a non-uniform (i.e., sparse) spread of
weight values.

The argument presented above to facilitate clarity of the approach and should not be taken as a
proof for sparsity. The positivity and sparsity issues are approachedin the sequel from a different
angle which provides a more analytic handle to the underlying search process than the qualitative
argument above.

4.1 Positivity of α

The key for the emergence of a sparse and positiveα has to do with the way the entries of the
matrix G are defined. Recall thatGi j = (m>

i m j)m>
i QQ>m j and thatα comes out as the leading

eigenvector ofG (at each iteration). IfG were to be non-negative (and irreducible), then from the
Perron-Frobenius theorem the leading eigenvector is guaranteed to be non-negative (or same-sign).
However, this is not the case andG in general has negative entries as well as positive ones. However,
from a probabilistic point of view the probability that the leading eigenvector of G will come out
positive rapidly approaches 1 with the growth of the number of features — this under a couple of
simplifying assumptions.

The simplifying assumptions we will make in order to derive a probabilistic argument, is first
that the entries of the upper triangular part ofG are independent. The second simplifying approx-
imation is that the columns ofQ are sampled uniformly over the unit hypersphere. Although the
independence and uniformity assumptions are indeed an idealization of the true nature ofG andQ,
they nevertheless allow us to derive a powerful probabilistic argument which shows in a rigorous
manner that the weightsαi are non-negative with probability 1 — a statement which agrees with
practice over extensive experimentations which we have performed.
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The probabilistic approach follows from the observation that each entry of G consists of a sum
of products of three inner-products:

Gi j =
k

∑
l=1

(m>
i ql )(m

>
j ql )(m

>
i m j).

In general, a product of the formf = (a>b)(a>c)(b>c), where‖a‖ = ‖b‖ = ‖c‖ = 1 satisfies
−1/8 ≤ f ≤ 1 where f = 1 whena = b = c . Since f ≥ −1/8 (will be proven below) there is
an asymmetry on the expected value off , i.e., the expected values of the entries ofG are biased
towards a positive value — and we should expect a bias towards a positiveleading eigenvector ofG.
We will derive below the expectation on the entries ofG (assuming independence and uniformity)
and prove the main theorem showing that a random matrix whose entries are sampled i.i.d. form
some distribution with positive mean and bounded variance has a positive leading eigenvector with
probability 1 when the number of featuresn is sufficiently large. The details are below.

Proposition 7 The minimal value of f= (a>b)(a>c)(b>c) wherea,b,c∈ Rq are defined over the
unit hypersphere is−1/8.

Proof: See appendix.

Proposition 8 The expected value of f= (a>b)(a>c)(b>c) wherea,b,c∈ ℜq andc is uniformly
sampled over the unit hypersphere is(1/q)(a>b)2

Proof: See appendix.
To get a rough estimate on the values in the matrixG we can further assume thata andb are

also evenly distributed on the q-dim sphere. In this case the expectation of(a>b)2 is 1/q. To see
this observe that the expectationE(a>b)2 =

R R

(a>b)2dσ(a)dσ(b) =
R

a>(
R

bb>dσ(b))adσ(a) =
R

a>((1/q)I)adσ(a) whereI is the identity matrix inℜq.
Each entryGi j is a sum ofk such terms,Gi j = ∑k

l=1(m
>
i ql )(m

>
j ql )(m

>
i m j). If the features

are irrelevant, we can expect the correlation with the vectorq1 to be similar to correlation with a
“typical” random vector. In this case the above proposition applies. However, whenk > 1 there are
interrelations between the elements in the sum resulting from the orthogonality ofthe columns of
Q. The following proposition shows that the expectation is still larger than zero.

Proposition 9 The expected value of f= ∑k
i=1(a

>b)(a>ci)(b>ci) wherea,b ∈ ℜq and ci are or-
thonormal vectors uniformly sampled over the unit hypersphere inℜq is (k/q)(a>b)2.

Proof: See appendix.
The body of results on spectral properties of random matrices (see forexample Mehta, 1991)

deals with the distribution of eigenvalues. For example, the corner-stone theorem known as Wigner’s
semicircletheorem (Wigner, 1958) is about the asymptotic distribution of eigenvalues with the
following result: “Given a symmetricn×n matrix whose entries are bounded independent random
variables with meanµand varianceσ2, then for anyc> 2σ, with probability 1−o(1) all eigenvalues
except for at mosto(n) belong toΘ(c

√
n), i.e., lie in the intervalI = (−c

√
n,c

√
n).”

The notationf (n) = o(g(n)) stands for limn→∞ f (n)/g(n) = 0, i.e., f (n) becomes insignificant
relative tog(n) with the growth ofn. This is a short-hand notation (which we will use in the sequel)
to the formal statement: “∀ε > 0,∃n0 s.t.∀n > n0 the statement holds with probability 1− ε.”
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Figure 2: (a) Probability, as computed using simulations, of positive leading eigenvector of a symmetric
matrix G with i.i.d elements drawn from the Gaussian distribution with µ = 1/6 andσ =

√
2/6.

The probability is very close to 1 starting fromn = 20. (b) Positivity and sparsity demonstrated
on the synthetic feature selection problem described in Section 6 (6 relevant features out of 202)
and of a random data matrix. The alpha weight vector (sorted for display) comes out positive and
sparse.

It is also known that whenµ = 0 all the eigenvalues belong to the intervalI (with probability
1−o(1)), while for the caseµ> 0 only the leading eigenvalueλ1 is outside ofI and

λ1 =
1
n ∑

i, j

Gi j +
σ2

µ
+O(

1√
n
),

i.e., λ1 asymptotically has a normal distribution with meanµn+ σ2/µ (Furedi and Komlos, 1981).
Our task is to derive the asymptotic behavior of the leading eigenvector whenµ > 0 under the
assumption that the entries ofG are i.i.d. random variables. We will first prove the theorem below,
which deals with Gaussian random variables, and then extend it to boundedrandom variables:

Theorem 10 (Probabilistic Perron-Frobenius) Let G= gi j be a real symmetric n×n matrix whose
entries for i≥ j are independent identically and normally distributed random variables withmean
µ > 0 and varianceσ2. Then, for anyε > 0 there exist no such that for all n> n0 the leading
eigenvectorv of G is positive with probability of at least1− ε.

Proof: see appendix.
Fig. 2(a) displays a simulation result plotting the probability of positive leading eigenvector of

G (with µ = 1/6 andσ =
√

2/6) as a function ofn. One can see that forn > 20 the probability
becomes very close to 1 (above 0.99). Simulations withµ= 0.1 andσ = 1 show that the probability
is above 0.99 starting fromn = 500.

Theorem 10 used independent Gaussian random variables as a model tothe matrixG. This
might seem a bit artificial, since the variables of the matrixG are dependent and bounded. While
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the independence assumption between all the elements in the upper triangular part of G is hard to
remove, the use of Gaussian variables is not essential; as stated above thesemi circle law holds for
matrices with elements that are not necessarily Gaussian.

The only place where we actually used the “Gaussianity” property was in theassumed structure
of the variableg. Sinceg contains normal i.i.d distributions, we deducted that‖g‖ = Θ(

√
n) and

that the probability of‖g‖ ≥ n3/4 decays exponentially. Instead of Gaussianity, we can use the
property that the elements of the matrixG are bounded, and instead of Gaussian tail bounds we can
use Hoeffding’s tail inequality (Hoeffding, 1963). We will use the one sided inequality2

Lemma 11 (Hoeffding’s one-sided tail inequality) Let X1,X2, ..,Xn be bounded independent ran-
dom variables such that Xi ∈ [ai ,bi ] . Then for Sn = X1 + X2 + ... + Xn the following inequality
holds

Pr(Sn−ESn ≥ t) ≤ exp

(

− 2t2

∑n
i=1(bi −ai)2

)

Using Hoeffding’s lemma, the following lemma could be used to bound the norm ofg.

Lemma 12 Letg be a random n−vector of i.i.d bounded variables, i.e., for each i= 1..n, |gi | ≤ M.
The following holds for some constant C:

P(‖g‖2 ≥ Dn1/2+ε) ≤ exp

(

−C2D2n2ε

M2

)

Proof: see appendix.
By letting D = 1 andε = 1, one gets that the probabilityP(‖g‖ ≥ n3/4) = P(‖g‖2 ≥ n3/2) =

P(1
n‖g‖2 ≥ n1/2) is smaller thane−

c2n2

M2 . This is similar to the Gaussian case, and is sufficient to
prove Theorem 10 in the case in which bounded variables are used instead of Gaussian variables.

To summarize the positivity issue, the weight vectorα comes out positive due to the fact that
it is the leading eigenvector of a matrix whose entries have a positive mean (Propositions 7 and 8).
Theorem 10 made the connection between matrices which have the property of a positive mean and
the positivity of its leading eigenvector in a probabilistic setting.

4.2 Sparsity

We move our attention to the issue of the sparsity of the weight vectorα. It has been observed in the
past that the key for sparsity lies in the positive combination of terms (cf. Leeand Seung, 1999) —
therefore there is a strong, albeit anecdotal, relationship between the positivity of α and the sparsity
feature. Below, we will establish a relationship between the spectral properties of the relevant and
the irrelevant feature sets, and the sparsity of the feature vector.

Let M be the (normalized) data matrix consisting ofn rows. Assume that the rows of the matrix
have been sorted such that the firstn1 rows are relevant features, and the nextn2 = n−n1 features are
irrelevant. Let the matrix containing the firstn1 rows be noted asM1, and let the matrix containing
the rest of the rows beM2, i.e,M = [M1

M2
].

We study the elements of the vectorα that correspond to the irrelevant features to show that
these elements have a small magnitude. If thesen2 weights are low, we can expect the effect of the

2. This is the inequality one gets while proving Hoeffding’s inequality. It differs from the canonical inequality in that
the one sided case has a factor of 2 improvement.
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associated features to be small. We will next tie the average of these values tothe spectral properties
of M1 andM2.

Recall the weight vectorα is the first eigenvector of the matrixGi j = (m>
i m j)m>

i QQ>m j ,
wheremi are the rows of the matrixM, andQ is a matrix containingk orthonormal columnsqi ,
i = 1..k. Let λ be the largest eigenvalue ofG.

Lemma 13 (sum of irrelevant features’ weight) Using the above definitions, letγi , i = 1..n2 be
the eigenvalues of M2M>

2 .

n

∑
i=n1+1

αi ≤

√

∑n2
i=1 γ2

i

λ
.

Proof:
Note that if∑n

i=n1+1 αi ≤ 0 the lemma holds trivially. Let
[

0
1

]

be the vector withn1 zeros andn2

ones.
n

∑
i=n1+1

αi =

[

0
1

]>
α =

√

[

0
1

]>
αα>

[

0
1

]

≤

√

[

0
1

]>
G
[

0
1

]

λ
,

where the last inequality follows from the spectral decomposition of the positive definite matrixG,
to whichα is an eigenvector with an eigenvalue ofλ.

Let Ĝ be the matrix containing the point-wise squares of the elements ofMM>, i.e., Ĝi j =
(m>

i m j)
2.

Let Q̂ be a matrix containingn− k orthonormal columns that span the space orthogonal toQ.
(Ĝ−G) has a structure similar toG, but with Q̂ instead ofQ, and is also positive definite. To see
this notice thatQQ> + Q̂Q̂> = In and that thei j element of(Ĝ−G) is therefore given by

Ĝi j −Gi j = (m>
i m j)

2− (m>
i m j)m>

i QQ>m j = (m>
i m j)m>

i Q̂Q̂>m j .

We have
[

0
1

]>
G

[

0
1

]

=

[

0
1

]>
Ĝ

[

0
1

]

−
[

0
1

]>
(G− Ĝ)

[

0
1

]

≤

≤
[

0
1

]>
Ĝ

[

0
1

]

= ||M2M>
2 ||2F =

n2

∑
i=1

γ2
i .

The lemma follows.
The denominator in the bound (

√
λ) is exactly the quantity that our algorithms maximize. The

higher this value, the tighter the bound. In the ideal case, almost all of the energy in the features is
contained in the space spanned by the columns ofQ. Let

[

1
0

]

be the vector ofn1 ones, followed by
n2 zeros. We have:

λ = α>Gα ≥
[

1
0

]>
G
[

1
0

]

n1
∼
[

1
0

]>
Ĝ
[

1
0

]

n1
=

||M1M>
1 ||2F

n1
.

The bound will be tightest if all relevant features have high correlations.In this case, we can
expect

√
λ to be linear inn1. Therefore the addition of more relevant features reduces the weights

of the irrelevant features.
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Without any assumption about the entries of the data matrixM, we cannot say much on the
numerator of the bound in Lemma 13. However, by using random matrices, wecan qualitatively
evaluate this bound.

The numerator of the bound contains the term∑n2
i=1 γ2

i , which is just the squared Frobenius
norm ofM2M>

2 . Let W2 = M2M>
2 , ||W2||2F = trace(W2W>

2 ) = trace(W2
2 ). The expectation of this

expression (whereM2 is drawn from a random distribution), normalized by the number of rows in
M2, is called thesecond moment of W2. More generally, ifA is a random matrix of sizen×n, thek
moment of it is defined asmk = 1

ntrace(Ak). For largen this definition coincides with the moments
of the distribution of the eigenvalues of the matrixA.

Consider now matricesW of the formW = 1
qMM>, whereM is ann×q random matrix with

zero mean (weakly) independent elements with a variance of 1. These matrices are called Wishart
matrices. Note that the elements in the matrixM need not be Gaussian. The rows of the matrixM
are not explicitly normalized. However, the scale of1

q can be thought of as a scale of1√
q for each

element ofM, and due to the central limit theorem we can expect for large enough values of q to
have the mean of each row approximately zero and the norm of each row approximately 1. Hence,
Wishart matrices well approximate our data matrices, if we are willing to assume that the elements
of our data matrices are independent. For the bulk of irrelevant features, this may be a reasonable
assumption.

For largen, the moments of the Wishart matrices are well approximated by the Narayana poly-

nomialsmk = ∑k−1
j=0

(n/ j) j

j+1

(k
j

)(k−1
j

)

. In particular, the second moment is given by 1+ n/q. Since

the moment is the appropriate trace scaled by1
n, we can expect

√

∑n2
i=1 γ2

i to behave similarly to
√

n2(1+n2/q).
Therefore, the rate in which the bound on the sum of squares of weights of irrelevant features

grow is mostly linear. The implication is that theQ−α algorithm is robust to many irrelevant
features: to a first approximation, the bound on the average squared weight of an irrelevant feature
remains mostly the same, as the number of irrelevant features increases.

In Sec. 6 we will present a number of experiments, both with synthetic and real data. Fig. 2(b)
shows the weight vectorα for a random data matrixM, and for a synthetic experiment (6 relevant
features out of 202). One can clearly observe the positivity and sparsity of the recovered weight
vector — even for a random matrix.

4.3 Sparsity and Generalization

The sparsity of the returned vector of weights does more than just directly ensure that the irrelevant
features are left out; it also helps the generalization ability of the returned kernel by lowering the
trace of the kernel matrix.

Recall that in our optimization scheme, the vector of weightsα has a norm of 1, and is expected
to have all positive elements. For norm-1 vectors, the sum∑i αi is highest when the elements of the
vector are evenly distributed. Due to the sparsity of the returned vector ofweights, we can expect
the above sum to be much lower than what we get with a uniform weighting of thedata.

Consider the matrixAα, the linear kernel matrix based on the weights returned by theQ−
α algorithm. Aα, which equals∑αimim>

i , is a weighted sum of rank-one matrices. Since our
features are normalized to have norm-1, each such rank-one matrixmim>

i has a trace of 1. Therefore,
the trace of the kernel matrixAα is exactly the sum of the elements of the vectorα.
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From the discussion above, the trace of the kernel matrix returned by theQ−α algorithm is
expected to be low. This is exactly the criteria for a good kernel matrix expressed by “the trace
bounds.” The trace bounds are Rademacher complexity type of error bounds for classifiers that are
linear combinations of kernel functions (Bousquet and Herrmann, 2003). These bounds relate the
trace of the kernel matrix used for training with the generalization error of the classifiers that were
trained. The lower the trace, the lower the bound on the difference between the testing error and the
training error.

Although there is no immediate analog to the concept of generalization error in the unsupervised
case, we can expect a similar criteria to hold for this case as well. A good kernel matrix for unsu-
pervised learning should support the separation given by the set of true underlying labels (although
unknown). It should not, however, support any random labeling. This is exactly what is measured
by the Rademacher process: how well does the class of functions used for learning separate random
partitions of the training set.

In supervised learning, feature selection can be a major cause of over fitting. Consider the
common case where the number of features is much larger than the number of examples. In this
case, it might be possible to construct a classifier with a very low training error, which employs only
few selected features. This reliance on a small portion on the data when making the classification
leads to poor generalization performance. This problem was pointed out, for example, by Long
and Vega (2003), who suggested, in their simplest and most effective solution (“AdaBoost-NR”),
to encourage redundancy in the pool of participating features. TheQ−α algorithm, as a result of
optimizing the cost function subject to the constraint that the norm of theα vector is one, has a
similar property. It prefers to divide high weights between a group of correlated features, rather
than to pick one promising feature out of this group and assign it a higher weight.

5. Representing Higher-order Cumulants using Kernel Methods

The information on which theQ−α method relies on to select features is contained in the matrixG.
Recall that the criterion function underlying theQ−α algorithm is a sum over all pairwise feature
vector relations:

trace(Q>A>
α AαQ) = α>Gα,

whereG is defined such thatGi j = (m>
i m j)m>

i QQ>m j . It is apparent that feature vectors interact
in pairs and the interaction isbilinear. Consequently, cumulants of the original data matrixM which
are of higher order than two are not being considered by the feature selection scheme. For example,
if M were to be decorrelated (i.e.,MM> is diagonal) the matrixG would be diagonal and the feature
selection scheme would select only a single feature rather than a feature subset.

In this section we employ the so called “kernel trick” to allow for cumulants of higher orders
among the feature vectors to be included in the feature selection process. Kernel methods in general
have been attracting much attention in the machine learning literature — initially with the introduc-
tion of the support vector machines (Vapnik, 1998) and later took a life of their own (see Scholkopf
and Smola, 2002). The common principle of kernel methods is to construct nonlinear variants of
linear algorithms by substituting inner-products by nonlinear kernel functions. Under certain con-
ditions this process can be interpreted as mapping of the original measurementvectors (so called
“input space”) onto some higher dimensional space (possibly infinitely high) commonly referred to
as the “feature space” (which for this work is an unsuccessful choiceof terminology since the word
“feature” has a different meaning). Mathematically, the kernel approach is defined as follows: let
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x1, ...,xl be vectors in the input space, sayRq, and consider a mappingφ(x) : Rq → F whereF is an
inner-product space. The kernel-trick is to calculate the inner-product in F using a kernel function
k : Rq×Rq→R, k(xi ,x j) = φ(xi)

>φ(x j), while avoiding explicit mappings (evaluation of)φ(). Com-
mon choices of kernel selection include the d’th order polynomial kernelsk(xi ,x j) = (x>i x j + c)d

and the Gaussian RBF kernelsk(xi ,x j) = exp(− 1
2σ2‖xi −x j‖2). If an algorithm can be restated such

that the input vectors appear in terms of inner-products only, one can substitute the inner-products
by such a kernel function. The resulting kernel algorithm can be interpreted as running the original
algorithm on the spaceF of mapped objectsφ(x). Kernel methods have been applied to the support
vector machine (SVM), principal component analysis (PCA), ridge regression, canonical correla-
tion analysis (CCA), QR factorization and the list goes on. We will focus below on deriving a kernel
method for theQ−α algorithm.

5.1 Kernel Q−α

We will consider mapping the rowsm>
i of the data matrixM such that the rows of the mapped data

matrix becomeφ(m1)
>, ...,φ(mn)

>. Since the entries ofG consist of inner-products between pairs
of mapped feature vectors, the interaction will be no longer bilinear and will contain higher-order
cumulants whose nature depends on the choice of the kernel function.

Replacing the rows ofM with their mapped version introduces some challenges before we could
apply the kernel trick. The affinity matrixAα = ∑i αiφ(mi)φ(mi)

> cannot be explicitly evaluated
becauseAα is defined byouter-productsrather than inner-products of the mapped feature vectors
φ(mi). The matrixQ holding the eigenvectors ofAα cannot be explicitly evaluated as well and
likewise the matrixZ = AαQ (in step 4). As a result, kernelizing theQ−α algorithm requires one to
representα without explicitly representingAα andQ both of which were instrumental in the original
algorithm. Moreover, the introduction of the kernel should be done in sucha manner to preserve the
key property of the originalQ−α algorithm of producing a sparse solution.

LetV = MM> be then×n matrix whose entries are evaluated using the kernelvi j = k(mi ,m j).
Let Q = M>E for somen× k (recall k being the number of clusters in the data) matrixE. Let
Dα = diag(α1, ...,αn) and thusAα = M>DαM andZ = AαQ = M>DαVE. The matrixZ cannot be
explicitly evaluated butZ>Z = E>VDαVDαVE can be evaluated. The matrixG can be expressed
with regard toE instead ofQ:

Gi j = (φ(mi)
>φ(m j))φ(mi)

>QQ>φ(m j)

= k(mi ,m j)φ(mi)
>(M>E)(M>E)>φ(m j)

= k(mi ,m j)v>i EE>v j

wherev1, ...,vn are the columns ofV. Step 5 of theQ−α algorithm consists of a QR factorization
of Z. AlthoughZ is uncomputable it is possible to computeR andR−1 directly from the entries of
Z>Z without computingQ using the Kernel Gram-Schmidt described by Wolf and Shashua (2003).
SinceQ = ZR−1 = M>DαVER−1 the update step is simply to replaceE with ER−1 and start the
cycle again. In other words, rather than updatingQ we updateE and fromE we obtainG and from
there the newly updatedα. The kernelQ−α is summarized below:

Definition 14 (Kernel Q−α) Let M be an uncomputable matrix with rowsφ(m1)
>, ...,φ(mn)

>

whereφ() : Rn −→ F is a mapping from input space to a feature space and which is endowed
with a kernel functionφ(mi)

>φ(m j) = k(mi ,m j). Therefore the matrix V= MM> is a computable
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n× n matrix. Let E(0) be an n× k matrix selected such that M>E(0) has orthonormal columns.
Perform the following steps through a cycle of iterations with index r= 1,2, ...

1. Let G(r) be a n×n matrix whose(i, j) components are k(mi ,m j)v>i E(r−1)E(r−1)>v j .

2. Letα(r) be the largest eigenvector of G(r), and let D(r) = diag(α(r)
1 , ...,α(r)

n ).

3. Let Z(r) be an uncomputable matrix

Z(r) = (M>D(r)M)(M>E(r−1)) = M>D(r)VE(r−1).

Note that Z(r)
>

Z(r) is a computable k×k matrix.

4. Z(r) QR−→ QR. It is possible to compute directly R,R−1 from the entries of Z(r)
>

Z(r) without explicitly
computing the matrix Q (see (Wolf and Shashua, 2003)).

5. Let E(r) = E(r−1)R−1.

6. Increment index r and go to step 1.

The result of the algorithm is the weight vectorα and the design matrixG which contains all
the data about the features.

6. Experiments

We have validated the effectiveness of the proposed algorithms on a variety of data sets. Our main
focus in the experiments below is in the unsupervised domain, which has received much less atten-
tion in the feature selection literature than the supervised one.

SYNTHETIC DATA

We compared theQ−α algorithm with three classical filter methods (Pearson correlation coeffi-
cients, Fisher criterion score and the Kolmogorov-Smirnoff test), standard SVM and the wrapper
method using SVM of Weston et al. (2001). The data set we used follow precisely the one de-
scribed by Weston et al., which was designed for supervised 2-class inference. Two experiments
were designed, one with 6 relevant features out of 202 referred to as“linear” problem, and the other
experiment with 2 relevant features out of 52 designed in a more complex manner and referred to
as “non-linear” problem. In the linear data the class labely ∈ {−1,1} was drawn at equal prob-
ability. The first six features were drawn asxi = yN(i,1), i = 1..3, andx j = N(0,1), j = 4..6 at
probability 0.7, otherwise they were drawn asxi = N(0,1), i = 1..3, andx j = yN(i−3,1), j = 4..6.
The remaining 196 dimensions were drawn fromN(0,20). The reader is referred to (Weston et al.,
2001) for details of the non-linear experiment. We ranQ−alphaon the two problems once with
known classes (supervised version) and with unknown class labels (unsupervised version). In the
supervised case the selected features were used to train an SVM and in theunsupervised case the
class labels were not used for theQ−α feature selection but were used for the SVM training. The
unsupervised test appears artificial but is important for appreciating thestrength of the approach
as the results of the unsupervised are only slightly inferior to the supervised test. For each size of
training set we report the average test error on 500 samples over 30 runs. In Fig. 3(a) weoverlay
the Q−α results (prediction error of the SVM on a testing set) on the figure obtained by Weston
et al.. The performance of the supervisedQ−α closely agrees with the performance of the wrapper
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SVM feature selection algorithms. The performance of the unsupervised version does not fall much
behind.

Since our method can handle more than two classes we investigated the scaling-up capabilities
of the algorithm as we increase the number of classes in an unsupervised setting. Fornc = 2,3, ...
classes we samplednc cluster centers in 5D space (5 coordinates per center) in the 5D cube where
each cluster center coordinate is uniformly sampled in the interval[−1,1]. For each cluster we
also uniformly samples a diagonal covariance matrix with elements taken from theinterval [0, .02].
Around each of thenc class centers we sampledd60

nc
e points according to a normal distribution

whose mean is the class center and with a the random covariance matrix. We added 120 additional
coordinates drawn similarly aroundnc centers sampled uniformly inside the 120D hypercube with
edges of length 2, according to the same rules. Each such added coordinate was permuted by a
random permutation to break the correlation between the dimensions. Thus each of the 60 points
lives in a 125-dimensional space out of which only the first five dimensionsare relevant. We ran the
Q−α algorithm on the data matrix and obtained the weight vectorα and computed the sparsity gap
- i.e the ratio between the average weight of the first five features and the average weight of the rest
120 features. Ideally the ratio should be high if the algorithm consistently succeeds in selecting the
first three coordinates as the relevant ones.

Fig. 3(b) illustrates the results of this experiment in a graph whosex-axis runs over the number
of classesk and they-axis displays the sparsity gap (the ratio discussed above). Each experiment
was repeated 20 times and the results in the plot are the average of the 20 runs and the 25 and 75
percentiles. In general the error bars for small number of classes arelarge indicating that some
experiments are much more difficult than others. This is probably a results ofthe cluster centers
being close to one another in some of the experiments.

There are three plots on the graph. The solid blue describes the result obtained when choosing
k = nc. For small number of classes this gives the best results. The dashed green plot describes
the results obtained while choosingk = nc +2. This choice seems to result with a smaller variance
between experiments. The explanation might be that variance is a results of the fact that in some
experiments the cluster centers are close, making the separation difficult. Taking a large value
of k captures more complex details about the cluster structure. For example: when two clusters
have close centers the resulting distribution might look like one strong cluster inthe middle, and
some cluster tails around it. The red plot is the one obtained when under estimating the number of
clusters and takingk = max(1,nc−2). This has the largest variance, but the best (in average) when
the number of clusters is large. The reason might be that focusing on the clusters which are well
separated is better than trying to capture information from all clusters. This ishowever, a “risky”
strategy leading to a large variance.

One can see that the algorithm performed well untilk = 6. After that the sparsity ratio is still
larger than one most of the time, but separation is not easy. It is possible to get better performance in
average by underestimatingk by more than 2 at the price of a higher variance. Good performance up
to 6 clusters and a sparsity gap around 5−10 are not “magical numbers”. For other feature selection
problems (e.g., a different number of points per cluster, other sampling probabilities, etc.) we can
get good performance for more classes or for less depending on the complexity of the problem.
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Figure 3: (a) Comparison of feature selection methods following (Weston et al., 2001). Performance curves
of Q−α were overlaid on the figure adapted from (Weston et al., 2001). Thex-axis is the number
of training points and they-axis is the test error as a fraction of test points. The thicksolid lines
correspond to theQ−α supervised and unsupervised methods (see text for details). (b) Perfor-
mance of a test with five relevant features and 120 irrelevantones withnc clusters represented by
thex-axis of the graph. They-axis represents the sparsity gap (see text for details).The three graphs
are solid blue fork = nc, dashed green fork = nc +2 and dotted red fork = max(1,nc−2). One
can see that the unsupervisedQ−α sustained good performance up to 6 classes in this settings.
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REAL IMAGE UNSUPERVISEDFEATURE SELECTION

The strength of theQ−α method is that it applies for unsupervised settings as well as supervised.
An interesting unsupervised feature selection problem in the context of visual processing is the one
of automatic selection of relevant features which discriminate among perceptual classes. Assume
one is given a collection of images where some of them contain pictures of a certain object class
(say, green frogs, theRana clamitansspecie) and other images contain pictures of a different class
of objects (say, American toads) — see Fig. 4. We would like to automatically, in an unsupervised
manner, select the relevant features such that a new picture could be classified to the correct class
membership.

The features were computed by matching patches of equal size of 20×20 pixels in the following
manner. Assuming that the object of interest lies in the vicinity of the image center, we defined 9
“template” patches arranged in a 3×3 block centered at the image. for example, in one experiment,
we had 27 images (18 from one class and 9 from the other), which in turn defines 27∗9= 243 feature
coordinates. Each image was sampled by 49 “candidate” patches (covering the entire image) where
each of the 243 template patches was matched against the 49 patches in its respective image and
the score of the best match was recorded in 243×27 data matrix. The matching between a pair of
patches was based onL1-distance between the respective color histograms in HSV space. We ran
theQ−α algorithm withk = 2. The resultingα weight vector forms a feature selection from which
we create a submatrix of data points and construct its affinity matrix and the associated matrix of
eigenvectorsQ. The rows of theQ matrix were clustered using k-means into two clusters.

This experiment was done in an unsupervised settings. As a measure of performance we used the
percent of samples with labels matching the correct labeling (the maximum over the two flips of the
class labels). Performance varied between 80% to 90% correct assignments over many experiments
over several object classes (including elephants, sea elephants, andso forth). Images where taken
from CalPhotos: Animals (http://elib.cs.berkeley.edu/photos/fauna/ ). For each class we took all
images in which the animal appears, e.g., we removed all tadpoles images from the green frog
class. This performance was compared to spectral clustering using all thefeatures (243 in the above
examples) which provided a range of 55% to 65% correct classification.

Fig. 5(a) and Fig. 5(b) show the 20 most relevant templates selected for thetwo classes, and
Fig. 5(c) shows the alpha values. Note that theα weights are positive as predicted from Theorem 10
and that only few of the features have very high weights.

KERNEL Q−α EXPERIMENTS

One of the possible scenarios for which a polynomial (for example) kernel is useful is when hidden
variables affect the original feature measurements and thus create non-linear interactions among the
feature vectors. We consider the situation in which the original measurementmatrixM is multiplied,
element wise, with a hidden variable matrix whose entries are±1. The value of the hidden state was
changed randomly every 8 measurements and independently for each feature. This scheme simu-
lates measurements taken in “sessions” where a session lasts for 8 sample data points. As a result,
the expectation of the inner product between any two feature vectors is zero yet any two feature
vectors contain higher-order interactions which could come to bear using apolynomial kernel.
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Figure 4: Image samples of several animal classes — American toad (toprow) and Green frogs (Rana
clamitans), elephants, and sea elephants. The objects appear in various positions, illumination,
context and size.
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Figure 5: Unsupervised feature selection for automatic object discrimination from images. (a),(b) the first
20 features from pictures containing the American frog and the Green frog ranked by theα weight
vector. (c) the (sorted)α values. (d),(e),(f) similar to the elephant and sea elephant.
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Figure 6: (a) 2D slice out of the relevant features in the original datamatrix used in the synthetic experiment,
showing three clusters. (b) A graph showing the success ratefor the 2nd order polynomial kernel
(solid blue), and for a preprocessing of the data (dashed red). The results are shown over the
parameterλ specifying the variance of the original data set (see text).The success rate of the
regularQ−α algorithm was constantly zero and is not shown.

The kernel we used in this experiment was a sum of second-order polynomial kernels each over
a portion of 8 entries of the feature vector:

k(mi ,m j) = ∑
k

(mk>
i mk

j)
2,

wheremk
i represents the k’th section of 8 successive entries of the feature vector mi . The original

data was composed out 120 sample points with 60 coordinates out of which 12were relevant and 48
were irrelevant. The relevant features were generated from three clusters, each containing 40 points.
The points of a cluster were Normally distributed with a mean vector drawn uniformly from the unit
hypercube inR 12 and with a diagonal covariance matrix with entries uniformly distributed in the
range [λ,2λ], whereλ is a parameter of the experiment. A 2D slice out of the relevant 12 dimensions
is shown in figure 6(a). The irrelevant features were generated in a similar manner, where for each
irrelevant feature the sample points were permuted independently in order tobreak the interactions
between the irrelevant features. This way it is impossible to distinguish between a single relevant
feature and a single irrelevant feature.

We considered an experiment to be successful if among the 12 features with the highestα values,
at least 10 were from the relevant features subset. The graph in figure 6(b) shows the success rate
for the kernelQ−α algorithm averaged over 80 runs. It also shows, for comparison, the success
rate for experiments conducted by taking the square of every element in themeasurements matrix
followed by running the originalQ−α algorithm. The success rate for the originalQ−α algorithm
on the unprocessed measurements was constantly zero and is not shown inthe graph.

GENOMICS

Synthetic dataWe have tested our algorithm against the synthetic model of gene expression data
(“microarrays”) given in (Ben-Dor et al., 2001). This synthetic model has 6 parametersm,a,b,e,d,s,
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explained below.a samples are drawn from classA, andb samples are drawn from classB. Each
sample hasm dimensions -emsamples are drawn randomly using the distributionN(0,s). The rest
of the (1− e)m features are drawn using eitherN(µA,µAs) or N(µB,µBs), depending on the class
of the sample. The means of the distributionsµA andµB are uniformly chosen from the interval
[−1.5d,1.5d].

In (Ben-Dor et al., 2001) the parameters of the model were estimated to bestfit the gene expres-
sions of the leukemia data set:m= 600,a = 25,b = 47,e= 0.72,d = 555,s= 0.75 3. Similarly to
(Ben-Dor et al., 2001), we varied one of the parametersm,d,e,s while fixing the other parameters
to the values specified above. This enabled us to compare the performanceof theQ−α algorithm
to the performance of their Max-Surprise algorithm (MSA).

Our algorithm was completely robust to the number of featuresm. It always chose the correct
features using as few as 5 features. MSA needed at least 250 features, since it used the redundancy in
the features in order to locate the informative features. Both algorithms are invariant to the distance
between the means of the distributions determined byd, and perform well ford ∈ [1,1000]. The
percentage of irrelevant features,e, can reach 95% for MSA and 99.5% for our algorithm. Such
performance suggests that the data set is not very difficult.

The parameters effects the spread of each class. While MSA was able to handle values ofs
reaching 2, our algorithm was robust tos, and was at least 30 times more likely to choose a relevant
feature than an irrelevant one, even fors> 1000.

Real genomics data setsWe evaluated the performance of theQ−α algorithm for the problem
of gene selection on four data sets containing treatment outcome or status studies (see Wolf et al.,
2005, for the full report). The first was a study of treatment outcome of patients with diffuse large
cell lymphoma (DLCL), referred to as “lymphoma” (Shipp et al., 2002). Thedimensionality of
this data set was 7,129 and there were 32 samples with good successful outcome and 26 with
unsuccessful outcome. The second was a study of treatment outcome of patients with childhood
medulloblastomas (Pomeroy et al., 2002), referred to as “brain”. The dimensionality of this data
set was 7,129 and there were 39 samples with good successful outcome and 21 with unsuccessful
outcome. The third was a study of the metastasis status of patients with breast tumors (van ’t Veer
et al., 2002), referred to as “breast met”. The dimensionality of this data set was 24,624 and there
were 44 samples where the patients were disease free for 5 years after onset and 34 samples where
the tumors metastasized within five years. The fourth is an unpublished study of breast tumors
(Ramaswamy) for which corresponding lymph nodes either were cancerous or not, referred to as
“lymph status”. The dimensionality of this data set is 12,600 with 47 samples positive for lymph
status and 43 negative for lymph status.

For the four data sets with label information classification accuracy was used as a measure of
the goodness of the (unsupervised)Q−α algorithm. We compared the leave-one-out error on these
data sets with that achieved by both supervised and unsupervised methods of gene selection. The
supervised methods used were signal-to-noise (SNR) (Golub et al., 1999), radius-margin bounds
(RMB) (Chapelle et al., 2002; Weston et al., 2001), and recursive feature elimination (RFE) (Guyon
et al., 2002). The unsupervised methods used were PCA and gene shaving (GS) (Hall, 2000). In
the unsupervised mode the class labels were ignored — and thus in generalone should expect the
supervised approaches to produce superior results than the unsupervised ones. A linear support

3. The leukemia data set has over 7000 gene expressions but containsmuch redundancy. Ben-Dor et al. (2001) estimated
the effective number of features to be 600 and we follow their choice parameters to allow comparison. Note below
that the problem becomes easier as the number of features increase aslong as the ratio of relevant features is fixed
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vector machine classifier was used for all the gene selection methods Parameters for SNR, RFE,
and RMB were chosen to minimize the leave-one-out error. For theQ−α algorithm we tookk = 6
for all experiments, to allow for more complex structures than just two clusters. For the breast
me data set and for the lymph status data set we took only the first 7,000 features to reduce the
computation complexity.

A summary of the results appear in table 1. TheQ−α algorithm considerably out-performs all
other unsupervised methods. Furthermore, and somewhat intriguing, is that theQ−α algorithm is
competitive with the other supervised algorithm (despite the fact that the labelswere not taken into
account in the course of running the algorithm) and performssignificantly betteron the lymph status
of breast tumors as compared to all other gene selection approaches — including the supervised
methods.

Method brain lymph breast lymp-.
status1 met.1 homa

RAW 32 44 34 27
PCA5 22 47 33 40
PCA10 26 47 26 27
PCA20 25 47 25 29
PCA30 31 47 31 33
PCA40 31 47 31 33
PCA50 30 47 30 33

GS5 20 45 32 33
GS10 24 43 31 30
GS20 28 47 32 31
GS30 30 44 33 33
Q−α 15 19 22 15
SNR 16 42 29 18
RFE 14 38 26 14
RMB 13 39 24 14

Table 1: The table entries show the Leave-one-out classification errorsfor the supervised and un-
supervised algorithms on the various data sets. In both PCAN and GSN the numberN the
number of components used.1 Only the first 7,000 genes were used.

7. Conclusions

In this work we presented an algebraic approach to variable weighting, which is based on maximiz-
ing a score based on the spectral properties of the kernel matrix. The approach has the advantage of
being suitable to unsupervised feature selection, but can also be applied inthe supervised settings.

It is interesting to compare the algebraic approach presented in this work to probabilistic ap-
proaches which take a ”holistic” view of the data such as the information bottleneck (Tishby et al.,
1999) and the infomax (Linsker, 1988; Vasconcelos, 2003). The gapthat exists between the alge-
braic and the probabilistic tools of machine learning make a direct comparison toinformation-based
feature selection criteria a subject for future work. However, it is evident that algebraic meth-
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ods have the advantages of not requiring the estimation of probability distributions, of being more
suitable for application on continuous data and, in general, for being easier to optimize for. We
conducted a limited experimental comparison to an information-bottleneck method called sufficient
dimensionality-reduction (Shashua and Wolf, 2004), and more work is required.

The emergence of sparsity and positiveness in our simple least square optimization function, is
a surprising result, that might indicated the possibility of similar results in other algebraic methods
of machine learning. For example, it might be interesting to examine if the vector of examples’
weights returned by the regularized least squares classification method (Rifkin et al., 2003) would
be considered sparse by our definition of sparseness. Regularized least squares method are similar
to Support Vector Machines in many ways, only SVMs are known to produce sparse solutions.

As a last remark, we would like to point out that the methods presented in this work are ex-
tremely flexible and can be extended. For example, to the case of semi-supervised learning (Shashua
and Wolf, 2004).
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Appendix A. Positivity of α

The proofs for the claims and theorems made in Section 7 are presented below.
Proposition 7 The minimal value of f= (a>b)(a>c)(b>c) wherea,b,c∈ Rq are defined over the
unit hypersphere is−1/8.

Proof: The QR decomposition of 3 points on the unit hypersphere takes the form:

[a,b,c] = [e1,e2,e3]





1 cos(β) cos(γ1)
0 sin(β) sin(γ1)cos(γ2)
0 0 sin(γ1)sin(γ2)



 (7)

wheree1,e2,e3 ∈ Rn are three orthogonal vectors.
The problem, therefore, becomes the problem of minimizing

f = cos(β)cos(γ1)(cos(β)cos(γ1)+sin(β)sin(γ1)cos(γ2)) (8)

with respect toβ,γ1,γ2. Sinceγ2 appears only in thecos(γ2) expression, it can take only the val-
ues of 1 or -1 at the minimum energy point. By symmetry we can assume it to be -1,and the
problem reduces to the problem of minimizing 1/2cos(β + γ1)(cos(β + γ1) + cos(β− γ1)). The
minimum occurs whencos(β− γ1) is either 1 or -1. Both problems 1/2cos(u)(cos(u)− 1) and
1/2cos(u)(cos(u)+1) have a minimum of−1/8.
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Proposition 8 The expected value of f= (a>b)(a>c)(b>c) wherea,b,c ∈ ℜq andc is uniformly
sampled over the unit hypersphere is(1/q)(a>b)2

Proof: This expectation is given by the following integral

Z

(a>b)(a>c)(c>b)dσ(c) = (a>b)a>(
Z

cc>dσ(c))b.

c is taken from a uniform probability and in particular from a symmetric probability, i.e., where
the probability ofc and of remains the same under sign flipping of any subset of its entries (e.g.,
p(
√

(2)[.5, .5,0,0] = p(
√

(2)[−.5, .5,0,0])). Therefore,
R

cc>dσ(c) is a multiplication of the iden-
tity matrix. From linearity of the trace and from the equalitytrace(cc>) = c>c the trace of this
matrix is

R

c>cdσ(c) = 1. The matrix
R

cc>dσ(c), therefore, is 1/q times the identity matrix inℜq.
The expectation

R

(a>b)(a>c)(c>b)dσ(c) then equals(1/q)(a>b)2.
Proposition 9 The expected value of f= ∑k

i=1(a
>b)(a>ci)(b>ci) wherea,b ∈ ℜq and ci are or-

thonormal vectors uniformly sampled over the unit hypersphere inℜq is (k/q)(a>b)2.

Proof: This expectation is given by the following integral

(a>b)a>(
k

∑
i=1

Z

cic>i dσ(ci |c1..ci−1))b ,

where the main difference from the proof of Prop. 8 is that now the probability distribution of ci is
dependent on all the previousc1,c2, ...,ci−1. Nevertheless, ifci are uniformly sampled subject to
the orthogonality constraint, the sum of integralsJ = ∑k

i=1
R

cic>i dσ(ci |c1..ci−1) is a product over
the identity matrix inℜq. To see this, consider products of the formv>Jv. From symmetry this
product must be the same for everyv ∈ ℜq. i.e, sincev>Jv depends only on dot products (the
distributiondσ(ci |c1..ci−1) is a uniform distribution subject to constraints on dot products), it is
invariant to a unitary transformation; in particular since any vector can be rotated to any other
vector we get that it is not dependent onv. We havetrace(J) = k satisfying the proposition, as
trace(∑k

i=1
R

cic>i dσ(ci |c1..ci−1)) = ∑k
i=1

R

c>i cidσ(ci |c1..ci−1) = k.
Theorem 10 (Probabilistic Perron-Frobenius)Let G= gi j be a real symmetric n×n matrix whose
entries for i≥ j are independent identically and normally distributed random variables withmean
µ> 0 and varianceσ2. Then, for anyε > 0 there exist no such that for all n> n0 the leading eigen-
vectorv of G is positive with probability of at least1− ε.

Preliminaries: Let G= µJ+σSwhereJ = 11> andSi j are i.i.d. sampled according toN(0,1). Let
e= 1√

n1. and letv,v2, ...,vn andλ ≥ λ2 ≥ ... ≥ λn be the spectrum ofG. From the semicircle law

(Wigner, 1958) and from (Furedi and Komlos, 1981) it is known thatλi = Θ(
√

n) for i = 2,3...,n.
The following auxiliary claims would be useful for proving the main theorem.

Lemma 15 (Bounds on Leading Eigenvalue)Under the conditions of Theorem 10 above, with
probability1−o(1) the leading eigenvalueλ of G falls into the following interval:

µn−Θ(1) ≤ λ ≤ µn+Θ(
√

n).

1881



WOLF AND SHASHUA

Proof: From the definition of the leading eigenvalue we have:

λ = max
‖x‖=1

x>Gx = µ(∑
i

xi)
2 +σ max

‖x‖=1
x>Sx

≤ µn+Θ(
√

n)

where from the semicircle law max‖x‖=1x>Sx = Θ(
√

n) and from Cauchy-Schwartz inequality
(∑i xi)

2 ≤ n(∑i x
2
i ) = n. The lower bound follows from:

λ ≥ e>Ge= µn+σe>Se

= µn+∑
i, j

Si j /n≥ µn−Θ(1)

Lemma 16 Under the conditions of Theorem 10 above, with probability1−o(1) we have the fol-
lowing bound:

∑
i

vi ≥
√

n−c (9)

for some constant c where vi are the entries of the leading eigenvectorv of G.

Proof: Let e= av+∑n
i=2aivi . Since the eigenvectors andeare of unit norm we havea2+∑n

i=2a2
i =

1 and without lost of generality we can assumea > 0. We have thereforee>Ge= a2λ + ∑i λia2
i .

Sinceλi = Θ(
√

n) for i = 2, ...,n anda2 +∑i a
2
i = 1 we have:

e>Ge≤ a2λ+Θ(
√

n).

Using the bound derived above ofe>Ge≥ µn−o(1) and Lemma 15, we have:

µn−o(1) ≤ λa2
1 +Θ(

√
n)

µn−Θ(
√

n)

µn+Θ(
√

n)
≤ a2 ≤ a

from which we can conclude (with further manipulation):

1− 2Θ(
√

n)

µn
= 1− 1

µΘ(
√

n)
≤ a.

Consider now thata is the angle betweeneandv:

1√
n ∑

i

vi = e>v = a≥ 1− 1
µΘ(

√
n)

,

from which we obtain:

∑
i

vi ≥
√

n−c,

for some constantc.
As a result so far, we have that

λvi = (Gv)i = µ∑
i

vi +σ(Sv)i

≥ µ
√

n−C+σg>v
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whereC = µc is a constantg is some n-dimensional normally distributed i.i.d random vector. We
would be done if we could show that the probability of the eventg>v > (1/σ)µ

√
n occurs with

probability o(1), i.e., decays with the growth ofn. The problem is that sinceg stands for a row
of Sand becausev depends onSwe cannot make the assumption thatg andv are independent —
thus a straightforward tail bound would not be appropriate. The remainder of the proof below was
contributed by Ofer Zeitouni where care is taken to decouple the dependency betweeng andv.

Proof of Theorem 10: Let D(c) be the set of vectors inRn satisfying Lemma 16:

D(c) =

{

v ∈ Rn : ‖v‖ = 1, ∑
i

vi ≥
√

n−c

}

,

and letg∈ Rn be a vector of i.i.d. standard Normal distributionN(0,1). We would like to analyze
the probability of the event

F(g) =
{

∃v ∈ D(c) s.t. g>v ≥ µ
σ
√

n
}

g∈ Rn, in the case wheregi ∼ N(0,1) .

In particular we would like to show that the probabilityPgi∼N(0,1)(F(g)) belongs too(1), i.e., decays
with the growth ofn.

Let v = e+ f wheree = 1√
n1 was defined above andf is the residual. From the constraint

‖v‖2 = 1 we obtain a constraint onf:

2√
n ∑

i

fi +∑
i

f 2
i = 0 (10)

Given thatv ∈ D(c) we obtain:

∑
i

vi =
√

nv>e=
√

n+∑
i

fi ≥
√

n−c,

from which obtain another constraint onf:

−∑
i

fi ≤ c (11)

Combining both constraints (10) and (11) we arrive at:

‖f‖2 ≤ 2c√
n

(12)

The expressiong>v can be broken down to a sum of two termsg>e andg>f. The first of these two
terms iso(1) by the law of large numbers, and so:

g>v = g>e+g>f ≤ o(1)+‖g‖‖f‖

≤ o(1)+‖g‖
(√

2c

n1/4

)

‖g‖ distributes according to theχ distribution withn degrees of freedom, which concentrates around√
n . Therefore, with probability 1−o(1), ‖g‖= Θ(

√
n). The probability thatg>v ≥ Θ(

√
n) is pro-

portional to the probability that‖g‖ ≥ n3/4, which by the Gaussian tail bound decays exponentially
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with the growth ofn. Since the probability that each entry ofv is negative decays exponentially,
i.e., p(vi < 0) < e−Cn, for some constant C, then by the union-bound the union of such events
p(v1 < 0∪ ....∪ vn < 0) is bounded from above byne−Cn which decays exponentially with the
growth of n.
Lemma 12 Let g be a random n−vector of i.i.d bounded variables, i.e., for each i= 1..n, |gi | ≤ M.
The following holds for some constant C:

P(‖g‖2 ≥ Dn1/2+ε) ≤ exp

(

−C2D2n2ε

M2

)

Proof: We will apply Hoeffding’s inequality to the random variable1
n‖g‖2, which has a meanµ

that does not depend onn.
Assumeγ ≥ Dn−1/2+ε, whereε > 1/2. For somen > n̂, and for somec, γ−µ≥ cγ. We get:

P(
‖g‖2

n
≥ γ) = P(

‖g‖2

n
−µ≥ γ−µ) ≤ P(

‖g‖2

n
−µ≥ cγ) .

Now, we can apply Hoeffding’s one sided inequality and get:

P(
1
n
‖g‖2−µ≥ cγ) ≤ exp

(

−c2nγ2

M2

)

≤ exp

(

−c2D2n2ε

M2

)

.
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Abstract

Working set selection is an important step in decomposition methods for training support
vector machines (SVMs). This paper develops a new technique for working set selection in
SMO-type decomposition methods. It uses second order information to achieve fast con-
vergence. Theoretical properties such as linear convergence are established. Experiments
demonstrate that the proposed method is faster than existing selection methods using first
order information.

Keywords: support vector machines, decomposition methods, sequential minimal opti-
mization, working set selection

1. Introduction

Support vector machines (SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995) are a useful
classification method. Given instances xi, i = 1, . . . , l with labels yi ∈ {1,−1}, the main
task in training SVMs is to solve the following quadratic optimization problem:

min
α

f(α) =
1

2
αT Qα− eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (1)

yT α = 0,

where e is the vector of all ones, C is the upper bound of all variables, Q is an l by l
symmetric matrix with Qij = yiyjK(xi,xj), and K(xi,xj) is the kernel function.

The matrix Q is usually fully dense and may be too large to be stored. Decomposition
methods are designed to handle such difficulties (e.g., Osuna et al., 1997; Joachims, 1998;
Platt, 1998; Chang and Lin, 2001). Unlike most optimization methods which update the
whole vector α in each step of an iterative process, the decomposition method modifies only
a subset of α per iteration. This subset, denoted as the working set B, leads to a small
sub-problem to be minimized in each iteration. An extreme case is the Sequential Minimal
Optimization (SMO) (Platt, 1998), which restricts B to have only two elements. Then in
each iteration one does not require any optimization software in order to solve a simple
two-variable problem. This method is sketched in the following:

c©2005 Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin.



Fan, Chen, and Lin

Algorithm 1 (SMO-type decomposition method)
1. Find α1 as the initial feasible solution. Set k = 1.

2. If αk is an optimal solution of (1), stop. Otherwise, find a two-element working set
B = {i, j} ⊂ {1, . . . , l}. Define N ≡ {1, . . . , l}\B and αk

B and αk
N to be sub-vectors

of αk corresponding to B and N , respectively.

3. Solve the following sub-problem with the variable αB:

min
αB

1

2

[

αT
B (αk

N )T
]

[

QBB QBN

QNB QNN

] [

αB

αk
N

]

−
[

eT
B eT

N

]

[

αB

αk
N

]

=
1

2
αT

BQBBαB + (−eB + QBNαk
N )T αB + constant

=
1

2

[

αi αj

]

[

Qii Qij

Qij Qjj

] [

αi

αj

]

+ (−eB + QBNαk
N )T

[

αi

αj

]

+ constant

subject to 0 ≤ αi, αj ≤ C, (2)

yiαi + yjαj = −yT
Nαk

N ,

where
[

QBB QBN

QNB QNN

]

is a permutation of the matrix Q.

4. Set αk+1
B to be the optimal solution of (2) and αk+1

N ≡ αk
N . Set k ← k + 1 and goto

Step 2.

Note that the set B changes from one iteration to another, but to simplify the notation, we
just use B instead of Bk.

Since only few components are updated per iteration, for difficult problems, the decom-
position method suffers from slow convergences. Better methods of working set selection
could reduce the number of iterations and hence are an important research issue. Existing
methods mainly rely on the violation of the optimality condition, which also corresponds to
first order (i.e., gradient) information of the objective function. Past optimization research
indicates that using second order information generally leads to faster convergence. Now
(1) is a quadratic programming problem, so second order information directly relates to the
decrease of the objective function. There are several attempts (e.g., Lai et al., 2003a,b) to
find working sets based on the reduction of the objective value, but these selection methods
are only heuristics without convergence proofs. Moreover, as such techniques cost more
than existing ones, fewer iterations may not lead to shorter training time. This paper de-
velops a simple working set selection using second order information. It can be extended
for indefinite kernel matrices. Experiments demonstrate that the training time is shorter
than existing implementations.

This paper is organized as follows. In Section 2, we discuss existing methods of working
set selection and propose a new strategy. Theoretical properties of using the new selection
technique are in Section 3. In Section 4 we extend the proposed selection method to other
SVM formulas such as ν-SVM. A detailed experiment is in Section 5. We then in Section
6 discuss and compare some variants of the proposed selection method. Finally, Section 7
concludes this research work. A pseudo code of the proposed method is in the Appendix.
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2. Existing and New Working Set Selections

In this section, we discuss existing methods of working set selection and then propose a new
approach.

2.1 Existing Selections

Currently a popular way to select the working set B is via the “maximal violating pair:”

WSS 1 (Working set selection via the “maximal violating pair”)
1. Select

i ∈ arg max
t
{−yt∇f(αk)t | t ∈ Iup(α

k)},

j ∈ arg min
t
{−yt∇f(αk)t | t ∈ Ilow(αk)},

where

Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1}, and

Ilow(α) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1}.
(3)

2. Return B = {i, j}.

This working set was first proposed in Keerthi et al. (2001) and is used in, for example,
the software LIBSVM (Chang and Lin, 2001). WSS 1 can be derived through the Karush-
Kuhn-Tucker (KKT) optimality condition of (1): A vector α is a stationary point of (1) if
and only if there is a number b and two nonnegative vectors λ and µ such that

∇f(α) + by = λ− µ,

λiαi = 0, µi(C − αi) = 0, λi ≥ 0, µi ≥ 0, i = 1, . . . , l,

where ∇f(α) ≡ Qα− e is the gradient of f(α). This condition can be rewritten as

∇f(α)i + byi ≥ 0 if αi < C, (4)

∇f(α)i + byi ≤ 0 if αi > 0. (5)

Since yi = ±1, by defining Iup(α) and Ilow(α) as in (3), and rewriting (4)-(5) to

−yi∇f(α)i ≤ b, ∀i ∈ Iup(α), and

−yi∇f(α)i ≥ b, ∀i ∈ Ilow(α),

a feasible α is a stationary point of (1) if and only if

m(α) ≤M(α), (6)

where
m(α) ≡ max

i∈Iup(α)
−yi∇f(α)i, and M(α) ≡ min

i∈Ilow(α)
−yi∇f(α)i.

Note that m(α) and M(α) are well defined except a rare situation where all yi = 1 (or
−1). In this case the zero vector is the only feasible solution of (1), so the decomposition
method stops at the first iteration.

Following Keerthi et al. (2001), we define a “violating pair” of the condition (6).
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Definition 1 (Violating pair) If i ∈ Iup(α), j ∈ Ilow(α), and −yi∇f(α)i > −yj∇f(α)j,
then {i, j} is a “violating pair.”

From (6), indices {i, j} which most violate the optimality condition are a natural choice of
the working set. They are called a “maximal violating pair” in WSS 1. It is known that
violating pairs are important in the working set selection:

Theorem 2 (Hush and Scovel, 2003) Assume Q is positive semi-definite. SMO-type
methods have the strict decrease of the function value (i.e., f(αk+1) < f(αk),∀k) if and
only if B is a violating pair.

Interestingly, the maximal violating pair is related to first order approximation of f(α).
As explained below, {i, j} selected via WSS 1 satisfies

{i, j} = arg min
B:|B|=2

Sub(B), (7)

where

Sub(B) ≡ min
dB

∇f(αk)T
BdB (8a)

subject to yT
BdB = 0,

dt ≥ 0, if αk
t = 0, t ∈ B, (8b)

dt ≤ 0, if αk
t = C, t ∈ B, (8c)

−1 ≤ dt ≤ 1, t ∈ B. (8d)

Problem (7) was first considered in Joachims (1998). By defining dT ≡ [dT
B,0T

N ], the
objective function (8a) comes from minimizing first order approximation of f(αk + d):

f(αk + d) ≈ f(αk) +∇f(αk)Td

= f(αk) +∇f(αk)T
BdB.

The constraint yT
BdB = 0 is from yT (αk +d) = 0 and yT αk = 0. The condition 0 ≤ αt ≤ C

leads to inequalities (8b) and (8c). As (8a) is a linear function, the inequalities −1 ≤ dt ≤
1, t ∈ B avoid that the objective value goes to −∞.

A first look at (7) indicates that we may have to check all
(

l
2

)

B’s in order to find an
optimal set. Instead, WSS 1 efficiently solves (7) in O(l) steps. This result is discussed in
Lin (2001b, Section II), where more general settings (|B| is any even integer) are considered.
The proof for |B| = 2 is easy, so we give it in Appendix A for completeness.

The convergence of the decomposition method using WSS 1 is proved in Lin (2001b,
2002).

2.2 A New Working Set Selection

Instead of using first order approximation, we may consider more accurate second order
information. As f is a quadratic,

f(αk + d)− f(αk) = ∇f(αk)Td +
1

2
dT∇2f(αk)d

= ∇f(αk)T
BdB +

1

2
dT

B∇
2f(αk)BBdB (9)
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is exactly the reduction of the objective value. Thus, by replacing the objective function of
(8) with (9), a selection method using second order information is

min
B:|B|=2

Sub(B), (10)

where

Sub(B) ≡ min
dB

1

2
dT

B∇
2f(αk)BBdB +∇f(αk)T

BdB (11a)

subject to yT
BdB = 0, (11b)

dt ≥ 0, if αk
t = 0, t ∈ B, (11c)

dt ≤ 0, if αk
t = C, t ∈ B. (11d)

Note that inequality constraints −1 ≤ dt ≤ 1, t ∈ B in (8) are removed, as later we will
see that the optimal value of (11) does not go to −∞. Though one expects (11) is better
than (8), minB:|B|=2 Sub(B) in (10) becomes a challenging task. Unlike (7)-(8), which can
be efficiently solved by WSS 1, for (10) and (11) there is no available way to avoid checking
all

(

l
2

)

B’s. Note that except the working set selection, the main task per decomposition
iteration is on calculating the two kernel columns Qti and Qtj , t = 1, . . . , l. This requires
O(l) operations and is needed only if Q is not stored. Therefore, each iteration can become
l times more expensive if an O(l2) working set selection is used. Moreover, from simple
experiments we know that the number of iterations is, however, not decreased l times.
Therefore, an O(l2) working set selection is impractical.

A viable implementation of using second order information is thus to heuristically check
several B’s only. We propose the following new selection:

WSS 2 (Working set selection using second order information)
1. Select

i ∈ arg max
t
{−yt∇f(αk)t | t ∈ Iup(α

k)}.

2. Consider Sub(B) defined in (11) and select

j ∈ arg min
t
{Sub({i, t}) | t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i}. (12)

3. Return B = {i, j}.

By using the same i as in WSS 1, we check only O(l) possible B’s to decide j. Alternatively,
one may choose j ∈ arg M(αk) and search for i by a way similar to (12)1. In fact, such a
selection is the same as swapping labels y first and then applying WSS 2, so the performance
should not differ much. It is certainly possible to consider other heuristics, and the main
concern is how good they are if compared to the one by fully checking all

(

l
2

)

sets. In
Section 7 we will address this issue. Experiments indicate that a full check does not reduce
iterations of using WSS 2 much. Thus WSS 2 is already a very good way of using second
order information.

1. To simplify the notations, we denote arg M(α) as arg mint∈Ilow(α) −yt∇f(α)t and arg m(α) as
arg maxt∈Iup(α) −yt∇f(α)t, respectively.
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Despite the above issue of how to effectively use second order information, the real
challenge is whether the new WSS 2 can cause shorter training time than WSS 1. Now the
two selection methods differ only in selecting j, so we can also consider WSS 2 as a direct
attempt to improve WSS 1. The following theorem shows that one could efficiently solve
(11), so the working set selection WSS 2 does not cost a lot more than WSS 1.

Theorem 3 If B = {i, j} is a violating pair and Kii + Kjj − 2Kij > 0, then (11) has the
optimal objective value

−
(−yi∇f(αk)i + yj∇f(αk)j)

2

2(Kii + Kjj − 2Kij)
.

Proof Define d̂i ≡ yidi and d̂j ≡ yjdj . From yT
BdB = 0, we have d̂i = −d̂j and

1

2

[

di dj

]

[

Qii Qij

Qij Qjj

] [

di

dj

]

+
[

∇f(αk)i ∇f(αk)j

]

[

di

dj

]

=
1

2
(Kii + Kjj − 2Kij)d̂

2
j + (−yi∇f(αk)i + yj∇f(αk)j)d̂j . (13)

Since Kii + Kjj − 2Kij > 0 and B is a violating pair, we can define

aij ≡ Kii + Kjj − 2Kij > 0 and bij ≡ −yi∇f(αk)i + yj∇f(αk)j > 0. (14)

Then (13) has the minimum at

d̂j = −d̂i = −
bij

aij
< 0, (15)

and

the objective function (11a) = −
b2
ij

2aij
.

Moreover, we can show that d̂i and d̂j (di and dj) indeed satisfy (11c)-(11d). If

j ∈ Ilow(αk), αk
j = 0 implies yj = −1 and hence dj = yj d̂j > 0, a condition required

by (11c). Other cases are similar. Thus d̂i and d̂i defined in (15) are optimal for (11).

Note that if K is positive definite, then for any i 6= j, Kii + Kjj − 2Kij > 0. Using
Theorem 3, (12) in WSS 2 is reduced to a very simple form:

j ∈ arg min
t

{

−
b2
it

ait
| t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i

}

,

where ait and bit are defined in (14). If K is not positive definite, the leading coefficient aij

of (13) may be non-positive. This situation will be addressed in the next sub-section.
Note that (8) and (11) are used only for selecting the working set, so they do not have

to maintain the feasibility 0 ≤ αk
i + di ≤ C,∀i ∈ B. On the contrary, feasibility must

hold for the sub-problem (2) used to obtain αk+1 after B is determined. There are some
earlier attempts to use second order information for selecting working sets (e.g., Lai et al.,
2003a,b), but they always check the feasibility. Then solving sub-problems during the
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selection procedure is more complicated than solving the sub-problem (11). Besides, these
earlier approaches do not provide any convergence analysis. In Section 6 we will investigate
the issue of maintaining feasibility in the selection procedure, and explain why using (11)
is better.

2.3 Non-Positive Definite Kernel Matrices

Theorem 3 does not hold if Kii + Kjj − 2Kij ≤ 0. For the linear kernel, sometimes K is
only positive semi-definite, so it is possible that Kii + Kjj − 2Kij = 0. Moreover, some
existing kernel functions (e.g., sigmoid kernel) are not the inner product of two vectors, so
K is even not positive semi-definite. Then Kii + Kjj − 2Kij < 0 may occur and (13) is a
concave objective function.

Once B is decided, the same difficulty occurs for the sub-problem (2) to obtain αk+1.
Note that (2) differs from (11) only in constraints; (2) strictly requires the feasibility 0 ≤ αi+
di ≤ C,∀t ∈ B. Therefore, (2) also has a concave objective function if Kii +Kjj−2Kij < 0.
In this situation, (2) may possess multiple local minima. Moreover, there are difficulties
in proving the convergence of the decomposition methods (Palagi and Sciandrone, 2005;
Chen et al., 2006). Thus, Chen et al. (2006) proposed adding an additional term to (2)’s
objective function if aij ≡ Kii + Kjj − 2Kij ≤ 0:

min
αi,αj

1

2

[

αi αj

]

[

Qii Qij

Qij Qjj

] [

αi

αj

]

+ (−eB + QBNαk
N )T

[

αi

αj

]

+

τ − aij

4
((αi − αk

i )
2 + (αj − αk

j )
2)

subject to 0 ≤ αi, αj ≤ C, (16)

yiαi + yjαj = −yT
Nαk

N ,

where τ is a small positive number. By defining d̂i ≡ yi(αi − αk
i ) and d̂j ≡ yj(αj − αk

j ),
(16)’s objective function, in a form similar to (13), is

1

2
τ d̂2

j + bij d̂j , (17)

where bij is defined as in (14). The new objective function is thus strictly convex. If {i, j}

is a violating pair, then a careful check shows that there is d̂j < 0 which leads to a negative
value in (17) and maintains the feasibility of (16). Therefore, we can find αk+1 6= αk

satisfying f(αk+1) < f(αk). More details are in Chen et al. (2006).
For selecting the working set, we consider a similar modification: If B = {i, j} and aij

is defined as in (14), then (11) is modified to:

Sub(B) ≡ min
dB

1

2
dT

B∇
2f(αk)BBdB +∇f(αk)T

BdB +
τ − aij

4
(d2

i + d2
j )

subject to constraints of (11).

(18)

Note that (18) differs from (16) only in constraints. In (18) we do not maintain the feasibility
of αk

t + dt, t ∈ B. We are allowed to do so because (18) is used only for identifying the
working set B.
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By reformulating (18) to (17) and following the same argument in Theorem 3, the
optimal objective value of (18) is

−
b2
ij

2τ
.

Therefore, a generalized working set selection is as the following:

WSS 3
(Working set selection using second order information: any symmetric K)

1. Define ats and bts as in (14), and

āts ≡

{

ats if ats > 0,
τ otherwise.

(19)

Select

i ∈ arg max
t
{−yt∇f(αk)t | t ∈ Iup(α

k)},

j ∈ arg min
t

{

−
b2
it

āit
| t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i

}

. (20)

2. Return B = {i, j}.

In summary, an SMO-type decomposition method using WSS 3 for the working set selection
is:

Algorithm 2 (An SMO-type decomposition method using WSS 3)
1. Find α1 as the initial feasible solution. Set k = 1.

2. If αk is a stationary point of (1), stop. Otherwise, find a working set B = {i, j} by
WSS 3.

3. Let aij be defined as in (14). If aij > 0, solve the sub-problem (2). Otherwise, solve
(16). Set αk+1

B to be the optimal point of the sub-problem.

4. Set αk+1
N ≡ αk

N . Set k ← k + 1 and goto Step 2.

In the next section we study theoretical properties of using WSS 3.

3. Theoretical Properties

To obtain theoretical properties of using WSS 3, we consider the work (Chen et al., 2006),
which gives a general study of SMO-type decomposition methods. It considers Algorithm
2 but replaces WSS 3 with a general working set selection2:

WSS 4 (A general working set selection discussed in Chen et al., 2006)
1. Consider a fixed 0 < σ ≤ 1 for all iterations.

2. In fact, Chen et al. (2006) consider an even more general framework for selecting working sets, but for
easy description, we discuss WSS 4 here.
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2. Select any i ∈ Iup(α
k), j ∈ Ilow(αk) satisfying

−yi∇f(αk)i + yj∇f(αk)j ≥ σ(m(αk)−M(αk)) > 0. (21)

3. Return B = {i, j}.

Clearly (21) ensures the quality of the selected pair by linking it to the maximal violating
pair. It is easy to see that WSS 3 is a special case of WSS 4: Assume B = {i, j} is the set
returned from WSS 3 and j̄ ∈ arg M(αk). Since WSS 3 selects i ∈ arg m(αk), with āij > 0
and āij̄ > 0, (20) in WSS 3 implies

−(−yi∇f(αk)i + yj∇f(αk)j)
2

āij
≤
−(m(αk)−M(αk))2

āij̄

.

Thus,

−yi∇f(αk)i + yj∇f(αk)j ≥

√

mint,s āt,s

maxt,s āt,s
(m(αk)−M(αk)),

an inequality satisfying (21) for σ =
√

mint,s āt,s/ maxt,s āt,s.
Therefore, all theoretical properties proved in Chen et al. (2006) hold here. They are

listed below.
It is known that the decomposition method may not converge to an optimal solution if

using improper methods of working set selection. We thus must prove that the proposed
selection leads to the convergence.

Theorem 4 (Asymptotic convergence (Chen et al., 2006, Theorem 3 and Corol-
lary 1))

Let {αk} be the infinite sequence generated by the SMO-type method Algorithm 2. Then
any limit point of {αk} is a stationary point of (1). Moreover, if Q is positive definite,
{αk} globally converges to the unique minimum of (1).

As the decomposition method only asymptotically approaches an optimum, in practice,
it is terminated after satisfying a stopping condition. For example, we can pre-specify a
small tolerance ε > 0 and check if the maximal violation is small enough:

m(αk)−M(αk) ≤ ε. (22)

Alternatively, one may check if the selected working set {i, j} satisfies

−yi∇f(αk)i + yj∇f(αk)j ≤ ε, (23)

because (21) implies m(αk)−M(αk) ≤ ε/σ. These are reasonable stopping criteria due to
their closeness to the optimality condition (6). To avoid an infinite loop, we must have that
under any ε > 0, Algorithm 2 stops in a finite number of iterations. The finite termination
of using (22) or (23) as the stopping condition is implied by (26) of Theorem 5 stated below.

Shrinking and caching (Joachims, 1998) are two effective techniques to make the decom-
position method faster. The former removes some bounded components during iterations,
so smaller reduced problems are considered. The latter allocates some memory space (called
cache) to store recently used Qij , and may significantly reduce the number of kernel evalu-
ations. The following theorem explains why these two techniques are useful in practice:
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Theorem 5 (Finite termination and explanation of caching and shrinking tech-
niques (Chen et al., 2006, Theorems 4 and 6))

Assume Q is positive semi-definite.

1. The following set is independent of any optimal solution ᾱ:

I ≡ {i | −yi∇f(ᾱ)i > M(ᾱ) or − yi∇f(ᾱ)i < m(ᾱ)}. (24)

Problem (1) has unique and bounded optimal solutions at αi, i ∈ I.

2. Assume Algorithm 2 generates an infinite sequence {αk}. There is k̄ such that after
k ≥ k̄, every αk

i , i ∈ I has reached the unique and bounded optimal solution. It remains
the same in all subsequent iterations and ∀k ≥ k̄:

i 6∈ {t |M(αk) ≤ −yt∇f(αk)t ≤ m(αk)}. (25)

3. If (1) has an optimal solution ᾱ satisfying m(ᾱ) < M(ᾱ), then ᾱ is the unique
solution and Algorithm 2 reaches it in a finite number of iterations.

4. If {αk} is an infinite sequence, then the following two limits exist and are equal:

lim
k→∞

m(αk) = lim
k→∞

M(αk) = m(ᾱ) = M(ᾱ), (26)

where ᾱ is any optimal solution.

Finally, the following theorem shows that Algorithm 2 is linearly convergent under some
assumptions:

Theorem 6 (Linear convergence (Chen et al., 2006, Theorem 8))
Assume problem (1) satisfies

1. Q is positive definite. Therefore, (1) has a unique optimal solution ᾱ.

2. The nondegenency condition. That is, the optimal solution ᾱ satisfies that

∇f(ᾱ)i + b̄yi = 0 if and only if 0 < ᾱi < C, (27)

where b̄ = m(ᾱ) = M(ᾱ) according to Theorem 5.

For the sequence {αk} generated by Algorithm 2, there are c < 1 and k̄ such that for all
k ≥ k̄,

f(αk+1)− f(ᾱ) ≤ c(f(αk)− f(ᾱ)).

This theorem indicates how fast the SMO-type method Algorithm 2 converges. For any
fixed problem (1) and a given tolerance ε, there is k̄ such that within

k̄ + O(1/ε)

iterations,
|f(αk)− f(ᾱ)| ≤ ε.

Note that O(1/ε) iterations are necessary for decomposition methods according to the anal-
ysis in Lin (2001a)3. Hence the result of linear convergence here is already the best worst
case analysis.

3. Lin (2001a) gave a three-variable example and explained that the SMO-type method using WSS 1 is
linearly convergent. A careful check shows that the same result holds for any method of working set
selection.
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4. Extensions

The proposed WSS 3 can be directly used for training support vector regression (SVR) and
one-class SVM because they solve problems similar to (1). More detailed discussion about
applying WSS 4 (and hence WSS 3) to SVR and one-class SVM is in Chen et al. (2006,
Section IV).

Another formula which needs special attention is ν-SVM (Schölkopf et al., 2000), which
solves a problem with one more linear constraint:

min
α

f(α) =
1

2
αT Qα

subject to yT α = 0, (28)

eT α = ν,

0 ≤ αi ≤ 1/l, i = 1, . . . , l,

where e is the vector of all ones and 0 ≤ ν ≤ 1.
Similar to (6), α is a stationary point of (28) if and only if it satisfies

mp(α) ≤Mp(α) and mn(α) ≤Mn(α), (29)

where

mp(α) ≡ max
i∈Iup(α),yi=1

−yi∇f(α)i, Mp(α) ≡ min
i∈Ilow(α),yi=1

−yi∇f(α)i, and

mn(α) ≡ max
i∈Iup(α),yi=−1

−yi∇f(α)i, Mn(α) ≡ min
i∈Ilow(α),yi=−1

−yi∇f(α)i.

A detailed derivation is in, for example, Chen et al. (2006, Section VI).
In an SMO-type method for ν-SVM the selected working set B = {i, j} must satisfy

yi = yj . Otherwise, if yi 6= yj , then the two linear equalities make the sub-problem have
only one feasible point αk

B. Therefore, to select the working set, one considers positive (i.e.,
yi = 1) and negative (i.e., yi = −1) instances separately. Existing implementations such as
LIBSVM (Chang and Lin, 2001) check violating pairs in each part and select the one with
the largest violation. This strategy is an extension of WSS 1. By a derivation similar to
that in Section 2, the selection can also be from first or second order approximation of the
objective function. Using Sub({i, j}) defined in (11), WSS 2 in Section 2 is modified to

WSS 5 (Extending WSS 2 for ν-SVM)
1. Find

ip ∈ arg mp(α
k),

jp ∈ arg min
t
{Sub({ip, t}) | yt = 1, αt ∈ Ilow(αk),−yt∇f(αk)t < −yip∇f(αk)ip}.

2. Find

in ∈ arg mn(αk),

jn ∈ arg min
t
{Sub({in, t}) | yt = −1, αt ∈ Ilow(αk),−yt∇f(αk)t < −yin∇f(αk)in}.
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Problem #data #feat. Problem #data #feat. Problem #data #feat.

image 1,300 18 breast-cancer 690 10 abalone∗ 1,000 8
splice 1,000 60 diabetes 768 8 cadata∗ 1,000 8
tree 700 18 fourclass 862 2 cpusmall∗ 1,000 12
a1a 1,605 119 german.numer 1,000 24 mg 1,385 6
australian 683 14 w1a 2,477 300 space ga∗ 1,000 6

Table 1: Data statistics for small problems (left two columns: classification, right column:
regression). ∗: subset of the original problem.

3. Check Sub({ip, jp}) and Sub({in, jn}). Return the set with a smaller value.

By Theorem 3 in Section 2, it is easy to solve Sub({ip, t}) and Sub({in, t}) in the above
procedure.

5. Experiments

In this section we aim at comparing the proposed WSS 3 with WSS 1, which selects the
maximal violating pair. As indicated in Section 2, they differ only in finding the second
element j: WSS 1 checks first order approximation of the objective function, but WSS 3
uses second order information.

5.1 Data and Experimental Settings

First, some small data sets (around 1,000 samples) including ten binary classification and
five regression problems are investigated under various settings. Secondly, observations are
further confirmed by using four large (more than 30,000 instances) classification problems.
Data statistics are in Tables 1 and 3.

Problems german.numer and australian are from the Statlog collection (Michie et al.,
1994). We select space ga and cadata from StatLib (http://lib.stat.cmu.edu/datasets).
The data sets image, diabetes, covtype, breast-cancer, and abalone are from the UCI ma-
chine learning repository (Blake and Merz, 1998). Problems a1a and a9a are compiled in
Platt (1998) from the UCI “adult” data set. Problems w1a and w8a are also from Platt
(1998). The tree data set was originally used in Bailey et al. (1993). The problem mg is
a Mackey-Glass time series. The data sets cpusmall and splice are from the Delve archive
(http://www.cs.toronto.edu/~delve). Problem fourclass is from Ho and Kleinberg (1996)
and we further transform it to a two-class set. The problem IJCNN1 is from the first problem
of IJCNN 2001 challenge (Prokhorov, 2001).

For most data sets each attribute is linearly scaled to [−1, 1]. We do not scale a1a, a9a,
w1a, and w8a as they take two values 0 and 1. Another exception is covtype, in which 44 of 54
features have 0/1 values. We scale only the other ten features to [0, 1]. All data are available
at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/. We use LIBSVM (version 2.71)
(Chang and Lin, 2001), an implementation of WSS 1, for experiments. An easy modification
to WSS 3 ensures that two codes differ only in the working set implementation. We set
τ = 10−12 in WSS 3.
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Different SVM parameters such as C in (1) and kernel parameters affect the training
time. It is difficult to evaluate the two methods under every parameter setting. To have
a fair comparison, we simulate how one uses SVM in practice and consider the following
procedure:

1. “Parameter selection” step: Conduct five-fold cross validation to find the best one
within a given set of parameters.

2. “Final training” step: Train the whole set with the best parameter to obtain the final
model.

For each step we check time and iterations using the two methods of working set selection.
For some extreme parameters (e.g., very large or small values) in the “parameter selection”
step, the decomposition method converges very slowly, so the comparison shows if the
proposed WSS 3 saves time under difficult situations. On the other hand, the best parameter
usually locates in a more normal region, so the “final training” step tests if WSS 3 is
competitive with WSS 1 for easier cases.

The behavior of using different kernels is a concern, so we thoroughly test four commonly
used kernels:

1. RBF kernel:
K(xi,xj) = e−γ‖xi−xj‖

2
.

2. Linear kernel:
K(xi,xj) = xT

i xj .

3. Polynomial kernel:
K(xi,xj) = (γ(xT

i xj + 1))d.

4. Sigmoid kernel:
K(xi,xj) = tanh(γxT

i xj + d).

Note that this function cannot be represented as φ(xi)
T φ(xj) under some parameters.

Then the matrix Q is not positive semi-definite. Experimenting with this kernel tests
if our extension to indefinite kernels in Section 2.3 works well or not.

Parameters used for each kernel are listed in Table 2. Note that as SVR has an additional
parameter ε, to save the running time, for other parameters we may not consider as many
values as in classification.

It is important to check how WSS 3 performs after incorporating shrinking and caching
strategies. Such techniques may effectively save kernel evaluations at each iteration, so the
higher cost of WSS 3 is a concern. We consider various settings:

1. With or without shrinking.

2. Different cache size: First a 40MB cache allows the whole kernel matrix to be stored
in the computer memory. Second, we allocate only 100K, so cache misses may happen
and more kernel evaluations are needed. The second setting simulates the training of
large-scale sets whose kernel matrices cannot be stored.
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Kernel Problem type log2 C log2 γ log2 ε d

RBF Classification −5, 15, 2 3,−15,−2
Regression −1, 15, 2 3,−15,−2 −8,−1, 1

Linear Classification −3, 5, 2
Regression −3, 5, 2 −8,−1, 1

Polynomial Classification −3, 5, 2 −5,−1, 1 2, 4, 1
Regression −3, 5, 2 −5,−1, 1 −8,−1, 1 2, 4, 1

Sigmoid Classification −3, 12, 3 −12, 3, 3 −2.4, 2.4, 0.6
Regression −3, 9, 3 γ = 1

#features
−8,−1, 3 −2.4, 2.4, 0.6

Table 2: Parameters used for various kernels: values of each parameter are from a uniform
discretization of an interval. We list the left, right end points and the space for
discretization. For example, −5, 15, 2 for log2 C means log2 C = −5,−3, . . . , 15.

For each kernel, we give two figures showing results of “parameter selection” and “final
training” steps, respectively. We further separate each figure to two scenarios: without/with
shrinking, and present three ratios between using WSS 3 and using WSS 1:

ratio 1 ≡
# iter. by Alg. 2 with WSS 3

# iter. by Alg. 2 with WSS 1
,

ratio 2 ≡
time by Alg. 2 (WSS 3, 100K cache)

time by Alg. 2 (WSS 1, 100K cache)
,

ratio 3 ≡
time by Alg. 2 (WSS 3, 40M cache)

time by Alg. 2 (WSS 1, 40M cache)
.

Note that the number of iterations is independent of the cache size. For the “parameter
selection” step, time (or iterations) of all parameters is summed up before calculating the
ratio. In general the “final training” step is very fast, so the timing result may not be
accurate. Hence we repeat this step several times to obtain more reliable timing values.
Figures 1-8 present obtained ratios. They are in general smaller than one, so using WSS 3
is really better than using WSS 1. Before describing other results, we explain an interesting
observation: In these figures, if shrinking is not used, in general

ratio 1 ≤ ratio 2 ≤ ratio 3. (30)

Under the two very different cache sizes, one is too small to store the kernel matrix, but
the other is large enough. Thus, roughly we have

time per Alg. 2 iteration (100K cache) ≈ Calculating two Q columns + Selection,

time per Alg. 2 iteration (40M cache) ≈ Selection.

(31)

If shrinking is not used, the optimization problem is not reduced and hence

time by Alg. 2

# iter. of Alg. 2
≈ cost per iteration ≈ constant. (32)
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Figure 1: Iteration and time ratios between WSS 3 and 1 using the RBF kernel for the
“parameter selection” step (top: without shrinking, bottom: with shrinking).
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Figure 2: Iteration and time ratios between WSS 3 and 1 using the RBF kernel for the
“final training” step (top: without shrinking, bottom: with shrinking).
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Figure 3: Iteration and time ratios between WSS 3 and 1 using the linear kernel for the
“parameter selection” step (top: without shrinking, bottom: with shrinking).
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Figure 4: Iteration and time ratios between WSS 3 and 1 using the linear kernel for the
“final training” step (top: without shrinking, bottom: with shrinking).
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Figure 5: Iteration and time ratios between WSS 3 and 1 using the polynomial kernel for
the “parameter selection” step (top: without shrinking, bottom: with shrinking).
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Figure 6: Iteration and time ratios between WSS 3 and 1 using the polynomial kernel for
the “final training” step (top: without shrinking, bottom: with shrinking).
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Figure 7: Iteration and time ratios between WSS 3 and 1 using the sigmoid kernel for the
“parameter selection” step (top: without shrinking, bottom: with shrinking).
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Figure 8: Iteration and time ratios between WSS 3 and 1 using the sigmoid kernel for the
“final training” step (top: without shrinking, bottom: with shrinking).
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RBF kernel Linear kernel
Shrinking No-Shrinking Shrinking No-Shrinking

Problem #data #feat. Iter. Time Iter. Time Iter. Time Iter. Time

a9a 32,561 123 0.73 0.92 0.75 0.93 0.86 0.92 0.88 0.95
w8a 49,749 300 0.48 0.72 0.50 0.81 0.47 0.90 0.53 0.79
IJCNN1 49,990 22 0.09 0.68 0.11 0.43 0.37 0.91 0.41 0.74
covtype∗ 100,000 54 0.37 0.90 0.37 0.76 0.19 0.59 0.22 0.52

Table 3: Large problems: Iteration and time ratios between WSS 3 and WSS 1 for the
16-point parameter selection. ∗: subset of a two-class data transformed from the
original multi-class problem.

Since WSS 3 costs more than WSS 1, with (31),

1 ≤
time per Alg. 2 iteration (WSS 3, 100K cache)

time per Alg. 2 iteration (WSS 1, 100K cache)

≤
time per Alg. 2 iteration (WSS 3, 40M cache)

time per Alg. 2 iteration (WSS 1, 40M cache)
.

This and (32) then imply (30). When shrinking is incorporated, the cost per iteration varies
and (32) may not hold. Thus, though the relationship (30) in general still holds, there are
more exceptions.

With the above analysis, our main observations and conclusions from Figures 1-8 are in
the following:

1. Using WSS 3 significantly reduces the number of iterations. The reduction is more
dramatic for the “parameter selection” step, where some points have slow convergence.

2. The new method is in general faster. Using a smaller cache gives better improvement.
When the cache is not enough to store the whole kernel matrix, kernel evaluations
are the main cost per iteration. Thus the time reduction is closer to the iteration
reduction. This property hints that WSS 3 is useful on large-scale sets for which
kernel matrices are too huge to be stored.

3. The implementation without shrinking gives better timing improvement than that
with, even though they have similar iteration reduction. Shrinking successfully reduces
the problem size and hence the memory use. Then similar to having enough cache, the
time reduction does not match that of iterations due to the higher cost on selecting
the working set per iteration. Therefore, results in Figures 1-8 indicate that with
effective shrinking and caching implementations, it is difficult to have a new selection
rule systematically surpassing WSS 1. The superior performance of WSS 3 thus makes
important progress in training SVMs.

Next we experiment with large classification sets by a similar procedure. As the parame-
ter selection is time consuming, we first use 10% training instances to identify a small region
of good parameters. Then a 16-point search using the whole set is performed. The cache
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size is 350M except 800M for covtype. We experiment with RBF and linear kernels. Table
3 gives iteration and time ratios of conducting the 16-point parameter selection. Similar to
results for small problems, the number of iterations using WSS 3 is much smaller than that
of using WSS 1. The training time of using WSS 3 is also shorter.

6. Maintaining Feasibility in Sub-problems for Working Set Selections

In Section 2, both the linear sub-problem (8) and quadratic sub-problem (11) do not require
αk +d to be feasible. One may wonder if enforcing the feasibility gives a better working set
and hence leads to faster convergence. In this situation, the quadratic sub-problem becomes

Sub(B) ≡ min
dB

1

2
dT

B∇
2f(αk)BBdB +∇f(αk)T

BdB

subject to yT
BdB = 0, (33)

−αk
t ≤ dt ≤ C − αk

t ,∀t ∈ B.

For example, from some candidate pairs, Lai et al. (2003a,b) select the one with the smallest
value of (33) as the working set. To check the effect of using (33), here we replace (11) in
WSS 2 with (33) and compare it with the original WSS 2.

From (9), a nice property of using (33) is that Sub(B) equals the decrease of the objective
function f by moving from αk to another feasible point αk+d. In fact, once B is determined,
(33) is also the sub-problem (2) used in Algorithm 1 to obtain αk+1. Therefore, we use the
same sub-problem for both selecting the working set and obtaining the next iteration αk+1.
One may think that such a selection method is better as it leads to the largest function
value reduction while maintaining the feasibility. However, solving (33) is more expensive
than (11) since checking the feasibility requires additional effort. To be more precise, if
B = {i, j}, using d̂j = −d̂i = yjdj = −yidi and a derivation similar to (13), we now must

minimize 1
2 āij d̂

2
j + bij d̂j under the constraints

−αk
j ≤ dj = yj d̂j ≤ C − αk

j and − αk
i ≤ di = −yid̂j ≤ C − αk

i . (34)

As the minimum of the objective function happens at −bij/āij , to have a solution satisfying
(34), we multiply it by −yi and check the second constraint. Next, by dj = −yiyjdi, we
check the first constraint. Equation (20) in WSS 3 is thus modified to

j ∈ arg min
t

{

1

2
āitd̂

2
t + bitd̂t | t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i,

d̂t = yt max(−αk
t , min(C − αk

t ,−ytyi max(−αk
i , min(C − αk

i , yibit/āit))))
}

.

(35)

Clearly (35) requires more operations than (20).

In this section, we prove that under some minor assumptions, in final iterations, solving
(11) in WSS 2 is the same as solving (33). This result and experiments then indicate that
there is no need to use the more sophisticated sub-problem (33) for selecting working sets.
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(a) The “parameter selection” step without
shrinking
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(b) The “final training” step without shrinking
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(c) The “parameter selection” step with shrink-
ing
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(d) The “final training” step with shrinking

Figure 9: Iteration and time ratios between using (11) and (33) in WSS 2. Note that the
ratio (y-axis) starts from 0.6 but not 0.

6.1 Solutions of (11) and (33) in final iterations

Theorem 7 Let {αk} be the infinite sequence generated by the SMO-type decomposition
method using WSS 2. Under the same assumptions of Theorem 6, there is k̄ such that for
k ≥ k̄, WSS 2 returns the same working set by replacing (11) with (33).

Proof Since K is assumed to be positive definite, problem (1) has a unique optimal solution
ᾱ. Using Theorem 4,

lim
k→∞

αk = ᾱ. (36)
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Since {αk} is an infinite sequence, Theorem 5 shows that m(ᾱ) = M(ᾱ). Hence we can
define the following set

I ′ ≡ {t | −yt∇f(ᾱ)t = m(ᾱ) = M(ᾱ)}.

As ᾱ is a non-degenerate point, from (27),

δ ≡ min
t∈I′

(ᾱt, C − ᾱt) > 0.

Using 1) Eq. (36), 2) ∇f(ᾱ)i = ∇f(ᾱ)j ,∀i, j ∈ I ′, and 3) Eq. (25) of Theorem 5, there is
k̄ such that for all k ≥ k̄,

|αk
i − ᾱi| <

δ

2
,∀i ∈ I ′, (37)

| − yi∇f(αk)i + yj∇f(αk)j |

Kii + Kjj − 2Kij
<

δ

2
,∀i, j ∈ I ′, Kii + Kjj − 2Kij > 0, (38)

and

all violating pairs come from I ′. (39)

For any given index pair B, let Sub(11)(B) and Sub(33)(B) denote the optimal objective
values of (11) and (33), respectively. If B̄ = {i, j} is a violating pair selected by WSS 2 at
the kth iteration, (37)-(39) imply that di and dj defined in (15) satisfy

0 < αk+1
i = αk

i + di < C and 0 < αk+1
j = αk

j + dj < C. (40)

Therefore, the optimal dB̄ of (11) is feasible for (33). That is,

Sub(33)(B̄) ≤ Sub(11)(B̄). (41)

Since (33)’s constraints are stricter than those of (11), we have

Sub(11)(B) ≤ Sub(33)(B),∀B. (42)

From WSS 3,

j ∈ arg min
t
{Sub(11)({i, t}) | t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i}.

With (41) and (42), this j satisfies

j ∈ arg min
t
{Sub(33)({i, t}) | t ∈ Ilow(αk),−yt∇f(αk)t < −yi∇f(αk)i}.

Therefore, replacing (11) in WSS 3 with (33) does not affect the selected working set.

This theorem indicates that the two methods of working set selection in general lead to
a similar number of iterations. As (11) does not check the feasibility, the implementation
of using it should be faster.
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6.2 Experiments

Under the framework WSS 2, we conduct experiments to check if using (11) is really faster
than using (33). The same data sets in Section 5 are used under the same setting. For
simplicity, we consider only the RBF kernel.

Similar to figures in Section 5, here Figure 9 presents iteration and time ratios between
using (11) and (33):

# iter. by using (11)

# iter. by using (33)
,
time by using (11) (100K cache)

time by using (33) (100K cache)
,
time by using (11) (40M cache)

time by using (33) (40M cache)
.

Without shrinking, clearly both approaches have very similar numbers of iterations.
This observation is expected due to Theorem 7. Then as (33) costs more than (11) does,
the time ratio is in general smaller than one. Especially when the cache is large enough
to store all kernel elements, selecting working sets is the main cost and hence the ratio is
lower.

With shrinking, in Figures 9(c) and 9(d), the iteration ratio is larger than one for
several problems. Surprisingly, the time ratio, especially that of using a small cache, is even
smaller than that without shrinking. In other words, (11) better incorporates the shrinking
technique than (33) does. To analyze this observation, we check the number of removed
variables along iterations, and find that (11) leads to more aggressive shrinking. Then the
reduced problem can be stored in the small cache (100K), so kernel evaluations are largely
saved. Occasionally the shrinking is too aggressive so some variables are wrongly removed.
Then recovering from mistakes causes longer iterations.

Note that our shrinking implementation is by removing bounded elements not in the
set (25). Thus, the smaller the interval [M(αk), m(αk)] is, the more variables are shrunk.
In Figure 10, we show the relationship between the maximal violation m(αk)−M(αk) and
iterations. Clearly using (11) reduces the maximal violation more quickly than using (33).
A possible explanation is that (11) has less restriction than (33): In early iterations, if a set
B = {i, j} is associated with a large violation −yi∇f(αk)i +yj∇f(αk)j , then dB defined in
(15) has large components. Hence though it minimizes the quadratic functions (9), αk

B +dB

is easily infeasible. To solve (33), one thus changes αk
B + dB back to the feasible region

as (35) does. As a reduced step is taken, the corresponding Sub(B) may not be smaller
than those of using other sets. On the other hand, (11) does not require αk

B + dB to be
feasible, so a large step is taken. The resulting Sub(B) thus may be small enough so that
B is selected. Therefore, using (11) tend to select working sets with large violations and
hence may more quickly reduce the maximal violation.

Discussion here shows that (11) is better than (33). They lead to similar numbers of
iterations, but the cost per iteration is less by using (11). Moreover, (11) better incorporates
the shrinking technique.
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Figure 10: Iterations (x-axis) and maximal violations (y-axis) of using (11) and (33).

6.3 Sub-problems Using First Order Information

Under first order approximation, we can also modify the sub-problem (8) to the following
form, which maintains the feasibility:

Sub(B) ≡ min
dB

∇f(αk)T
BdB

subject to yT
BdB = 0, (43)

0 ≤ αi + di ≤ C, i ∈ B.

Section 2 discusses that a maximal violating pair is an optimal solution of minB:|B|=2 Sub(B),
where Sub(B) is (8). If (43) is used instead, Simon (2004) has shown an O(l) procedure to
obtain a solution. Thus the time complexity is the same as that of using (8).

Note that Theorem 7 does not hold for these two selection methods. In the proof, we
use the small changes of αk

i in final iterations to show that certain αk
i never reaches bounds

0 and C. Then the sub-problem (2) to find αk+1 is indeed the best sub-problem obtained
in the procedure of working set selection. Now no matter (8) or (43) is used for selecting
the working set, we still use (2) to find αk+1. Therefore, we cannot link the small change
between αk and αk+1 to the optimal dB in the procedure of working set selection. Without
an interpretation like Theorem 7, the performance difference between using (8) and (43)
remains unclear and is a future research issue.
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(a) RBF kernel

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

im
age

sp
lic

e
tre

e
a1a

austr
alia

n

breast-
ca

nce
r

diabetes

fourcl
ass

germ
an.numer

w1a

Ra
tio

Data sets

parameter selection
final training

(b) Linear kernel

Figure 11: Iteration ratios between using two selection methods: checking all
(

l
2

)

pairs and
WSS 2. Note that the ratio (y-axis) starts from 0.4 but not 0.

7. Discussion and Conclusions

In Section 2, the selection (10) of using second order information may involve checking
(

l
2

)

pairs of indices. This is not practically viable, so in WSS 2 we heuristically fix i ∈ arg m(αk)
and examine O(l) sets to find j. It is interesting to see how well this heuristic performs
and whether we can make further improvements. By running the same small classification
problems used in Section 6, Figure 11 presents the iteration ratio between using two selection
methods:

# iter. by Alg. 2 and checking
(

l
2

)

pairs

# iter. by Alg. 2 and WSS 2
.

We do not use shrinking and consider both RBF and linear kernels. Figure 11 clearly shows
that a full check of all index pairs causes fewer iterations. However, as the average of ratios
for various problems is between 0.7 and 0.8, this selection reduces iterations of using WSS 2
by only 20% to 30%. Therefore, WSS 2, an O(l) procedure, successfully returns a working
set nearly as good as that by an O(l2) procedure. In other words, the O(l) sets heuristically
considered in WSS 2 are among the best in all

(

l
2

)

candidates.
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Experiments in this paper fully demonstrate that using the proposed WSS 2 (and hence
WSS 3) leads to faster convergence (i.e., fewer iterations) than using WSS 1. This result
is reasonable as the selection based on second order information better approximates the
objective function in each iteration. However, this argument explains only the behavior
per iteration, but not the global performance of the decomposition method. A theoretical
study showing that the proposed selection leads to better convergence rates is a difficult
but interesting future issue.

In summary, we have proposed a new and effective working set selection WSS 3. The
SMO-type decomposition method using it asymptotically converges and satisfies other useful
theoretical properties. Experiments show that it is better than a commonly used selection
WSS 1, in both the training time and iterations.

WSS 3 has replaced WSS 1 in the software LIBSVM (after version 2.8).
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Appendix A. WSS 1 Solves Problem (7): the Proof

For any given {i, j}, we can substitute d̂i ≡ yidi and d̂j ≡ yjdj to (8), so the objective
function becomes

(−yi∇f(αk)i + yj∇f(αk)j)d̂j . (44)

As di = dj = 0 is feasible for (8), the minimum of (44) is zero or a negative number. If

−yi∇f(αk)i > −yj∇f(αk)j , using the condition d̂i + d̂j = 0, the only possibility for (44) to

be negative is d̂j < 0 and d̂i > 0. From (3), (8b), and (8c), this corresponds to i ∈ Iup(α
k)

and j ∈ Ilow(αk). Moreover, the minimum occurs at d̂j = −1 and d̂i = 1. The situation of
−yi∇f(αk)i < −yj∇f(αk)j is similar.

Therefore, solving (7) is essentially the same as

min
{

min
(

yi∇f(αk)i − yj∇f(αk)j , 0
)

∣

∣ i ∈ Iup(α
k), j ∈ Ilow(αk)

}

= min
(

−m(αk) + M(αk), 0
)

.

Hence, if there are violating pairs, the maximal one solves (7).

Appendix B. Pseudo Code of Algorithm 2 and WSS 3

B.1 Main Program (Algorithm 2)

Inputs:

y: array of {+1, -1}: class of the i-th instance

Q: Q[i][j] = y[i]*y[j]*K[i][j]; K: kernel matrix

len: number of instances

// parameters
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eps = 1e-3 // stopping tolerance

tau = 1e-12

// main routine

initialize alpha array A to all zero

initialize gradient array G to all -1

while (1) {

(i,j) = selectB()

if (j == -1)

break

// working set is (i,j)

a = Q[i][i]+Q[j][j]-2*y[i]*y[j]*Q[i][j]

if (a <= 0)

a = tau

b = -y[i]*G[i]+y[j]*G[j]

// update alpha

oldAi = A[i], oldAj = A[j]

A[i] += y[i]*b/a

A[j] -= y[j]*b/a

// project alpha back to the feasible region

sum = y[i]*oldAi+y[j]*oldAj

if A[i] > C

A[i] = C

if A[i] < 0

A[i] = 0

A[j] = y[j]*(sum-y[i]*A[i])

if A[j] > C

A[j] = C

if A[j] < 0

A[j] = 0

A[i] = y[i]*(sum-y[j]*A[j])

// update gradient

deltaAi = A[i] - oldAi, deltaAj = A[j] - oldAj

for t = 1 to len

G[t] += Q[t][i]*deltaAi+Q[t][j]*deltaAj

}

B.2 Working Set Selection Subroutine (WSS 3)

// return (i,j)

procedure selectB

// select i

i = -1

G_max = -infinity

G_min = infinity

for t = 1 to len {
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if (y[t] == +1 and A[t] < C) or

(y[t] == -1 and A[t] > 0) {

if (-y[t]*G[t] >= G_max) {

i = t

G_max = -y[t]*G[t]

}

}

}

// select j

j = -1

obj_min = infinity

for t = 1 to len {

if (y[t] == +1 and A[t] > 0) or

(y[t] == -1 and A[t] < C) {

b = G_max + y[t]*G[t]

if (-y[t]*G[t] <= G_min)

G_min = -y[t]*G[t]

if (b > 0) {

a = Q[i][i]+Q[t][t]-2*y[i]*y[t]*Q[i][t]

if (a <= 0)

a = tau

if (-(b*b)/a <= obj_min) {

j = t

obj_min = -(b*b)/a

}

}

}

}

if (G_max-G_min < eps)

return (-1,-1)

return (i,j)

end procedure
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Abstract

A revision algorithm is a learning algorithm that identifiesthe target concept, starting from an
initial concept. Such an algorithm is considered efficient if its complexity (in terms of the measured
resource) is polynomial in the syntactic distance between the initial and the target concept, but only
polylogarithmic in the number of variables in the universe.We give efficient revision algorithms in
the model of learning with equivalence and membership queries. The algorithms work in a general
revision model where both deletion and addition revision operators are allowed. In this model one
of the main open problems is the efficient revision of Horn formulas. Two revision algorithms are
presented for special cases of this problem: for depth-1 acyclic Horn formulas, and for definite
Horn formulas with unique heads.

Keywords: theory revision, Horn formulas, query learning, exact learning, computational learning
theory

1. Introduction

Computationally efficient learnability has been studied in the past two decadesfrom many angles.
For example, both the PAC and query learning models have been studied, and complexity has been
variously measured in terms of sample size, the number of queries, and running time. Attribute-
efficient learning algorithms are required to be efficient (polynomial) in the number of relevant
variables, and “super-efficient” (polylogarithmic) in the total number of variables (Blum et al., 1995;
Bshouty and Hellerstein, 1998).

A related notion,efficient revision algorithms, has been studied in machine learning, where
various approaches to building systems have been considered (see, e.g., Koppel et al., 1994; Lamma
et al., 2003; Ourston and Mooney, 1994; Richards and Mooney, 1995; Towell and Shavlik, 1993).
Efficient revision algorithms have received some attention in learning theoryas well. A revision
algorithm is applied in a situation where learning does not start from scratch, but there is an initial
concept available, which is a reasonable approximation of the target concept. The standard example
is an initial version of an expert system provided by a domain expert. The efficiency criterion in this
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case is to be efficient (polynomial) in thedistancefrom the initial concept to the target (whatever
distance means; we get back to this in a minute), and to be “super-efficient” (polylogarithmic) in
the total size of the initial formula. Again, it is argued that this is a realistic requirement, since,
for many complex concepts, the only hope of learning those concepts is if a reasonably good initial
approximation is available.

The notion of distance usually considered for efficient revision is a syntactic one: the number
of edit operations that need to be applied to the initial representation in orderto get a representation
of the target. The particular edit operations considered depend on the concept class. Intuitively,
attribute-efficient learning is a special case of efficient revision, whenthe initial concept has an
empty representation. In machine learning, the study of revision algorithms is referred to as the-
ory revision; more detailed references to the literature are given in Wrobel’s overviews of theory
revision (Wrobel, 1994, 1995) and also in our recent papers (Goldsmithet al., 2002, 2004b).

The theoretical study of revision algorithms was initiated by Mooney (1995) inthe PAC frame-
work, and additional theoretical work was done by Greiner (1999a,b).We have studied revision
algorithms in the model of learning with equivalence and membership queries (Goldsmith et al.,
2002, 2004b) and in the mistake-bound model (Sloan et al., 2003).

It is a general observation both in practice and in theory that those edit operations which delete
something from the initial representation are easier to handle than those whichadd something to
it. We have obtained efficient revision algorithms for monotone1 Disjunctive Normal Form (DNF)
with a bounded number of terms when both deletion and addition type revisions are allowed, but for
the practically important case of Horn formulas we found an efficient revision algorithm only for the
deletions-only model. We also showed that efficient revision of general (or even monotone) DNF
is not possible, even in the deletions-only model. Finding an efficient revision algorithm for Horn
formulas in the general revision model (deletions and additions) emerged asperhaps the main open
problem posed by our previous work on revision algorithms. One of the tworesults presented here
extends that of Doshi (2003), who gave a revision algorithm for a special case of Horn sentences he
called “unique explanations,” which in the terminology presented below wouldbe the special case
of depth-1 acyclic Horn sentences where the heads must all be distinct, every clause must have a
head, and the heads cannot be revised. The result we give in Section 3removes all of his restrictions
concerning the heads.

1.1 Revision with Queries

In this paper, we consider revision inquery-basedlearning models, in particular, in the standard
model of learning withmembershipandequivalencequeries, denoted by MQ and EQ (Angluin,
1988). This is a very well-studied model (e.g., Angluin, 1987b, 1988; Angluin et al., 1992; Auer
and Long, 1999; Bshouty and Hellerstein, 1998; Blum et al., 2004; Bshouty, 1995), nearly as much
so as PAC learning. In an equivalence query, the learning algorithm proposes ahypothesis, that
is, a theoryh, and the answer depends on whetherh = c, wherec is the target theory. If so, the
answer is “correct”, and the learning algorithm has succeeded in its goalof exact identification of
the target theory. Otherwise, the answer is acounterexample: any instancex such thatc(x) 6= h(x).
In a membership query, the learning algorithm gives an instancex, and the answer is either 1 or 0,
depending onc(x).

1. A propositional logic formula ismonotoneif it contains no negations.
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The query complexityof a learning algorithm is the number of queries it asks. Note that the
query complexity is a lower bound on the running time. For running time, we donot count the
time required to answer the queries. From a formal, theoretical point of view, we assume that there
are two oracles, one each to answer membership and equivalence queries. In practice, membership
queries would need to be answered by a domain expert, and equivalencequeries could either be
answered by a domain expert, or by using the hypothesis and waiting for evidence of an error in
classification.

One scenario for practical applications is that one starts with an initial theoryand a set of
(counter)examples, for which the initial theory gives an incorrect classification. The goal then is
to find a small modification of the initial theory that is consistent with the examples. In this setup,
one can simulate an equivalence query by running through the examples. If we find a counterex-
ample to the current hypothesis, then we continue the simulation of the algorithm. Otherwise, we
terminate the learning process with the current hypothesis serving as our final revised theory. In
this way, an efficient equivalence and membership query algorithm can beturned into an efficient
practical revision algorithm.

Perhaps the most common case for practical applications of theory revisionis to fix an initial
theory that is provided by an expert. It is reasonable to hope that the expert is able to answer further
queries about the classification of new instances. Consider the following case: Expert oncologist
Dr. Jones is cooperating with the local computer scientists to build a model of foobaric cancer. She
gives long answers to the knowledge engineers’ initial open-ended questions, and countless shorter
answers as they build and refine their model. These shorter questions aremembership questions:
“If the patient has this complex of symptoms, do you diagnose foobaric cancer?”

Finally, in the model validation phase of the work, the knowledge engineers and computer sci-
entists proudly present scenarios and diagnoses. And Dr. Jones shakes her head and says, “No,
that’s not right at all. Your system will give the wrong diagnosis in these settings; reliance on this
symptom is a red herring.”

These latter responses are equivalence queries, complete with counterexamples.

As an aside, even theory revision via queries for formal languages may have some application.
Consider Professor Doe, who is teaching, say, Automata and Formal Languages. Her difficult
student presents her with an incorrect finite automaton, and demands proof that it is incorrect. She
provides a counterexample, some string that the presented automaton misclassifies. It becomes clear
that the student has misunderstood the problem. String by string, he queriesher about membership
in the desired regular language, offering periodic updates to his automaton until either it is correct,
or Professor Doe discovers a prior appointment.

Note that an efficient revision algorithm is clearly in the student’s best interest in this case.

1.2 Classes of Horn Formulas Considered

Horn revision is the problem that most practical theory revision systems address. It is to be noted
here that the notions of learning and revising Horn formulas are open to interpretation, as discussed
by Goldsmith et al. (2004b); the kind of learnability result that we wish to extend to revision in this
paper is that of Angluin et al. (1992) for propositional Horn formulas.

In this paper we present results for the revision problem outlined above:the revision of Horn
formulas in the general revision model allowing both deletions and additions (more precise defi-
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nitions are given in Section 2). We use the model of learning with membership and equivalence
queries.

We show that one can revise two subclasses of Horn formulas with respect to both additions
and deletions of variables. The new algorithms make use of our previous, deletions-only revision
algorithm for Horn formulas (Goldsmith et al., 2004b) and new techniques which could be useful
for the general question as well.

1.2.1 DEPTH-1 ACYCLIC HORN

Logic programming theories are often presented as Horn theories. Each clause with a head, or
nonnegated variable, is interpreted as a potential justification for making the head variable true in
some model of the program. These clauses are also called “definite”.

In computing stable models of logic programs, it is simplest if the logic programs are strati-
fied (Apt et al., 1988; Chandra and Harel, 1985; Van Gelder, 1988),or acyclic (Angluin, 1987a).
One begins by setting all “facts,” or heads without bodies, to true.2 Then iteratively, one sets all
consequences of the current true variables to true.

At each iteration, one considers only definite clauses, and only those clauses whose heads do not
appear in the currently-true variables and all of whose variables are already true. These collections
of clauses, or strata of a program, are themselves depth-1 Horn theories. We begin by focusing on
theory revision for these simple theories.

One of our main results, Theorem 5, shows that this class can be revised using O(dist(ϕ,ψ) ·
m3 · logn) queries, wheren is the number of variables,ϕ is them-clause initial formula,ψ is the
target formula, anddist is the revision distance, which will be defined formally in Section 2.

1.2.2 DISTINCT HEADS/UNIQUE EXPLANATIONS

In life, and in many Horn theories, there may be multiple explanations of something, or Horn clauses
with the same head. Another simplification to Horn theories, other than considering individual
strata, is to consider theories that provide unique explanations for each variable; that is, theories
where clauses each have a distinct head. As in the stratified theories, this allows model-building to
be accomplished in one pass through the theory. [Note that this definition of “unique explanation”
is simpler than that of Doshi (2003). We also refer to such theories as having “distinct heads.”]

But even such simple theories are subject to revision. The expert who provides a theory may
fudge on explanations, including unnecessary preconditions or omitting necessary ones. Thus, our
second topic in this paper is revision with queries for theories consisting of unique explanations.

We also give a revision algorithm for definite Horn formulas with distinct heads, meaning that
no variable ever occurs as the head of more than one Horn clause. For this class, we revise with
query complexityO(m4+dist(ϕ,ψ) · (m3+ logn)), where againϕ is the initial formula andψ is the
target function (Theorem 8).

1.3 Overview of the Rest of the Paper

Preliminaries are given in Section 2, Horn formula revisions in Sections 3 and4, and open questions
in Section 5.

2. Acyclic Horn formulas have also been studied from various other points of view, including learning (Angluin, 1987a;
Arimura, 1997) and computational aspects (Hammer and Kogan, 1995).
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Figure 1: Graph of the Horn formulaϕ given by (1).

2. Preliminaries

We use standard notions from propositional logic such as variable, literal,term (or conjunction),
clause (or disjunction), etc. The set of variables forn-variable formulas and functions isXn =
{x1, . . . ,xn}. (In this paper,n will always be the total number of variables.)Instancesor vectorsare
elementsx ∈ {0,1}n. In the vocabulary of propositional logic, an instance (or vector) is a model
for the target theory. When convenient we treatx as a subset of[n] or Xn, corresponding to the
components, resp. the variables, which are set to true inx. Given a setY ⊆ [n] = {1, . . . ,n}, we
write χY = (α1, . . . ,αn) ∈ {0,1}n, whereαi = 1 if i ∈ y andαi = 0 otherwise, for the characteristic
vector ofY. We writex = (x1, . . . ,xn) ≤ y = (y1, . . . ,yn) if xi ≤ yi for everyi = 1, . . . ,n.

A Horn clauseis a disjunction with at most one unnegated variable; we will usually think of it
as an implication and call the clause’s unnegated variable itshead, and its negated variables itsbody.
We write body(c) and head(c) for the body and head ofc, respectively. When convenient, we treat
body(c) as the vector with 1’s in the positions where body(c) has variables. A Horn clause with
an unnegated variable is calleddefinite(or positive). If a definite clause contains only one variable,
then that clause is called afact. We will consider clauses with no unnegated variables to have head
F, and will sometimes write them as(body→ F).

A Horn formula is a conjunction of Horn clauses. A Horn formula is definite if all its clauses
are definite. A Horn formula hasunique headsif no two clauses have the same head.

We define thegraphof a Horn formula to be a directed graph on the variables together withF,
with an edge from variableu to variablev (resp.F) iff there is a clause with headv (resp.F) having
u in its body. A Horn formula isacyclic if its graph is acyclic; thedepthof an acyclic Horn formula
is the maximum path length in its graph (Angluin, 1987a).

For example, the Horn formula

ϕ = (x1∧x2 → x3)∧x2∧ (x1∧x4 → x5)∧ (x4∧x6 → F) (1)

is depth-1 acyclic. Its graph, shown in Figure 1, has the edges(x1,x3), (x2,x3), (x1,x5), (x4,x5),
(x4,F), and(x6,F) and this graph is acyclic with depth 1.
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If x satisfies the body of Horn clausec, considered as a term, we sayx covers c. Notice thatx
falsifies cif and only if x coversc and head(c) 6∈ x. (By definition,F 6∈ x.)

For Horn clause bodyb (or any monotone term) and vectorx, we useb∩ x for the monotone
term that has those variables ofb that correspond to 1’s inx. As an example,x1x4∩1100= x1.

We use the standard model of membership and equivalence queries (with counterexamples), de-
noted by MQ and EQ (Angluin, 1988). In an equivalence query, the learning algorithm proposes a
hypothesis, a formulah, and the answer depends on whetherh≡ c, wherec is the target formula.
If so, the answer is “correct”, and the learning algorithm has succeeded in its goal of exact identi-
fication of the target concept. Otherwise, the answer is acounterexample, any instancex such that
c(x) 6= h(x). If x is a counterexample andc(x) = 1 andh(x) = 0, then we refer tox as a positive
counterexample, and otherwise a negative counterexample.

2.1 Revision

The revision distancebetween a formulaϕ and a conceptC is defined to be the minimum number
of applications of a specified set of syntactic revision operators toϕ needed to obtain a formula for
C. The revision operators may depend on the concept class one is interested in. Usually, a revision
operator can either bedeletion-typeor addition-type.

For disjunctive or conjunctive normal forms (including Horn sentences), the deletion operation
can be formulated asfixing an occurrence of a variablein the formula to a constant. In thegeneral
model, studied in this paper, we also allow additions. The addition operation is toadd a new literal
to one of the terms or clauses of the formula. (Adding a new literal to open up a new clause or term
would be an even more general addition-type operator, which we have not considered so far. Note
that in Algorithm 2, while we “add clauses” to a hypothesis, these are always clauses that are in the
given formula but not yet in the hypothesis.) In the algorithms given in this paper, the new literals
must be added to the body of a clause.

We usedist(ϕ,ψ) to denote the revision distance fromϕ to ψ whenever the revision operators
are clear from context. In general, the distance is not symmetric.

A revision algorithmfor a formulaϕ has access to membership and equivalence oracles for
an unknown target concept and must return some representation of the target concept. Our goal is
to find revision algorithms whose query complexity is polynomial ind = dist(ϕ,ψ), but at most
polylogarithmicin n, the number of variables in the universe. For DNF (resp. CNF) formulas, we
allow polynomial dependence on the number of terms (resp. clauses) inϕ; it is impossible to do
better even for arbitrary monotone DNF in the deletions-only model of revision (Goldsmith et al.,
2002).

We state only query bounds in this paper; all our revision algorithms are computable in polyno-
mial time, given the appropriate oracles.

2.2 Binary Search for New Variables

Our revision algorithms use a kind of binary search, of a general kind often used in learning algo-
rithms involving membership queries, presented as Algorithm 1. The starting points of our binary
search are two instances, a negative instancenegand a positive instancepossuch thatpos< neg.
The algorithm returns a variablev that is critical in the sense that there is a (possibly empty) setSof
variables fromneg\ possuch thatnegmodified by setting the variables inS to 0 is still a negative
instance, but additionally settingv to 0 creates a positive instance.
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Algorithm 1 BINARY SEARCH(neg,pos).
Require: MQ(neg) == 0 and MQ(pos) == 1 andpos< neg

1: neg0 := neg
2: while negandposdiffer in more than 1 positiondo
3: Partitionneg\pos into approximately equal-size setsd1 andd2.
4: Putmid := negwith positions ind1 switched to 1
5: if MQ(mid) == 0 then
6: neg:= mid
7: else
8: pos:= mid
9: end if

10: end while
11: v := the one variable on whichposandnegdiffer
12: return v

3. Depth-1 Acyclic Horn Formulas

We show here how to revise depth-1 acyclic Horn formulas. Depth-1 acyclic Horn formulas are
precisely those where each variable that occurs as a head either occurs as a fact (the head of an
empty-bodied clause) or never occurs in the body of any clause. Notice that such formulas are a
class of unate CNF: variables that occur as facts are the only variables that can appear both negated
and unnegated, and we can always rewrite any Horn formula with facts to alogically equivalent
Horn formula where those fact variables do not appear in any clause body by using resolution. For
example,ϕ in Equation 1 is equivalent to

(x1 → x3)∧x2∧ (x1∧x4 → x5)∧ (x4∧x6 → F).

Previously we gave a revision algorithm for unate DNF (which would dualizeto unate CNF)
that was presented as being able to revise specifically two clauses (Goldsmithet al., 2002). It would
generalize to an algorithm whose query complexity is exponential in the numberof clauses. Here
we give an algorithm for an important subclass of unate CNF that is polynomial in the number of
clauses.

In the following subsection we give the algorithm and its analysis; then in Section 3.2 we give
an example run of the algorithm. The reader may find it helpful to switch back and forth between
the two subsections.

3.1 Algorithm and Analysis

The general idea of the algorithm is to maintain a one-sided hypothesis, in the sense that all equiv-
alence queries using the hypothesis must return negative counterexamples until the hypothesis is
correct.

Each negative counterexample can be associated with one particular headof the target clause,
or else with a headless target clause. We do this with a negative counterexamplex as follows.

Let us call those variables that occur as the head of a clause of the initial formulahead variables.
For a head variablev and instancex, we will use the notationxv to refer tox modified by setting
all head variablesother than vto 1. Note thatxv cannot falsify any clause with a head other thanv.
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Sincev will normally be the head of a Horn clause and we useF to denote the “head” of a headless
Horn clause, we will usexF to denotex modified to setall head variables to 1.

We will implicitly use the following fact often in our analysis of our algorithm.

Proposition 1 Let h be either a variable orF. If xh falsifies a clause of the target depth-1 acyclic
Horn formula with head h, thenx also falsifies that clause.

Proof Consider target clauseb→ h, whereb is nonempty andb→ h is falsified byxh. It must be
thatxh coversb. If xh coversb, thenx coversb, since no head variables may occur inb, andxh \x
consists only of those head variables besidesh. Thus, changing those variables from 1 inxh to 0 in
x can only falsifymoreclauses.

The algorithm begins with an assumption that the revision distance from the initialtheory to
the target theory isd. If the revision fails, thend is doubled and the algorithm is repeated. Since
the algorithm is later shown to be linear ind, this series of attempts does not affect the asymptotic
complexity. We give a brief overview of the algorithm, followed by somewhat more detail. The
pseudocode is given as Algorithm 2.

We maintain a hypothesis that is, viewed as the set of its satisfying vectors, always a superset
of the target. Thus each time we ask an equivalence query, if we have notfound the target, we get
a negative counterexamplex. Then the first step is to ask a membership query onx modified to
turn onall of the head variables. If that returns 0, then the modifiedx must falsify a headless target
clause. Otherwise, for each head variableh that is 0 in the originalx, ask a membership query on
xh. We stop when the first such membership query returns 0; we know thatx falsifies a clause with
headh. In our pseudocode, we refer to the algorithm just described as ASSOCIATE.

Once a negative counterexamplex is associated with a head, we first try to usex to make
deletions from each existing hypothesis clause with the same head. If no such deletions are possible,
then we usex to add a new clause to the hypothesis. We find any necessary additions when we add
a new clause.

If (body(c)∩x)h (or, equivalently, body(c)h∩xh) is a negative instance, which we can determine
by a membership query, then we can create a new smaller hypothesis clause whose body is body(c)∩
x. (Notice that body(c)∩ x ⊂ body(c) because as a negativecounterexample, x must satisfyc.
Furthermore, since MQ(xF) = 1 and MQ(xh) = 0, we know thath is not inx.)

To usex to add a new clause, we then use an idea from the revision algorithm for monotone DNF
(Goldsmith et al., 2002). For each initial theory clause with the same head as wehave associated
(which for F is all initial theory clauses, since deletions of heads are allowed), use binary search
from x intersect{the initial clause with the other heads set to 1} up to x. If we get to something
negative with fewer thand additions, we updatex to this negative example.

Whether or notx is updated, we keep going, trying all initial theory clauses with the associated
head. This guarantees that in particular we try the initial theory clause with smallest revision dis-
tance to the target clause thatx falsifies. All necessary additions to this clause are found by the calls
to BINARY SEARCH; later only deletions will be needed.

We now give a series of lemmas that will together prove the correctness andquery complexity
of HORNREVISEUPTOD(ϕ,d). The first two lemmas give qualitative information. The first shows
that the hypothesis is always one-sided (i.e., only negative counterexamples can ever be received),
and the second says that newly added hypothesis clauses are not redundant.
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Algorithm 2 HORNREVISEUPTOD(ϕ,d). Revises depth-1 acyclic Horn formulaϕ if possible
using≤ d revisions; otherwise returns failure.

1: Rewriteϕ to remove any facts from other clauses’ bodies
2: H := everywhere-true empty conjunction
3: while (x := EQ(H)) 6= “Correct!” and d > 0 do
4: h :=ASSOCIATE(x,ϕ)
5: if H has at least one clausethen
6: for all clausesc∈ H with headh do
7: if MQ((body(c)∩x)h) == 0 then {delete vars fromc}
8: body(c) = body(c)∩x
9: d := d−number of variables removed

10: end if
11: end for
12: end if
13: if no vars. were deleted from any clausethen {find new clause to add}
14: FoundAClause:= false;min := d
15: for all c∈ ϕ with headh (or all c∈ ϕ if h == F) do
16: new= body(c)h∩xh

17: numAddedVars= 0 {# additions to body for thisc}
18: while MQ(new) == 1 and numAddedVars< d do
19: l := BINARY SEARCH(xh,new)
20: new := new∪{l}
21: numAddedVars:= numAddedVars+1
22: if MQ(x−{l}) == 0 then {(x−{l}) is a “pivot”}
23: x := x−{l}
24: restart thefor all c loop with thisx—go to Line 14 to reset other parameters
25: end if
26: end while
27: if MQ(new) == 0 then
28: x := new
29: FoundAClause:= true
30: min := min(numAddedVars,min)
31: end if
32: end for
33: if not FoundAClausethen
34: return “Failure”
35: else
36: Set all head variables ofx to 0
37: H := H ∧ (x→ h) {treatingx as monotone disjunction}
38: d := d−min
39: end if
40: end if
41: end while
42: return H is last EQ returned “Correct!”, otherwisereturn “Failure”
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Algorithm 3 ASSOCIATE(x,ϕ)

1: if MQ(xF) == 0 then
2: return F
3: end if
4: for each head variableh that is 0 inx do
5: if MQ(xh) == 0 then
6: return h
7: end if
8: end for

Lemma 1 Algorithm HORNREVISEUPTOD maintains the invariant that its hypothesis is true for
every instance that satisfies the target function.

Proof Formally the proof is by induction on number of changes to the hypothesis after it is initial-
ized. The base case is true, because the initial hypothesis is everywheretrue.

For the inductive step, consider how we update the hypothesis, either by adding a new clause or
deleting variables from the body of an existing clause.

Before creating or updating a clause to have headh and bodyy, we have ensured (at Line 7 for
updates of existing hypothesis clauses and at Line 27 for adding new clauses) that MQ(yh) = 0, that
is, thatyh is a negative instance. Because of that,yh must falsify some clause, and because of its
form and the syntactic form of the target, it must be a clause with headh. None of the head variables
in yh \ y can be in any body, soy must indeed be a superset of the variables of some target clause
with headh, as claimed.

Lemma 2 Let negative counterexamplex be associated with head h. Ifx is not used to make
deletions, thenxh falsifies any target clauses with head h whose body is covered byx. Further, if x
is used to add a new clause with head h to the hypothesis, then the body of the new clause does not
cover any target clause body covered by any other hypothesis clausewith head h.

Proof If x falsified the same target clause as an existing hypothesis clause body with headh, then
the membership query at Line 7 would return 0, andx would be used to delete variables from that
hypothesis clause body.

Now x may be changed from the value it had at Line 7 before it is used to actually add a new
clause. However, those changes (made whenx is updated at Line 28) in fact change certain non-
head variables ofx from 1 to 0, so the updatedx can falsify only fewer clauses than the originalx.
Thus if and whenx is used to add a new clause,x cannot falsify the same target clause as any exist-
ing hypothesis clause with the same head. The newly added hypothesis clause’s body is a subset of
x, so that clause body does not cover any other hypothesis clause bodywith headh.

The next lemma is the heart of the analysis of HORNREVISEUPTOD.

Lemma 3 HORNREVISEUPTOD(ϕ,d) succeeds in finding the target Horn formulaψ if it has re-
vision distance at most d fromϕ.
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Proof Let the initial formula beϕ =
Vm

i=1c0
i and the target formula beψ =

Vm′

i=1c∗i . We will assume
throughout the analysis in this proof that the terms of the initial and target formulas are numbered
so that they “line up” for calculating the revision distance fromϕ to ψ. That is, the revision distance
is

(m−m′)+
m′

∑
i=1

dist(c0
i ,c

∗
i ),

wheredist(c0
i ,c

∗
i ) is the revision distance from clausec0

i to c∗i , and is equal to a “body distance” that
is the symmetric difference between the bodies of the two clauses, plus a “head distance” that is 1
if head(c∗i ) = F and head(c0

i ) 6= F, and 0 if head(c∗i ) = head(c0
i ) (and is infinite in any other case).

Note thatm−m′ accounts for the clauses deleted and thatm≥ m′ because we cannot add entirely
new clauses.

Let dr be the value of the variabled at the start of therth iteration of the outerwhile loop. We
argue by induction onr both thatdr is an upper bound on the number of revisions required to get
from a formula made of those terms in the current hypothesis and the remainingterms in the initial
formula to the target, and that therth iteration does not fail.

More precisely, assume that at the start of roundr, the hypothesisHr is c1∧c2∧·· ·∧c`r . Part of
our inductive claim is that there is a mapa(i) (technically a relation) of hypothesis clauses to target
clauses such that

(body(ci))
head(ci) falsifies target clausec∗a(i). (2)

Formallya is a relation because some hypothesis clauses may be mapped to more than one target
clause; that will occur precisely when (2) holds for more than one targetclause. The relationa
maps every indexi of a hypothesis clause to at least one target clause index, and is one-to-one in the
sense that no two target clauses ever have the same hypothesis clause mapped to both of them. The
relationa evolves in only two ways: (1) whena(i) is more than one index, sometimes one of those
indices gets dropped, and (2) a newi gets added to the domain ofa each time a clause is added to
the hypothesis. For convenience of notation, we will somewhat sloppily refer toc∗a(i) as if it were
one clause, when we mean that such statements hold for each of the associated target clauses.

The rest of the inductive claim is that: (i) therth iteration of HORNREVISEUPTOD does not
fail, and (ii) at the start of iterationr of HORNREVISEUPTOD,

dr ≥ ∑
ci∈H

∣

∣

∣
body(ci)\body(c∗a(i))

∣

∣

∣
+ ∑

c j 6∈H

dist(c0
j ,c

∗
j ). (3)

For the base case,d1 = d, hypothesisH1 has no terms, and Equation (3) is satisfied, since the
right hand side is the revision distance fromϕ to ψ less(m−m′).

To complete the base case, we must argue that the first iteration does not fail. We start with a
counterexamplex that is associated with headh. We need to show that a new clause is found using
x by at least one iteration of thefor all c loop starting at Line 15.Letc∗i be a target clause with
headh or F thatx falsifies. At some pointci will be used as the clause in thefor all c∈ ϕ loop at
Line 15. As longxh falsifiesonly target clausec∗i , then after at mostd calls to BINARY SEARCH, all
necessary additions toci will have been found and a clause will be added, completing the base case.
(Even ifxh falsifies multiple target clauses, this still might happen.)

However, ifxh falsifies more than one target clause, then we may find a variable that appears
to be a necessary addition but is really a necessary addition to a differentclause. Fortunately, this
requires only one query to verify (see Line 22 of the algorithm). When such a variable (a “pivot”)
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is found, we set that variable ofx to off so that the new value ofxh falsifies fewer clauses. Thus,
this can occur at mostm−1 times beforex falsifies exactly one clause, and no more pivots may be
found. Once that happens, we must find a clause.

For the inductive step, there are two cases.
Case 1:xh is not used to delete any variables from any target clause. The argumentthat this

iteration does not fail is the same as the corresponding argument for the base case.
As in the base case, there may be some number of times that a pivot is found and set to 0

in x. Now consider the value ofx after any pivots have been found, and after the last timex is
updated at Line 27. By Lemma 2,x does not cover any target clauses covered by clause bodies
in the hypothesis, so it must cover one or more new target clauses. Letc∗j be one of those target
clauses. The “body” revision distancedist(c0

j ,c
∗
j ) is equal to the number of “necessary additions”,

∣

∣

∣
body(c∗j )\body(c0

j )
∣

∣

∣
, plus the number of “necessary deletions”,

∣

∣

∣
body(c0

j )\body(c∗j )
∣

∣

∣
. In the iter-

ation of thefor all c loop at Line 15 withc set toc0
j , all the necessary additions had to be found, and

the value ofnumAddedVarsfor that iteration would have been the number of the necessary addi-
tions, so at most that number is subtracted fromdr . Also,x after that intersection contained at most
the variables in the body ofc∗j before the necessary deletions are made. In later revisions, all that
can happen is some of those necessary deletions might happen to be made. Thus Equation (3) holds
at the end of therth iteration of the outerwhile loop. To complete the inductive step for this case,
note that the relationa can indeed be extended by relating the index of the new hypothesis clause to
the one or more target clauses whose body its body covers, so Equation (2) holds.

Case 2:xh is used to delete variables from at least one hypothesis clause. Say deletions are
made to hypothesis clauseci . Now (body(ci)∩x)h can falsify only the same or fewer clauses than
body(ci) falsifies. By the inductive hypothesis (specifically Equation (2) coupled with Proposi-
tion 1), body(ci) falsifies target clause(s)c∗a(i). Thus the updated hypothesis clauseci := (body(ci)∩

x) must falsify some or all of the clause(s)c∗a(i), and the relationa is either unchanged, or altered
by decreasing the range ofa(i). Equation (3) still holds because we decreasedr by the number of
deletions we make, and we also decrease|body(ci)\body(c∗a(i))| by the number of deletions we
make.

Clausec∗a(i) could be derived fromci by deletion edits; that is, body(ci) falsifiesc∗a(i). By Propo-

sition 1, since MQ((body(ci)∩ x)h) = 0, it must be that body(ci)∩ x falsifies a target clause with
headh. Further, using the numbering of the target clauses that makes that targetclause correspond
to ci at the start of the round, the number of variables removed from body(c) is subtracted from the
parameterd, and Equation (3) still holds, completing the induction step.

We will find all the necessary additions to body(ci) using at mostdr calls to BINARY SEARCH

(in fact, using at most|body(c∗i )\body(ci)|) calls. Furthermore, the clause added will have all the
variables in body(c∗i ) and no variables not in body(ci)∪body(c∗i ) (i.e., it will need at most only nec-
essary deletion revisions), and the parameterdr will be decreased by at most the number of added
variables.

Lemma 4 The query complexity ofHORNREVISEUPTOD(ϕ,d) is O(m3 ·d · logn), whereϕ has m
clauses and there are n variables in the universe.

Proof If the variabled ever becomes nonpositive, then we terminate the algorithm.
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ASSOCIATEmakes at mostm equivalence queries per negative counterexample. Next we try to
use negative counterexamplex to make deletions from an existing clause. This consumes exactly 1
equivalence query and at mostm membership queries. If any deletions are made, we decreased by
at least 1.

There are at mostd such counterexamples used for deletions. Each counterexample used for
deletions uses≤ m+1 queries.

If a counterexample is not used for deletions, then we use it to add a new clause. We can have
at mostm−1 restarts (where we back up to Line 2) due to “pivots.” These occur whenx falsifies
multiple clauses, and each time one is found,x is modified so that it falsifies fewer clauses.

There are at mostm restarts, and ignoring the restarts, the mainforall loop at Line 15 iterates
over at most allm initial theory clauses. For each one iteration, the innerwhile loop iterates at
mostd times (once for each added literal). Each iteration of that innerwhile loop makes two direct
membership queries, and one call to BINARY SEARCH, which uses at most logn queries.

Thus, each of≤ m (re)starts uses at mostm·d · logn queries, plus 2m+ 1 queries to establish
that the particular counterexample should be used for the addition of a clause.

Thus the algorithm HORNREVISEUPTOD(ϕ,d) correctly revises initial formulaϕ usingO(d ·
(m+1)+m·m2 ·d · logn) = O(m3 ·d · logn) queries.

Theorem 5 There is a revision algorithm for depth-1 acyclic Horn formulas with query complexity
O(d ·m3 · logn), where d is the revision distance, n is the number of variables in the universe, and
m is the number of clauses in the initial formula.

Proof Lemmas 3 and 4 together have shown the desired theorem.

3.2 An Example Run of HORNREVISEUPTOD

We now give an example run of HORNREVISEUPTOD. Suppose the variable set is
{x1,x2,x3,x4,x5,x6,x7,x8} and the initial formulaϕ and the target formulaψ are given by

ϕ = x2∧ (x1 → x3)∧ (x1∧x4 → x5)∧ (x4∧x6 → F) (4)

ψ = x2∧ (x1 → F)∧ (x4∧x6∧x7∧x8 → x5).

The revision distance fromϕ to ψ is 5: 1 for the deletion of headx3 from second clause, 1 for the
deletion of the third clause, and 3 for adding the literals ¯x7, x̄8, andx5 to the fourth clause (i.e.,
addingx7 andx8 to the body of the fourth clause, andx5 to the head of the fourth clause).

For future reference, the head variables in the initial theory arex2, x3 andx5.
Assume now that Algorithm HORNREVISEUPTOD is called with inputsϕ and anyd ≥ 5.

It initializes its hypothesisH to the everywhere true empty conjunction. Assume EQ(H) re-
turnsx = 11101110, a negative counterexample. Now we call ASSOCIATE(ϕ,11101110) to find
a candidate head for a clause negated by 11101110. In ASSOCIATE we immediately find that
MQ(11101110F) = MQ(11101110) = 0, so ASSOCIATE(ϕ,11101110) returnsF. (Recall that the
operationxF sets all head variables ofx to 1.)
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HypothesisH currently has no clauses, so we will use 11101110 to add a new clause toH
starting at Line 13. Because ASSOCIATE returnedF, each of the four clauses ofϕ is consid-
ered. Say they’re processed in the order they are written in Equation (4). Starting withx2, we
set new to be body(x2)

F ∩ 11101110F = 01101000∩ 11101110= 01101000. That is a posi-
tive instance, so we begin making calls of BINARY SEARCH from xF = 11101110 tonew. Now
BINARY SEARCH(11101110,01101000) returns the positionx1. We turn positionx1 to 1 in new,
so nownew is 11101000, and incrementnumbAddedVarsto be 1 instead of 0. Turning position
x1 to 0 in 11101110 yields a positive instance, so we donot have a pivot (Lines 22–25). Now
MQ(new) = 0, so we updatex to be 11101000, and setFoundAClauseto true andmin to num-
bAddedVars, which is 1.

Now we have to consider the next three clauses ofϕ. However, when we intersectxF =

11101000 with body(c)F at Line 15 for each of the remaining three clausesc in ϕ we get back
x, so no changes are made.

Thus in Lines 36–38, we updateH to be

H = (x1 → F),

and decrementd by 1, and begin the next iteration of the outerwhile loop by making another
equivalence query.

Say this time we receive the negative counterexamplex = 01110111. When we call ASSOCIATE,
the instance 01110111F = 0111111 is positive, soF is not returned. The only head variable in
01110111 that is 0 isx5, and MQ(01110111x5) = MQ(01110111) = 0, so ASSOCIATE returns
h = x5. There is no clause inH with headx5, so we do not try to use instance 01110111 to delete
variables from any clause ofH.

In the for loop starting at Line 13 we consider only clauses with headx5; there is exactly
one: c = (x1 ∧ x4 → x5). We setnew = body(c)x5 ∩ 01110111x5 = 10010000x5 ∩ 01110111x5 =
11110000∩01110111= 01110000, which is a positive example.

Again, we make calls of BINARY SEARCH from xh = 01110111 tonew. Assume that the first
call returns positionx8. Then we updatenew to 01110001, andnumAddedVarsto 1. Sincenew
is still a positive instance, we call BINARY SEARCH again. Say this time it returns positionx7.
We updatenew to 01110011, andnumAddedVarsto 2. Instancenew remains positive; we call
BINARY SEARCH again; it returnsx6; we updatenew to 01110111 andnumAddedVarsto 3. Finally
new is a negative instance, so we updatex = new= 01110111, setFoundAClauseto true andmin
to 3.

In Lines 36–38 we set all head variables ofx to 0 sox = 00010111 and add a new clause of the
form x → h to H; thus we updateH to be

H = (x1 → F)∧ (x4∧x6∧x7∧x8 → x5),

and decrementd by 3, sod has now been reduced by 4 altogether.
We begin our next iteration of the outer loop by receiving the counterexample x = 00000000 in

response to EQ(H). When we call ASSOCIATE(x), it determines that 00000000F = 01101000 is a
positive example, and so does not returnF, and that 00000000x2 = 00101000 is a negative example,
and so does returnh = x2. There is no clause inH with headx2, so we do not try to usex to delete
variables from existing clauses ofH.
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Instead, we again execute thefor loop starting at Line 13. This time we consider only the one
clausec = x2 with headx2 (and empty body). We setnew = body(x2)

x2 ∩ xx2 = 000000000x2 ∩
00000000x2 = 00101000, which is a negative instance. Thus thewhile loop at Lines 18–26 is not
executed at all. We skip over it and set all head variables ofx to 0; thusx = 00000000. We update
the hypothesis to

H = (x1 → F)∧ (x4∧x6∧x7∧x8 → x5)∧x2.

The variablenumAddedVarswas 0; somin was 0, andd is not changed from its previous value (4
less than its initial value).

Now H is the target formula, so a final equivalence query returns “Correct!”This simple exam-
ple did not by any means exercise every path through the algorithm’s pseudocode, but it should give
the general idea.

4. Definite Horn Formulas with Unique Heads

We give here a revision algorithm for definite Horn formulas with unique heads. A revision of a
formula from classC must also be in classC , so in particular, a revision of a definite Horn formula
also be a definite Horn formula. Thus head variables cannot be fixed to 0.We use the algorithm
for revising Horn formulas in the deletions-only model presented by Goldsmithet al. (2004b) as a
subroutine. Its query complexity isO(d ·m3 + m4), whered is the revision distance andm is the
number of clauses in the initial formula.

For this algorithm we again first give the algorithm and its analysis, and then in Section 4.2 give
an example run of (the main part of) the algorithm.

Algorithm 4 DEFINITEHORNREVISE(ϕ). Revisesϕ, a definite Horn formula with unique heads
1: H := everywhere-true empty conjunction
2: for all clausesc = (b→ h) of ϕ do
3: 0h := vector with 0 ath, 1’s elsewhere
4: if MQ(0h) == 0 then
5: x := vector with a 1 for every variable inb and every head of a clause ofϕ excepth, and

0’s elsewhere
6: while MQ(x) 6= 0 do
7: v := BINARY SEARCH(0h,x)
8: Add variablev to clause bodyb
9: Set positionv to 1 inx

10: end while
11: Add all heads ofϕ excepth to b
12: H := H ∧ (b→ h)
13: end if
14: end for
15: return DELETIONSONLY REVISE(H)

Our algorithm, DEFINITEHORNREVISE(ϕ), presented as Algorithm 4, has a first phase that
both deletes any clauses that need deleting in their entirety and finds all the variables that need to
be added to the initial formula. That partially revised formula is then passed asan initial formula
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to the known algorithm (Goldsmith et al., 2004b) for revising Horn formulas in the deletions-only
model of revision.

For each clausec= (b→ h), the check in Line 4 whether the vector that is 0 ath and 1 elsewhere
is a negative instance determines whether clausec should be deleted altogether.

To find all necessary additions to the bodyb of clausec= (b→ h), we use a constructed example
xc. We initializexc to bh (the body variables fromb, plus all head variables excepth). Notice that
the only way MQ(xc) can be 0 is ifx covers the body of a clause but not its head. Sincexc includes
all heads excepth, it is clearwhichclause body is or is not covered byxc; the notion of “pivots” is
not needed in this algorithm.

Next, the query MQ(xc) is asked. If MQ(xc) = 0, then no variables need to be added to the
body ofc, andb→ h is added to the hypothesis. If MQ(xc) = 1, the necessary additions to the body
of c are found by repeated use of BINARY SEARCH. To begin the binary search,xc is the known
positive instance that must satisfy the target clausec∗ derived fromc, and the assignment with a 0
in positionh and a 1 everywhere else is the known negative instance that must falsifyc∗.

Each variable returned by BINARY SEARCH is added to the body of the clause, andxc is updated
by setting the corresponding position to 1. The process ends whenxc becomes a negative instance, a
clause with headh and a body variable corresponding to each 1 inxc → h is added to the hypothesis.

Once the necessary additions to every clause in the initial theory are found, a Horn formula
needing only deletions has been produced, and the deletions-only algorithm DELETIONSONLY RE-
VISE from (Goldsmith et al., 2004b) is used to complete the revisions.

Notice that eachxc is generated, and each clause is added to the hypothesis, without any equiv-
alence queries being asked. Thus, all additions may be made before any deletions are considered.

4.1 Analysis

The key part of the analysis of the revision complexity of this algorithm is the analysis of the
initial processing of each clause. First we show that any entire clause deletions are correct, then we
consider the addition of variables to an initial clause.

Lemma 6 AlgorithmDEFINITEHORNREVISE adds a clause that is either the initial formula clause
c itself, or a revision of initial clause c made by adding variables to body(c), at Line 12 if and only
if some revision of c appears in the target formula.

Proof Let c = (b→ h). Vector0h is 0 at positionh and 1 elsewhere. If any clause that is a revision
of c appears in the target (not counting the everywhere true clause, which can be omitted from any
conjunction), then0h must falsify this target clause. In this case, a revision ofc is added to the
algorithm’s hypothesis.

Conversely, if0h is a positive instance, then it must be that the target contains no clause with
headh, and hence, since the formulas are definite Horn formulas with unique heads, no clause that
is a revision ofc. In this case, the algorithm does not add any clause that is a revision ofc to its
hypothesis.

Lemma 7 If any variable is added to the body of an initial clause c ofϕ in Algorithm
DEFINITEHORNREVISE(ϕ), then some clause c∗ that is derived from c must be in the target for-
mula, and every variable added to c in the loop in Lines 6–9 must be in c∗.
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Proof If variables are added to the body of clausec, then eventually a clause is added to the
hypothesis, and by Lemma 6, we know that this means that a clause derived from c must be in the
target formula.

Variablev is added to body(c) in the loop at Lines 6–9 only if there is a point in the computation
where there are instancesx andx′ suchx is a positive instance andx′ is a negative instance, andx′

is x with positionv, and possibly some other positions that are not the head of any clause, changed
from 0 to 1. Furthermore,x′ with positionv set to 0 is a positive instance. By the construction, both
x andx′ must have a 1 in the position of every head except for the headh of c, sox′ must falsify
a target clause that is a revision ofc. Furthermore, sincex′ with v set to 0 is a positive instance,v
must be in that target clause.

From those two lemmas we can prove:

Theorem 8 There is a revision algorithm for definite Horn formulas with unique heads in thegen-
eral model of revision with query complexity O(m5 + d ·m3 + d · logn), where d is the revision
distance from the initial formula to the target formula, m is the number of clausesin the initial
formula, and n is the number of variables in the universe.

Proof By Lemmas 6 and 7, each variable added to a clause is necessary, and anyclause deleted in
thefor loop is unnecessary.

The query complexity for the necessary additions is at mostO(logn) per added variable, which
contributes a factor ofO(d logn).

Algorithm DELETIONSONLY REVISE has complexity(m4 + d ·m3) (Goldsmith et al., 2004b),
wherem is the number of clauses in the formula to be revised, andd is the revision distance.
Now the formula to given to Algorithm DELETIONSONLY REVISE has revision distance at most
d+m(m−1), where them(m−1) comes from the up tom−1 heads added to the bodies of up tom
clauses. Combining this information, we get a final query complexity ofO(m5+d ·m3+d logn).

4.2 An Example Run of DEFINITE HORNREVISE

We present an example run of DEFINITEHORNREVISE. Suppose the variable set is
{x1,x2,x3,x4,x5,x6} and the initial formulaϕ and the target formulaψ are given by

ϕ = x1∧ (x5∧x6 → x2)∧ (x2∧x3∧x4 → x5)∧ (x2 → x6) (5)

ψ = (x3 → x1)∧ (x5∧x6 → x2)∧ (x3∧x4∧x6 → x5)

The revision distance fromϕ to ψ is 4: 1 for addingx3 to the body of the first clause, 2 for adding
one variable and deleting another from the body of the third clause, and 1 for deleting the fourth
clause.

We process the four clauses ofϕ in order:

1. Clause x1: The vector0x1 = 011111 (i.e., 0 only atx1) is a negative instance, so we retain this
clause. We setx to 010011, which is a positive instance, so we enter thewhile loop of Algo-
rithm DEFINITEHORNREVISE at Lines 6–10. In the first iteration BINARY SEARCH(0x1,x)
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returnsx3. Settingx3 to 1 in x makesx = 011011, which is a negative instance, so we are
done with thewhile loop.

We insert the clause
(x2∧x3∧x5∧x6 → x1)

into the hypothesis.

2. Clause(x5 ∧ x6 → x2): Vector 0x2 = 101111 is negative, so we retain this clause. We set
x = 100011, which is a negative instance, so we do not need to call BINARY SEARCH.

We insert the clause
(x1∧x5∧x6 → x2)

into the hypothesis.

3. Clause(x2∧x3∧x4 → x5): Vector0x5 = 111101 is negative, so we retain this clause. We set
x = 111101, which is a negative instance, so we do not need to call BINARY SEARCH.

We insert the clause
(x1∧x2∧x3∧x4∧x6 → x5)

into the hypothesis.

4. Clause(x2 → x6): Vector0x6 = 111110 is positive, so we do not put this clause in the hypoth-
esis (i.e., we delete this clause).

Our hypothesis is now

H = (x2∧x3∧x5∧x6 → x1)∧ (x1∧x5∧x6 → x2)∧ (x1∧x2∧x3∧x4∧x6 → x5).

We now have a hypothesis needing only deletion edits, and we pass this hypothesis to the
deletions-only algorithm from Goldsmith et al. (2004b).

5. Conclusions and Open Questions

Horn formulas are ubiquitous in Computer Science, occurring in subfields from expert systems to
databases. In all of these instances, the formulas or theories are dependent on human expertise or
on potentially changing conditions. In many cases, “oracles” capable of answering equivalence or
membership queries are far easier to come by than are direct sources forthe correct theories.

The problem of revising Horn formulas with queries remains open, but this paper has broken the
additions barrier. Open questions range from small to large improvements onthe results presented
here. For instance, we have presented a revision algorithm for acyclic,depth-1 Horn formulas. Can
the techniques used here be extended to acyclic depth-2 or depth-k formulas? For acyclic formulas
with unbounded depth? How much harder is it to revise Horn formulas with unique heads if we
allow up to one occurrence ofF as a head? Bounded or unbounded occurrences?

If we can revise acyclic depth-k Horn formulas for eachk, how does the complexity depend on
k? Is the problem fixed-parameter tractable? Could the complexity of revision depend on a fixed
maximum number of occurrences as the head of a clause for each variable?
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Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations
for Gaussian process regression. Our approach relies on expressing theeffective priorwhich the
methods are using. This allows new insights to be gained, andhighlights the relationship between
existing methods. It also allows for a clear theoretically justified ranking of the closeness of the
known approximations to the corresponding full GPs. Finally we point directly to designs of new
better sparse approximations, combining the best of the existing strategies, within attractive com-
putational constraints.
Keywords: Gaussian process, probabilistic regression, sparse approximation, Bayesian committee
machine

Regression models based on Gaussian processes (GPs) are simple to implement, flexible, fully
probabilistic models, and thus a powerful tool in many areas of application. Their main limitation
is that memory requirements and computational demands grow as the square and cube respectively,
of the number of training casesn, effectively limiting a direct implementation to problems with
at most a few thousand cases. To overcome the computational limitations numerous authors have
recently suggested a wealth ofsparseapproximations. Common to all these approximation schemes
is that only a subset of the latent variables are treated exactly, and the remaining variables are given
some approximate, but computationally cheaper treatment. However, the published algorithms have
widely different motivations, emphasis and exposition, so it is difficult to getan overview (see
Rasmussen and Williams, 2006, chapter 8) of how they relate to each other, and which can be
expected to give rise to the best algorithms.

In this paper we provide a unifying view of sparse approximations for GP regression. Our
approach is simple, but powerful: for each algorithm we analyze the posterior, and compute the
effective priorwhich it is using. Thus, we reinterpret the algorithms as “exact inferencewith an
approximated prior”, rather than the existing (ubiquitous) interpretation “approximate inference
with the exact prior”. This approach has the advantage of directly expressing the approximations in
terms of prior assumptions about the function, which makes the consequences of the approximations
much easier to understand. While our view of the approximations is not the onlyone possible, it has
the advantage of putting all existing probabilistic sparse approximations under one umbrella, thus
enabling direct comparison and revealing the relation between them.

In Section 1 we briefly introduce GP models for regression. In Section 2 wepresent our uni-
fying framework and write out the key equations in preparation for the unifying analysis of sparse

c©2005 Joaquin Quiñonero-Candela and Carl Edward Rasmussen.
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algorithms in Sections 4-7. The relation of transduction and augmentation to oursparse framework
is covered in Section 8. All our approximations are written in terms of a new setof inducing vari-
ables. The choice of these variables is itself a challenging problem, and is discussed in Section
9. We comment on a few special approximations outside our general schemein Section 10 and
conclusions are drawn at the end.

1. Gaussian Processes for Regression

Probabilistic regression is usually formulated as follows: given a training setD = {(xi ,yi), i =
1, . . . ,n} of n pairs of (vectorial) inputsxi and noisy (real, scalar) outputsyi , compute the predictive
distribution of the function valuesf∗ (or noisyy∗) at test locationsx∗. In the simplest case (which
we deal with here) we assume that the noise is additive, independent and Gaussian, such that the
relationship between the (latent) functionf (x) and the observed noisy targetsy are given by

yi = f (xi)+ εi , where εi ∼ N (0, σ2
noise) , (1)

whereσ2
noise is the variance of the noise.

Definition 1 A Gaussian process (GP) is a collection of random variables, any finite number of
which have consistent1 joint Gaussian distributions.

Gaussian process (GP) regression is a Bayesian approach which assumes a GP prior2 over functions,
i.e. assumes a priori that function values behave according to

p(f|x1,x2, . . . ,xn) = N (0, K) , (2)

wheref = [ f1, f2, . . . , fn]> is a vector of latent function values,fi = f (xi) andK is a covariance ma-
trix, whose entries are given by thecovariance function, Ki j = k(xi ,x j). Note that the GP treats the
latent function valuesfi as random variables, indexed by the corresponding input. In the following,
for simplicity we will always neglect the explicit conditioning on the inputs; the GPmodel and all
expressions are always conditional on the corresponding inputs. TheGP model is concerned only
with the conditional of the outputs given the inputs; we do not model anything about the inputs
themselves.

Remark 2 Note, that to adhere to a strict Bayesian formalism, the GP covariancefunction,3 which
defines the prior, should not depend on the data (although it can dependon additional parameters).

As we will see in later sections, some approximations are strictly equivalent to GPs, while others
are not. That is, the implied prior may still be multivariate Gaussian, but the covariance function
may be different for training and test cases.

Definition 3 A Gaussian process is calleddegenerateiff the covariance function has a finite number
of non-zero eigenvalues.

1. By consistency is meant simply that the random variables obey the usual rules of marginalization, etc.
2. For notational simplicity we exclusively use zero-mean priors.
3. The covariancefunctionitself shouldn’t depend on the data, though its value at a specific pair of inputs of course will.
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Degenerate GPs (such as e.g. with polynomial covariance function) correspond tofinite linear
(-in-the-parameters) models, whereas non-degenerate GPs (such ase.g. with squared exponential
or RBF covariance function) do not. The prior for a finitem dimensional linear model only consid-
ers a universe of at mostm linearly independent functions; this may often be too restrictive when
n� m. Note however, that non-degeneracy on its own doesn’t guarantee the existence of the “right
kind” of flexibility for a given particular modelling task. For a more detailed background on GP
models, see for example that of Rasmussen and Williams (2006).

Inference in the GP model is simple: we put a joint GP prior on training and testlatent values,f
andf∗4, and combine it with the likelihood5 p(y|f) using Bayes rule, to obtain the joint posterior

p(f, f∗|y) =
p(f, f∗)p(y|f)

p(y)
. (3)

The final step needed to produce the desired posterior predictive distribution is to marginalize out
the unwanted training set latent variables:

p(f∗|y) =
Z

p(f, f∗|y)df =
1

p(y)

Z

p(y|f) p(f, f∗)df , (4)

or in words: the predictive distribution is the marginal of the renormalized jointprior times the
likelihood. The joint GP prior and the independent likelihood are both Gaussian

p(f, f∗) = N
(

0,
[ Kf,f K∗,f

Kf,∗ K∗,∗

])

, and p(y|f) = N (f, σ2
noiseI) , (5)

whereK is subscript by the variables between which the covariance is computed (and we use the
asterisk∗ as shorthand forf∗) and I is the identity matrix. Since both factors in the integral are
Gaussian, the integral can be evaluated in closed form to give the Gaussian predictive distribution

p(f∗|y) = N
(

K∗,f (Kf,f +σ2
noiseI)

−1y, K∗,∗−K∗,f (Kf,f +σ2
noiseI)

−1Kf,∗
)

, (6)

see the relevant Gaussian identity in appendix A. The problem with the aboveexpression is that it
requires inversion of a matrix of sizen×n which requiresO(n3) operations, wheren is the number
of training cases. Thus, the simple exact implementation can handle problems withat most a few
thousand training cases.

2. A New Unifying View

We now seek to modify the joint priorp(f∗, f) from (5) in ways which will reduce the computational
requirements from (6). Let us first rewrite that prior by introducing an additional set ofm latent
variablesu = [u1, . . . ,um]>, which we call theinducing variables. These latent variables are values
of the Gaussian process (as alsof andf∗), corresponding to a set of input locationsXu, which we
call the inducing inputs. Whereas the additional latent variablesu are always marginalized out in
the predictive distribution, the choice of inducing inputsdoesleave an imprint on the final solution.

4. We will mostly consider a vector of test casesf∗ (rather than a singlef∗).
5. You may have been expecting the likelihood written asp(y|f∗, f) but since the likelihood is conditionally independent

of everything else givenf, this makes no difference.
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The inducing variables will turn out to be generalizations of variables whichother authors have re-
ferred to variously as “support points”, “active set” or “pseudo-inputs”. Particular sparse algorithms
choose the inducing variables in various different ways; some algorithms chose the inducing inputs
to be a subset of the training set, others not, as we will discuss in Section 9. For now consider any
arbitrary inducing variables.

Due to theconsistencyof Gaussian processes, we know that we can recoverp(f∗, f) by simply
integrating (marginalizing) outu from the joint GP priorp(f∗, f,u)

p(f∗, f) =
Z

p(f∗, f,u)du =
Z

p(f∗, f|u) p(u)du, where p(u) = N (0, Ku,u) . (7)

This is an exact expression. Now, we introduce the fundamental approximation which gives rise
to almost all sparse approximations. We approximate the joint prior by assumingthat f∗ andf are
conditionally independent givenu, see Figure 1, such that

p(f∗, f) ' q(f∗, f) =
Z

q(f∗|u)q(f|u) p(u)du . (8)

The nameinducingvariable is motivated by the fact thatf and f∗ can only communicate though
u, andu thereforeinducesthe dependencies between training and test cases. As we shall detail in
the following sections, the different computationally efficient algorithms proposed in the literature
correspond to differentadditional assumptionsabout the two approximateinducingconditionals
q(f|u), q(f∗|u) of the integral in (8). It will be useful for future reference to specifyhere the exact
expressions for the two conditionals

training conditional: p(f|u) = N (Kf,uK−1
u,uu, Kf,f −Qf,f) , (9a)

testconditional: p(f∗|u) = N (K∗,uK−1
u,uu, K∗,∗−Q∗,∗) , (9b)

where we have introduced the shorthand notation6 Qa,b , Ka,uK−1
u,uKu,b. We can readily identify the

expressions in (9) as special (noise free) cases of the standard predictive equation (6) withu playing
the role of (noise free) observations. Note that the (positive semi-definite) covariance matrices in (9)
have the formK−Q with the following interpretation: the prior covarianceK minus a (non-negative
definite) matrixQ quantifying how much informationu provides about the variables in question (f or
f∗). We emphasize that all the sparse methods discussed in the paper correspond simply to different
approximations to the conditionals in (9), and throughout we use the exact likelihood and inducing
prior

p(y|f) = N (f, σ2
noiseI) , and p(u) = N (0, Ku,u) . (10)

3. The Subset of Data (SoD) Approximation

Before we get started with the more sophisticated approximations, we mention asa baseline method
the simplest possible sparse approximation (which doesn’t fall inside our general scheme): use
only a subset of the data (SoD). The computational complexity is reduced toO(m3), wherem< n.
We would not generally expect SoD to be a competitive method, since it would seem impossible
(even with fairly redundant data and a good choice of the subset) to get arealistic picture of the

6. Note, thatQa,b depends onu although this is not explicit in the notation.
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Figure 1: Graphical model of the relation between the inducing variablesu, the training latent func-
tions valuesf = [ f1, . . . , fn]> and the test function valuef∗. The thick horizontal line rep-
resents a set of fully connected nodes. The observationsy1, . . . ,yn,y∗ (not shown) would
dangle individually from the corresponding latent values, by way of the exact (factored)
likelihood (5). Left graph: the fully connected graph corresponds to the case where
no approximation is made to the full joint Gaussian process distribution betweenthese
variables. The inducing variablesu are superfluous in this case, since all latent func-
tion values can communicate with all others.Right graph: assumption ofconditional
independencebetween training and test function values givenu. This gives rise to the
separation between training and test conditionals from (8). Notice that having cut the
communication path between training and test latent function values, informationfrom f
can only be transmitted tof∗ via the inducing variablesu.

uncertainties, when only a part of the training data is even considered. Weinclude it here mostly as
a baseline against which to compare better sparse approximations.

In Figure 5 top, left we see how the SoD method produces wide predictive distributions, when
training on a randomly selected subset of 10 cases. A fair comparison to other methods would
take into account that the computational complexity is independent ofn as opposed to other more
advanced methods. These extra computational resources could be spent in a number of ways,
e.g. largerm, or an active (rather than random) selection of them points. In this paper we will
concentrate on understanding the theoretical foundations of the variousapproximations rather than
investigating the necessary heuristics needed to turn the approximation schemes into actually prac-
tical algorithms.

4. The Subset of Regressors (SoR) Approximation

The Subset of Regressors (SoR) algorithm was given by Silverman (1985), and mentioned again by
Wahba et al. (1999). It was then adapted by Smola and Bartlett (2001) to propose a sparse greedy
approximation to Gaussian process regression. SoR models are finite linear-in-the-parameters mod-
els with a particular prior on the weights. For any inputx∗, the corresponding function valuef∗ is
given by:

f∗ = K∗,u wu , with p(wu) = N (0, K−1
u,u) , (11)

where there is one weight associated to each inducing input inXu. Note that the covariance matrix
for the prior on the weights is theinverseof that onu, such that we recover the exact GP prior onu,
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which is Gaussian with zero mean and covariance

u = Ku,u wu ⇒ 〈uu>〉 = Ku,u〈wu w>
u 〉Ku,u = Ku,u . (12)

Using the effective prior onu and the fact thatwu = K−1
u,u u we can redefine the SoR model in an

equivalent, more intuitive way:

f∗ = K∗,u K−1
u,u u , with u ∼ N (0, Ku,u) . (13)

We are now ready to integrate the SoR model in our unifying framework. Given that there is a
deterministicrelation between anyf∗ andu, the approximate conditional distributions in the integral
in eq. (8) are given by:

qSoR(f|u) = N (Kf,u K−1
u,u u, 0) , and qSoR(f∗|u) = N (K∗,u K−1

u,u u, 0) , (14)

with zero conditional covariance, compare to (9). The effective prior implied by the SoR approxi-
mation is easily obtained from (8), giving

qSoR(f, f∗) = N
(

0,
[ Qf,f Qf,∗

Q∗,f Q∗,∗

])

, (15)

where we recallQa,b , Ka,uK−1
u,uKu,b. A more descriptive name for this method, would be the

Deterministic Inducing Conditional (DIC) approximation. We see that this approximate prior is
degenerate. There are onlym degrees of freedom in the model, which implies that onlym linearly
independent functions can be drawn from the prior. Them+1-th one is a linear combination of the
previous. For example, in a very low noise regime, the posterior could be severely constrained by
only m training cases.

The degeneracy of the prior causes unreasonable predictive distributions. Indeed, the approx-
imate prior over functions is so restrictive, that given enough data only a very limited family of
functions will be plausible under the posterior, leading to overconfident predictive variances. This
is a general problem of finite linear models with small numbers of weights (for more details see
Rasmussen and Quiñonero-Candela, 2005). Figure 5, top, right panel, illustrates the unreasonable
predictive uncertainties of the SoR approximation on a toy dataset.7

The predictive distribution is obtained by using the SoR approximate prior (15) instead of the
true prior in (4). For each algorithm we give two forms of the predictive distribution, one which is
easy to interpret, and the other which is economical to compute with:

qSoR(f∗|y) = N
(

Q∗,f(Qf,f +σ2
noiseI)

−1y, Q∗,∗−Q∗,f(Qf,f +σ2
noiseI)

−1Qf,∗
)

, (16a)

= N
(

σ−2K∗,uΣKu,f y, K∗,uΣKu,∗
)

, (16b)

where we have definedΣ = (σ−2Ku,fKf,u + Ku,u)
−1. Equation (16a) is readily recognized as the

regular prediction equation (6), except that the covarianceK has everywhere been replaced byQ,
which was already suggested by (15). This corresponds to replacing the covariance functionk with
kSoR(xi ,x j) = k(xi ,u)K−1

u,uk(u,x j). The new covariance function has rank (at most)m. Thus we have
the following

7. Wary of this fact, Smola and Bartlett (2001) propose using the predictive variances of the SoD, or a more accurate
computationally costly alternative (more details are given by Quiñonero-Candela, 2004, Chapter 3).
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Remark 4 The SoR approximation is equivalent to exact inference in the degenerate Gaussian
process with covariance function kSoR(xi ,x j) = k(xi ,u)K−1

u,uk(u,x j).

The equivalent (16b) is computationally cheaper, and with (11) in mind,Σ is the covariance of the
posterior on the weightswu. Note that as opposed to the subset of data method, all training cases
are taken into account. The computational complexity isO(nm2) initially, andO(m) andO(m2) per
test case for the predictive mean and variance respectively.

5. The Deterministic Training Conditional (DTC) Approximati on

Taking up ideas already contained in the work of Csató and Opper (2002), Seeger et al. (2003)
recently proposed another sparse approximation to Gaussian process regression, which does not
suffer from the nonsensical predictive uncertainties of the SoR approximation, but that interestingly
leads to exactly the same predictive mean. Seeger et al. (2003), who calledthe method Projected
Latent Variables (PLV), presented the method as relying on alikelihood approximation, based on
the projectionf = Kf,u K−1

u,u u:

p(y|f) ' q(y|u) = N (Kf,u K−1
u,u u, σ2

noiseI) . (17)

The method has also been called the Projected Process Approximation (PPA)by Rasmussen and
Williams (2006, Chapter 8). One way of obtaining an equivalent model is to retain the usual likeli-
hood, but to impose a deterministic training conditional and the exact test conditional from eq. (9b)

qDTC(f|u) = N (Kf,u K−1
u,u u,0), and qDTC(f∗|u) = p(f∗|u) . (18)

This reformulation has the advantage of allowing us to stick to our view of exact inference (with
exact likelihood) with approximate priors. Indeed, under this model the conditional distribution
of f given u is identical to that of the SoR, given in the left of (14). A systematic name for this
approximation is the Deterministic Training Conditional (DTC).

The fundamental difference with SoR is that DTC uses the exact test conditional (9b) instead of
the deterministic relation betweenf∗ andu of SoR. The joint prior implied by DTC is given by:

qDTC(f, f∗) = N
(

0,
[ Qf,f Qf,∗

Q∗,f K∗,∗

])

, (19)

which is surprisingly similar to the effective prior implied by the SoR approximation(15). The
fundamental difference is that under the DTC approximationf∗ has a prior variance of its own,
given byK∗,∗. This prior variance reverses the behaviour of the predictive uncertainties, and turns
them into sensible ones, see Figure 5 for an illustration.

The predictive distribution is now given by:

qDTC(f∗|y) = N (Q∗,f(Qf,f +σ2
noiseI)

−1y, K∗,∗−Q∗,f(Qf,f +σ2
noiseI)

−1Qf,∗ (20a)

= N
(

σ−2K∗,uΣKu,f y, K∗,∗−Q∗,∗ +K∗,uΣK>
∗,u

)

, (20b)

where again we have definedΣ = (σ−2Ku,fKf,u + Ku,u)
−1 as in (16). The predictive mean for the

DTC is identical to that of the SoR approximation (16), but the predictive variance replaces theQ∗,∗
from SoR withK∗,∗ (which is larger, sinceK∗,∗−Q∗,∗ is positive definite). This added term is the
predictive variance of the posterior off∗ conditioned onu. It grows to the prior varianceK∗,∗ asx∗
moves far from the inducing inputs inXu.
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Figure 2: Graphical model for the FITC approximation. Compared to those inFigure 1, all edges
between latent function values have been removed: the latent function values are con-
ditionally fully independent given the inducing variablesu. Although strictly speaking
the SoR and DTC approximations could also be represented by this graph, note that both
further assume a deterministic relation betweenf andu.

Remark 5 The only difference between the predictive distribution of DTC and SoR is the variance.
The predictive variance of DTC is never smaller than that of SoR.

Note, that since the covariances for training cases and test cases are computed differently, see (19),
it follows that

Remark 6 The DTC approximation does not correspond exactly to a Gaussian process,

as the covariance between latent values depends on whether they are considered training or test
cases, violating consistency, see Definition 1. The computational complexity has the same order as
for SoR.

6. The Fully Independent Training Conditional (FITC) Approxi mation

Recently Snelson and Ghahramani (2006) proposed another likelihood approximation to speed up
Gaussian process regression, which they called Sparse Gaussian Processes using Pseudo-inputs
(SGPP). While the DTC is based on the likelihood approximation given by (17), the SGPP proposes
a more sophisticated likelihood approximation with a richer covariance

p(y|f) ' q(y|u) = N (Kf,u K−1
u,u u, diag[Kf,f −Qf,f ]+σ2

noiseI) , (21)

where diag[A] is a diagonal matrix whose elements match the diagonal ofA. As we did in (18)
for the DTC, we provide an alternative equivalent formulation called Fully Independent Training
Conditional (FITC) based on the inducing conditionals:

qFITC(f|u) =
n

∏
i=1

p( fi |u) = N
(

Kf,u K−1
u,u u, diag[Kf,f −Qf,f ]

)

, and qFITC( f∗|u) = p( f∗|u) . (22)

We see that as opposed to SoR and DTC, FITC does not impose a deterministicrelation betweenf
andu. Instead of ignoring the variance, FITC proposes an approximation to thetraining conditional
distribution off givenu as a further independence assumption. In addition, the exact test conditional
from (9b) is used in (22), although for reasons which will become clear towards the end of this
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section, we initially consider only a single test case,f∗. The corresponding graphical model is given
in Figure 2. The effective prior implied by the FITC is given by

qFITC(f, f∗) = N
(

0,
[ Qf,f −diag[Qf,f −Kf,f ] Qf,∗

Q∗,f K∗,∗

])

. (23)

Note, that the sole difference between the DTC and FITC is that in the top leftcorner of the implied
prior covariance, FITC replaces the approximate covariances of DTC by the exact ones on the
diagonal. The predictive distribution is

qFITC( f∗|y) = N
(

Q∗,f(Qf,f +Λ)−1y, K∗,∗−Q∗,f(Qf,f +Λ)−1Qf,∗
)

(24a)

= N
(

K∗,uΣKu,fΛ−1y, K∗,∗−Q∗,∗ +K∗,uΣKu,∗
)

, (24b)

where we have definedΣ = (Ku,u +Ku,fΛ−1Kf,u)
−1 andΛ = diag[Kf,f −Qf,f +σ2

noiseI ]. The compu-
tational complexity is identical to that of SoR and DTC.

So far we have only considered a single test case. There are two optionsfor joint predictions,
either 1) use the exact full test conditional from (9b), or 2) extend the additional factorizing as-
sumption to the test conditional. Although Snelson and Ghahramani (2006) don’t explicitly discuss
joint predictions, it would seem that they probably intend the second option.Whereas the addi-
tional independence assumption for the test cases is not really necessary for computational reasons,
it does affect the nature of the approximation. Under option 1) the training and test covariance are
computed differently, and thus this does not correspond to our strict definition of a GP model, but

Remark 7 Iff the assumption of full independence is extended to the test conditional, the FITC ap-
proximation is equivalent to exact inference in a non-degenerate Gaussian process with covariance
function kFIC(xi ,x j) = kSoR(xi ,x j)+δi, j [k(xi ,x j)−kSoR(xi ,x j)],

whereδi, j is Kronecker’s delta. A logical name for the method where the conditionals (training and
test) are always forced to be fully independent would be the Fully Independent Conditional (FIC)
approximation. The effective prior implied by FIC is:

qFIC(f, f∗) = N
(

0,
[ Qf,f −diag[Qf,f −Kf,f ] Qf,∗

Q∗,f Q∗,∗−diag[Q∗,∗−K∗,∗]

])

. (25)

7. The Partially Independent Training Conditional (PITC) App roximation

In the previous section we saw how to improve the DTC approximation by approximating the train-
ing conditional with an independent distribution, i.e. one with a diagonal covariance matrix. In this
section we will further improve the approximation (while remaining computationally attractive) by
extending the training conditional to have a block diagonal covariance:

qPITC(f|u) = N
(

Kf,u K−1
u,u u, blockdiag[Kf,f −Qf,f ]

)

, and qPITC(f∗|u) = p(f∗|u) . (26)

where blockdiag[A] is a block diagonal matrix (where the blocking structure is not explicitly stated).
We represent graphically the PITC approximation in Figure 3. Developing this analogously to the
FITC approximation from the previous section, we get the joint prior

qPITC(f, f∗) = N
(

0,
[ Qf,f −blockdiag[Qf,f −Kf,f ] Qf,∗

Q∗,f K∗,∗

])

, (27)
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Figure 3: Graphical representation of the PITC approximation. The set of latent function valuesfIi
indexed by the the set of indicesIi is fully connected. The PITC differs from FITC (see
graph in Fig. 2) in that conditional independence is now between thek groupsof training
latent function values. This corresponds to the block diagonal approximation to the true
training conditional given in (26).

and the predictive distribution is identical to (24), except for the alternative definition of Λ =
blockdiag[Kf,f −Qf,f + σ2

noiseI ]. An identical expression was obtained by Schwaighofer and Tresp
(2003, Sect. 3), developing from the original Bayesian committee machine (BCM) by Tresp (2000).
The relationship to the FITC was pointed out by Lehel Csató. The BCM was originally proposed as
a transductive learner (i.e. where thetestinputs have to be known before training), and the inducing
inputsXu were chosen to be the test inputs. We discuss transduction in detail in the next section.

It is important to realize that the BCM proposes two orthogonal ideas: first,the block diagonal
structure of the partially independent training conditional, and second setting the inducing inputs to
be the test inputs. These two ideas can be used independently and in Section8 we propose using
the first without the second.

The computational complexity of the PITC approximation depends on the blocking structure
imposed in (26). A reasonable choice, also recommended by Tresp (2000) may be to choose
k = n/m blocks, each of sizem×m. The computational complexity remainsO(nm2). Since in
the PITC model the covariance is computed differently for training and test cases

Remark 8 The PITC approximation does not correspond exactly to a Gaussian process.

This is because computing covariances requires knowing whether points are from the training- or
test-set, (27). One can obtain a Gaussian process from the PITC by extending the partial conditional
independence assumption to the test conditional, as we did in Remark 7 for the FITC.

8. Transduction and Augmentation

The idea of transduction is that one should restrict the goal of learning to prediction on a pre-
specified set of test cases, rather than trying to learn an entire function (induction) and then evaluate
it at the test inputs. There may be no universally agreed upon definition oftransduction. In this
paper we use

Definition 9 Transduction occurs only if the predictive distribution depends on other test inputs.

This operational definition excludes models for which there exist an equivalent inductive counter-
part. According to this definition, it is irrelevant when the bulk of the computation takes place.
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Figure 4: Two views on Augmentation. One view is to see that the test latent function value f∗
is now part of the inducing variablesu and therefore has access to the training latent
function values. An equivalent view is to consider that we have droppedthe assumption
of conditional independence betweenf∗ and the training latent function values. Even if
f∗ has now direct access to each of the trainingfi , these still need to go throughu to
talk to each other if they fall in conditionally independent blocks. We have in this figure
decided to recycle the graph for PITC from Figure 3 to show that all approximations we
have presented can be augmented, irrespective of what the approximation for the training
conditional is.

There are several different possible motivations for transduction: 1)transduction is somehow
easier than induction (Vapnik, 1995), 2) the test inputs may reveal important information, which
should be used during training. This motivation drives models in semi-supervised learning (studied
mostly in the context of classification) and 3) for approximate algorithms one maybe able to limit
the discrepancies of the approximation at the test points.

For exact GP models it seems that the first reason doesn’t really apply. If you make predictions
at the test points that are consistent with a GP, then it is trivial inside the GP framework to extend
these to any other input points, and in effect we have done induction.

The second reason seems more interesting. However, in a standard GP setting, it is a conse-
quence of the consistency property, see Remark 2, that predictions at one test input are independent
of the location of any other test inputs. Therefore transduction can not be married with exact GPs:

Remark 10 Transduction can not occur in exact Gaussian process models.

Whereas this holds for the usual setting of GPs, it could be different in non-standard situations
where e.g. the covariance function depends on the empirical input densities.

Transduction can occur in the sparse approximation to GPs, by making the choice of inducing
variables depend on the test inputs. The BCM from the previous section, whereXu = X∗ (where
X∗ are the test inputs) is an example of this. Since the inducing variables are connected to all other
nodes (see Figure 3) we would expect the approximation to be good atu = f∗, which is what we care
about for predictions, relating to reason 3) above. While this reasoning issound, it is not necessarily
a sufficient consideration for getting a good model. The model has to be ableto simultaneously
explain the training targets as well and if the choice ofu makes this difficult, the posterior at the
points of interest may be distorted. Thus, the choice ofu should be governed by the ability to model
the conditional of the latents given the inputs, and not solely by the density ofthe (test) inputs.

The main drawback of transduction is that by its nature it doesn’t provide apredictive model
in the way inductive models do. In the usual GP model one can do the bulk of the computation
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involved in the predictive distributions (e.g. matrix inversion)beforeseeing the test cases, enabling
fast computation of test predictions.

It is interesting that whereas other methods spend much effort trying to optimize the inducing
variables, the BCM simply uses the test set. The quality of the BCM approximationdepends then
on the particular location of the test inputs, upon which one usually does nothave any control. We
now see that there may be a better method, eliminating the drawback of transduction, namely use
the PITC approximation, but choose theu’s carefully (see Section 9), don’t just use the test set.

8.1 Augmentation

An idea closely related to transduction, but not covered by our definition,is augmentation, which
in contrast to transduction is done individually for each test case. Since inthe previous sections,
we haven’t assumed anything aboutu, we can simply augment the set of inducing variables byf∗
(i.e. have one additional inducing variable equal to the current test latent), and see what happens
in the predictive distributions for the different methods. Let’s first investigate the consequences
for the test conditional from (9b). Note, the interpretation of the covariance matrixK∗,∗ −Q∗,∗
was “the prior covariance minus the information whichu provides aboutf∗”. It is clear that the
augmentedu (with f∗) provides all possible information aboutf∗, and consequentlyQ∗,∗ = K∗,∗.
An equivalent view on augmentation is that the assumption of conditional independence between
f∗ and f is dropped. This is seen trivially by adding edges betweenf∗ and thefi in the graphical
model, Figure 4.

Augmentation was originally proposed by Rasmussen (2002), and applied indetail to the SoR
with RBF covariance by Quiñonero-Candela (2004). Because the SoR is a finite linear model, and
the basis functions are local (Gaussian bumps), the predictive distributions can be very misleading.
For example, when making predictions far away from the center of any basis function, all basis
functions have insignificant magnitudes, and the prediction (averaged over the posterior) will be
close to zero, with very small error-bars; this is the opposite of the desiredbehaviour, where we
would expect the error-bars togrow as we move away from the training cases. Here augmentation
makes a particularly big difference turning the nonsensical predictive distribution into a reasonable
one, by ensuring that there is always a basis function centered on the test case. Compare the non-
augmented to the augmented SoR in Figure 5. An analogous Gaussian process based finite linear
model that has recently been healed by augmentation is the relevance vectormachine (Rasmussen
and Quĩnonero-Candela, 2005).

Although augmentation was initially proposed for a narrow set of circumstances, it is easily
applied to any of the approximations discussed. Of course, augmentation doesn’t make any sense
for an exact, non-degenerate Gaussian process model (a GP with a covariance function that has a
feature-space which is infinite dimensional, i.e. with basis functionseverywhere).

Remark 11 A full non-degenerate Gaussian process cannot be augmented,

since the correspondingf∗ would already be connected to all other variables in the graphical model.
But augmentationdoesmake sense for sparse approximations to GPs.

The more general process view on augmentation has several advantages over the basis function
view. It is not completely clear from the basis function view, which basis function should be used
for augmentation. For example, Rasmussen and Quiñonero-Candela (2005) successfully apply aug-
mentation using basis functions that have a zero contribution at the test location! In the process view
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however, it seems clear that one would chose the additional inducing variable to bef∗, to minimize
the effects of the approximations.

Let us compute the effective prior for theaugmentedSoR. Given thatf∗ is in the inducing set,
the test conditional is not an approximation and we can rewrite the integral leading to the effective
prior:

qASoR(f∗, f) =
Z

qSoR(f| f∗,u) p( f∗,u)du . (28)

It is interesting to notice that this is also the effective prior that would result from augmenting the
DTC approximation, sinceqSoR(f| f∗,u) = qDTC(f| f∗,u).

Remark 12 Augmented SoR (ASoR) is equivalent to augmented DTC (ADTC).

Augmented DTC only differs from DTC in the additional presence off∗ among the inducing vari-
ables in the training conditional. We can only expect augmented DTC to be a moreaccurate approx-
imation than DTC, since adding an additional inducing variable can only help capture information
from y. Therefore

Remark 13 DTC is a less accurate (but cheaper) approximation than augmented SoR.

We saw previously in Section 5 that the DTC approximation does not suffer from the nonsensi-
cal predictive variances of the SoR. The equivalence between the augmented SoR and augmented
DTC is another way of seeing how augmentation reverses the misbehaviour of SoR. The predictive
distribution of the augmented SoR is obtained by addingf∗ to u in (20).

Prediction with an augmented sparse model comes at a higher computational cost, since nowf∗
directly interacts with all off and not just withu. For each new test case, updating the augmentedΣ
in the predictive equation (for example (20b) for DTC) implies computing the vector matrix product
K∗,fKf,u with complexityO(nm). This is clearly higher than theO(m) for the mean, andO(m2) for
the predictive distribution of all the non-augmented methods we have discussed.

Augmentation seems to be only really necessary for methods that make a severe approxima-
tion to the test conditional, like the SoR. For methods that make little or no approximation to the
test conditional, it is difficult to predict the degree to which augmentation wouldhelp. However,
one can see by givingf∗ access to all of the training latent function values inf, one would expect
augmentation to give less under-confident predictive distributions near the training data. Figure 5
clearly shows that augmented DTC (equivalent to augmented SoR) has a superior predictive dis-
tribution (both mean and variance) than standard DTC. Note however that inthe figure we have
purposely chosen a too short lengthscale to enhance visualization. Quantitatively, this superiority
was experimentally assessed by Quiñonero-Candela (2004, Table 3.1). Augmentation hasn’t been
compared to the more advanced approximations FITC and PITC, and the figure would change in
the more realistic scenario where the inducing inputs and hyperparameters are learnt (Snelson and
Ghahramani, 2006).

Transductive methods like the BCM can be seen as joint augmentation, and one could potentially
use it for any of the methods presented. It seems that the good performance of the BCM could
essentially stem from augmentation, the presence of theother test inputs in the inducing set being
probably of little benefit. Joint augmentation might bring some computational advantage, but won’t
change the scaling: note that augmentingm times at a cost ofO(nm) apiece implies the same
O(nm2) total cost as the jointly augmented BCM.
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Figure 5: Toy example with identical covariance function and hyperparameters. The squared ex-
ponential covariance function is used, and a slightly too short lengthscaleis chosen on
purpose to emphasize the different behaviour of the predictive uncertainties. The dots
are the training points, the crosses are the targets corresponding to the inducing inputs,
randomly selected from the training set. The solid line is the mean of the predictive
distribution, and the dotted lines show the 95% confidence interval of the predictions.
Augmented DTC (ADTC) is equivalent to augmented SoR (ASoR), see Remark 12.

1952



SPARSEAPPROXIMATE GAUSSIAN PROCESSREGRESSION

9. On the Choice of the Inducing Variables

We have until now assumed that the inducing inputsXu were given. Traditionally, sparse models
have very often been built upon a carefully chosen subset of the training inputs. This concept is
probably best exemplified in the popular support vector machine (Cortes and Vapnik, 1995). In
sparse Gaussian processes it has also been suggested to select the inducing inputsXu from among
the training inputs. Since this involves a prohibitive combinatorial optimization, greedy optimiza-
tion approaches have been suggested using various selection criteria likeonline learning (Csató and
Opper, 2002), greedy posterior maximization (Smola and Bartlett, 2001), maximum information
gain (Seeger et al., 2003), matching pursuit (Keerthi and Chu, 2006),and probably more. As dis-
cussed in the previous section, selecting the inducing inputs from among the test inputs has also
been considered in transductive settings. Recently, Snelson and Ghahramani (2006) have proposed
to relax the constraint that the inducing variables must be a subset of training/test cases, turning the
discrete selection problem into one of continuous optimization. One may hope that finding a good
solution is easier in the continuous than the discrete case, although finding theglobal optimum is
intractable in both cases. And perhaps the less restrictive choice can leadto better performance in
very sparse models.

Which optimality criterion should be used to set the inducing inputs? Departing from a fully
Bayesian treatment which would involve defining priors onXu, one could maximize the marginal
likelihood (also called the evidence) with respect toXu, an approach also followed by Snelson and
Ghahramani (2006). Each of the approximate methods proposed involvesa different effective prior,
and hence its own particular effective marginal likelihood conditioned on theinducing inputs

q(y|Xu) =
ZZ

p(y|f)q(f|u) p(u|Xu)dudf =
Z

p(y|f)q(f|Xu)df , (29)

which of course is independent of the test conditional. We have in the above equation explicitly
conditioned on the inducing inputsXu. Using Gaussian identities, the effective marginal likelihood
is very easily obtained by adding a ridgeσ2

noiseI (from the likelihood) to the covariance of effective
prior onf. Using the appropriate definitions ofΛ, the log marginal likelihood becomes

logq(y|Xu) = −1
2 log|Qf,f +Λ|− 1

2y>(Qf,f +Λ)−1y− n
2 log(2π) , (30)

whereΛSoR = ΛDTC = σ2
noiseI , ΛFITC = diag[Kf,f −Qf,f ] + σ2

noiseI , and ΛPITC = blockdiag[Kf,f −
Qf,f ]+σ2

noiseI . The computational cost of the marginal likelihood isO(nm2) for all methods, that of
its gradient with respect to one element ofXu is O(nm). This of course implies that the complexity
of computing the gradient wrt. to the whole ofXu is O(dnm2), whered is the dimension of the input
space.

It has been proposed to maximize the effective posterior instead of the effective marginal likeli-
hood (Smola and Bartlett, 2001). However this is potentially dangerous and can lead to overfitting.
Maximizing the whole evidence instead is sound and comes at an identical computational cost (for
a deeper analysis see Quiñonero-Candela, 2004, Sect. 3.3.5 and Fig. 3.2).

The marginal likelihood has traditionally been used to learn the hyperparameters of GPs in the
non fully Bayesian treatment (see for example Williams and Rasmussen, 1996). For the sparse
approximations presented here, once you are learningXu it is straightforward to allow for learning
hyperparameters (of the covariance function) during the same optimization,and there is no need
to interleave optimization ofu with learning of the hyperparameters as it has been proposed for
example by Seeger et al. (2003).
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10. Other Methods

In this section we briefly mention two approximations which don’t fit in our unifying scheme,
since one doesn’t correspond to a proper probabilistic model, and the other one uses a particular
construction for the covariance function, rather than allowing any general covariance function.

10.1 The Nystr̈om Approximation

The Nystr̈om Approximation for speeding up GP regression was originally proposedby Williams
and Seeger (2001), and then questioned by Williams et al. (2002). Like SoR and DTC, the Nystr̈om
Approximation for GP regression approximates the prior covariance off by Qf,f . However, unlike
these methods, the Nyström Approximation isnot based on a generative probabilistic model. The
prior covariance betweenf∗ andf is taken to be exact, which isinconsistentwith the prior covariance
on f:

q(f, f∗) = N
(

0,
[ Qf,f Kf,∗

K∗,f K∗,∗

])

. (31)

As a result we cannot derive this method from our unifying framework, nor represent it with a
graphical model. Worse, the resulting prior covariance matrix is not even guaranteed to be positive
definite, allowing the predictive variances to be negative. Notice that replacing Kf,∗ by Qf,∗ in (31)
is enough to make the prior covariance positive definite, and one obtains theDTC approximation.

Remark 14 The Nystr̈om Approximation does not correspond to a well-formed probabilistic model.

Ignoring any quibbles about positive definiteness, the predictive distribution of the Nystr̈om Ap-
proximation is given by:

p( f∗|y) = N
(

K>
f,∗[Qf,f +σ2

noiseI ]
−1y, K∗,∗−K>

f,∗[Qf,f +σ2
noiseI ]

−1Kf,∗
)

, (32)

but the predictive variance is not guaranteed to be positive. The computational cost isO(nm2).

10.2 The Relevance Vector Machine

The relevance vector machine, introduced by Tipping (2001), is a finite linear model with an in-
dependent Gaussian prior imposed on the weights. For any inputx∗, the corresponding function
output is given by:

f∗ = φ∗w , with p(w|A) = N (0,A) , (33)

whereφ∗ = [φ1(x), . . . ,φm(x)] is the (row) vector of responses of them basis functions, andA =
diag(α1, . . . ,αm) is the diagonal matrix of joint prior precisions (inverse variances) of the weights.
Theαi are learnt by maximizing the RVM evidence (obtained by also assuming Gaussian additive
iid. noise, see (1)), and for the typical case of rich enough sets of basis functions many of the
precisions go to infinity effectively pruning out the corresponding weights (for a very interesting
analysis see Wipf et al., 2004). The RVM is thus a sparse method and the surviving basis functions
are calledrelevance vectors.

Note that since the RVM is a finite linear model with Gaussian priors on the weights, it can be
seen as a Gaussian process:

Remark 15 The RVM is equivalent to a degenerate Gaussian process with covariancefunction
kRVM(xi ,x j) = φi A−1φ>

j = ∑m
k=1 α−1

k φk(xi)φk(x j),

1954



SPARSEAPPROXIMATE GAUSSIAN PROCESSREGRESSION

Method q(f∗|u) q(f|u) joint prior covariance GP?

GP exact exact

[

Kf,f Kf,∗
K∗,f K∗,∗

] √

SoR determ. determ.

[

Qf,f Qf,∗
Q∗,f Q∗,∗

] √

DTC exact determ.

[

Qf,f Qf,∗
Q∗,f K∗,∗

]

FITC (exact) fully indep.

[

Qf,f −diag[Qf,f −Kf,f ] Qf,∗
Q∗,f K∗,∗

]

(
√

)

PITC exact partially indep.

[

Qf,f −blokdiag[Qf,f −Kf,f ] Qf,∗
Q∗,f K∗,∗

]

Table 1: Summary of the way approximations are built. All these methods are detailed in the previ-
ous sections. The initial cost and that of the mean and variance per test case are respectively
n2, n andn2 for the exact GP, andnm2, mandm2 for all other methods. The “GP?” column
indicates whether the approximation is equivalent to a GP. For FITC see Remark 7.

as was also pointed out by Tipping (2001, eq. (59)). Whereas all sparse approximations we have
presented until now are totally independent of the choice of covariance function, for the RVM
this choice is restricted to covariance functions that can be expressed asfinite expansions in terms
of some basis functions. Being degenerate GPs in exactly the same way as theSoR (presented
in Section 4), the RVM does also suffer from unreasonable predictive variances. Rasmussen and
Quiñonero-Candela (2005) show that the predictive distributions of RVMs can also be healed by
augmentation, see Section 8. Once theαi have been learnt, denoting bym the number of surviving
relevance vectors, the complexity of computing the predictive distribution of the RVM is O(m) for
mean andO(m2) for the variance.

RVMs are often used with radial basis functions centered on the training inputs. One potentially
interesting extension to the RVM would be tolearnthe locations of the centers of the basis functions,
in the same way as proposed by Snelson and Ghahramani (2006) for the FITC approximation, see
Section 6. This is a curious reminiscence of learning the centers in RBF Networks.

11. Conclusions

We have provided a unifying framework for sparse approximations to Gaussian processes for regres-
sion. Our approach consists of two steps, first 1) we recast the approximation in terms of approx-
imations to the prior, and second 2) we introduce inducing variablesu and the idea of conditional
independence givenu. We recover all existing sparse methods by making further simplifications of
the covariances of the training and test conditionals, see Table 1 for a summary.

Previous methods were presented based on different approximation paradigms (e.g. likelihood
approximations, projection methods, matrix approximations, minimization of Kullback-Leibler di-
vergence, etc), making direct comparison difficult. Under our unifying view we deconstruct meth-
ods, making it clear which building blocks they are based upon. For example, the SGPP by Snelson
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and Ghahramani (2006) contains two ideas, 1) a likelihood approximation and 2) the idea of varying
the inducing inputs continuously; these two ideas could easily be used independently, and incorpo-
rated in other methods. Similarly, the BCM by Tresp (2000) contains two independent ideas 1) a
block diagonal assumption, and 2) the (transductive) idea of choosing the test inputs as the induc-
ing variables. Finally we note that although all three ideas of 1) transductively settingu = f∗, 2)
augmentation and 3) continuous optimization ofXu have been proposed in very specific settings, in
fact they are completely general ideas, which can be applied to any of the approximation schemes
considered.

We have ranked the approximation according to how close they are to the corresponding full
GP. However, the performance in practical situations may not always follow this theoretical ranking
since the approximations might exhibit properties (not present in the full GP) which may be par-
ticularly suitable for specific datasets. This may make the interpretation of empirical comparisons
challenging. A further complication arises when adding the necessary heuristics for turning the
theoretical constructs into practical algorithms. We have not described full algorithms in this paper,
but are currently working on a detailed empirical study (in preparation, see also Rasmussen and
Williams, 2006, chapter 8).

We note that the order of the computational complexity is identical for all the methods consid-
ered,O(nm2). This highlights that there is no computational excuse for using gross approximations,
such as assuming deterministic relationships, in particular one should probably think twice before
using SoR or even DTC. Although augmentation has attractive predictive properties, it is com-
putationally expensive. It remains unclear whether augmentation could be beneficial on a fixed
computational budget.

We have only considered the simpler case of regression in this paper, butsparseness is also com-
monly sought in classification settings. It should not be difficult to cast probabilistic approximation
methods such as Expectation Propagation (EP) or the Laplace method (for acomparison, see Kuss
and Rasmussen, 2005) into our unifying framework.

Our analysis suggests that a new interesting approximation would come from combining the best
possible approximation (PITC) with the most powerful selection method for theinducing inputs.
This would correspond to a non-transductive version of the BCM. We would evade the necessity of
knowing the test set before doing the bulk of the computation, and we could hope to supersede the
superior performance reported by Snelson and Ghahramani (2006) for very sparse approximations.
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Appendix A. Gaussian and Matrix Identities

In this appendix we provide identities used to manipulate matrices and Gaussian distributions
throughout the paper. Letx andy be jointly Gaussian

[

x
y

]

∼ N

([

µx

µy

]

,

[

A C
C> B

])

, (34)

then the marginal and the conditional are given by

x ∼ N (µx, A) , and x|y ∼ N
(

µx +CB−1(y−µy), A−CB−1C>)

(35)

Also, the product of a Gaussian inx with a Gaussian in a linear projectionPx is again a Gaussian,
although unnormalized

N (x|a,A)N (Px|b,B) = zc N (x|c,C) , (36)

where
C =

(

A−1 +P>B−1P
)−1

, c = C
(

A−1a+P>B−1b
)

.

The normalizing constantzc is gaussian in the meansa andb of the two Gaussians:

zc = (2π)−
m
2 |B+PAP>|− 1

2 exp
(

− 1
2(b−Pa)>

(

B+PAP>
)−1

(b−Pa)
)

. (37)

The matrix inversion lemma, also known as the Woodbury, Sherman & Morrisonformula states
that:

(Z+UWV>)−1 = Z−1−Z−1U(W−1 +V>Z−1U)−1V>Z−1 , (38)

assuming the relevant inverses all exist. HereZ is n×n, W is m×m andU andV are both of size
n×m; consequently ifZ−1 is known, and a low rank (ie.m< n) perturbation are made toZ as in
left hand side of eq. (38), considerable speedup can be achieved.
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Abstract

Traditional biosurveillance algorithms detect disease outbreaks by looking for peaks in a univariate
time series of health-care data. Current health-care surveillance data, however, are no longer sim-
ply univariate data streams. Instead, a wealth of spatial, temporal, demographic and symptomatic
information is available. We present an early disease outbreak detection algorithm called What’s
Strange About Recent Events (WSARE), which uses a multivariate approach to improve its time-
liness of detection. WSARE employs a rule-based technique that compares recent health-care data
against data from a baseline distribution and finds subgroups of the recent data whose proportions
have changed the most from the baseline data. In addition, health-care data also pose difficulties
for surveillance algorithms because of inherent temporal trends such as seasonal effects and day of
week variations. WSARE approaches this problem using a Bayesian network to produce a baseline
distribution that accounts for these temporal trends. The algorithm itself incorporates a wide range
of ideas, including association rules, Bayesian networks,hypothesis testing and permutation tests
to produce a detection algorithm that is careful to evaluatethe significance of the alarms that it
raises.

Keywords: anomaly detection, syndromic surveillance, biosurveillance, Bayesian networks, ap-
plications

1. Introduction

Detection systems inspect routinely collected data for anomalies and raise an alert upon discovery
of any significant deviations from the norm. For example, Fawcett and Provost (1997) detect cellu-
lar phone fraud by monitoring changes to a cell phone user’s typical calling behavior. In intrusion
detection systems, anomalies in system events might indicate a possible breach of security (Warren-
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der et al., 1999). In a similar manner, we would like to tackle the problem of early disease outbreak
detection, in which the disease outbreak can be due to either natural causes or a bioterrorist attack.

One of the challenges for early disease outbreak detection is finding readily available data that
contains a useful signal (Tsui et al., 2001). Data sources that require definitive diagnosis of the
disease, such as lab reports, can often be obtained several days to weeks after the samples are sub-
mitted. By that point, the outbreak may have already escalated into a large scaleepidemic. Instead
of waiting for definite diagnostic data, we can monitor pre-diagnosis data, such as the symptoms
exhibited by patients at an Emergency Department (ED). In doing so, we risk increasing the false
positive rate, such as mistakenly attributing an increase in patients exhibiting respiratory problems
to an anthrax attack rather than to influenza. Nevertheless, we have a potential gain in timeliness
of detection. This type of surveillance of pre-diagnosis data is commonly referred to assyndromic
surveillance(Mostashari and Hartman, 2003; Sosin, 2003).

In our syndromic surveillance infrastructure, we have real-time access toa database of emer-
gency department (ED) cases from several hospitals in a city. Each record in this multivariate
database contains information about the individual who is admitted to the ED. This information
includes fields such as age, gender, symptoms exhibited, home zip code, work zip code, and time
of arrival at the ED. In accordance with the HIPAA Privacy Rule (45 CFR Parts 160 through 164,
2003), personal identifying information, such as patient names, addresses, and identification num-
bers are removed from the data set used in this research. When a severe epidemic sweeps through
a region, there will obviously be extreme perturbations in the number of ED visits. While these
dramatic upswings are easily noticed during the late stages of an epidemic, the challenge is to detect
the outbreak during its early stages and mitigate its effects. We would also like to detect outbreaks
that are more subtle than a large scale epidemic as early as possible.

Although we have posed our problem in an anomaly detection framework, traditional anomaly
detection algorithms are inappropriate for this domain. In the traditional approach, a probabilistic
model of the baseline data is built using techniques such as neural nets (Bishop, 1994) or a mixture
of naive Bayes submodels (Hamerly and Elkan, 2001). Anomalies are identified as individual data
points with a rare attribute or rare combination of attributes. If we apply traditional anomaly detec-
tion to our ED data, we would find, for example, a patient that is over a hundred years old living
in a sparsely populated region of the city. These isolated outliers in attribute space are not at all
indicative of a disease outbreak. Instead of finding such unusual isolated cases, we are interested in
finding anomalous patterns, which are specific groups whose profile is anomalous relative to their
typical profile. Thus, in our example of using ED records, if there is a dramatic upswing in the
number of children from a particular neighborhood appearing in the ED withdiarrhea, then an early
detection system should raise an alarm.

Another common approach to early outbreak detection is to convert the multivariate ED database
into a univariate time series by aggregating daily counts of a certain attribute orcombination of
attributes. For instance, a simple detector would monitor the daily number of peopleappearing in
the ED. Many different algorithms can then be used to monitor this univariate surveillance data,
including methods from Statistical Quality Control (Montgomery, 2001), time series models (Box
and Jenkins, 1976), and regression techniques (Serfling, 1963). This technique works well if we
know beforehand which disease to monitor, since we can improve the timelinessof detection by
monitoring specific attributes of the disease. For example, if we are vigilant against an anthrax
attack, we can concentrate our efforts on ED cases involving respiratory problems. In our situation,
we need to perform non-specific disease monitoring because we do not know what disease to expect,
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particularly in the case of a bioterrorist attack. Instead of monitoring health-care data for pre-defined
patterns, we detect any significant anomalous patterns in the multivariate ED data. Furthermore,
by taking a multivariate approach that inspects all available attributes in the data, particularly the
temporal, spatial, demographic, and symptomatic attributes, we will show that such an approach can
improve on the detection time of a univariate detection algorithm if the outbreak initially manifests
itself as a localized cluster in attribute space.

Our approach to early disease outbreak detection uses a rule-based anomaly pattern detector
called What’s Strange About Recent Events (WSARE) (Wong et al., 2002, 2003). WSARE operates
on discrete, multidimensional data sets with a temporal component. This algorithm compares recent
data against a baseline distribution with the aim of finding rules that summarize significant patterns
of anomalies. Each rule is made up of components of the formXi = V j

i , whereXi is theith attribute
andV j

i is the jth value of that attribute. Multiple components are joined together by a logical
AND. For example, a two component rule would beGender= Male AND Home Location= NW.
These rules should not be interpreted as rules from a logic-based system in which the rules have
an antecedent and a consequent. Rather, these rules can be thought of as SQL SELECT queries
because they identify a subset of the data having records with attributes that match the components
of the rule. WSARE finds these subsets whose proportions have changed the most between recent
data and the baseline.

We will present versions 2.0 and 3.0 of the WSARE algorithm. We will also briefly describe
WSARE 2.5 in order to illustrate the strengths of WSARE 3.0. These three algorithms only differ in
how they create the baseline distribution; all other steps in the WSARE framework remain identical.
WSARE 2.0 and 2.5 use raw historical data from selected days as the baseline while WSARE 3.0
models the baseline distribution using a Bayesian network.

2. What’s Strange About Recent Events

    November 2003
Su Mo Tu We Th Fr Sa 
                   1
 2  3  4  5  6  7  8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

    December 2003
Su Mo Tu We Th Fr Sa 
    1  2  3  4  5  6
 7  8  9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Figure 1: The baseline for WSARE 2.0 if the current day is December 30, 2003
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The basic question asked by all detection systems is whether anything strange has occurred in
recent events. This question requires defining what it means to be recent and what it means to be
strange. Our algorithm considers all patient records falling on the current day under evaluation to be
recent events. Note that this definition of recent is not restrictive – our approach is fully general and
recent can be defined to include all events within some other time period such as over the last six
hours. In order to define an anomaly, we need to establish the concept ofsomething being normal.
In WSARE version 2.0, baseline behavior is assumed to be captured by rawhistorical data from
the same day of the week in order to avoid environmental effects such as weekend versus weekday
differences in the number of ED cases. This baseline period must be chosen from a time period
similar to the current day. This can be achieved by being close enough to thecurrent day to capture
any seasonal or recent trends. On the other hand, the baseline periodmust also be sufficiently distant
from the current day. This distance is required in case an outbreak happens on the current day but
it remains undetected. If the baseline period is too close to the current day,the baseline period
will quickly incorporate the outbreak cases as time progresses. In the description of WSARE 2.0
below, we assume that baseline behavior is captured by records that arein the setbaselinedays.
Typically, baselinedayscontains the days that are 35, 42, 49, and 56 days prior to the day under
consideration. We would like to emphasize that this baseline period is only usedas an example; it
can be easily modified to another time period without major changes to our algorithm. In Section 3
we will illustrate how version 3.0 of WSARE automatically generates the baseline using a Bayesian
network.

We will refer to the events that fit a certain rule for the current day asCrecent. Similarly, the
number of cases matching the same rule from the baseline period will be calledCbaseline. As an
example, suppose the current day is Tuesday December 30, 2003. Thebaseline used for WSARE
2.0 will then be November 4, 11, 18 and 25 of 2003 as seen in Figure 1. These dates are all from
Tuesdays in order to avoid day of week variations.

2.1 Overview of WSARE

Parameter Name Description Default value
maxrule components Maximum number of compo-

nents to a rule
2

numrandomizations Number of iterations to the ran-
domization test

1000

αFDR The significance level of the
False Discovery Rate

0.05

baselinedays (WSARE 2.0
only)

Days to be used for the baseline35, 42, 49, and 56 days prior
to current date

environmentalattributes
(WSARE 2.5 and 3.0)

Attributes that account for tem-
poral trends

Not applicable

numbaselinesamples
(WSARE 3.0 only)

The number of sampled records
from the baseline Bayesian net-
work

10000

Table 1: The main parameters in WSARE
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Report p−value and rule

Find the best scoring rule

using baseline and recent

datasets

Calculate p−value for best

scoring rule using randomization

test

Use FDR to find significant days

Create baseline from

selected days from

historical data

Create baseline using

all historical data that

match environmental

attributes

Learn Bayesian network

from all historical data

Sample baseline from

learned Bayesian network

Running WSARE for one day Running WSARE for a history of days

WSARE 2.0
WSARE 2.5

WSARE 3.0

Figure 2: A schematic overview of the steps involved in the WSARE algorithms

We will begin this section with an overview of the general WSARE algorithm followed by
a more detailed example. Figure 2 gives a pictorial overview of the three WSARE algorithms
discussed in this paper. Note that the three algorithms differ only in how they create the baseline
while all of the other steps remain identical. Table 1 describes the main parameters used by the
WSARE algorithms.

WSARE first finds the best scoring rule over events occurring on the current day using a greedy
search. The limit to the number of components in a rule is set to the parametermaxrule components,
which is typically set to be 2 for computational reasons although in Section 2.5 we describe a greedy
procedure forn component rules. The score of a rule is determined by comparing the eventson the
current day against events in the past. More specifically, we are comparing if the ratio between
certain events on the current day and the total number of events on the current day differ dramati-
cally between the recent period and the past. Following the score calculation, the best rule for that
day has its p-value estimated by a randomization test. The p-value for a rule is the likelihood of
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finding a rule with as good a score under the hypothesis that the date and the other attributes are
independent. The randomization-based p-value takes into account the effect of the multiple testing
that occurs during the rule search. The number of iterations of the randomization test is determined
by the parameternumrandomizations. If we are running the algorithm on a day-by-day basis we
would end at this step. However, if we are looking at a history of days and we want to control for
some level of false discoveries over this group of days, we would need the additional step of using
the False Discovery Rate (FDR) method (Benjamini and Hochberg, 1995) todetermine which of
the p-values are significant. The days with significant p-values are returned as the anomalies.

2.2 One Component Rules

In order to illustrate this algorithm, suppose we have a large database of 1,000,000 ED records over
a two-year span. This database contains roughly 1370 records a day.Suppose we treat all records
within the last 24 hours as “recent” events. In addition, we can build a baseline data set out of all
cases from exactly 35, 42, 49, and 56 days prior to the current day. We then combine the recent
and baseline data to form a record subset calledDBi , which will have approximately 5000 records.
The algorithm proceeds as follows. For each dayi in the surveillance period, retrieve the records
belonging toDBi . We first consider all possible one-component rules. For every possible attribute-
value combination, obtain the countsCrecent andCbaseline from the data setDBi . As an example,
suppose the attribute under consideration isAge Decilefor the ED case. There are 9 possible values
for Age Decile, ranging from 0 to 8. We start with the ruleAge Decile= 3 and count the number of
cases for the current dayi that haveAge Decile= 3 and those that haveAge Decile6= 3. The cases
from five to eight weeks ago are subsequently examined to obtain the countsfor the cases matching
the rule and those not matching the rule. The four values form a two-by-twocontingency table such
as the one shown in Table 2.

2.3 Scoring Each One Component Rule

The next step is to evaluate the “score” of the rule using a hypothesis test inwhich the null hypothesis
is the independence of the row and column attributes of the two-by-two contingency table. In effect,
the hypothesis test measures how different the distribution forCrecent is compared to that ofCbaseline.
This test will generate a p-value that determines the significance of the anomalies found by the rule.
We will refer to this p-value as thescorein order to distinguish this p-value from the p-value that
is obtained later on from the randomization test. We use the Chi Square test for independence of
variables whenever the counts in the contingency table do not violate the validity of the Chi Square
test. However, since we are searching for anomalies, the counts in the contingency table frequently
involve small numbers. In this case, we use Fisher’s exact test (Good, 2000) to find the score for
each rule since the Chi Square test is an approximation to Fisher’s exact test when counts are large.
Running Fisher’s exact test on Table 2 yields a score of 0.025939, which indicates that the count
Crecent for cases matching the ruleHome Location= NW are very different from the countCbaseline.
In biosurveillance, we are usually only interested in an increase in the number of certain records.
As a result, we commonly use a one-sided Fisher’s exact test.
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Crecent Cbaseline

Home Location= NW 6 496
Home Location6= NW 40 9504

Table 2: A Sample 2x2 Contingency Table

2.4 Two Component Rules

At this point, the best one component rule for a particular day has been found. We will refer to
the best one component rule for dayi asBR1

i . The algorithm then attempts to find the best two
component rule for the day by adding on one extra component toBR1

i through a greedy search.
This extra component is determined by supplementingBR1

i with all possible attribute-value pairs,
except for the one already present inBR1

i , and selecting the resulting two component rule with the
best score. Scoring is performed in the exact same manner as before, except the countsCrecent

andCbaselineare calculated by counting the records that match the two component rule. The best
two-component rule for dayi is subsequently found and we will refer to it asBR2

i

SupposeBR1
i has as its first component the attribute-value pairC1 = V1. Furthermore, letBR2

i ’s
components beC1 = V1 andC2 = V2. Adding the componentC2 = V2 to BR1

i may not result in a
better scoring rule. During our search for the best scoring two component rule, we only consider two
component rules in which adding either component has a significant effect. Determining if either
component has a significant effect can be done through two hypothesistests. In the first hypothesis
test, we use Fisher’s exact test to determine the score of addingC2 = V2 to the one component rule
C1 = V1. Similarly, in the second hypothesis test, we use Fisher’s exact test to score the addition of
the componentC1 = V1 to C2 = V2. The 2-by-2 contingency tables used by the two hypothesis tests
are shown in Table 3.

Records from Today withC1 = V1 andC2 = V2 Records from Other withC1 = V1 andC2 = V2

Records from Today withC1 6= V1 andC2 = V2 Records from Other withC1 6= V1 andC2 = V2

Records from Today withC1 = V1 andC2 = V2 Records from Other withC1 = V1 andC2 = V2

Records from Today withC1 = V1 andC2 6= V2 Records from Other withC1 = V1 andC2 6= V2

Table 3: 2x2 Contingency Tables for a Two Component Rule

Once we have the scores for both tables, we need to determine if they are significant or not. A
score is considered significant if the result of a hypothesis test is significant at theα = 0.05 level.
If the scores for the two tables are both significant, then the presence of both components has an
effect. As a result, the best rule overall for dayi is BR2

i . On the other hand, if any one of the scores
is not significant, then the best rule overall for dayi is BR1

i .

2.5 n Component Rules

Let BRk−1
i be the bestk−1 component rule found for dayi. In the general case of finding the bestn

component rule, the procedure is analogous to that of the previous section. GivenBRk−1
i , we produce

BRk
i by greedily adding on the best component, which is found by evaluating all possible attribute-
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value pairs as the next component, excluding those already present in components ofBRk−1
i . Starting

with BR1
i , we repeat this procedure until we reachBRn

i .
In order to determine if the addition of a component is significant, we should in theory test all

possible combinations of then components. In general, we need 2
b n

2c
∑

i=1

(n
i

)

such tests. Having this

many tests is clearly computationally intensive asn increases. As an approximation, we resort to
testing if adding thenth component is significant with respect to then−1 other components. The
two significance tests are as shown in Table 4, whereCn =Vn refers to the last component added and
C1 = V1, . . . ,Cn−1 = Vn−1 refers to the conjunction of the previousn−1 components. As before, if
both of the Fisher’s exact tests return a score less thanα = 0.05, then we consider the addition of the
rule component significant. Due to this step, the probability of having a rule withmany components
is low because for each component added, it needs to be significant at the 95% level for both of the
Fisher’s exact tests.

Records from Today withC1 = V1, . . . ,Cn−1 = Vn−1 andCn =
Vn

Records from Other withC1 = V1, . . . ,Cn−1 = Vn−1 andCn =
Vn

Records from Today withC1 = V1, . . . ,Cn−1 = Vn−1 andCn 6=
Vn

Records from Other withC1 = V1, . . . ,Cn−1 = Vn−1 andCn 6=
Vn

Records from Today withC1 = V1, . . . ,Cn−1 = Vn−1 andCn =
Vn

Records from Other withC1 = V1, . . . ,Cn−1 = Vn−1 andCn =
Vn

Records from Today with¬(C1 = V1, . . . ,Cn−1 = Vn−1) and
Cn = Vn

Records from Other with¬(C1 = V1, . . . ,Cn−1 = Vn−1) and
Cn = Vn

Table 4: 2x2 Contingency Tables for an N Component Rule

2.6 Finding the p-value for a Rule

The algorithm above for determining scores is prone to overfitting due to multiplehypothesis test-
ing. Even if data were generated randomly, most single rules would have insignificant p-values but
the best rule would be significant if we had searched over 1000 possiblerules. In order to illustrate
this point, suppose we follow the standard practice of rejecting the null hypothesis when the p-value
is < α, whereα = 0.05. In the case of a single hypothesis test, the probability of a false positive
under the null hypothesis would beα, which equals 0.05. On the other hand, if we perform 1000
hypothesis tests, one for each possible rule under consideration, then the probability of a false posi-
tive could be as bad as 1− (1−0.05)1000≈ 1, which is much greater than 0.05 (Miller et al., 2001).
Thus, if our algorithm returns a significant p-value, we cannot acceptit at face value without adding
an adjustment for the multiple hypothesis tests we performed. This problem canbe addressed using
a Bonferroni correction (Bonferroni, 1936) but this approach would be unnecessarily conservative.
Instead, we use a randomization test. Under the null hypothesis of this randomization test, the date
and the other ED case attributes are assumed to be independent. Consequently, the case attributes in
the data setDBi remain the same for each record but the date field is shuffled between records from
the current day and records from five to eight weeks ago. The full method for the randomization
test is shown below.

Let UCPi = Uncompensated p-value i.e. the score as defined above.
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For j = 1 to 1000
Let DB( j)

i = newly randomized data set

Let BR( j)
i = Best rule onDB( j)

i

Let UCP( j)
i = Uncompensated p-value ofBR( j)

i onDB( j)
i

Let the compensated p-value ofBRi beCPVi i.e.

CPVi =
# of Randomized Tests in whichUCP( j)

i < UCPi

# of Randomized Tests

CPVi is an estimate of the chance that we would have seen an uncompensated p-value as good
asUCPi if in fact there was no relationship between date and case attributes. Note that we do not
use the uncompensated p-valueUCPi after the randomization test. Instead, the compensated p-value
CPVi is used to decide if an alarm should be raised.

The bottleneck in the entire WSARE procedure is the randomization test. If implemented
naively, it can be extremely computationally intense. In order to illustrate its complexity, suppose
there areM attributes and each attribute can take onK possible values. In addition, let there beNT

records for today andNB records for the baseline period. Note that typically,NT is 4 to 20 times
smaller thanNB. At iteration j of the randomization test, we need to search for the best scoring rule
over DB( j)

i . Assuming we limit the number of components in a rule to be two, searching for the
best rule using a greedy search requires scoringKM + K(M −1) rules. Scoring a rule requires us
to obtain the entries for the two by two contingency table by counting overNT +NB records. Thus,
each iteration of the randomization test has a complexity of(KM +K(M−1))∗ (NT +NB). With Q
iterations, the overall complexity of the randomization test isO(QKM(NT +NB)).

One of the key optimizations to speeding up the randomization test is the techniqueof “racing”
(Maron and Moore, 1997). IfBRi is highly significant, we run the full 1000 iterations but we stop
early if we can show with very high confidence thatCPVi is going to be greater than 0.1. As an
example, suppose we have gone throughj iterations and letCPV j

i be the value ofCPVi on the
current iterationj (CPV j

i is calculated as the number of times so far that the best scoring rule on the
randomized data set has a lower p-value than the best scoring rule over the original unrandomized
data set). Using a normality assumption on the distribution ofCPVi , we can estimate the standard
deviationσCPVi and form a 95% confidence interval on the true value ofCPVi . This is achieved using

the intervalCPV j
i ± 1.96σCPVi√

n . If the lower half of this interval, namelyCPV j
i − 1.96σCPVi√

n , is greater
than, say 0.1, we are 95% sure that this score will be insignificant at the 0.1level. On a typical data
set where an outbreak is unlikely, the majority of days will result in insignificant p-values. As a
result, we expect the racing optimization to allow us to stop early on many days.

2.7 Using FDR to Determine Which p-values are Significant

This algorithm can be used on a day-to-day basis or it can operate over ahistory of several days
to report all significantly anomalous patterns. When using our algorithm on aday-to-day basis,
the compensated p-valueCPVi obtained for the current day through the randomization tests can
be interpreted at face value. However, when analyzing historical data,we need to characterize
the false discovery rate over the group of days in the history, which requires comparing theCPVi

values for each day. Comparison of multipleCPVi values in the historical window results in a

1969



WONG, MOORE, COOPER ANDWAGNER

second overfitting opportunity analogous to that caused by performing multiple hypothesis tests
to determine the best rule for a particular day. As an illustration, suppose wetook 500 days of
randomly generated data. Then, approximately 5 days would have aCPVi value less than 0.01 and
these days would naively be interpreted as being significant. Two approaches can be used to correct
this problem. The Bonferroni method (Bonferroni, 1936) aims to reduce the probability of making
one or more false positives to be no greater thanα. However, this tight control over the number of
false positives causes many real discoveries to be missed. The other alternative is Benjamini and
Hochberg’s False Discovery Rate method, (Benjamini and Hochberg, 1995), which we will refer to
as BH-FDR. BH-FDR guarantees that the false discovery rate, which is the expected fraction of the
number of false positives over the number of tests in which the null hypothesisis rejected, will be no
greater thanαFDR. The FDR method is more desirable as it has a higher power than the Bonferroni
correction while keeping a reasonable control over the false discoveryrate. We incorporate the
BH-FDR method into our rule-learning algorithm by first providing anαFDR value and then using
BH-FDR to find the cutoff threshold for determining which p-values are significant.

3. WSARE 3.0

Many detection algorithms (Goldenberg et al., 2002; Zhang et al., 2003; Fawcett and Provost, 1997)
assume that the observed data consist of cases from background activity, which we will refer to as
the baseline, plus any cases from irregular behavior. Under this assumption, detection algorithms
operate by subtracting away the baseline from recent data and raising analarm if the deviations
from the baseline are significant. The challenge facing all such systems is toestimate the baseline
distribution using data from historical data. In general, determining this distribution is extremely
difficult due to the different trends present in surveillance data. Seasonal variations in weather and
temperature can dramatically alter the distribution of surveillance data. For example, flu season
typically occurs during mid-winter, resulting in an increase in ED cases involving respiratory prob-
lems. Disease outbreak detectors intended to detect epidemics such as SARS, West Nile Virus and
anthrax are not interested in detecting the onset of flu season and would be thrown off by it. Day
of week variations make up another periodic trend. Figure 3, which is takenfrom Goldenberg et al.
(2002), clearly shows the periodic elements in cough syrup and liquid decongestant sales.

Choosing the wrong baseline distribution can have dire consequences for an early detection
system. Consider once again a database of ED records. Suppose we are presently in the middle
of flu season and our goal is to detect anthrax, not an influenza outbreak. Anthrax initially causes
symptoms similar to those of influenza. If we choose the baseline distribution to beoutside of the
current flu season, then a comparison with recent data will trigger many false anthrax alerts due to
the flu cases. Conversely, suppose we are not in the middle of flu seasonand that we obtain the
baseline distribution from the previous year’s influenza outbreak. The system would now consider
high counts of flu-like symptoms to be normal. If an anthrax attack occurs, it would be detected
late, if at all.
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Figure 3: Cough syrup and liquid decongestant sales from (Goldenberg et al., 2003)

There are clearly tradeoffs when defining this baseline distribution. At one extreme, we would
like to capture any current trends in the data. One solution would be to use only the most recent data,
such as data from the previous day. This approach, however, placestoo much weight on outliers
that may only occur in a short but recent time period. On the other hand, wewould like the baseline
to be accurate and robust against outliers. We could use data from all previous years to establish the
baseline. This choice would smooth out trends in the data and likely raise alarmsfor events that are
due to periodic trends.

In WSARE 2.0, we made the baseline distribution to be raw data obtained from selected his-
torical days. For example, we chose data from 35, 42, 49, and 56 daysprior to the current day
under examination. These dates were chosen to incorporate enough dataso that seasonal trends
could be captured and they were also chosen to avoid weekend versus weekday effects by making
all comparisons from the same day of week. This baseline was chosen manually in order to tune
the performance of WSARE 2.0 on the data set. Ideally, the detection system should determine the
baseline automatically.

In this section, we describe how we use a Bayesian network to representthe joint probability
distribution of the baseline. From this joint distribution, we represent the baseline distributions from
the conditional distributions formed by conditioning on what we termenvironmental attributes.
These attributes are precisely those attributes that account for trends in the data, such as the season,
the current flu level and the day of week.

3.1 Creating the Baseline Distribution

Learning the baseline distribution involves taking all records prior to the past 24 hours and build-
ing a Bayesian network from this subset. During the structure learning, wedifferentiate between
environmental attributes, which are attributes that cause trends in the data, and response attributes,
which are the remaining attributes. The environmental attributes are specifiedby the user based
on the user’s knowledge of the problem domain. If there are any latent environmental attributes
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that are not accounted for in this model, the detection algorithm may have some difficulties. How-
ever, as will be described later on in Section 4, WSARE 3.0 was able to overcome some hidden
environmental attributes in our simulator.

While learning the structure of the Bayesian network, environmental attributes are prevented
from having parents because we are not interested in predicting their distributions, but rather, we
want to use them to predict the distributions of the response attributes. In general, any structure
learning algorithm can be used in this step as long as it follows this restriction. In fact, the structure
search can even exploit this constraint by avoiding search paths that assign parents to the environ-
mental attributes.

We experimented with using hillclimbing to learn the Bayesian network structure and found it
to be both slow and prone to being trapped in local optima. As a result, we developed an efficient
structure search algorithm called Optimal Reinsertion based on ADTrees (Moore and Lee, 1998).
Unlike hillclimbing, which performs a single modification to a directed acyclic graph(DAG) on each
step, Optimal Reinsertion is a larger scale search operator that is much less prone to local optima.
Optimal Reinsertion first picks a target nodeT from the DAG, disconnectsT from the graph, and
efficiently finds the optimal way to reinsertT back into the graph according to the scoring function.
The details of this algorithm can be found in (Moore and Wong, 2003).

We have often referred to environmental attributes as attributes that causeperiodic trends. En-
vironmental attributes, however, can also include any source of information that accounts for recent
changes in the data. For example, suppose we detect that a botulism outbreak has occurred and
we would still like to be on alert for any anthrax releases. We can add “Botulism Outbreak” as
an environmental attribute to the network and supplement the current data withinformation about
the botulism outbreak. Incorporating such knowledge into the Bayesian network allows WSARE to
treat events due to the botulism outbreak as part of the baseline.

Once the Bayesian network is learned, we have a joint probability distributionfor the data.
We would like to produce a conditional probability distribution, which is formed by condition-
ing on the values of the environmental attributes. Suppose that today is February 21, 2003. If
the environmental attributes wereSeasonandDay o f Week, we would setSeason= Winter and
Day o f Week= Weekday. Let the response attributes in this example beX1, ...,Xn. We can then
obtain the probability distributionP(X1, ...,Xn | Season= Winter, Day o f Week= Weekday) from
the Bayesian network. For simplicity, we represent the conditional distribution as a data set formed
by sampling a large number of records from the Bayesian network conditioned on the environmental
attributes. The number of samples is specified by the parameternumbaselinesamples, which has
to be large enough to ensure that samples with rare combinations of attributes will be present. In
general, this number will depend on the learned Bayesian network’s structure and the parameters
of the network. We chose to sample 10000 records because we determinedempirically that this
number is a reasonable compromise between running time and accuracy on our data. We will refer
to this sampled data set asDBbaseline. The data set corresponding to the records from the past 24
hours of the current day will be namedDBrecent.

We used a sampled data set instead of using inference mainly for simplicity. Inference might be
faster than sampling to obtain the conditional probabilityP(X1, . . . ,Xn | Environmental Attributes),
especially when the learned Bayesian networks are simple. However, if inference is used, it is
somewhat unclear how to perform the randomization test. With sampling, on the other hand, we
only need to generateDBbaselineonce and then we can use it for the randomization test to obtain
the p-values for all the rules. In addition, sampling is easily done in an efficient manner since
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environmental attributes have no parents. While a sampled data set providesthe simplest way
of obtaining the conditional distribution, we have not completely ignored the possibility of using
inference to speed up this process. We would like to investigate this direction further in our future
work.

3.2 Dealing with New Hospitals Coming Online

WSARE 3.0 assumes that the baseline distribution remains relatively stable, with the environmental
attributes accounting for the only sources of variation. However, in a real life situation where data
are pooled from various EDs around a city, new hospitals frequently comeonline and become a new
source of data to be monitored. These new data sources cause a shift from the baseline distribution
that is not accounted for in WSARE 3.0. For example, suppose a children’s hospital begins sending
data to the surveillance system. In this case, WSARE 3.0 would initially detect an anomalous
pattern due to an increase in the number of cases involving children from thepart of the city where
the children’s hospital is located. Over time, WSARE 3.0 would eventually incorporate the newly
added hospital’s data into its baseline.

In general, this problem of a shifted distribution is difficult to address. We approach this issue
by ignoring the new data sources until we have enough data from them to incorporate them into the
baseline. Our solution relies on the data containing an attribute such asHospital ID that can identify
the hospital that the case originated from. HIPAA regulations can sometimes prevent ED data from
containing such identifying attributes. In this case, we recommend using WSARE 2.0 with a recent
enough baseline period in order to avoid instabilities due to new data sources. Whenever the data
includes aHospital ID attribute, we first build a list of hospitals that provide data for the current
day. For each hospital in this list, we keep track of the first date a case camefrom that particular
hospital. If the current day is less than a year after the first case date, we consider that hospital
to have insufficient historical data for the baseline and we ignore all records from that hospital.
For each hospital with sufficient historical records, we then build a Bayesian network using only
historical data originating from that particular hospital.

In order to produce the baseline data set, we sample a total of 10000 records from all the hospital
Bayesian networks. Let hospitalh havenh records on the current day and suppose there areH
hospitals with sufficient historical data for the current date. Then letNh = ∑H

h=1nh. Each hospital
Bayesian network contributes 10000∗ nh

Nh
number of samples to the baseline data set. As an example,

suppose we have 5 hospitals with 100 records each. Furthermore, assume that we can ignore the
fourth hospital’s records since its first case is less than a year prior to thecurrent date. We are then
left with 4 hospitals with 100 records each. After we build the Bayesian network for each hospital,
we sample 2500 records from the Bayesian network belonging to each of the four hospitals.

4. Evaluation

Validation of early outbreak detection algorithms is generally a difficult task due to the type of data
required. Health-care data during a known disease outbreak, either natural or induced by a bioa-
gent release, are extremely limited. Even if such data were plentiful, evaluation of biosurveillance
algorithms would require the outbreak periods in the data to be clearly labelled.This task requires
an expert to inspect the data manually, making this process extremely slow. Consequently, such
labelled data would still be scarce and making statistically significant conclusions with the results
of detection algorithms would be difficult. Furthermore, even if a group of epidemiologists were to
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be assembled to label the data, there would still be disagreements as to when anoutbreak begins
and ends.

As a result of these limitations, we validate the WSARE algorithms on data from a simulator
which we will refer to as the city Bayesian network (CityBN) simulator. The CityBN simulator
is based on a large Bayesian network that introduces temporal fluctuationsbased on a variety of
factors. The structure and the parameters for this Bayesian network arecreated by hand. This
simulator is not intended to be a realistic epidemiological model. Instead, the modelis designed to
produce extremely noisy data sets that are a challenge for any detection algorithm. In addition to
simulated data, we also include WSARE output from ED data from an actual city. Due to the fact
that epidemiologists have not analyzed this real world data set for known outbreaks, we are only
able to provide annotated results from the runs of WSARE.

4.1 The CityBN Simulator

The city in the CityBN simulator consists of nine regions, each of which containsa different sized
population, ranging from 100 people in the smallest area to 600 people in the largest section, as
shown in Table 5. We run the simulation for a two year period starting from January 1, 2002 to
December 31, 2003. The environment of the city is not static, with weather, flu levels and food
conditions in the city changing from day to day. Flu levels are typically low in the spring and
summer but start to climb during the fall. We make flu season strike in winter, resulting in the
highest flu levels during the year. Weather, which only takes on the valuesof hot or cold, is as
expected for the four seasons, with the additional feature that it has a good chance of remaining the
same as it was yesterday. Each region has a food condition of good or bad. A bad food condition
facilitates the outbreak of food poisoning in the area.

NW (100) N (400) NE (500)
W (100) C (200) E (300)
SW (200) S (200) SE (600)

Table 5: The geographic regions in the CityBN simulator with their populations in parentheses

Date

Day of
Week

Weather Flu Level Region Food
Condition

Previous
Flu Level

SeasonWeather
Previous Previous Region

Food Condition

Previous Region
Anthrax Concentration

Region Anthrax
Concentration

Figure 4: City Status Bayesian Network

We implement this city simulation using a single large Bayesian network. For simplicity,we
will describe this large Bayesian network in two parts, as shown in Figures 4and 5. The subnetwork
shown in Figure 4 is used to create the state of the city for a given day. Given the state of the city,
the network in Figure 5 is used to generate records for individual patients.

We use the convention that any nodes shaded black in the subnetwork areset by the system and
do not have their values generated probabilistically. Due to space limitations, instead of showing
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eighteen separate nodes for the current and previous food conditionsof each region in Figure 4, we
summarize them using the generic nodesRegion Food ConditionandPrevious Region Food Condition
respectively. This same space saving technique is used for the currentand previous region an-
thrax concentrations. Most of the nodes in this subnetwork take on two to three values. For
each day, after the black nodes have their values set, the values for the white nodes are sampled
from the subnetwork. These records are stored in the City Status (CS) data set. The simulated
anthrax release is selected for a random date during a specified time period. One of the nine re-
gions is chosen randomly for the location of the simulated release. On the date of the release, the
Region Anthrax Concentrationnode is set to have the value ofHigh. The anthrax concentration
remains high for the affected region for each subsequent day with an 80% probability. This prob-
ability is chosen in order to ensure that enough individuals in the simulation arebeing infected by
anthrax over an extended period of time after the attack.

Heart
Health

Activity
Outside

System
Immune

Actual
Symptom

Has Anthrax

Has Food
Poisoning

Disease

Has Sunburn

Has Allergy
Has Cold

Has Flu

REPORTED
SYMPTOM

ACTION DRUG

Region
Anthrax

Concentration

DATE

FLU LEVEL DAY OF WEEK SEASON WEATHER

REGION

Has Heart
Problems

AGE

GENDER

Region

Region
Food

Grassiness

Condition

Figure 5: Patient Status Bayesian Network

Table 6: Examples of two records in the PS data set

Location NW N
Age Child Senior
Gender Female Male
Flu Level High None
Day of Week Weekday Weekday
Weather Cold Hot
Season Winter Summer
Action Absent ED visit
Reported Symptom Nausea Rash
Drug None None
Date Jan-01-2002 Jun-21-2002

The second subnetwork used in our simulation produces individual healthcare cases. Figure 5
depicts the Patient Status (PS) network. On each day, for each person ineach region, we sample
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the individual’s values from this subnetwork. The black nodes first have their values assigned from
the CS data set record for the current day. For the very first day, theblack nodes are assigned a
set of initial values. The white nodes are then sampled from the PS network.Each individual’s
health profile for the day is thus generated. The nodesFlu Level, Day o f Week, Season, Weather,
Region Grassiness, andRegion Food Conditionare intended to represent environmental variables
that affect the upswings and downswings of a disease. TheRegion Grassinessnodes indicate the
amount of pollen in the air and thus affect the allergies of a patient. We choosethese environmental
variables because they are the most common factors influencing the health ofa population. Two
of the environmental variables, namelyRegion GrassinessandRegion Food Condition, are hidden
from the detection algorithm while the remaining environmental attributes are observed. We choose
to hide these two attributes because the remaining four attributes that are observed are typically
considered when trying to account for temporal trends in biosurveillancedata.

As for the other nodes, theDiseasenode indicates the status of each person in the simulation.
We assume that a person is either healthy or they can have, in order of precedence, allergies, the
cold, sunburn, the flu, food poisoning, heart problems or anthrax. Ifthe values of the parents of
theDiseasenode indicate that the individual has more than one disease, theDiseasenode picks the
disease with the highest precedence. This simplification prevents individuals from having multiple
diseases. A sick individual then exhibits one of the following symptoms: none, respiratory prob-
lems, nausea, or a rash. Note that in our simulation, as in real life, different diseases can exhibit the
same symptoms, such as a person with the flu can exhibit respiratory problemsas could a person
with anthrax. The actual symptom associated with a person may not necessarily be the same as
the symptom that is reported to health officials. Actions available to a sick person included doing
nothing, buying medication, going to the ED, or being absent from work or school. As with the CS
network, the arities for each node in the PS network are small, ranging fromtwo to four values. If
the patient performs any action other than doing nothing, the patient’s health care case is added to
the PS data set. Only the attributes in Figure 5 labelled with uppercase letters arerecorded, result-
ing in a great deal of information being hidden from the detection algorithm, including some latent
environmental attributes. The number of cases the PS network generates daily is typically in the
range of 30 to 50 records. Table 6 contains two examples of records in thePS data set.

We run six detection algorithms on 100 different PS data sets. Each data setis generated for
a two year period, beginning on January 1, 2002 and ending December 31, 2003. The detection
algorithms train on data from the first year until the day being monitored while thesecond year is
used for evaluation. The anthrax release is randomly chosen in the periodbetween January 1, 2003
and December 31, 2003.

We try to simulate anthrax attacks that are not trivially detectable. Figure 6 plotsthe total count
of health-care cases on each day during the evaluation period while Figure 7 plots the total count of
health-care cases involving respiratory symptoms for the same simulated data set. A naive detection
algorithm would assume that the highest peak in this graph would be the date ofthe anthrax release.
However, the anthrax release occurs on day index 74,409, which is clearly not the highest peak in
either graph. Occasionally the anthrax releases affects such a limited number of people that it is
undetected by all the algorithms. Consequently, we only use data sets with morethan eight reported
anthrax cases on any day during the attack period.

The following paragraphs describe the six detection algorithms that we run on the data sets.
Three of these methods, namely the control chart, moving average, and ANOVA regression algo-
rithms, operate on univariate data. We apply these three algorithms to two different univariate data
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Figure 6: Daily counts of health-care data
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Figure 7: Daily counts of health-care data involving respiratory symptoms

sets – one data set is composed of total daily counts and the other of daily counts of cases involving
respiratory symptoms. The remaining three algorithms are variations on WSARE.

The Control Chart Algorithm The first algorithm used is a common anomaly detection algo-
rithm called a control chart. This detector determines the mean and variance of the total number of
records on each day in the PS data set during the training period. A threshold is calculated based on
the formula below, in whichΦ−1 is the inverse to the cumulative distribution function of a standard
normal while the p-value is supplied by the user.

threshold= µ+σ∗Φ−1(1− p-value
2

)

If the aggregate daily counts of health care data exceeds this threshold during the evaluation
period, the control chart raises an alarm. We use a training period of January 1, 2002 to December
31, 2002.

Moving Average Algorithm The second algorithm that we use is a moving average algorithm
that predicts the count for the current day as the average of counts from the previous 7 days. The
window of 7 days is intended to capture any recent trends that might appear in the data. An alarm
level is generated by fitting a Gaussian to data prior to the current day and obtaining a p-value for
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the current day’s count. The mean and standard deviation for the Gaussian is calculated using data
from 7 days before the current day.

ANOVA Regression A simple detector that accounts for environmental factors is ANOVA re-
gression, which is simply linear regression supplemented with covariates forthe environmental
variables. We include 6 covariates for the days of the week, 3 for the seasons and one for the
daily aggregate count from the previous day. ANOVA regression is a fairly powerful detector when
temporal trends are present in the data, as was shown in (Buckeridge etal., 2005).

WSARE 2.0 WSARE 2.0 is also evaluated, using a baseline distribution of records from 35,
42, 49 and 56 days before the current day. The attributes used by WSARE 3.0 as environmental
attributes are ignored by WSARE 2.0. If these attributes are not ignored, WSARE 2.0 would report
many trivial anomalies. For instance, suppose that the current day is the first day of fall, making
the environmental attributeSeason= Fall . Furthermore, suppose that the baseline is taken from
the summer season. If the environmental attributes are not ignored, WSARE2.0 would notice that
100% of the records for the current day haveSeason= Fall while 0% of the records in the baseline
data set match this rule.

WSARE 2.5 Instead of building a Bayesian network over the past data, WSARE 2.5 simplybuilds
a baseline from all records prior to the current period with their environmental attributes equal to the
current day’s. In our simulator, we use the environmental attributesFlu Level, Season, Day o f Week
andWeather. To clarify this algorithm, suppose for the current day we have the following values
of these environmental attributes:Flu Level= High, Season= Winter, Day o f Week= Weekday
andWeather= Cold. ThenDBbaselinewould contain only records before the current period with
environmental attributes having exactly these values. It is possible that no such records exist in the
past with exactly this combination of environmental attributes. If there are fewer than five records in
the past that matched, WSARE 2.5 can not make an informed decision when comparing the current
day to the baseline and simply reports nothing for the current day.

WSARE 3.0 WSARE 3.0 uses the same environmental attributes as WSARE 2.5 but builds a
Bayesian network for all data from January 1, 2002 to the day being monitored. We hypothesize
that WSARE 3.0 would detect the simulated anthrax outbreak sooner than WSARE 2.5 because
3.0 can handle the cases where there are no records corresponding tothe current day’s combination
of environmental attributes. The Bayesian network is able to generalize from days that do not
match today precisely, producing an estimate of the desired conditional distribution. For efficiency
reasons, we allow WSARE 3.0 to learn the network structure from scratch once every 30 days on
all data since January 1, 2002. On intermediate days, WSARE 3.0 simply updates the parameters
of the previously learned network without altering its structure. In practice, we expect WSARE 3.0
to be used in this way since learning the network structure on every day may be very expensive
computationally.

4.1.1 RESULTS

In order to evaluate the performance of the algorithms, we plot an Activity Monitoring Operating
Characteristic (AMOC) curve (Fawcett and Provost, 1999), which is similar to an ROC curve. On
the AMOC curves to follow, the x-axis indicates the number of false positivesper month while the
y-axis measures the detection time in days. For a given alarm threshold, we plot the performance
of the algorithm at a particular false positive level and detection time on the graph. As an example,
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suppose we are dealing with an alarm threshold of 0.05. We then take all the alarms generated by
an algorithm, say WSARE 3.0, that have a p-value less than or equal to 0.05.Suppose there are two
such alarms, with one alarm appearing 5 days before the simulated anthrax release, which would be
considered a false positive, and the other appearing 3 days after the release, making the detection
time 3 days. If we run the detection algorithms for 1 month, then we would plot a point at (1,3).

We then vary the alarm threshold in the range of 0 to 0.2 and plot points at each threshold value.
For a very sensitive alarm threshold such as 0.2, we expect a higher number of false positives but
a lower detection time. Hence the points corresponding to a sensitive threshold would be on the
lower right hand side of the graph. Conversely, an insensitive alarm threshold like 0.01 would result
in a lower number of false positives and a higher detection time. The corresponding points would
appear on the upper left corner of the graph.
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Figure 8: AMOC curves comparing WSARE 3.0 to univariate algorithms operating on total daily
counts from the CityBN simulator

Figures 8 to 10 plot the AMOC curve, averaged over the 100 data sets, withan alarm threshold
increment of 0.001. On these curves, the optimal detection time is one day, as shown by the dotted
line at the bottom of the graph. We add a one day delay to all detection times to simulate reality
where current data is only available after a 24 hour delay. Any alert occurring before the start of the
simulated anthrax attack is treated as a false positive. Detection time is calculated as the first alert
raised after the release date. If no alerts are raised after the release, the detection time is set to 14
days.

Figures 8 and 9 show that WSARE 3.0 clearly outperform the univariate algorithms when the
univariate algorithms operate on the total daily counts and also when the univariate algorithms
operate on the daily counts of cases involving respiratory symptoms. In Figure 10, WSARE 2.5
and WSARE 3.0 outperform the other algorithms in terms of the detection time and false positive
tradeoff. For a false positive rate of one per month, WSARE 2.5 and WSARE 3.0 are able to detect
the anthrax release within a period of one to two days. The Control Chart, moving average, ANOVA
regression and WSARE 2.0 algorithms are thrown off by the periodic trendspresent in the PS data.
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Figure 9: AMOC curves comparing WSARE 3.0 to univariate algorithms operating on cases in-
volving respiratory symptoms from the CityBN simulator
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Figure 10: AMOC curves for WSARE variants operating on CityBN data

We previously proposed that WSARE 3.0 would have a better detection time thanWSARE 2.5
due to the Bayesian network’s ability to produce a conditional distribution fora combination of
environmental attributes that may not exist in the past data. After checking the simulation results
for which WSARE 3.0 outperformed WSARE 2.5, we conclude that in some cases, our proposition
is true. In others, the p-values estimated by WSARE 2.5 are not as low as those of version 3.0. The
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baseline distribution of WSARE 2.5 is likely not as accurate as the baseline of WSARE 3.0 due
to smoothing performed by the Bayesian network. The false positives found by WSARE 2.5 and
WSARE 3.0 are likely due to other non-anthrax illnesses that are not accounted for in the Bayesian
network. Had we explicitly added a Region Food Condition environmental attribute to the Bayesian
network, this additional information would likely have reduced the false positive count.

Figures 11 to 14 illustrate the various outbreak sizes in the simulated data by plotting the number
of anthrax cases per day during the outbreak period. Since the outbreak sizes and durations are
randomly generated for each of the 100 data sets, we do not have room toshow plots for each
data set. Instead, we include representative plots of the outbreaks that appeared in our simulated
data. Figure 11 represents a large scale outbreak which was easily detected on the first day by most
algorithms. Large scale outbreaks were rare in our simulated data. Figure 12 is a representative
plot of a medium scale outbreak that is most common in the data. The particular outbreak shown
in Figure 12 is also detected by WSARE 3.0 on the first day for an alarm threshold of 0.005. Small
scale outbreaks, as shown in Figure 13, are the most difficult to detect. WSARE 3.0 detects the
outbreak in Figure 13 on the third day with a very insensitive alarm thresholdof 0.005. Figure 14
contains an outbreak that WSARE 3.0 is unable to detect using an alarm threshold of 0.03.

We also conduct four other experiments to determine the effect of varyingcertain parameters
of WSARE 3.0. In the first experiment, we use a Bonferroni correction tocorrect for multiple
hypothesis testing instead of a randomization test. The AMOC curve for the results, as shown
in Figure 15 indicate that the Bonferroni correction results are almost identical to those of the
randomization test. This similarity was expected because on each day, there are approximately
only 50 hypothesis tests being performed to find the best scoring rule and the hypothesis tests are
weakly dependent on each other. However, as the number of hypothesis tests increases and as the
dependence between the hypothesis tests increases, the results of the randomization test should be
better than those of the Bonferroni correction.

In order to illustrate the advantages of the randomization test, we produce dependent hypothesis
tests in WSARE by creating attributes that are dependent on each other. Wegenerate a data set
using a Markov chainX0, . . . ,Xn in which the states of each random variable in the chain become
the attributes in the data set. Each random variableXt in the Markov chain can be in stateA, B, C,
or D, except forX0 which always starts atA. At each time stept, the random variableXt retains
the state ofXt−1 in the Markov chain with a 90% chance. With a 10% chance,Xt takes on the next
state in the ordered sequenceA, B, C andD. As an example, ifXt−1 = A, Xt can remain asA or
it can becomeB. If Xt−1 = D, Xt can retain the same state asXt−1 or transition back to the state
A, which is the first state of the ordered sequence. We use this model to generate 150 days worth
of data in which each day contains 1000 records and each record contains 100 attributes. We then
sample 14 days of data with the same characteristics except the Markov chainis altered slightly so
that each random variableXt remains in the same state asXt−1 with an 89% probability. Thirty data
sets, each containing a total of 164 days are produced. Two variations of WSARE 2.0, one with a
randomization test and the other with a Bonferroni correction, are appliedto these thirty data sets in
order to detect the change.

Figure 16 plots the average AMOC curve of this experiment. As the graph illustrates, at a false
positive rate of less than 0.4 per month, the randomization test has a much better detection time.
Upon further analysis, we find that the reduced performance of the Bonferroni correction are due to
a much higher number of false positives. As an example, we find that WSAREoften notices that a
rule such asX27 = C AND X96 = B produces a very good score. The Bonferroni correction deals
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Figure 11: An example of a large scale outbreak
in the CityBN data
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Figure 12: An example of a medium scale out-
break in the CityBN data
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Figure 13: An example of a small scale outbreak
in the CityBN data
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Figure 14: An example of an outbreak that was
not detected in the CityBN data by
WSARE 3.0 with an alarm threshold
of 0.03
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Figure 15: The Bonferroni correction version of WSARE versus the randomization test version on
the CityBN data
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Figure 16: A comparison between the Bonferroni correction version ofWSARE and the random-
ization test version on data generated from a Markov chain

with the multiple hypothesis problem by simply multiplying the score with the number of hypothesis
tests. Although there are a high number of hypothesis tests in this experiment, multiplying by the
number of hypothesis tests still results in a low compensated p-value. The randomization test, on
the other hand, notices that although the score is very good, the probabilityof finding an equal or
better score for another rule, such asX46 = A AND X94 = B is quite high because of the dependence
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between attributes. Thus, the resulting compensated p-value from the randomization test is quite
high, signifying that the pattern defined by the rule is not so unusual afterall.
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Figure 17: The effect of varying the maximum number of components for a rule on the AMOC
curve for CityBN data

The second experiment involves varying the maximum components allowed perrule from one
to three. As seen on the AMOC curve in Figure 17, the variations do not seem significantly different
to the left of the one false positive per month mark. However, after this point,a version of WSARE
with a three component limit outperforms the other two variations. By setting the maximum number
of components per rule to be three, WSARE is capable of being more expressive in its description
of anomalous patterns. On the other hand, WSARE also guards against overfitting by requiring
each component added to be 95% significant for the two hypothesis tests performed in Section 2.5.
This criterion makes the addition of a large number of rule components unlikely and we expect the
optimal number of components to be about two or three.

The third experiment involves changing the rule search to be exhaustive rather than greedy.
Note that if we compare the score of the best rule found by the exhaustivemethod against that
found by the greedy method, the exhaustive method would unquestionably find a rule with an equal
or greater score than the greedy method. In Figure 18, however, we compare the performance of
the two algorithms using AMOC curves. Each coordinate on the AMOC curve isa result of a
compensated p-value produced by the randomization test and not the rule score. Thus, even though
an exhaustive rule search will always equal or outperform a greedyrule search in terms of the best
rule score, it is not guaranteed to be superior to the greedy rule searchon an AMOC curve due to the
fact that the randomization test adjusts the rule score for multiple hypothesis testing. In Figure 18,
we plot the AMOC curves comparing the average performance for both theexhaustive and greedy
algorithms over 100 experiments; we do not show the confidence intervals inorder to avoid clutter.
The confidence intervals for both the greedy and the exhaustive curves do overlap substantially.
Therefore, there appears to be no significant difference between thetwo algorithms for the data
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Figure 18: AMOC curves for greedy versus exhaustive rule searchfor CityBN data

from this simulator. We measure the exhaustive search to be 30 times slower than the greedy search.
Since the AMOC curves are nearly identical for our simulated data, we prefer the greedy search.
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Figure 19: The effect of increased noise levels in the data on WSARE 3.0

Finally, we experiment with adding noise to the data by increasing the number ofED cases
due to allergies, food poisoning, sunburns and colds. We increase the noise levels by increasing
the probabilities ofRegion Food Condition= bad, Has Allergy= true, Has Cold= true, and
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Has Sunburn= true in their respective conditional probability tables. Note that these nodes areall
not visible in the output data. Increasing these probabilities involves changes to many entries of
the conditional probability tables and we do not have space to list all of the changes. In general,
we increase the probabilities of the corresponding entries in the conditionalprobability tables by
approximately 0.004-0.005. We cannot say specifically how many noisy cases are generated since
this amount fluctuates over time.

We produce 100 data sets with increased noise levels which we will refer to as “Noisy” and we
also produce another 100 data sets with even more noise which we will referto as “Noisier”. The
“Regular” data sets are the 100 data sets used in all previous experiments.We then apply WSARE
3.0 to these three groups. The average AMOC curve for each group of100 data sets is plotted in
Figure 19. As in previous experiments, we use the environmental attributes of Flu Level, Season,
Day o f WeekandWeather. As shown in Figure 19, both the detection time and the false positive
rate degrade with increased noise levels.

4.2 Annotated Output of WSARE 3.0 on Actual ED Data for 2001

We also test the performance of WSARE 3.0 on actual ED data from a major UScity. This database
contains almost seven years worth of data, with personal identifying information excluded in order
to protect patient confidentiality. The attributes in this database include date ofadmission, coded
hospital ID, age decile, gender, syndrome information, discretized home latitude, discretized home
longitude, discretized work latitude, discretized work longitude and both homelocation and work
location on a coarse latitude-longitude grid. In this data, new hospitals come online and begin
submitting data during the time period that the data is collected. We use the solution described in
Section 3.2 to address this problem. WSARE operates on data from the year 2001 and is allowed
to use over five full years worth of training data from the start of 1996 to the current day. The
environmental attributes used are month, day of week and the number of cases from the previous
day with respiratory problems. The last environmental attribute is intended to be an approximation
to the flu levels in the city. We use a one-sided Fisher’s exact test to score the rules such that
only rules corresponding to an upswing in recent data are considered.In addition, we apply the
Benjamini-Hochberg FDR procedure withαFDR = 0.1.

The following list contains the significant anomalous patterns found in the real ED data for the
year 2001.

1. 2001-02-20: SCORE = -2.15432e-07 PVALUE = 0

15.9774% (85/532) of today’s cases have Viral Syndrome = True and Respiratory Syndrome = False

8.84% (884/10000) of baseline cases have Viral Syndrome = True and Respiratory Syndrome = False

2. 2001-06-02: SCORE = -3.19604e-08 PVALUE = 0

1.27971% (7/547) of today’s cases have Age Decile = 10 and Home Latitude = Missing

0.02% (2/10000) of baseline cases have Age Decile = 10 and Home Latitude = Missing

3. 2001-06-30: SCORE = -2.39821e-07 PVALUE = 0

1.44% (9/625) of today’s cases have Age Decile = 10

0.09% (9/10000) of baseline cases have Age Decile = 10

4. 2001-08-08: SCORE = -1.21558e-08 PVALUE = 0

83.7979% (481/574) of today’s cases have Unknown Syndrome = False

73.6926% (7370/10001) of baseline cases have Unknown Syndrome = False
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5. 2001-10-10: SCORE = -1.42315e-06 PVALUE = 0

0.994036% (5/503) of today’s cases have Age Decile = 10 and Home Latitude = Missing

0.009998% (1/10002) of baseline cases have Age Decile = 10 and Home Latitude = Missing

6. 2001-12-02: SCORE = -4.31806e-07 PVALUE = 0

14.7059% (70/476) of today’s cases have Viral Syndrome = True and Encephalitic Syndrome = False

7.73077% (773/9999) of baseline cases have Viral Syndrome = True and Encephalitic Syndrome = False

7. 2001-12-09: SCORE = -3.31973e-10 PVALUE = 0

8.57788% (38/443) of today’s cases have Hospital ID = 1 and Viral Syndrome = True

2.49% (249/10000) of baseline cases have Hospital ID = 1 and Viral Syndrome = True

Rules 2, 3 and 5 are likely due to clerical errors in the data since the rule finds an increase in
the number of people between the ages of 100 and 110. Furthermore, the home zip code for these
patients appears to be missing in rules 2 and 5. Rule 4 is uninteresting since it indicates that the
number of cases without an unknown symptom, which is typically around 73.7%, has experienced
a slight increase. For rules 1, 6 and 7 we went back to the original ED datato inspect the text
descriptions of the chief complaints for the cases related to these three rules. The symptoms related
to Rules 1, 6 and 7 involve dizziness, fever and sore throat. Given that Rules 1, 6 and 7 have dates
in winter, along with the symptoms mentioned, we speculate that this anomalous patternis likely
caused by an influenza strain.

We also include results from WSARE 2.0 running on the same data set. Unlike WSARE 3.0,
WSARE 2.0 does not have a similar solution to the approach taken in Section 3.2 todeal with new
hospitals coming online. However, by using a short enough baseline period, such as the standard
baseline of 35, 42, 49, and 56 days prior to the current date, we can capture fairly recent trends and
deal with a changing distribution as new hospitals submit data. The results areshown below. Note
that we group together identical rules from consecutive days in order tosave space.

1. 2001-01-31: SCORE = -8.0763e-07 PVALUE = 0

21.2766% (110/517) of today’s cases have Unknown Syndrome = True

12.5884% (267/2121) of baseline cases have Unknown Syndrome = True

2. 2001-05-01: SCORE = -1.0124e-06 PVALUE = 0.001998

18.4739% (92/498) of today’s cases have Gender = Male and Home Latitude > 40.5

10.2694% (202/1967) of baseline cases have Gender = Male and Home Latitude > 40.5

Rules 3-6 from 2001-10-28 to 2001-10-31 all have PVALUE = 0 and involve rules with Hospital ID = Missing

7. 2001-11-01: SCORE = -7.78767e-21 PVALUE = 0

5.87084% (30/511) of today’s cases have Hospital ID = Missing and Hemorrhagic Syndrome = True

0% (0/1827) of baseline cases have Hospital ID = Missing and Hemorrhagic Syndrome = True

Rules 8-14 from 2001-11-02 to 2001-11-08 all have PVALUE = 0 and have the rule Hospital ID = Missing

Rules 15-37 from 2001-11-09 to 2001-12-02 all have PVALUE = 0 and have the rule Hospital ID = 14

Rules 38-59 from 2001-12-03 to 2001-12-24 all have PVALUE = 0 and have the rule Hospital ID = 50
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60. 2001-12-25: SCORE = -2.99132e-09 PVALUE = 0

53.1835% (284/534) of today’s cases have Rash Syndrome = False and Unmapped Syndrome = False

39.2165% (911/2323) of baseline cases have Rash Syndrome = False and Unmapped Syndrome = False

Rules 61-63 from 2001-12-26 to 2001-12-30 all have PVALUE = 0 and have the rule Hospital ID = 50

64. 2001-12-31: SCORE = -7.30783e-07 PVALUE = 0

52.071% (352/676) of today’s cases have Hemorrhagic Syndrome = True and Unmapped Syndrome = False

41.6113% (1064/2557) of baseline cases have Hemorrhagic Syndrome = True and Unmapped Syndrome = False

From the output above, WSARE 2.0 produces a large number of rules thatinvolves hospital IDs
14 and 50 because those two hospitals start providing data in 2002. Theserules typically persist for
about a month, at which point the new hospitals begin to appear in the baselineof WSARE 2.0. We
speculate that the missing hospital IDs in rules 3-14 are due to hospital 14 coming online and a new
hospital code not being available. The other rules produced by WSARE 2.0 are very different from
those generated by WSARE 3.0. This difference is likely due to the fact thatWSARE 3.0 considers
the effects of the environmental attributes. The most interesting rules produced by WSARE 2.0
are rules 2 and 64. Rule 2 highlights the fact that more male patients with a home zipcode in the
northern half of the city appear in the EDs on 2001-05-01. Rule 64 indicates that an increase in
the number of hemorrhagic syndromes have occurred. Both of these rules are unlikely to have been
caused by environmental trends; they are simply anomalous patterns when compared against the
baseline of WSARE 2.0. From our available resources, we are unable to determine if rules 2 and 64
are truly indicative of an outbreak.

4.3 Results from the Israel Center for Disease Control

The Israel Center for Disease Control evaluated WSARE 3.0 retrospectively using an unusual out-
break of influenza type B that occurred in an elementary school in central Israel (Kaufman et al.,
2004). WSARE 3.0 was applied to patient visits to community clinics between the dates of May
24, 2004 to June 11, 2004. The attributes in this data set include the visit date, area code, ICD-9
code, age category, and day of week. The day of week was used as the only environmental at-
tribute. WSARE 3.0 reported two rules with p-values at 0.002 and five other rules with p-values
below 0.0001. Two of the five anomalous patterns with p-values below 0.0001corresponded to the
influenza outbreak in the data. The rules that characterized the two anomalous patterns consisted of
the same three attributes of ICD-9 code, area code and age category, indicating that an anomalous
pattern was found involving children aged 6-14 having viral symptoms within aspecific geographic
area. WSARE 3.0 detected the outbreak on the second day from its onset. The authors of (Kaufman
et al., 2004) found the results from WSARE 3.0 promising and concluded that the algorithm was
indeed able to detect an actual outbreak in syndromic surveillance data.

4.4 Summary of Results

Overall, WSARE 2.0 and 3.0 have been demonstrated to be more effective than univariate methods
at finding anomalous patterns in multivariate, categorical data. The advantage that the WSARE
algorithms have over univariate methods is their ability to identify the combination ofattributes
that characterize the most anomalous groups in the data rather than relying on a user to specify
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beforehand which combination of characteristics to monitor. WSARE 3.0 has afurther advantage
in its ability to account for temporal trends when producing the baseline distribution while WSARE
2.0 can be thrown off by these temporal trends when it uses raw historicaldata for the baseline.

We would like to emphasize the fact that WSARE 3.0 is not necessarily the bestversion of
WSARE in all cases. WSARE 3.0 needs a large amount of data in order to learn the structure and
parameters of its Bayesian network reliably, particularly if there are many attributes in the data.
If WSARE 3.0 is intended to model long term trends such as seasonal fluctuations, several years
worth of historical data are needed. Large amounts of historical data arenot available in many cases,
such as when a syndromic surveillance system needs to be set up from scratch in a few months for
a major event like the Olympic games. In these scenarios, WSARE 2.0 may have an advantage
over WSARE 3.0. This disadvantage of WSARE 3.0 highlights the fact that thelearned Bayesian
network only stores the posterior mean in the conditional probability tables of each node. Future
work on WSARE 3.0 will involve accounting for the variance of the network parameters in the
p-value calculation, perhaps using the approaches proposed by van Allen (2000), van Allen et al.
(2001), and Singh (2004).

Moreover, WSARE 3.0 assumes that the environmental attributes are the onlysource of variation
in the baseline distribution. If other hidden variables cause a significant amount of noise in the
baseline, then WSARE 3.0 will not be very effective. In this situation, a better approach might be
to use WSARE 2.0 with a baseline of raw historical data from a very recent timeperiod. Finally,
we do not recommend using WSARE 2.5 because the algorithm is unable to make predictions
for days in which the combination of environmental attributes do not exist in historical data. The
Bayesian network used by WSARE 3.0 is able to handle such situations and WSARE 3.0 effectively
supersedes WSARE 2.5.

5. Finding Anomalous Patterns in Real-Valued Data

The WSARE algorithm can only be used on categorical data sets. If the datais entirely real-valued,
the attributes can certainly be discretized in a pre-processing step beforeWSARE operates on the
data. Discretization, however, treats all data points in the same discretization bin identically; the
distances between data points in the same bin are lost. If these distances are important, then a real-
valued version of WSARE is needed. Fortunately, the spatial scan statistic (Kulldorff, 1997) can be
considered as the real-valued analog of WSARE.

The spatial scan statistic works on a geographic areaA in which there is an underlying popu-
lation n and within this population there is a countc of interest. The distribution of the countsc
is assumed to follow either a Bernoulli model or a Poisson model. A window of variable size and
shape then passes through the geographic areaA. The crucial characteristic of this window is that
the union of the areas covered by the window is the entire areaA. Existing spatial scan statistic
applications typically use window shapes of circles (Kulldorff, 1999) although ellipses (Kulldorff
et al., 2002) and rectangles (Neill and Moore, 2004) have also been used. In order to set up the
scan statistic, we need to definep as the probability of being a “count” within the scanning window.
Furthermore, letq be the probability of being a “count” outside of the scanning window. Under
the null hypothesis,p = q while the alternative hypothesis isp > q. The spatial scan statistic then
consists of the maximum likelihood ratio betweenLW, the likelihood of the counts in the scanning
window areaW, andL0, the likelihood under the null hypothesis. Equation 1 illustrates the spatial
scan statistic in its general form, using the termW for the zone covered by a scanning window and
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W for the entire collection of zones:

SW = maxWεW

L(W)

L0
. (1)

Since an analytical form for the distribution of the spatial scan statistic is not available, a Monte
Carlo simulation is needed to obtain the significance of the hypothesis test. Typically 999 or 9999
replications of the data set are used for the simulation. In terms of computational complexity, the
bottleneck for the algorithm is the Monte Carlo simulation.

The spatial scan statistic has been extended to three dimensions in the space-time scan statistic
(Kulldorff, 1999, 2001). Instead of using a circular window over space, the scanning window is
now a cylinder, with its circular base for the spatial dimension and its height over a time interval.
Cylinders of varying heights and base radii are moved through space and time to find potential
disease clusters.

Naive implementations of the spatial scan statistic and the space-time scan statistic are too
computationally expensive for large data sets. Assuming that the circular windows are centered
on anNxN grid and the dimensionality isD, the complexity isO(RN2D) whereR is the number
of Monte Carlo simulations. Neill et al. (2005) have developed a fast spatial scan using overlap-kd
trees that can reduce the complexity toO(R(NlogN)D) in the best case. The algorithms discussed so
far find abnormally high density regions in data sets that are entirely real-valued. Efficiently finding
anomalous patterns in a data set with a mixture of categorical and real-valuedattributes remains an
open problem.

6. Related Work

The task of detecting anomalous events in data is most commonly associated with monitoring sys-
tems. As a result, related work can be found in the domains of computer security, fraud detection,
Topic Detection and Tracking (TDT) and fMRI analysis. In computer security, anomaly detection
has been most prominent in intrusion detection systems, which identify intrusions by distinguish-
ing between normal system behavior and behavior when security has been compromised (Lane and
Brodley, 1999; Warrender et al., 1999; Eskin, 2000; Lee et al., 2000; Maxion and Tan, 2002; Kruegel
and Vigna, 2003). In other related security work, Cabuk et al. (2004)describe methods to detect
IP covert timing channels, which surreptitiously use the arrival pattern ofpackets to send informa-
tion. As in computer security, automated fraud detection systems differentiate between normal and
unusual activity on a variety of data such as cellular phone calls (Fawcettand Provost, 1997) and
automobile insurance fraud (Phua et al., 2004). TDT is the task of identifying the earliest report of a
previously unseen news story from a sequence of news stories. Clustering approaches are typically
used in TDT (Yang et al., 1998; Zhang et al., 2005). Finally, anomalous event detection has also
been used in fMRI analysis to identify regions of increased brain activity corresponding to given
cognitive tasks (Neill et al., 2005).

In general, WSARE can be applied to data from these different domains aslong as the data
and the anomalous events satisfy several criteria. WSARE is intended to operate on categorical,
case-level records in which the presence of a record can be considered an event. For instance, in
ED data, an event is defined as the appearance of a person at the ED since it provides a signal of
the community health and we are interested in the characteristics of that person. Secondly, WSARE
only finds differences between the recent data and the baseline data. Ifwe consider the baseline
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data to be a “class”, then WSARE looks for deviations from a single class. Some domains, such
as TDT, require comparisons between several classes. For instance,the current news story needs
to be compared against several categories of news stories. Thirdly, aswas discussed in Section
2.6, WSARE’s running time depends on the number of attributes and the numberof values each
attribute can take. If the number of attributes and the number of values for each attribute are too
high, WSARE may not finish in a reasonable amount of time. Some domains require the running
time of the detection algorithm to be a few seconds or less in order for the entiredetection system to
be effective. In these situations, using WSARE is not appropriate. On theother hand, for domains
such as biosurveillance, the running time of WSARE is acceptable since it takes approximately a
minute to a few minutes to complete on real ED data sets. Finally, WSARE treats eachrecord in the
data independently of the other records. If a sequence of records is highly indicative of, for instance,
a security breach in a network, WSARE will not be able to detect this pattern.

Other related work can also be found in the area of stream mining. In streammining, the focus is
on the online processing of large amounts of data as it arrives. Many algorithms have been developed
to detect anomalies in the current stream of data. Ma and Perkins (2003) develop a novelty detection
algorithm based on online support vector regression. Anomalies can alsobe characterized by an
abnormal burst of data. The technique described by Zhu and Shasha (2003) simultaneously monitors
windows of different sizes and reports those that have an abnormal aggregation of data. A density
estimation approach is used by Aggarwal (2003) to help visualize both spatial and temporal trends
in evolving data streams. Finally, Hulten et al. (2001) present an efficientalgorithm for mining
decision trees from continuously changing data streams. While this work is primarily concerned
with maintaining an up-to-date concept, detecting concept drift is similar to detecting changes in
a data stream. WSARE 3.0 cannot be directly applied to stream mining because the amount of
historical data needed to create the baseline distribution is typically not accessible in a stream mining
context. However, WSARE 2.0 could possibly be modified for a stream mining application.

In the following paragraphs, we will briefly review methods that have beenused for the de-
tection of disease outbreaks. Readers interested in a detailed survey of biosurveillance methods
can be found in (Wong, 2004) and (Moore et al., 2003). The majority of detection algorithms in
biosurveillance operate on univariate time series data. Many of these univariate algorithms have
been taken from the field of Statistical Quality Control and directly applied to biosurveillance. The
three most common techniques from Statistical Quality Control include the Shewhart control chart
(Montgomery, 2001), CUSUM (Page, 1954; Hutwagner et al., 2003), and EWMA (Roberts, 1959;
Williamson and Hudson, 1999). Although these three algorithms are simple to implement, they
have difficulty dealing with temporal trends. Univariate algorithms based on regression and time
series models, on the other hand, are able to model explicitly the seasonal and day of week effects
in the data. The Serfling method (Serfling, 1963) uses sinusoidal components in its regression equa-
tion to model the seasonal fluctuations for influenza. A Poisson regression model that included a
day of week term as a covariate was demonstrated to be a fairly capable detector in (Buckeridge
et al., 2005). As for time series models, the ARIMA and SARIMA models (Choiand Thacker,
1981; Watier et al., 1991; Reis and Mandl, 2003) are commonly used in biosurveillance to deal with
temporal trends. Recently, wavelets (Goldenberg et al., 2002; Zhang etal., 2003) have been used as
a preprocessing step to handle temporal fluctuations including unusually lowvalues due to holidays.

The most common algorithm used in biosurveillance of spatial data is the Spatial Scan Statistic
(Kulldorff, 1997), which has already been discussed. The Spatial Scan Statistic has been generalized
to include a time dimension (Kulldorff, 2001) such that the algorithm searchesfor cylinders in
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spatio-temporal data. Recent work has improved the speed of the Spatial Scan method using an
overlap-kd tree structure (Neill and Moore, 2004; Neill et al., 2005).

The algorithms mentioned thus far have only looked at either univariate or spatial data. Only
a few multivariate biosurveillance algorithms that consider spatial, temporal, demographic, and
symptomatic attributes for individual patient cases currently exist. BCD (Buckeridge et al., 2005)
is a multivariate changepoint detection algorithm that monitors in a frequentist manner whether a
Bayesian network learned from past data (during a “safe” training period) appears to have a dis-
tribution that differs from the distribution of more recent data. If so, then an anomaly may have
occurred. The Bayesian Aerosol Release Detector (BARD) (Hogan et al., 2004) is an algorithm
specifically designed to detect an outbreak of inhalational anthrax due to atmospheric dispersion of
anthrax spores. BARD combines information from ED visits, recent meteorological data, and spa-
tial and population information about the region being monitored in order to determine if an anthrax
attack has occurred. Finally, PANDA (Cooper et al., 2004) is a population-based anomaly detection
algorithm that uses a massive causal Bayesian network to model each individual in the region under
surveillance. By modeling at the individual level, PANDA is able to coherentlyrepresent different
types of background knowledge in its model. For example, spatio-temporal assumptions about a
disease outbreak can be incorporated as prior knowledge. In addition,the characteristics of each
individual, such as their age, gender, home zip, symptom information and admission date to the ED
can be used to derive a posterior probability of an outbreak.

There are two algorithms that are similar to the approach taken by WSARE. Contrast set mining
(Bay and Pazzani, 1999) finds rules that distinguish between two or more groups using a pruning
algorithm to reduce the exponential search space. This optimization prunesaway rules whose counts
are too small to yield a valid Chi Square test. Many of these rules are interesting to WSARE.
Multiple hypothesis testing problems are addressed in contrast set mining through a Bonferroni
correction. In health care, Brossette et al. use association rules for hospital infection control and
public health surveillance (Brossette et al., 1998). Their work is similar to WSARE 2.0 (Wong
et al., 2002), with the main difference being the additional steps of the randomization test and FDR
in WSARE.

7. Conclusions

WSARE approaches the problem of early outbreak detection on multivariatesurveillance data using
two key components. The first component is association rule search, which is used to find anomalous
patterns between a recent data set and a baseline data set. The contribution of this rule search is best
seen by considering the alternate approach of monitoring a univariate signal. If an attribute or
combination of attributes is known to be an effective signal for the presence of a certain disease,
then a univariate detector or a suite of univariate detectors that monitors thissignal will be an
effective early warning detector for that specific disease. However,if such a signal is not known
beforehand, then the association rule search will determine which attributesare of interest. We
intend WSARE to be a general purpose safety net to be used in combination with a suite of specific
disease detectors. Thus, the key to this safety net is to perform non-specific disease detection and
notice any unexpected patterns.

With this perspective in mind, the fundamental assumption to our association ruleapproach is
that an outbreak in its early stages will manifest itself in categorical surveillance data as an anoma-
lous cluster in attribute space. For instance, a localized gastrointestinal outbreak originating at a
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popular restaurant in zipcode X would likely cause an upswing in diarrheacases involving peo-
ple with home zipcode X. These cases would appear as a cluster in the categorical attributes of
Home Zip Code= X andSymptom= Diarrhea. The rule search allows us to find the combina-
tion of attributes that characterize the set of cases from recent data thatare most anomalous when
compared to the baseline data. The nature of the rule search, however, introduces the problem of
multiple hypothesis testing to the algorithm. Even with purely random data, the bestscoring rule
may seem like a truly significant anomalous pattern. We are careful to evaluate the statistical sig-
nificance of the best scoring rule using a randomization test in which the nullhypothesis is the
independence of date and case attributes.

The second major component of WSARE is the use of a Bayesian network to model a base-
line that changes due to temporal fluctuations such as seasonal trends and weekend versus weekday
effects. In WSARE 3.0, attributes are divided into environmental and response attributes. Envi-
ronmental attributes, such as season and day of week, are attributes which are responsible for the
temporal trends while response attributes are the non-environmental attributes. When the Bayesian
network structure is learned, the environmental attributes are not permitted tohave parents because
we are not interested in predicting their distributions. Instead, we want to determine how the envi-
ronmental attributes affect the distributions of the response attributes. WSARE 3.0 operates on an
assumption that the environmental attributes account for the majority of the variation in the data.
Under this assumption, the ratios compared in the rule search should remain reasonably stable over
historical time periods with similar environmental attribute values. As an example, ifthe current day
is a winter Friday and we use season and day of week as environmental attributes, then the fraction
of male senior citizens, for instance, showing up at an ED to the total number of patients should
remain roughly stable over all winter Fridays in the historical period over which the Bayesian net-
work is learned. Once the Bayesian network structure is learned, it represents the joint probability
distribution of the baseline. We can then condition on the environmental attributes to produce the
baseline given the environment for the current day.

Multivariate surveillance data with known outbreak periods is extremely difficult to obtain. As a
result, we resorted to evaluating WSARE on simulated data. Although the simulators do not reflect
real life, detecting an outbreak in our simulated data sets is a challenging problem for any detection
algorithm. We evaluated WSARE on the CityBN simulator, which was implemented to generate
surveillance data which contained temporal fluctuations due to day of week effects and seasonal
variations of background illnesses such as flu, food poisoning and allergies. Despite the fact that
the environmental attributes used by WSARE 3.0 did not account for all of the variation in the data,
WSARE 3.0 detected the anthrax outbreaks with nearly the optimal detection time and a very low
false positive rate. We show that WSARE 3.0 outperformed three common univariate detection
algorithms in terms of false positives per month and detection time. WSARE 3.0 also produced a
better AMOC curve than WSARE 2.0 because the latter was thrown off by the temporal trends in
the data. Finally, the Bayesian network provided some smoothing to the baselinedistribution which
enhanced WSARE 3.0’s detection capability as compared to that of WSARE 2.5.

WSARE has been demonstrated to outperform traditional univariate methodson simulated data
in terms of false positives per month and detection time. Its performance on real world data requires
further evaluation. Currently, WSARE is part of the collection of biosurveillance algorithms in the
RODS system (Real-time Outbreak Detection System, 2004). WSARE 2.0 was deployed to monitor
ED cases in western Pennsylvania and Utah. It was also used during the 2002 Salt Lake City winter
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Olympics. WSARE 3.0 is currently being used as a tool for analysis of public health data by several
American state health departments and by the Israel Center for Disease Control.
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Abstract

We study the problem of learning two regimes (we have a normal and a prefault regime in mind)
based on a train set of non-Markovian observation sequences. Key to the model is that we assume
that once the system switches from the normal to the prefault regime it cannot restore and will
eventually result in a fault. We refer to the particular setting as semi-supervised since we assume the
only information given to the learner is whether a particular sequence ended with a stop (implying
that the sequence was generated by the normal regime) or with a fault (implying that there was a
switch from the normal to the fault regime). In the latter case the particular time point at which a
switch occurred is not known.

The underlying model used is a switching linear dynamical system (SLDS). The constraints in
the regime transition probabilities result in an exact inference procedure that scales quadratically
with the length of a sequence. Maximum aposteriori (MAP) parameter estimates can be found using
an expectation maximization (EM) algorithm with this inference algorithm in the E-step. For long
sequences this will not be practically feasible and an approximate inference and an approximate EM
procedure is called for. We describe a flexible class of approximations corresponding to different
choices of clusters in a Kikuchi free energy with weak consistency constraints.

Keywords: change point problems, switching linear dynamical systems, strong junction trees,
approximate inference, expectation propagation, Kikuchi free energies

1. Introduction

In this article we investigate the problem of detecting a change in a dynamical system. An obvious
practical application of such a model is the prediction of oncoming faults in an industrial process.

For simplicity the problem and algorithms are outlined for a model with four regimes, normal,
prefault, stop, and fault, in Section 2 the extension to more regimes is discussed. The stop and fault
regimes are special in the sense that they are absorbing. If the system reaches one of these states
the process stops. A key assumption in the problem is that once the system reaches a prefault state,
it can never recover.

c©2005 Onno Zoeter and Tom Heskes.
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The setup could be considered as a change point problem, although the name change point
problem usually refers to a problem where the observations are independent if the underlying model
parameters are known. In such settings the challenge is to determine if and where the parameters
change their value. See Krishnaiah and Miao (1988) for a description of change point problems and
references.

In this article we will be interested in slightly more complex problems where the observations
are dependent, even if the parameters are known. The observations in the time-series are not as-
sumed to be Markov. Instead, they are noisy observations of a latent first order Markov process.

The model discussed in this paper can be identified as a switching linear dynamical system
(SLDS), with restricted dynamics in the regime indicators. The SLDS is a discrete time model and
consists of T , d dimensional observations y1:T and T , q dimensional latent states x1:T . The regime
in every time-step is determined by (typically unobserved) discrete switches s1:T . For 1 < t ≤ T , st

is either normal or prefault. The last discrete indicator sT+1 is either a stop or a fault.
Within every regime the state transition and the observation model are linear Gaussian, and may

differ per regime:

p(xt |xt−1,st ,θ) = N (xt ;Ast xt−1,Qst ) ,

p(yt |xt ,st ,θ) = N
(

yt ;Cst xt +µst
,Rst

)

.

In the above N (.; ., .) denotes the Gaussian density function

N (x;m,V ) ≡ (2π)−(d/2)|V |−1/2 exp

[

−
1
2
(x−m)>V−1(x−m)

]

.

The determinant of matrix V is denoted as |V |. The set of parameters in the model is denoted by θ.
As mentioned the current regime is encoded by discrete random variables s1:T and are assumed to
follow a first order transition model

p(st |st−1,θ) = Πst−1→st .

The special characteristics of the regimes and their transitions are reflected by zeros in Πst−1→st ,
i.e. denoting the possible states (normal, fault, etc. ) by their initial letter, we require Πn→f = 0,
Πp→n = 0, Πp→s = 0, Πs→ j = 0, for all j 6= s and Πf→ j = 0, for all j 6= f.

The first regime is always normal, i.e. s1 = n, and the first latent state is drawn from a Gaussian
prior

p(x1|s1 = n,θ) = N (x1;m1,V1) .

With these choices the entire model is conditional Gaussian; conditioned on the discrete variables
s1:T , the remaining variables are jointly Gaussian distributed. The conditional independencies im-
plied by the model are depicted as a dynamical Bayesian network (Pearl, 1988) in Figure 1.

One of the properties of the conditional Gaussian distribution which leads often to computa-
tional problems is that it is not closed under marginalization. For instance, the state posterior over
xt given all observations is

∑
s1:T

∫

p(s1:T ,x1:T |y1:T ,θ) dx1:t−1,t+1:T = ∑
s1:T

p(xt |s1:T ,y1:T ,θ)p(s1:T |y1:T ,θ) ,

which is not a conditional Gaussian, but a mixture of Gaussians with MT components, with M
the number of possible regimes in the system. However, as we will discuss in the next section
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Figure 1: The dynamic Bayesian network for a switching linear dynamical system with four ob-
servations. Square nodes denote discrete, and ovals denote continuous random variables.
Shading emphasizes that a particular variable is observed.

the assumption that a system cannot restore from a prefault state to a normal state results in a
considerable simplification, since many of these components have zero weight.

In Section 3 we review how this sparsity can be exploited in an inference algorithm. As the
basis for an EM algorithm it can then straightforwardly be used to compute MAP estimates for
the model parameters. The exact inference algorithm has running time O(T 2). Hence for relatively
short sequences the constrained transition model makes exact inference feasible. However for larger
sequences the exact inference algorithm will be inappropriate. In Section 5 we introduce a flexible
class of approximations which can be interpreted as a generalization of expectation propagation
(Minka, 2001). It has running time O(T κ), with 0 ≤ κ ≤

⌈

T−2
2

⌉

, an integer parameter that can be set
according to the available computational resources. With κ = 0 the approximation is equivalent to an
iterated version (Heskes and Zoeter, 2002; Zoeter and Heskes, 2005) of generalized pseudo Bayes
2 (Bar-Shalom and Li, 1993) with κ =

⌈

T−2
2

⌉

exact inference is recovered. Section 6 discusses
experiments with inference and MAP parameter estimation on synthetic data and a change point
problem in EMG analysis.

2. Benefits of the Constrained Regime Transition Probabilities

An interesting aspect of the model introduced in Section 1 is that, by the restriction in the regime
transitions, the number of possible regimes histories is considerably less than the 2T possible histo-
ries which would be implied by a system with unconstrained transitions (see e.g. Cemgil et al., 2004;
Fearnhead, 2003). If the absorbing state sT+1 is not observed, there are T possible regime histories
in the current model. One normal sequence s1:T = n, and T −1 fault sequences: s1:τ = n,sτ+1:T = p,
with 1 ≤ τ ≤ T −1. In the remainder of this paper we let τ denote the time-slice up to and includ-
ing which the regime has been normal, i.e. with τ = T the entire sequence was normal. Under our
assumptions, a fault has to be preceded by at least one prefault state, so if sT+1 is observed to be a
fault the entirely normal sequence gets zero weight. So with sT+1 observed to be a fault the number
of the possible histories is T − 1. If sT+1 is observed to be a stop, then only the normal sequence
has nonzero probability.

If the parameters in the model, θ, are known, the exact posterior over a continuous state

p(xt |y1:T ,sT+1 = f,θ)

is a mixture of Gaussians with T −1 components, one for every regime history, and can be obtained
by running the traditional Kalman filter and smoother T − 1 times. In fact the posteriors can be
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computed in a slightly faster way by computing shared partial results only once. This algorithm
is introduced in Section 3, and will form a suitable basis for the approximate algorithm from Sec-
tion 5. Although we do not expect exact inference to be practical for large T , we can compare
approximations with exact results for larger examples than in the regular SLDS case.

The restriction that there are only two non-absorbing regimes is only made for clarity of the
exposition. In general the model has M non-absorbing regimes that form stages. No stage can be
skipped, and once the system has advanced to the new stage it cannot recover to a previous one.
The number of regime histories with non-zero probability in such a system is less than or equal to
T M−1. This can be seen by a simple inductive argument: if M = 1 there is only one possible history.
If M > 1 there are T − (M−1)+1 < T possible starting points for the M-th regime (including the
starting point T + 1, i.e. when regime M does not occur). The M − 1 steps are deducted since the
system needs at least M − 1 steps to reach the M-th regime. Once the start of the M-th regime is
fixed, we have a smaller problem with M−1 regimes of length at most T . So the number of distinct
regime histories is bounded by T ×T M−2. In principle this is still polynomial in T and for small
M and limited T exact posteriors could be computed, but obviously the need for approximations is
stronger with complexer models.

3. Inference

In this section we will introduce the exact recursive inference algorithm as a special case of the
sum-product algorithm (Kschischang et al., 2001). At this point we assume θ known, leaving the
MAP estimation problem to Section 4.

We are interested in one-slice and two-slice posteriors, p(st ,xt |y1:T ,θ) and p(st−1,t ,xt−1,t |y1:T ,θ)
respectively.

By defining ut ≡{st ,xt} we obtain a model that has the same conditional independence structure
as the linear dynamical system and the HMM. From time to time we will use a sum notation to
denote both the summation over the domain of the discrete variables, and the integration over the
domain of the continuous variables in ut . The computational complexity in the current case is due
to the parametric form of the (conditional) distributions over ut as discussed in Section 1.

Assuming θ and y1:T fixed and given, the joint probability distribution over all the variables in
the model can be written as a product of factors

p(s1:T+1,x1:T ,y1:T |θ) =
T+1

∏
t=1

ψt(ut−1,t) ,

with

ψ1(u1) ≡ p(s1|θ)p(x1|s1,θ)p(y1|x1,s1,θ) ,

ψt(ut−1,t) ≡ p(st |st−1,θ)p(xt |xt−1,st ,θ)p(yt |xt ,st ,θ) for t = 2, . . . ,T , (1)

ψT+1(sT,T+1) ≡ p(sT+1|sT ,θ) ,

and u0 ≡ /0 and uT+1 ≡ sT+1. The factor graph (Kschischang et al., 2001) implied by this choice of
factors is shown in Figure 2. Note that we have simplified the figure by not showing the observations
y1:T . These are always observed and are incorporated in the factors.

The sum-product algorithm implied by the factor graph from Figure 2 is presented in Algo-
rithm 1. It is analogous to the forward-backward algorithm in the HMM. The computational com-
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Figure 2: The factor graph corresponding to the change point model and message passing scheme
for a model with four observations.

plexity of this algorithm is due to the conditional Gaussian factors and the implied increase in the
complexity of the messages.

Algorithm 1 The sum-product algorithm for the SLDS

Forward pass Start the recursion with

p(u1|y1,θ) ≡ α1(u1) =
ψ1(u1)

Z1
, Z1 = ∑

u1

ψ1(u1) .

For t = 1, . . .T

p(ut |y1:t ,θ) ≡ αt(ut) =
∑ut−1

αt−1(ut−1)ψt(ut−1,t)

Zt|t−1
,

with p(yt |y1:t−1,θ) ≡ Zt|t−1 = ∑ut−1,t
αt−1(ut−1)ψt(ut−1,t).

Backward pass If sT+1 is not observed, start the recursion with

βT (uT ) = 1 .

If sT+1 is observed the definition of βT (uT ) is changed accordingly: if sT+1 = n, then βT (sT =
p) = 0. Similarly if sT+1 = p then βT (sT = n) = 0.

For t = T −1,T −2, . . .1

p(yt+1:T |ut ,θ)

p(yt+1:T |y1:t ,θ)
≡ βt(ut) =

∑ut+1
ψt+1(ut,t+1)βt+1(ut+1)

∏T
v=t+1 Zv|v−1

.

After a forward-backward pass, single-slice and two-slice posteriors are given by

p(ut |y1:T ,θ) = αt(ut)βt(ut)

p(ut−1,t |y1:T ,θ) =
1

Zt|t−1
αt−1(ut−1)ψt(ut−1,t)βt(ut) .

In the forward pass the message αt(ut) ≡ p(xt ,st |y1:t ,θ) is not conditional Gaussian, but a mix-
ture of Gaussians conditioned on the regime indicator st . It has t components in total: conditioned
on st = n the posterior contributes a single Gaussian component p(xt |st = n,y1:t ,θ) conditioned
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on st = p the posterior p(xt |st = p,y1:t ,θ) is a mixture of Gaussians with t − 1 components: each
component corresponds to a possible starting point of the prefault regime.

In the smoothing pass an analogous growth of the number of components in the backward
messages βt(ut) occurs, but now growing backwards in time. The single-slice posterior, which is
obtained from the product of the forward and backward messages, has T components for all t.

Note that the linear complexity in T is special for the change point model with the restricted
regime transitions. In general the number of components in the posterior would grow exponentially.

4. MAP Parameter Estimation

In Section 3 we have assumed that the model parameters θ were known. If they are not known, the
expectation-maximization (EM) algorithm (Dempster et al., 1977) with Algorithm 1 in the expecta-
tion step, can be used to find maximum likelihood (ML) or maximum a posteriori (MAP) parameter
settings. Appendix B lists the M-step updates for the change point model. Appendix C discusses
sensible priors on the transition probabilities in Π.

The learning setting is semi supervised. We assume we are given a set of V training sequences
{

y(v)
1:Tv

}V

v=1
and that for some, possibly all, we observe s(v)

T+1. All sequences v for which s(v)
T+1 = s

can be used to estimate the parameters of the normal regime. If s(v)
T+1 = f or not observed, the

change point from the normal to the prefault regime is inferred in the E-step. The updates from
Appendix B then boil down to weighted variants of the linear dynamical system M-step updates,
where the weights correspond to the posterior probabilities of being in a particular regime.

The EM algorithm is guaranteed to converge to a local maximum of the likelihood/parame-ter
posterior. Different initial parameter estimates θ(0) may lead the algorithm to converge to different
local maxima. This is a known property of the EM algorithm for fitting a mixture of Gaussians. In
the current model it can be hoped that the dependence on initialization is less than in the general
mixtures of Gaussian case. If there are sequences that are known to be entirely normal (when
sT+1 = s) these sequences are only used to determine the characteristics of the normal regime.
Also, due to the change point restriction, some ambiguity is resolved since it is known that the
normal precedes the prefault regime.

5. Approximate Inference: Kikuchi Free Energies with Weak Consistency
Constraints

The exact inference algorithm presented in Section 3 has the same form as the HMM and Kalman
filter algorithms. The messages that are sent, αt(ut) and βt(ut), are not in the conditional Gaussian
family, but are conditional mixtures. As was discussed in Section 3, the number of components in
the mixtures grows linear with t and T − t respectively.

A straightforward approximation is to approximate these messages by a conditional Gaussian
in every step. This implies that every message stores only two components, regardless of t. In the
forward pass the best approximating conditional Gaussian can be defined in Kullback-Leibler (KL)
sense. The approximating conditional Gaussian is then found by moment matching or a collapse
(see Appendix A). The oldest use of this approach we are aware of is in Harrison and Stevens
(1976).
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A symmetric approximation for the backward pass working directly on the βt(ut) = p(yt+1:T |ut ,θ)
p(yt+1:T |y1:t ,θ)

messages cannot be formulated, since in contrast to the α messages, the β messages in general will
not be proper distributions and hence a KL divergence is not defined.

This has led to other approaches that introduced additional approximations beyond the pro-
jection onto the conditional Gaussian family, (e.g. Shumway and Stoffer, 1991; Kim, 1994). The
expectation propagation (EP) framework of Minka (2001) is very suited for this particular model
and essentially formulates a backward pass symmetric to the approach outlined above (Zoeter and
Heskes, 2005). There are at least two ways of looking at EP. In the first, EP is seen as an iteration
scheme where at every step an exact model potential is added to the approximation followed by
a projection onto a chosen approximating family. In the second, EP is derived from a particular
variational problem. The EP algorithm is introduced in Section 5.2 using the second point of view,
which facilitates the description of our generalization in Section 5.3. For a presentation of EP as an
iteration of projections the reader is referred to Minka (2001).

The approximate filter and the EP algorithm share that they are greedy: the approximations
are made locally. In the EP algorithm the local approximations are made as consistent as possible
by iteration. There is no guarantee that the resulting means and covariances in the conditional
Gaussian families equal the means and covariances of the exact posteriors. The strong junction tree
framework of Lauritzen (1992) operates on trees with larger cliques and approximates messages
on a global level. Thereby it does guarantee exactness of means and covariances. For the SLDS a
strong junction tree has at least one cluster that effectively contains all discrete variables.

Section 5.3 introduces a generalization of the EP algorithm from Section 5.2. In the general-
ization, an extra integer parameter κ is introduced that allows a trade-off between computation time
and accuracy. The EP algorithm from Zoeter and Heskes (2005) and the strong junction tree from
Lauritzen (1992) are then on both extremes.

5.1 Exact Inference as an Energy Minimization Procedure

To facilitate the introduction of the expectation and the generalized expectation propagation al-
gorithms, exact inference is introduced in this Section as a minimization procedure. Expectation
propagation will follow from an approximation of the objective.

We start by following the variational approach (e.g. Jaakkola, 2001) and turn the computation
of − logZ ≡− log p(y1:T |θ) into an optimization problem:

− logZ = min
p̃

[− logZ +KL(p̃(u1:T )||p(u1:T |y1:T ,θ))] (2)

= min
p̃

[

− logZ + ∑
u1:T

p̃(u1:T ) log
p̃(u1:T )

Z−1 ∏T
t=1 ψt(ut−1,t)

]

(3)

= min
p̃

[

−
T

∑
t=1

∑
ut−1,t

p̃(ut−1,t) logψt(ut−1,t)+ ∑
u1:T

p̃(u1:T ) log p̃(u1:T )

]

. (4)

In (2)–(4) the minimization is over all valid distributions p̃(u1:T ) on the domain u1:T . The KL term
in (2) is guaranteed to be positive and equals zero if and only if p̃(u1:T ) = p(u1:T |y1:T ,θ) (Gibbs
inequality). This guarantees the equality in (2).
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In terms of ut the exact posterior factors as

p(u1:T |y1:T ,θ) =
∏T

t=2 p(ut−1,t |y1:T ,θ)

∏T−1
t=2 p(ut |y1:T ,θ)

, (5)

so we can restrict the minimization in (4) to be over all valid distributions of the form (5):

− logZ = min
{p̃t ,q̃t}

[

−
T

∑
t=2

∑
ut−1,t

p̃t(ut−1,t) logψt(ut−1,t)

+
T

∑
t=2

∑
ut−1,t

p̃t(ut−1,t) log p̃t(ut−1,t)−
T−1

∑
t=2

∑
ut

q̃t(ut) log q̃t(ut)

]

. (6)

The minimization is now with respect to one-slice beliefs q̃t(ut) and two-slice beliefs p̃t(ut−1,t)
under the constraints that these beliefs are properly normalized and consistent:

p̃t(ut) = q̃t(ut) = p̃t+1(ut) . (7)

To emphasize that the above constraints are exact, and to distinguish them from the weak consistency
constraints that will be introduced below, we will refer to (7) as strong consistency constraints.

Minimizing the objective in (6) under normalization and strong consistency constraints (7) gives
exact one- and two-slice posteriors. Since they are exact, the one-slice beliefs q̃t(ut) will have T
components in our change point model and MT components in a general SLDS.

5.2 Expectation Propagation

As we have seen in the previous section, exact inference inference can be interpreted as a minimiza-
tion procedure under constraints. At the minimum, the variational parameters q̃t(ut) are equal to the
exact single node marginals. Since these marginals have many components (T in our changepoint
model, MT in a general SLDS) even storing the results is computationally demanding.

To obtain an approximation the variational parameters q̃t(ut) are restricted to be conditional
Gaussian. Recall that ut ≡{st ,xt}, so that the conditional Gaussian restriction implies that for every
possible value for st , xt follows a Gaussian distribution, instead of a mixture of Gaussians with a
mixture component for every possible regime history for s1:t−1,t+1:T . This restriction is analogous
to the approximation in the generalized pseudo Bayes 2 (GPB 2) filter (Bar-Shalom and Li, 1993)
where in every time update step mixtures of Gaussians are collapsed onto single Gaussians. In fact,
as we will see shortly, GPB2 can be seen as a first forward pass in the algorithm that follows from
our current approach.

The conditional Gaussian form of Ψt(ut−1,t) and the conditional Gaussian choice for q̃t(ut)
imply that at the minimum in (6) p̃t(ut−1,t) is conditionally Gaussian as well (see Appendix D).

If we restrict the form of q̃t(ut), but leave the consistency constraints exact as in (7), a minimum
of the free energy has a very restricted form. The strong consistency constraints would imply that
the two exact marginals ∑ut−1

p̃t(ut−1,t) = p̃t(ut) and ∑ut
p̃t(ut−1,t) = p̃t−1(ut−1) are conditional

Gaussians instead of conditional mixtures. This holds only if the continuous variables xt−1,t are
independent of the discrete states st−1,t in p̃t(ut−1,t).

To obtain non-trivial approximations, the single-slice beliefs q̃t(ut) are restricted to be condi-
tional Gaussian as outlined above, and in addition the consistency constraints are weakened. Instead
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of having equal marginals we only require overlapping beliefs to be consistent on their overlapping
expectations

〈 f (ut)〉p̃t
= 〈 f (ut)〉q̃t

= 〈 f (ut)〉p̃t+1
, (8)

where f (ut) is the vector of sufficient statistics of the conditional Gaussian family over ut as defined
in Appendix A.

With these restrictions q̃t(ut) is in general not the marginal of p̃t(ut−1,t), so one-slice and two-
slice beliefs satisfying (8) do not lead to a proper distribution of the form (5). As a result, although
we started the derivation with the variational (mean-field) bound (2), the objective we aim to mini-
mize is not guaranteed to be a bound on − logZ.

The EP algorithm can be seen as fixed point iteration in the dual space of the constrained
minimization problem (Zoeter and Heskes, 2005, Appendix D). This is in direct analogy to the
interpretation of loopy belief propagation as fixed point iteration in the dual space of the Bethe free
energy (Yedidia et al., 2005).

Algorithm 2 presents the generalization that will be derived next, but with κ = 0 it gives the basic
update equations of this section. In a first forward pass, with all backward messages initialized as
βt(ut) = 1 (i.e. effectively with no backward messages), the updates are equivalent to the greedy
projection filter GPB2.

As a final note we remark that this approximation, and even the update scheme, can also be
derived from the iterative projection point of view of EP. To obtain Algorithm 2 with κ = 0, the ap-
proximating family should be chosen to be a product of independent conditional Gaussians (Zoeter
and Heskes, 2005).

5.3 Generalized Expectation Propagation

Since we have associated the EP approach to an approximation of the Bethe free energy (6), we
can extend the approximation analogously to Kikuchi’s extension of the Bethe free energy (Yedidia
et al., 2005).

In the EP free energy (6) the minimization is w.r.t. beliefs over outer clusters, p̃t(ut−1,t), and
their overlaps, q̃t(ut−1,t). In the so-called negative entropy,

T

∑
t=2

∑
ut−1,t

p̃t(ut−1,t) log p̃t(ut−1,t)−
T−1

∑
t=2

∑
ut

q̃t(ut) log q̃t(ut) ,

from (6), the outer clusters enter with a plus, the overlaps with a minus sign. These 1 and -1 factors
can be interpreted as counting numbers that ensure that every variable effectively is counted once in
the (approximate) entropy in (6). If the free energy is exact (i.e. no parametric choice for the beliefs,
and strong consistency constraints), the local beliefs are exact marginals, and as in (5), the counting
numbers can be interpreted as powers that dictate how to construct a global distribution from the
marginals.

In Kikuchi’s extension the outer clusters are taken larger. The minimization is then w.r.t. beliefs
over outer clusters, their direct overlaps, the overlaps of the overlaps, etc. With each belief again
proper counting numbers are associated.

One way to construct a valid Kikuchi based approximation is as follows (Yedidia et al., 2005).
Choose outer clusters uouter(i) and associate with them the counting number couter(i) = 1. The outer
clusters should be such that all domains ut−1,t of the model potentials Ψt(ut−1,t) are fully contained
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Figure 3: Cluster definitions for κ = 0 (dashed) and κ = 1 (dotted).

in at least one outer cluster. Then recursively define the overlaps of the outer clusters uover(i), the
overlaps of the overlaps, etc. The counting number associated with cluster γ is given by the Möbius
recursion

cγ = 1− ∑
uγ′⊃uγ

cγ′ . (9)

A crucial observation for the SLDS is that it makes sense to take outer clusters larger than the
cliques of a (weak) junction tree. If we do not restrict the parametric form of q̃t(ut) and keep exact
constraints, the cluster choice in (5) gives exact results. However, the restriction that q̃t(ut) must be
conditional Gaussian, and the weak consistency constraints imply an approximation: only part of
the information from the past can be passed on to the future and vice versa. With weak constraints it
is beneficial to take larger outer clusters and larger overlaps, since the weak consistency constraints
are then over a larger set of sufficient statistics and hence “stronger”.

We define symmetric extensions of the outer clusters as depicted in Figure 3. The size of the
clusters is indicated by 0 ≤ κ ≤

⌈

T−2
2

⌉

:

uouter(i) =
{

si:i+2(κ+1)−1,xi+κ,i+κ+1
}

, for i > 1∧ i < T −2τ+2 (10)

uover(i) = uouter(i) ∩uouter(i+1) . (11)

In the outer clusters only the discrete space is extended because the continuous part can be integrated
out analytically and the result stays in the conditional Gaussian family. The first and the last outer
cluster have a slightly larger set. In addition to the set (10) the first cluster also contains x1:i+κ−1

and the last also xi+κ+2:T . This implies a choice where the number of outer clusters is as small as
possible at the cost of a larger continuous part in the first and the last cluster. A slightly different
choice would have more clusters, but only two continuous variables in every outer cluster.

To demonstrate the construction of clusters and the computation of their associated counting
numbers we will look at the case of κ = 1. Below the clusters are shown schematically, with outer
clusters on the top row, and recursively the overlaps of overlaps, etc.

s1,2,3,4

x1,2,3

s2,3,4,5

x3,4

s3,4,5,6

x4,5

s4,5,6,7

x5,6,7

s2,3,4

x3

s3,4,5

x4

s4,5,6

x5

s3,4 s4,5

s4

The outer clusters all have counting number 1. The direct overlaps each have two larger clusters
in which they are contained. Their associated counting numbers follow from (9) as 1− 2 = −1.

2008



CHANGE POINT PROBLEMS IN LINEAR DYNAMICAL SYSTEMS

The overlaps of overlaps have five clusters in which they are contained, their counting numbers are
1− (3− 2) = 0. The clusters on the lowest level have nine parents, which results in a counting
number 1− (4−3 + 0) = 0. It is easily verified that with κ = 0 we obtain the cluster and counting
number choice of Section 5.2.

A second crucial observation for the SLDS is that the choice of outer clusters (10) implies that
we only have to consider outer clusters and direct overlaps, i.e. the phenomenon that all clusters
beyond the direct overlaps get an associated counting number of 0 in the example above extends to
all κ. This is a direct result of the fact that the clusters from (10) form the cliques and separators in
a (weak) junction tree. I.e. another way to motivate a generalization with the cluster choice (10) is
to replace (5) with

p(u1:T |y1:T ,θ) =
∏N

i=1 p(uouter(i)|y1:T ,θ)

∏N−1
j=1 p(uover( j)|y1:T ,θ)

, (12)

and use this choice in (4) to obtain an extension of (6). In (12), N = T −2κ−1 denotes the number
of outer clusters in the approximation.

The aim then becomes to minimize

FGEP = −
N

∑
i=1

∑
uouter(i)

p̃i(uouter(i)) logΨ(i)(uouter(i))

+
N

∑
i=1

∑
uouter(i)

p̃i(uouter(i)) log p̃i(uouter(i))

−
N−1

∑
i=1

∑
uover(i)

q̃i(uover(i)) log q̃i(uover(i)) , (13)

w.r.t. the potentials p̃i(uouter(i)), and q̃i(uover(i)). For i = 2,3, . . .N − 1, the potentials Ψ(i)(uover(i))
are identical to the potentials ψi+κ+1(ui+κ,i+κ+1) from (1). At the boundaries they are a product of
potentials that are “left over”:

Ψ(1) =
κ+2

∏
j=1

ψ j(u j−1, j)

Ψ(N) =
T

∏
j=T−κ

ψ j(u j−1, j) ,

with Ψ(1) = ∏T
j=1 ψ j(u j−1, j) if N = 1.

The approximation in the generalized EP free energy, FGEP, arises from the restriction that
q̃i(uover(i)) is conditional Gaussian and from the fact that overlapping potentials are only required to
be weakly consistent

〈

f (uover(i))
〉

p̃i
=
〈

f (uover(i))
〉

q̃i
=
〈

f (uover(i))
〉

p̃i+1
.

The benefit of the (weak) junction tree choice of outer clusters and overlaps is that we can
employ the same algorithm for the κ = 0 as for the κ > 0 case. Algorithm 2 can be seen as a single-
loop minimization heuristic. As mentioned above, and as shown in Appendix D, the algorithm can
be interpreted as fixed point iteration in the space of Lagrange multipliers that are added to (13) to
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enforce the weak consistency constraints. Just as for EP itself, convergence of Algorithm 2 is not
guaranteed.

In Algorithm 2 the messages are initialized as conditional Gaussian potentials, such that

q̃(uover(i)) = αi(uover(i))βi(uover(i))

are normalized. A straightforward initialization would be to initialize all messages with 1. If at
the start all products of matching messages are normalized, we can interpret the product of local
normalizations ∏N

i=1 Zi as an approximation of the normalization constant Z.

Algorithm 2 Generalized EP for an SLDS
Compute a forward pass by performing the following steps for i = 1,2, . . . ,N −1, with i′ ≡ i, and a
backward pass by performing the same steps for i = N,N−1, . . . ,2, with i′ ≡ i−1. Iterate forward-
backward passes until convergence. At the boundaries keep α0 = βN = 1.

1. Construct an outer-cluster belief,

p̃i(uouter(i)) =
αi−1(uover(i−1))Ψ(i)(uouter(i))βi(uover(i))

Zi
,

with Zi = ∑uouter(i)
αi−1(uover(i−1))Ψ(i)(uouter(i))βi(uover(i)).

2. Marginalize to obtain a one-slice marginal

p̃i(uover(i′)) = ∑
uouter(i)\uover(i′)

p̃i(uouter(i)) .

3. Find q̃i′(uover(i′)) that approximates p̃i(uover(i′)) best in Kullback-Leibler (KL) sense:

q̃i′(uover(i′)) = Collapse
(

p̃i(uover(i′))
)

.

4. Infer the new message by division.

αi(uover(i)) =
q̃i(uover(i))

βi(uover(i))
, βi−1(uover(i−1)) =

q̃t−1(uover(i−1))

αi−1(uover(i−1))
.

Figure 4 gives a graphical representation of Algorithm 2 for κ = 0. Figure 5 gives a similar
schema for κ = 1. The two figures show what information is lost when the one-slice beliefs are
collapsed.

The choice of 0 ≤ κ ≤
⌈

T−2
2

⌉

now allows a trade off between computational complexity and
degrees of freedom in the approximation. With κ = 0, we obtain the EP/Bethe free energy equiv-
alent to Zoeter and Heskes (2005). With κ =

⌈

T−2
2

⌉

there is only one cluster and we obtain a
strong junction tree, and the found posteriors are exact. Just as with the Kikuchi extension of
belief propagation, there is no guaranteed monotonic improvement for intermediate κ’s (Kappen
and Wiegerinck, 2002). However, in the change point model, where there are no loops and larger
clusters only imply more statistics being propagated between time-slices, we expect improvements
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Figure 4: A schematic representation of steps 1, 2 and 3 from Algorithm 2 with κ = 0, for a se-
quence with more than 3 observations. The potential Ψ(2)(u2,3) contains three Gaussian
components: p(y3,x3|x2,s2 = n,s3 = n), p(y3,x3|x2,s2 = n,s3 = p), and p(y3,x3|x2,s2 =
p,s3 = p). The (p,n) assignment gets zero weight by the non-recovery assumption and is
therefore not shown. Combinations with absorbing states are excluded since the sequence
does not stop at 3. Every component is encoded by a row, with white squares denoting
normal, and black squares prefault regimes. The messages α1(x2,s2) and β2(x3,s3) are
conditional Gaussian by construction and hence each have two components: one corre-
sponding to normal and one to prefault. Exact marginalization gives p̃2(x3,s3), which
still consists of three components. To emphasize that s2 is not part of the domain, it is
enclosed by a dashed rectangle. Conditioned on s3 = p, p̃2(x3|s3 = p) is a mixture. This
mixture is collapsed to obtain a conditional Gaussian approximation q̃2(u3).
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Figure 5: The steps in Algorithm 2 with κ = 1 are analogous to the steps with κ = 0 as depicted in
Figure 4. With κ = 1 the two components that are approximated are expected to be very
similar: they have been updated with the same transition and observation models in the
last three time-slices.
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to be extremely likely. In fact, we have not seen the performance degrade with larger κ in any of
our experiments.

6. Experiments

In Section 6.1 we explore the properties of the learning algorithm and approximate inference in a
controled setting with artificial data. Section 6.2 presents experiments with EMG data.

6.1 Synthetic Data

As discussed in Section 4 the constraints in the regime transitions aid in learning. When a stop
is observed in the trainset, the entire sequence is guaranteed to be normal. Also, the fact that the
normal regime precedes the prefault regime resolves the invariance under relabeling that would
be present in a general switching linear dynamical systems setting. Experiments with artificially
generated data shows that even with a relatively small trainset the two regimes can be learned fairly
reliably.

We ran experiments where 15 train and 5 test sequences were generated from randomly drawn
change point models. The classes of the train sequences (stop or fault) were observed, the classes
of the test sequences were unknown. Figure 6 is not an a-typical result. In many experiments we
find that both the classification (determining whether the sequence ended in a stop or in a fault) and
the determination of the change point were often (near) perfect.

The MAP
τmap = argmax

τ
p(s1:τ = n,sτ+1:T = p|y1:T ,θML) ,

is taken as the predicted change point. In 10 replications the mean squared error between the actual
and the inferred change point was 6.6 (standard deviation 11.75, median 0).

These results are encouraging, but may also be largely due to the fact that arbitrarily drawn
models may not pose a serious challenge. Qualitatively the replicated experiments show that for
most replications the errors are close to 0 (as in Figure 6). This explains the low median. In a
few replications the model has learned normal and prefault classes that are different from the true
generating model and hence result in large errors. In these replications we still see the “arbitrariness”
of the fitted clusters that is common to the mixtures of Gaussians learning. We do not investigate
a proper characterization of “difficult” and “easy” models here, but discuss some of the possible
pitfalls with the approach in Section 6.2.

To explore the properties of the approximations developed in Section 5, we ran 10 experiments
where a single sequence of length 10 was generated from a randomly drawn model. For every
sequence, approximate single node posteriors q̃(xt |y1:T ,θ) were computed using Algorithm 2 with
κ = 0,1,2,3,4. Figure 7 shows the maximum absolute error in the single node posterior means as a
function of κ. The lines show the average over the 10 experiments, the maximum encountered, and
the minimum. For sequences with length 10, κ = 4 is guaranteed to give exact results. So in theory,
the lines in Figure 7 should meet at κ = 4. The discrepancies in Figure 7 are explained by different
round off errors in our implementations of Algorithm 2 and the strong junction tree.

As expected the approximations are very good and improve with the size of κ. It must be
emphasized however, that the improvement with larger κ can be expected based on intuition, but is
not guaranteed.
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Figure 6: Shown are the inferred and true change points on 5 test sequences. The EM algorithm
from Section 4 was presented with 15 artificially generated train sequences, all of which
resulted in an observed fault.
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Figure 7: Maximum absolute deviation between exact and approximate single-slice posterior state
mean as a function of κ. Shown are the mean, maximum and minimum over ten replica-
tions. In all replications T=10, so κ = 4 gives exact results. The small differences between
the mean, maximum and minimum deviations that are observed in the plot for κ = 4 are
caused by different round off errors in the generalized EP and the original strong junction
tree implementations.
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6.2 Detecting Changes in EMG Signals

The algorithm from Section 4 was used to detect changes in EMG patterns in the stumbling experi-
ments from Schillings et al. (1996).

In Schillings et al. (1996) bipolar electromyography (EMG) activity in human subjects were
recorded. The subjects were walking on a treadmill at 4 km/h. By releasing an object suspended
from an electromagnet the subjects could be tripped at a specified phase in the walking pattern.
Partially obscured glasses and earplugs ensured that the tripping was unexpected.

In the experiments video recordings and a pressure-sensitive strip attached to the obstacle sig-
naled the tripping onset. We extracted an interesting change point problem from this experiment by
only looking at the EMG signals measured at the biceps femoris at the contra lateral side, i.e. by
only looking at a signal which is indicative of the activity of the large muscle in the upper leg at the
non-obstructed side.

In our experiments we used data for a single subject. The dataset consisted of 15 control trials
where no object was released and 8 stumbling experiments. All sequences were of equal length, and
started roughly at the same phase in the walking pattern. The control trials were treated as normal
sequences and the 8 others as fault sequences. In the first experiments the class of the sequences
were assumed to be known and the aim for the algorithm was to determine the change points.

The original series were raised to a power of -.2 to obtain signals that seemed in agreement with
the additive noise assumptions. The initial parameter settings for the normal regime was in Fourier
form (West and Harrison, 1997). The chosen harmonic components were obtained from a discrete
Fourier transform. Based on the residuals of the 15 normal sequences a model with 4 harmonics
was selected.

There were three different phases of training. In the first, only the normal sequences were
considered and the transition matrix An was kept fixed. In the second phase, again only the normal
regime was considered, but An was also fitted. In all phases of learning κ was set to 50, i.e. inference
results were indistinguishable from exact. The result of the first two phases is characterized by the
left plot in Figure 8. In the third phase all parameters were fitted. The prefault model was initialized
as an outlier model, i.e. the parameters for the prefault regime were copies of the normal regime, but
the noise covariances were larger. The characteristics of the entire model are depicted in the right
plot of Figure 8.

After convergence, the mean absolute distance between the MAP change point and the triggers
in the 8 fault sequences is 4.25, with standard deviation 1.49. Figure 9 shows the posteriors p(s1:t =
n,st+1:T = p|y1:T ,θ) and the trigger signals for the 8 fault sequences. There are two typical errors:
the inferred change point for a few sequences is several steps too early, for a few it comes too late.
Figure 10 gives the characteristics for the second and the third fault sequences. The MAP of the
second sequence falls a few time steps after the trigger. From the left plot in Figure 10, we might
judge that the actual response in the biceps femoris actually starts close to the inferred point. These
characteristics are also visible in the other sequences with ‘late’ inferred change points. On the other
hand, the sequences with too early inferred change points (e.g. the right plot in Figure 10), do show
a weakness of the current setup. The degrees of freedom that are available in the prefault submodel
are used to also explain outliers at the end of the normal regime. This is likely to be a problem in
the model specification; there is nothing to prevent a discontinuity in the expected muscle activity
at a change (as can be seen in the right plot in Figure 8 and in the plots in Figure 10). Adapting
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Figure 8: Characteristics of the learned model. The left plot shows the transformed EMG signals for
all normal sequences in thin solid lines. The thick solid line shows the model prediction
with the regime indicators clamped to normal. The right plot shows all EMG signals from
stumbling trials. The light thick line shows model predictions with all regime indicators
clamped to normal just as in the left plot. The dark thick line shows the model predictions
with the regime indicators clamped to normal from 1 to 70 and to prefault from 71 to 104.
This change point was hand picked and roughly coincides with the average trigger time.
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Figure 9: Stumble detection based on a single EMG signal. Vertical bars show the true stumbling
trigger. The solid curves show the posterior probability that t was the last normal time
point.

the model such that the expected muscle activity is continuous even during a change point might
resolve some of the observed overfitting.

To test the classification performance we ran 23 leave-one-out experiments. In every experiment
22 sequences were presented in the training phase. The sequence that was left out was presented
after training with sT+1 not observed. A simple classification scheme was used; every sequence for
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Figure 10: Thin lines show the EMG recordings of a single sequence. The vertical bars show the
moment at which the stumble was triggered. The thick lines give an indication of the
learned models. They were constructed by clamping the discrete states of the model to
the MAP change point value and computing the predicted mean EMG signal (light lines
represent the normal, dark lines the prefault regime). The left plot shows the second
(from the top) sequence from Figure 9 and gives an acceptable detection of the prefault
regime. The right plot shows the third sequence and represents a typical overfit: the
model uses its degrees of freedom to fit outliers preceding the change point in some of
the sequences. This explains the too early warnings in Figure 9.

which p(s1:T = n|y1:T ,θ) ≥ .5 was classified as normal. With this scheme all abnormal sequences,
and 13 out of 15 normal sequences were correctly classified.

7. Discussion

Motivated by fault and change detection problems in dynamical systems we have introduced a
switching linear dynamical system with constrained regime transition probabilities. The system
is assumed to start in a normal regime and to either result in an absorbing stop state or change to a
prefault regime. Once the system reaches a prefault regime, it cannot recover and eventually has to
result in a fault.

These model assumptions have several advantages. As discussed in Sections 2 and 3, the as-
sumption that the system cannot recover can be exploited to yield an algorithm that computes exact
state and regime posteriors in time polynomial in the number of observations.

Another advantage is with learning. An observed stop implies that the system did not change,
and an observed fault implies that it did. So if a set of training sequences exists for which the
exact change points are unknown, but for which the resulting absorbing states are observed, these
model assumptions provide an interesting semi-supervised learning setting. The experiments from
Section 6 indicate that these extra assumptions help to solve some of the problems with local minima
that occur in general mixtures of Gaussians and SLDS learning. Although overfitting may still occur,
careful initialization may be necessary, and violations of the linear Gaussian assumptions may pose
problems.
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Since the number of observations, T , may grow very large we have introduced an approximate
inference algorithm in Section 5.

The algorithm, generalized expectation propagation (GEP), can be derived as a fixed point itera-
tion that aims to minimize a variant of a Kikuchi free energy. One way of interpreting the algorithm
is that it sends messages along a weak junction tree as if it was a strong junction tree. This is anal-
ogous to the interpretation of loopy belief propagation as an algorithm that sends messages on a
loopy graph as if it was operating on a tree.

The change point model has two pleasant properties that makes the application of GEP particu-
larly elegant. The first is the fact that the conditional independencies in the underlying model form
a chain. Therefore we can straightforwardly choose outer clusters in the Kikuchi approximation
such that they form a (weak) junction tree. We have shown that the resulting GEP updates then
simplify since only outer clusters and direct overlaps need to be considered, i.e. from an implemen-
tation point of view the algorithm is not more complicated than the ordinary EP algorithm. Also,
since there are no loops disregarded, increasing the cluster size leads to relatively “well behaved”
approximations; they satisfy the perfect correlation and non-singularity conditions from Welling
et al. (2005). Increasing the size of the clusters in our approximation implies that more statistics
are passed from past to future and vice versa. This makes an improvement in the approximation
very likely (although an improvement is only guaranteed for κ ∝ T at which point it becomes ex-
act). This is in contrast to the generalization of belief propagation on e.g. complete graphs, which
is notorious for the fact that with unfortunate choices of clusters the quality degrades with larger
clusters (Kappen and Wiegerinck, 2002). In our experiments with the change point model, we have
never observed a degradation of the quality with an increase of κ. This suggests that κ should be set
as large as computing power permits.

The first pleasant property of the change point model leads to the observation that in approxi-
mations with weak consistency constraints it makes sense to take clusters larger than is necessary to
form a (weak) junction tree. This property is shared with all models that have (weak) junction trees
with reasonable cluster sizes, in particular chains and trees.

The second property is due to the no-recovery assumption property in the change point model.
This implies that exact inference is polynomial in T , and also that approximate inference is poly-
nomial in κ, which makes a wide range of κ’s feasible. In a general SLDS exact inference scales
exponential in T and approximate inference exponential in κ.

Although we did not discuss this in Section 5, the GEP algorithm is not restricted to trees or
chains. In models with cycles and complicated parametric families, an algorithm can send messages
as if it is sending messages on a strong junction tree, whereas the underlying cluster choices do not
form a tree, neither a weak nor a strong one. See Heskes and Zoeter (2003) for a discussion.

Algorithm 2 is conjectured to be a proper generalization of the EP framework. Although tree
EP (Minka and Qi, 2004) results in approximations that are related to (variants of) Kikuchi free
energies it is unlikely that a tree or another clever choice of the approximating family would result
in Algorithm 2. Since the overlapping q̃(uover(i)) are not strongly consistent they cannot easily be
interpreted as marginals of a proper approximating family on which the EP algorithm would project.
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Appendix A. Operations on Conditional Gaussian Potentials

To allow for simple notation in the main text this appendix introduces the conditional Gaussian
(CG) distribution. A discrete variable s and a continuous variable x are jointly CG distributed if the
marginal of s is multinomial distributed and, conditioned on s, x is Gaussian distributed. Let x be
d-dimensional and let S be the set of values s can take. In moment form the joint distribution reads

p(s,x) = πs(2π)−d/2|Σs|
−1/2 exp

[

−
1
2
(x−µs)

>Σ−1
s (x−µs)

]

,

with moment parameters {πs,µs,Σs + µsµ
>
s }, where πs is positive for all s and satisfies ∑s πs = 1

and Σs is a positive definite matrix. The definition of Σs + µsµ
>
s instead of Σs is motivated by (16)

below. For compact notation sets with elements dependent on s will implicitly ranges over s ∈ S. In
canonical form the CG distribution is given by

p(s,x) = exp

[

gs +x>hs −
1
2

x>Ksx
]

, (14)

with canonical parameters {gs,hs,Ks}.
The so-called link function g(.) maps canonical parameters to moment parameters:

g({gs,hs,Ks}) = {πs,µs,Σs +µsµ
>
s }

πs = exp(gs − ḡs)

µs = K−1
s hs

Σs = K−1
s ,

with ḡs ≡ 1
2 log |Ks

2π |−
1
2 h>

s Kshs, the part of gs that depends on hs and Ks. The link function is unique
and invertible:

g−1({πs,µs,Σs +µsµ
>
s }) = {gs,hs,Ks}

gs = logπs −
1
2

log |2πΣs|−
1
2

µ>s Σ−1
s µs

hs = Σ−1
s µs

Ks = Σ−1
s .

A conditional Gaussian potential is a generalization of the above distribution in the sense that it
has the same form as in (14) but need not integrate to 1. Ks is restricted to be symmetric, but need
not be positive definite. If Ks is positive definite the moment parameters are determined by g(.).
In this section we will use φ(s,x;{gs,hs,Ks}) to denote a CG potential over s and x with canonical
parameters {gs,hs,Ks}.
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Multiplication and division of CG potentials are the straightforward extensions of the analogous
operations for multinomial and Gaussian potentials. In canonical form:

φ(s,x;{gs,hs,Ks})φ(s,x;{g′s,h
′
s,K

′
s}) = φ(s,x;{gs +g′s,hs +h′

s,Ks +K′
s})

φ(s,x;{gs,hs,Ks})/φ(s,x;{g′s,h
′
s,K

′
s}) = φ(s,x;{gs −g′s,hs −h′

s,Ks −K′
s}) .

With the above definition of multiplication we can define a unit potential

1(s,x) ≡ φ(s,x;{0,0,0}) ,

which satisfies 1(s,x)p(s,x) = p(s,x) for all CG potentials p(s,x). We will sometimes use the
shorthand 1 for the unit potential when its domain is clear from the text.

In a similar spirit we can define multiplication and division of potentials with different domains.
If the domain of one of the potentials (the denominator in case of division) forms a subset of the do-
main of the other we can extend the smaller to match the larger and perform a regular multiplication
or division as defined above. The continuous domain of the small potential is extended by adding
zeros in hs and Ks at the corresponding positions. The discrete domain is extended by replicating
parameters, e.g. extending s to [s t]> we use parameters gst = gs, hst = hs, and Kst = Ks.

Marginalization is less straightforward for CG potentials. Integrating out continuous dimensions
is analogous to marginalization in Gaussian potentials and is only defined if the corresponding
moment parameters are defined. Marginalization is then defined as converting to moment form,
‘selecting’ the appropriate rows and columns from µs and Σs , and converting back to canonical form.
More problematic is the marginalization over discrete dimensions of the CG potential. Summing
out s results in a distribution p(x) which is a mixture of Gaussians with mixing weights p(s), i.e. the
CG family is not closed under summation. In the text we will sometimes use, somewhat sloppily,
the ∑ notation for both summing out discrete and integrating out continuous dimensions.

We define weak marginalization (Lauritzen, 1992), as exact marginalization followed by a
collapse: a projection of the exact marginal onto the CG family. The projection minimizes the
Kullback-Leibler divergence KL(p||q) between p, the exact (strong) marginal and q, the weak
marginal:

q(s,x) = argmin
q∈CG

KL(p||q)

≡ argmin
q∈CG

∑
s,x

p(s,x) log
p(s,x)

q(s,x)
.

This projection has the property that, conditioned on s the weak marginal has the same mean and
covariance as the exact marginal. The weak marginal can be computed by moment matching (Whit-
taker, 1989). If p(x|s) is a mixture of Gaussians for every s with mixture weights πr|s, means µsr,
and covariances Σsr (e.g. the exact marginal ∑r p(s,r,x) of CG distribution p(s,r,x)), the moment
matching procedure is defined as

Collapse(p(s,x)) ≡ p(s)N (x;µs,Σs)

µs ≡ ∑
r

πr|sµsr

Σs ≡ ∑
r

πr|s

(

Σsr +(µsr −µs)(µsr −µs)
>
)

.
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Note that this projection, contrary to exact marginalization, is not linear, and hence in general:

Collapse(p(s,x)q(x)) 6= Collapse(p(s,x))q(x) .

In even more compact notation, with δs,m the Kronecker delta function, we can write a CG
potential as

p(s,x) = exp[ν> f (s,x)], with (15)

f (s,x) ≡ [δs,m δs,mx> δs,mvec(xx>)>|m ∈ S]>

ν ≡ [gs h>
s −

1
2

vec(Ks)
>|s ∈ S]>

the sufficient statistics, and the canonical parameters respectively. In this notation the moment
parameters follow from the canonical parameters as

g(ν) = 〈 f (s,x)〉exp[ν> f (s,x)] ≡ ∑
s

∫

dx f (s,x)exp[ν> f (s,x)] . (16)

Appendix B. The M-step Updates

We define θ as the set of all parameters

θ ≡
{

Πi→ j,m1,V1,A j,C j,µ j,r
2
j |(i, j) ∈ G

}

,

and G as the set of allowed regime transitions

G ≡ {(n,n), (n,p), (n,s), (p,p), (p, f)} ,

with the shorthands n,p,s, f, for normal, prefault, stop, and fault regimes respectively.
For now we assume a flat prior on θ, i.e. we compute ML instead of MAP estimates.
In the M-step we maximize the expected complete data log-likelihood L̂ with respect to θ. The

expected complete data log-likelihood is defined as:

L̂(y1:T ,sT+1|θ) ≡ Ep(s1:T ,x1:T |y1:T ,sT+1,θold) [log p(y1:T ,x1:T ,s1:T+1|θ)] .

Using the conditional independencies implied by the model and the constraints in the regime prior
and transitions we can rewrite it as:

L̂(y1:T ,sT+1|θ) = p(s1 = n|y1:T ,sT+1,θold)Ep(x1|s1=n,y1:T ,sT+1,θold) logN (x1;m1,V1)

+ ∑
(i, j)∈G

T+1

∑
t=2

p(st = j,st−1 = i|y1:T ,sT+1,θold) logΠi→ j

+ ∑
j∈{n,p}

T

∑
t=2

p(st = j|y1:T ,sT+1,θold)

Ep(xt−1,t |st= j,y1:T ,sT+1,θold) logN (xt ;A jxt−1,Q j)

+ ∑
j∈{n,p}

T

∑
t=1

p(st = j|y1:T ,sT+1,θold)

Ep(xt |st= j,y1:T ,sT+1,θold) logN (yt ;C jxt +µ j,r jI) .
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Note that from the model assumptions p(s1 = n|y1:T ,sT+1,θold) = 1.
The M-step updates for the parameters follow by adding Lagrange multipliers for the normal-

ization constraints and setting partial derivatives to 0.
We use 〈·〉· to denote weighted expectations, and pt (i j) as a shorthand for the relevant posterior

e.g.

〈 f (xt−1,xt)〉pt(i j) = p(st−1 = i,st = j|y1:T ,sT+1,θold)

×
∫

dxt−1,t f (xt−1,xt)p(xt−1,t |st−1 = i,st = j,y1:T ,sT+1,θold) .

In this notation 〈1〉pt(i j) simply gives a weighting factor. In the statistics above, and hence in the
update equations below, we recognize forms similar to a regular LDS but now with a weighting term
that would not be present in the non-switching case.

The updates for Πi→ j are weighted versions of the standard HMM updates. The prior is deter-
ministic (all sequences start in the normal regime) and fixed.

The updates read:

Anew
j =

(

T

∑
t=2

〈

xtx>t−1

〉

pt(· j)

)(

T

∑
t=2

〈

xt−1x>t−1

〉

pt(· j)

)−1

Qnew
j =

(

∑T
t=2

〈

xtx>t
〉

pt(· j)
−Anew

j ∑T
t=2

〈

xtx>t−1

〉>

pt(· j)

)

∑T
t=2 〈1〉pt(· j)

mnew
1 = 〈x1〉p1(n)

V new
1 =

〈

x1x>1
〉

p1(n)
−mnew

1 (mnew
1 )>

Πnew
i→ j ∝

T+1

∑
t=2

〈1〉pt(i j) ∀(i, j)∈G .

We compute the new output matrix C j and the new mean µ j jointly by adding µ j as an extra column
to C j and adding an entry to the continuous state that is always 1. We define

Pt, j ≡

[
〈

xtx>t
〉

〈xt〉

〈xt〉
> 〈1〉

]

mt, j ≡

[

〈xt〉
〈1〉

]

C̃new
j ≡

[

Cnew
j µnew

j

]

,

with the weighted expectations 〈·〉 over pt( j), to arrive at

C̃new
j =

(

T

∑
t=1

ytm>
t, j

)(

T

∑
t=1

Pt, j

)−1

r2 new
j =

(

∑T
t=1 y>t yt 〈1〉pt( j)− tr

[

(

C̃new
j

)>(

∑T
t=1 ytm>

t, j

)

])

d ∑T
t=1 〈1〉pt( j)

,
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where d is the dimensionality of the observations yt .
When sT+1 = f, or if it is not observed, posterior distributions such as p(xt−1,t |st−1 = i,st =

j,y1:T ,sT+1 = f,θold) are mixture of Gaussians (the sT+1 = s case results in a straightforward LDS
variant). For the updates described above first and second moments of these mixtures are required.
They can be computed analytically and simply boil down to the weighted sum of the means and
second moments of the individual components. For example,

〈

xtx>t−1

〉

pt(·n)
, is based on a mixture

with T − t −1 components (if sT+1 is observed to be a fault), each corresponding to a possible end
of the normal regime.

〈

xtx>t−1

〉

pt(·n)
=

T−1

∑
τ=t

〈

xtx>t−1

〉

pt :τ(·n:n)

≡
T−1

∑
τ=t

p(s1:τ = n|y1:T ,sT+1 = f,θold)

×
∫

dxt−1,txtx>t−1 p(xt−1,t |s1:τ = n,sT+1 = f,θold) .

If the trainset consists of V sequences instead of one, in the above update steps all sums ∑b
t=a are

replaced by ∑V
v=1 ∑bv

t=a. Only the update for m1 and V1 change. The posterior over x1 is a mixture of
Gaussians with one mixture component for every sequence. The required sufficient statistics follow
again by a collapse.

Appendix C. Prior Distributions

In practice, if the underlying models for normal and prefault regimes are relatively “far apart”, we
expect that the model parameters can be inferred reliably. For example if the prefault regime has
an entirely different offset in the observation model, the prefault subsequences lie in an entirely
different region of sensor space, which makes it easy to distinguish between the two. However
in many practical applications we expect the difference not to be so profound. In this Section we
introduce sensible priors on the parameters such that a priori knowledge can be incorporated.

Our main concern is with priors on the regime transition probabilities. There are three free
parameters in the transition probabilities model: Πn→n, Πn→p and Πp→p (Πn→s ≡ 1− (Πn→n +
Πn→p), and Πp→f ≡ 1−Πp→p by construction).

The conjugate prior for Πp→p is

p(Πp→p|νp,λp) ∝
(

Πp→p
)νpλp

(

1−Πp→p
)νp .

The parameters νp and λp have a natural interpretation as the number of sequences and the average
number of p → p transitions in a hypothesized set of “pseudo observed” sequences.

A similar reasoning holds for the parameters Πn→n, Πn→s, and Πn→p. Suppose we observe
Vns +Vnp sequences with on average l̄n n → n transitions, and Vns of these ended in a stop and Vnp

switched to prefault. The probability of observing this set S of sequences is

p(S|Πn→n,Πn→s,Πn→p) = (Πn→n)
(Vns+Vnp)l̄n (Πn→s)

Vns
(

Πn→p
)Vnp .

The conjugate prior is

p(Πn→n,Πn→s,Πn→p|νns,νnp,λn) ∝ (Πn→n)
(νns+νnp)λn (Πn→s)

νns
(

Πn→p
)νnp .
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MAP estimates can be computed by changing the M-step slightly. Instead of maximizing the
likelihood, the EM algorithm now aims to maximize

p(θ|y1:T ,sT+1) ∝ p(y1:T ,sT+1|θ)p(θ|νnp,νns,λn,νp,λp) .

The E-step stays the same, but the M-step updates are now found by maximizing

M̂AP(y1:T ,sT+1,θ) ≡ L̂(y1:T ,sT+1|θ)p(θ|νnp,νns,λn,νp,λp) .

The required changes in the M-step updates are minor and intuitive. Only the update step for
transition probabilities changes and becomes

Πnew
i→ j ∝

T+1

∑
t=2

〈1〉pt(i j) +νi j ∀(i, j)∈G ,

where

νnn ≡ (νnp +νns)λn

νpp ≡ νpλp

νps ≡ νp .

Appendix D. The Fixed Point Interpretation of Algorithm 2

In this section we show that fixed points of Algorithm 2 are stationary points of the generalized EP
free energy (13), and that the algorithm can be interpreted as fixed point iteration in dual space. The
proof and intuition are analogous to the result that fixed points of loopy belief propagation can be
mapped to extrema of the Bethe free energy (Yedidia et al., 2005).

Theorem 1 The collection of beliefs p̂t(zt−1,t) and q̂t(zt) form fixed points of Algorithm 2 if and
only if they are zero gradient points of FGEP under the appropriate constraints.

Proof The properties of the fixed points of message passing follow from the description of Algo-
rithm 2. We get the CG form (15) of messages αt and βt and their relationship with one and two
slice marginals

p̃i(uouter(i)) ∝ αi−1(uover(i−1))Ψ(i)(uouter(i))βi(uover(i))

q̃i(uover(i)) ∝ αi(uover(i))βi(uover(i))

by construction, and weak consistency

〈

f (uover(i))
〉

p̃i
=
〈

f (uover(i))
〉

q̃i
=
〈

f (uover(i))
〉

p̃i+1
, (17)

as a property of a fixed point.
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To identify the nature of stationary points of FGEP we first construct the Lagrangian by adding
Lagrange multipliers αi(uover(i)) and βi(uover(i)) for the forward and backward consistency con-
straints and γouter(i) and γover(i) for the normalization constraints.

LGEP(p̃, q̃,α,β,γ)

=
N

∑
i=1

∑
uouter(i)

p̃i(uouter(i)) log
p̃i(uouter(i))

Ψ(i)(uouter(i))

−
N−1

∑
i=1

∑
uover(i)

q̃i(uover(i)) log q̃i(uover(i))

−
N

∑
i=2

αi−1(uover(i−1))
>

[

∑
uouter(i)

f (uover(i−1))p̃i(uouter(i))− ∑
uover(i−1)

f (uover(i−1))q̃i−1(uover(i−1))

]

−
N−1

∑
i=1

βi(uover(i))
>

[

∑
uouter(i)

f (uover(i))p̃i(uouter(i))− ∑
uover(i)

f (uover(i))q̃i(uover(i))

]

−
N

∑
i=1

γouter(i)

[

∑
uouter(i)

p̃i(uouter(i))−1

]

−
N−1

∑
i=1

γover(i)

[

∑
uover(i)

q̃i(uover(i))−1

]

.

Note that αi(uover(i)) and βi(uover(i)) (in boldface to distinguish them from messages and to empha-
size that they are vectors) are vectors of canonical parameters as defined in Appendix A.

The stationarity conditions follow by setting the partial derivatives to 0. Taking derivatives w.r.t.
p̃i(uouter(i)) and q̃i(uover(i)) gives

∂LGEP

∂p̃i(uouter(i))
= log p̃i(uouter(i))+1− logΨ(i)(uouter(i))

−αi−1(uover(i−1))
> f (uover(i−1))−βi(uover(i))

> f (uover(i))− γouter(i)

∂LGEP

∂q̂i(uover(i))
= − log q̂i(uover(i))−1+αi(uover(i))

> f (uover(i))+βi(uover(i))
> f (uover(i))− γover(i) .

Setting above derivatives to 0 and filling in the solutions for γouter(i) and γover(i) (which implies
the normalization of the potentials) results in

p̃i(uouter(i)) ∝ eαi−1(uover(i−1))
> f (uover(i−1))Ψ(i)(uouter(i))e

βi(uover(i))
> f (uover(i))

q̃i(uover(i)) ∝ eαi(uover(i))
> f (uover(i))+βi(uover(i))

> f (uover(i)) .

The conditions ∂LGEP
∂αi(uover(i))

= 0 and ∂LGEP
∂βi(zover(i))

= 0 retrieve the forward-equals-backward constraints

(17).
So if we identify αi as the vector of the canonical parameters of the message αi and βi as the

vector of the canonical parameters of the message βi, we see that the conditions for stationarity of
FGEP and fixed points of Algorithm 2 are the same.

As can be seen from the above proof, iteration of the forward-backward passes can be interpreted
as fixed point iteration in terms of Lagrange multipliers.
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Abstract

In this paper, we study a two-category classification problem. We indicate the categories by
labelsY = 1 andY = −1. We observe a covariate, or feature,X ∈ X ⊂ R

d. Consider a collection
{ha} of classifiers indexed by a finite-dimensional parametera, and the classifierha∗ that minimizes
the prediction error over this class. The parametera∗ is estimated by the empirical risk minimizer
ân over the class, where the empirical risk is calculated on a training sample of sizen. We apply
the Kim Pollard Theorem to show that under certain differentiability assumptions, ˆan converges to
a∗ with raten−1/3, and also present the asymptotic distribution of the renormalized estimator.

For example, letV0 denote the set ofx on which, givenX = x, the labelY = 1 is more likely
(than the labelY = −1). If X is one-dimensional, the setV0 is the union of disjoint intervals. The
problem is then to estimate the thresholds of the intervals.We obtain the asymptotic distribution
of the empirical risk minimizer when the classifiers haveK thresholds, whereK is fixed. We fur-
thermore consider an extension to higher-dimensionalX, assuming basically thatV0 has a smooth
boundary in some given parametric class.

We also discuss various rates of convergence when the differentiability conditions are possibly
violated. Here, we again restrict ourselves to one-dimensionalX. We show that the rate isn−1 in
certain cases, and then also obtain the asymptotic distribution for the empirical prediction error.

Keywords: asymptotic distribution, classification theory, estimation error, nonparametric models,
threshold-based classifiers

1. Introduction

In the theory of classification, the problem is to predict the unknown natureof a feature. The topic
plays a basic role in several fields, such as data mining, artificial intelligenceand neural networks.
In this paper we discuss the classification problem from a parametric-statistical point of view.

Let the training set(X1,Y1), · · · ,(Xn,Yn) consist ofn independent copies of the couple(X,Y)
with distributionP, whereX ∈ X ⊂ R

d is called a feature andY ∈ {−1,1} is the label ofX. A
classifierh is a functionh : X → {−1,1}, attaching the labelh(X) to the featureX. The error, or
risk, of a classifierh is defined asP(h(X) 6= Y). Following Vapnik (2000) and Vapnik (1998), we

c©2005 Leila Mohammadi and Sara van de Geer.
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consider the empirical counterpart of the risk which is the number of misclassified examples, i.e.,

Pn(h(X) 6= Y) :=
1
n

n

∑
i=1

�
(h(Xi) 6= Yi).

Here, and throughout,
�
(A) denotes the indicator function of a setA. We will study empirical risk

minimization over a model classH of classifiersh. We takeH to be parametric, in the sense that

H = {ha : a∈ A},

with A a subset of finite-dimensional Euclidean space.
Let

F0(x) := P(Y = 1|X = x) (1)

be the conditional probability of the labelY = 1 if the featureX has valuex. Given a new feature
x∈ X , we want to guess whether the label isY = 1 orY =−1. A natural solution is to predictY = 1
when the labelY = 1 is more likely than the labelY = −1 (Bayes rule). Thus the set

V0 := {x∈ X : F0(x) > 1/2}, (2)

plays a key role in classification. Bayes classifier is

h0 = 2
�{V0}−1.

The collectionH of classifiers is viewed as model class forh0. However, we will not require that
h0 ∈ H . If h0 /∈ H , the model is misspecified.

In the statistical theory of classification, rates of convergence of empirical classifiers have been
studied by a number of researchers, see for example Lugosi and Vayatis (2004), Lugosi and Nobel
(1999), Lugosi and Wegkamp (2004), Koltchinskii and Panchenko (2002), Boucheron et al. (2005),
Koltchinskii (2003a), Koltchinskii (2003b), Mohammadi (2004) and Tsybakov and van de Geer
(2005). These papers generally consider a high-dimensional model class and use regularization to
tackle the curse of dimensionality. Rates of convergence for the regularized estimators are obtained,
and also non-asymptotic bounds. In this paper, we consider a low-dimensional model class. This
means that we place the subject in the context of classical parametric statistics. Under regularity
assumptions, one can establish rates, as well as the asymptotic distributions. Indeed, our main aim
is to show that one can apply certain statistical results to the classification problem with parametric
model class. In practice, one may not be willing to assume a simple parametric model class, as the
complexity of the problem is not known a priori. In this sense, our study is primarily a theoretical
one.

In Section 2, we generalize the problem considered in Mohammadi and van de Geer (2003). It
gives an application of the cube root asymptotics derived by Kim and Pollard (1990). We briefly
explain the main idea of the Kim Pollard Theorem. Its exact conditions are given in Section 4.
We study in Subsection 2.1 the case whereX is one-dimensional. The setV0 ⊂ R is then a union
of disjoint intervals, and our aim is to estimate the boundaries of the intervals. These boundaries
will be called thresholds. The situation thatV0 is the union of intervals has also been considered
in Breiman et al. (1984). They explain how to use the training set to split the feature spaceX and
construct trees. See also Kearns et al. (1997) for a comparison of various algorithms in this case.
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A simple case, with just one threshold, has been presented in Mohammadi andvan de Geer (2003).
We will establish the asymptotic behavior of estimators of the thresholds, using the set of classifiers
with K thresholds as model class. HereK is fixed, and not bigger than, but not necessarily equal
to, the number of thresholds of Bayes classifier. We moreover assume thatF0 is differentiable. In
Subsection 2.2, we extend the situation to higher-dimensional feature space, X := R

d, d ≥ 1. The
problem there is related to assuming a single index model for the regression of Y onX, i.e.,

F0(x) = η0(x
Ta∗),

wherea∗ is an unknown vector parameter, andη0 is an unknown (monotone) function. We let
X = (U,V), with U ∈ R

d−1 andV ∈ R and minimize the empirical classification error over the
classifiers

ha(u,v) := 2
�{ka(u) ≥ v}−1,

wherea is an r-dimensional parameter andka : R
d−1 → R is some given smooth function ofa.

Under differentiability conditions, this will again lead to cube root asymptotics.
In Section 3, we study various other rates, and also the asymptotic distributionin the case of a

(1/n)-rate. We consider here only one-dimensionalX . The Kim Pollard Theorem and the proofs of
the results in Section 2 are given in Section 4.

We note here that we will mainly concentrate on the estimation of the parametera∗ that min-
imizes the prediction error over the classH . One may argue that the most interesting and useful
subject is perhaps not the convergence of the estimator ˆan to a∗, but rather the convergence of the
prediction error of (the classifierhân corresponding to) ˆan. We remark however that our approach
to study the former is via the latter. For example, in Corollary 2 the asymptotic distribution of the
prediction error follows as a corollary.

The conclusion is that by considering some assumptions on the distribution of the data, we can
prove rates of convergence and asymptotic distributions. In computer learning theory, usually no or
minimal distributional assumptions are made. The results of the present papergive more insight in
the dependency of the asymptotic behavior on the underlying distribution.

We consider asymptotics asn→ ∞, regarding the sample(X1,Y1), . . . ,(Xn,Yn) as the firstn of an
infinite sequence of i.i.d. copies of(X,Y). The distribution of the infinite sequence(X1,Y1),(X2,Y2), . . .
is denoted byP. The marginal distribution function ofX is denoted byG. In case that the density of
the distributionG of X with respect to Lebesgue measure exists, it is denoted byg. The Euclidean
norm is denoted by‖ · ‖.

2. Cube Root Asymptotics

We first examine in Subsection 2.1 the case where the feature spaceX is the unit interval inR so
that Bayes rule is the union of some subintervals in[0,1]. As model class, we take the union of a,
possibly smaller, number of subintervals. Next, we consider in Subsection 2.2 the situation where
X = R

d with d > 1. Our model class is then the class of graphs of smooth parametric functions. In
both situations, the class of classifiersH is parametric, i.e. it is of the form

H = {ha : a∈ A},

with A a subset ofRr , where the dimensionr is fixed (not depending onn).
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Define the empirical risk
Ln(a) := Pn(ha(X) 6= Y), (3)

and the theoretical risk
L(a) := P(ha(X) 6= Y). (4)

Moreover, let
ân = argmin

a∈A
Ln(a)

be the empirical risk minimizer, and let

a∗ = argmin
a∈A

L(a)

be its theoretical counterpart. We assume thata∗ exists and is unique. We also assume that the
estimator ˆan exists, but it need not be unique. In fact, in the situations that we consider, there will
be many solutions for ˆan. Our results will hold for any choice of ˆan.

We will derive cube root asymptotics. Let us first sketch where then−1/3-rate of convergence
comes from. One may write down the equality

L(ân)−L(a∗) = − [νn(ân)−νn(a
∗)]/

√
n+[Ln(ân)−Ln(a

∗)] , (5)

with
νn(a) =

√
n[Ln(a)−L(a)] , a∈ A ,

being the empirical process indexed byA . SinceLn(ân)−Ln(a∗) ≤ 0, this equality implies

L(ân)−L(a∗) ≤− [νn(ân)−νn(a
∗)]/

√
n. (6)

Under regularity conditionsL(a)−L(a∗) behaves like the squared distance‖a−a∗‖2. Moreover,
again under regularity conditions, the right hand side of (6) behaves in probability like σ(ân)/

√
n,

whereσ(a) is the standard deviation of[νn(a)− νn(a∗)]. Due to the fact that we are dealing with
indicator functions, the standard deviation of[νn(a)− νn(a∗)] behaves like thesquare root‖a−
a∗‖1/2 of the distance betweena anda∗. Inserting this in (6) yields that‖ân−a∗‖2 is bounded by a
term behaving in probability like‖ân−a∗‖1/2/

√
n. But this implies‖ân−a∗‖ is of ordern−1/3 in

probability.
Let us continue with a rough sketch of the arguments used for establishing the asymptotic dis-

tribution. We may write

ân = argmin
a

[

n
1
6
[

νn(a)−νn(a
∗)
]

+n
2
3
[

L(a)−L(a∗)
]

]

.

When we already have then−1/3-rate, it is convenient to renormalize to

n
1
3 (ân−a∗) = argmin

t

[

n
1
6
[

νn(a
∗ +n−

1
3 t)−νn(a

∗)
]

+n
2
3
[

L(a∗ +n−
1
3 t)−L(a∗)

]

]

.

Now, under differentiability assumptions,

n
2
3
[

L(a∗ +n−
1
3 t)−L(a∗)

]

≈ tTV t/2,
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whereV is the matrix of second derivatives ofL ata∗. Moreover, the process{n1/6[νn(a∗+n−
1
3 t)−

νn(a∗)] : t ∈ R
r} converges in distribution to some zero mean Gaussian process, sayW. We then

apply the “Argmax” Theorem (“Argmin” Theorem in our case), see e.g., van der Vaart and Wellner
(1996). The result is thatn1/3(ân−a∗) converges in distribution to the location of the minimum of
{W(t)+ tTV t/2 : t ∈ R

r}.
Kim and Pollard (1990) make these rough arguments precise. See Section 4for the exact con-

ditions.

2.1 One-Dimensional Feature Space

With a one-dimensional feature space,X = [0,1], Bayes rule is described by the number, sayK0,
and the locations, saya0 = (a0

1, . . .a
0
K0

)T , where 2F0−1 changes sign. We call the locations of the
sign changesthresholds. With a sign change we mean that the function has strictly opposite sign in
sufficiently small intervals to the left and right side of each threshold. The boundary pointsa0

0 = 0
anda0

K0+1 = 1 are thus not considered as locations of a sign change.
Let K ∈ N andUK be the parameter space

UK := {a = (a1, . . . ,aK) ∈ [0,1]K : a1 < .. . < aK}. (7)

Let for a∈UK

ha(x) :=
K+1

∑
k=1

bk
�{ak−1 ≤ x < ak},

wherea0 = 0, aK+1 = 1 and b1 = −1, bk+1 = −bk, k = 2, . . . ,K. Let H be the collection of
classifiers

H = {ha : a∈UK}. (8)

Let
L(a) := P(ha(X) 6= Y), Ln(a) := Pn(ha(X) 6= Y). (9)

The empirical risk minimizer is

ân := arg min
a∈UK

Ln(a). (10)

We emphasize that we take the number of thresholdsK in our model class fixed. Ideally, one
would like to chooseK equal toK0, but the latter may be unknown. Kearns et al. (1997), investigate
an algorithm which calculates ˆan for all values ofK, and a comparison of various regularization
algorithms for estimatingK0. With a consistent estimator̂K in our model class, the asymptotics
presented in this paper generally still go through. However, Kearns et al. (1997) and also later
papers, e.g. Bartlett et al. (2002) show that the choice ofK is very important in practice. Non-
asymptotic bounds for a related problem are in Birgé (1987).

The following theorem states that ˆan converges to the minimizera∗ of L(a) with rate n−1/3

and also provides its asymptotic distribution after renormalization. We assume in this theorem that
K ≤ K0. If K = K0, one can show that when the minimizera∗ is unique, it is equal toa0, i.e., then
ha∗ is Bayes classifier. The caseK < K0 is illustrated at the end of this subsection.

We use the notation
�
(u,v > 0) for

�
(u > 0)

�
(v > 0), for scalarsu andv. Likewise, we write

�
(u,v < 0) for

�
(u < 0)

�
(v < 0).
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Figure 1:F0 and the points at which 2F0−1 changes sign.

Theorem 1 Suppose F0(0) < 1/2, that

a∗ = (a∗1,a
∗
2, . . . ,a

∗
K) := arg min

a∈UK
L(a), (11)

is the unique minimizer of L(a), that a∗ is in the interior of UK , and that L(a) is a continuous
function of a. Suppose that F0 has non-zero derivative f0 in a neighborhood of a∗k, k= 1, . . . ,K. Let
g(a∗k) > 0, for all k = 1, . . . ,K, where g, the density of G, is continuous in a neighborhood of a∗.
Then the process

{n2/3
[

Ln(a
∗ + tn−1/3)−Ln(a

∗)
]

: t ∈ R
K}

(where we define Ln(a) = 0 for a /∈UK), converges in distribution to a Gaussian process{Z(t) : t ∈
R

K} with continuous sample paths, and expected valueEZ(t) = tTV t/2, where

V =









2 f0(a∗1)g(a∗1) 0 . . . 0
0 −2 f0(a∗2)g(a∗2) . . . 0
. . . . . . . . . . . .
0 0 . . . (−1)K−12 f0(a∗K)g(a∗K)









,

and covariance kernel H= [H(s, t)], where

H(s, t) =
K

∑
k=1

g(a∗k)
[

min(sk, tk)
�
(sk, tk > 0)−max(sk, tk)

�
(sk, tk < 0)

]

.

Moreover,
n

1
3 (ân−a∗) →L argminZ(t).

The proof can be found in Section 4, where it is also noted that the diagonal elements of the
matrix V are all positive.
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Under the assumptions of Theorem 1

L(ân)−L(a∗) ≈ (ân−a∗)TV (ân−a∗)/2

for largen. The theorem therefore also provides us the raten−2/3 for the convergence of the predic-
tion errorL(ân) of the classifierhân, to the prediction error ofha∗ , and the asymptotic distribution
of the prediction errorL(ân) after renormalization. We present this asymptotic distribution in a
corollary.

Corollary 2 Suppose the conditions of Theorem 1 are met. Then

n
2
3 [L(ân)−L(a∗)] →L UTV U/2,

where U= argmint Z(t), and Z is defined in Theorem 1.

Recall that one of the conditions in the above theorem is thatL has a unique minimizer in the
interior of UK . This implies thatK should not be larger thanK0. Let us consider the situation
K = 1,K0 = 2 and discuss when there is a unique minimizer.

SupposeK = 1 and

F0(x)

{

< 1/2 x 6∈ [a0
1,a

0
2],

> 1/2 x∈ (a0
1,a

0
2),

(12)

wherea0
1 anda0

2 are unknown and 0< a0
1 < a0

2 < 1. Note that

L(a) = P(Y = 1, ha(X) = −1)+P(Y = −1, ha(X) = 1)

=
Z a

0
F0dG+

Z 1

a
(1−F0)dG

=
Z a

0
(2F0−1)dG+

Z 1

0
(1−F0)dG.

If
R 1

a0
1
(2F0−1)dG> 0, thena∗ = a0

1 is the unique minimizer ofL. If
R 1

a0
1
(2F0−1)dG< 0, thenL

has a unique minimum at 1. The minimizer is not in the open interval(0,1), and Theorem 1 indeed
fails. In this case, the convergence result is the same as Theorem 5 below(under its assumptions).
If

R 1
a0

1
(2F0−1)dG= 0, thenL has two minima at 1 anda0

1.

2.2 Higher-Dimensional Feature Space

In this subsection,X ⊂ R
d with d > 1, and we write forX ∈ X ,

X = (U,V), U ∈ R
d−1, V ∈ R.

Consider given functions
ka : R

d−1 → R, a∈ A ,

and classifiers
ha = 2

�{Ca}−1, a∈ A ,
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where
Ca := {(u,v) : v≤ ka(u)}, a∈ A .

This kind of classifiers has been frequently considered and discussedin classification theory. We
study the case where the parameter space is finite-dimensional, sayA = R

r . A famous example
is whenka is linear ina, see for instance Hastie et al. (2001). Tsybakov and van de Geer (2005)
consider this case for larger, depending onn. In contrast, we assume throughout thatr is fixed.

Let again
a∗ = argmin

a
L(a),

be the minimizer of the theoretical riskL(a), and

ân = argmin
a

Ln(a)

be the empirical risk minimizer. We would like to know the asymptotic distribution of ˆan.
In this subsection, we suppose that the class{Ca : a ∈ R

r} is VC, i.e., that{ka(u) : a ∈ R
r}

is VC-subgraph. We also suppose thatka is a regular function of the parametera ∈ R
r , i.e., the

gradient
∂

∂a
ka(u) = k′a(u) (13)

of ka(u) exists for allu, and also its Hessian

∂2

∂a∂aT ka(u) = k′′a(u). (14)

We will need to exchange the order of differentiation and integration of certain functions. To be
able to do so, we require locally dominated integrability, which is defined as follows.

Definition 3 Let { fa : a ∈ A}, A ⊂ R
r , be a collection of functions on some measurable space

(U,µ). It is called locally dominated integrable with respect to the measure µ and variable a if for
each a there is a neighborhood I of a and a nonnegative µ-integrable function g1 such that for all
u∈ U and b∈ I,

| fb(u)| ≤ g1(u).

The probability of misclassification using the classifierha is

L(a) = P(ha(X) 6= Y) =
Z

Ca

(1−F0)dG+
Z

Cc
a

F0dG

=
Z

Ca

(1−2F0)dG+P(Y = 1).

Suppose that the densityg of G, with respect to Lebesgue measure, exists. We use the notation

m(x) := (1−2F0(x))g(x). (15)

Assumption A: Assume existence of the derivatives (13) and (14) and also of

m′(u,v) :=
∂
∂v

m(u,v).
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Assume furthermore that the functionsm(u,ka(u))k′a(u) and ∂
∂aT [m(u,ka(u))k′a(u)] are locally dom-

inated integrable with respect to Lebesgue measure and variablea. Also, assume that the func-
tion

R

k′a(u)g(u,ka(u))du is uniformly bounded fora in a neighborhood ofa∗, and that for eachu,
m′(u,ka(u)) andk′′a(u) are continuous in a neighborhood ofa∗.

Write

Va :=
∂2

∂a∂aT L(a).

Then
Va =

Z

Σa(u)m(u,ka(u))du, (16)

where

Σa(u) = k′a(u)k′Ta (u)
m′(u,ka(u))

m(u,ka(u))
+k′′a(u). (17)

In the following theorem, we show thatn
1
3 (ân−a∗) converges to the location of the minimum

of some Gaussian process.

Theorem 4 Suppose that L has a unique minimum at a∗ and that it is continuous at a∗. Assume
that for all u, the density g(u,v) is continuous as a function of v at v= ka∗(u). LetVa be continuous
at a∗ andV := Va∗ be positive definite. Under Assumption A, we have

n
1
3 (ân−a∗) →L argmin

t∈Rr
Z(t)

where{Z(t) : t ∈ R
r} is a Gaussian process withEZ(t) = tTV t/2, t ∈ R

r , and with continuous
sample paths and covariance structure

Cov(Z(t),Z(s)) =
Z

g(u,ka∗(u))αT(u, t,s)k′a∗(u)du, t,s∈ R
r ,

with

α(u, t,s) =























−s tTk′a∗(u) ≤ sTk′a∗(u) ≤ 0
−t sTk′a∗(u) ≤ tTk′a∗(u) ≤ 0
t 0≤ tTk′a∗(u) ≤ sTk′a∗(u)
s 0≤ sTk′a∗(u) ≤ tTk′a∗(u)
0 o.w..

(18)

The proof is given in Section 4.

As an example of Theorem 4, supposer = d andka is the linear function

ka(u) := a1u1 + . . .+ar−1ur−1 +ar .

It is interesting to compute the matrixV (see (16) and (17)) in this case. Using our notations, we
have

k′a(u) = [u1 u2 . . . ur−1 1]T .
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Let f0(u,v) := ∂
∂vF0(u,v) andg′(u,v) := ∂

∂vg(u,v) exist. Then by (15), we have

m′(u,v) = −2 f0(u,v)g(u,v)+(1−2F0(u,v))g′(u,v)

and by (16) and (17)

V =

[

Z

uiu j(−2 f0(u,ka0(u))g(u,ka0(u))+(1−2F0(u,ka0(u)))g′(u,ka0(u)))du1 . . .dur−1

]

,

where we defineur := 1.

3. Other Rates of Convergence

In this section, we will investigate the rates that can occur if we do not assumethe differentiability
conditions needed for the Kim Pollard Theorem. We will restrict ourselves tothe case of a one-
dimensional feature space, withX = [0,1].

We first assumeK = 1, and that 2F0−1 has at most one sign change (i.e.K0 ≤ 1). Then, we
briefly discuss what happens for generalK0 andK.

3.1 The Case of One Threshold and at Most One Sign Change

Let K = 1 andK0 ≤ 1. Now, either 2F0−1 changes sign ata∗ ∈ (0,1) or there are no sign changes
in (0,1), i.e.K0 = 0. In the first case, we assumeF0(x) < 1/2 near 0. In the latter case, we assume
F0(x) < 1/2 for all x∈ (0,1), and leta∗ = 1, or F0(x) > 1/2 for all x∈ (0,1) and leta∗ = 0. One
easily verifies thata∗ is the minimizer ofL(a) overa ∈ [0,1]. However, ifF0 is not differentiable
at a∗, Theorem 1 can not be applied. In this section, we impose themargin conditionof Tsybakov
(2004) (see also Mammen and Tsybakov (1999)). It can also be foundon papers concerned with
estimation of density level sets, see Polonik (1995) and Tsybakov (1997).In our context, this
margin assumption is Assumption B below. Throughout, a neighborhood ofa∗ is some set of the
form (a∗−δ,a∗ +δ), δ > 0, intersected with[0,1].

Assumption B: Let there existc > 0 andε ≥ 0 such that

|1−2F0(x)|g(x) ≥ c|x−a∗|ε, (19)

for all x in a neighborhood ofa∗.

In Section 2, we assumed differentiability ofF0 in a neighborhood ofa∗ ∈ (0,1), with positive
derivative f0. This corresponds to the caseε = 1. We haveε = 0 if F0 has a jump ata∗, and also
if a∗ ∈ {0,1}. In general, Assumption B describes how wella∗ is identified: large values ofε
correspond to less identifiability.

Recall now equality (6):

L(ân)−L(a∗) ≤− [νn(ân)−νn(a
∗)]/

√
n. (20)

Let σ(a) be the standard deviation of[νn(a)−νn(a∗)]. Let

ψ(r) = E

(

sup
a: σ(a)≤r

∣

∣νn(a)−ν(a)
∣

∣

)

, r > 0. (21)
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It will follow from the proof of Theorem 5 below, thatψ(r) ∼ r. Moreover, the standard deviation
σ(a) behaves like‖a−a∗‖1/2. Therefore. as we already stated in Section 2, the right hand side of
(20) behaves in probability like‖ân−a∗‖1/2/

√
n. From Assumption B, we see that the left hand

side behaves like‖ân−a∗‖1+ε. This leads to the raten−
1+ε
1+2ε .

Theorem 5 Consider the classH defined in (8), with K= 1 and b1 = −1. Under Assumption B,

‖ân−a∗‖ = OP(n−
1

1+2ε ), L(ân)−L(a∗) = OP(n−
1+ε
1+2ε ).

Proof We use the inequality (20):

L(ân)−L(a∗) ≤−[νn(ân)−νn(a
∗)]/

√
n, (22)

with νn(a) :=
√

n[Ln(a)−L(a)]. By Assumption B, we have the lower bound

L(ân)−L(a∗) ≥ c‖ân−a∗‖1+ε

for the left hand side of of (22).
To find an upper bound for the right hand side of (20), we apply Theorem 5.12 of van de Geer

(2000). Define
G := {φ : φ(x,y) :=

�
(ha(x) 6= y), a∈ [0,1]}

and forφ∗(x,y) =
�
(ha∗(x) 6= y) andδ > 0,

G(δ) := {φ−φ∗ : φ ∈ G ,‖a−a∗‖ ≤ δ2}.

Let {HB(u,G1(δ),P),u > 0} be the entropy with bracketing, for the metric induced by theL2(P)
norm, of the classG(δ). It is easy to see that for some constantc1, and for allδ > 0,

HB(u,G1(δ),P) ≤ 2log
c1δ
u

, ∀u∈ (0,δ).

Set δn = n−1/2. We may selectT, C, C0 andC1 such that fora := C1T2δn and R := Tδn, the
conditions of Theorem 5.11 of van de Geer (2000) hold. This theorem then gives that for largeT
and largen,

P

(

sup
‖a−a∗‖≤δ2

n

|νn(a)−νn(a
∗)| ≥C1T2δn

)

≤Cexp(−T).

Now, by the peeling device, see for example van de Geer (2000), we canshow that

lim
T→∞

limsup
n→∞

P
(

sup√
‖a−a∗‖>δn

|νn(a)−νn(a∗)|
√

‖a−a∗‖
≥ T

)

= 0.

So,
|νn(ân)−νn(a∗)|
√

‖ân−a∗‖∨δn
= OP(1). (23)

Combining this with (22) and Assumption B yields

c‖ân−a∗‖1+ε ≤ (
√

‖ân−a∗‖+δn)OP(1)/
√

n
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or ‖ân−a∗‖ = OP(n−1/(1+2ε)). Using (23) and (22), we can calculateL(ân)−L(a∗) = OP(n−
1+ε
1+2ε ).

�

Theorem 5 can be refined to a non-asymptotic bound, for example in the following way. Letψ̄
be the smallest concave majorant ofψ defined in (21), and letw(·) be the smallest concave upper-
bound of

r 7→ sup
L(a)−L(a∗)≤r2

σ(a).

(In our situation,w(r) ∼ r
1

1+ε .) Let r∗ be the positive solution of

r2 = ψ̄(w(r))/
√

n.

Then, from Massart (2003), Koltchinskii (2003b), or Bartlett et al. (2004), we obtain that

P
(

L(ân)−L(a∗) > r2
∗ +

w(r∗)
r2∗

2x
n

)

≤ e−x, x > 0.

WhenF0 has a jump ata∗, we have the caseε = 0. Under the conditions of Theorem 5 withε = 0,
we derive the asymptotic distribution of the renormalized empirical risk, locally ina neighborhood
of order 1/n of a∗, the local empirical risk. The rescaled estimatorn(ân−a∗) remains bounded in
probability. However, since the local empirical risk has a limit law which has nounique minimum,
n(ân−a∗) generally does not converge in distribution. Similar results can be derivedwhena∗ is one
of the boundary points 0 or 1. For simplicity we only consider the right hand side limit. We assume
thatF0 andg are right continuous.

In Theorem 6 below, convergence in distribution is to be understood in the sense given e.g. in
Barbour et al. (1992).

Theorem 6 Consider the classH defined in (8), with K= 1 and b1 = −1. Assume that a∗ ∈ (0,1),
1/2 < F0(a∗) < 1, g and F0 are right continuous at a∗ and g(a∗) > 0. Let

λ1 := F0(a
∗)g(a∗), λ2 := (1−F0(a

∗))g(a∗).

Let Zn(t) = n[Ln(a∗ + t/n)−Ln(a∗)], t > 0. The processZn converges in distribution to Z1−Z2,
where Zi is a Poisson process with intensityλi , i = 1,2, and Z1(t) and Z2(s) are independent for all
s, t > 0.

Proof We have fort > 0

Zn(t) = ∑
Yi=1

�
(a∗ ≤ Xi < a∗ + t/n)− ∑

Yi=−1

�
(a∗ ≤ Xi < a∗ + t/n).

Define
In(t) := ∑

Yi=1

�
(a∗ ≤ Xi < a∗ + t/n), Jn(t) := ∑

Yi=−1

�
(a∗ ≤ Xi < a∗ + t/n). (24)

The random variableIn(t) has a binomial distribution with parametersn andp1, where

p1 := P(Y = 1,a∗ ≤ X < a∗ + t/n) =
Z a∗+t/n

a∗
F0dG. (25)
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For largen, p1 is close toλ1t/n. Similarly, for largen, Jn(t) has binomial distribution with pa-
rametersn and p2 := λ2t/n. We know thatB(n,λt/n), for largen and smallt, is approximately
Poisson(λt), i.e. the total variation distance between the two distributions goes to zero asn→ ∞.

Note that for every 0< t1 < t2 < 1,

nP(Y = 1,a∗ + t1/n≤ X ≤ a∗ + t2/n) = n
Z a∗+t2/n

a∗+t1/n
F0dG→ λ1(t2− t1)

and

nP(Y = −1,a∗ + t1/n≤ X ≤ a∗ + t2/n) = n
Z a∗+t2/n

a∗+t1/n
(1−F0)dG→ λ2(t2− t1)

asn → ∞. Now by Theorem 5.2.4, Remark 4 and Proposition A2.12 of Embrechts et al.(1997),
we conclude that the whole processIn (Jn) converges weakly to a Poisson process with intensityλ1

(λ2). (See also Barbour et al. (1992).) With the method of moment generating functions we can
prove that the processesIn andJn are asymptotically independent, i.e., for anyt1, ..., tm,s1, ...,sk,

E(exp(r1In(t1)+ ...+ rmIn(tm)+ l1Jn(s1)+ ...+ lkJn(sk)))

converges to

E(exp(r1Z1(t1)+ ...+ rmZ1(tm)))E(exp(l1Z2(s1)+ ...+ lkZ2(sk))).

Thus,In−Jn converges weakly to the difference of two independent Poisson processes with inten-
sitiesλ1 andλ2. �

3.2 Extension to Several Thresholds and Sign Changes

Recall thatK0 is the number of sign changes of 2F0−1, and thatK is the number of thresholds in
the model classH defined in (8). Below, whenever we mention the raten−1/3 or n−1, we mean the
rate can be obtained under some conditions onF0 andg (see Theorem 1 (whereε = 1), and Theorem
5 with ε = 0). Recall thata0 denotes theK0-vector of the locations of the sign changes of 2F0−1.

1. Let K ≤ K0 anda∗ is an interior point ofUK . In this case, ˆan converges toa∗. The rate is
n−1/3.

2. Let K = K0 + 1. Then,K0 of the elements of ˆan converge toa0, and either ˆa1,n converges
to 0 or âK,n converges to 1. The rate of convergence to the interior points isn−1/3 and the rate of
convergence to the boundary point isn−1.

3. Let K > K0 + 1. In this case,K0 of the elements of ˆan converge toa0 with raten−1/3. If
K−K0 is odd, one element of ˆan converges to one of the boundary points 0 or 1.

4. Proof of Theorem 1 and Theorem 4

We start out with presenting the Kim Pollard Theorem (Kim and Pollard (1990)) in a general context.
Let ξ1,ξ2, . . . be a sequence of independent copies of a random variableξ, with values in some space
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S . Let φ(·,a) : S → R be a collection of functions indexed by a parametera ∈ A ⊂ R
r . Define

Ln(a) = ∑n
i=1 φ(ξi ,a)/n andL(a) = Eφ(ξ,a). Moreover, let

νn(a) =
√

n[Ln(a)−L(a)], a∈ A .

Define
GR := {φ(·,a) : |ak−a∗k| ≤ R, k = 1, ..., r}, R> 0. (26)

The envelopeGR of this class is defined as

GR(·) = sup
φ∈GR

|φ(·)|.

Theorem 1.1 in Kim and Pollard (1990) requires uniform manageability of a class of functions.
The definition of uniform manageability can be found in Pollard (1989) and Pollard (1990). IfG
is VC-subgraph, then a sufficient condition for the classGR to be uniformly manageable is that its
envelope functionGR is uniformly square integrable forRnear zero.

Theorem 7 ( Kim and Pollard (1990)) Let{ân} be a sequence of estimators for which
(i) Ln(ân) ≤ infa∈A Ln(a)+oP(n−2/3),
(ii) ân converges in probability to the unique a∗ that minimizes L(a),
(iii) a ∗ is an interior point ofA .
Let φ(·,a∗) = 0 and suppose
(iv) L(a) is twice differentiable with positive definite second derivative matrixV at a∗,
(v) H(s, t) = limτ→∞ τEφ(ξ,a+s/τ)φ(ξ,a+ t/τ)) exists for each s, t in Rd and

lim
τ→∞

τEφ(ξ,a∗ +s/τ)2�{|φ(ξ,a∗ +s/τ)| > ητ}) = 0

for eachη > 0 and s inR
r ,

(vi) E|φ(ξ,a)−φ(ξ,b)| = O(‖a−b‖) near a∗,
(vii) the classesGR in (26), for R near zero, are uniformly manageable for the envelopes GR and
satisfy E(G2

R) = O(R) as R→ 0, and for eachη > 0 there is a constant C such that E(G2
R
�{GR >

C}) < ηR for R near zero.
Then the process{n2/3[Ln(a∗ + tn−1/3)−Ln(a∗)] : t ∈ R

r}, (where we take Ln(a) = 0 if a /∈ A}),
converges in distribution to a Gaussian process{Z(t) : t ∈ R

r} with continuous sample paths,
expected valueEZ(t) = tTV t/2 and covariance kernel H. If Z has non-degenerate increments, then
n1/3(ân−a∗) converges in distribution to the (almost surely unique) random vector thatminimizes
{Z(t) : t ∈ R

r}.

Proof of Theorem 1 We apply the Kim Pollard Theorem to the function

φ(x,y,a) :=
�
(ha(x) 6= y)− �

(ha∗(x) 6= y),

Condition (i) is met by the definition of ˆan. To check Condition (ii), we note that, because
{φ(·,a) : a ∈ UK} is a uniformly bounded VC-subgraph class, we have the uniform law of large
numbers

sup
a∈UK

|Ln(a)−L(a)| → 0, a.s..
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Since we assume thata∗ ∈UK is unique andL is continuous., this implies

ân → a∗, a.s..

Condition (iii) is satisfied by assumption.
To check Condition (iv), for oddi, we have

∂
∂ai

P(ha(X) 6= Y) = (2F0(ai)−1)g(ai)

so
∂2

∂a2
i

P(ha(X) 6= Y)

∣

∣

∣

∣

ai=a∗i

=

(

[

2 f0(ai)g(ai)+(2F0(ai)−1)g′(ai)
]

)∣

∣

∣

∣

ai=a∗i

= −2 f0(a
∗
i )g(a∗i ).

For eveni, these terms are symmetric. Thus (iv) is satisfied with

V :=









2 f0(a∗1)g(a∗1) 0 . . . 0
0 −2 f0(a∗2)g(a∗2) . . . 0
. . . . . . . . . . . .
0 0 . . . (−1)K−12 f0(a∗K)g(a∗K)









.

Now,a∗ minimizesL(a) for a in the interior ofUK , so 2F0−1 changes sign from negative to positive
at a∗k for oddk, and it changes sign from positive to negative ata∗k for evenk. Hencef0(a∗k) > 0 for
oddk and f0(a∗k) < 0 for evenk and thereforeV is positive definite.

Next, we study the existence of the covariance kernelH, required in Condition (v). Consider
t,s∈ R and largeτ > 0 so thata∗+ t/τ,a∗+s/τ ∈UK . First we note that the product of the brackets
is the same forY = 1 and forY = −1. Fora1 < a2,b1 < b2,a∗1 < a∗2, we have

[

�
(a∗1 ≤ x < a∗2)−

�
(a1 ≤ x < a2)

][

�
(a∗1 ≤ x < a∗2)−

�
(b1 ≤ x < b2)

]

=

[

�
(x≥ a1)−

�
(x≥ a2)−

�
(x≥ a∗1)+

�
(x≥ a∗2)

]

×
[

�
(x≥ b1)−

�
(x≥ b2)−

�
(x≥ a∗1)+

�
(x≥ a∗2)

]

= A(x)−B(x)−C(x)+D(x),

where
A(x) := (

�
(x≥ a1)−

�
(x≥ a∗1))(

�
(x≥ b1)−

�
(x≥ a∗1))

=
�
[min(a1,a

∗
1),max(a1,a

∗
1))

�
[min(b1,a

∗
1),max(b1,a

∗
1))

=
�
[a∗1,min(a1,b1))

�
(a∗1 < min(a1,b1))+

�
[max(a1,b1),a

∗
1)
�
(a∗1 > max(a1,b1)),

D(x) := (
�
(x≥ a2)−

�
(x≥ a∗2))(

�
(x≥ b2)−

�
(x≥ a∗2))

=
�
[min(a2,a

∗
2),max(a2,a

∗
2))

�
[min(b2,a

∗
2),max(b2,a

∗
2))

=
�
[a∗2,min(a2,b2))

�
(a∗2 < min(a2,b2))+

�
[max(a2,b2),a

∗
2)
�
(a∗2 > max(a2,b2)),
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B(x) := (
�
(x≥ a1)−

�
(x≥ a∗1))(

�
(x≥ b2)−

�
(x≥ a∗2)),

and
C(x) := (

�
(x≥ a2)−

�
(x≥ a∗2))(

�
(x≥ b1)−

�
(x≥ a∗1)).

Assume thata1 = a∗1 +s1/τ,a2 = a∗2 +s2/τ,b1 = a∗1 + t1/τ,b2 = a∗2 + t2/τ. Whenτ tends to infinity,
we have

R

BdG=
R

CdG= 0. Moreover,
Z

(A+D)dG

=

[

�
(0 < s1, t1)

Z a∗1+min(s1,t1)/τ

a∗1
dG+

�
(0 > s1, t1)

Z a∗1

a∗1+max(s1,t1)/τ
dG

+
�
(0 < s2, t2)

Z a∗2+min(s2,t2)/τ

a∗2
dG+

�
(0 > s2, t2)

Z a∗2

a∗2+max(s2,t2)/τ
dG

]

= min(s1, t1)g(a∗1)
�
(0 < s1, t1)−max(s1, t1)g(a∗1)

�
(0 > s1, t1)

+min(s2, t2)g(a∗2)
�
(0 < s2, t2)−max(s2, t2)g(a∗2)

�
(0 > s2, t2). (27)

Let mbe the integer part of(K +1)/2. Now, we obtain

Eφ(X,Y,a∗ +s/τ)φ(X,Y,a∗ + t/τ)

= E

[

�(
X ∈ ∪m

i=1[a
∗
2i−1 +s2i−1/τ,a∗2i +s2i/τ)

)

− �(
X ∈ ∪m

i=1[a
∗
2i−1,a

∗
2i)
)

]

×
[

�(
X ∈ ∪m

i=1[a
∗
2i−1 + t2i−1/τ,a∗2i + t2i/τ)

)

− �(
X ∈ ∪m

i=1[a
∗
2i−1,a

∗
2i)
)

]

=
K

∑
k=1

E

[

�(
X ∈ [a∗k,a

∗
k +min(sk, tk))

)�
(0 < sk, tk)

−�(
X ∈ [a∗k +max(sk, tk),a

∗
k)
)�

(0 > sk, tk)

]

(28)

(for largeτ). Finally, by (27) and (28), the limit ofτEφ(X,Y,a∗ + s/τ)φ(X,Y,a∗ + t/τ) asτ → ∞
becomes

H(s, t) =
K

∑
k=1

[

min(sk, tk)g(a∗k)
�
(0 < sk, tk)

−max(sk, tk)g(a∗k)
�
(0 > sk, tk)

]

.

So, the first part of condition (v) is satisfied. As for the second part ofcondition (v), for anyε and
τ > 1/ε, andt ∈ R, we have

E

[

�2(ha∗+ t
τ
(X) 6= Y)

�
(
�
(ha∗+ t

r
(X) 6= Y) > τε)

]

= 0.

To show that Condition (vi) is satisfied, we note that for anya,b∈UK ,

E

[

∣

∣

�
(ha(X) 6= Y)− �

(hb(X) 6= Y)
∣

∣

]

≤
K

∑
k=1

E

[

�(
X ∈ [min(ak,bk),max(ak,bk))

)

]
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≤
K

∑
k=1

|ak−bk|g(ξk)

for someξk ∈ [min(ak,bk),max(ak,bk)]. Hence

E

(

∣

∣

�
(ha(X) 6= Y)− �

(hb(X) 6= Y)
∣

∣

)

= O(‖a−b‖),

for a andb neara∗.
Now we calculate an upper bound for the envelope function. Fix(x,y) ∈ X ×{−1,1}. To

maximize the functionφ(x,y,a) =
�
(ha(x) 6= y)− �

(ha∗(x) 6= y)|, note that fory = 1, this function
is increasing inak’s for evenk and decreasing inak’s for oddk. To simplify, assumeK is odd. Over
GR, φ(x,y,a) is maximized when

a1 = a∗1−R, a2 = a∗2 +R, a3 = a∗3−R, . . . , aK = a∗K −R. (29)

Fory = −1, it is maximized when

a1 = a∗1 +R, a2 = a∗2−R, a3 = a∗3 +R, . . . , aK = a∗K +R. (30)

Similarly,
�
(ha∗(x) 6= y)− �

(ha(x) 6= y) is maximized fory = 1, in case (30) and fory = −1, it is
maximized in case (29). So, the maximum of|φ(x,y,a))| is the maximum of

�
(

x∈ [a∗1−R,a∗1]∪ [a∗2,a
∗
2 +R]∪ . . .∪ [a∗K −R,a∗K ]

)

and
�
(

x∈ [a∗1,a
∗
1 +R]∪ [a∗2−R,a∗2]∪ . . .∪ [a∗K ,a∗K +R]

)

.

So the envelopeGR of GR satisfies
GR ≤ G′

R

where

G′
R =

�
(

x∈ ∪K
k=1[a

∗
k −R,a∗k +R]

)

.

Now, note that

E(G′2
R) ≤

K

∑
k=1

P(a∗k −R≤ X ≤ a∗k +R)

and
P(a∗k −R≤ X ≤ a∗k +R)

R
=

2Rg(a′k)

R
< R∗, ∃R∗ < ∞,

for somea′k ∈ (a∗k −R,a∗k + R), whenR is close to zero. We thus haveE(G2
R) = O(R). SinceG′

R
is bounded by one, it is also easy to see thatG′

R is uniformly square integrable forR close to zero.
Finally, sinceG is VC-subgraph, we conclude thatGR is uniformly manageable for the envelope
GR. �

Proof of Theorem 4
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Checking the Conditions (i)-(vii) of the Kim Pollard Theorem is very similar to theproof of
Theorem 1. We consider againφ(x,y,a) = P(ha(X) 6= Y)−P(ha∗(X) 6= Y). Condition (i) is clearly
true. Because the class{Ca : a ∈ R

r} is VC andL is continuous ata∗, we know by the same
argument as in the proof of Theorem 1 that ˆan → a∗ almost surely. So, Condition (ii) is met.
Condition (iii) is met becauseRr is open. The functionL is twice differentiable with positive
definite second derivative matrixV at a∗. So, (iv) is satisfied. To show that (v) is satisfied, we
consider the covariance structure ofφ(X,Y,a). Now,

Cov
(

φ(X,Y,a)],φ(X,Y, ã)
)

= I − II ,

where
I := E

[

φ(X,Y,a)φ(X,Y, ã)
]

and
II :=

[

L(a)−L(a∗)
][

L(ã)−L(a∗)
]

= O(τ−4),

for ‖a−a∗‖ = O(1/τ) and‖ã−a∗‖ = O(1/τ). As for I , writeC = Ca, C̃ = Cã, andC∗ = Ca∗ , then

I = P(Y = 1,X ∈Cc∩C̃c)−P(Y = 1,X ∈Cc∩Cc
0)

−P(Y = 1,X ∈Cc
0∩C̃c)+P(Y = 1,X ∈Cc

∗)

+P(Y = −1,X ∈C∩C̃)−P(Y = −1,X ∈C∩C∗)

−P(Y = −1,X ∈C0∩C̃)+P(Y = −1,X ∈C∗).

It is easy to see that

I =
Z

[

Z

v≥ka(u),v≥kã(u)
F0(u,v)−

Z

v≥ka(u),v≥ka∗ (u)
F0(u,v)

−
Z

v≥ka∗ (u),v≥kã(u)
F0(u,v)+

Z

v≥ka∗ (u)
F0(u,v)

+
Z

v<ka(u),v<kã(u)
(1−F0(u,v))−

Z

v<ka(u),v<ka∗ (u)
(1−F0(u,v))

−
Z

v<ka∗ (u),v<kã(u)
(1−F0(u,v))+

Z

v<ka∗ (u),
(1−F0(u,v))

]

g(u,v)dudv.

=
Z

ka(u)≤kã(u)≤ka∗ (u)

Z ka0(u)

kã(u)
g(u,v)dvdu+

Z

kã(u)≤ka(u)≤ka∗ (u)

Z ka∗ (u)

ka(u)
g(u,v)dvdu

+
Z

ka∗ (u)≤ka(u)≤kã(u)

Z ka(u)

ka∗ (u)
g(u,v)dvdu+

Z

ka∗ (u)≤kã(u)≤ka(u)

Z kã(u)

ka∗ (u)
g(u,v)dvdu.

For eachs, t ∈ R
r , and for sequences{ā(τ)} and{a(τ)} with

lim
τ→∞

ā(τ) = lim
τ→∞

a(τ) = a∗,

we have

lim
τ→∞

τ
Z

ka∗+s/τ(u)≤ka∗+t/τ(u)≤ka∗ (u)

Z ka∗ (u)

ka∗+t/τ(u)
g(u,v)dvdu
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= lim
τ→∞

τ
Z

ka∗+s/τ(u)≤ka∗+t/τ(u)≤ka∗ (u)

(

ka∗(u)−ka∗+t/τ(u)

)

g(u,kā(τ)(u))du

= lim
τ→∞

τ
Z

ka∗+s/τ(u)≤ka∗+t/τ(u)≤ka∗ (u)

(

−tT/τ
)

k′a(τ)(u)g(u,kā(τ)(u))du. (31)

Whenτ → ∞, the conditionska0+s/τ(u) ≤ ka∗+t/τ(u) andka∗+t/τ(u) ≤ ka∗(u) becomes(−sT +
tT)k′a∗(u) ≥ 0 and−tTk′a∗(u) ≥ 0, respectively. So the limit in (31) becomes

−
Z

0≥tTk′a∗ (u)≥sTk′a∗ (u)
tTk′a∗(u)g(u,ka∗(u))du.

Hence, have shown that

lim
τ→∞

τCov
(

φ(X,Y,a∗ +s/τ),φ(X,Y,a∗ + t/τ)
)

=
Z

αT(u, t,s)k′a∗(u)g(u,ka∗(u))du,

whereα is defined in (18). The second part of Condition (v) is true because the functionsφ(·,a) are
bounded. We conclude that Condition (v) is satisfied.

Conditions (vi) and (vii) are verified in the same way as in the proof of Theorem 1. �
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Abstract
The EM algorithm is widely used to develop iterative parameter estimation procedures for statisti-
cal models. In cases where these procedures strictly followthe EM formulation, the convergence
properties of the estimation procedures are well understood. In some instances there are practical
reasons to develop procedures that do not strictly fall within the EM framework. We study EM vari-
ants in which the E-step is not performed exactly, either to obtain improved rates of convergence,
or due to approximations needed to compute statistics undera model family over which E-steps
cannot be realized. Since these variants are not EM procedures, the standard (G)EM convergence
results do not apply to them. We present an information geometric framework for describing such
algorithms and analyzing their convergence properties. Weapply this framework to analyze the
convergence properties of incremental EM and variational EM. For incremental EM, we discuss
conditions under these algorithms converge in likelihood.For variational EM, we show how the
E-step approximation prevents convergence to local maximain likelihood.
Keywords: EM, variational EM, incremental EM, convergence, information geometry

1. Introduction

The expectation-maximization (EM) algorithm (Dempster et al., 1977) for maximumlikelihood es-
timation (Fisher, 1922; Wald, 1949; Lehmann, 1980) is one of the most widelyused parameter es-
timation procedures in statistical modeling. It is clear why the algorithm is attractive to researchers
building statistical models. The algorithm has an elegant formulation and when itis applied to
appropriate model architectures it yields parameter update procedures that are easy to derive and
straightforward to implement. These parameter estimates yield increasing likelihood over the train-
ing data, and the convergence behavior of this process is well understood.

EM also has acknowledged shortcomings. It can be slow to converge or even intractable for
some combinations of models and training data sets, and there are also model architectures for
which the straightforward application of EM yields update procedures thatdo not have closed form
expressions. As a result, many improvements and extensions of EM have been developed (e.g.,
Meilijson, 1989; Salakhutdinov et al., 2003). Incremental EM (Neal and Hinton, 1998) and vari-
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ational EM (Jordan et al., 1999) are specific examples we will address in the sequel. Such exten-
sions improve various aspects of EM, such as rate of convergence andcomputational tractability.
However, classical (generalized) EM convergence analyses such as those of Wu (1983) and Boyles
(1983) do not apply to many of these variants, and in many cases their convergence behavior is
poorly understood.

We propose the generalized alternating minimization (GAM) framework with the goal of un-
derstanding the convergence properties of a broad class of such EM variants. It is based on the
interpretation of EM as an alternating minimization procedure as described by Csisźar and Tusńady
(1984) and later by Byrne (1992) and Amari (1995). We will show that this alternating minimization
procedure can be extended in a manner analogous to the manner in which generalized EM (GEM)
extends the M step of EM. We then apply a convergence argument similar to that of Wu (1983)
to GAM algorithms, characterizing their convergence. This will show that GAM algorithms are a
further generalization of GEM algorithms which are no longer guaranteed toincrease likelihood at
every iteration, but nevertheless retain convergence to stationary pointsin likelihood under fairly
general conditions.

In practice, an iteration of EM consists of an E step which calculates sufficient statistics under
the posterior distribution of the most recent model estimate, followed by an M step which generates
a new model estimate from those statistics. In contrast, many variants redefinethe E step to use
sufficient statistics calculated under other distributions. For example, an approximation to this pos-
terior distribution is used in variational EM (Jordan et al., 1999), and statistics from the posterior
distributions of previous estimates are carried over in incremental EM (Nealand Hinton, 1998).
Existing (G)EM convergence results do not apply because the E step in such variants is modified
to use other “generating distributions” for computing the sufficient statistics.In order to describe
such variants where the generating distribution is not necessarily the posterior distribution under
the current model, GAM keeps track of both the current model and the distribution generating the
statistics used for computing the next model estimate. While EM algorithms generatesequences of
parameters, GAM algorithms generate sequences of parameters paired withthese generating distri-
butions.

We use the GAM framework to analyze the convergence behavior of incremental EM (Neal and
Hinton, 1998) and variational EM (Jordan et al., 1999). We show that incremental EM converges
to stationary points in likelihood under mild assumptions on the model family. The convergence be-
havior of variational EM is more complex. We do show how GAM convergence arguments can be
used to guarantee the convergence of a broad class of variational EM estimation procedures. How-
ever, unlike incremental EM, this does not guarantee convergence to stationary points in likelihood.
On the contrary, we show that fixed points under variational EM cannot be stationary points in like-
lihood, except in the degenerate case when the model family is forced to satisfy the constraints that
define the variational approximation itself.

In Section 2, we review how the EM algorithm results from alternating minimization of the
information divergence. First, the divergence from the current modelto a family of distributions
of a certain form is minimized to give a generating distribution. Then, the divergence from this
distribution to the model family is minimized to give the next model. We then show that extensions
of the E step such as those mentioned above involve choosing “generating distributions” that do not
minimize the divergence. In GAM, the E and the M steps need only reduce—and not minimize—the
divergence. In fact, the steps need not reduce the divergence individually, but may do so when ap-
plied in succession. As in EM, the modeling assumptions are represented in theparameterization of
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the models. Additionally, GAM explicitly represents the approximations used in estimation by im-
posing constraints on the generating distributions. In pursuing this formulation we were influenced
by the work of Neal and Hinton (1998) which uses generating distributionsto introduce several EM
variants. Our intention is to extend their analysis and provide convergenceresults for the algorithms
they and others propose.

Understanding the convergence behavior of these variants requires the analysis of joint se-
quences of both parameters and their corresponding generating distributions. In Section 3 we
present such an analysis. Our main convergence theorem gives conditions under which GAM pro-
cedures converge to EM fixed points. We draw on the previous work of Wu (1983) which uses
results from nonlinear programming to give conditions under which (G)EM procedures converge to
stationary points in likelihood, as well as the work of Csiszár and Tusńady (1984) which gives an
information geometric treatment of (G)EM procedures as generating joint sequences of generating
distributions and parameters. Csiszár and Tusńady (1984) also provide a convergence analysis that
complements the original results of Wu (1983). However neither of the approaches generalize to
EM extensions that extend the E step.

In Section 4 we apply our convergence results to incremental EM and show that although the
algorithm is non-monotonic in likelihood, it does converge to EM fixed points under very gen-
eral conditions. Note that Neal and Hinton (1998) have already shown that incremental EM gives
non-increasing divergence (non-decreasing free energy) and that local minima in divergence (local
maxima in free energy) are local maxima in likelihood. However, as we show in Section 3, this
is insufficient to conclude that incremental EM converges to local maxima in likelihood, and the
further analysis that is necessary is presented here. In Section 5 we apply a similar analysis to vari-
ational EM to show that convergence to EM fixed points occurs only in degenerate cases. We then
conclude with some discussion in Section 6.

2. EM and Generalized Alternating Minimization

We adopt the view of the EM algorithm as an alternating minimization procedure under the infor-
mation geometric framework as developed by Csiszár and Tusńady (Csisźar and Tusńady, 1984;
Csisźar, 1990). This framework allows an intuitive understanding of the algorithm, and is easily
extended to cover many EM variants of interest. In Section 2.1, we briefly review the EM algo-
rithm as derived within this framework to set the groundwork for the convergence analysis of later
sections. In particular we show how EM can be derived as the alternating minimization of the in-
formation divergence between the model family and a set of probability distributions constrained to
be concentrated on the training data. In Section 2.2, we then extend this alternating minimization
framework to generalized alternating minimization (GAM) algorithms, which are EMvariants that
allow extensions of the E step, in addition to the M step extensions allowed by GEMalgorithms. We
conclude our introduction to GAM algorithms by discussing how the GAM framework is applied to
algorithms of interest in Section 2.3.

2.1 EM as Alternating Minimization

The EM algorithm, when viewed as an alternating minimization procedure, minimizes aKullback-
Leibler type divergence between amodel family(or equivalently a parameter family) and adesired
familyof probability distributions (these are the previously mentioned generating distributions).
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Let the pair of random variablesX andY be related through a function mappingX toY. That is,
X is the complete random variable andY is the incomplete, or observed, random variable (Dempster
et al., 1977; McLachlan and Krishnan, 1997). Often,X is composed of an observed and a hidden
part, andY is composed of only the observed part. We adopt the “complete”/“incomplete”variable
terminology of Dempster et al. (1977) rather than the “observed”/“hidden” variable terminology
that is also commonly used. The model familyP is defined as the set of parameterized models
PX; θ obtained whenθ ranges over the parameter familyΘ. For simplicity, we make the following
assumptions

(Q1) The complete variableX is discrete-valued.

(Q2) pX(x; θ) > 0 for all θ ∈ Θ and for all valuesx taken on byX. That is, the support of the
models does not depend on the parameter.

(Q3) The p.d.f.pX(x; θ) is continuous inθ.

These technical restrictions can be relaxed to allow continuous variables (Gunawardana, 2001). The
difficulty faced in doing so is that continuous models assign zero probability tothe training samples;
Csisźar and Tusńady (1984) show how this problem can be circumvented by the introduction of an
appropriate family of dominating measures.

The desired familyD is defined as the set of all probability distributionsQX that assign proba-
bility one to the observation ˆy of Y:

D
4
= {QX : qY(ŷ) = 1}

whereQY is obtained by marginalizingQX. Thus, desired distributionsQX ∈ D have the property
that QX = QX|Y=ŷ. These probability distributions are “desired” in the sense that they exemplify
the maximum likelihood estimation criterion by assigning the highest possible probability to the
observed data ˆy. Note that multiple training examples are treated by considering the sequences
X = (X(1), · · · ,X(n)) andY = (Y(1), · · · ,Y(n)) together with suitable i.i.d. assumptions.

Since we will be concerned with estimating parameterized modelsPX; θ, we define the Kullback-
Leibler information divergence (Liese and Vajda, 1987) between a desired distributionQX ∈ D and
a parameterθ ∈ Θ through

D(QX||PX; θ) = ∑
x

qX(x) log
qX(x)

pX(x; θ)
. (1)

Note that the divergence is finite for all desired distributionsQX ∈ D and all parametersθ ∈ Θ
because of our simplifying assumption about the support of modelsPX; θ. This implies that the
divergence is continuous over all(QX,θ) ∈ D ×Θ.

Csisźar and Tusńady (1984) show that the EM algorithm can be derived as alternating mini-
mization under the information divergence, as follows (see Figure 1):

Forward Step: Find the desired distributionQ(t+1)
X that minimizes the divergence from the previ-

ous parameterθ(t):

Q(t+1)
X = argmin

QX∈D

D(QX||PX;θ(t)).
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Θ D

θ(t+1)

θ∗
Q∗

X

Q(t+1)
X

θ(t)

Figure 1: A schematic representation of an iteration of the alternating minimization procedure. The
square of the distance between a point inθ in Θ and a pointQX in D indicates the diver-
gence between them. The arrows indicate projection under this divergence.

Backward Step: Find the parameterθ(t+1) that minimizes the divergence toQ(t+1)
X :

θ(t+1) ∈ argmin
θ∈Θ

D(Q(t+1)
X ||PX;θ). (2)

In the language of Csiszár (1975),Q(t+1)
X is theI-projectionof PX; θ(t) ontoD and is uniquely found

asQ(t+1)
X = PX|Y=ŷ; θ(t) . The EM algorithm (Dempster et al., 1977; Wu, 1983) can be recovered easily

by substituting the I-projection into equation (2) and expanding the divergence using equation (1),
to obtain

θ(t+1) ∈ argmax
θ∈Θ

EPX|Y

[

logpX(X;θ) | ŷ; θ(t)
]

. (3)

Note that we use the notationθ(t+1) ∈argminD(Q(t+1)
X ||PX;θ) instead ofθ(t+1) = argminD(Q(t+1)

X ||PX;θ)
because the backward step may not be unique.

We distinguish between the forward and backward steps of the alternating minimization proce-
dure and the E and M steps of the EM procedure, as they are subtly different. The E step corresponds
to computing the (conditional) expected log likelihood (EM auxiliary function) under the result of
the forward projection. In practical implementations, the auxiliary function is not computed ex-
plicitly in the E step – the expected sufficient statistics are all that need be computed. Thus, the
E step corresponds to taking an expectation under the distribution found in the forward step. The
backward projection minimizes the divergence from the result of the forward projection, while the
M step maximizes the expected log likelihood computed in the E step (or alternatively, finds pa-
rameters such that the sufficient statistics of the resulting model match those computed in the E
step).

2.2 Generalized Alternating Minimization

There are many effective learning algorithms originally motivated by EM but which cannot be de-
scribed using the formulation described above, or equivalently, using theoriginal formulation of
Dempster et al. (1977), because they generalize either the forward or the backward step. Two exam-
ples of such procedures are incremental EM (Neal and Hinton, 1998) and variational EM (Jordan
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Θ D

θ(t)

θ(t+1)

Q(t+1)
X

θ∗
Q∗

X

Figure 2: A schematic representation of an E step extension allowed by GAM algorithms corre-
sponding to the M step extension of the GEM algorithm. In contrast to Figure 1,both the
E and M steps reduce the divergence rather than minimizing it.

et al., 1999). We are interested in extending the alternating minimization formulationto such vari-
ants by relaxing the requirement that the forward and backward steps perform exact minimization
over the families of distributions. These generalized estimation steps are described as follows.

Generalized Forward Step:Find any desired distributionQ(t+1)
X that reduces divergence from the

previous parameterθ(t):

Q(t+1)
X : D(Q(t+1)

X ||PX;θ(t)) ≤ D(Q(t)
X ||PX;θ(t)).

Generalized Backward Step:Find a parameterθ(t+1) that reduces the divergence toQ(t+1)
X :

θ(t+1) : D(Q(t+1)
X ||PX;θ(t+1)) ≤ D(Q(t+1)

X ||PX;θ(t)). (4)

Generalizations of the backward step correspond to the well known GEM algorithms. We allow
similar generalization of the forward step. We refer to algorithms that consistof alternating ap-
plication of such generalized forward and backward steps as generalized alternating minimization
(GAM) algorithms. Thus, GAM algorithms allow for the expectation in the EM auxiliary function
(equation (3)) to be found under the distributionQ(t+1)

X rather thanPX|Y=ŷ; θ(t) . Q(t+1)
X is not chosen

arbitrarily; it must be closer toPX; θ(t) than the desired distributionQ(t)
X used at the previous itera-

tion. The effect of GAM iterations is to generate sequences of paired distributions and parameters
(Q(t)

X ,θ(t)) that satisfy

D(Q(t+1)
X ||PX;θ(t+1)) ≤ D(Q(t)

X ||PX;θ(t)).

Thus, we examine generalizations that are composed of forward and backward steps that reduce
the divergence, as shown schematically in Figure 2.

2.3 Why GAM

As shown by Jordan et al. (1999), the variational EM algorithm is best described as an alternating
minimization between a set of parameterized models and a set of variational approximations to the
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posterior. This corresponds to extending the forward step to be a projection onto a subset ofD
which satisfies additional constraints (namely, belonging to a given parametric family), rather than
a projection ontoD itself.

In the following example, which follows Jordan et al. (1999), we describehow the mean field
approximation to the E step arises by further constraining the desired familyD.

Example 1 In the case of a Boltzmann machine, we have binary r.v.s X= S= (S1, · · · ,Sn) modeled
by the parametric family

pS(s;θ) =
e∑i< j θi j sisj+∑i θi0si

z(θ)

where z(θ) ensures PS;θ is properly normalized. Suppose the nodes1, · · · ,n of the Boltzmann
machine are partitioned into a set ofevidencenodes E and a set ofhiddennodes H, so that

Y = SE
4
= (Si)i∈E. Then, given observationŝsE of the evidence nodes, the forward step for EM

estimation of the Boltzmann machine is as follows.

Forward Step: Finding the desired distribution

Q(t+1)
X = argmin

QX∈D

D(QX||PX;θ(t))

gives

q(t+1)
SH ,SE

(sH ,sE) = 1ŝE(sE)pSH |SE
(sH |ŝE; θ(t))

where1ŝE(sE) = 1 when sE = ŝE and0 otherwise.
Note that a closed-form solution for the backward step is not generally available, but convergent

algorithms can be obtained using gradient descent or iterative proportional fitting (Darroch and
Ratcliff, 1972; Byrne, 1992). While the forward step can in principle be carried out exactly, this
computation quickly becomes intractable as the number of states increases.In particular, direct
computation of pSH |SE

(sH |ŝE; θ(t)) using Bayes rule involves a summation over all possible values
of the hidden nodes sH .

To get around this we define a subset ofD consisting of mean field approximations to QSH |SE
.

That is, we defineDMF to be those distributions inD whose p.d.f. has the parametric form

qS(s;µ) = 1ŝE(sE)∏
i∈H

µsi
i (1−µi)

1−si

︸ ︷︷ ︸

qSi ;µi

where each µi takes values in[0,1]. Thus the members ofDMF allow no dependencies between
nodes. It follows that a distribution QS∈ DMF is fully specified by its parameter µ and the training
observationŝsE.

The forward step can then be replaced by an approximate forward step, which is now a mini-
mization over the variational parameter µ for fixedθ(t):

Approximate Forward Step: An (approximate) desired distribution

Q(t+1)
X ∈ argmin

QX∈DMF

D(QX||PX;θ(t))
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with p.d.f.

q(t+1)
S (s) = 1ŝE(sE)∏

i∈H
qSi (si ;µ

(t+1)
i )

is chosen by finding a variational parameter

µ(t+1) ∈ argmin
µ

D(QS;µ||PS;θ(t)).

As described by Jordan et al. (1999), this can be done directly, withoutneeding to compute
PSH |SE;θ(t) , by solving the nonlinear system of mean field equations

µ(t+1)
i = σ

(

∑
j

θ(t)
i j µ(t+1)

j +θi0

)

,

whereσ(·) is the logistic function. Note that this simplification results from the careful craft-
ing of the parametric form imposed onDMF .

It can be seen that this variational EM variant is easily described in terms ofminimizing the
divergence between a constrained family of desired distributions and a model family. The approx-
imate forward step in this example is a generalization of the usual I-projection onto D, and the
resulting algorithm is therefore a GAM procedure.

3. GAM Convergence

In this section, we describe our main result – a theorem which characterizes the convergence of
GAM procedures. As the preceding example shows, some EM variants of interest are GAM pro-
cedures but not GEM procedures. This means that their convergencebehavior may be different
from what the familiar convergence properties of (G)EM would suggest.In particular, monotonic
increase in likelihood and convergence to local maxima (technically, stationarypoints) in likelihood
may no longer hold. This may happen even when the divergence is non-increasing, and when sta-
tionary points of the likelihood are fixed points of the GAM procedure. We begin with a simple toy
example where this can easily be seen.

Example 2 Let the complete random variable X= (X1,X2) represent the result of tossing a coin
twice. That is, X1,X2 are i.i.d., with Xi taking the value1 with probabilityθ and0 with probability
1− θ. Let the incomplete random variable Y encode whether the result seemed“fair” or not. It
takes on the value1 if X takes on the values(0,1) or (1,0), and takes on the value0 otherwise.
Suppose the observationŷ of Y isŷ = 0. In this simple case, the complete data likelihood is given
by

pX(x; θ) = θx1+x2(1−θ)2−(x1+x2)

and the incomplete data likelihood is given by

pY(ŷ; θ) = pY(0; θ)

= pX(0,0; θ)+ pX(1,1, ; θ)

= (1−θ)2 +θ2.
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Note that the incomplete likelihood is convex, with global maxima atθ = 0 andθ = 1, and a global
minimum atθ = 0.5. Desired distributions QX ∈ D take the form

qX(x) =







q11 if x = (1,1),

1−q11 if x = (0,0),

0 otherwise.

The divergence between a desired distribution and a model is given by

D(QX||PX;θ) = q11 log
q11

θ2 +(1−q11) log
1−q11

(1−θ)2 ,

which can be shown to be convex in q11 for fixedθ and convex inθ for fixed q11 (though not jointly
convex in q11 and θ). The EM algorithm for estimatingθ can be given by a forward step and a
backward step as follows:

Forward Step: As described above, the forward step is given by the I-projection of the model
PX; θ(t) ontoD. This is given by

q(t+1)
X|Y (x|ŷ) = pX|Y(x|ŷ; θ(t)),

q(t+1)
11 =

θ(t)2

(1−θ(t))2 +θ(t)2 .

Backward Step: Minimizing the divergence given above overθ for a fixed q11 gives

θ(t+1) = q(t+1)
11 .

Thus, the EM iteration for this problem is

θ(t+1) =
θ(t)2

(1−θ(t))2 +θ(t)2 .

It can be seen thatθ(0) < 0.5 gives convergence to the global maximum atθ = 0.0, whileθ(0) > 0.5
gives convergence to the global maximum atθ = 1.0. Starting at the global minimum atθ = 0.5
traps the algorithm there.

We now investigate how the additional constraint

0.4≤ q11 ≤ 0.6 (5)

on the desired distribution changes the forward step, and as a result, the convergence behavior of the
algorithm. Note that a forward step that projects onto this constrained set ofdesired distributions
will reduce the divergence between the desired distribution and the model, and will therefore be a
GAM procedure.

Computing the partial derivative

∂
∂q11

D(QX||PX;θ) = log

(

q11

1−q11

(
1−θ

θ

)2
)
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shows that it is positive for0.4≤ q11≤ 0.6 whenθ < 1

1+
√

3/2
≈ 0.4495. Therefore, the forward step

from anyθ < 1

1+
√

3/2
is given by q11 = 0.4.

Supposeθ(0) = 0.3. The unconstrained forward step would have given q(1)
11 = 0.155, which

would have violated the additional constraint(5). Under the additional constraint(5), the forward

step is given by q(1)
11 = 0.4. This in turn leads toθ(1) = 0.4, and the next forward step again gives

q(2)
11 = 0.4, showing that the algorithm has converged in a single step, albeit to a value that is not

a maximum (or stationary point) in likelihood. Also, recall that the incomplete data likelihood is
convex with a minimum atθ = 0.5. This means that initial points inθ < 0.4 will converge in one
step toθ = 0.4, thereby reducing likelihood. Indeed, the likelihood at the initial point (θ = 0.3) is
0.58and the likelihood at the subsequent (limit) points (θ = 0.4) is 0.52.

Thus, it is clear that the convergence behavior of GAM algorithms can differ extremely from that
of EM algorithms, and therefore needs to be carefully studied. In fact, non-monotonic convergence
behavior can also be seen in the case of incremental EM (Byrne and Gunawardana, 2000). In
the following, we will show that under smoothness conditions on the forwardand backward steps,
GAM procedures that strictly reduce divergence at every step, except possibly at stationary points
in likelihood, will yield solutions that are stationary points in likelihood.

3.1 GAM Convergence Theorem

The GAM convergence theorem is a direct application of the generalized convergence theorem
(GCT) of Zangwill (1969). We will define the forward and the backwardsteps to be point-to-set
maps, rather than functions, so that we may deal with extended E and M stepsthat do not yield
unique iterates. The GCT will require that these maps be closed. Closedness of a point-to-set map
is a smoothness property that is related to function continuity, and is defined as follows:

Definition 1 A point-to-set-map H:U →V is closed at u∈U if for any two sequences{u(t)}∞
t=0 ∈U

and{v(t)}∞
t=0 ∈V the conditions u(t) → u, v(t) → v, and v(t) ∈ H(u(t)), imply that v∈ H(u).

We now state Zangwill (1969)’s GCT:

Theorem 2 Let the point-to-set map H: Z → Z determine an algorithm that given a point z(0)

generates a sequence
{

z(t)
}∞

t=0 through the iteration z(t+1) ∈ H(z(t)). Also let a solution setΓ be
given. Suppose

(1) All points z(t) are in a compact set S⊆ Z.

(2) There is a continuous functionα : Z → R such that:

(a) if z 6∈ Γ, thenα(z′) < α(z) ∀z′ ∈ H(z),

(b) if z∈ Γ, thenα(z′) ≤ α(z) ∀z′ ∈ H(z).

(3) The map H is closed at z if z6∈ Γ.

Then the limit of any convergent subsequence of
{

z(t)
}∞

t=0 is in Γ. That is, accumulation points z∗ of

the sequence z(t) lie in Γ. Furthermore,α(z(t)) converges toα∗, andα(z∗) = α∗ for all accumulation
points z∗.
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We use this GCT to show our main convergence result for GAM procedures and then give a
corollary that describes how they converge in likelihood.

Theorem 3 (GAM Convergence Theorem)Let D be any family of distributions on X and letΘ
be the parameter family defined in Section 2. Let the solution setΓ be defined as

Γ =

{

(QX,θ) : QX ∈ argmin
Q′

X∈D

D(Q′
X||PX;θ) andθ ∈ argmin

ξ∈Θ
D(QX||PX;ξ)

}

.

Let FB: D ×Θ → D ×Θ be any point-to-set map such that all(Q′
X,θ′) ∈ FB(QX,θ) satisfy

(GAM) : D(Q′
X||PX;θ′) ≤ D(QX||PX;θ)

with equality only if

(EQ) : (QX,θ) ∈ Γ.

Let
{
(Q(t)

X ,θ(t))
}∞

t=0 ∈ D ×Θ be a sequence generated from a pair(Q(0)
X ,θ(0)) by the iterative ap-

plication of the point-to-set-map FB:

(Q(t+1)
X ,θ(t+1)) ∈ FB(Q(t)

X ,θ(t)).

Suppose thatΘ is compact, that there is a compact setD ′ ⊆ D such that

(1) FB(D ′×Θ)
4
= ∪(QX ,θ)∈D ′×θFB(QX,θ) ⊆ D ′×Θ,

(2) The point-to-set map FB is closed onD ′×Θ,

and that it can be shown that(Q(k)
X ,θ(k)) ∈ D ′×Θ for some iteration(k).

Then all accumulation points(Q∗
X,θ∗) of the sequence

{
(Q(t)

X ,θ(t))
}∞

t=0 lie in the solution setΓ
and D(Q∗

X||PX;θ∗) = D∗ and D(Q(t)
X ||PX;θ(t)) → D∗.

Proof We restrict the point-to-set mapFB to D ′×Θ, and then apply Zangwill’s GCT above with
S= Z = D ′×Θ, α = D, H = FB, and

{
z(t)
}∞

t=0 =
{
(Q(t)

X ,θ(t))
}∞

t=k. The compactness ofD ′×Θ
follows from the compactness ofD ′ andΘ individually. The continuity of the divergence in(QX,θ)
follows from the continuity of the divergenceD(QX||PX; θ) in QX andPX; θ and the continuity of
pX; θ in θ. The theorem then follows by direct application of Zangwill’s theorem.

Corollary 4 (Stationary Points in Likelihood) In Theorem 3, suppose thatD is the desired family
defined in Section 2. Then the following hold for accumulation points(Q∗

X,θ∗):

(1) pY(ŷ; θ∗) = e−D∗
and pY(ŷ; θ(t)) → e−D∗

.

(2) θ∗ is a stationary point of the incomplete data likelihood if it is in the interior ofΘ.
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Proof For (QX,θ) ∈ Γ, qX(x) = pX|Y(x|ŷ; θ) so thatD(QX||PX; θ) = − logq(ŷ;θ) yielding conclu-
sion (1).

Since(Q∗
X,θ∗) ∈ Γ, q∗X(x) = pX|Y(x|ŷ; θ∗), giving

θ∗ ∈ argmin
θ∈Θ

D(PX|Y=ŷ; θ∗ ||PX;θ).

The divergence in the right hand side can be expanded as

D(PX|Y=ŷ; θ∗ ||PX;θ) = − logpY(ŷ; θ)+D(PX|Y=ŷ; θ∗ ||PX|Y=ŷ; θ).

Taking the gradient of this expression and setting it to zero yields

−∇θ logpY(ŷ; θ)
∣
∣
θ=θ∗ +∇θD(PX|Y=ŷ; θ∗ ||PX|Y=ŷ; θ)

∣
∣
θ=θ∗ = 0.

SinceD(PX|Y=ŷ; θ∗ ||PX|Y=ŷ; θ) is minimized whenθ = θ∗, this gives us that

∇θ logpY(ŷ; θ)
∣
∣
θ=θ∗ = 0.

This proves conclusion (2).

The GAM convergence theorem and corollary provide conditions underwhich iterative estima-
tion procedures converge to stationary points in likelihood. However it is possible that these pro-
cedures are not monotonic in likelihood. This can be see from the Pythagorean equality (Csisźar,
1975) which provides the following relationship between allQX in the linear familyD and a model
PX; θ

D(QX||PX; θ) = D(QX||Q̃X)+D(Q̃X||PX; θ)

where the I-projectionQ̃X = argminQX∈DD(QX||PX; θ) is uniquely specified as̃QX|Y=ŷ = PX|Y=ŷ;θ.
From this we find the following relationship between the likelihood of the model estimates and the
overall divergence

D(QX||PX; θ) = D(QX || PX|Y=ŷ; θ)− logpY(ŷ; θ).

While GAM procedures guarantee thatD(Q(t+1)
X || PX;θ(t+1)) ≤ D(Q(t)

X || PX;θ(t)), we can conclude
only that

logpY(ŷ; θ(t+1)) ≥ logpY(ŷ; θ(t))+∆(t)

where∆(t) = D(Q(t+1)
X || PX|Y=ŷ; θ(t+1))−D(Q(t)

X || PX|Y=ŷ; θ(t)). Since, as shown in Figure 3, this
quantity can be negative, it is possible for GAM algorithms to be non-monotonic inlikelihood even
while converging to local maxima in likelihood.

We now discuss the construction of a GAM mappingFB that satisfies the requirements of the
GAM convergence theorem.

Proposition 5 Let the point-to-set map FB in Theorem 3 above be the composition B◦F of point-
to-set maps F: D ×Θ → D ×Θ and B: D ×Θ → D ×Θ. Suppose that the point-to-set maps F and
B are defined so that
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PX|Y=ŷ;θ(t)

PX|Y=ŷ;θ(t+1)

Θ

θ(t+1)
Q(t+1)

X

D

Q(t)
X

θ(t)

Figure 3: A schematic representation of how GAM procedures may be non-monotonic in likeli-
hood. The solid arrows show forward and backward steps that reduce the divergence
rather than minimizing it. The broken arrows show the forward steps that would have
been taken by the EM algorithm (i.e., the I-projections of the models). Divergences that
obey the Pythagorean equality are indicated by right triangles. In particular, the squared
lengths of the broken arrows represent negative log likelihood. Note that the divergence
between the desired distribution yielded by the forward step and the I-projection of the
model decreases, while the negative log likelihood increases.

(1) F and B are closed onD ′×Θ

(2) F(D ′×Θ) ⊆ D ′×Θ and B(D ′×Θ) ⊆ D ′×Θ

Suppose also that F is such that all(Q′
X,θ′) ∈ F(QX,θ) haveθ′ = θ and satisfy

(GAM.F) : D(Q′
X||PX;θ) ≤ D(QX||PX;θ)

with equality only if

(EQ.F) : QX = argmin
Q′′

X∈D

D(Q′′
X||PX;θ),

with QX being the unique minimizer. Suppose also that the point-to-set map B is suchthat all
(Q′

X,θ′) ∈ B(QX,θ) have Q′X = QX and satisfy

(GAM.B) : D(QX||PX;θ′) ≤ D(QX||PX;θ)

with equality only if

(EQ.B) : θ ∈ argmin
ξ∈Θ

D(QX||PX;ξ).

Then,

(1) the point-to-set map FB is closed onD ′×Θ

(2) FB(D ′×Θ) ⊆ D ′×Θ

and FB satisfies the GAM and EQ conditions of the GAM convergence theorem.
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Proof If the point-to-set mapsF : A→ B andG : B→C are closed onA andB respectively, their
compositionFG= G◦F is closed onA if B is compact. SinceF andB are closed onD ′×Θ, which
is compact, it follows thatFB is closed onD ′×Θ. ThatFB(D ′×Θ) ⊆ D ′×Θ follows directly
from the assumptions of the proposition.

The condition (GAM) follows directly from (GAM.F) and (GAM.B).
Conditions (EQ.F) and (EQ.B) together are not enough to ensure condition(EQ). Suppose

(RX,φ) ∈ FB(QX,θ). This implies that(RX,θ) ∈ F(QX,θ) and(RX,φ) ∈ B(RX,θ).
SupposeD(RX||PX;φ) = D(QX||PX;θ). Then (GAM.F) and (GAM.B) ensure thatD(RX||PX;φ) =

D(RX||PX;θ) = D(QX||PX;θ). Condition (EQ.F) gives

QX ∈ argmin
Q′

X∈D

D(Q′
X||PX;θ), (6)

RX ∈ argmin
Q′

X∈D

D(Q′
X||PX;θ),

and (EQ.B) gives

θ ∈ argmin
ξ∈Θ

D(RX||PX;ξ). (7)

While equation (6) is the first criterion for membership inΓ, equation (7) is not quite the second cri-
terion – the divergence minimized here isD(RX||PX;ξ) instead ofD(QX||PX;ξ). Since by assumption,
QX is the unique minimizer of the divergence,QX = RX, giving the required condition

θ ∈ argmin
ξ∈Θ

D(QX||PX;ξ).

This allows us to construct a mapFB through the composition of generalized forward and backward
stepsF andB. As seen in the proof it is insufficient for the forward and backward steps to satisfy the
GAM and EQ conditions separately. It is also necessary for the forwardstep to satisfy the equality
condition with a unique minimizer. For example, this condition is satisfied whenD is defined by
linear constraints as in Section 2 and the forward step is a simple projection, asin the case of
EM. Even when this condition is not satisfied, it may be possible to show condition (EQ) for the
composite mapFB. It is important to show thatFB strictly decreases the divergence for all points
outside the solution setΓ, since any points where this does not hold are accumulation points of the
algorithm.

As an instance of the GAM procedure, EM convergence is also explainedby these results as
shown in Appendix A. The conditions of Theorem 3 and Corollary 4 are quite general, and very
similar to those that must be satisfied to ensure GEM convergence (Wu, 1983). For example, in
both GEM and GAM, condition (Q2) must hold. Insisting on this would rule out GMMs with
parameter families that allow individual Gaussians to have a variance of zero. In practice, modeling
considerations usually prevent such situations.

4. Incremental EM as GAM

We now turn our attention to the incremental EM algorithm of Neal and Hinton (1998). This variant
of the EM algorithm divides the training data into partitions, and at each iterate,computes condi-
tional sufficient statistics on only one partition. The statistics conditioned on other partitions are
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saved from previous iterations. The statistics corresponding to the different partitions are pooled
before performing the M step at each iteration, but the separate per-partition statistics are retained
for use in future iterations. This algorithm has shown to give faster convergence in a number of
applications (Digalakis, 1997; Thiesson et al., 2001; Hsiao et al., 2004),even though it may be
non-monotonic in likelihood (Byrne and Gunawardana, 2000). Here, weuse our GAM results to
show that in most cases, the incremental updates do not sacrifice the convergence guarantees of
EM, despite the non-monotonicity in likelihood. Note that Neal and Hinton (1998)have shown that
incremental EM is monotonic in divergence, but not that it converges to EMfixed points.

The complete variableX = (X(1), · · · ,X(n)) is assumed to consist ofn independent compo-
nents so thatQX = ∏n

i=1QX(i) . The visible variableY = (Y(1), · · · ,Y(n)) has observed value ˆy =
(ŷ(1), · · · , ŷ(n)). The componentsY(i) are generated independently of each other, from their corre-
spondingX(i).

The EM auxiliary function for these variables is

Φ(θ|θ(t)) =
n

∑
i=1

EP
X(i) |Y(i)

[

logpX(i)(X(i);θ) | ŷ(i); θ(t)
]

=
n

∑
i=1

Φ(i)(θ|θ(t)).

Rather than maximize this auxiliary function, the incremental EM algorithm allows re-estimation to
be performed based on a single component ˆy(i) of the observation ˆy at any step. For example, in a
two-element problem the re-estimation procedure might proceed as follows :

θ(t+1) = argmaxθ∈Θ (Φ(1)(θ|θ(t−1))+Φ(2)(θ|θ(t))),

θ(t+2) = argmaxθ∈Θ (Φ(1)(θ|θ(t+1))+Φ(2)(θ|θ(t))),

θ(t+3) = argmaxθ∈Θ (Φ(1)(θ|θ(t+1))+Φ(2)(θ|θ(t+2))),

· · ·

This is not enough to ensure thatΦ(θ(t+3)|θ(t+1)) ≤ Φ(θ(t+1)|θ(t+1)) so the (G)EM convergence
results do not apply. However the algorithm can be formulated as an GAM procedure.

To show that incremental EM can be a GAM procedure, we describe it as anested series ofn
incremental forward steps andn exact backward steps. Iteration(t +1) of incremental EM proceeds
as follows. First, the iteration is initialized from the results of the previous iteration:

Q(t+1,0)
X = Q(t)

X and θ(t+1,0) = θ(t).

We then define a series ofn incremental forward stepsj = 1, · · · ,n

Q(t+1, j)
X(i) =

{

PX(i)|Y(i)=ŷ(i);θ(t+1, j−1) if j = i

Q(t+1, j−1)

X(i) otherwise,

and backward steps

θ(t+1, j) ∈ argmin
ξ∈Θ

D(Q(t+1, j)
X ||PX;ξ),
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so that finally we setQ(t+1)
X = Q(t+1,n)

X and θ(t+1) = θ(t+1,n).
We formally represent the( j)th incremental forward stepF( j) : D ×Θ → D ×Θ as the singleton

point-to-set map

F( j)(QX,θ) =

{

(Q′
X,θ) : Q′

X = PX( j)|Y( j)=ŷ( j); θ ∏
i6= j

QX(i)

}

.

It updates the( j)th component marginalQX( j) of QX but keeps the other component marginals fixed.
The backward step is represented by a closed point-to-set mapB : D ×Θ → D ×Θ satisfy-

ing conditions (GAM.B) and (EQ.B) of Proposition 5 withQ′
X = QX for (Q′

X,θ′) ∈ B(QX,θ), and
additionally satisfying:

B(QX,θ) is a singleton set∀(QX,θ) ∈ D ×Θ : (QX,θ) ∈ M(QX,θ). (8)

Thus, we are guaranteed thatθ′ = θ when D(QX||PX; θ′) = D(QX||PX; θ). This is equivalent to
requiring that the EM auxiliary function has a unique maximizer. We note that thisoften holds in
practice – for example, when the complete data distribution comes from a flat exponential family
(Efron, 1975; Amari, 1995) as is the case with mixtures of Gaussians, or with hidden Markov
models. Even when the complete data distribution is a curved exponential family,uniqueness can
still be possible.

Using these composite maps we can describe incremental EM as

(Q(t+1)
X ,θ(t+1)) ∈ FB(Q(t)

X ,θ(t))

where

FB = B◦F(n) ◦ · · · ◦B◦F(1) .

Proposition 6 As defined, incremental EM can be shown to converge to stationary pointsin likeli-
hood through application of the GAM convergence theorem.

Proof For any(QX,θ) ∈ D × Θ, we use the independence of the componentsX(i) andY(i) to
decompose the divergenceD(QX||PX;θ) into a sum of component divergences as follows

D(QX||PX; θ) = ∑
i

D(QX(i) ||PX(i); θ).

The( j)th backward step satisfies

D(Q(t+1, j)
X ||PX; θ(t+1, j)) ≤ D(Q(t+1, j)

X ||PX; θ(t+1, j−1))

= ∑
i:i6= j

D(Q(t+1, j−1)

X(i) ||PX; θ(t+1, j−1))+D(Q(t+1, j)
X( j) ||PX; θ(t+1, j−1))

where the right hand side has been expanded using the fact that the( j)th incremental forward step
leaves all but the( j)th component divergence unchanged. Since the( j)th incremental forward step
minimizes the( j)th component divergence,we get

D(Q(t+1, j)
X ||PX; θ(t+1, j)) ≤ ∑

i:i6= j

D(Q(t+1, j−1)

X(i) ||PX; θ(t+1, j−1))+D(Q(t+1, j−1)

X( j) ||PX; θ(t+1, j−1))

= D(Q(t+1, j−1)
X ||PX; θ(t+1, j−1)).
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Condition (GAM) of Theorem 3 is therefore satisfied.
Since the mapsF( j) andB are closed (Appendix A, Proposition 7),FB will be closed onD ′, if

the set is constructed so as to be compact (Appendix A). An appropriate definition of D ′ ⊆ D is
given in Appendix B along with a proof that incremental EM satisfies the equality condition (EQ)
of Theorem 3.

Thus, the GAM convergence theorem shows that incremental EM procedures converge to EM
fixed points when the EM auxiliary function is uniquely maximized. However, it isnot a GEM
procedure, and monotonicity in likelihood is no longer guaranteed. Indeed, as discussed in Byrne
and Gunawardana (2000) non-monotonicity in likelihood is observed in practice, and the conver-
gence behavior is very different from that of (G)EM procedures, despite the common fixed point
set. Thiesson et al. (2001) also show that the convergence behavior of incremental EM is different
from that of EM in practice.

5. Variational EM as GAM

Variational approximations have been popular in cases where computing theexact forward step
qX(x) = pX|Y(x|ŷ; θ) is intractable (Jordan et al., 1999). The idea is to restrict attention to a subfam-
ily DV of D such that members ofDV have a particular parametric form, which is chosen so that
projecting a modelPX; θ ontoDV is more tractable than projecting it ontoD. That is, a parametriza-
tion qX(x; λ) with λ ∈ Λ is fixed, and the familyDV is defined as

DV = {QX ∈ D : qX(x) = qX(x; λ) for someλ ∈ Λ}.

We assumeΛ ⊆ R
n is closed and bounded.

Then, the variational forward step is defined to be

FV(QX,θ) =

{

(Q′
X,θ) : Q′

X ∈ argmin
Q′′

X∈DV

D(Q′′
X||PX; θ)

}

.

By the Pythagorean equality of Csiszár (1975),

D(Q′′
X||PX; θ) = D(Q′′

X||PX|Y=ŷ; θ)+D(PX|Y=ŷ; θ||PX; θ)

= D(Q′′
X||PX|Y=ŷ; θ)− logpY(ŷ; θ).

Thus,Q′′
X ∈ DV that minimizes this divergence also best approximatesPX|Y=ŷ; θ, which is the desired

distribution that would be chosen by the usual EM procedure.
Notice that the divergence minimized at every iteration is no longer justD(PX|Y=ŷ; θ||PX; θ)

(which is the negative log likelihood) as in the EM algorithm, and that therefore, the likelihood
is not guaranteed to increase at every iteration. We now examine if the conditions of the GAM
convergence theorem of Section 3 still hold if the forward step of the EM procedure is replaced by
FV .

First, note thatDV is a natural choice forD ′ as long as the set of variational parametersΛ is com-
pact. That the mapFV is closed onDV ×Θ follows from Corollary 8 and Lemma 9 of Appendix A,
and the assumptions onΛ. The mapping satisfies conditions (GAM.F) and (EQ.F) because each
new desired distribution must minimize the divergence toDV . However, the uniqueness condition
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of Proposition 5 (EQ.F) cannot be guaranteed in general, and must be verified for each choice of
DV . If this condition holds, then the algorithm converges to minimizers of the divergence between
the family of variational approximations and the model family. For example, this happens when the
variational E step is uniquely defined.

We now analyze when these limit points(Q∗
X,θ∗) are stationary points in likelihood. Sinceθ∗

minimizes the divergenceD(Q∗||PX; θ) overθ,

∇θD(Q∗
X||PX;θ)

∣
∣
∣
θ=θ∗

= 0.

Expanding the divergence as before,

∇θD(Q∗
X||PX|Y=ŷ;θ)

∣
∣
∣
θ=θ∗

−∇θ logq(ŷ; θ)
∣
∣
∣
θ=θ∗

= 0

so that∇θ logq(ŷ; θ)|θ=θ∗ = 0 if and only if

∇θD(Q∗
X||PX|Y=ŷ;θ)

∣
∣
∣
θ=θ∗

= 0.

Therefore aθ∗ generated by a variational EM procedure is a stationary point in likelihood ifand
only if θ∗ is a parameter that locally minimizes the variational approximation error. This canhap-
pen in two ways. First, the variational error may have stationary points at stationary points in
likelihood. This can only be ensured if the stationary points are known before estimation. Second,
the variational error is independent ofθ. This is not possible if the variational family introduces
independence assumptions that ensure tractability. In particular, a model which agrees with the
variational approximation (e.g., a factorial HMM with parameter settings that decouple the state
sequences) will have lower variational error than one that does not. Weillustrate this in the case of
the mean field approximation for Boltzmann machines.

Example 3 In Example 1, choose a pair of hidden nodes i, j connected by a dependency link. It is
well-known (Byrne, 1992) that

∂
∂θi j

logpS|SE
(s|ŝE;θ) = sisj −EPS|SE

[SiSj |ŝE;θ] ,

∂
∂θk0

logpS|SE
(s|ŝE;θ) = sk−EPS|SE

[Sk|ŝE;θ] k = i, j,

which gives

∂
∂θi j

D(Q∗
S||PS|SE=ŝE;θ) = EQ∗

S
[SiSj ;µ]−EPS|SE

[SiSj |ŝE;θ]

= µ∗i µ∗j −EPS|SE
[SiSj |ŝE;θ] ,

∂
∂θk

D(Q∗
S||PS|SE=ŝE;θ) = µ∗k −EPS|SE

[Sk|ŝE;θ] k = i, j.
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If ∇θD(Q∗
S||PS|SE=ŝE;θ)

∣
∣
∣
θ=θ∗

is to be zero,

EPS|SE
[SiSj |ŝE;θ∗] = EPS|SE

[Si |ŝE;θ∗]EPS|SE
[Sj |ŝE;θ∗]

must hold. This can only occur ifθ∗
i j = 0, when the model itself satisfies the constraints of the mean

field approximation. Thus, under this variational approximation, only Boltzmann machines where
the hidden units do not depend on each other can give stationary points in likelihood.

To summarize, the GAM convergence theorem applies to variational EM in cases when the
variational E step is uniquely defined. When this is so, the resulting model is ata local minimum of
the divergence between the model family and the family of variational approximations. However,
except in degenerate cases, this model cannot be at a stationary point inlikelihood. These degenerate
cases occur when the model satisfies the simplifying conditions that define thefamily of variational
approximations. In this case, the variational EM algorithm is essentially performing standard EM
over a restricted model family defined so as to be consistent with the variational approximations.

6. Conclusion

GAM iterative estimation procedures are a class of EM extensions whose E step can be varied
in a manner analogous to the relaxation of the M step that occurs in GEM algorithms. We have
provided conditions under which these procedures can be shown to converge to stationary points in
likelihood. The conditions specify allowable E step variations that are in factanalogous to the M
step variations that are allowed by GEM procedures. The convergenceanalysis is analogous to that
presented by Wu (1983), but takes advantage of the information geometricframework of Csisźar
and Tusńady (1984) to explicitly represent distributions in computing sufficient statistics.

We have analyzed the convergence behavior of two well known EM extensions, namely incre-
mental EM and variational EM, as GAM procedures. Our GAM convergence analysis shows that
incremental EM procedures converge to stationary points in likelihood, even though incremental
EM is in general neither a GEM procedure nor monotonic in likelihood. Variational EM algorithms
with unique E steps satisfy the conditions of the GAM convergence theorem but do not satisfy its
corollary. Thus the GAM convergence theorem shows that such algorithms converge to solutions
that minimize divergence, but these are not necessarily stationary points inlikelihood. We then
present an information geometric argument which shows that variational EMcan only converge to
stationary points in likelihood in degenerate cases.

Appendix A. EM Satisfies the GAM Convergence Theorem

Recall that the forward and backward stepsF,B : D ×Θ → D ×Θ of the EM algorithm are given
by

F(QX,θ) =

{

(Q′
X,θ) : Q′

X ∈ argmin
Q′′

X∈D

D(Q′′
X||PX;θ)

}

and

B(QX,θ) =

{

(QX,φ) : φ ∈ argmin
ξ∈Θ

D(QX||PX;ξ)

}

.
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That the conditions (GAM.F), (GAM.B), (EQ.F), and (EQ.B) hold is obviousby construction.
We will first show a compactD ′ that guarantees thatF(D ′×θ) ⊆ D ′×θ andB(D ′×θ) ⊆ D ′×θ.
We will then show thatF andB are closed onD ′×Θ. Proposition 5 then implies that the composite
mapFB satisfies the conditions of the GAM convergence theorem (Theorem 3).

Restricting the desired family to a compact set We defineD ′ as

D ′ =
{

QX ∈ D : qX|Y(x|ŷ) = pX|Y(x|ŷ; θ) for someθ ∈ Θ
}

with D defined as in Section 2. Note that this forces everyQX ∈ D ′ to be the continuous mapping
of someθ ∈ Θ. Therefore,D ′ is the continuous mapping of the compact setΘ, and is therefore
compact.

By construction ofD ′, it is guaranteed thatQX generated by a forward step will lie inD ′. Thus,
F(D ′×Θ) ⊆ D ′×Θ. By definition ofB(·), B(D ′×Θ) ⊆ D ′×Θ.

Closedness of the forward and backward steps The following proposition and corollary show
that the minimization of a continuous function forms a closed point-to-set map. This implies that
projection under the divergence forms a closed point-to-set-map, so thatthe (ungeneralized) forward
and backward steps of the EM algorithm are in fact closed point-to-set maps.

Proposition 7 Given a real-valued continuous function f on A×B, define the point-to-set map
F : A→ B by

F(a) = argmin
b′∈B

f (a,b′),

= {b : f (a,b) ≤ f (a,b′) for ∀b′ ∈ B}.

Then, the point-to-set map F is closed at a if F(a) is nonempty.

Proof Let {a(t)}∞
t=0 and{b(t)}∞

t=0 be sequences inA andB respectively, such that

a(t) → a,

b(t) → b,

and suppose

b(t) ∈ F
(

a(t)
)

.

That is,

b(t) ∈ argmin
b′∈B

f (a(t),b′).

The mapF is closed ata∈ A if this implies thatb∈ F(a) – that is, thatb∈ argmin
b′∈B

f (a,b′).

To prove the proposition by contradiction, supposeb 6∈ argmin
b′∈B

f (a,b′). By assumptionF(a) is

nonempty. Therefore, there existsb̂∈ argmin
b′∈B

f (a,b′). Chooseε > 0 such that

f (a,b) > f (a, b̂)+2ε. (9)

2068



CONVERGENCE OFGAM PROCEDURES

By continuity of f (·, ·) and f -monotonicity of(a(t),b(t)), ∃K1 such that

f (a(t),b(t)) > f (a,b)− ε, ∀t > K1,

so that by equation (9),

f (a(t),b(t)) > f (a, b̂)+ ε, ∀t > K1.

By continuity of f (·, b̂) and f -monotonicity of(a(t),b(t)), ∃K2 such that

f (a, b̂)+ ε > f (a(t), b̂), ∀t > K2.

Combining these two bounds gives∃t > K1,K2 such that

f (a(t),b(t)) > f (a(t), b̂)

which is a contradiction since by assumption,b(t) ∈ argmin
b′∈B

f (a(t),b′), and therefore,

b∈ argmin
b′∈B

f (a,b′),

b∈ F(a).

Corollary 8 The point-to-set map F: A→ B of Proposition 7 is closed on A if the set B is closed.

The following lemma shows that the Cartesian product of two closed point-to-set-maps is itself
closed.

Lemma 9 Suppose F: A→ B and G: A→C are closed point-to-set-maps. Then the product point-
to-set-map H: A→ B×C defined by

H(a) = F(a)×G(a)

is closed.

This follows by direct application of the definition of closedness of point-to-set maps.
Proposition 7 and the existence of the I-projection shows that the mapping fromΘ to D defined

by

QX ∈ argmin
Q′

X∈D

D(Q′
X||PX;θ)

is closed. This result together with Lemma 9 then show that the forward stepF of the EM algorithm
shown above is closed. Similarly, it can be shown using Corollary 8 and Lemma9 that the backward
stepB is closed.
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Appendix B. Incremental EM: (EQ) and D ′

In this appendix, we show that incremental EM satisfies condition EQ of the GAM convergence the-
orem, and show a compact restriction of the desired family that can be used toanalyze convergence
of incrmental EM.

B.1 Incremental EM Satisfies Condition (EQ)

(Q′
X,θ′) ∈ FB(QX,θ) implies a sequence of incremental steps

(R(0)
X ,φ(0)), · · · ,(R(n)

X ,φ(n))

such that

(R(0)
X ,φ(0)) = (QX,θ),

(R( j)
X ,φ( j)) ∈ F( j)B(R( j−1)

X ,φ( j−1)),

and

(Q′
X,θ′) = (R(n)

X ,φ(n)).

WhenD(Q′
X||PX;θ′) = D(QX||PX;θ), the GAM inequality (already shown) gives that the diver-

gence is unchanged at every incremental step:

D(R( j)
X ||PX;φ( j)) = D(R( j−1)

X ||PX;φ( j−1))

for j = 1, · · · ,n. In fact, by conditions (GAM.F) and (GAM.B), the divergence is unchanged at each
incremental forward stepF( j) and the backward stepB:

D(R( j)
X ||PX;φ( j−1)) = D(R( j−1)

X ||PX;φ( j−1)) (10)

and

D(R( j)
X ||PX;φ( j)) = D(R( j)

X ||PX;φ( j−1)) (11)

for j = 1, · · · ,n. We will now show thatQX(i) = PX(i)|Y(i)=ŷ(i); φ(i−1) for i = 1, · · · ,n and thatφ( j) = θ
for j = 1, · · · ,n, which will then imply that condition (EQ) holds.

To showQX(i) = PX(i)|Y(i)=ŷ(i); φ(i−1) we decompose equation (10) as

∑
i 6= j

D(R( j)
X(i) ||PX;φ( j−1))+D(R( j)

X( j) ||PX;φ( j−1)) =

∑
i6= j

D(R( j−1)

X(i) ||PX;φ( j−1))+D(R( j−1)

X( j) ||PX;φ( j−1)).

SinceR( j)
X(i) = R( j−1)

X(i) for all i 6= j at any incremental step( j), this reduces to

D(R( j)
X( j) ||PX;φ( j−1)) = D(R( j−1)

X( j) ||PX;φ( j−1))
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for j = 1, · · · ,n. SinceR( j)
X( j) = PX( j)|Y( j)=ŷ( j); φ( j−1) uniquely minimizes the component divergence

D(RX( j) ||PX;φ( j−1)) over allRX( j) , this means that

R( j−1)

X( j) = R( j)
X( j) = PX( j)|Y( j)=ŷ( j); φ( j−1) .

Thus, for any component(i), substituting inj = i and recalling that the firsti − 1 incremental E
steps leave the component marginalRX(i) unchanged, we get

QX(i) = R(0)

X(i) = · · · = R(i)
X(i) = PX(i)|Y(i)=ŷ(i); φ(i−1) . (12)

We now show thatφ( j) = θ for j = 1, · · · ,n. Since equation (11) tells us that the divergence

is unchanged at any backward step( j) , both PX;φ( j) and PX;φ( j−1) must minimizeD(R( j)
X ||·). By

assumption (8), the M-step is uniquely determined, so we must haveφ( j) = φ( j−1). We therefore
have the desired result

θ = φ(0) = · · · = φ(n) = θ′.

Substituting this into equation (12) gives

QX(i) = R(0)

X(i) = · · · = R(i)
X(i) = PX(i)|Y(i)=ŷ(i); θ .

Since this applies for alli = 1, · · · ,n, we have

R( j)
X = PX|Y=ŷ; θ, ∀ j = 0, · · · ,n.

In particular,QX = R(0)
X = PX|Y=ŷ; θ, which means that

QX = argmin
Q′′

X∈D

D(Q′′
X||PX;θ).

SinceR(1)
X = QX, we use equation (11) withj = 1 and condition (EQ.B) on the backward map to get

θ ∈ argmin
ξ∈Θ

D(QX||PX;ξ).

This shows that condition (EQ) holds.

B.2 Definition of a CompactD ′

To find a suitable restrictionD ′ for any choice ofQ(0)
X ∈ D, we first define the following sets of

measures on the componentsX(i):

D
(i)
INC =

{

QX(i) : QX(i) = PX(i)|Y(i)=ŷ(i); θ for someθ ∈ Θ
}

∪
{

Q(0)

X(i)

}

,

and note that the continuity ofPX|Y; θ (assumed), and the compactness ofΘ (assumed) give us

compactness ofD(i)
INC. We then define our restrictionD ′

INC of D by

D ′
INC =

{

QX : QX =
n

∏
i=1

QX(i) for some(QX(1) , · · · ,QX(n)) ∈ D
(1)
INC×·· ·×D

(n)
INC

}

.
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To show compactness ofD ′
INC, suppose

{

Q(t)
X

}∞

t=0
is a sequence inD ′

INC. From the definition

of D ′
INC, this then implies that there aren sequences

{

Q(t)
X(i)

}∞

t=0
, each in the correspondingD(i)

INC,

such thatQ(t)
X = ∏n

i=1Q(t)
X(i) . The compactness ofD(1)

INC implies the existence of an infinite subset

K (1) of the integers such that the subsequence
{

Q(t)
X(1)

}

t∈K (1)
converges to someQ∗

X(1) ∈ D
(1)
INC.

Similarly, since the infinite sequence
{

Q(t)
X(i)

}

t∈K (i−1)
is contained in the compact setD

(i)
INC, there

exists an infinite subsetK (i) of K (i−1) such that the subsequence
{

Q(t)
X(i)

}

t∈K (i)
converges to some

Q∗
X(i) ∈ D

(i)
INC. Therefore, the subsequence

{

Q(t)
X

}

t∈K (n)
converges to∏n

i=1Q∗
X(i) ∈ D ′

INC, showing

thatD ′
INC is compact.
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Abstract

We introduce two new functionals, the constrained covariance and the kernel mutual information,
to measure the degree of independence of random variables. These quantities are both based on
the covariance between functions of the random variables inreproducing kernel Hilbert spaces
(RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the
random variables are pairwise independent. We also show that the kernel mutual information is an
upper bound near independence on the Parzen window estimateof the mutual information. Anal-
ogous results apply for two correlation-based dependence functionals introduced earlier: we show
the kernel canonical correlation and the kernel generalised variance to be independence measures
for universal kernels, and prove the latter to be an upper bound on the mutual information near
independence. The performance of the kernel dependence functionals in measuring independence
is verified in the context of independent component analysis.
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1. Introduction

Measures to determine the dependence or independence of random variables are well established
in statistical analysis. For instance, one well known measure of statistical dependence between two
random variables is themutual information(Cover and Thomas, 1991), which for random vectors
x,y is zero if and only if the random vectors are independent. This may also be interpreted as the
KL divergenceDKL

(
px,y||pxpy

)
between the joint density and the product of the marginal densities;

the latter quantity generalises readily to distributions of more than two random variables (there exist
other methods for independence measurement: see for instance Ingster,1989).

There has recently been considerable interest in using criteria based onfunctions in reproduc-
ing kernel Hilbert spaces to measure dependence, notably in the contextof independent component
analysis.1 This was first accomplished by Bach and Jordan (2002a), who introduced kernel de-
pendence functionals that significantly outperformed alternative approaches, including for source
distributions that are difficult for standard ICA methods to deal with. In the present study, we build
on this work with the introduction of two novel kernel-based independencemeasures. The first,
which we call the constrained covariance (COCO), is simply the spectral norm of the covariance
operator between reproducing kernel Hilbert spaces. We prove COCO to be zero if and only if
the random variables being tested are independent, as long as the RKHSs used to compute it are
universal. The second functional, called the kernel mutual information (KMI), is a more sophisti-
cated measure of dependence, being a function of the entire spectrum ofthe covariance operator.
We show that the KMI is an upper bound near independence on a Parzenwindow estimate of the
mutual information, which becomes tight (i.e., zero) when the random variables are independent,
again assuming universal RKHSs. Note that Gretton et al. (2003a,b) attempted to show a link with
the Parzen window estimate, although this earlier proof is wrong - the readermay compare Section
3 in the present document with the corresponding section of the original technical report, since the
differences are fairly obvious.2

The constrained covariance has substantial precedent in the dependence testing literature. In-
deed, Rényi (1959) suggested using the functional covariance or correlation to measure the de-
pendence of random variables (implementation details depend on the nature of the function spaces
chosen: the use of RKHSs is a more recent innovation). Thus, rather than using the covariance, we
may consider a kernelised canonical correlation (KCC) (Bach and Jordan, 2002a; Leurgans et al.,
1993), which is a regularised estimate of the spectral norm of thecorrelation operator between
reproducing kernel Hilbert spaces. It follows from the properties ofCOCO that the KCC is zero
at independence for universal kernels, since the correlation differs from the covariance only in its
normalisation: at independence, where both the KCC and COCO are zero,this normalisation is
immaterial. The introduction of a regulariser requires a new parameter that must be tuned, however,
which was not needed for COCO or the KMI.

Another kernel method for dependence measurement, the kernel generalised variance (KGV)
(Bach and Jordan, 2002a), extends the KCC by incorporating the entirespectrum of its associated

1. The problem of instantaneous independent component analysis involves the recovery of linearly mixed, i.i.d. sources,
in the absence of information about the source distributions beyond their mutual independence (Hyvärinen et al.,
2001).

2. Briefly, we now use Lemma 27 as a basis for our proof, which appliesto every singular value of a matrix product;
our earlier proof relied on Theorem 4.2.2 of Gretton et al. (2003a), which implies a result only for the largest singular
value, and is therefore insufficient. On the other hand, we believe that theproof given by Gretton (2003) in Chapter
9 is correct, but the approach is a bit clumsy, and much longer than it needs to be.
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Covariance Correlation

Max.
singular
value

COCO (Gretton
et al., 2005b)

KCC (Bach and
Jordan, 2002a)

MI
bound KMI

KGV (Bach and
Jordan, 2002a)

Table 1: Table of kernel dependence functionals. Columns show whether the functional is covari-
ance or correlation based, and rows indicate whether the dependence measure is the max-
imum singular value of the covariance/correlation operator, or a bound onthe mutual in-
formation.

correlation operator: in this respect, the KGV and KMI are analogous (see Table 1). Indeed, we
prove here that under certain reasonable and easily enforced conditions, the KGV is an upper bound
on the KMI (and hence on the mutual information near independence), which also becomes tight at
independence. A relation between the KGV and the mutual information is also proposed by Bach
and Jordan (2002a), who rely on a limiting argument in which the RKHS kernel size approaches
zero (no Parzen window estimate is invoked): our discussion of this proofis given in Appendix B.2.

We should warn the reader that results presented in this study have a conceptual emphasis: we
attempt to build on the work of Bach and Jordan (2002a) by on one hand exploring the mechanism
by which kernel covariance operator-based functionals measure independence (including a charac-
terisation of all kernels that induce independence measures), and on theother hand demonstrating
the link between kernel dependence functionals and the mutual information.That said, we observe
differences in practice when the various kernel methods are applied in ICA: the KMI generally out-
performs the KGV for many sources/large sample sizes, whereas the KGV gives best performance
for small sample sizes. The choice of regulariser for the KGV (and KCC) isalso crucial, since a
badly chosen regularisation is severely detrimental to performance when outlier noise is present.
The KMI and COCO are robust to outliers, and yield experimental performance equivalent to the
KGV and KCC with optimal regulariser choice, but without any tuning required.

The COCO and KCC dependence functionals for the 2-variable case aredescribed in Section
2, and it is shown that these measure independence when the associated kernels are universal. The
main results in this section are Definition 2, which presents both the population COCO and its em-
pirical counterpart, and Theorem 6, which shows that COCO is an independence measure. Section
3 contains derivations of the kernel-based upper bounds on the mutual information, and proofs that
these latter quantities likewise measure independence. In particular, the kernel mutual informa-
tion is introduced in Definition 14, its use as an independence measure is justified by Theorem 15,
and its relation to the mutual information is provided in Theorem 16. A generalisation to more
than two variables, which permits the measurement of pairwise independence, is also presented.
Section 4 addresses the application of kernel dependence measures to independent component anal-
ysis, including a method for reducing computational cost and a gradient descent technique (these
being adapted straightforwardly from Bach and Jordan, 2002a). Finally, Section 5 describes our
experiments: these demonstrate that the performance of the KMI and COCO,when used in ICA,
is competitive with the KGV and KCC, respectively. The kernel methods also compare favourably
with both standard and recent specialised ICA algorithms (RADICAL, CFICA, Fast ICA, Jade, and
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Acronym Description

COCO Constrained covariance
ICA Independent component analysis
KCC Kernel canonical correlation
KGV Kernel generalised variance
KMI Kernel mutual information

RKHS Reproducing kernel Hilbert space

Table 2: Table of acronyms

Infomax), and outperform these methods when demixing music sources (where the sample size is
large). Most interestingly, when the KGV is made to approach the KMI by an appropriate choice
of regularisation, its resistance to outlier noise is improved — moreover, kernel methods perform
substantially better than the other algorithms tested when outliers are present.3 We list our most
commonly used acronyms in Table 2.

2. Constrained Covariance, Kernel Canonical Correlation

In this section, we focus on the formulation of measures of independence for two random variables.
This reasoning uses well established principles, going back to Rényi (1959), who gave a list of
desirable properties for a measure of statistical dependenceQ(Px,y) between random variablesx,y
with distributionPx,y. These include

1. Q(Px,y) is well defined,

2. 0≤ Q(Px,y) ≤ 1,

3. Q(Px,y) = 0 if and only ifx,y independent,

4. Q(Px,y) = 1 if and only ify = f (x) or x = g(y), wheref andg are Borel measurable functions.

Rényi (1959) shows that one measure satisfying these constraints is

Q(Px,y) = sup
f ,g

corr( f (x),g(y)) ,

where f (x),g(y) must have finite positive variance, andf ,g are Borel measurable. This is similar
to the kernel canonical correlation (KCC) introduced by Bach and Jordan (2002a), although we
shall see that the latter is more restrictive in its choice off ,g. We propose a different measure, the
constrained covariance(COCO), which omits the fourth property and the upper bound in the second
property; in the context of independence measurement, however, the first and third properties are
adequate.4

3. The performance reported here improves on that obtained by Bachand Jordan (2002a); Learned-Miller and Fisher
III (2003) due to better tuning of the KGV and KCC regularisation.

4. The fourth property is required forQ to identify deterministic dependence, which anindependence measure should
not be concerned with.
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We begin in Section 2.1 by defining RKHSs and covariance operators between them. In Section
2.2, we introduce the constrained covariance, and we demonstrate in Section 2.3 that this quantity
is a measure of independence when computed in universal RKHSs (it follows that the KCC also
requires a universal RKHS, as do all independence criteria that are based on the covariance in
RKHSs). Finally, we describe the canonical correlation in Section 2.4, andits RKHS-based variant.

2.1 Covariance in Function Spaces

In this section, we provide the functional analytic background necessary in describing covariance
operators between RKHSs. Our presentation follows and extends the work of Zwald et al. (2004);
Hein and Bousquet (2004), who deal with covariance operators froma space to itself rather than
from one space to another, and Fukumizu et al. (2004), who use covariance operators as a means of
defining conditional covariance operators. Functional covariance operators were investigated earlier
by Baker (1973), who characterises these operators for general Hilbert spaces.

Consider a Hilbert spaceF of functions fromX to R, whereX is a separable metric space. The
Hilbert spaceF is an RKHS if at eachx ∈ X , the point evaluation operatorδx : F → R, which
maps f ∈ F to f (x) ∈ R, is a bounded linear functional. To each pointx ∈ X , there corresponds
an elementx := φ(x) ∈ F (we call φ the feature map) such that〈φ(x),φ(x′)〉F = k(x,x′), where
k : X ×X → R is a unique positive definite kernel. We also define a second RKHSG with respect
to the separable metric spaceY , with feature mapψ and kernel〈ψ(y),ψ(y′)〉G = l(y,y′).

Let Px,y(x,y) be a joint measure5 on (X ×Y ,Γ×Λ) (hereΓ andΛ are the Borelσ-algebras
on X andY , respectively, as required in Theorem 4 below), with associated marginal measuresPx

andPy and random variablesx andy. Then following Baker (1973); Fukumizu et al. (2004), the
covariance operatorCxy : G → F is defined6 such that for allf ∈ F andg∈ G ,

〈 f ,Cxyg〉F = Ex,y ([ f (x)−Ex( f (x))] [g(y)−Ey(g(y))]) .

In practice, we do not deal with the measurePx,y itself, but instead observe samples drawn indepen-
dently according to it. We write an i.i.d. sample of sizem from Px,y aszzz= {(x1,y1), . . . ,(xm,ym)},
and likewisexxx := {x1, . . . ,xm} andyyy := {y1, . . .ym}. Finally, we define the Gram matricesK andL
of inner products inF andG , respectively, between the mapped observations above: hereK has
(i. j)th entryk(xi ,x j) andL has(i, j)th entryl(yi ,y j). The Gram matrices for the variables centred
in their respective feature spaces are shown by Schölkopf et al. (1998) to be

K̃ := HKH , L̃ := HLH ,

where

H = I − 1
m

111m111>m, (1)

and 111m is anm×1 vector of ones.

5. We do not require this to have a density with respect to a reference measuredx×dy in this section. Note that we will
need a density in Section 3, however.

6. Our operator (and that of Fukumizu et al., 2004) differs from Baker’s in that Baker defines all measures directly on
the function spaces.
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2.2 The Constrained Covariance

In this section, we define the constrained covariance (COCO), and describe the properties of the
kernelised version. The covariance betweenx andy is defined as follows.

Definition 1 (Covariance) The covariance of two random variablesx,y is given as

cov(x,y) := Ex,y[xy]−Ex[x]Ey[y].

We next define the constrained covariance.

Definition 2 (Constrained Covariance (COCO)) Given function classesF ,G and a probability
measurePx,y, we define theconstrained covarianceas

COCO(Px,y;F ,G) := sup
f∈F ,g∈G

[cov( f (x),g(y))] . (2)

If F andG are unit balls in their respective vector spaces, then this is just the norm of the covariance
operator: see Mourier (1953). Given m independent observations zzz := ((x1,y1), . . . ,(xm,ym)) ⊂
(X ×Y )m, the empirical estimate of COCO is defined as

COCO(zzz;F ,G) := sup
f∈F ,g∈G

[
1
m

m

∑
i=1

f (xi)g(yi)−
1

m2

m

∑
i=1

f (xi)
m

∑
j=1

g(y j)

]
.

WhenF andG are RKHSs, withF andG their respective unit balls, then COCO(Px,y;F,G) is
guaranteed to exist as long as the kernelsk andl are bounded, since the covariance operator is then
Hilbert-Schmidt (as shown by Gretton et al., 2005a). The empirical estimate COCO(zzz;F,G) is also
simplified whenF andG are unit balls in RKHSs, since the representer theorem (Schölkopf and
Smola, 2002) holds: this states that a solution of an optimisation problem, dependent only on the
function evaluations on a set of observations and on RKHS norms, lies in thespan of the kernel
functions evaluated on the observations. This leads to the following lemma:

Lemma 3 (Value ofCOCO(zzz;F,G)) Denote byF andG RKHSs on the domainsX andY respec-
tively, and let F,G be the unit balls in the corresponding RKHSs. Then

COCO(zzz;F,G) =
1
m

√
‖K̃ L̃‖2, (3)

where the matrix norm‖ · ‖2 denotes the largest singular value. An equivalentunnormalisedform
(which we will refer back to in Section 3) isCOCO(zzz;F,G) = maxi γi , whereγi are the solutions to
the generalised eigenvalue problem

[
000 K̃ L̃

L̃ K̃ 000

][
αααi

βββi

]
= γi

[
K̃ 000
000 L̃

][
αααi

βββi

]
. (4)
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Proof By the representer theorem, the solution of the maximisation problem arising from
COCO(zzz;F,G) is given by f (x) = ∑m

i=1 αik(xi ,x) andg(y) = ∑m
j=1 β j l(y j ,y). Hence

COCO(zzz;F,G) = sup
ααα>Kααα≤1,βββ>Lβββ≤1

1
m

ααα>KL βββ− 1
m2ααα>K111m111>mLβββ

= sup
‖ααα‖,‖βββ‖≤1

1
m

ααα>K1/2HL 1/2βββ

=
1
m
‖K1/2HL 1/2‖2.

Squaring the argument in the norm, rearranging, and using the fact thatH = HH proves the lemma.

The constrained covariance turns out to be similar in certain respects to a number of kernel algo-
rithms, for an appropriate choice ofF ,G . By contrast with independence measurement, however,
these methods seek tomaximisethe constrained covariance through the correct choice of feature
space elements. First, and most obvious, is kernel partial least squares(kPLS) (Rosipal and Trejo,
2001), which at each stage maximises the constrained covariance directly (see Bakır et al., 2004).
COCO is also optimised when obtaining the first principal component in kernelprincipal compo-
nent analysis (kPCA), as described by Schölkopf et al. (1998), andis the criterion optimised in the
spectral clustering/kernel target alignment framework of Cristianini et al. (2002). Details may be
found in Appendix A.1.

Finally, we remark that alternative norms of the covariance operator should also be suited to
measuring independence. Indeed, the Hilbert-Schmidt (HS) norm is proposed in this context by
Gretton et al. (2005a): like the KMI, it exploits the entire spectrum of the empirical covariance
operator, and gives experimental performance superior to COCO in ICA. The HS norm has the
additional advantage of a well-defined population counterpart, and guarantees ofO(1/

√
m) conver-

gence of the empirical to the population quantity. The connection between the HS norm and the
mutual information remains unknown, however.

2.3 Independence Measurement with the Constrained Covariance

We now describe how COCO is used as a measure of independence. For our purposes, the notion
of independence of random variables is best characterised by Jacodand Protter (2000, Theorem
10.1(e)):

Theorem 4 (Independence)Let x andy be random variables on(X ×Y ,Γ×Λ) with joint mea-
surePx,y(x,y), whereΓ and Λ are Borelσ-algebras onX and Y , respectively. Then the random
variablesx andy are independent if and only ifcov( f (x),g(y)) = 0 for any pair( f ,g) of bounded,
continuous functions.

It follows from Theorem 4 that ifF ,G are the sets of bounded continuous functions, then
COCO(Px,y;F ,G) = 0 if and only if x andy are independent. In other words, COCO(Px,y;F ,G)
and COCO(zzz;F ,G) are criteria which can be testeddirectly without the need for an intermediate
density estimator (in general, the distributions may not even have densities). It is also clear, however,
that unlessF ,G are restricted in further ways, COCO(zzz;F ,G) will always be large, due to the rich
choice of functions available. Anon-trivial dependence functionalis thus obtained using function
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classes that do not give an everywhere-zero empirical average, yet which still guarantee that COCO
is zero if and only if its arguments are independent. A tradeoff between the restrictiveness of the
function classes and the convergence of COCO(zzz;F ,G) to COCO(Px,y;F ,G) can be accomplished
using standard tools from uniform convergence theory (see Gretton etal., 2005b). It turns out that
unit-radius balls inuniversalreproducing kernel Hilbert spaces constitute function classes that yield
non-trivial dependence estimates. Universality is defined by Steinwart (2001) as follows:

Definition 5 (Universal kernel) A continuous kernelk(·, ·) on a compact metric space(X ,d) is
called universal if and only if the RKHSF induced by the kernel is dense in C(X ), the space of
continuous functions onX , with respect to the infinity norm‖ f −g‖∞ .

Steinwart (2001) shows the following two kernels are universal on compact subsets ofRd:

k(x,x′) = exp
(
−λ‖x−x′‖2) and

k(x,x′) = exp
(
−λ‖x−x′‖

)
for λ > 0.

We now state our main result for this section.

Theorem 6 (COCO(Px,y;F,G) is only zero at independence for universal kernels)Denote byF
andG RKHSs with universal kernels on the compact metric spacesX andY , respectively, and let
F,G be the unit balls inF andG . ThenCOCO(Px,y;F,G) = 0 if and only ifx,y are independent.

Proof It is clear that COCO(Px,y;F,G) is zero ifx andy are independent. We prove the converse
by showing that7 COCO(Px,y;B(X ),B(Y )) = c for somec > 0 implies COCO(Px,y;F,G) = d for
d > 0: this is equivalent to COCO(Px,y;F,G) = 0 implying COCO(Px,y;B(X ),B(Y )) = 0 (where
this last result implies independence by Theorem 4). There exist two sequences of functionsfn ∈
C(X ) andgn ∈C(Y ), satisfying‖ fn‖∞ ≤ 1,‖gn‖∞ ≤ 1, for which

lim
n→∞

cov( fn(x),gn(y)) = c.

More to the point, there exists ann∗ for which cov( fn∗(x),gn∗(y)) ≥ c/2. We know thatF and
G are respectively dense inC(X ) andC(Y ) with respect to theL∞ norm: this means that for all
c
24 > ε > 0, we can find somef ∗ ∈ F (and an analogousg∗ ∈ G ) satisfying‖ f ∗− fn∗‖∞ < ε. Thus,
we obtain

cov( f ∗(x),g∗(y)) = cov( f ∗(x)− fn∗(x)+ fn∗(x),g
∗(x)−gn∗(x)+gn∗(x))

= Ex,y [( f ∗(x)− fn∗(x)+ fn∗(x))(g
∗(y)−gn∗(y)+gn∗(y))]

−Ex ( f ∗(x)− fn∗(x)+ fn∗(x))Ey (g∗(y)−gn∗(y)+gn∗(y))

≥ cov( fn∗(x),gn∗(y))−2ε |Ex ( fn∗(x))|−2ε |Ey (gn∗(y))|−2ε2

≥ c
2
−6

c
24

=
c
4

> 0.

Finally, bearing in mind that‖ f ∗(x)‖F < ∞ and‖g∗(x)‖G < ∞, we have

cov

(
f ∗(x)

‖ f ∗(x)‖F

,
g∗(y)

‖g∗(x)‖G

)
≥ c

4‖ f ∗(x)‖F ‖g∗(x)‖G

> 0,

7. HereB(X ) denotes the subset ofC(X ) of continuous functions bounded by 1 inL∞(X ), andB(Y ) is defined in an
analogous manner.
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and hence COCO(Px,y;F,G) > 0.

The constrained covariance is further explored by Gretton et al. (2005b, 2004). We prove two main
results in these studies, which are not covered in the present work:

• Theorems 10 and 11 of Gretton et al. (2005b) give upper bounds on theprobability of large
deviations of the empirical COCO from the population COCO: Theorem 10 covers negative
deviations of the empirical COCO from the population COCO, and Theorem 11describes
positive deviations. For a fixed probability of deviation, the amount by whichthe empirical
COCO differs from the population COCO decreases at rate 1/

√
m (for shifts in either direc-

tion). These bounds are necessary if we are to formulatestatistical testsof independence
based on themeasureof independence that COCO provides. In particular, Gretton et al.
(2005b, Section 5) give one such test .

• Theorem 8 of Gretton et al. (2005b) describes the behaviour of the population COCO when
the random variables are not independent, for a simple family of probability densities rep-
resented as orthogonal series expansions. This is used to illustrate two concepts: first, that
dependence can sometimes be hard to detect without a large number of samples (since the
deviation of the population COCO from zero can be very small, even for dependent random
variables); and second, that one type of hard-to-detect dependence is encoded in high fre-
quencies of the probability density function.

We also apply COCO in these studies to detecting dependence in fMRI scans of the Macaque visual
cortex. We refer the reader to these references for further detail onCOCO.

2.4 The Canonical Correlation

The kernelised canonical correlation (KCC) — i.e., the norm of thecorrelation operatorbetween
RKHSs — was proposed as a measure of independence by Bach and Jordan (2002a). Consistency
of the KCC was shown by Leurgans et al. (1993) for the operator norm,and by Fukumizu et al.
(2005) for the functions inF andG that define it (in accordance with Definition 7 below). Further
discussion and applications of the kernel canonical correlation include Akaho (2001); Bach and
Jordan (2002a); Hardoon et al. (2004); Kuss (2001); Lai and Fyfe (2000); Melzer et al. (2001);
Shawe-Taylor and Cristianini (2004); van Gestel et al. (2001). In particular, a much more extensive
discussion of the properties of canonical correlation analysis and its kernelisation may be found
in these studies, and this section simply summarises the properties and derivations relevant to our
requirements for independence measurement.

The idea underlying the KCC is to find the functionsf ∈ F andg∈ G with largestcorrelation
(as opposed to covariance, which we covered in the previous section).This leads to the following
definition.

Definition 7 (Kernel canonical correlation (KCC)) The kernel canonical correlation is defined
as

KCC(Px,y;F ,G) = sup
f∈F ,g∈G

corr( f (x),g(y))

= sup
f∈F ,g∈G

E( f (x)g(y))−Ex ( f (x))Ey (g(y))√
Ex ( f 2(x))−E2

x
( f (x))

√
Ey (g2(y))−E2

y
(g(y))

.
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As in the case of the constrained covariance, we may specify an empirical estimate similar to that
in Lemma 3:

Lemma 8 (Empirical KCC) The empirical kernel canonical correlation is given by
KCC(zzz;F ,G) := maxi (ρi), whereρi are the solutions to the generalised eigenvalue problem

[
000 K̃ L̃

L̃ K̃ 000

][
ci

di

]
= ρi

[
K̃2 000
000 L̃2

][
ci

di

]
. (5)

Bach and Jordan (2002a) point out that the first canonical correlation is very similar to the function
maximised by thealternating conditional expectationalgorithm of Breiman and Friedman (1985),
although in the latter casef (x) may be replaced with a linear combination of several functions ofx.

We note that the numerator of the functional in Definition 7 is just the functionalcovariance,
which suggests that the kernel canonical correlation might also be a useful measure of independence:
this was proposed by Bach and Jordan (2002a) (the functional correlation was also analysed as an
independence measure by Dauxois and Nkiet (1998), although this approach did not make use
of RKHSs). A problem with using the kernel canonical correlation to measure independence is
discussed in various forms by Bach and Jordan (2002a); Fukumizu et al. (2005); Greenacre (1984);
Kuss (2001); Leurgans et al. (1993); we now describe one formulation of problem, and the two main
ways in which it has been solved.

Lemma 9 (Without regularisation, the empirical KCC is independent of the data) Suppose that
the Gram matricesK andL have full rank. The2(m−1) non-zero solutions to (5) are thenρi =±1,
regardless of zzz.

The proof is in Appendix B.1. This argument is used by Bach and Jordan (2002a); Fukumizu et al.
(2005); Leurgans et al. (1993) to justify a regularised canonical correlation,

KCC(Px,y;F ,G ,κ) := sup
f∈F ,g∈G

cov( f (x),g(y))
(

var( f (x))+κ‖ f‖2
F

)1/2(
var(g(y))+κ‖g‖2

G

)1/2
, (6)

although this requires an additional parameterκ, which complicates the model selection problem.
As the number of observations increases,κ must approach zero to ensure consistency of the esti-
mated KCC, and of the associated functionsf andg that achieve the supremum. The rate of decrease
of κ for consistency of KCC is derived by Leurgans et al. (1993) (for RKHSs based on spline ker-
nels), and the rate required for consistency in theL2 norm of f andg is obtained by Fukumizu et al.
(2005) (for all RKHSs).

An alternative solution to the problem described in Lemma 9 is given by Kuss (2001), in which
the projection directions used to compute the canonical correlations are expressed in terms of a
more restricted set of basis functions, rather than the respective subspaces ofF andG spanned by
the entire set of mapped observations. These basis functions can be chosen using kernel PCA, for
instance.

Finally, we show that the regularised kernel canonical correlation is a measure of independence,
as long as the functions attaining the supremum have bounded variance.
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Theorem 10 (KCC(Px,y;F ,G ,κ) = 0 only at independence for universal kernels)Denote byF
andG RKHSs with universal kernels on the compact metric spacesX andY , respectively, and as-
sume thatvar( f (x)) < ∞ andvar(g(y)) < ∞. ThenKCC(Px,y;F ,G ,κ) = 0 if and only ifx,y are
independent.

Proof The proof is almost identical to the proof of Theorem 6. First, it is clear thatx and y

being independent implies KCC(Px,y;F ,G ,κ) = 0. Next, assume COCO(Px,y;B(X ),B(Y )) = c
for c > 0. We can then definef ∗ ∈ F andg∗ ∈ G as before, such that

cov( f ∗(x),g∗(y)) ≥ c
4
.

Finally, assuming var( f (x)) and var(g(y)) to be bounded, we get

cov




f ∗(x)
(

var( f ∗ (x))+κ‖ f ∗‖2
F

)1/2
,

g∗(y)
(

var(g∗ (y))+κ‖g∗‖2
G

)1/2




≥ c

4
(

var( f ∗ (x))+κ‖ f ∗‖2
F

)1/2(
var(g∗ (y))+κ‖g∗‖2

G

)1/2

> 0.

The requirement of bounded variance is not onerous: indeed, as in thecase of the covariance oper-
ator, we are guaranteed that var( f (x)) and var(g(y)) are bounded whenk andl are bounded.

3. Kernel Approximations to the Mutual Information

In this section, we investigate approximations to the mutual information that can beused for mea-
suring independence. Our main results are in Section 3.1. We present the kernel mutual information
(KMI) in Definition 14, and prove it to be zero if and only if the empirical COCOis zero (Theorem
15), which justifies using the KMI as a measure of independence. We then show the KMI upper
bounds a Parzen window estimate of the mutual information near independence (Theorem 16). An
important property of this bound is that it doesnot require numerical integration, or indeed any
space partitioning or grid-based approximations (see e.g. Paninski (2003) and references therein).
Rather, we are able to obtain a closed form expression when the grid8 becomes infinitely fine.

We should emphasise at this point an important distinction between the KMI and KGV on one
hand, and COCO and the KCC on the other. We recall that the empirical COCOin Lemma 3
is a finite sample estimate of the population quantity in Definition 2, and the empirical KCC in
Lemma 8 has a population equivalent in Definition 7 (convergence of the empirical estimates to
the population quantities is guaranteed in both cases, as described in the discussion of Section 2).
The KMI and KGV, on the other hand, are bounds on particular sample-based quantities, and are
not defined here with respect to corresponding population expressions. That said, the KGV appears
to be a regularised empirical estimate of the mutual information for Gaussian processes of Baker

8. Introduced in the discrete approximation to the mutual information
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(1970), although to our knowledge the convergence of the KGV to this population quantity is not
yet established.

In Section 3.2, we derive generalisations of COCO and the KMI to more than two univariate
random variables. We prove the high dimensional COCO and KMI are zeroif and only if the asso-
ciated pairwise empirical constrained covariances are zero, which makesthem suited for application
in ICA (see Theorem 24).

3.1 The KMI, the KGV, and the Mutual Information

Three intermediate steps are required to obtain the KMI from the mutual information: an approxi-
mation to the MI which is accurate near independence, a Parzen window estimate of this approxi-
mation, and finally a bound on the empirical estimate. We begin in Section 3.1.1 by introducing the
mutual information between two multivariate Gaussian random variables, for which a closed form
solution exists. In Section 3.1.2, we describe a discrete approximation to the mutual information
between two continuous, univariate random variables with an arbitrary jointdensity function, which
is defined via a partitioning of the continuous space into a uniform grid of bins; it is well established
that this approximation approaches the continuous mutual information as the grid becomes infinitely
fine (Cover and Thomas, 1991). We then show in Section 3.1.3 that the discrete mutual information
may be approximated by the Gaussian mutual information (GMI), by doing a Taylor expansion of
both quantities to second order around independence.

We next address how to go about estimating this Gaussian approximation of thediscrete mutual
information, given observations drawn according to some probability density. In Section 3.1.4, we
derive a Parzen window estimate of the GMI. Next, in Section 3.1.5, we give an upper bound on
the empirical GMI, which constitutes the kernel mutual information. Finally, we demonstrate in
Section 3.1.6 that the regularised kernel generalised variance (KGV) proposed by Bach and Jordan
(2002a) is an upper bound on the KMI, and hence on the Gaussian mutualinformation, under certain
circumstances. A comparison with the link originally proposed between the KGVand the mutual
information is given in Appendix B.2.

3.1.1 MUTUAL INFORMATION BETWEEN TWO MULTIVARIATE GAUSSIAN RANDOM

VARIABLES

We begin by introducing the Gaussian mutual information and its relation with the canonical cor-
relation. Thus, the present section should be taken as background material which we will refer
back to in the discussion that follows. Cover and Thomas (1991) provide amore detailed and gen-
eral discussion of these principles. IfxG,yG are Gaussian random vectors9 in R

lx,Rly respectively,

with joint covariance matrixC :=

[
Cxx Cxy

C>
xy Cyy

]
, then the mutual information between them can be

written

I (xG;yG) = −1
2

log

( |C|
|Cxx| |Cyy|

)
, (7)

where| · | is the determinant. We note that the Gaussian mutual information takes the distinctive
form of a log ratio of determinants: we will encounter this expression repeatedly in the subsequent

9. The subscriptsG are used to emphasise thatxG,yG are Gaussian; this notation is introduced here to make the reason-
ing clearer in subsequent sections.
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reasoning, under various guises. For this reason, we now present atheorem which describes several
alternative expressions for this ratio.

Theorem 11 (Ratio of determinants) Given a partitioned matrix10

[
A B

B> C

]
� 000, (8)

we can write

∣∣∣∣
[

A B
B> C

]∣∣∣∣
|A| |C| =

∣∣∣∣
[

I A −1/2BC−1/2

C−1/2B>A−1/2 I

]∣∣∣∣

=
∣∣∣I −A−1/2BC−1B>A−1/2

∣∣∣

= ∏
i

(1−ρ2
i )

> 0

whereρi are the singular values ofA−1/2BC−1/2 (i.e. the positive square root of the eigenvalues of
A−1/2BC−1B>A−1/2). Alternatively, we can writeρi as the positive solutions to the generalised
eigenvalue problem [

000 B
B> 000

]
ai = ρi

[
A 000
000 C

]
ai .

The proof is in Appendix A.2. Using this result, we may rewrite (7) as

I (xG;yG) = −1
2

log

(

∏
i

(1−ρ2
i )

)
, (9)

whereρi are the singular values ofC−1/2
xx CxyC

−1/2
yy ; or alternatively, the positive solutions to the

generalised eigenvalue problem

[
000 Cxy

C>
xy 000

]
ai = ρi

[
Cxx 000
000 Cyy

]
ai . (10)

In this final configuration, it is apparent thatρi are the canonical correlates of the Gaussian random
variablesxG and yG. We note that the definition of the Gaussian mutual information provided

by (9) and (10) holds even whenC does not have full rank (which indicates that
[

x>G y>G
]>

spans a subspace ofR
lx+ly), since forC � 000 we requireCxy to have the same nullspace asCyy, and

C>
xy to have the same nullspace asCxx. Alternatively, we could make a change of variables to a

lower dimensional space in which the resulting covariance has full rank, and then use the ratio of
determinants (7) with this new covariance.

10. We useX � 000 to indicate thatX is positive definite.
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3.1.2 MUTUAL INFORMATION BETWEEN DISCRETISEDUNIVARIATE RANDOM VARIABLES

In this section, and in the sections that follow, we consider only the case where X and Y are
closed, bounded subsets ofR, and require(x,y) ∈ X ×Y to have the joint densitypx,y (this is
by contrast with the discussion in Section 2, in whichX andY were defined simply as separable
metric spaces, and the measurePx,y did not necessarily admit a density). We will also assume
X ×Y represents the support ofpx,y. The present section introduces a discrete approximation to the
mutual information betweenx andy, as described by Cover and Thomas (1991). Consider a grid of
size lx× ly over X ×Y . Let the indicesi, j denote the point(qi , r j) ∈ X ×Y on this grid, and let
qqq = (q1, . . . ,qlx) ,rrr =

(
r1, . . . , r ly

)
be the complete sequences of grid coordinates. Assume, further,

that the spacing between points along thex andy axes is respectively∆x and∆y (the bins being
evenly spaced). We define two multinomial random variables ˆx, ŷ with a distributionPx̂,ŷ (i, j) over
the grid (the completelx× ly matrix of such probabilities isPxy); this corresponds to the probability
thatx,y is within a small interval surrounding the grid positionqi , r j , so

Px̂ (i) =
Z qi+∆x

qi

px(x)dx, Pŷ ( j) =
Z r j+∆y

r j

py(y)dy,

Px̂,ŷ (i, j) =
Z qi+∆x

qi

Z r j+∆y

r j

px,y(x,y)dxdy.

ThusPx̂,ŷ (i, j) is a discretisation ofpx,y. Finally, we denote aspx the vector for which(px)i = Px̂(i),
with a similarpy definition. The mutual information between ˆx andŷ is defined as

I (x̂; ŷ) =
lx

∑
i=1

ly

∑
j=1

Px̂,ŷ (i, j) log

(
Px̂,ŷ (i, j)

Px̂ (i)Pŷ ( j)

)
. (11)

It is well known thatI(x,y) is the limit of I (x̂; ŷ) as the discretisation becomes infinitely fine (Cover
and Thomas, 1991, Section 9.5).

3.1.3 MULTIVARIATE GAUSSIAN APPROXIMATION TO THEDISCRETISEDMUTUAL

INFORMATION

In this section, we draw together results from the two previous sections, showing it is possible to
approximate thediscretemutual information in Section 3.1.2 with aGaussianmutual information
between vectors of sufficiently high dimension, as long as we are close to independence. The results
in this section are due to Bach and Jordan (2002a), although the proof of(18) below is novel. We
begin by defining an equivalent multidimensional representationx̌, y̌ of x̂, ŷ in the previous section,
wherex̌ ∈ R

lx andy̌ ∈ R
ly, such that ˆx = i is equivalent to(x̌)i = 1 and(x̌) j : j 6=i = 0. To be precise,

we define the functions11

Ki(x) =

{
1 x∈ [qi ,qi +∆x)
0 otherwise

, K j(y) =

{
1 x∈ [r j , r j +∆y)
0 otherwise

,

such that
Ex (Ki(x)) = Ex ((x̌)i) =

Z ∞

−∞
Ki(x)px(x)dx= Px̂ (i)

11. Note that we donot require∆x = ∆y: thus the functionsKi(x) andK j (y) below may not be identical (the argument of
the function specifies whether∆x or ∆y is used, to simplify notation).
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and

Ex,y (Ki(x)K j(y)) = Ex,y

(
(x̌)i (y̌) j

)
=

Z ∞

−∞

Z ∞

−∞
Ki(x)K j(y)px,y(x,y)dxdy= Px̂,ŷ (i, j) .

A specific instance of the second formula is wheny = x, Ki(x) = Ki(y), andpx,y(x,y) = δx(y)px(x),
whereδx(y) is a delta function centred atx. Then

Ex (Ki(x)K j(x)) = Ex

((
x̌x̌>

)
i, j

)
=

Z ∞

−∞

Z ∞

−∞
Ki(x)K j(y)px(x)δx(y)dxdy

=

{
Px̂ (i) i = j

0 otherwise
.

In summary,

Ex,y

(
x̌ y̌>

)
= Pxy (12)

Ex (x̌) = px (13)

Ex

(
x̌ x̌>

)
= Dx (14)

whereDx = diag(px). Using these results, it is possible to define the covariances

Cxy = Ex,y

(
x̌ y̌>

)
−Ex (x̌)Ey (y̌)> = Pxy−pxp>

y , (15)

Cxx = Ex

(
x̌ x̌>

)
−Ex (x̌)Ex (x̌)> = Dx−pxp>

x , (16)

Cyy = Ey

(
y̌ y̌>

)
−Ey (y̌)Ey (y̌)> = Dy−pyp>

y . (17)

We may therefore define Gaussian random variablesxG,yG with the same covariance structure as
x̌, y̌, and with mutual information given by (7). We prove in Appendix A.3 that the mutual informa-
tion for this Gaussian case is

I (xG;yG) = −1
2

log

(∣∣∣∣I ly −
(

Pxy−pxp>
y

)>
D−1

x

(
Pxy−pxp>

y

)
D−1

y

∣∣∣∣
)

, (18)

which can also be expressed in the singular value form (9). The relation between (18) and (11) is
given in the following lemma, which is proved by Bach and Jordan (2002a, Appendix. B.1).

Lemma 12 (The discrete MI approximates the Gaussian MI near independence)
Let Px̂,ŷ (i, j) = Px̂ (i)Pŷ ( j)(1+ εi, j) for an appropriate choice ofεi, j , whereεi, j is small near
independence. Then the second order Taylor expansion of the discrete mutual information in (11) is

I (x̂; ŷ) ≈ 1
2

lx

∑
i=1

ly

∑
j=1

Px̂ (i)Pŷ ( j)ε2
i, j ,

which is equal to the second order Taylor expansion of the Gaussian mutual information in (18),
namely

I (xG;yG) ≈ 1
2

lx

∑
i=1

ly

∑
j=1

Px̂ (i)Pŷ ( j)ε2
i, j .
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3.1.4 KERNEL DENSITY ESTIMATES OF THEGAUSSIAN MUTUAL INFORMATION

In this section, we describe a kernel density estimate of the approximate mutualinformation in (18):
this is the point at which our reasoning diverges from the approach of Bach and Jordan (2002a). Be-
fore proceeding, we motivate this discussion with a short overview of the Parzen window estimate
and its properties, as drawn from Silverman (1986); Duda et al. (2001)(this discussion pertains to
the general case of multivariatex, although our application requires only univariate random vari-
ables). Given a samplexxx of sizem, each pointxl of which is assumed generated i.i.d. according to
some unknown distribution with densitypx, the associated Parzen window estimate of this density
is written

p̂x(x) =
1
m

m

∑
l=1

κ(xl −x) .

The kernel function12 κ(xl −x) must be a legitimate probability density function, in that it should
be correctly normalised,

Z

X
κ(x)dx= 1, (19)

andκ(x) ≥ 0. We may rescale the kernel according to1
Vx

κ
(

x
σx

)
, where the termVx is needed to

preserve (19). Denoting asVx,m the normalisation for a sample sizem, then we are guaranteed that
the Parzen window estimate converges to the true probability density as long as

lim
m→∞

Vx,m = 0,

lim
m→∞

mVx,m = ∞.

This method requires an initial choice ofσx for the sample size we start with, which can be obtained
by cross validation.

We return now to the problem of empirically estimating the mutual information described in
Sections 3.1.2 and 3.1.3. Our estimate is described in the following definition.

Definition 13 (Parzen window estimate of the Gaussian mutual information) A Parzen window
estimate of the Gaussian mutual information in (18) is defined as

Î (x̂; ŷ) = −1
2

log

(
min(lx,ly)

∏
i=1

(1+ ρ̂i)(1− ρ̂i)

)
, (20)

whereρ̂i are the singular values of
(

D(x)
l

)−1/2(
K l H (L l )

>
)(

D(y)
l

)−1/2
. (21)

Of the four matrices in this definition,D(x)
l is a diagonal matrix of unnormalised Parzen window

estimates ofpx at the grid points,

D(x)
l =

1
∆x




∑m
l=1 κ(q1−xl ) . . . 0

...
. . .

...
0 . . . ∑m

l=1 κ(qlx −xl )


 , (22)

12. The reader should not confuse the present kernel with the RKHS kernels introduced earlier. That said, we shall see
later that the two kernels are linked.
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D(y)
l is the equivalent diagonal matrix forpy,13 and

K l :=




κ(q1−x1) . . . κ(q1−xm)
...

. . .
...

...
. . .

...
κ(qlx −x1) . . . κ(qlx −xm)




, L l :=




κ(r1−y1) . . . κ(r1−ym)
...

. ..
...

...
. ..

...
κ
(
r ly −y1

)
. . . κ

(
r ly −ym

)




, (23)

where we write the above in such a manner as to indicate lx � m and ly � m.

Details of how we obtained this definition are given in Appendix A.4. The main disadvantage
in using this approximation to the mutual information is that it is exceedingly computationally
inefficient, in that it requires a kernel density estimate at each point in a finegrid. In the next
section, we show that it is possible to eliminate this grid altogether when we take anupper bound.

3.1.5 THE KMI: A N UPPERBOUND ON THE MUTUAL INFORMATION

We now define the kernel mutual information, and show is both a valid dependence criterion (The-
orem 15), and an upper bound on the Parzen GMI in Lemma 13 (Theorem 16).

Definition 14 (The kernel mutual information) The kernel mutual information is defined as

KMI (zzz;F ,G) := −1
2

log
(∣∣∣I −ν−2

zzz K̃ L̃
∣∣∣
)

= −1
2

log

(

∏
i

(
1− γ2

i

ν2
zzz

))
,

whereγi are the non-zero solutions14 to
[

000 K̃ L̃
L̃ K̃ 000

][
ci

di

]
= γi

[
000 K̃
L̃ 000

][
ci

di

]
, (24)

the centred Gram matrices̃K andL̃ are defined using RKHS kernels obtained via convolution of the
associated Parzen windows,15

k(xi ,x j) =
Z

X
κ(xi −q)κ(x j −q)dq and l(yi ,y j) =

Z

Y
κ(yi − r)κ(y j − r)dr,

and

νzzz = min



 min

j ∈ {1. . .m}

m

∑
i=1

κ(xi −x j) , min
j ∈ {1. . .m}

m

∑
i=1

κ(yi −y j)



 .

13. As in our Section 3.1.3 definition ofKi(x) andK j (y), we use the notationκ(x) andκ(y) to denote the Parzen windows
for the estimateŝpx(x) andp̂y(y), respectively, even though these may not be identical kernel functions. The argument
again indicates which kernel is used.

14. Compare with (4).
15. Recall thatκ(x−q) may be different fromκ(y− r), and that the identity of the Parzen window is specified by its

argument.
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We note that the above definition bears some similarity to the estimate of Pham (2002). That said,
we approximate the mutual information, rather than the entropy; in addition, the KMI is computed
in the limit of infinitely small grid size, which removes the need for binning. Thus, we retain our
original kernel, rather than using a spline kernel in all cases. This allowsus greater freedom to
choose a kernel density appropriate to the characteristics of the sources.

The KMI inherits the following important property from the constrained covariance.

Theorem 15 (The KMI is zero if and only if the empirical COCO is zero) The KMI is zero,
KMI (zzz;F ,G) = 0, if and only if the empirical constrained covariance is zero,
COCO(zzz;F,G) = 0.

Proof This theorem follows from the constrained covariance being the largest eigenvalueγi of (24).

The relation of the KMI to the mutual information is given by the following theorem,which is the
main result of Section 3.

Theorem 16 (The KMI upper bounds the GMI) Assume thatX ×Y is chosen to be the support
of px,y, thatpx,y is bounded away from zero, and that

min
x∈X

m

∑
i=1

κ(x−xi) ≈ min
j ∈ {1. . .m}

m

∑
i=1

κ(xi −x j) and

min
y∈Y

m

∑
i=1

κ(y−yi) ≈ min
j ∈ {1. . .m}

m

∑
i=1

κ(yi −y j)

(the expressions above are alternative, unnormalised estimates ofminx∈X px(x) andminy∈Y py(y),
respectively; the right hand expressions are used so as to obtain the KMIentirely in terms of the
sample zzz). Then

KMI (zzz;F ,G) ' Î (x̂; ŷ) . (25)

This theorem is proved in Appendix A.5. In particular, the approximate nature of the inequality (25)
arises from our use of empirical estimates for lower bounds onpx(x) andpy(y) (see the proof for
details).

3.1.6 THE KGV: A N ALTERNATIVE UPPERBOUND ON THE MUTUAL INFORMATION

Bach and Jordan (2002a) propose two related quantities as independence functionals: the ker-
nel canonical correlation (KCC), as discussed in Section 2.4, and the kernel generalised variance
(KGV). In this section, we demonstrate that the latter quantity is an upper bound on the KMI under
certain conditions. This approach is different to the proof of Bach and Jordan, who employ a limit
as the RKHS kernels become infinitely small, and do not make use of Parzen windows. In any event,
there may be some problems with this limiting argument: see Appendix B.2 for furtherdiscussion.
We begin by recalling the definition of the KGV.

Definition 17 (The kernel generalised variance)The empirical KGV is defined as

KGV (zzz;F ,G ,θ) = −1
2

log

(

∏
i

(
1−ρ2

i

)
)

, (26)
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whereρi are the solutions to the generalised eigenvalue problem16

[
000 K̃ L̃

L̃ K̃ 000

][
ci

di

]
= ρi

[
θK̃2 +νzzz(1−θ)K̃ 000

000 θL̃2 +νzzz(1−θ)L̃

][
ci

di

]
, (27)

andθ ∈ [0,1].

Next, we demonstrate the link between the KGV and the KMI.

Theorem 18 (The KGV upper bounds the KMI) For all θ ∈ [0,1],

KGV (zzz;F ,G ,θ) ≥ KMI (zzz;F ,G) ,

with equality only atθ = 0, subject to the conditions

νzzzI − K̃ � 0 and νzzzI − L̃ � 0. (28)

This theorem is proved in Appendix A.6. The requirements (28) should be checked at the point
of implementation to guarantee a bound, but we are assured of being able to enforce them: for
example, whenk is the convolution of (properly normalised) Gaussian kernelsκ of sizeσ, then

k(xi ,x j) =
1√

2π(2σ2)
exp

(
− 1

2(2σ2)
(x j −xi)

2
)

,

which is a Gaussian with twice the variance and 1/
√

2 the peak amplitude ofκ. An upper bound
on the spectral norm of̃K is maxj ∑m

i=1k(xi ,x j), which follows from Horn and Johnson (1985,
Corollary 6.1.5).17 In other words, even by this conservative estimate, we are assured there exists
a σ > 0 small enough for (28) to hold (the requirements (28) are also sufficientto guarantee the
existence of the KMI, since they cause the argument of the logarithm in Definition 14 to be positive).

3.2 Multivariate COCO and KMI

We now describe how our dependence functionals may be generalised to more than two random
variables. Let us define the continuous univariate random variablesx1, . . . ,xn on X1, . . . ,Xn, with
joint distributionPx1,...,xn. We also define the associated feature spacesFX1, . . . ,FXn, each with its
corresponding kernel (as in the 2 variable case, the kernels may be different). We begin with a
generalisation of the concept of constrained covariance. Our expression takes a similar form to that
of Bach and Jordan (2002a, Appendix A.3), although they deal with canonical correlations rather
than constrained covariances, which changes the discussion in some respects.

Definition 19 (Empirical multivariate COCO) Let zzz := {xxx1, . . . ,xxxn} be an i.i.d. sample of size m
from the joint distributionPx1,...,xn. The multivariate COCO is defined as

COCO(zzz;FX1, . . . ,FXn) := max
j

(∣∣λ j
∣∣) ,

16. See (5). Note that Bach and Jordan (2002a) handle the scaling differently: they replace the right hand matrix in (27)

with

[
K̃2 + ςK̃ 000

000 L̃2 + ςL̃

]
for a regularisation scaleς. We shall see that the form in (27) guarantees the KGV to

upper bound the KMI (and hencêI(x̂, ŷ) in (20)).
17. Bearing in mind Lemma 27, and thatH has singular values in{1,0}.
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whereλ j are the solutions to the generalised eigenvalue problem



000 K̃1K̃2 . . . K̃1K̃n

K̃2K̃1 000 . . . K̃2K̃n
...

...
.. .

...
K̃nK̃1 K̃nK̃2 . . . 000







c1, j

c2, j
...

cn, j


= λ j




K̃1 000 . . . 000
000 K̃2 . . . 000
...

...
.. .

...
000 000 . . . K̃n







c1, j

c2, j
...

cn, j


 , (29)

K̃ i = HK iH, andK i is the uncentred Gram matrix of the observations xxxi drawn fromPxi .

This expression is obtained using reasoning analogous to the bivariate empirical COCO in Section
2. The following result justifies using the multivariate COCO as an independence measure.

Lemma 20 (The multivariate COCO measures pairwise independence)The multivariate con-
strained covariance is zero if and only if all the empirical pairwise constrained covariances are
zero:
COCO(zzz;FX1, . . . ,FXn) = 0 iff COCO

(
xxxi ,xxx j ;FXi ,FX j

)
= 0 for all i 6= j.

We note that although the multivariate COCO only verifies pairwise independence, this is nonethe-
less sufficient to recover mutually independent sources in the context oflinear ICA: see Theorem
24. It is instructive to compare with the KCC-based dependence functional for more than two vari-
ables, which uses the smallest eigenvalue of a matrix of correlations (with diagonal terms equal to
one, rather than zero), where this correlation matrix has only positive eigenvalues.

We next introduce a generalisation of the kernel mutual information to more than two variables.
By analogy with the 2-variable case in Definition 14, we propose the followingdefinition.

Definition 21 (Multivariate KMI) The kernel mutual information for more than two random vari-
ables is defined as

KMI (zzz;FX1, . . . ,FXn) := −1
2

log
mn

∏
j=1

(
1+ λ̆ j

)
, (30)

whereνzzzλ̆ j = λ j , and

νzzz := min
i∈{1,...,n}

νxxxi , where (31)

νxxxi := min
j ∈ {1. . .m}

m

∑
l=1

κ(xi,l −xi, j) .

For (30) to be defined, it is necessary that 1+ λ̆ j > 0 for all j, which is true near independence. The
following lemma describes the sense in which the multivariate KMI measures independence.

Lemma 22 (The multivariate KMI measures pairwise independence)The multivariate KMI is
zero if and only if the empirical constrained covariance is zero for everypair of random variables:
in other words,

KMI (zzz;FX1, . . . ,FXn) = 0

if and only if
COCO

(
xxxi ,xxx j ;FXi ,FX j

)
= 0

for all i 6= j.
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The proof is in Appendix A.7. We now briefly outline how the dependence functional in (30) relates
to the KL divergence. In the case of a Gaussian random vectorxG, which can be segmented as
x>G :=

[
x>G,1 . . . x>G,n

]
, the KL divergence between the joint distribution ofxG and the product

of the marginal distributions of thexG,i can be written in terms of the relevant covariance matrices
as

DKL

(
pxG

∥∥∥∥∥
n

∏
i=1

pxG,i

)
= −1

2
log

( |C|
∏n

i=1 |Cii |

)
,

where

C = ExG

(
xGx>G

)
−ExG (xG)ExG

(
x>G
)

,

Cii = ExG,i

(
xG,ix

>
G,i

)
−ExG,i (xG,i)ExG,i

(
x>G,i

)
.

These results should allow us to generalise the reasoning in Section 3.1, substituting the kernel
density estimates

P̂xi (xi) =
1
m

m

∑
l=1

κ(xi,l −xi) ,

P̂x1,...,xn(x1, . . . ,xn) =
1
m

m

∑
l=1

n

∏
i=1

κ(xi,l −xi) ,

and applying the bounding technique of Section 3.1.5 to obtain the quantity in (30); this is a reason
for our choosingνzzz to scaleλ̆ j .18 The details of this generalisation are beyond the scope of the
present work.

4. Implementation and Application to ICA

Any practical validation of the independence measures described aboveis best conducted with re-
spect to some ground truth, in which genuinely independent random variables are tested using the
proposed functionals (COCO, KMI). Thus, one test of performance isindependent component anal-
ysis (ICA): this entails separating independent random variables that have been linearly mixed, using
only their property of independence (specifically, we recover the coefficients that describe the linear
mixing).

An ICA algorithm using COCO and the KMI comprises two components: the efficient compu-
tation of COCO and the KMI, using low rank approximations of the Gram matrices, and gradient
descent on the space of linear mixing matrices. These results are summarisedfrom the more de-
tailed discussion by Bach and Jordan (2002a) (although the low rank decomposition is in our case
made easier by the absence of the variance term used in the KCC and KGV).

4.1 Efficient Computation of Kernel Dependence Functionals

We note that COCO requires us to determine the eigenvalue of maximum magnitude for anmn×mn
matrix (see (29)), and the KMI is a determinant of anmn×mnmatrix, as specified in (30). For any

18. On a more pragmatic note, the factorνzzz generally causes
∣∣∣λ̆ j

∣∣∣ <
∣∣λ j
∣∣, which results in KMI(zzz;FX1, . . . ,FXn) being

defined further from independence. This is not the only such scaling factor, however.
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reasonable sample sizem, the cost of these computations is prohibitive. We now describe how the
computational complexity of this problem may be substantially reduced. First, wenote that any
positive (semi)definite matrix can be writtenK i = Z iZ>

i , whereZ i is lower triangular: this is known
as the Cholesky decomposition. If the eigenvalues of the Gram matrixK i decay sufficiently rapidly,
however, we may make the approximation

K i ≈ Z iZ>
i (32)

to the Gram matrixK i , whereZ i is anm×di matrix; the error due to this approach may be measured
via the maximum eigenvalueµi of K i −Z iZ>

i . TheZ i are determined via anincompleteCholesky
decomposition, in which the smaller pivots are skipped; symmetric permutation of the rows and
columns ofK i is used in the course of this process to increase the accuracy and numerical stability
of the approximation. This method is applied by Fine and Scheinberg (2001) todecrease the stor-
age and computational requirements of interior point methods in SVMs, and byBach and Jordan
(2002a) for faster computation of the KGV and KCC (pseudocode algorithms may be found in both
references). Once the incomplete Cholesky decomposition is accomplished,we can compute the
approximatecentredGram matrices according tõK i := HK iH = (HZ i)

(
HZ>

i

)
= Z̃ iZ̃>

i .
We now show how this low rank decomposition may be used to more efficiently compute the

constrained covariance in (29). Substituting

di, j = Z̃>
i ci, j ,

we get




000 Z̃1Z̃>
1 Z̃2 . . . Z̃1Z̃>

1 Z̃n

Z̃2Z̃>
2 Z̃1 000 . . . Z̃2Z̃>

2 Z̃n
...

...
.. .

...
Z̃nZ̃>

n Z̃1 Z̃nZ̃>
n Z̃2 . . . 000







d1, j

d2, j
...

dn, j


= λ j




Z̃1 000 . . . 000
000 Z̃2 . . . 000
...

...
.. .

...
000 000 . . . Z̃n







d1, j

d2, j
...

dn, j


 .

We may premultiply both sides by19 diag
([

Z̃>
1 . . . Z̃>

n

])
without increasing the nullspace of

this generalised eigenvalue problem, and we then eliminate diag
([

Z̃>
1 Z̃1 . . . Z̃>

n Z̃n

])
from

both sides. Making these changes, we are left with




000 Z̃>
1 Z̃2 . . . Z̃>

1 Z̃n

Z̃>
2 Z̃1 000 . . . Z̃>

2 Z̃n
...

...
. . .

...
Z̃>

n Z̃1 Z̃>
n Z̃2 . . . 000







d1, j

d2, j
...

dn, j


= λ j




d1, j

d2, j
...

dn, j


 , (33)

which is a much more tractable eigenvalue problem, having dimension∑n
i=1di . The same procedure

may easily be used to recast (30) as the determinant of an(∑n
i=1di)× (∑n

i=1di) matrix. We now
briefly consider how to choose the rankdi for a given precisionµi : this depends on both the density

19. The notation diag
([

Z̃>
1 . . . Z̃>

n

])
defines a matrix with blocks̃Z>

i along the diagonal, and zeros elsewhere.

The matrix need not be square, however, and the diagonal is in this casedefined in a manner consistent with the
asymmetry of thẽZ>

i .
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pxi
and the kernelk(xi ,x). For Gaussian kernels and densities with exponential decay rates, Bach

and Jordan (2002a) show the required precision relates to the rank according todi = O(log (m/µi)),
which demonstrates the slow increase in rank with sample size. In the case of the KGV and KCC,
however, the form of the empirical estimate causes eigenvalues less than approximately 10−3mκ/2
to be discarded, which thus serves as a target precision to ensure theZ i retain constant rank regard-
less ofm. We also adopt this threshold in our simulations with the Gaussian kernel, although our
motivation is purely a reduction of computational cost.

4.2 Independent Component Analysis

We describe the goal of instantaneous independent component analysis(ICA), drawing on the nu-
merous existing surveys of ICA and related methods, including those by Hyvärinen et al. (2001);
Lee et al. (2000); Cichocki and Amari (2002); Haykin (1998); as well as the review by Comon
(1994) of older literature on the topic. We are givenm samplesttt := (t1, . . . , tm) of the n dimen-
sional random vectort, which are drawn independently and identically from the distributionPt.
The vectort is related to the random vectors (also of dimensionn) by the linear mixing process

t = Bs, (34)

whereB is a matrix with full rank. We refer to our ICA problem as beinginstantaneousas a way of
describing the dual assumptions that any observationt depends only on the samples at that instant,
and that the sampless are drawn independently and identically.

The componentssi of s are assumed to be mutually independent: this model codifies the assump-
tion that the sources are generated by unrelated phenomena (for instance, one component might be
an EEG signal from the brain, while another could be due to electrical noisefrom nearby equip-
ment). Mutual independence (in the case where the random variables admit probability densities)
has the following definition (Papoulis, 1991):

Definition 23 (Mutual independence) Suppose we have a random vectors of dimension n. We say
that the componentssi aremutually independent if and only if

ps (s) =
n

∏
i=1

psi
(si) . (35)

It follows easily that the random variables arepairwiseindependent if they aremutually indepen-
dent; i.e.psi

(si)ps j
(sj) = psi ,s j

(si ,sj) for all i 6= j. The reverse doesnot hold, however: pairwise
independence does not guarantee mutual independence.

Our goal is to recovers via an estimateW of the inverse of the matrixB, such that the recovered
vectorx = WBs has mutually independent components.20 For the purpose of simplifying our dis-
cussion, we will assume thatB (and henceW) is anorthogonal matrix; in the case of arbitraryB, the
observations must first be decorrelated before an orthogonalW is applied (Hyvärinen et al., 2001).
In our experiments, however, we will deal with general mixing matrices.

20. It turns out that the problem described above is indeterminate in certain respects. For instance, our measure of
independence does not change when the ordering of elements inx is swapped, or when components ofx are scaled
by different constant amounts. Thus, source recovery takes placeup to these invariances.

2097



GRETTON, HERBRICH, SMOLA , BOUSQUET ANDSCHÖLKOPF

Mutual independence is generally difficult to determine. In the case of linear mixing, however,
we are able to find a unique optimal unmixing matrixW using only thepairwise independence
between elements ofx, which is equivalent to recovering themutually independent terms ofs (up
to permutation and scaling). This is due to the following theorem (Comon, 1994, Theorem 11).

Theorem 24 (Mutual independence in linear ICA) Let s be a vector of dimension n with mutu-
ally independent components, of which at most one is Gaussian, and forwhich the underlying
densities do not contain delta functions. Letx be a random vector related tos according tox = As,
whereA is an orthogonal n×n matrix.21 Then the properties

• The components ofx are pairwise independent

• The components ofx are mutually independent

• A = PS, whereP is a permutation matrix, andS a diagonal matrix

are equivalent.

We acknowledge that the application of a general dependence function tolinear ICA is not guaran-
teed to be an optimal non-parametric approach to the problem of estimating the entries in B—for
instance, Samarov and Tsybakov (2004) provide a method that guarantees

√
n-consistent estimates

of the columns ofB under certain smoothness assumptions on the source densities, which is a more
natural goal in view of the mixing model (34). Indeed, most specialised ICAalgorithms exploit
the linear mixing structure of the problem to avoid having to employ a general measure of indepen-
dence, which makes the task of recoveringB easier. That said, ICA is in general a good benchmark
for dependence measures, in that it applies to a problem with a known “ground truth”, and tests
that the dependence measures approach zero gracefully as dependent random variables are made
to approach independence (through optimisation of the unmixing matrix). In addition, the kernel
methods yield better experimental performance than other specialised ICA approaches (including
recent state-of-the-art algorithms) in our tests of outlier resistance and musical source separation
(see Section 5).

We also note at this point that if elementst i , t j in the samplettt arenot drawn independently for
i 6= j (for instance, if they are generated by a random process with non-zero correlation between
the outputs at different times), then an entirely different set of approaches can be brought to bear
(see for instance Belouchrani et al., 1997; Pham and Garat, 1997).22 Although the present study
concentrates entirely on the i.i.d. case, we will briefly address random processes with time depen-
dencies in Section 6, when describing possible extensions to our work. Finally, we draw attention to
an alternative ICA setting, as described by Cardoso (1998b); Theis (2005), in whichs is partitioned
into mutually independent vectors (which might each have internal dependence structure): we wish
to recover these vectors following linear mixing. As pointed out by Bach andJordan (2002a), kernel
dependence functionals are well suited to this problem, since they also applystraightforwardly to
multivariate random variables: it suffices to define appropriate Gram matrices.

21. For the purposes of ICA,A combines both the mixing and unmixing processes,i.e., A = WB.
22. In particular, it becomes possible to separate Gaussian processeswhen they are correlated over time.
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4.3 Gradient Descent on the Stiefel Manifold

We now describe the method used to minimise our kernel dependence functionals over possible
choices of the orthogonal demixing matrixW. The manifold described byn× p matricesA for
which A>A = I , wheren ≥ p, is known as theStiefel manifold. Gradient descent for functions
defined on this manifold is described by Edelman et al. (1998), and Bach and Jordan (2002a) applied
this technique to kernel ICA. A clear and intuitive explanation of this procedure is also given by
Hyvärinen and Plumbley (2002). Letf (W,ttt) be the particular dependence functional (COCO or
KMI) on which we wish to do gradient descent, wherettt := (t1, . . . , tm) are the whitened, mixed
observations. A naive gradient descent algorithm would involve computing the derivative

G :=
∂ f (W,ttt)

∂W
,

updatingW according toW → W + µG (whereµ is chosen to minimisef (W + µG,ttt)), and pro-
jecting the resulting matrix back onto the Stiefel manifold. This might not be particularly efficient,
however, in that the update can largely be cancelled by the subsequent projection operation. In-
stead, we attempt to find the direction of steepest descent on the Stiefel manifold, and to perform
our update with the constraint that we remain on this manifold. To achieve this, we first describe the
set of perturbations toW that retain the orthogonality ofW, then choose the direction of steepest
descent/ascent within this set, and finally give the expression that parameterises the shifts along the
geodesic23 in this direction.

Let ∆∆∆ be a perturbation with small norm to the orthogonal matrixW, such thatW +∆∆∆ remains
on the Stiefel manifold. For this constraint to hold, we require

(W +∆∆∆)> (W +∆∆∆) = I , which implies (36)

W>∆∆∆+∆∆∆>W ≈ 000; (37)

in other words,W>∆∆∆ is skew-symmetric. To find the particular∆∆∆ that gives the direction of steepest
change off (W,ttt), we solve

∆∆∆max := arg max
∆∆∆

f (W +∆∆∆,ttt),

subject to tr(∆∆∆>∆∆∆) = const and (37). This yields

∆∆∆max = G−WG>W,

where the proof is provided by Edelman et al. (1998); Hyvärinen and Plumbley (2002). Finally, if
we useq to parameterise displacement along a geodesic in the direction∆∆∆max from an initial matrix
W(0), then the resultingW(q) is given by

W(q) = W(0)exp
(

qW(0)>∆∆∆max

)
.

As in the implementation of Bach and Jordan (2002a), we determine an approximation of the gradi-
ent of f (W,ttt) by making small perturbations toW about each possible Jacobi rotation, and recom-
puting f for each such perturbation. Gradient descent is then accomplished using a Golden search
along this direction of steepest descent.

23. A geodesic represents the shortest path on a manifold between two points; equivalently, the acceleration involved in
moving between two points along a geodesic is perpendicular to the manifold when constant velocity is maintained.
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Finally, we note that procedures are given by Edelman et al. (1998) to compute the Hessian on
the Stiefel manifold, as are implementations of Newton’s method and conjugate gradient descent.
In addition, an adaptive algorithm for gradient descent on the Stiefel manifold is proposed by Zhu
and Zhang (2002). The application of these methods to improve the performance of our algorithm
is beyond the scope of the present work.

4.4 Computational Cost

We conclude this section with a summary of the overall computational cost of ICA based on COCO
and the KMI: this analysis draws directly from the assessment of Bach andJordan (2002a, Sec-
tion 6), since COCO and the KMI cost effectively the same as the KCC and KGV, respectively.
The first step in ICA, which is not discussed here, is the decorrelation ofthe sources (as described
for instance by Hyvärinen et al., 2001), which has a cost O(mn2). We next consider the cost of
computing the multivariate COCO and KMI. In both approaches, each of then sources requires an
estimate of itsm×mGram matrix using incomplete Cholesky decomposition, which costs O(md2),
whered is the largest rank retained in the computation of theZ i in (32): the net cost is O(mnd2).
TheseZ i are then centred and assembled into the matrix in (33), which entailsn(n−1)/2 operations
each costing O(md2), for an overall cost O(mn2d2). COCO is given by the largest eigenvalue of
this matrix, and costs O(n2d2); the KMI is a determinant, and costs O(n3d3).

We compute the gradient of the kernel dependence measures using the method of finite dif-
ferences (as described in the previous section), which necessitatesn(n− 1)/2 evaluations of the
measure used. In each evaluation, we need only compute two incomplete Cholesky decompositions
(we cache the remainder); the assembly of the matrix in (33) then entails 2n−3 matrix products,
for an overall cost (Cholesky + matrix assembly for all the Jacobi rotations) of O(mn3d2). The
eigenvalue computations used to obtain the gradient of COCO cost O(n4d2), and the determinants
used in the KMI gradient cost O(n5d3).

5. Experimental Results on ICA

In this section, we examine the performance of our independence functionals (COCO, KMI) as it
compares to the KGV and KCC, when used to address the problem of linear instantaneous ICA.
Since the objective is to find an estimateW of the inverseof the mixing matrixB (the reader is
referred to Section 4.2 for a description of the ICA problem), we require ameasure of distance
between our approximation and the true inverse: this is given by theAmari divergence, which
is introduced in Section 5.1. Next, in Section 5.2, we present results obtainedwhen separating
a range of artificial signals mixed using randomly generated matrices, including cases in which
the observations are corrupted by noise. Finally, we describe our attempts at separating artificial
mixtures of audio signals representing a number of musical genres. Resultsare compared with
those obtained using standard methods (FastICA, Jade, Infomax) and recent state-of-the-art methods
(RADICAL, CFICA), as well as the KCC and KGV.

5.1 Measurement of Performance

We use the Amari divergence, defined by Amari et al. (1996), as an index of ICA algorithm per-
formance: this is an adaptation and simplification of a criterion proposed earlier by Comon (1994).
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Note that the properties of this quantity in Lemma 26 were not described by Amari et al. (1996), but
follow from the proof of Comon (1994).

Definition 25 (Amari divergence) Let B and W be two n× n matrices, whereB is the mixing
matrix andW the estimated unmixing matrix (these need not be orthogonal here), and let D = WB.
Then the Amari divergence betweenB andW is

D (WB) =
100

2n(n−1)

n

∑
i=1

(
∑n

j=1 |di, j |
maxj |di, j |

−1

)
+

1
2n(n−1)

n

∑
j=1

(
∑n

i=1 |di, j |
maxi |di, j |

−1

)
.

Although this measure is not, strictly speaking, a distance metric for general matrices B,W, it
nonetheless possesses certain useful properties, as shown below.

Lemma 26 (Properties of the Amari divergence)The Amari divergenceD (WB) between the n×
n matricesB,W has the following properties:

• 0 ≤ D (WB) ≤ 100. The factor of 100 is not part of the original definition of Amari et al.
(1996), who defined the Amari divergence on[0,1]. In our experiments, however, the Amari
divergence was generally small, and we scaled it by 100 to make the resultstables more
readable.

• Let P be an arbitrary permutation matrix (a matrix with a single1 in each row and column,
and with remaining entries0), andS be a diagonal matrix of non-zero scaling factors. Then
W = B−1 if and only ifD (WB) = 0, or equivalentlyD (WBSP) = 0 or D (SPWB) = 0.

The final property in the above Lemma is particularly useful in the context ofICA, since it causes
our performance measure to be invariant to output ordering ambiguity oncethe sources have been
demixed (see Theorem 24).

5.2 Experiments and Performance Assessment

Since our main purpose is to compare the performance with that reported by Bach and Jordan
(2002a), we generated our test distributions independently following theirdescriptions. A list of the
distributions used in our experiments, and their respective kurtoses, is given in Table 3. While these
distributions represent a broad range of behaviours, we note that negative kurtoses predominate,
which should be borne in mind when evaluating performance. We used the KGV and KCC Matlab
implementations downloadable from (Bach and Jordan) (thus, we employ the KGV as originally
defined by Bach and Jordan (2002a), and not the version describedin Section 3.1.6). The precision
of the incomplete Cholesky decomposition, used to approximate the Gram matricesfor the kernel
dependence functionals, was set atη := εn; our choice ofε represents a tradeoff between accuracy
and computation speed. Unless otherwise specified, the kernel algorithm results were refined in a
“polishing step”, in which the kernel size was halved upon convergence, and the gradient descent
procedure recommenced with this smaller kernel. This polishing was carried out since the larger
kernel size results in the kernel dependence measures being a smootherfunction of the estimated
unmixing matrix, making it easier to find the global minimum; but making the location of this
global minimum less precise than obtained with a smaller kernel. The polishing stepusually caused
a measurable improvement in our results.
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As well as the kernel algorithms, we compare with three standard ICA methods: FastICA (Hyväri-
nen et al., 2001), Jade (Cardoso, 1998a), and Infomax (Bell and Sejnowski, 1995); and two more
sophisticated methods, neither of them based on kernels: RADICAL (Learned-Miller and Fisher
III, 2003), which uses order statistics to obtain entropy estimates; and characteristic function based
ICA (CFICA) (Chen and Bickel, 2004).24 It was recommended to run the CFICA algorithm with a
good initialising guess; we used RADICAL for this purpose. All kernel algorithms were initialised
using Jade (except for the 16 source case, where FastICA was useddue to its more stable output).
RADICAL is based on an exhaustive grid search over all the Jacobi rotations, and does not require
an initial guess. In the case of FastICA, we used the nonlinearity most appropriate to the signal char-
acteristics: this was generally the kurtosis based contrast, since the predominantly negative kurtoses
in Table 3 made this a good choice (see Hyvärinen et al., 2001). In some experiments, however, the
kurtosis was unsuited to the source characteristics, in which case we signal our alternative choice
of nonlinearity. The Infomax algorithm selects its contrast automatically basedon the super- or
sub-Gaussianity of the signal, and does not require manual contrast choice. Likewise Jade uses only
a kurtosis-based contrast, and thus does not require the user to choose a demixing function.

We begin with a brief investigation into the form taken by the various kernel dependence func-
tionals for a selection of the data in Table 3. Contours of the KGV, COCO, KMI, and Amari di-
vergence are plotted in Figure 1, which describes the demixing of samples from three distributions,
combined using a product of known Jacobi rotations. All kernel functionals in this demonstration
were computed with a Gaussian RBF kernel,

kG(x,x′) =
1

σ
√

2π
exp

(
− 1

2σ2‖x−x′‖2
)

. (38)

We observe that each of the functionals exhibits local minima at locations distant from indepen-
dence, but that each possesses a “basin of attraction” in the vicinity of thecorrect answer. More-
over, we note that each of the functionals is smooth (given the choice of kernel size), and that the
global minima are fairly symmetric. For these reasons, the gradient descentalgorithm described in
Section 4.3 should converge rapidly to the global optimum, given a reasonableinitialisation point.
Our solution method differs from that of Bach and Jordan (2002a), however, in that we generally
use Jade (unless specified otherwise) to initialise the kernel functionals (COCO, KCC, KGV, KMI),
whereas Bach and Jordan only do this when separating large numbers ofsignals (in most cases,
they initialise using a one-unit kernel dependence functional with deflation, and with a less costly
polynomial kernel). For more than two signals, this process is repeated several times, starting from
different initialising matrices. While Jade is less computationally costly as an initialisation method,
it might be less reliable in certain cases (where the sources are near-Gaussian, or when a large
number of outliers exist due to noise, both of which can cause Jade to misconverge).

5.3 General Mixtures of Artificial Data

We now describe the ICA experiments performed with the distributions in Table 3, where the Amari
divergence is used to measure the closeness of the estimated mixing matrix to the true matrix.

24. We are aware that Chen and Bickel propose an alternative algorithm, “efficient ICA”. We did not include results from
this algorithm in our experiments, since it is unsuited to mixtures of Gaussians(which have fast decaying tails) and
discontinuous densities (such as the uniform density on a finite interval), which both occur in our benchmark set.

2102



KERNEL METHODS FORMEASURING INDEPENDENCE

Est. −θ
z

E
st

. −
θ y

Amari divergence

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Est. −θ
z

E
st

. −
θ y

Kernel mutual information

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Est. −θ
z

E
st

. −
θ y

COCO

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Est. −θ
z

E
st

. −
θ y

Kernel generalised variance

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Figure 1: Contour plots of kernel independence functionals. Top left: Amari divergence. Top right:
kernel mutual information. Bottom left: constrained covariance. Bottom right: kernel
generalised variance. Three signals of length 1000 and with respectivedistributionsg, k,
andq (this choice was random) were combined using a 3×3 orthogonal rotation matrix.
This matrix was expressed as a product of Jacobi rotationsB = Rz(θz)Ry(θy)Rx(θx),
whereθx = −π/6, θy = −π/4, andθz = −π/3; the subscript denotes the axis about
which the rotation occurs. An estimateW = Rx(−θx)Ry(θ̂y)Rz(θ̂z) of B−1 was made, in
which θ̂y andθ̂z took values in the range[0,π]. The red “x” in each plot is located at the
coordinates(−θz,−θy) corresponding to the optimal estimate ofB. A Gaussian kernel of
sizeσ2 = 1 was used in all cases, andκ = 10−3 for the KGV.
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Label Definition Kurtosis

a Student’s t distribution, 3 DOF ∞
b Double exponential 3.00
c Uniform -1.20
d Students’st distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70
g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50
j Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
l Asymm. mixture 2 Gauss., unimodal -0.20
m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
o Symmetric mixture 4 Gauss., unimodal -0.40
p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
r Asymm. mixture 4 Gauss., unimodal -0.82

Table 3: Labels of distributions used, and their respective kurtoses. Alldistributions have zero
mean and unit variance.
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Kernels used include the Gaussian RBF kernel in (38), and the Laplace kernel,

kL(x,x
′) =

λ
2

exp(−λ‖x−x′‖).

We combined the independent sources using random mixing matrices, with condition numbers be-
tween 1 and 2, and then whitened the resulting observations before estimatingthe orthogonal de-
mixing matrix.25

Our first experiment consisted in de-mixing data drawn independently from2-16 sources chosen
at random with replacement from Table 3. Results are given in Table 4. The KMI with Gaussian
kernel matches or exceeds KGV performance in the final four experiments; and, with the Laplace
kernel, in five of the seven experiments. Moreover, the KMI yields performance statistically in-
distinguishable from RADICAL in four of the seven experiments.26 On the other hand, the KGV
outperforms the KMI in the first and third case, where the numberm of samples is small (although
in then= 4,m= 1000 case, the difference is not statistically significant). The superior performance
of the Laplace kernel compared with the Gaussian may be due to its slower decaying spectrum,
which allows dependence encoded at higher frequencies in the sourcedensity to induce a greater
departure of COCO from zero (making this dependence easier to detect):see Gretton et al. (2005b,
Section 4.2). The Laplace kernel has a greater computational cost, however, since the eigenvalues of
the associated Gram matrices decay more slowly than for the Gaussian kernel, necessitating the use
of a higher rank in the incomplete Cholesky decomposition to maintain good performance. Finally,
the extended Infomax algorithm seems unable to separate the signals in 250 sample, 2 signal case:
the Amari divergence was spread almost uniformly over the range[0,100].

5.4 Performance on Difficult Artificial Problems

In our next experiment, we investigated the effect of outlier noise added tothe observations. We
selected two generating distributions from Table 3, randomly and with replacement. After combin-
ing these signals with a randomly generated matrix with condition number between 1and 2, we
generated a varying number of outliers by adding±5 (with equal probability) toboth signals at
random locations. All kernels used were Gaussian with sizeσ = 1; Laplace kernels resulted in de-
creased performance for this noisy data. In the case of COCO, this can be explained by functions in
the Laplace RKHS having less penalisation at high frequencies, causing the functions attaining the
supremum in Definition 2 to adapt to (and be affected by) outliers to a greaterdegree than functions
in the Gaussian RKHS (the KMI is also subject to this effect). Results are shown in the left hand
plot in Figure 2. Note that we usedκ = 0.11 for the KGV and KCC in this plot, which is an order of
magnitude above the level recommended by Bach and Jordan (2002a): thisresulted in an improve-
ment in performance (broadly speaking, an increase inκ causes the KGV to approach the KMI, and

25. We did not use simple orthogonal matrices to mix our sources, since this would have lowered the variance in our
estimate ofW, making the problem (slightly) easier than that of estimating a truly random mixing matrix (Cardoso,
1998a).

26. The mean performance of the various methods, both kernel and otherwise, is affected in some experiments by a small
number of misconverged results with large Amari divergence (although misconvergence of the kernel methods does
not always correspond to misconvergence of the Jade initialisation). These results may arise from diversion to local
minima, causing an increase in the overall mean Amari divergence thatdoes not reflect the typical behaviour of the
kernel algorithms. Such outliers occur less often, or not at all, at larger sample sizes, as can be seen by the decreased
variance in these cases.
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the KCC to approach COCO).27 It is clear that the kernel methods substantially outperform both the
standard and recent alternatives in outlier resistance (we omitted the remaining standard methods,
since their performance was worse than FastICA).

An additional experiment was also carried out on the same data, to test the sensitivity of the
KCC and KGV to the choice of the regularisation constantκ. We observe in the right hand plot
of Figure 2 that too small aκ can cause severe underperformance for the KCC and KGV. On the
other hand,κ is required to be small for good performance at large sample sizes in Table 4. A
major advantage of COCO and the KMI is that these do not require any additional tuning beyond
the selection of a kernel.

Our third experiment addresses the effects of low kurtosis, since many ICA methods rely (some-
times implicitly, through their choice of nonlinearity) on the kurtosis as an index ofsignal indepen-
dence. Two samples were drawn from a single distribution, consisting of a mixture of two Gaussians
with means+5 and−5 and unit variance, with a selection of mixture weights chosen such that, fol-
lowing normalisation of the overall sample to zero mean and unit variance, the (empirical) kurtosis
took on a range of positive, near-zero, and negative values. Resultsare given in Figure 3. All
kernel based methods were unaffected by near-zero kurtosis, as were CFICA and RADICAL; the
remaining ICA methods do less well (Infomax was omitted since it performed worse than Jade).

27. The results presented here for the KCC and KGV also improve on those of Learned-Miller and Fisher III (2003);
Bach and Jordan (2002a) since they include a polishing step for the KCC and KGV, which was not carried out in
these earlier studies.
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n m Rep. Fica Jade Imax CFICA RAD KCC COCO(g) COCO(l) KGV KMI(g) KMI(l)

2 250 1000 10.5±0.4 9.5±0.4 44.4±1 7.2±0.3 5.4±0.2 7.0±0.3 7.8±0.3 7.0±0.3 5.3±0.2 6.0±0.2 5.7±0.2
2 1000 1000 6.0±0.3 5.1±0.2 11.3±0.6 3.2±0.1 2.4±0.1 3.3±0.1 3.5±0.1 2.9±0.1 2.3±0.1 2.6±0.1 2.3±0.1
4 1000 100 5.7±0.4 5.6±0.4 13.3±1 3.3±0.2 2.5±0.1 4.5±0.4 4.2±0.3 4.6±0.6 3.1±0.6 4.0±0.7 3.5±0.7
4 4000 100 3.1±0.2 2.3±0.1 5.9±0.7 1.5±0.1 1.3±0.1 2.4±0.5 1.9±0.1 1.6±0.1 1.4±0.1 1.4±0.05 1.2±0.05
8 2000 50 4.1±0.2 3.6±0.2 9.3±0.9 2.4±0.1 1.8±0.1 4.8±0.9 3.7±0.9 5.2±1.3 2.6±0.3 2.1±0.1 1.9±0.1
8 4000 50 3.2±0.2 2.7±0.1 6.4±0.9 1.6±0.1 1.3±0.05 2.1±0.2 2.0±0.1 1.9±0.1 1.7±0.2 1.5±0.1 1.3±0.05
16 5000 25 2.9±0.1 3.1±0.3 9.4±1.1 1.7±0.1 1.2±0.05 3.7±0.6 2.4±0.1 2.6±0.2 1.7±0.1 1.5±0.1 1.5±0.1

Table 4: Illustration of the demixing ofn randomly chosen signals of lengthm, drawn independently with replacement from Table 3. For
COCO and the KMI, we used a Gaussian kernel of sizeσ = 1 in the experiments labelled (g), and a Laplace kernel of sizeλ = 3 for
those experiments labelled (l). In the case of the KCC and KGV, we usedσ = 1 andκ = 2×10−2 for signals of lengthm≤ 1000,
andσ = 0.5 andκ = 2×10−3 for the remaining signals. In all cases, we usedε = 1×10−5 for the Gaussian kernels, andε = 0.01
for the Laplace kernels. We initialised the kernel methods with Jade in all cases butn = 16, for which we used FastICA (due to its
more stable output). The performance figures are an average overRep.independent runs. The best results are shown in boldface, as
are those results statistically indistinguishable from the best according to a level 0.05 left-tailed paired difference t-test.

n Fica Jade Imax CFICA RADICAL KGV KMI

2 0.92±0.07 0.99±0.07 1.07±0.10 0.84±0.06 1.02±0.07 0.65±0.05 0.51±0.13
4 0.93±0.03 0.87±0.03 1.09±0.06 0.89±0.03 0.91±0.03 0.62±0.02 0.68±0.03

Table 5: Illustration of the demixing ofn music segments of lengthm= 55272, taken from the collection of 17 music samples at (Pearl-
mutter). Then = 2 case represents an average over 136 samples, and then = 4 case is an average over 120 samples. Details of
the KGV and KMI parameters may be found in Section 5.5. The best results are shown in boldface, as those results statistically
indistinguishable from the best according to a level 0.05 left-tailed paired difference t-test.
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Figure 2: Left: Effect of outliers on the performance of the ICA algorithms, for two sources of
lengthm = 1000, drawn independently with replacement from Table 3, and corrupted
at random observations with outliers at±5 (where each sign has probability 0.5). Each
point represents an average over 100 independent experiments. Thenumber of corrupted
observations inboth signals is given on the horizontal axis. The kernel methods used
σ = 1, ε = 2× 10−5, andκ = 0.11 (KCC and KGV only). The tanh nonlinearity was
used for the FastICA algorithm, since this is more resistant to outliers than the kurto-
sis (Hyvärinen, 1997).Right: Performance of the KCC and KGV as a function ofκ for
two sources of sizem= 1000, where 25 outliers were added to each source following the
mixing procedure.

5.5 Audio Signal Demixing

Our final experiment involved demixing brief extracts from various musicalsources, which were
combined using a randomly generated matrix (in the same manner as the artificial signals described
in the previous section). A total of 17 different extracts were taken fromthe ICA benchmark set at
(Pearlmutter). These consist of 5 second segments sampled at 11 kHz with aprecision of 8 bits,
and represent a wide variety of musical genres. While samples of a musicalsignal are certainly
not generated independently and identically in time, many ICA algorithms have nonetheless been
applied successfully to this problem, which is why we investigate this benchmark. Indeed, many
practical applications of ICA are in a context where complete independence of the unmixed signals
is nota goal, in theory or in practice: rather, the objective of the linear unmixing is toobtain signals
that are relatively “more independent” than the original observations, in the hope that these will be
physically interpretable in the light of the system generating the data.

A summary of our results is given in Table 5: the KMI, KGV, and CFICA are statistically in-
distinguishable for two extracts, and the KGV does best with four extracts,followed by the KMI.
In then = 2 case, every possible combination of two different extracts was investigated (for a to-
tal of 136 experiments), and the results averaged. We usedκ = 2×10−3, σ = 0.5, ε = 1×10−5,
and a Gaussian kernel for the KGV; andλ = 3, ε = 1×0.01, and a Laplace kernel for the KMI.
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Figure 3: Effect of near-zero kurtosis on the performance of the algorithms, for two signals of
length 1000 drawn from a range of mixtures of two Gaussians. Each pointrepresents an
average over 100 independent experiments. We used a Gaussian kernel with σ = 1 and
precisionε = 2×10−5 for all kernel dependence functionals, andκ = 2×10−2 for the
KCC and KGV.

In both cases, a polishing step was applied to refine the result. For each experiment withn = 4,
music segments were drawn randomly and without replacement from the 17 available extracts, and
the results averaged over 120 repetitions. All kernel algorithm parameters were the same as in the
n = 2 case besides the Laplace kernel size, which was increased toλ = 4. In addition, no polishing
step was applied to the KGV or KMI, since it caused a drop in performance inboth cases.28 Our
use of the Laplace kernel in the KMI was motivated by music generally being super-Gaussian (Bell
and Sejnowski, 1995). Random permutation of time indices was used to reduce the statistical de-
pendence of adjacent samples in the music, since this was found to improve performance (note that
this permutation was carried out on the mixed signals, and was the same for each of the observed
mixtures). It is notable that RADICAL, which performs best in the case of noise-free artificial data,
does not improve on standard methods in the case of musical sources.

Although the results in Table 5 are quite similar for the KGV and KMI, it is instructive to
compare the distribution of the outcomes obtained in each experiment. Generally, the KGV results
are more tightly grouped about their mean, whereas the KMI yields more results at smaller Amari
divergences, but a larger number of outliers with greater error.

6. Conclusions and Outlook

To conclude this study, we provide a summary of our main results in Section 6.1,and explore
directions for future research in Section 6.2.

28. This is perhaps surprising, given that the polishing step caused a minor increase in performance in then= 2 case. On
the other hand, the larger dimension of then = 4 problem makes the global minimum harder to find, and diversion to
local minima more likely.
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6.1 Conclusions

We have introduced two novel functionals to measure independence: the constrained covariance
(COCO), which is the spectral norm of the covariance operator betweenreproducing kernel Hilbert
spaces, and the kernel mutual information (KMI), which is a function of theentire spectrum of the
empirical estimate of this covariance operator. The first quantity is analogous to the kernel canonical
correlation (KCC), which is the spectral norm of the correlation operator; the second is analogous
to the kernel generalised variance (KGV), which is a function of the empirical correlation operator
spectrum (see Table 1 in the introduction). We prove two main results. First, we describe the class
of all reproducing kernel Hilbert spaces for which these four functionals determine independence:
the RKHSs must be universal. Second, we link the KMI and the KGV with the mutual information,
proving the KMI is an upper bound near independence on the Parzen window estimate of the mutual
information, and the KGV is a looser upper bound under certain conditions.We emphasise that the
KMI and KGV do not require the space partitioning or binning approximationsusually associated
with estimates of the mutual information (Paninski, 2003).

Our experiments demonstrate the effectiveness of kernel algorithms in ICA, as compared with
both standard methods (Jade, Fast ICA, and Extended Infomax); and modern approaches (CFICA,
RADICAL). We emphasise that kernel methods (the KMI and KGV in particular) are clearly supe-
rior to the alternatives when outlier noise is present in the observations, and are also best at unmixing
real (musical) signals. In addition, all modern methods are unaffected by the sources having zero
kurtosis, which is not true of earlier algorithms.

Our experiments also point to the superiority of the KMI and KGV over the KCCand COCO
in measuring independence. Since independence of two random variables implies that the entire
spectrum of the associated covariance (or correlation) operator is zero, it comes as no surprise that
measures using the whole spectrum are more robust than those using only the largest singular value.
This intuition remains to be formalised, however.

The choice between the KGV and KMI (or, alternatively, COCO and the KCC) is more compli-
cated. The methods proposed by Bach and Jordan (2002a) appear to do well when there is little data
available, as in then = 2, m= 250 andn = 4,m= 1000 cases in Table 4, although the mechanism
by which this is achieved remains unclear. On the other hand, the KCC and KGV do less well when
the sample size/number of sources are large. The KGV and KCC can also bemore susceptible to
noise in the observations, which is particularly apparent whenκ becomes small29 (and the bound on
mutual information provided by the KGV is looser). Indeed, in our outlier resistance experiments,
the KMI and COCO achieve by default the optimal performance of the KCC and KGV with model
selection overκ. The absence of a separate regularisation parameter in our kernel functionals there-
fore greatly simplifies model selection, especially if the observations are known to be corrupted by
outliers.

6.2 Directions for Future Study

A number of extensions to this work are readily apparent. For instance, thebehaviour of the KMI has
not been studied in detail for more than two univariate random variables, besides the discussion in
Section 3.2 which guarantees it to be zero when the empirical COCO is zero. In particular, it would
be of interest to prove that (30) in Section 3.2 is an upper bound on the Gaussian mutual information,
in the manner described in Section 3.1.5 for two random variables. This wouldincidentally require

29. κ is the regularisation scaling factor for these dependence functionals.
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the link between the Gaussian mutual information and the discrete mutual information, described in
Section 3.1 for the two variable case, to be extended to a greater number of random variables. The
optimisation procedure we use for ICA might also be made faster, for instance by implementing
Newton’s method or conjugate gradient descent on the Stiefel manifold (asdescribed by Edelman
et al. (1998)), rather than simple gradient descent.

We also need to ensure that both the KMI and COCO approach their population expressions
as the sample size increases. In the case of COCO, Gretton et al. (2005b,2004) give probabilistic
bounds for deviations from the expected value using standard tools fromuniform convergence the-
ory. The application of these results to the empirical KMI is less clear, however, since the KMI is
a productof multiple COCO-type quantities, and we do not know what expression it approaches
in the population limit. More generally, it is necessary to further investigate methods for model
selection (i.e., for choosing the kernel size and type) in COCO and the KMI.It is not presently
known whether performance is most effectively tuned by simple cross-validation, using bounds de-
rived from concentration inequalities, or via the properties of Parzen window estimates described
by Silverman (1986).

Many real life problems do not fit neatly into the linear ICA framework: we now outline ways
in which our kernel dependence functionals might be used to improve performance in these more
difficult signal separation problems. First, let us consider the separationof random processes, as
opposed to random variables. It is rare in practice to encounter signals that do not depend on their
previous outputs. Rather, most real signals exhibit statistical dependencies between the observations
at different times (this is obviously true of music, for example). These random processes may be
stationary, meaning that their statistical properties (for instance the mean andcorrelation) do not
change over time; or they may be nonstationary. In both cases, however,the time dependence greatly
assists in separating signals into independent components, the idea being that the independence of
different random processes should hold not only between samples drawn at the same time, but also
between samples drawn atdifferenttimes. Approaches to this problem include that of Belouchrani
et al. (1997), who separate the signals using decorrelation between the sources at any time shift, and
the more general approach of Belouchrani and Amin (1998), who use Cohen’s class time-frequency
kernels to transform the signal and facilitate source separation. The former approach is limited since
it breaks down when the sources have overlapping spectra, due to its using only a second order
dependence measure. Thus, it would be interesting to generalise the approach of Belouchrani et al.
(1997) using kernel measures of dependence, rather than correlation. This generalisation has been
investigated, using the mutual information as a dependence measure, by Stögbauer et al. (2004).

Another generalisation of ICA is the separation of sources when mixing is nonlinear. This is
considerably more difficult than linear ICA, due to the increased complexity of the mixing model.
One simplification, which makes the problem more tractable, is thepost-nonlinearmodel: theith
component of the observation vectort is

ti = fi(bis), (39)

where fi is the ith (unknown) nonlinearity, andbi is the ith row of the mixing matrixB. This
situation corresponds for instance to the observations being distorted by the sensors. Approaches
to this problem include the methods of Taleb and Jutten (1999); Achard et al.(2001, 2003)—a
comparison of these techniques with COCO and the KMI would therefore be of interest (this would
require an efficient optimisation algorithm for our dependence measures under the setting (39)).
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Various efforts have also been made to solve the more general case

t = f (s).

This problem requires additional constraints onf , to avoid a trivial solution via the Darmois de-
composition (Hyvärinen and Pajunen, 1999) (even then, it is generally thecase that each sourcesi

can only be recovered up to a nonlinear distortion; this is the analogue of thescaling indeterminacy
(Theorem 24) in the linear mixing case). It may also be necessary for the observations to arise from
random processes, rather than being i.i.d. For instance, according to Hosseni and Jutten (2003),
enforcing temporal decorrelation over a single time step is sufficient to test whether the recovered
independent processes are simply the result of a Darmois decomposition. While this does not rule
out other transforms that return independent signals unrelated to the sources, it suggests that time
dependencies have a crucial role to play in general nonlinear mixing. In the scheme suggested by
Harmeling et al. (2003), demixing is achieved by mapping the observations to areproducing kernel
Hilbert space, finding a low dimensional basis in the feature space which approximately spans the
subspace formed by the observations, and enforcing the second order temporal decorrelation of pro-
jections onto this basis. The applicability of the KMI is less clear than in the case of post-nonlinear
mixtures, although this might follow from a better understanding of the technique of Harmeling
et al. (2003) and its relation to our work.

Finally, Bach and Jordan (2002b) propose using kernel dependence measures in representing
probability distributions as tree structured graphical models. Fitting these models requires in partic-
ular that the mutual information between pairs of random variables be maximised: thus, Bach and
Jordan compare the KGV to a Parzen window estimate of the mutual information in this context.
Although the Parzen window approach generally performs better, the KGVis also very effective.
We have shown, however, that the KGV is an upper bound (near independence) on the mutual in-
formation: thus the KGV performance is a possible indication of the tightness ofthis upper bound.
Given that the KMI is in theory a tighter upper bound than the KGV, it would beinteresting to
compare its performance with the KGV in this setting.
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Appendix A. Proofs

This appendix contains derivations of the main results in the present study,excluding our discussion
of the original proofs of Bach and Jordan (2002a) (which are in Appendix B).
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A.1 COCO, kernel PCA, and Kernel Target Alignment

In this appendix, we show that COCO is the quantity optimised when obtaining the first principal
component in the kernel principal component analysis (kPCA) method of Schölkopf et al. (1998).
This can be seen as follows: kPCA satisfies the eigenvalue problem

max
‖y‖≤1

y>Ky = λ

(an inequality is used to keep the constraint set convex). This is rewritten

max
‖y‖≤1

y>Ky = max
‖y‖≤1

tr
(

Kyy>
)

= max
‖y‖≤1

∥∥∥Kyy>
∥∥∥

2
,

where the norm in the final line is the largest singular value. The final expression is just COCO2emp,
with feature spaceG := R and inner product30 l(yi ,y j) = yiy j . The difference with respect to the
dependence measurement framework described previously is that we now maximise over the mem-
bersyi of G , rather than being given them in advance. This last argument also showsthat COCO is
optimised in the spectral clustering/kernel target alignment framework of Cristianini et al. (2002).

A.2 Ratio of Determinants

In this appendix, we prove Theorem 11. First, we note that bothA andC must be positive definite,
since they are submatrices of the positive definite matrix (8). Then

∣∣∣∣
[

A B
B> C

]∣∣∣∣
|A| |C| =

∣∣∣∣
[

A B
B> C

]∣∣∣∣
∣∣∣∣
[

A 000
000 C

]∣∣∣∣

(a)
=

∣∣∣∣
[

A B
B> C

]∣∣∣∣
∣∣∣∣
[

A1/2 000
000 C1/2

][
A1/2 000

000 C1/2

]∣∣∣∣

=

∣∣∣∣
[

A−1/2 000
000 C−1/2

][
A B

B> C

][
A−1/2 000

000 C−1/2

]∣∣∣∣

=

∣∣∣∣
[

I A −1/2BC−1/2

C−1/2B>A−1/2 I

]∣∣∣∣ .

(b)
=

∣∣∣I −A−1/2BC−1B>A−1/2
∣∣∣

=
∣∣∣I −C−1/2B>A−1BC−1/2

∣∣∣
(c)
= ∏

i
(1−ρ2

i )

30. Note that the linear kernel used here isnot universal, and thus COCO is not a general dependence functional in this
context: see Section 2.3.
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where (a) requires thatA andC be positive definite,31 (b) uses the relation between the determinant
of a matrix and that of its Schur complement from Horn and Johnson (1985,p. 22), and (c) uses The-
orem 7.3.7 of Horn and Johnson (1985) to determine thatρi are the singular values ofA−1/2BC−1/2.
Note that since (8) has only positive eigenvalues, and the determinant of asymmetric matrix is the
product of the eigenvalues, we are guaranteed

∏
i

(1−ρ2
i ) > 0.

From Horn and Johnson (1985, Theorem 7.3.7), we can writeρi as the positive solutions of the
eigenvalue problem [

000 A−1/2BC−1/2

C−1/2B>A−1/2 000

]
bi = ρibi ,

bearing in mind that these solutions come in pairs with equal magnitude and opposite sign. Rear-
ranging and making an appropriate change of variables yields the generalised eigenvalue problem

[
000 B

B> 000

]
ai = ρi

[
A 0
0 C

]
ai .

A.3 Determinant Form of the Gaussian Mutual Information

In this section, we give a derivation of (18) in Section 3.1.3, which states that

I (xG;yG) = −1
2

log

(∣∣∣∣I ly −
(

Pxy−pxp>
y

)>
D−1

x

(
Pxy−pxp>

y

)
D−1

y

∣∣∣∣
)

. (40)

This result was given without proof by Bach and Jordan (2002a, Appendix B). We begin with the
mutual information betweenxG andyG, which is written

I (xG;yG) = −1
2

log

(

∏
i

(1−ρ2
i )

)
, (41)

whereρi are the positive solutions to the generalised eigenvalue problem
[

000 Pxy−pxp>
y(

Pxy−pxp>
y

)>
000

][
ci

di

]
= ρi

[
Dx−pxp>

x 000
000 Dy−pyp>

y

][
ci

di

]
(42)

(this can be found by substituting the covariances (15)-(17) into (10)).Note that bothDx−pxp>
x

andDy−pyp>
y have ranklx−1 andly−1 respectively, and are not invertible.32 To see this, we make

the expansions

Dx−pxp>
x = Dx

(
I lx −111lxp

>
x

)
= DxEx,

Dy−pyp>
y = Dy

(
I ly −111lyp

>
y

)
= DyEy,

31. A matrix has a square root if and only if it is positive definite.
32. This is why we use (41) as our expression for the mutual information, rather than the ratio of determinants (7) (which

would be undefined here).
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whereEx := I lx −111lxp
>
x andEy := I ly −111lyp

>
y have zero eigenvalues corresponding to the eigenvec-

tors 1√
lx

111lx and 1√
ly

111ly, respectively. In addition, we note that

(
Pxy−pxp>

y

)
Ey =

(
Pxy−pxp>

y

)(
I ly −111lyp

>
y

)

= Pxy−pxp>
y −Pxy111lyp

>
y +pxp>

y 111lyp
>
y

= Pxy−pxp>
y −pxp>

y +pxp>
y

= Pxy−pxp>
y ,

with an analogous result for
(
Pxy−pxp>

y

)>
Ex. We may therefore write (42) as

[
000

(
Pxy−pxp>

y

)
Ey(

Pxy−pxp>
y

)>
Ex 000

][
ci

di

]
= ρi

[
DxEx 000

000 DyEy

][
ci

di

]
,

from which we obtain a generalised eigenvalue problem with identical eigenvaluesρi ,
[

000 Pxy−pxp>
y(

Pxy−pxp>
y

)>
000

][
ei

f i

]
= ρi

[
Dx 000
000 Dy

][
ei

f i

]
.

SinceDx andDy have full rank, we may now apply Theorem 11 to obtain (40).

A.4 Details of Definition 13

In this section, we derive the Parzen window estimate of the Gaussian mutual information provided
in Definition 13. The kernel density (Parzen window) estimates forpx,y and its marginals, on the
basis of the samplezzz, are

p̂x(x) =
1
m

m

∑
l=1

κ(xl −x) , p̂y(y) =
1
m

m

∑
l=1

κ(yl −y) ,

p̂x,y(x,y) =
1
m

m

∑
l=1

κ(xl −x)κ(yl −y) ,

where the kernel argument indicates which kernel is used, to simplify notation. We require approx-
imations to the terms in the Gaussian mutual information, as described in (18). We therefore define
the vectorŝpx, p̂y, and the matrix̂Pxy, using the expectations in (12)-(14) computed with these kernel
expressions;

Êx,y

(
x̌ y̌>

)
= P̂xy, (43)

Êx (x̌) = p̂x, (44)

Êx

(
x̌ x̌>

)
= D̂x. (45)

In the limit where∆x,∆y are small (and thus, by implication,lx �m, ly �m, σx � ∆x, andσy � ∆y,
whereσx andσy define the kernel sizes), we make the approximations

Êx ((x̌)i) = P̂x̂ (i) =
1
m

Z qi+∆x

qi

m

∑
l=1

κ(xl −x)dx≈ ∆x

m

m

∑
l=1

κ(xl −qi) ,

2115



GRETTON, HERBRICH, SMOLA , BOUSQUET ANDSCHÖLKOPF

Êx

((
x̌ x̌>

)
i, j

)
≈
{ ∆x

m ∑m
l=1 κ(xl −qi) i = j

0 otherwise
,

and

Êx,y

((
x̌ y̌>

)
i, j

)
= P̂x̂,ŷ (i, j) =

1
m

Z qi+∆x

qi

Z r j+∆y

r j

m

∑
l=1

κ(xl −x)κ(yl −y)dxdy

≈ ∆x∆y

m

m

∑
l=1

κ(xl −qi)κ(yl − r j) .

Before proceeding further, we define two matrices of kernel inner products to simplify our notation.
Namely,

K l :=




κ(q1−x1) . . . κ(q1−xm)
...

. . .
...

...
. . .

...
κ(qlx −x1) . . . κ(qlx −xm)




, L l :=




κ(r1−y1) . . . κ(r1−ym)
...

. ..
...

...
. ..

...
κ
(
r ly −y1

)
. . . κ

(
r ly −ym

)




, (46)

where we write the above in such a manner as to indicatelx � mandly � m. We now use the above
results to re-write (43)-(45) as respectively

P̂xy− p̂xp̂>
y ≈ ∆x∆y

m

(
K l L>

l − 1
m

K l111m111>mL>
l

)
=

∆x∆y

m
K l HL >

l ,

D̂x ≈ ∆x

m
diag(K l111m) =:

∆2
x

m
D(x)

l ,

and

D̂y ≈ ∆y

m
diag(L l111m) =:

∆2
y

m
D(y)

l ,

where we introduce the terms

D(x)
l =

1
∆x




∑m
l=1 κ(q1−xl ) . . . 0

...
...

...
0 . . . ∑m

l=1 κ(qlx −xl )


 (47)

and

D(y)
l =

1
∆y




∑m
l=1 κ(r1−yl ) . . . 0

...
...

...
0 . . . ∑m

l=1 κ(r ly −yl )


 . (48)

With these substitutions, we can rewrite

(
D̂x

)−1/2(
P̂xy− p̂xp̂>

y

)(
D̂y

)−1/2
≈
(

D(x)
l

)−1/2(
K l H (L l )

>
)(

D(y)
l

)−1/2
,

which results in our definition.
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A.5 Proof of Theorem 16

Our proof of Theorem 16 requires the following lemma.

Lemma 27 (Singular values of a matrix product) Let A, B be m× n matrices, q:= min(m,n),
andA have singular valuesσ1(A), . . . ,σq(A) (ordered from largest to smallest). Thenσ1(AB>) ≤
σ1(A)σ1(B) and

σq(AB>) ≤ min
{

σq(A)σ1(B) ,σ1(A)σq(B)
}

.

.

This is a special case of a result of Horn and Johnson (1985, p. 423). We now proceed with the
proof. The principle we will follow is straightforward: we want to upper bound the Gaussian
mutual information in (20) by upper boundingeachof the ρ̂i that define it. Indeed, if we can find a
matrix to replace (21) with singular valuesαi ≥ ρ̂i for all i, it follows that−1

2 log
(
∏i

(
1−α2

i

))
≥

−1
2 log

(
∏i

(
1− ρ̂2

i

))
. First, we note that±ρ̂i are the eigenvalues of the matrix



(
D(x)

l

)−1
000

000
(

D(y)
l

)−1




︸ ︷︷ ︸
D−1

[
000 K l H (L l )

>

L l H (K l )
> 000

]

︸ ︷︷ ︸
E

.

According to (22),D(x)
l is a diagonal matrix withjth entry 1

∆x
∑m

i=1 κ(xi −q j), which is an unnor-

malised Parzen window estimate ofpx at grid pointq j (an analogous result holds forD(y)
l ). It follows

thatD is diagonal, and we denote itsith largest value asdi (i.e., d1 is the overall maximum); we also
defineσi to be theith singular value ofE. We may obtain a new matrix with singular valuesαi ≥ ρ̂i

by replacing the diagonal entries ofD with their smallest value,33

D → min
i

(di)I

=
νzzz

∆
I , (49)

whereνzzz = min{νxxx,νyyy} and

νxxx := min
j ∈ {1. . . lx}

m

∑
i=1

κ(xi −q j) , νyyy := min
j ∈ {1. . . ly}

m

∑
i=1

κ(yi − r j) . (50)

The singular valuesαi of ( ν
∆ I)−1E satisfy34

ρ̂i ≤ min
{

d−1
lx+ly

σi , d−1
lx+ly−i+1σ1

}

≤ d−1
lx+ly

σi

=
∆
νzzz

σi = αi

33. We assume without loss of generality that∆x = ∆y = ∆, since this simplifies notation.
34. Bear in mind that due to the ordering of the singular values, maxj d−1

j = d−1
lx+ly

; and thed−1
j are sorted in reverse

order to thed j .
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for all i, where the first inequality derives from Lemma 27. Rather than computing theminima in
(50) over the grid, however, we may simply use

νxxx := min
j ∈ {1. . .m}

m

∑
i=1

κ(xi −x j) , νyyy := min
j ∈ {1. . .m}

m

∑
i=1

κ(yi −y j) ,

which are respectively the smallest (unnormalised) Parzen window estimatesof px andpy at any
sample point: these approach the smallest values ofpx on X , and ofpy on Y , as the sample size
increases (the densities are bounded away from zero by assumption).

Having made the replacement in (49), it is straightforward to take a limit in which the grid
becomes infinitely fine. We begin by rearranging the Lemma 13 definition as

Î (x̂; ŷ) ≤ −1
2

log

∣∣∣∣∣I −
(

∆
νzzz

)2(
K l H (L l )

>
)(

K l H (L l )
>
)>
∣∣∣∣∣

= −1
2

log

∣∣∣∣∣I −
(

∆
νzzz

)2(
HK >

l K l H
)(

HL >
l L l H

)∣∣∣∣∣ .

We then have the limiting result

lim
lx→∞

(
∆x

νzzz
K>

l K l

)

i. j
= ν−1

zzz lim
lx→∞

∆x

lx

∑
p=1

κ(xi −qp)κ(x j −qp)

= ν−1
zzz

Z

X
κ(xi −q)κ(x j −q)dq

= ν−1
zzz k(xi ,x j),

where we recover our RKHS kernel as the convolution of the kernel density functions at each pair
of data points.

A.6 Proof of Theorem 18

In this section, we prove that the KGV upper bounds the KMI when conditions (28) hold. We recall
the definition of theunregularisedKGV,35 which occurs atθ = 1. It follows from Lemma 9 that

KGV (zzz;F,G,1) = ∞,

since the associated eigenvaluesρi in (27) are all either 1,−1, or 0 (given we use universal kernels,
there will be at least one pair of non-zero eigenvalues). Conversely,whenθ = 0, we recover the
KMI. It remains to show that increasingθ from 0 to 1 causes the KGV to increase monotonically.

We may rearrange the eigenvalue problem in (27) as




I
(

θK̃ +(1−θ)νI
)−1

L̃
(

θL̃ +(1−θ)νI
)−1

K̃ I



[

ci

di

]
= (1+ρi)

[
ci

di

]
.

35. We emphasise that only the regularised KGV is used in practice.
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Then

KGV (zzz;F,G,θ) = − log

∣∣∣∣∣∣∣




I
(

θK̃ +(1−θ)νzzzI
)−1

L̃
(

θL̃ +(1−θ)νzzzI
)−1

K̃ I




∣∣∣∣∣∣∣

= − log

∣∣∣∣I −
(

θK̃ +(1−θ)νzzzI
)−1

L̃
(

θL̃ +(1−θ)νzzzI
)−1

K̃

∣∣∣∣ .

We now use the result that ifA′ � A � 000 andB′ � B � 000, thenA′B′ � AB (this is a straightforward
corollary to Theorem 7.7.3 of Horn and Johnson, 1985). The desired result then holds as long as

θ′K̃ +(1−θ′)νzzzI ≺ θK̃ +(1−θ)νzzzI

whenθ′ > θ (as well as the analogous result forθL̃ +(1−θ)νzzzI ), which means

(θ−θ′)K̃ +(θ′−θ)νzzzI � 0 and (θ−θ′)L̃ +(θ′−θ)νzzzI � 0,

or

νzzzI − K̃ � 0 and νzzzI − L̃ � 0. (51)

A.7 Proof of Lemma 22

In this section, we show that the multivariate KMI is zero if and only if the empirical COCO be-
tween each pair of random variables is zero. This may be shown via a minor adaptation of the
corresponding proof of Bach and Jordan (2002a, Appendix A.2). First, we may rewrite each factor
λ̆ j +1 in (30) as the solution to




I ν−1
zzz K̃1/2

1 K̃1/2
2 . . . ν−1

zzz K̃1/2
1 K̃1/2

n

ν−1
zzz K̃1/2

2 K̃1/2
1 I . . . ν−1

zzz K̃1/2
2 K̃1/2

n
...

...
. ..

...

ν−1
zzz K̃1/2

n K̃1/2
1 ν−1

zzz K̃1/2
n K̃1/2

2 . . . I







d1, j

d2, j
...

dn, j


=

(
λ̆ j +1

)



d1, j

d2, j
...

dn, j


 ,

whereK̃1/2
i ci, j = di, j , bearing in mind that the determinant of the left hand matrix is the product

of these eigenvalues. Since the left hand matrix is symmetric, the trace is equalto the sum of the
eigenvalues, and

mn

∑
j=1

(
λ̆ j +1

)
= mn. (52)
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Assuming without loss of generality that the themnth eigenvalue corresponds toλ̆max := λmax/νzzz,
we rewrite (30) as

−1
2

log
mn

∏
j=1

(
1+ λ̆ j

)
= −1

2
log(1+ λ̆max)−

1
2

log
mn−1

∏
j=1

(
1+ λ̆ j

)

= −1
2

log(1+ λ̆max)−
mn−1

2

mn−1

∑
j=1

1
mn−1

log
(

1+ λ̆ j

)

≥ −1
2

log(1+ λ̆max)−
mn−1

2
log

(
1

mn−1

mn−1

∑
j=1

(
1+ λ̆ j

))

= −1
2

log(1+ λ̆max)−
mn−1

2
log

(
mn− λ̆max−1

mn−1

)
,

where the penultimate line uses Jensen’s inequality, and we substitute (52) in the final line. The
resulting expression is strictly convex with respect toλ̆max (its second derivative is everywhere
positive), and has a global minimum atλ̆max = 0. It follows that (30) is likewise minimised at
KMI (zzz;FX1, . . . ,FXn) = 0 (at which point̆λ j = 0 for all j), and that this corresponds to the point at
which all pairs of empirical constrained covariances are zero, using Definition 19 and Lemma 20.

Appendix B. Discussion of Bach and Jordan’s Derivation of the KGV

This appendix contains a demonstration of the need for regularisation whenestimating the canonical
correlation in high dimensional spaces, and a discussion of the original KGV derivation of Bach and
Jordan (2002a).

B.1 Computation of the Unregularised Kernel Canonical Correlations

In this section, we prove Lemma 9, which is used to show a regularised empirical estimate for the
kernel canonical correlates is needed when the associated RKHSs have high dimension. We begin
with (5), which we restate below for reference;

[
000 K̃ L̃

L̃ K̃ 000

][
ci

di

]
= ρi




(
K̃
)2

000

000
(

L̃
)2



[

ci

di

]
.

This is equivalent to




000
(

K̃−
)2

K̃ L̃
(

L̃−
)2

L̃ K̃ 000



[

ci

di

]
= ρi

[
ci

di

]
,
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where we use the pseudoinverses since the Gram matrices do not have full rank. If we recall thatH
is the centring matrix, then the solutionsρi correspond to the solutions of

0 =

∣∣∣∣∣∣∣

−ρI
(

K̃−
)2

K̃ L̃
(

L̃−
)2

L̃ K̃ −ρI

∣∣∣∣∣∣∣

= |ρI |
∣∣∣∣ρI − 1

ρ

(
L̃−
)2

L̃ K̃
(

K̃−
)2

K̃ L̃

∣∣∣∣

= |ρI |
∣∣∣∣ρI − 1

ρ
H

∣∣∣∣

= ρm

(
ρ2−1

)m−1

ρm−2 ,

which hasm− 1 roots+1, m− 1 roots−1, and 2 roots 0. To avoid this problem, a regularised
empirical estimate is used, as shown by Bach and Jordan (2002a); Fukumizu et al. (2005); Leurgans
et al. (1993).

B.2 Discussion of the KGV Proof of Bach and Jordan (2002a)

In this section, we describe a possible problem in the derivation by Bach and Jordan (2002a, Ap-
pendix B) of the kernel generalised variance (KGV). We begin with a quick summary of the steps
from Section 3 needed to get us to the point where the proof begins.36 Assume thatX andY are
both bounded intervals onR. In Section 3.1.2, we recall the standard result from Cover and Thomas
(1991) that the mutual informationI(x,y) between two real-valued, univariate random variables
x ∈ X andy ∈ Y can be approximated by imposing a uniform grid of sizelx× ly overX ×Y , and
defining a multinomial distribution over the discrete valued random variables ˆx ∈ {1, . . . , lx} and
ŷ ∈ {1, . . . , ly} using the probability mass in the resulting bins (this multinomial distribution is de-
scribed by the matrixPxy of joint probabilities, with marginal distribution vectorspx andpy).37 We
denote the resulting discrete mutual information asI (x̂; ŷ). In Section 3.1.3, we approximateI (x̂; ŷ)
using theGaussianmutual informationI (xG;yG) between vectorsxG;yG, defined to have the same
covariance ašx andy̌, wherex̂ = i is equivalent to(x̌)i = 1 and(x̌) j : j 6=i = 0 (likewise forŷ). Bach
and Jordan (2002a, Appendix B.1) show this approximation holds when therandom variables are
close to independence, in which case

I (x̂; ŷ) ≈ I (xG;yG) = −1
2

log

(

∏
i

(1−ρ2
i )

)
,

whereρi are the positive solutions to the generalised eigenvalue problem
[

000 Pxy−pxp>
y(

Pxy−pxp>
y

)>
000

][
ci

di

]
= ρi

[
Dx−pxp>

x 000
000 Dy−pyp>

y

][
ci

di

]
,

andDx = diag(px), Dy = diag(py) (see (41) in Appendix A.3).

36. The reader is strongly advised to consult Sections 3.1.1-3.1.3 before proceeding, since the following discussion might
not otherwise make much sense.

37. The approximation becomes exact in the limit of an infinitely fine grid.
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We are now at the point where we can describe the reasoning of Bach and Jordan (2002a,
Appendix B.3) in establishing a link betweenI (x̂; ŷ) and the KGV. Rather than replacing ˆx andŷ by
xG andyG, we may instead replace them with thesmoothed approximations

kl = ∆x
[

k(x,q1) · · · k(x,qlx)
]>

and ll = ∆y
[

l(y, r1) . . . l(y, r ly)
]>

(53)

to xG andyG, respectively, wherek(·, ·) and l(·, ·) are the RKHS kernels forF and G , and the
grid coordinatesqqq := (q1, . . . ,qlx) andrrr := (r1, . . . , r ly) are defined in Section 3.1.2.38 We can of
course specify the Gaussian mutual informationI(kl ; ll ) between these smoothed vectors, using
the appropriate log ratio of determinants. Two questions then arise. First, does this smoothed ap-
proximationI(kl ; ll ) approach the Gaussian mutual informationI (xG;yG) as the kernel size drops?
Second, under what conditions does the empirical estimate ofI(kl ; ll ) correspond to the KGV? We
now describe the approach of Bach and Jordan (2002a) to solving the first question, and postpone
discussion of the second question to the end of the section.

The link between the Gaussian approximation to the discrete mutual information and the KGV
could be shown by demonstrating

Pxy
?≈ ∆x∆yEx,y

(
kl l

>
l

)
, Dx

?≈ ∆2
xEx

(
klk

>
l

)
, px

?≈ ∆xEx (kl ) (54)

under appropriate conditions, with similar results for the terms iny. We consider the case where
both kernels are Gaussian; that is,

k(x−qi) =
1√

2πσ2
x

exp

(
−(x−qi)

2

2σ2
x

)
,

l(y− r j) =
1√

2πσ2
y

exp

(
−(y− r j)

2

2σ2
y

)
,

bearing in mind that the impulse function is a limiting case (Bracewell, 1986);

δqi (x) = lim
σx→0

1√
2πσ2

x

exp

(
−(x−qi)

2

2σ2
x

)
:= lim

σx→0
k(x−qi) . (55)

To compute the covariance structure of the vectors in (53), we require expressions for the expecta-
tions

Ex,y

(
kl l

>
l

)
, Ex (kl ) , Ex

(
klk

>
l

)
,

Ey

(
ll l

>
l

)
, Ey (ll ) .

The expectation of individual entries in the matrixkl l
>
l is

Ex,y [k(qi ,x)l(r j ,y)] =
Z

X

Z

Y
k(x−qi)l(y− r j)px,y(x,y)dxdy

=
[
k(x)l(y)?px,y(x,y)

]
(qi , r j),

38. We use a sans-serif font to definekl andll , to indicate that these are random vectors. In addition, Bach and Jordan
(2002a) define these quantities without multiplying by∆x and∆y, but we believe these scalings to be necessary: see
below.
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which is the convolution of the product of kernels with the underlying (unknown) densitypx,y(x,y)
of the random variablesx,y, evaluated atqi , r j . Since the kernels are normalised, the above expec-
tation is also a probability density, smoothed byk(x)l(y). Similarly,

Ex [k(qi ,x)k(q j ,x)] =
Z

X
k(x−qi)k(x−q j)px(x)dx

≈
{ [

k2(x)?px(x)
]
(qi) i = j

0 otherwise
,

where the above assumesσx � ∆x � 1. Note, however, that

k2(x−qi) =
1

2πσ2
x

exp

(
−(x−qi)

2

σ2
x

)
(56)

=
1

2σx
√

π
× 1√

πσ2
x

exp

(
−(x−qi)

2

σ2
x

)
, (57)

and thusk2(x) is not a probability density (the integral overR is equal to 1
2σx

√
π ). Finally,

Ex [k(qi,,x)] =
Z

R

k(x−qi)px(x)dx

= [k(x)?px(x)] (qi).

In the light of these observations, it might seem that the relations in (54) ought to hold in the
limit as ∆x,∆y → 0 andσx,σy → 0, so long asσx � ∆x andσy � ∆y: the grid size must be small to
allow us to make the approximations

Px̂ (i) =
Z qi+∆x

qi

px (x)dx≈ ∆xpx (qi)

and

Px̂,ŷ (i, j) =
Z qi+∆x

qi

Z r j+∆y

r j

px,y(xy)dxdy≈ ∆x∆ypx,y(qi , r j),

and the kernel size is made small so that the kernel functions approach delta functions (although the
squared kernel functions do not do so). In other words, the limit in the kernel size is takenbeforethe
limit in the grid size. We can then write population expression for the kernel generalised variance,
in the limit of small kernel size, as

lim
σx,σy→0

I(kl ; ll )

= lim
σx,σy→0

−1
2

log

(∣∣∣∣I −
(
Ex,y

(
kl l

>
l

)
−Ex (kl )Ey

(
l>l
))>(

Ex

(
klk

>
l

)
−Ex (kl )Ex

(
k>l
))−1

×
(
Ex,y

(
kl l

>
l

)
−Ex (kl )Ey

(
l>l
))(

Ey

(
ll l

>
l

)
−Ey (ll )Ey

(
l>l
))−1

∣∣∣∣
)

≈ lim
σx,σy→0

−1
2

log

(∣∣∣∣∣I −
(

Pxy−pxp>
y

)>( ∆x

2σx
√

π
Dx−pxp>

x

)−1

×
(

Pxy−pxp>
y

)( ∆y

2σy
√

π
Dy−pyp>

y

)−1
∣∣∣∣∣

)

= 0,
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where we use the expression for the squared kernel in (57). In otherwords,I(kl ; ll ) doesnot ap-
proachI (x̂; ŷ) as the kernel size decreases. This problem reveals the need to enforce the opposite
assumption to that made above, namelyσx � ∆x andσy � ∆y (see Section 3.1.4).39

We conclude this section with a brief discussion of the link between the empiricalestimate
of I(kl ; ll ) and the KGV. As described by Bach and Jordan (2002a) and by Gretton(2003, Sec-
tion 9.2.3, Appendix D.5.2), an empirical estimate ofI(kl ; ll ) is obtained via the usual expression
(9), whereρi are the solutions to the generalised eigenvalue problem

[
000 K l H (L l )

>

L l H (K l )
> 000

][
ci

di

]
= ρi

[
K l H (K l )

> 000
000 L l H (L l )

>

][
ci

di

]
, (58)

and K l and L l are defined in Section 3.1.4 (replacing the Parzen windows with the appropriate
RKHS kernels). This is simply the kernel CCA problem, but with the solutions expressed in terms
of linear combinations of the grid pointsqqq andrrr mapped intoF andG , respectively. As the grid
becomes infinitely fine, and assumingk(·, ·) and l(·, ·) to be continuous, we recover the standard
kernel CCA formulation.40

39. Also bear in mind that the expression for the KGV used in practice is defined in the limit of infinitely small grid size,

but with finite kernel size, rather than vice versa. That said, the ratios∆x
σx

and ∆y

σy
suggest a possible resolution of this

convergence problem might be to decrease the kernel size and the gridspacing at the same time, as the number of
samples rises.

40. This is not a proof - we would need to formally establish both convergence of the kernel CCA solutions in the limit of
an infinitely fine grid size, and to demonstrate that the converged solutions liein the span of the mapped data. These
details fall outside the scope of the present study.

2124



KERNEL METHODS FORMEASURING INDEPENDENCE

References

S. Achard, D.-T. Pham, and C. Jutten. Blind source separation in post-nonlinear mixtures. In3rd
International Conference on ICA and BSS, 2001.

S. Achard, D.-T. Pham, and C. Jutten. Quadratic dependence measure for nonlinear blind source
separation. In4th International Conference on ICA and BSS, 2003.

S. Akaho. A kernel method for canonical correlation analysis. InProceedings of the International
Meeting of the Psychometric Society (IMPS2001), 2001.

S.-I. Amari, A. Cichoki, and Y. H. A new learning algorithm for blind signal separation. InAdvances
in Neural Information Processing Systems, volume 8, pages 757–763. MIT Press, 1996.

F. Bach and M. Jordan. Kernel independent component analysis - (matlab code, version 1.1).
http://www.cs.berkeley.edu/~fbach/kernel-ica/index.htm

F. Bach and M. Jordan. Kernel independent component analysis.Journal of Machine Learning
Research, 3:1–48, 2002a.

F. Bach and M. Jordan. Tree-dependent component analysis. InUncertainty in Artificial Intelli-
gence, volume 18, 2002b.

C. R. Baker. Mutual information for gaussian processes.SIAM Journal on Applied Mathematics,
19(2):451–458, 1970.

C. R. Baker. Joint measures and cross-covariance operators.Transactions of the American Mathe-
matical Society, 186:273–289, 1973.

G. Bakır, A. Gretton, M. Franz, and B. Schölkopf. Multivariate regression with stiefel constraints.
Technical Report 101, Max Planck Institute for Biological Cybernetics,2004.

A. Bell and T. Sejnowski. An information-maximization approach to blind separation and blind
deconvolution.Neural Computation, 7(6):1129–1159, 1995.

A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines. A blind source separation tech-
nique using second order statistics.IEEE Transactions on Signal Processing, 45(2):434–444,
1997.

A. Belouchrani and M. G. Amin. Blind source separation based on time-frequency signal represen-
tations.IEEE Transactions on Signal Processing, 46(11):2888–2897, 1998.

R. N. Bracewell.The Fourier Transform and its Applications. McGraw Hill, New York, 1986.

L. Breiman and J. Friedman. Estimating optimal transformations for multiple regression and corre-
lation. Journal of the American Statistical Association, 80:580–598, 1985.

J.-F. Cardoso. Blind signal separation: statistical principles.Proceedings of the IEEE, 90(8):2009–
2026, 1998a.

J.-F. Cardoso. Multidimensional independent component analysis. InICASSP, 1998b.

2125



GRETTON, HERBRICH, SMOLA , BOUSQUET ANDSCHÖLKOPF

A. Chen and P. Bickel. Consistent independent component analysis andprewhitening. Technical
report, Berkeley, 2004.

A. Cichocki and S.-I. Amari.Adaptive Blind Signal and Image Processing. John Wiley and Sons,
New York, 2002.

P. Comon. Independent component analysis, a new concept?Signal Processing, 36:287–314, 1994.

T. M. Cover and J. A. Thomas.Elements of Information Theory. John Wiley and Sons, New York,
1991.

N. Cristianini, J. Shawe-Taylor, and J. Kandola. Spectral kernel methods for clustering. InNIPS,
volume 14, Cambridge, MA, 2002. MIT Press.

J. Dauxois and G. M. Nkiet. Nonlinear canonical analysis and independence tests. Annals of
Statistics, 26(4):1254–1278, 1998.

R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Wiley, New York, second edition,
2001.

A. Edelman, T. Arias, and S. Smith. The geometry of algorithms with orthogonalityconstraints.
SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.Journal
of Machine Learning Research, 2(Dec):243–264, 2001.

K. Fukumizu, F. Bach, and A. Gretton. Consistency of kernel canonical correlation analysis. Tech-
nical Report 942, Institute of Statistical Mathematics, 2005.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with
reproducing kernel hilbert spaces.Journal of Machine Learning Research, 5:73–99, 2004.

M. Greenacre.Theory and Applications of Correspondence Analysis. Academic Press, London,
1984.

A. Gretton. Kernel Methods for Classification and Signal Separation. PhD thesis, Cambridge
University Engineering Department, 2003.

A. Gretton, O. Bousquet, A. Smola, and B. Schoelkopf. Measuring statistical dependence with
hilbert-schmidt norms. Technical Report 140, MPI for Biological Cybernetics, 2005a.

A. Gretton, R. Herbrich, and A. Smola. The kernel mutual information. Technical report, Cambridge
University Engineering Department and Max Planck Institute for BiologicalCybernetics, 2003a.

A. Gretton, R. Herbrich, and A. Smola. The kernel mutual information. InICASSP, volume 4,
pages 880–883, 2003b.

A. Gretton, A. Smola, O. Bousquet, and R. Herbrich. Behaviour and convergence of the constrained
covariance. Technical Report 130, MPI for Biological Cybernetics,2004.

2126



KERNEL METHODS FORMEASURING INDEPENDENCE

A. Gretton, A. Smola, O. Bousquet, R. Herbrich, A. Belitski, M. Augath, Y.Murayama, J. Pauls,
B. Schölkopf, and N. Logothetis. Kernel constrained covariance fordependence measurement.
In AISTATS, volume 10, 2005b.

D. Hardoon, J. Shawe-Taylor, and O. Friman. KCCA for fMRI analysis. In Proceedings of Medical
Image Understanding and Analysis, London, 2004.

S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel-based nonlinear blind source
separation.Neural Computation, 15(5):1089–1124, 2003.

S. Haykin. Neural Networks : A Comprehensive Foundation. Macmillan, New York, 2nd edition,
1998.

M. Hein and O. Bousquet. Kernels, associated structures, and generalizations. Technical Report
127, Max Planck Institute for Biological Cybernetics, 2004.

R. A. Horn and C. R. Johnson.Matrix Analysis. Cambridge University Press, Cambridge, 1985.

S. Hosseni and C. Jutten. On the separability of nonlinear mixtures of temporally correlated sources.
IEEE Signal Processing Letters, 10(2):43–46, 2003.

A. Hyvärinen. One-unit contrast functions for independent component analysis: A statistical anal-
ysis. InProc. IEEE Neural Networks for Signal Processing Workshop, pages 388–397, 1997.

A. Hyvärinen, J. Karhunen, and E. Oja.Independent Component Analysis. John Wiley and Sons,
New York, 2001.

A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and unique-
ness results.Neural Networks, 12(3):429–439, 1999.

A. Hyvärinen and M. Plumbley. Optimization with orthogonality constraints: a modified gradient
method. Unpublished note, 2002.

Y. I. Ingster. Asymptotically minimax testing of the hypothesis of independence. Zap. Nauchn.
Seminar. LOMI, 153 (1986) pp. 60-72, Translation in J. Soviet. Math., 44:466–476, 1989.

J. Jacod and P. Protter.Probability Essentials. Springer, New York, 2000.

M. Kuss. Kernel multivariate analysis. Master’s thesis, Technical University of Berlin, 2001.

P. Lai and C. Fyfe. Kernel and nonlinear canonical correlation analysis. International Journal of
Neural Systems, 10(5):365–377, 2000.

E. Learned-Miller and J. Fisher III. ICA using spacings estimates of entropy. JMLR, 4:1271–1295,
2003.

T.-W. Lee, M. Girolami, A. Bell, and T. Sejnowski. A unifying framework forindependent compo-
nent analysis.Computers and Mathematics with Applications, 39:1–21, 2000.

S. E. Leurgans, R. A. Moyeed, and B. W. Silverman. Canonical correlation analysis when the data
are curves.Journal of the Royal Statistical Society, Series B (Methodological), 55(3):725–740,
1993.

2127



GRETTON, HERBRICH, SMOLA , BOUSQUET ANDSCHÖLKOPF

T. Melzer, M. Reiter, and H. Bischof. Kernel canonical correlation analysis. Technical Report
PRIP-TR-65, Pattern Recognition and Image Processing Group, TU Wien, 2001.

E. Mourier. Éléments aléatoires dans un éspace de Banach.Ann. Inst. H. Poincaré Sect B., 161:
161–244, 1953.

L. Paninski. Estimation of entropy and mutual information.Neural Computation, 15:1191–1253,
2003.

A. Papoulis.Probability, Random Variables, and Stochastic Processes. McGraw Hill, New York,
1991.

B. Pearlmutter. Music samples to illustrate the context-sensitive generalisation of ICA.
http://www.cs.unm.edu/~bap/demos.html

D.-T. Pham. Fast algorithms for mutual information based independent component analysis.IEEE
Transactions on Signal Processing, 2002. Submitted.

D.-T. Pham and P. Garat. Blind separation of mixture of independent sources through a quasi-
maximum likelihood approach.IEEE Transactions on Signal Processing, 45(7):1712–1725,
1997.

A. Rényi. On measures of dependence.Acta Math. Acad. Sci. Hungar., 10:441–451, 1959.

R. Rosipal and L. Trejo. Kernel partial least squares regression in reproducing kernel hilbert spaces.
Journal of Machine Learning Research, 1(2):97–123, 2001.

A. Samarov and A. Tsybakov. Nonparametric independent component analysis. Bernoulli, 10:
565–582, 2004.

B. Schölkopf and A. Smola.Learning with Kernels. MIT press, Cambridge, MA, 2002.

B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue
problem.Neural Computation, 10:1299–1319, 1998.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, Cambridge, UK, 2004.

B. Silverman.Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York,
1986.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines.JMLR,
2, 2001.

H. Stögbauer, A. Kraskov, S. A. Astakhov, and P. Grassberger. Least dependent component analysis
based on mutual information.Phys. Rev. E, 70(6):066123, 2004.

A. Taleb and C. Jutten. Source separation in post-nonlinear mixtures.IEEE Transactions on Signal
Processing, 47(10):2807–2820, 1999.

F. Theis. Blind signal separation into groups of dependent signals usingjoint block diagonalisation.
In ISCAS, pages 5878–5881, 2005.

2128



KERNEL METHODS FORMEASURING INDEPENDENCE

T. van Gestel, J. Suykens, J. de Brabanter, B. de Moor, and J. Vanderwalle. Kernel canonical cor-
relation analysis and least squares support vector machines. InProceedings of the International
Conference on Artificial Neural Networks (ICANN). Springer Verlag, 2001.

X.-L. Zhu and X.-D. Zhang. Adaptive RLS algorithm for blind source separation using a natural
gradient.IEEE Signal Processing Letters, 9(12):432–435, 2002.

L. Zwald, O. Bousquet, and G. Blanchard. Statistical properties of kernel principal component
analysis. InProceedings of the 17th Conference on Computational Learning Theory(COLT),
2004.

2129





Journal of Machine Learning Research 6 (2005) 2131–2152 Submitted 1/03; Revised 7/05; Published 12/05

Efficient Margin Maximizing with Boosting ∗
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Abstract
AdaBoost produces a linear combination of base hypotheses and predicts with the sign of this linear
combination. The linear combination may be viewed as a hyperplane in feature space where the
base hypotheses form the features. It has been observed thatthe generalization error of the algo-
rithm continues to improve even after all examples are on thecorrect side of the current hyperplane.
The improvement is attributed to the experimental observation that the distances (margins) of the
examples to the separating hyperplane are increasing even after all examples are on the correct side.

We introduce a new version of AdaBoost, called AdaBoost∗
ν, that explicitly maximizes the

minimum margin of the examples up to a given precision. The algorithm incorporates a current es-
timate of the achievable margin into its calculation of the linear coefficients of the base hypotheses.
The bound on the number of iterations needed by the new algorithms is the same as the number
needed by a known version of AdaBoost that must have an explicit estimate of the achievable mar-
gin as a parameter. We also illustrate experimentally that our algorithm requires considerably fewer
iterations than other algorithms that aim to maximize the margin.

1. Introduction

Boosting algorithms are greedy methods for forming linear combinations of base hypotheses. In the
most common scenario the algorithm is given a fixed set of labeled training examples and in each
iteration updates a distribution on these examples (i.e. a set of non-negativeweights that sum to
one). It then is given abasehypothesis whose weighted error (probability of wrong classification)
is slightly below 50%. This base hypothesis is used to update the distribution on the examples:
The algorithm increases the weights of those examples that were wrongly classified by the base
hypothesis. At the end of each stage the base hypothesis is added to the linear combination, and the
sign of this linear combination forms the current hypothesis of the boosting algorithm.

∗. Part of this work was done while G. Rätsch was at Fraunhofer FIRST Berlin, at UC Santa Cruz, the Australian
National University and the Max Planck Institute for biological Cybernetics. G. R̈atsch was partially funded by DFG
under contract JA 379/91, JA 379/71, MU 987/1-1 and by EU in the NeuroColt II project. M.K. Warmuth and visits
of G. Rätsch to UC Santa Cruz were partially funded by the NSF grant CCR-9821087. G. R̈atsch thanks S. Mika, S.
Sonnenburg, S. Lemm and K.-R. Müller for discussions. M.K. Warmuth thanks J. Liao and Karen Glocer for their
help.
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The most well known boosting algorithm is AdaBoost (Freund and Schapire, 1997). It is ”adap-
tive” in that the linear coefficient of the base hypothesis depends on the weighted error of the base
hypothesis at the time when the base hypothesis was added to the linear combination. AdaBoost
has two interesting properties. First, along with earlier boosting algorithms (Schapire, 1992; Freund,
1995), its training error has the following exponential convergence property: if the weighted train-
ing error of thet-th base hypothesis isεt = 1

2 −
1
2γt , then an upper bound on the training error of

the signed linear combination is reduced by a factor of 1− 1
2γ2

t at staget. Second, it has been ob-
served experimentally that AdaBoost continues to “learn” even after the training error of the signed
linear combination is zero (Schapire et al., 1998). That is, in experiments thegeneralization error
continues to improve. The signed linear combination can be viewed as a homogeneoushyperplane
in a feature space, where each base hypothesis represents one feature or dimension. We define the
marginof an example as a signed distance to the hyperplane times its± label (See Section 2 and
Appendix A for precise definitions). As soon as the training error is zero,the examples are on the
right side and all have positive margin. It has also been observed that the margins of the examples
continue to increase even after the training error is zero. There are theoretical bounds on the gen-
eralization error of linear classifiers (e.g. Schapire et al., 1998; Breiman, 1999; Koltchinskii et al.,
2001) that improve with the margin of the classifier, which is defined as the sizeof the minimum
margin of the examples. Thus the fact that the margins improve experimentally seems to explain
why AdaBoost still learns after the training error is zero.

There is one flaw in this argument: AdaBoost has not been proven to maximizethe margin of the
final hypothesis. We demonstrate this experimentally in Section 5. Moreover,Rudin et al. (2004a,
2005) recently showed that there are cases where AdaBoost provably does not maximize the margin.
Breiman (1999) proposed a modified algorithm – called Arc-GV (Arc ing-GameValue) – suitable
for this task and showed that itasymptoticallymaximizes the margin. Similar results are shown in
Grove and Schuurmans (1998) and Bennett et al. (2000). In this paper we present an algorithm that
produces a final hypothesis with margin at leastρ∗−ν, whereρ∗ is the unknown maximum margin
achievable by any convex combination of base hypotheses andν a precision parameter.

If we know ρ∗, then a linear combination with margin at leastρ∗ − ν can be found by a pa-
rameterized version of AdaBoost called AdaBoostρ (cf. Rätsch et al. (2001); R̈atsch and Warmuth
(2002)): When the parameterρ of AdaBoostρ is set toρ∗ − ν, then after2lnN

ν2 iterations, where
N is the number of examples, the margin of the produced linear combination is guaranteed to be
at leastρ∗ − ν. The case whenρ∗ is not known is more difficult. In a preliminary conference
paper (R̈atsch and Warmuth, 2002) we used AdaBoostρ iteratively in a binary search like fashion:
log2(2/ν) calls to AdaBoostρ are guaranteed to produce a margin at leastρ∗−ν. All but the last call
to AdaBoostρ are used to find a suitable value of the parameterρ and in the last call this parameter
is used to create the final linear combination in at most2lnN

ν2 iterations.
In this paper we greatly simplify our answer for the case whenρ∗ is unknown. We have a

newone passalgorithm called AdaBoost∗ν that produces a linear combination with margin at least
ρ∗−ν after 2lnN

ν2 iterations. Note that this is the same guarantee we had on the number of iterations
of AdaBoostρ when it used the theoretically optimal parameterρ = ρ∗ − ν. The new algorithm
AdaBoost∗ν uses the parameterν and acurrent estimateof the achievable margin in the computation
of the linear coefficients of the base learners.

Except for the algorithm presented in the previous conference paper,this is the first result on
the fast convergence of a boosting algorithm to the maximum margin solution thatworks for all
ρ∗ ∈ [−1,1]. Using previous results one can only show that AdaBoostasymptoticallyconverges to
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a final hypothesis with margin at leastρ∗/2 if ρ∗ > 0 and if subtle conditions on the chosen base
hypotheses are satisfied (cf. Corollary 5).

Recently other versions of AdaBoost have been published that are guaranteed to produce a lin-
ear combination of margin at leastρ∗ − ν after Ω(ν−3) iterations (Rudin et al., 2004c,b). Even
though these algorithms have weaker iteration bounds than AdaBoost∗

ν, they were reported to per-
form better experimentally (Rudin et al., 2004c,a). We briefly compare AdaBoost∗ν to these more
recent algorithms and show that the better empirical performance was due tothe wrong choice ofν.

The original AdaBoost was designed to find a final hypothesis of margin at least zero. Our
algorithm maximizes the margin for all values ofρ∗. This includes the inseparable case (i.e.ρ∗ < 0),
where one minimizes the overlap between the two classes. In this case AdaBoost runs forever
without necessarily increasing the margin. Our algorithm is also useful when the base hypotheses
given to the Boosting algorithm arestrong in the sense that they already separate the data and
have margin greater than zero, but less than one. In this case 0< ρ∗ < 1 and AdaBoost aborts
immediately because the linear coefficients of such hypotheses become unbounded. In contrast, our
new algorithm also maximizes the margin when presented with strong learners.

The big advantage of this algorithm is an absolute bound on the number of iterations: After
2lnN

ν2 iterations AdaBoost∗ν is guaranteed to produce a hypothesis with margin at leastρ∗−ν. Our
algorithm is applicable in sophisticated settings where the number of hypotheses may be infinite. In
Appendix B we use AdaBoost∗

ν to learn a convex combination of support vector kernels and show
that the same guarantees hold on the number of iterations of the algorithm.

The paper is structured as follows: Section 2 introduces some basic notationand in Section 3 we
first describeAdaBoostρ which requires a lower boundρ of the maximum marginρ∗ as a parameter.
Then we present our new algorithmAdaBoost∗ν, which is similar to AdaBoostρ, but continuously
adaptsρ based on a precision parameterν. Up to this point we stay at a high level of presentation
with the goal of making our algorithms accessible to the quick reader. In Section 4 we introduce
more notation and give a detailed analysis of both algorithms. First, we prove that if the weighted
training error of thet-th base hypothesis isεt = 1

2 −
1
2γt , then an upper bound on the fraction of

examples with margin smaller thanρ is reduced by a factor of 1− 1
2(ρ−γt)

2 at staget of AdaBoostρ
(cf. Section 4.2) (A slightly improved factor is shown for the case whenρ > 0). However, to achieve
a large margin one needs to assume that the guessρ is smaller thanρ∗. For the latter case we prove
an exponential convergence rate of AdaBoostρ. Then we discuss a method for automatically tuning
ρ depending on the errors of the base hypotheses and a precision parameter ν. We show that after
roughly 2lnN

ν2 iterations our new one-pass algorithm AdaBoost∗
ν is guaranteed to produce a linear

combination with margin at leastρ∗−ν. This strengthens the results of our preliminary conference
paper (R̈atsch and Warmuth, 2002), which had an additional log2(2/ν) factor in the total number
times the weak learner is called and much higher constants. In Section 5, we compare the algorithms
experimentally and discuss heuristics for tuningν in Section 5.2. Finally we briefly summarize and
discuss our results in the Conclusion Section.

2. Preliminaries and Basic Notation

We consider the standard two-class supervised machine learning problem:Given a set ofN i.i.d.
training examples(xn,yn), n = 1, . . . ,N, with xn ∈ X andyn ∈ Y := {−1,+1}, we would like to
learn a functionf : X → Y that is able to generalize well on unseen data generated from the same
distribution as the training data.
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In the case of ensemble learning (like boosting), there is a fixed underlyingset ofbasehypothe-
sesH := {h | h : X → [−1,1]} from which the ensemble is built. For now we only assume thatH

is finite, but we will show in Section 4.5 that this assumption can be dropped in most cases and that
all of the following analysis also applies to the case of infinite hypothesis sets.

Boosting algorithms iteratively form non-negative linear combinations of hypotheses fromH .
In each iterationt, a base hypothesisht ∈ H with a non-negative coefficientαt is added to the linear
combination. We denote the combined hypothesis as follows (Note that we normalized the weights):

f̃α(x) = sign fα(x), where fα(x) =
T

∑
t=1

αt

∑T
r=t αr

ht(x), ht(x) ∈ H , andαt ≥ 0 .

The “black box” that selects the base hypothesis in each iteration is called theweaklearner. For
AdaBoost, it has been shown that if the weak learner is guaranteed to select base hypotheses of
weighted error slightly below 50%, then the combined hypothesis is consistentwith the training set
in a small number of iterations (Freund and Schapire, 1997). We will discuss bounds on the number
of iterations in detail in Section 4. Since at most one new base hypothesis is added in each iteration,
the size of the final hypothesis is bounded by the number of iterations. These bounds are important
because the sample size bounds provable in the PAC model grow with the size of the final hypothesis
(Schapire, 1992; Freund, 1995).

In more recent research (Schapire et al., 1998) it was also shown thata bound on the general-
ization error decreases with the size of the margin of the final hypothesisf . The margin of a single
example(xn,yn) w.r.t. f is defined asyn fα(xn). Thus the margin quantifies by how far this example
is on theyn side of the hyperplanẽf . In Appendix A we clarify how the margin of an example is re-
lated to its̀ ∞-distance to the hyperplane with normalα. The margin of the combined hypothesisf is
theminimum marginof all N examples. The goal of this paper is to find a small non-negative linear
combination of base hypotheses fromH with margin close to the maximum achievable margin.

The following table gives some of the main notations that will be used throughout this paper:

Symbol Description
n,N index and number of examples
m,M index and number of hypotheses if finite
t,T index and number of iterations
X input space
Y label space{±1}
(x,y) an example and its label
H ,hm set of base hypotheses and them-th element
α hypothesis weight vector
d weighting on the training set
I(·) the indicator function:I(true) = 1 andI( f alse) = 0
ρ the margin parameter of AdaBoostρ
{ρt} the sequence of margin parameters of AdaBoost{ρt}

ρ∗ the maximum margin
ρ̂t margin in thet-th iteration
ν the accuracy parameter of AdaBoost∗

ν
ε weighted classification error
γ∗ the minimum edge
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Symbol Description
γ an arbitrary edge threshold
γt the edge of thet-th hypothesis

3. AdaBoostρ and AdaBoost∗ν

The original AdaBoost was designed to find a consistent hypothesisf̃ which is defined as a signed
linear combinationf with margin greater zero. We start with a slight modification of AdaBoost,
which finds (if possible) a linear combination of base learners with marginρ, whereρ is a parameter
(cf. Algorithm 1).1 We call this algorithm AdaBoostρ, as it naturally generalizes AdaBoost for the
case when thetarget marginis ρ. The original AdaBoost algorithm now becomes AdaBoost0.

Algorithm 1: – The AdaBoostρ algorithm – with margin parameterρ

1. Input: S= 〈(x1,y1), . . . ,(xN,yN)〉, No. of Iterations T, margin target ρ

2. Initialize: d1
n = 1

N for all n = 1. . .N

3. Do for t = 1, . . . ,T,

(a) Train classifier on {S,dt} and obtain hypothesis ht : x 7→ [−1,1]

(b) Calculate the edge γt of ht : γt =
N

∑
n=1

dt
nynht(xn)

(c) if |γt | = 1, then α1 = sign(γt), h1 = ht , T = 1; break

(d) Set αt =
1
2

ln
1+ γt

1− γt
−

1
2

ln
1+ρ
1−ρ

(e) Update weights: dt+1
n =

dt
nexp(−αtynht(xn))

Zt
,

where Zt = ∑N
n=1dt

nexp(−αtynht(xn))

4. Output: fα(x) =
T

∑
t=1

αt

∑T
r=1 αr

ht(x)

The algorithm AdaBoostρ was already known asunnormalized Arcing(Breiman, 1999) or
AdaBoost-type Algorithm(Rätsch et al., 2001). Moreover, it is related to algorithms proposed in
Freund and Schapire (1999) and Zhang (2002). The only difference from AdaBoost is the choice of
the hypothesis coefficientsαt : An additional term−1

2 ln 1+ρ
1−ρ appears in the expression for the hy-

pothesis coefficientαt . This term vanishes whenρ = 0. The parameterρ can be seen as aguessof
the maximum marginρ∗. If ρ is chosen properly (slightly belowρ∗), then AdaBoostρ will converge
exponentially fast to a combined hypothesis with nearly the maximum margin. See Section 4.2 for
details.

1. The original AdaBoost algorithm was formulated in terms of weighted training errorεt of a base hypothesis. Here
we use an equivalent more convenient formulation in terms of the edgeγt , whereεt = 1

2 −
1
2γt (cf. Section 4.1).
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The following example illustrates how AdaBoostρ works. Assume the weak learner returns the
constant hypothesisht(x) ≡ 1. The weighted error of this hypothesis is the sum of all negative
weights, i.e.εt = ∑yn=−1dt

n and its edge isγt = 1−2εt . The coefficientαt is chosen so that the edge
of ht with respect to the new distribution is exactlyρ (instead of 0 as for the original AdaBoost).
More precisely, the given choice ofαt assures that this edge isρ only for±1-valued base hypotheses.

For a more general base hypothesisht with continuous range[−1,+1], choosingαt such that
Zt as a function ofαt is minimized, guarantees that the edge ofht with respect to the distribution
dt+1 is ρ. See Schapire and Singer (1999) for a similar discussion. Choosingαt as in step 3 (d)
approximately minimizesZt when the range ofht is [−1,+1].

In Kivinen and Warmuth (1999) and Lafferty (1999), the standard boosting algorithms are in-
terpreted as approximate solutions to the following optimization problem: choose adistributiond
of maximum entropy subject to the constraints that the edges of the previous hypotheses areequal
to zero. In this paper we use theinequalityconstraints that the edges of the previous hypotheses
are at mostρ. The αt ’s function as Lagrange multipliers for these inequality constraints. Since
g(x) = 1

2 ln 1+x
1−x is an increasing function,

αt =
1
2

ln
1+ γt

1− γt
−

1
2

ln
1+ρ
1−ρ

≥ 0 iff γt ≥ ρ . (1)

Notice that whenρ = 0, addinght or −ht leads to the same distributiondt+1. This symmetry is
broken forρ 6= 0.

Since one does not know the value of the optimum marginρ∗ is not known beforehand, one also
needs to findρ∗. In Rätsch and Warmuth (2002) we presented theMarginal AdaBoostalgorithm
which constructs a sequence{ρr}

R
r=1 converging toρ∗. A fast way to find a real value up to a

certain accuracyν in the interval[−1,1] is abinary searchsince one needs only log2(2/ν) steps.2

Thus the previous Marginal AdaBoost algorithm uses AdaBoostρr (Algorithm 1) to decide whether
the current guessρr is larger or smaller thanρ∗. Depending on the outcome,ρr can be chosen so
that the region of uncertainty forρ∗ is roughly cut in half. However, in the previous algorithm all
but the last of the log2(2/ν)

In this paper we propose a different algorithm, called AdaBoost∗
ν. Hereν > 0 is a precision

parameter. The algorithm finds a non-negative linear combination with margin at leastρ∗−ν. Like
Arc-GV (Breiman, 1999), the new algorithm essentially runs AdaBoostρ once but instead of using
a fixed margin estimateρ, it updatesρ in an appropriate way. We shall show iteration bounds
for our algorithm AdaBoost∗ν which are not known for Arc-GV. The latter algorithm produces an
essentially3 monotonically increasing sequence of margin estimates, while in AdaBoost∗

ν we use
a monotonically decreasing sequence. The improved sequence of estimatesis based on two new
theoretical insights, which will be developed in the next section.

We will show that the number of iterations required by the new one-pass AdaBoost∗ν algorithm
(see Algorithm 2 for pseudo-code) is at most2lnN

ν2 . This equals the iteration bound for the best
algorithm we know of for the case whenρ∗ is known and we seek a linear combination of margin
at leastρ∗−ν: AdaBoostρ with parameterρ = ρ∗−ν. The iteration bound for the new algorithm
is the same as the iteration bound for the last call to AdaBoostρ of the previous Marginal AdaBoost
algorithm.

2. If one knows thatρ∗ ∈ [a,b], one needs only log2((b−a)/ν) steps.
3. In the original formulation the sequence was not necessarily increasing, but R̈atsch (2001) showed that it leads to the

same result and easier proofs if one restricts it to be monotonically increasing.
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Algorithm 2: – The AdaBoost∗ν algorithm – with accuracy parameterν

1. Input: S= 〈(x1,y1), . . . ,(xN,yN)〉, No. of Iterations T, desired accuracy ν

2. Initialize: d1
n = 1/N for all n = 1. . .N

3. Do for t = 1, . . . ,T,

(a) Train classifier on {S,dt} and obtain hypothesis ht : x 7→ [−1,1]

(b) Calculate the edge γt of ht : γt =
N

∑
n=1

dt
nynht(xn)

(c) if |γt | = 1, then α1 = sign(γt), h1 = ht , T = 1; break

(d) γmin
t = min

r=1,...,t
γr ; ρt = γmin

t −ν

(e) Set αt =
1
2

ln
1+ γt

1− γt
−

1
2

ln
1+ρt

1−ρt

(f) Update weights: dt+1
n =

dt
nexp(−αtynht(xn))

Zt
,

where Zt = ∑N
n=1dt

nexp(−αtynht(xn))

4. Output: fα(x) =
T

∑
t=1

αt

∑T
r=1 αr

ht(x)

4. Detailed Analysis

In this section we are going to analyze the algorithms in detail. We start by showing the relationship
between optimal edges and margins, prove and illustrate the convergence properties of AdaBoostρ
and finally prove the convergence of AdaBoost∗

ν.

4.1 Weak learning and margins

The standard assumption made on the weak learning algorithm for the PAC analysis of Boosting
algorithm is that the weak learner returns a hypothesish from a fixed setH that is slightly better
than random guessing. That is, that the error rateε is consistently smaller than12. Note that the
error rate of12 could easily be reached by a fair coin, assuming both classes have the sameprior
probabilities. More formally, the errorε of a ±1 valued hypothesis is defined as the fraction of
examples that are misclassified. In Boosting this is extended to weighted examplesets and the error
is defined as

εh(d) =
N

∑
n=1

dn I(yn 6= h(xn)),

whereh is the hypothesis returned by the weak learner andI is the indicator function withI(true) = 1
andI(false) = 0. The distributiond = (d1, . . . ,dN) of the examples is such thatdn ≥ 0 and∑N

n=1dn =
1.
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When the range of a hypothesish is the entire interval[−1,+1], then theedgeγh(d)= ∑N
n=1dnynh(xn)

is a more convenient quantity for measuring the quality ofh. This edge is an affine transformation
of the error for the case whenh has range±1: εh(d) = 1

2 −
1
2γh(d) andεh(d) ≤ 1

2 iff γh(d) ≥ 0.
Recall from Section 2 that the margin of a given example(xn,yn) is defined asyn fα(xn). Also

recall thatH is the set from which the weak learner chooses its base hypotheses. Assume for a
moment thatH is finite. If we combine all hypotheses fromH , then the following well-known the-
orem establishes the connection between margins and edges (first seen inconnection with Boosting
in Freund and Schapire, 1996; Breiman, 1999):4

Theorem 1 (Min-Max-Theorem, von Neumann (1928))

γ∗ := min
d

max
m=1,...,M

N

∑
n=1

dnynhm(xn) = max
α

min
n=1,...,N

yn

M

∑
m=1

αmhm(xn) =: ρ∗, (2)

whered ∈ P N, α ∈ P M and M= |H |. HereP k denotes the k-dimensional probability simplex.

Thus, the minimum edgeγ∗ that can be achieved over all possible distributionsd of the training set
is equal to the maximum marginρ∗ of any linear combination of hypotheses fromH . Also, for any
non-optimal distributionsd and and hypothesis weightsα we always have

max
h∈H

γh(d) > γ∗ = ρ∗ > min
n=1,...,N

yn fα(xn).

In particular, if the weak learning algorithm is guaranteed to return a hypothesis with edge at least
γ for any distribution on the examples, thenγ∗ ≥ γ and by the above duality there exists a combined
hypothesis with margin at leastγ. If γ is equal to its upper boundγ∗ then there exists a combined
hypothesis with margin exactlyγ = ρ∗ that only uses hypotheses that are actually returned by the
weak learner in response to certain distributions on the examples.

From this discussion we can derive a sufficient condition on the weak learning algorithm to reach
the maximum margin (for the case whenH finite). If the weak learner returns hypotheses whose
edges are at leastγ∗, then there exists a linear combination of these hypotheses that attains a margin
γ∗ = ρ∗. We will prove later that our AdaBoost∗

ν algorithm efficiently finds a linear combination
with margin close toρ∗ (cf. Theorem 6).

Constraining the edges of the previous hypotheses to equal zero (as done in thetotally corrective
algorithmof Kivinen and Warmuth (1999)) leads to a problem if there is no solution satisfying these
constraints. At the end of trialt, the set of previous hypotheses isHt = {h1, . . . ,ht} and the totally
corrective algorithm finds a distribution such thatγh(d) = 0, for all h∈ Ht . Because of the above
duality and the fact thatHt ⊆ H ,

γ∗t := min
d

max
h∈Ht

γh(d) ≤ γ∗ = ρ∗ .

The non-decreasing sequence(γ∗t ) converges toρ∗ from below. If ρ∗ > 0, then the equality con-
straints on the edges are not satisfiable as soon asγ∗t > 0.

In contrast our new algorithm AdaBoost∗
ν is motivated by a system of inequality constraints

γh(d)≤ ρ, for h∈ Ht , whereρ is adapted. Again, ifρ < ρ∗, then the system of inequalities with this

4. This is a zero-sum game with payoff matrixynhm(xn). The row player finds a mixtured over the rows/examples and
the column player a mixtureα over the column/hypotheses. Adding a row/example makes the minimax value of the
game go down and adding a column/hypothesis makes it go up.
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ρ̂ may not have a solution (and the Lagrange multipliers may diverge to infinity). In AdaBoost∗ν we
start withρ large and decrease it when necessary. As we shall see, the algorithm maintains a margin
parameterρ that is always at leastρ∗−ν.

4.2 Convergence properties of AdaBoostρ

Let AdaBoost{ρt} denote the version of AdaBoostρ that uses a time varying margin parameterρt at
iterationt. Thus in step 3 (d) of the algorithm,ρ is replaced byρt . This extension will be necessary
for the later analysis of AdaBoost∗

ν. The sequences{ρt}
T
t=1 might be specified while running the

algorithm. For instance, in the algorithm Arc-GV, Breiman (1999) choosesρt as min
n=1,...,N

yn fαt−1(xn).

Breiman (1999) showed that Arc-GVasymptoticallyconverges to the maximum margin (see dis-
cussion in next section). In the following we answer the question how to best choose the sequence
{ρt} so as to optimize bounds on the fraction of examples which have a margin at mostρ.

Lemma 2 For any ρ ∈ [−1,1], the final hypothesis fα of AdaBoost{ρt} satisfies the following in-
equality:

1
N

N

∑
n=1

I (yn fα(xn) ≤ ρ) ≤

(

T

∏
t=1

Zt

)

exp

{

T

∑
t=1

ραt

}

=
T

∏
t=1

exp{ραt + lnZt} (3)

where Zt = ∑N
n=1dt

nexp(−αtynht(xn)) andαt = 1
2 ln 1+γt

1−γt
− 1

2 ln 1+ρt
1−ρt

.

The proof directly follows from a simple extension of Theorem 1 in Schapireand Singer (1999)
(see also Schapire et al. (1998)).

We now use a lemma from Rätsch et al. (2001) to upper bound the right hand side (rhs) of the
above inequality:

Lemma 3 Let γt be the edge of ht in the t-th iteration of AdaBoost{ρt}. Assume−1≤ ρt ≤ γt . Then
for all ρ ∈ [−1,1],

exp{ραt + lnZt} ≤ exp

(

−
1+ρ

2
ln

(

1+ρt

1+ γt

)

−
1−ρ

2
ln

(

1−ρt

1− γt

))

. (4)

Note that this generalizes Theorem 5 of (Freund and Schapire, 1997) tothe case when the target
margin is not zero.

AdaBoost{ρt} makes progress, if the rhs of (4) is smaller than one. Suppose we would liketo
reach a marginρ on all training examples, where we obviously need to assumeρ ≤ ρ∗. We can then
ask which sequence of{ρt}

T
t=1 one should use to find such combined hypothesis in as few iterations

as possible. The rhs of (4) can be rewritten as

exp(∆2(ρ,ρt)−∆2(ρ,γt)) ,

where∆2(a,b) := 1+a
2 ln 1+a

1+b + 1−a
2 ln 1−a

1−b denotes the binary relative entropy betweena,b∈ [−1,1].
Therefore the rhs of (4) is minimized forρt = ρ (independent ofγt) and one should always use this
constant choice.

This means that whenρt = ρ then the rhs of (4) is reduced by a factor of exp(−∆2(ρ,γt)),
which can be upper bounded by inspecting the Taylor expansion atγt = ρ and noticing that when
0≤ ρ < γt , all terms of order three and higher are negative:

exp(−∆2(ρ,γt)) < 1−
1
2

(ρ− γt)
2

1−ρ2 , for 0≤ ρ < γt . (5)
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The denominator 1−ρ2 speeds up the convergence whenρ � 0. Notice that whenρ = 0, then we
recover the original AdaBoost bound.

Now we determine an upper bound on the number of iterations needed by AdaBoostρ for achiev-
ing a margin ofρ on all examples, given that the maximum margin isρ∗:

Corollary 4 Assume the weak learner always returns a base hypothesis with an edgeγt ≥ ρ∗. If
0 ≤ ρ ≤ ρ∗− ν, ν > 0, then AdaBoostρ will converge to a solution with margin at leastρ on all

examples in at most2lnN(1−ρ2)
ν2 iterations.

Proof By Lemma 2 and (4), (5):

1
N

N

∑
n=1

I (yn f (xn) ≤ ρ) <
T

∏
t=1

(

1−
1
2

(ρ− γt)
2

1−ρ2

)

≤

(

1−
1
2

ν2

1−ρ2

)T

.

The margin is at leastρ for all examples, if the rhs is smaller than1N ; hence after at most

lnN

− ln
(

1− 1
2

ν2

1−ρ2

) ≤
2lnN(1−ρ2)

ν2

iterations, which proves the statement.

Whenρ < 0, then inequality (5) can be replaced with the following weaker inequality which holds
for all distinctρ,γt ∈ [−1,1]:

exp(−∆2(ρ,γt)) < exp

(

−
1
2
(ρ− γt)

2
)

. (6)

This leads to the same bound as in the above corollary except that the factor(1− ρ2) is omitted.
Thus whenρ < 0, the bound on the number of iterations becomes2lnN

ν2 (Rätsch, 2001, page 25).

4.3 Asymptotic Margin of AdaBoostρ

With the methods shown so far we can determine the asymptotic value of margin of the hypothesis
produced by the original AdaBoost algorithm. First, we state a lower boundon the margin that is
achieved by AdaBoostρ. There is a gap between this lower bound and the upper bound of Theorem 1.
In a second part we consider an experiment that shows that dependingon some subtle properties of
the weak learner, the margin of combined hypotheses generated by AdaBoost can converge to quite
different values (while the maximum margin is kept constant). We observe that the previously lower
bound on the margin is quite tight in empirical cases.

As long as each factor in the rhs of Eq. (3) is smaller than 1, the bound decreases. If the factor is
at most 1−µ andµ > 0, then the rhs converges exponentially fast to zero. The following corollary
considers the asymptotic case and gives a lower bound on the margin.

Corollary 5 (Rätsch (2001))Assume AdaBoostρ generates hypothesis h1,h2, . . . with edgesγ1, γ2,
. . . and coefficientsα1,α2, . . .. Letγmin = inft=1,2,... γt and assumeγmin > ρ. Furthermore, let

ρ̂t = min
n=1,...,N

yn ∑t
r=1 αrhr(xn)

∑t
r=1 αr
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be the achieved margin in the t-th iteration andρ̂ = supt=1,2,... ρ̂t . Then the margin̂ρ of the combined
hypothesis is bounded from below by

ρ̂ ≥
ln(1−ρ2)− ln(1− (γmin)2)

ln
(

1+γmin

1−γmin

)

− ln
(

1+ρ
1−ρ

) . (7)

From (7) one can understand the interaction betweenρ andγmin: If the difference betweenγmin

andρ is small, then the rhs of (7) is small. Thus, ifρ with ρ ≤ γmin is large, then̂ρ must be large,
i.e. choosing a largerρ results in a larger margin on the training examples. A Taylor expansion of

the rhs of (7) shows that the margin is lower bounded byγmin+ρ
2 . This known lower bound (Breiman,

1999, Theorem 7.2) is greater thanρ if γmin > ρ.
In Section 4.1 we reasoned thatγmin ≤ ρ∗. If the parameter AdaBoostρ is chosen too small, then

we guarantee only that the margin of the produced linear combination converges asymptotically to
a value at belowρ∗. In the original formulation of AdaBoost we haveρ = 0 and we guarantee only

that AdaBoost0 achieves a margin of at leastγmin+ρ
2 = 1

2γmin. This shortfall in the margin provable
for AdaBoost motivates our new AdaBoost∗

ν which is guaranteed to optimize the margin.

4.3.1 EXPERIMENTAL ILLUSTRATION OF COROLLARY 5

To illustrate the above-mentioned gap, we perform an experiment showing how tight (7) can be. We
analyze two different settings: (i) the weak learner selects the hypothesiswith largest edge over all
hypotheses (i.e. the best case) and (ii) the weak learner selects the hypothesis with minimum edge
among all hypotheses with edge larger thanρ∗ (i.e. the worst case). Corollary 5 holds for both cases
since the weak learner is allowed to returnanyhypothesis with edge larger thanρ∗.

We use random data withN training examples, whereN is drawn uniformly between 10 and
200. The labels are drawn at random from a binomial distribution with equalprobability. We use
a hypothesis set with 104 random hypotheses with range{+1,−1}. We first choose a parameterp
uniformly in (0,1). Then the label of each hypothesis on each example is chosen to agree with the
label of the example with probabilityp.5 First we compute the solutionρ∗ of the margin-LP problem
via the left hand side of (2). Then we compute the combined hypothesis generated by AdaBoostρ
after 104 iterations forρ = 0 andρ = 1

3 using the best and the worst selection strategy, respectively.
The latter algorithm depends onρ∗. We chose 300 hypothesis sets based on 300 random draws of
p. The random choice ofp ensures that there are cases with small and large optimal margins. For
each hypothesis set we did two runs of AdaBoostρ using the best and worst selection strategies. The
result of each run is represented as a point in Figure 1. The abscissa isthe maximum achievable
marginρ∗ for each run. The ordinate is the margin of AdaBoostρ using the best (green) and the
worst strategy (red).

There is a large difference between these selection strategies. Whereasthe margin of the worst
strategy istightly lower bounded by (7), the best strategy has near maximum margin. These experi-
ments show that one obtains different results by changing the selection strategy of the weak learning
algorithm. Our lower bound holds for both selection strategies. The looseness of the bounds is in-
deed a problem, as we cannot predict where AdaBoostρ converges to.6 However, note that moving
ρ̂ closer toρ∗ reduces the gap (see also Figure 1 [right]).

5. We do not allow duplicate hypotheses or hypotheses that agree with the labels on all examples.
6. One might even be able to construct cases where the outputs are not at all converging.
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Figure 1: Achieved margins of AdaBoostρ using the best (green) and the worst (red) selection on random
data forρ = 0 [left] and ρ = 1

3 [right]. On the abscissa is the maximum achievable marginρ∗

and on the ordinate the margin achieved by AdaBoostρ for one data realization. For comparison
we plotted the upper boundy = x and the lower bound (7). On the interval[ρ,1], there is a clear
gap between the performance of the worst and best selection strategies. The margin of the worst
strategy is very close to the lower bound (7) and the best strategy has near maximum margin. Ifρ
is chosen slightly below the maximum achievable margin thenthis gap is reduced to 0.

Recently, it has been shown by Rudin et al. (2005) that there exist cases where the weightingdt

on the examples cycles indefinitely between non-optimal solutions. This proves that AdaBoost does
not generally maximize the margin. Furthermore, it was shown in Rudin et al. (2004b) that the gap
exhibited in Figure 1 is not an experimental artifact: under certain conditionsthe lower bound (7)
was proven to be tight.

4.3.2 DECREASING THESTEP SIZE

Breiman (1999) conjectured that the inability to maximize the margin is due to the factthat the
normalized hypothesis coefficients may “circulate endlessly through the convex set”, which is de-
fined by the lower bound on the margin. In fact, motivated from our previous experiments, it seems
possible to implement a weak learner that appropriately switches between optimal and worst case
performance, leading to non-convergent normalized hypothesis coefficients.

Rosset et al. (2002) have shown that AdaBoost with infinitesimally small stepsizes may max-
imize the margin, if the weak learner uses the best selection strategy. This is similar to what we
found empirically for finite step sizes and motivates us to analyze AdaBoostρ with step sizes chosen
as follows:

α̂t = ηαt =
η
2

ln
1+ γt

1− γt
−

η
2

ln
1+ρ
1−ρ

,
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for someη > 0. For η = 1 we recover AdaBoostρ. Following the same proof technique as for
Corollary 5, we can show that under the same conditions as given in Corollary 5

ρ̂ ≥
− ln((1+ γ)exp(−α̂)+(1− γ)exp(α̂))

α̂
,

whereα̂ = η
2 ln 1+γ

1−γ −
η
2 ln 1+ρ

1−ρ . Note that ifη goes to zero, then̂ρ = γ. Interestingly, this is inde-
pendent of the choice ofρ. Thus if the weak learner always returns hypotheses with edgesγt ≥ ρ∗

(t = 1,2, . . .), whereρ∗ is the maximum margin, then by the Min-Max Theorem, the margin is
maximized whenη goes to zero. However, there are no guarantees on the convergencespeed.

4.4 Convergence of AdaBoost∗ν

The AdaBoost∗ν algorithm is based on two insights:

• According to the discussion after Lemma 3, the most rapid convergence to a combined hy-
pothesis with marginρ∗−ν occurs for AdaBoostρ when one choosesρt as close as possible
to ρ∗−ν.

• For distributions on the examples that are hard for the weak learner (i.e. theweak learner
achieves a small edge), the edgeγt will be close toρ∗.

The idea is that by choosingρt = (minr=1,...,t γt)−ν we concentrate on the hardest distribution we
generated so far and can so find acloseoverestimate ofρ∗−ν. This forces an acceleration of the
convergence to a large margin and leads to distributions for which the weak learner has to return
small edges.

Note that if the weak learner always returns hypotheses with edgeγt = ρ∗ which is the worst
case under the assumption thatγt ≥ ρ∗, thenρt = ρ∗− ν in each iteration. In this case the same
smallest step size is taken in every iteration which is determined byρ∗ andν. This smallest step
size decreases with the desired accuracyν, which matches the intuition from Section 4.3.2 that
decreasing the step size achieves larger and therefore more accurate margins.

We will now state and prove our main theorem:

Theorem 6 Assume the weak learner always returns a base hypothesis with an edgeγt ≥ ρ∗. Then
after 2lnN

ν2 iterations AdaBoost∗ν (Algorithm 2) is guaranteed to produce a combined hypothesis f of
margin at leastρ∗−ν.

Proof Let ρ = ρ∗−ν be the margin that we would like to achieve. By assumption on the perfor-
mance of the weak learner,ρ∗ ≤ minr=1,...,T γr = γmin

T and thusρ = ρ∗−ν ≤ γmin
T −ν. In step 3 (d)

of Algorithm 2,ρt was set toγmin
t −ν. Henceρ ≤ ρt for each iteration.

Lemmas 2 and 3 imply that

1
N

N

∑
n=1

I (yn f (xn) ≤ ρ) ≤
T

∏
t=1

exp

(

−
1+ρ

2
ln

(

1+ρt

1+ γt

)

−
1−ρ

2
ln

(

1−ρt

1− γt

))

We now rewrite the rhs usingαt = 1
2 ln 1+γt

1−γt
− 1

2 ln 1+ρt
1−ρt

:

=
T

∏
t=1

exp

(

−
1
2

ln

(

1+ρt

1+ γt

)

−
1
2

ln

(

1−ρt

1− γt

)

+ραt

)
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By (1), αt ≥ 0 sinceρt ≤ γt . By replacingρ by its upper boundρt we get:

≤
T

∏
t=1

exp

(

−
1+ρt

2
ln

(

1+ρt

1+ γt

)

−
1−ρt

2
ln

(

1−ρt

1− γt

))

Finally, by (6) we have:

=
T

∏
t=1

exp(−∆(ρt ,γt)) <
T

∏
t=1

exp(−
(ρt − γt)

2

2
) ≤ exp(−

Tν2

2
).

is at most1
N , then by the above chain of inequalities,1

N ∑N
n=1 I(yn f (xn) ≤ ρ) < 1

N and the margin of
each of theN examples is at leastρ. The theorem now follows from the fact that1

N < exp
(

−1
2Tν2

)

,
if the number of iterationsT is at least2lnN

ν2 .

If one assumesρt ≥ 0, then Theorem 6 could be improved by a factor of(1−ρ2
t ) in each iteration,

using the refined upper bound of Corollary 4. Sinceρt ≥ ρ∗ − ν, one would obtain the bound
lnN(1−(ρ∗−ν)2)

ν2 if ρ∗ ≥ ν, but this factor will only matter for very large margins.

4.5 Infinite Hypothesis Sets

So far we have implicitly assumed that the hypothesis space is finite. In this section we will show
that this assumption is (often) not necessary. Also note, if the output of thehypotheses is discrete,
the hypothesis space is effectively finite (Rätsch et al., 2002). Forinfinite hypothesis sets, Theorem 1
can be restated in a weaker form as:

Theorem 7 (Weak Min-Max, e.g. Nash and Sofer (1996))

γ∗ := min
d

sup
h∈H

N

∑
n=1

ynh(xn)dn ≥ sup
α

min
n=1,...,N

yn ∑
q:αq>0

αqhq(xn) =: ρ∗, (8)

whered ∈ P N, α ∈ P |H | with finite support.

We call Γ = γ∗−ρ∗ the “duality gap”. In particular for anyd ∈ P N, suph∈H ∑N
n=1ynh(xn)dn ≥ γ∗

and for anyα ∈ P|H | with finite support, minn=1,...,N yn ∑q:αq≥0 αthq(xn) ≤ ρ∗.
In theory the duality gap may be nonzero. However, Lemma 3 and Theorem 6do not assume

finite hypothesis sets and show that the margin will converge arbitrarily closeto ρ∗, as long as the
weak learning algorithm can return a hypothesis in each iteration that has anedge not smaller than
ρ∗.

In other words, the duality gap may result from the fact that the sup on the left side cannot be
replaced by a max, i.e. there might not exists asinglehypothesish with edge larger or equal to
ρ∗. By assuming that the weak learner is always able to pick good enough hypotheses (≥ ρ∗), one
automatically gets by Lemma 3 thatΓ = 0.

Under certain conditions onH this maximum always exists and strong duality holds (for details
see e.g. R̈atsch et al., 2002; R̈atsch, 2001; Hettich and Kortanek, 1993; Nash and Sofer, 1996):

Theorem 8 (Strong Min-Max) If the set of vectors{(h(x1), . . . ,h(xN)) |h∈H } is compact, thenΓ=
0.
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In general, this requirement can be fulfilled by the weak learning algorithms whose outputs
continuously depend on the distributiond. Furthermore, the outputs of the hypotheses need to be
bounded (cf. step 3a in AdaBoostρ). The first requirement might be a problem with weak learning
algorithms that are some variants of decision stumps or decision trees. However, there is a simple
trick to avoid this problem: Roughly speaking, at each point with discontinuityd̂, one adds all
hypotheses toH that are limit points ofL(S,ds), where{ds}∞

s=1 is an arbitrary sequence converging
to d̂ andL(S,d) denotes the hypothesis returned by the weak learning algorithm for distribution d
and training sampleS(Rätsch, 2001). This procedure assures thatH is closed.

The above theorem is applied in Appendix B to obtain iteration bounds for AdaBoost∗ν in the
context of learning a convex combination of support vector kernels.

5. Experimental Comparison

In this section we discuss two experiments: The first one shows that our theoretical bounds can be
tight on artificial data and the second one compares our algorithm to the one proposed in Rudin et al.
(2004a).

5.1 Illustration on Toy Examples

We are aware that maximizing the margin of the ensemble does not lead to improvedgeneralization
performance in all cases. In fact for fairly noisy data sets the opposite has been reported (cf. Quinlan,
1996; Breiman, 1999; Grove and Schuurmans, 1998; Rätsch et al., 2001). Also, Breiman (1998)
reported an example where the margins of all examples are larger in one ensemble than another and
the latter generalized considerably better.

0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 2: The twodiscriminative dimensionsof our separable one hundred dimensional data set.

Nonetheless, the theoretical bounds on the generalization error of linearclassifiers improves
with the margin. We therefore expect to be able to measure differences in thegeneralization error
between a function that maximizes the margin and one that does not. Similar resultshave been
obtained in Schapire et al. (1998) on a multi-class optical character recognition problem.
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Here we report experiments on artificial data to illustrate how our algorithm works and how
it compares to AdaBoost. Our data is 100 dimensional and contains 98 nuisance dimensions with
uniform noise. The other two dimensions are plotted exemplary in Figure 2. For training we use
only 100 examples which means that controlling the capacity of the ensemble is essential.

As the weak learning algorithm we use C4.5 decision trees provided by Quinlan (1992) using
an option to control the number of nodes in the tree. We have tuned C4.5 to generate trees with
about three nodes. Otherwise, the weak learner often classifies all training examples correctly and
over-fits the data already. Furthermore, since in this case the margin is already maximum (equal to
1), boosting algorithms would stop sinceγ = 1. We therefore need to limit the complexity of the
weak learner, in good agreement with the bounds on the generalization error (Schapire et al., 1998).

Moreover, we have to deal with the fact that C4.5 cannot use weighted samples. We therefore
use weighted bootstrapping (e.g. Efron and Tibshirani, 1994). However, this amplifies the problem
that the resulting hypotheses might in some cases have an edge smaller than themaximum margin,
which according to the Min-Max-Theorem should not occur if the weak learner performs optimally.
We deal with this problem by repeatedly calling C4.5 on different bootstrap realizations if the edge
is smaller than the margin of the current linear combination. Furthermore, for AdaBoost∗ν, a small
edge of one hypothesis can spoil the margin estimateρt . We address this problem by resetting
ρt = ρ̂t +ν, wheneverρt ≤ ρ̂t , whereρ̂t is the margin of the currently combined hypothesis.

In Figure 3 we see a typical run of AdaBoost, Marginal AdaBoost, AdaBoost∗ν and Arc-GV for
ν = .1. For comparison we plot the margins of the hypotheses generated by AdaBoost (cf. Figure 3
(left)). One observes that it is not able to achieve a large margin efficiently. After 1000 iterations
ρ̂ = .37.

Marginal AdaBoost as proposed in Rätsch and Warmuth (2002) proceeds in stages and first tries
to find an estimate of the margin using a binary search. It calls AdaBoostρ three times. The first call
of AdaBoostρ for ρ = 0 stops after four iterations because it has generated a consistent combined
hypothesis. The lower boundl on ρ∗ as computed by Marginal AdaBoost isl = .07 and the upper
boundu is .94. The second timeρ is chosen to be in the middle of the interval[l ,u] and AdaBoostρ
reaches the margin ofρ = .51 after 80 iterations. The interval is now[.51, .77]. Because the length
of the intervalu− l = .27 is small enough, Marginal AdaBoost leaves the loop through an exit
condition, calls AdaBoostρ the last time forρ = u−ν = .41 and finally achieves the margin of.55.

In a run of Arc-GV for thousand iterations we observe a margin of the combined hypothesis of
.53, while for our new algorithm, AdaBoost∗

ν, we find.58. In this case the margin for AdaBoost∗
ν is

larger than the margins of all other algorithms when executed for one thousand iterations. It starts
with slightly lower margins in the beginning, but then catches up due the better choice of the margin
estimate.

C4.5 AdaBoost Marginal AdaBoost AdaBoost∗
ν

Egen 7.4± .11% 4.0± .11% 3.6± .10% 3.5± .10%
ρ̂ — .31± .01 .55± .01 .58± .01

Table 2: Estimated generalization performances and margins with confidenceintervals for decision
trees (C4.5), AdaBoost, Marginal AdaBoost and AdaBoost∗

ν on the toy data. All numbers
are averaged over 200 splits into 100 training and 19900 test examples.
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Figure 3: Illustration of the achieved margin of AdaBoost0 (left), Marginal AdaBoost (middle),
Arc-GV, and AdaBoost∗ν (right) at each iteration. Marginal AdaBoost calls AdaBoostρ
three times while adaptingρ (dash-dotted). We also plot the values forl and u as in
Marginal AdaBoost (dashed). (For details see Rätsch and Warmuth, 2002) AdaBoost∗

ν
achieves larger margins than AdaBoost. Compared to Arc-GV it starts slower, but then
catches up in the later iterations. Here the correct choice of the parameterρ is important.

In Table 2 we see the average performances of the four classifiers. For AdaBoost and AdaBoost∗
ν

we combined 200 hypotheses for the final prediction. For Marginal AdaBoost we useν = .1 and let
the algorithm combine only 200 hypotheses for the final prediction to get a more fair comparison.
We see a large improvement of all ensemble methods over the single classifier.There is also a slight,
but – according to at-test with confidence level 98% – significant difference between the generaliza-
tion performances of AdaBoost and Marginal AdaBoost as well as AdaBoost and AdaBoost∗ν. Note
also that the margins of the combined hypothesis achieved by Marginal AdaBoost and AdaBoost∗ν
are on average almost twice as large as for AdaBoost. The difference ingeneralization performance
between AdaBoost∗ν and Marginal AdaBoost is not statistically significant.

The differences between the achieved margins of both algorithms seem slightly significant
(96%). The slightly larger margins generated by Marginal AdaBoost canbe attributed to the fact that
it uses many more calls to the weak learner than AdaBoost∗

ν and after an estimate of the achievable
margin is available, it starts optimizing the linear combination using this estimate.

It would be natural to use a two-pass algorithm: In the first pass use AdaBoost∗ν to get a margin
estimateρ size at leastρ∗−ν and then use this estimate in a final run of AdaBoostρ. The hypothesis
produced in the second pass should have a larger margin and use fewerbase hypotheses.

5.2 Heuristics for Tuning the Precision Parameterν

Our main results says that after2lnN
ν2 iterations AdaBoost∗ν produces a hypothesis of margin at least

ρ∗−ν. Thus if the algorithm is allowed to run forT iterations, thenν should be set toνT =
√

2lnN
T .

If ν is chosen much larger thanνT , then afterT iterations AdaBoost∗ν often achieves a margin below
ρ∗−νT . Similarly, if ν is chosen much smaller thanνT , then AdaBoost∗ν starts too slowly and after
T iterations its margin is typically again belowρ∗−νT .

Recently, Rudin et al. (2004a,c) proposed an algorithm, calledCoordinate Ascent Boosting,
which solves the same problem as AdaBoost∗

ν. Their analysis of the algorithm shows that it needs
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at mostΩ(ν−3) iterations to achieve a margin of at leastρ∗ − ν. While this theoretical result is
clearly inferior to the guarantees which we provide for AdaBoost∗

ν, their experimental evaluation
of the algorithms seemed to suggest that the algorithm requires significantly fewer iterations than
AdaBoost∗ν in practice. However, their observations were only due to the improper choice of the
accuracy parameterν for AdaBoost∗ν: For ν = 10−3 (as chosen in their study), AdaBoost∗

ν would
need millions of iterations to achieve a guaranteed marginρ∗− ν. However, only the first 20K it-
erations were displayed and in this range their algorithms achieve a larger margin. ForT = 20K
andN = 50, the precision parameter prescribed by our bounds isνT = .02. When this parameter is
used, then AdaBoost∗ clearly beats all the other related algorithms (cf. Figure 4). We leave it to the
reader to explore other heuristics for tuningν based on the theoretical results of this paper (See also
the discussion at the end of the last subsection).

Figure 4: AdaBoost∗ν with different choices ofν is compared to Arc-GV and the Coordinate Ascent
Algorithm on the same artificial dataset 1 used in Rudin et al. (2004c) (We reconstructed
this dataset from a figure given in Rudin et al. (2004b)): The number ofiterations is
T = 20K, the dimension of the examples isN = 50, and we assume that the base learner
returns a hypothesis with maximum edge. Ifν is set to a reasonably close range around
the valueνT = .02 prescribed by our bound, then AdaBoost∗

ν achieves the margin which is
significantly larger than the margins achieved by the other algorithms. Ifν = .001� νT

as chosen in Rudin et al. (2004c), then AdaBoost∗
ν starts too slowly. In the case when the

base learner returns a random hypothesis with edge only at least as large asρ∗, then our
algorithm compares even more favorably (not shown).
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6. Conclusion

We have analyzed a generalized version of AdaBoost in the context of large margin algorithms.
From von Neumann’s Min-Max theorem we know that if the weak learner always returns a hypoth-
esis with weighted classification error less than1

2 −
1
2γ then the maximum achievable marginρ∗ is

at leastγ. The asymptotic analysis lead us to a lower bound on the margin of the final hypotheses
generated by AdaBoostρ, which was shown to be rather tight in empirical cases. Our results indicate
that vanilla AdaBoost generally does not maximize the margin, and only achieves a margin of about
half the optimum.

To overcome these problems we provided an algorithm AdaBoost∗
ν with the following provable

guarantees: It produces a linear combination with margin at leastρ∗− ν and the number of base
hypotheses used in this linear combination is at most2lnn

ν2 . The new algorithm decreases its esti-
mateρ of the margin iteratively, such that the gap between the best and the worst case becomes
arbitrarily small. Our analysis did not require additional properties of the weak learning algorithm.
In simulation experiments we have illustrated the validity of our theoretical analysis.

Appendix A. Margins

First recall the definition of margin used in this paper, which is defined for afixed set of exam-
ples{(xn,yn) : 1 ≤ n ≤ N} and a set of hypothesesH = {h1, . . . ,hM} (here finite for the sake of
simplicity):

ρ∗(H ) = max
α

min
n=1,...,N

yn

M

∑
m=1

αmhm(xn), whereα is on the simplexP M.

Note that we minimize over the margins of individual examples and maximize over thehyperplanes.
Define the one-norm marginρ∗

1(H ) in the same way but nowα lies in the larger set{α : α ∈
R

M and||α||1 = 1}. It is well known that for a fixed example(xn,yn) and normalα ∈ R
M, the one-

norm margin∑M
m=1 αmhm(xn)

∑M
m |αm|

is the minimum̀ ∞-distance of the example to the hyperplane with normal

α (Mangasarian, 1999; R̈atsch et al., 2002), where the latter distance is defined as

inf
z∈RM s.t. α·z=0

yn max
m=1,...,M

|hm(xn)−zm|.

Note that in this appendix, margins are defined as a function of the the hypotheses setH because
we will vary this set in a moment. Let cl(H ) be the closure ofH under negation, i.e. cl(H ) =
H ∪{−h : h∈ H }. Now, the following relationships are straightforward:

1. ρ∗(H ) ≤ ρ∗
1(H ), ρ∗(cl(H )) ≥ 0, andρ∗(cl(H )) ≥ ρ∗

1(H ).

2. If ρ∗(cl(H )) > 0, thenρ∗(cl(H )) = ρ∗
1(H ).

3. If ρ∗
1(H ) ≥ 0, thenρ∗(cl(H )) = ρ∗

1(H ).

In summary, if the one-norm margin ofH is non-negative, then the margin of the closed hypotheses
class cl(H ) coincides with the one-norm margin.
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Appendix B. An Application to Multiple Kernel Learning

Sonnenburg et al. (2005) proposed a new algorithm for solving the multiple kernel learning (MKL)
problem that was introduced in Lanckriet et al. (2004); Bach et al. (2004). The idea of MKL is to
find a convex combination ofJ support vector kernelsk j : X ×X 7→ R ( j = 1, . . . ,J) that maximizes
the SVM soft margin (cf. Bach et al. (2004)). In Sonnenburg et al. (2005) the original quadratically-
constraint quadratic program was reformulated to the following semi-infinite linear program:

min
β∈P J

sup
α∈A

J

∑
j=1

β jSj(α) (9)

where

Sj(α) := −
1
2

N

∑
r,s=1

αrαsyrysk j(xr ,xs)+
N

∑
n=1

αn

A :=

{

α

∣

∣

∣

∣

∣

α ∈ R
N,0≤ α ≤ 1C,

N

∑
n=1

ynαn = 0

}

andC is the SVM regularization constant. Note that this problem has infinitely many constraints:
one for every vectorα in its domainA . Note that problem (9) is of the same type as the semi-infinite
programming problem (8) which can be solved with AdaBoost∗

ν (cf. discussion in Section 4.5).
Since theSj(α) are continuous functions andA is compact, it follows from Theorem 8 that the
duality gap is zero.

When AdaBoost∗ν is applied to this problem, a hypothesis with large edge has to be found in
each iteration. In this case the hypotheses areα vectors and the edge is

J

∑
j=1

β jSj(α) = −
1
2 ∑

r,s
αrαsyrys

(

J

∑
j=1

β jk j(xr ,xs)

)

+∑
i

αi .

It has been noted that the edge in this case is nothing else than the negative SVM objective function
for the combined kernelk(xr ,xs) = ∑J

j=1 β jk j(xr ,xs). Hence, identifying anα vector with maximum
edge amounts to solving the vanilla SVM quadratic optimization problem. Fortunately, many effi-
cient SVM packages are available to solve this problem. Thus, the MKL problem can be efficiently
solved using AdaBoost∗

ν and our iteration bound for AdaBoost∗
ν is applicable.
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G. Rätsch and M. K. Warmuth. Maximizing the margin with boosting. InProc. COLT, volume
2375 ofLNAI, pages 319–333, Sydney, 2002. Springer.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximummargin separator.
Technical report, Department of Statistics, Stanford University, 2002.

C. Rudin, I. Daubechies, and R. E. Schapire. On the dynamics of boosting. In Advances in Neural
Information Processing, volume 15, 2004a.

C. Rudin, I. Daubechies, and R. E. Schapire. The dynamics of AdaBoost: Cyclic behavior and
convergence of margins.Journal of Machine Learning Research, 2005.

C. Rudin, R. E. Schapire, and I. Daubechies. Analysis of boosting algoritms using the smooth
margin function: A study of three algorithms. Unpublished manuscript, October 2004b.

C. Rudin, R. E. Schapire, and I. Daubechies. Boosting based on a smooth margin. InProc.
COLT’04, LNCS. Springer Verlag, July 2004c.

R. E. Schapire.The Design and Analysis of Efficient Learning Algorithms. PhD thesis, MIT Press,
1992.

R. E. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for
the effectiveness of voting methods.The Annals of Statistics, 26(5):1651–1686, October 1998.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, December 1999.
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Abstract

A problem for many kernel-based methods is that the amount ofcomputation required to find the
solution scales asO(n3), wheren is the number of training examples. We develop and analyze
an algorithm to compute an easily-interpretable low-rank approximation to ann×n Gram matrix
G such that computations of interest may be performed more rapidly. The approximation is of
the formG̃k = CW+

k CT , whereC is a matrix consisting of a small numberc of columns ofG and
Wk is the best rank-k approximation toW, the matrix formed by the intersection between those
c columns ofG and the correspondingc rows of G. An important aspect of the algorithm is the
probability distribution used to randomly sample the columns; we will use a judiciously-chosen and
data-dependent nonuniform probability distribution. Let‖·‖2 and ‖·‖F denote the spectral norm
and the Frobenius norm, respectively, of a matrix, and letGk be the best rank-k approximation to
G. We prove that by choosingO(k/ε4) columns

∥

∥G−CW+
k CT

∥

∥

ξ ≤ ‖G−Gk‖ξ + ε
n

∑
i=1

G2
ii ,

both in expectation and with high probability, for bothξ = 2, F , and for allk : 0≤ k ≤ rank(W).
This approximation can be computed usingO(n) additional space and time, after making two passes
over the data from external storage. The relationships between this algorithm, other related matrix
decompositions, and the Nyström method from integral equation theory are discussed.1

Keywords: kernel methods, randomized algorithms, Gram matrix, Nyström method

1. Introduction

In this introductory section, we first, in Section 1.1, provide a summary of relevant background,
then in Section 1.2 we summarize our main result, and finally, in Section 1.3, we provide an outline
of the remainder of the paper.

1. A preliminary version of this paper appeared as Drineas and Mahoney (2005b,a).

c©2005 Petros Drineas and Michael W. Mahoney.
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1.1 Background

Given a collectionX of data points, which are often but not necessarily elements ofR
m, techniques

such as linear support vector machines (SVMs), Gaussian processes(GPs), principal components
analysis (PCA), and the related singular value decomposition (SVD), identify and extract structure
from X by computing linear functions, i.e., functions in the form of dot products, ofthe data. For
example, in PCA the subspace spanned by the firstk eigenvectors is used to give ak dimensional
model of the data with minimal residual; thus, it provides a low-dimensional representation of the
data. Such spectral analysis has a rich theoretical foundation and has numerous practical applica-
tions.

In many cases, however, there is nonlinear structure in the data (or the data, such as text,
may not support the basic linear operations of addition and scalar multiplication). In these cases,
kernel-based learning methods have proved to be quite useful (Cristianini and Shawe-Taylor, 2000;
Scḧolkopf, Smola, and M̈uller, 1998). Kernel-based learning methods are a class of statistical learn-
ing algorithms, the best known examples of which are SVMs (Cristianini and Shawe-Taylor, 2000).
In this approach, data items are mapped into high-dimensional spaces, where information about their
mutual positions (in the form of inner products) is used for constructing classification, regression,
or clustering rules. Kernel-based algorithms exploit the information encoded in the inner product
between all pairs of data items and are successful in part because thereis often an efficient method to
compute inner products between very complex or even infinite dimensional vectors. Thus, kernel-
based algorithms provide a way to deal with nonlinear structure by reducingnonlinear algorithms
to algorithms that are linear in some feature spaceF that is nonlinearly related to the original input
space.

More precisely, assume that the data consists of vectorsX(1), . . . ,X(n) ∈ X ⊂ R
m and letX ∈

R
m×n be the matrix whosei-th column isX(i). In kernel-based methods, a set of features is chosen

that define a spaceF , where it is hoped relevant structure will be revealed, the dataX are then
mapped to the feature spaceF using a mappingΦ : X → F , and then classification, regression, or
clustering is performed inF using traditional methods such as linear SVMs, GPs, or PCA. IfF

is chosen to be a dot product space and if one defines the kernel matrix,also known as the Gram
matrix, G∈ R

n×n asGi j = k(xi ,x j) = (Φ(xi),Φ(x j)), then any algorithm whose operations can be
expressed in the input space in terms of dot products can be generalizedto an algorithm which
operates in the feature space by substituting a kernel function for the inner product. In practice, this
means presenting the Gram matrixG in place of the input covariance matrixXTX. Relatedly, using
the kernelk instead of a dot product in the input space corresponds to mapping the data set into a
(usually) high-dimensional dot product spaceF by a (usually nonlinear) mappingΦ : R

m→ F , and
taking dot products there, i.e.,k(xi ,x j) = (Φ(xi),Φ(x j)). Note that for the commonly-used Mercer
kernels,G is a symmetric positive semidefinite (SPSD) matrix.

The generality of this framework should be emphasized. For example, therehas been much
work recently on dimensionality reduction for nonlinear manifolds in high-dimensional spaces. See,
e.g., Isomap, local linear embedding, and graph Laplacian eigenmap (Tenenbaum, de Silva, and
Langford, 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003) as well as Hessian eigenmaps
and semidefinite embedding (Donoho and Grimes, 2003; Weinberger, Sha,and Saul, 2004). These
methods first induce a local neighborhood structure on the data and then use this local structure to
find a global embedding of the manifold in a lower dimensional space. The manner in which these
different algorithms use the local information to construct the global embedding is quite different,
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but in Ham, Lee, Mika, and Schölkopf (2003) they are interpreted as kernel PCA applied to specially
constructed Gram matrices.

This “kernel trick” has been quite successful for extracting nonlinearstructure in large data sets
when the features are chosen such that the structure in the data is more manifest in the feature space
than in the original space. Although in many cases the features are chosensuch that the Gram matrix
is sparse, in which case sparse matrix computation methods may be used, in otherapplications the
Gram matrix is dense, but is well approximated by a low-rank matrix. In this case, calculations of
interest (such as the matrix inversion needed in GP prediction, the quadraticprogramming problem
for SVMs, and the computation of the eigendecomposition of the Gram matrix) willstill generally
take space which isO(n2) and time which isO(n3). This is prohibitive ifn, the number of data
points, is large. Recent work in the learning theory community has focused on taking advantage of
this low-rank structure in order to perform learning tasks of interest moreefficiently. For example,
in Achlioptas, McSherry, and Schölkopf (2002), several randomized methods are used in order to
speed up kernel PCA. These methods have provable guarantees on thequality of their approximation
and may be viewed as replacing the kernel functionk by a “randomized kernel” which behaves likek
in expectation. Relatedly, in Williams and Seeger (2001), uniform sampling without replacement is
used to choose a small set of basis training points, from which an approximation to the Gram matrix
is constructed. Although this algorithm does not come with provable performance guarantees, it may
be viewed as a special case of our main algorithm, and it was shown empiricallyto perform well
on two data sets for approximate GP classification and regression. It was also interpreted in terms
of the Nystr̈om method from integral equation theory; this method has also been applied recently
in the learning theory community to approximate the solution of spectral partitioningfor image and
video segmentation (Fowlkes, Belongie, Chung, and Malik, 2004) and to extend the eigenfunctions
of a data-dependent kernel to new data points (Bengio, Paiement, Vincent, Delalleau, Roux, and
Ouimet, 2004; Lafon, 2004). Related work taking advantage of low-rankstructure includes Smola
and Scḧolkopf (2000); Fine and Scheinberg (2001); Williams and Seeger (2000); Burges (1996);
Osuna, Freund, and Girosi (1997); Williams, Rasmussen, Schwaighofer, and Tresp (2002); Azar,
Fiat, Karlin, McSherry, and Saia (2001).

1.2 Summary of Main Result

In this paper, we develop and analyze an algorithm to compute an easily-interpretable low-rank
approximation to ann×n Gram matrixG. Our main result, the MAIN APPROXIMATION algorithm
of Section 4.2, is an algorithm that, when given as input a SPSD matrixG ∈ R

n×n, computes a
low-rank approximation toG of the formG̃k = CW+

k CT , whereC ∈ R
n×c is a matrix formed by

randomly choosing a small numberc of columns (and thus rows) ofG andWk ∈ R
c×c is the best

rank-k approximation toW, the matrix formed by the intersection between thosec columns ofG and
the correspondingc rows ofG. The columns are chosen inc independent random trials (and thus
with replacement) according to a judiciously-chosen and data-dependentnonuniform probability
distribution. The nonuniform probability distribution will be carefully chosenand will be important
for the provable bounds we obtain. Let‖·‖2 and ‖·‖F denote the spectral norm and the Frobenius
norm, respectively, and letGk be the best rank-k approximation toG. Our main result, presented in
a more precise form in Theorem 3, is that under appropriate assumptions:

∥

∥G−CW+
k CT

∥

∥

ξ ≤ ‖G−Gk‖ξ + ε
n

∑
i=1

G2
ii , (1)
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in both expectation and with high probability, for bothξ = 2, F , for all k : 0≤ k ≤ rank(W). This
approximation can be computed inO(n) space and time after two passes over the data from external
storage.

In addition to developing and analyzing an algorithm which provides a provably good decom-
position of a Gram matrix, which may then be used to speed up kernel-based learning methods,
this paper makes several contributions. First, it extends related work of Williams and Seeger (2001)
involving uniform sampling to a more natural general case and provides a discussion of when that
is necessary. Second, it provides rigorous proofs of sufficient conditions for the methods to be ap-
plicable for any data set and discusses when other conditions may be more appropriate. Third, it
clarifies several potential misconceptions that have appeared in the literature regarding the relation-
ship between recent work on Nyström-based kernel methods (Williams and Seeger, 2001; Williams,
Rasmussen, Schwaighofer, and Tresp, 2002; Fowlkes, Belongie, Chung, and Malik, 2004) and the
low-rank approximation algorithm of Frieze, Kannan, and Vempala (1998);Drineas, Kannan, and
Mahoney (2004b). Finally, it extends random sampling methodology of the authors to a new ap-
plication domain and it extends the ability of those methods from simply extracting linear structure
of the data to extracting linear structure while respecting nonlinear structuressuch as the SPSD
property.

1.3 Outline of the Paper

After this introduction, in Section 2 we provide a review of relevant linear algebra. Then, in Sec-
tion 3 we review several aspects of the random sampling methodology of Drineas, Kannan, and
Mahoney (2004a,b,c) that will be useful for the proofs in this paper; see also Drineas, Kannan, and
Mahoney (2004d, 2005). In Section 4 we present our main algorithm and our main theorem, pro-
viding a brief discussion of the algorithm and a proof of the theorem. Then,in Section 5 we discuss
in detail several aspects of the algorithm and its relationship to previous work, with a particular
emphasis on the relationships between our main algorithm, the Nyström method of Williams and
Seeger (2001); Williams, Rasmussen, Schwaighofer, and Tresp (2002); Fowlkes, Belongie, Chung,
and Malik (2004), and our previous randomized SVD and CUR algorithms (Drineas, Kannan, and
Mahoney, 2004b,c). Finally, in Section 6 we provide a brief conclusion.

2. Review of Relevant Linear Algebra

This section contains a review of linear algebra that will be useful throughout the paper. For more
details about general linear algebra, see Golub and Loan (1989); Horn and Johnson (1985); Bhatia
(1997); for more details about matrix perturbation theory, see Stewart and Sun (1990); and for more
details about generalized inverses, see Nashed (1976); Ben-Israel and Greville (2003).

For a vectorx ∈ R
n we let |x| =

(

∑n
i=1 |xi |2

)1/2
denote its Euclidean length. For a matrixA ∈

R
m×n we letA( j), j = 1, . . . ,n, denote thej-th column ofA as a column vector andA(i), i = 1, . . . ,m,

denote thei-th row of A as a row vector. We denote matrix norms by‖A‖ξ, using subscripts to
distinguish between various norms. Of particular interest will be the Frobenius norm, the square of
which is ‖A‖2

F = ∑m
i=1 ∑n

j=1A2
i j , and the spectral norm, which is defined by‖A‖2 = supx∈Rn, x6=0

|Ax|
|x| .

These norms are related to each other as:‖A‖2 ≤ ‖A‖F ≤√
n‖A‖2. If A∈ R

m×n, then there exist
orthogonal matricesU = [u1u2 . . .um] ∈ R

m×m andV = [v1v2 . . .vn] ∈ R
n×n where{ut}m

t=1 ∈ R
m and
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ON THE NYSTRÖM METHOD FORAPPROXIMATING A GRAM MATRIX

{vt}n
t=1 ∈ R

n are such that
UTAV = Σ = diag(σ1, . . . ,σρ),

whereΣ ∈ R
m×n, ρ = min{m,n} andσ1 ≥ σ2 ≥ . . . ≥ σρ ≥ 0. Equivalently,A = UΣVT . The three

matricesU , V, andΣ constitute the singular value decomposition (SVD) ofA. If k ≤ r = rank(A)
and we defineAk = UkΣkVT

k = ∑k
t=1 σtutvtT then the distance (as measured by both‖·‖2 and‖·‖F )

betweenA and any rankk approximation toA is minimized byAk. An n×n matrixA is a symmetric
positive semidefinite (SPSD) matrix ifA is symmetric andxTAx≥ 0 for all nonzero vectorsx. If A
is a SPSD matrix, then its SVD may be writtenA = UΣUT .

From the perturbation theory of matrices it is known that the size of the difference between
two matrices can be used to bound the difference between the singular valuespectrum of the two
matrices (Stewart and Sun, 1990; Bhatia, 1997). In particular, ifA,E ∈ R

m×n,m≥ n, then

max
t:1≤t≤n

|σt(A+E)−σt(A)| ≤ ‖E‖2 (2)

and
n

∑
k=1

(σk(A+E)−σk(A))2 ≤ ‖E‖2
F . (3)

The latter inequality is known as the Hoffman-Wielandt inequality.
LetA∈R

m×n, letW∈R
m×m andQ∈R

n×n be symmetric positive definite matrices, and consider
the following generalization of the four Moore-Penrose conditions:

AXA = A (4)

XAX = X (5)

(WAX)T = WAX (6)

(QXA)T = QXA. (7)

The uniqueX that satisfies these four conditions is denotedX = A(1,2)
(W,Q) = A+

(W,Q) and is the{W,Q}-
weighted-{1,2}-generalized inverse ofA. It can be expressed in terms of the unweighted gen-
eralized inverse ofA as: A+

(W,Q) = Q−1/2
(

W1/2AQ−1/2
)+

W1/2. Note that ifW = Im andQ = In
then the uniqueX ∈ R

n×n satisfying these four conditions is the Moore-Penrose generalized inverse
A+. If r = rank(A), then in terms of the SVD the generalized inverse takes the following form:
A+ = VΣ−1UT = ∑r

t=1 σ−1
t vtutT .

3. Review of Our Random Sampling Methodology

Recent work in the theory of randomized algorithms has focused on matrix problems (Frieze,
Kannan, and Vempala, 1998; Drineas, Frieze, Kannan, Vempala, and Vinay, 1999; Achlioptas
and McSherry, 2001; Achlioptas, McSherry, and Schölkopf, 2002; Drineas and Kannan, 2001,
2003; Drineas, Kannan, and Mahoney, 2004a,b,c,d, 2005; Rademacher, Vempala, and Wang, 2005).
In particular, our previous work has applied random sampling methods to theapproximation of
several common matrix computations such as matrix multiplication (Drineas, Kannan, and Ma-
honey, 2004a), the computation of low-rank approximations to a matrix (Drineas, Kannan, and
Mahoney, 2004b), the computation of the CUR matrix decomposition (Drineas,Kannan, and Ma-
honey, 2004c), and approximating the feasibility of linear programs (Drineas, Kannan, and Ma-
honey, 2004d, 2005). In this section, we review two results that will be used in this paper.
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3.1 Review of Approximate Matrix Multiplication

The BASICMATRIX MULTIPLICATION algorithm to approximate the product of two matrices is pre-
sented and analyzed in Drineas, Kannan, and Mahoney (2004a). When this algorithm is given as
input a matrix,A∈R

m×n, a probability distribution{pi}n
i=1, and a numberc≤ n, it returns as output

a matrixC ∈ R
m×c (such thatCCT ≈ AAT) whose columns arec randomly-chosen and suitably-

rescaled columns ofA. An important aspect of this algorithm is the probability distribution{pi}n
i=1

used to choose columns ofA. Although one could always use a uniform distribution to choose the
columns to form the matrixC, superior results are obtained if the probabilities are chosen judi-
ciously. Sampling probabilities of the form (8), that depend on the lengths squared of the columns
of A, are theoptimal sampling probabilitiesfor approximatingAAT by CCT , in a sense made pre-
cise in Drineas, Kannan, and Mahoney (2004a). Note that if these probabilities are relaxed such that

pk ≥ β
∣

∣A(k)
∣

∣

2
/‖A‖2

F for some positiveβ ≤ 1, then bounds similar to those in the following theorem
will be obtained, with a smallβ-dependent loss in accuracy. Note also that although we studied
random sampling with replacement for ease of analysis, it is not known howto compute efficiently
optimal nonuniform sampling probabilities when the sampling is performed withoutreplacement.
In Drineas, Kannan, and Mahoney (2004a) we prove a more generalversion of the following theo-
rem; see Drineas, Kannan, and Mahoney (2004a) for a discussion ofthe technical issues associated
with this result.

Theorem 1 Suppose A∈ R
m×n, c∈ Z

+ such that1≤ c≤ n, and{pi}n
i=1 are such that

pk =

∣

∣A(k)
∣

∣

2

‖A‖2
F

. (8)

Construct C with theBASICMATRIX MULTIPLICATION algorithm of Drineas, Kannan, and Ma-
honey (2004a), and let CCT be an approximation to AAT . Then,

E
[∥

∥AAT −CCT
∥

∥

F

]

≤ 1√
c
‖A‖2

F . (9)

Furthermore, letδ ∈ (0,1) andη = 1+
√

8log(1/δ). Then, with probability at least1−δ,

∥

∥AAT −CCT
∥

∥

F ≤ η√
c
‖A‖2

F . (10)

3.2 Review of Approximate Singular Value Decomposition

The LINEARTIMESVD algorithm is presented in Drineas, Kannan, and Mahoney (2004b).It is
an algorithm which, when given a matrixA ∈ R

m×n, usesO(m+ n) additional space and time to
compute an approximation to the topk singular values and the corresponding left singular vectors
of A. It does so by randomly choosingc columns ofA and rescaling each appropriately to construct
a matrixC∈ R

m×c, computing the topk singular values and corresponding right singular vectors of
C by performing an eigendecomposition ofCTC, and using this information to construct a matrix
Hk ∈R

m×k consisting of approximations to the topk left singular vectors ofA. A minor modification
of the result from Drineas, Kannan, and Mahoney (2004b) yields the following theorem in which
the additional error is stated with respect to the best rankk approximation for anyk ≤ rank(C).
This theorem holds for any set of sampling probabilities, but the best bounds are obtained when
probabilities of the form (8) are used, in which case Theorem 2 may be combined with Theorem 1.
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Theorem 2 Suppose A∈ R
m×n and let Hk be the m× k matrix whose columns consist of the top

k singular vectors of the m× c matrix C, as constructed from theL INEARTIMESVD algorithm of
Drineas, Kannan, and Mahoney (2004b). Then, for every k: 0≤ k≤ rank(C),

∥

∥A−HkH
T
k A
∥

∥

2
F ≤ ‖A−Ak‖2

F +2
√

k
∥

∥AAT −CCT
∥

∥

F (11)
∥

∥A−HkH
T
k A
∥

∥

2
2 ≤ ‖A−Ak‖2

2 +2
∥

∥AAT −CCT
∥

∥

2 . (12)

In addition, if k= r = rank(C) then

∥

∥A−HrH
T
r A
∥

∥

2
2 ≤

∥

∥AAT −CCT
∥

∥

2 . (13)

4. Approximating a Gram Matrix

Consider a set ofn points inR
m, denoted byX(1), . . . ,X(n), and letX be them×n matrix whosei-th

column isX(i). These points may be either the original data or the data after they have beenmapped
into the feature space. Then, define then× n Gram matrixG asG = XTX. Thus,G is a SPSD
matrix andGi j = (X(i),X( j)) is the dot product between the data vectorsX(i) andX( j). If G is dense
but has good linear structure, i.e., is well-approximated by a low-rank matrix,then a computation
of a easily-computable and easily-interpretable low-rank approximation toG, with provable error
bounds, is of interest.

In this section, two algorithms are presented that compute such an approximation to a Gram
matrixG. In Section 4.1, a preliminary algorithm is presented; it is a modification of an algorithm in
the literature and is a special case of our main algorithm. Then, in Section 4.2, our main algorithm
and our main theorem are presented. Finally, in Section 4.3, the proof of our main theorem is
presented.

4.1 A Preliminary Nystr öm-Based Algorithm

In Williams and Seeger (2001), a method to approximateG was proposed that, in our notation,
choosesc columns fromG uniformly at random and without replacement, and constructs an approx-
imation of the formG̃ = CW−1CT , where then×c matrixC consists of thec chosen columns and
W is a matrix consisting of the intersection of thosec columns with the correspondingc rows. Anal-
ysis of this algorithm and issues such as the existence of the inverse were not addressed in Williams
and Seeger (2001), but computational experiments were performed andthe procedure was shown to
work well empirically on two data sets (Williams and Seeger, 2001). This method has been referred
to as the Nystr̈om method (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer, and
Tresp, 2002; Fowlkes, Belongie, Chung, and Malik, 2004) since it hasan interpretation in terms
of the Nystr̈om technique for solving linear integral equations (Delves and Mohamed, 1985). See
Section 5 for a full discussion.

In Algorithm 1, the PRELIMINARY APPROXIMATION algorithm is presented. It is an algorithm
that takes as input ann×n Gram matrixG and returns as output an approximate decomposition of
the formG̃ = CW+CT , whereC andW are as in Williams and Seeger (2001), and whereW+ is the
Moore-Penrose generalized inverse ofW. Thec columns are chosen uniformly at random and with
replacement. Thus, the PRELIMINARY APPROXIMATION algorithm is quite similar to the algorithm
of Williams and Seeger (2001), except that we sample with replacement and that we do not assume
the existence ofW−1. Rather than analyzing this algorithm (which could be done by combining
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the analysis of Section 4.3 with the uniform sampling bounds of Drineas, Kannan, and Mahoney
(2004a)), we present and analyze a more general form of it, for which we can obtain improved
bounds, in Section 4.2. Note, however, that if the uniform sampling probabilities are nearly optimal,
in the sense that 1/n≥ βG2

ii/∑n
i=1G2

ii for some positiveβ ≤ 1 and for everyi = 1, . . . ,n, then bounds
similar to those in Theorem 3 will be obtained for this algorithm, with a smallβ-dependent loss in
accuracy.

Data : n×n Gram matrixG andc≤ n.

Result : n×n matrix G̃.
• Pickc columns ofG in i.i.d. trials, uniformly at random with replacement; letI be the set
of indices of the sampled columns.
• Let C be then×c matrix containing the sampled columns.
• Let W be thec×c submatrix ofG whose entries areGi j , i ∈ I , j ∈ I .
• ReturnG̃ = CW+CT .

Algorithm 1: The PRELIMINARY APPROXIMATION algorithm.

4.2 The Main Algorithm and the Main Theorem

In previous work (Drineas, Kannan, and Mahoney, 2004a,b,c,d, 2005), we showed the importance
of sampling columns and/or rows of a matrix with carefully chosen nonuniformprobability dis-
tributions in order to obtain provable error bounds for a variety of common matrix operations. In
Algorithm 2, the MAIN APPROXIMATION algorithm is presented. It is a generalization of the PRE-
LIMINARY APPROXIMATION algorithm that allows the column sample to be formed using arbitrary
sampling probabilities. The MAIN APPROXIMATION algorithm takes as input ann×n Gram matrix
G, a probability distribution{pi}n

i=1, a numberc ≤ n of columns to choose, and a rank parameter
k≤ c. It returns as output an approximate decomposition of the formG̃k = CW+

k CT , whereC is an
n× c matrix consisting of the chosen columns ofG, each rescaled in an appropriate manner, and
whereWk is ac×c matrix that is the best rank-k approximation to the matrixW, which is a matrix
whose elements consist of those elements inG in the intersection of the chosen columns and the
corresponding rows, each rescaled in an appropriate manner.

To implement this algorithm, two passes over the Gram matrixG from external storage and
O(n), i.e. sublinear inO(n2), additional space and time are sufficient (assuming that the sampling

probabilities of the form, e.g.,pi = G2
ii/∑n

i=1G2
ii or pi =

∣

∣G(i)
∣

∣

2
/‖G‖2

F or pi = 1/n are used). Thus,
this algorithm is efficient within the framework of the Pass-Efficient model; see Drineas, Kannan,
and Mahoney (2004a) for more details. Note that if the sampling probabilities of the form pi =
G2

ii/∑n
i=1G2

ii are used, as in Theorem 3 below, then one may store them× n data matrixX in
external storage, in which case only those elements ofG that are used in the approximation need to
be computed.

In the simplest application of this algorithm, one could choosek= c, in which caseWk =W, and
the decomposition is of the form̃G = CW+CT , whereW+ is the exact Moore-Penrose generalized
inverse of the matrixW. In certain cases, however, computing the generalized inverse may be
problematic since, e.g., it may amplify noise present in the low singular values. Note that, as a
function of increasingk, the Frobenius norm bound (11) of Theorem 2 is not necessarily optimalfor
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Data : n×n Gram matrixG, {pi}n
i=1 such that∑n

i=1 pi = 1, c≤ n, andk≤ c.

Result : n×n matrix G̃.
• Pick c columns ofG in i.i.d. trials, with replacement and with respect to the probabilities
{pi}n

i=1; let I be the set of indices of the sampled columns.
• Scale each sampled column (whose index isi ∈ I ) by dividing its elements by

√
cpi ; let

C be then×c matrix containing the sampled columns rescaled in this manner.
• Let W be thec×c submatrix ofG whose entries areGi j /(c

√
pi p j), i ∈ I , j ∈ I .

• ComputeWk, the best rank-k approximation toW.
• ReturnG̃k = CW+

k CT .

Algorithm 2: The MAIN APPROXIMATION algorithm.

k = rank(C). Also, although the bounds of Theorem 3 for the spectral norm fork≤ rank(W) are in
general worse than those fork = rank(W), the former are of interest since our algorithms hold for
any input Gram matrix and we make no assumptions about a model for the noisein the data.

The sampling matrix formalism of Drineas, Kannan, and Mahoney (2004a) is used in the proofs
of Theorem 3 in Section 4.3, and thus we introduce it here. Let us define the sampling matrix
S∈ R

n×c to be the zero-one matrix whereSi j = 1 if the i-th column ofA is chosen in thej-th
independent random trial andSi j = 0 otherwise. Similarly, define the rescaling matrixD ∈ R

c×c to
be the diagonal matrix withDtt = 1/

√
cpit . Then then×c matrix

C = GSD

consists of the chosen columns ofG, each of which has been rescaled by 1/
√

cpit , whereit is the
label of the column chosen in thet-th independent trial. Similarly, thec×c matrix

W = (SD)TGSD= DSTGSD

consists of the intersection between the chosen columns and the corresponding rows, each element
of which has been rescaled by with 1/c

√
pit p jt . (This can also be viewed as formingW by sampling

a numberc of rows ofC and rescaling. Note, however, that in this case the columns ofA and the
rows ofC are sampled using the same probabilities.) In Algorithm 3, the MAIN APPROXIMATION

is restated using this sampling matrix formalism. It should be clear that Algorithm 3 and Algorithm
2 yield identical results.

Before stating our main theorem, we wish to emphasize the structural simplicity of our main
result. If, e.g., we choosek = c, then our main algorithm provides a decomposition of the form
G̃ = CW+CT :



 G



≈



 G̃



=



 C





(

W
)+ (

CT
)

. (14)

Up to rescaling, the MAIN APPROXIMATION algorithm returns an approximatioñG which is created
from two submatrices ofG, namelyC andW. In the uniform sampling case,pi = 1/n, the diagonal
elements of the rescaling matrixD are alln/c, and these all cancel out of the expression. In the
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Data : n×n Gram matrixG, {pi}n
i=1 such that∑n

i=1 pi = 1, c≤ n, andk≤ c.

Result : n×n matrix G̃.
• Define the (n×c) matrixS= 0n×c;
• Define the (c×c) matrixD = 0c×c;
• for t = 1, . . . ,c do

Pick it ∈ [n], wherePr(it = i) = pi ;
Dtt = (cpit )

−1/2;
Sit t = 1;

end
• Let C = GSDandW = DSTGSD.
• ComputeWk, the best rank-k approximation toW.
• ReturnG̃k = CW+

k CT .

Algorithm 3: The MAIN APPROXIMATION algorithm, restated.

nonuniform sampling case,C is a rescaled version of the columns ofG andW is a rescaled version
of the intersection of those columns with the corresponding rows. Alternatively, one can viewC as
consisting of the actual columns ofG, without rescaling, andW as consisting of the intersection of
those columns with the corresponding rows, again without rescaling, in the following manner. Let
Ĉ = GS, letŴ = STGS, and let

Ŵ+ = Ŵ+
D2,D−2 = D

(

DŴD
)+

D (15)

be the{D2,D−2}-weighted-{1,2}-generalized inverse of̂W. ThenG≈ G̃ = ĈŴ+ĈT .
The following theorem states our main result regarding the MAIN APPROXIMATION algorithm.

Its proof may be found in Section 4.3.

Theorem 3 Suppose G is an n×n SPSD matrix, let k≤ c be a rank parameter, and let̃Gk =CW+
k CT

be constructed from theMAIN APPROXIMATION algorithm of Algorithm 2 by sampling c columns
of G with probabilities{pi}n

i=1 such that

pi = G2
ii/

n

∑
i=1

G2
ii . (16)

Let r = rank(W) and let Gk be the best rank-k approximation to G. In addition, letε > 0 and
η = 1+

√

8log(1/δ). If c≥ 64k/ε4, then

E
[∥

∥G− G̃k
∥

∥

F

]

≤ ‖G−Gk‖F + ε
n

∑
i=1

G2
ii (17)

and if c≥ 64kη2/ε4 then with probability at least1−δ

∥

∥G− G̃k
∥

∥

F ≤ ‖G−Gk‖F + ε
n

∑
i=1

G2
ii . (18)
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In addition, if c≥ 4/ε2 then

E
[∥

∥G− G̃k
∥

∥

2

]

≤ ‖G−Gk‖2 + ε
n

∑
i=1

G2
ii (19)

and if c≥ 4η2/ε2 then with probability at least1−δ

∥

∥G− G̃k
∥

∥

2 ≤ ‖G−Gk‖2 + ε
n

∑
i=1

G2
ii . (20)

Several things should be noted about this result. First, ifk≥ r = rank(W) thenWk = W, and an
application of (13) of Theorem 2 leads to bounds of the form

∥

∥G− G̃r
∥

∥

2 ≤ ε∑n
i=1G2

ii , in expectation
and with high probability. Second, the sampling probabilities used in Thoerem 3may be written

as pi =
∣

∣X(i)
∣

∣

2
/‖X‖2

F , which only depend on dot products from the data matrixX. This is useful
if X consists of the data after it has been mapped to the feature spaceF . Finally, if the sampling

probabilities were of the formpi =
∣

∣G(i)
∣

∣

2
/‖G‖2

F then they would preferentially choose data points
that are more informative (in the sense of being longer) and/or more representative of the data (in the
sense that they tend to be more well correlated with more data points). Insteadthe probabilities (16)
ignore the correlations. As discussed in Sections 5 and 6, this leads to somewhat worse error bounds.
To the best of our knowledge, it is not known how to sample with respect to correlations while
respecting the SPSD property and obtaining provably good bounds with improved error bounds.
This is of interest since in many applications it is likely that the data are approximately normalized
by the way the data are generated, and it is the correlations that are of interest. Intuitively, this
difficulty arises since it is difficult to identify structure in a matrix to ensure the SPSD property,
unless, e.g., the matrix is diagonally dominant or given in the formXTX. As will be seen in Section
4.3, the proof of Theorem 3 depends crucially on the decomposition ofG asG = XTX.

4.3 Proof of Theorem 3

SinceG = XTX it follows that both the left and the right singular vectors ofG are equal to the right
singular vectors ofX and that the singular values ofG are the squares of the singular values ofX.
More formally, let the SVD ofX beX = UΣVT . Then

G = VΣ2VT = XTUUTX. (21)

Now, let us considerCX = XSD∈ R
m×c, i.e., the column sampled and rescaled version ofX, and let

the SVD ofCX beCX = Û Σ̂V̂T . Thus, in particular,̂U contains the left singular vectors ofCX. We
do not specify the dimensions of̂U (and in particular how many columnŝU has) since we do not
know the rank ofCX. Let Ûk be them×k matrix whose columns consist of the singular vectors of
CX corresponding to the topk singular values. Instead of exactly computing the left singular vectors
U of X, we can approximate them bŷUk, computed from a column sample ofX, and use this to
compute an approximatioñG to G.

We first establish the following lemma, which provides a bound on
∥

∥G− G̃k
∥

∥

ξ for ξ = 2,F.

Lemma 4 If G̃k = CW+
k CT then

∥

∥G− G̃k
∥

∥

F =
∥

∥XTX−XTÛkÛkX
∥

∥

F (22)
∥

∥G− G̃k
∥

∥

2 =
∥

∥X−ÛkÛ
T
k X
∥

∥

2
2 . (23)
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Proof Recall thatC = GSDandW = (SD)TGSD= CT
XCX. Thus,W = V̂Σ̂2V̂ andWk = V̂Σ̂2

kV̂
T ,

whereΣ̂k is the diagonal matrix with the topk singular values ofCX on the diagonal and the remain-
der set to 0. Then sinceCX = XSD= Û Σ̂V̂T andW+

k = V̂Σ̂−2
k V̂T

G̃k = GSD(Wk)
+ (GSD)T (24)

= XTÛ Σ̂V̂T (V̂Σ̂2
kV̂

T)+ V̂Σ̂ÛTX (25)

= XTÛkÛ
T
k X, (26)

whereÛkÛT
k is a projection onto the space spanned by the topk singular vectors ofW. (22) then

follows immediately, and (23) follows since

XTX−XTÛkÛ
T
k X =

(

X−ÛkÛ
T
k X
)T (

X−ÛkÛ
T
k X
)

and since‖Ω‖2
2 =

∥

∥ΩTΩ
∥

∥

2 for any matrixΩ.

By combining (23) with Theorem 2, we see that

∥

∥G− G̃k
∥

∥

2 ≤ ‖X−Xk‖2
2 +2

∥

∥XXT −CXCT
X

∥

∥

2

≤ ‖G−Gk‖2 +2
∥

∥XXT −CXCT
X

∥

∥

2 .

Since the sampling probabilities (16) are of the formpi =
∣

∣X(i)
∣

∣

2
/‖X‖2

F , this may be combined
with Theorem 1, from which, by choosingc appropriately, the spectral norm bounds (19) and (20)
of Theorem 3 follow.

To establish the Frobenius norm bounds, defineE = XXTXXT −CXCT
XCXCT

X . Then, we have
that

∥

∥G− G̃k
∥

∥

2
F =

∥

∥XTX
∥

∥

2
F −2

∥

∥XXTÛk
∥

∥

2
F +

∥

∥ÛT
k XXTÛk

∥

∥

2
F (27)

≤
∥

∥XTX
∥

∥

2
F −2

(

k

∑
t=1

σ4
t (CX)−

√
k‖E‖F

)

+
k

∑
t=1

σ4
t (CX)+

√
k‖E‖F (28)

=
∥

∥XTX
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)+3

√
k‖E‖F (29)

≤
∥

∥XTX
∥

∥

2
F −

k

∑
t=1

σ2
t (X

TX)+4
√

k‖E‖F , (30)

where (27) follows by Lemmas 4 and 5, (28) follows by Lemmas 6 and 7, and (30) follows by
Lemma 8. Since

∥

∥XTX
∥

∥

2
F −

k

∑
t=1

σ2
t (X

TX) = ‖G‖2
F −

k

∑
t=1

σ2
t (G) = ‖G−Gk‖2

F ,

it follows that

∥

∥G− G̃k
∥

∥

2
F ≤ ‖G−Gk‖2

F +4
√

k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F . (31)
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Since the sampling probabilities (16) are of the formpi =
∣

∣X(i)
∣

∣

2
/‖X‖2

F , this may be combined with
Lemma 9 and Theorem 1. Since(α2 + β2)1/2 ≤ α + β for α,β ≥ 0, by using Jensen’s inequality,
and by choosingc appropriately, the Frobenius norm bounds (17) and (18) of Theorem3 follow.

The next four lemmas are used to bound the right hand side of (22).

Lemma 5 For every k: 0≤ k≤ rank(W) we have that

∥

∥XTX−XTÛkÛ
T
k X
∥

∥

2
F =

∥

∥XTX
∥

∥

2
F −2

∥

∥XXTÛk
∥

∥

2
F +

∥

∥ÛT
k XXTÛk

∥

∥

2
F .

Proof DefineY = X−ÛkÛT
k X. Then

∥

∥XTX−XTÛkÛ
T
k X
∥

∥

2
F =

∥

∥YTY
∥

∥

2
F

= Tr
(

YTYYTY
)

=
∥

∥XTX
∥

∥

2
F −2Tr

(

XXTÛkÛ
T
k XXT)+Tr

(

ÛT
k XXTÛkÛ

T
k XXTÛk

)

,

where the last line follows by multiplying out terms and since the trace is symmetric under cyclic
permutations. The lemma follows since‖Ω‖2

F = Tr
(

ΩΩT
)

for any matrixΩ.

Lemma 6 For every k: 0≤ k≤ rank(W) we have that

∣

∣

∣

∣

∣

∥

∥XXTÛk
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)

∣

∣

∣

∣

∣

≤
√

k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F .

Proof Sinceσt(CXCT
X) = σ2

t (CX) and sinceÛ is a matrix consisting of the singular vectors of
CX = XSD, we have that

∣

∣

∣

∣

∣

∥

∥XXTÛk
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k

∑
t=1

∣

∣

∣XXTÛ (t)
∣

∣

∣

2
−

k

∑
t=1

∣

∣

∣CXCT
XÛ (t)

∣

∣

∣

2
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k

∑
t=1

Û (t)T (

XXTXXT −CXCT
XCXCT

X

)

Û (t)

∣

∣

∣

∣

∣

≤
√

k

(

k

∑
t=1

(

Û (t)T (

XXTXXT −CXCT
XCXCT

X

)

Û (t)
)2
)1/2

,

where the last line follows from the Cauchy-Schwartz inequality. The lemma then follows.

Lemma 7 For every k: 0≤ k≤ rank(W) we have that

∥

∥ÛT
k XXTÛk

∥

∥

2
F −

k

∑
t=1

σ4
t (CX) ≤

√
k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F .
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Proof Recall that if a matrixU has orthonormal columns then
∥

∥UTΩ
∥

∥

F ≤ ‖Ω‖F for any matrixΩ.
Thus, we have that

∥

∥ÛT
k XXTÛk

∥

∥

2
F −

k

∑
t=1

σ4
t (CX) ≤

∥

∥XXTÛk
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)

≤
∣

∣

∣

∣

∣

∥

∥XXTÛk
∥

∥

2
F −

k

∑
t=1

σ4
t (CX)

∣

∣

∣

∣

∣

.

The remainder of the proof follows that of Lemma 6.

Lemma 8 For every k: 0≤ k≤ rank(W) we have that

∣

∣

∣

∣

∣

k

∑
t=1

σ4
t (CX)−σ2

t (X
TX)

∣

∣

∣

∣

∣

≤
√

k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F .

Proof

∣

∣

∣

∣

∣

k

∑
t=1

σ4
t (CX)−σ2

t (X
TX)

∣

∣

∣

∣

∣

≤
√

k

(

k

∑
t=1

(

σ4
t (CX)−σ2

t (X
TX)

)2

)1/2

=
√

k

(

k

∑
t=1

(

σt(CXCT
XCXCT

X)−σt(XXTXXT)
)2

)1/2

≤
√

k
∥

∥XXTXXT −CXCT
XCXCT

X

∥

∥

F ,

where the first inequality follows from the Cauchy-Schwartz inequality andthe second inequality
follows from the matrix perturbation result (3).

The following is a result of the BASICMATRIX MULTIPLICATION algorithm that is not found in
Drineas, Kannan, and Mahoney (2004a), but that will be useful forbounding the additional error in
(31). We state this result for a generalm×n matrixA.

Lemma 9 Suppose A∈R
m×n, c∈Z

+ such that1≤ c≤n, and{pi}n
i=1 are such that pk =

∣

∣A(k)
∣

∣

2
/‖A‖2

F .
Construct C with theBASICMATRIX MULTIPLICATION algorithm of Drineas, Kannan, and Ma-
honey (2004a). Then

E
[∥

∥AATAAT −CCTCCT
∥

∥

F

]

≤ 2√
c
‖A‖4

F . (32)

Furthermore, letδ ∈ (0,1) andη = 1+
√

8log(1/δ). Then, with probability at least1−δ,

∥

∥AATAAT −CCTCCT
∥

∥

F ≤ 2η√
c
‖A‖4

F . (33)
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Proof First note that:

AATAAT −CCTCCT = AATAAT −AATCCT +AATCCT −CCTCCT

= AAT (AAT −CCT)+
(

AAT −CCT)CCT .

Thus, by submultiplicitivity and subadditivity we have that forξ = 2,F:

∥

∥AATAAT −CCTCCT
∥

∥

F ≤ ‖A‖2
F

∥

∥AAT −CCT
∥

∥

F +
∥

∥AAT −CCT
∥

∥

F ‖C‖2
F .

The lemma follows since‖C‖2
F = ‖A‖2

F whenpk =
∣

∣A(k)
∣

∣

2
/‖A‖2

F , and by applying Theorem 1.

5. Discussion Section

One motivation for the present work was to provide a firm theoretical basisfor the Nystr̈om-based
algorithm of Williams and Seeger (2001). A second motivation was to clarify therelationships be-
tween our randomized SVD algorithms (Drineas, Kannan, and Mahoney, 2004b), our randomized
CUR algorithms (Drineas, Kannan, and Mahoney, 2004c), and the Nyström-based methods of oth-
ers (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer, and Tresp, 2002; Fowlkes,
Belongie, Chung, and Malik, 2004). A third motivation was to extend our random sampling method-
ology to extract linear structure from matrices while preserving important nonlinear structure. In
this section, we discuss these issues. Note that our CONSTANTTIMESVD algorithm of Drineas,
Kannan, and Mahoney (2004b) is the algorithm originally analyzed by Frieze, Kannan, and Vem-
pala (1998), and thus a discussion of it corresponds also to a discussion of their algorithm (Frieze,
Kannan, and Vempala, 1998).

5.1 Summary of the Nystr̈om Method

The Nystr̈om method was originally introduced to handle approximations based on the numerical
integration of the integral operator in integral equations, and it is well known for its simplicity and
accuracy (Delves and Mohamed, 1985). To illustrate the Nyström method, consider the eigenfunc-
tion problem:

Z

D
K(t,s)Φ(s)ds= λΦ(t) t ∈ D. (34)

The resulting solution is first found at the set of quadrature node points,and then it is extended to all
points inD by means of a special interpolation formula (see (39) below). This method requires the
use of a quadrature rule. Assume thatD = [a,b] ⊂ R and that the quadrature rule is the following:

Z b

a
y(s)ds=

n

∑
j=1

w jy(sj), (35)

where{w j} are the weights and{sj} are the quadrature points that are determined by the particular
quadrature rule. If this rule is used to compute the integral occurring in (34), we have

Z b

a
K(x,s)Φ(s)ds≈

n

∑
j=1

w jk(x,sj)φ̃(sj), (36)
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and the integral equation (34) leads to an eigenvalue problem of the form

n

∑
j=1

w jk(x,sj)φ̃(sj) = λ̃φ̃(x). (37)

Solving (37) leads to an approximate eigenvalueλ̃ and an approximate eigenfunctionφ̃(x) and may
be done via the Nyström method as follows. First, setx = xi , i = 1, . . . ,n in (37). This leads to a
system ofn algebraic equations:

n

∑
j=1

w jk(xi ,sj)φ̃(sj) = λ̃φ̃(xi), (38)

that depend on the set{xi} of Nyström points. Although it is by no means necessary that the set of
Nyström points is coincident with the set of quadrature points, they are often chosen to be so since
in that case if the kernelK(·, ·) is symmetric then the matrixk(·, ·) in (38) is symmetric. Then, if
λ̃m 6= 0 the exact eigenvectorsφ̃m on the Nystr̈om points can be extended to a functionφ̄m(x) on the
full domain by substituting it into (37):

φ̄m(x) =
1

λ̃m

n

∑
j=1

w jk(x,sj)φ̃m(sj). (39)

The functionφ̄m(x) is theNystr̈om extensionof the eigenvector̃φm, and in the present context may
be thought of as being an approximation to the exact eigenfunctionΦm computed by extending a
function computed on a (small) numbern of points to the full (large) domainD.

In the applications we are considering, the data points are vectors inR
n. Thus, consider anm×n

matrix A consisting ofm such vectors. Letc columns andr rows be chosen (without replacement)
in some manner, and letA be partitioned as

A =

[

A11 A12

A21 A22

]

, (40)

whereA11 ∈ R
c×r represents the subblock of matrix elements common to the sampled columns

and the sampled rows,A21 andA12 are rectangular matrices consisting of elements with a sampled
column label (exclusive) or sampled row label, respectively, andA22 ∈ R

(m−c)×(n−r) consists of the
remaining elements. Ifc, r = O(1) thenA11 is small andA22 is large. To be consistent with the
notation of Drineas, Kannan, and Mahoney (2004b,c), we letC = [AT

11A
T
21]

T andR= [A11A12]. Let
the SVD ofA11 beA11 = Ũ Σ̃ṼT , and let the rank ofA11 bek.

Assume, for the moment, thatA is a SPSD matrix and that the chosen rows are the same as the
chosen columns. Then,A11 is also a SPSD matrix; in addition,Ṽ = Ũ are the eigenvalues ofA11 and
Σ̃ consists of the eigenvectors ofA11. In this case, the Nyström extension ofŨ gives the following
approximation for the eigenvectors of the full matrixA:

Ū = CŨΣ−1 =

[

A11

A21

]

Ũ Σ̃−1 =

[

Ũ
A21Ũ Σ̃−1

]

. (41)

Note that this Nystr̈om extension of the restricted solution to the full set of data points is of the same
form as (39).
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More generally, ifA is an arbitrarym×n matrix, then the Nystr̈om extension ofŨ andṼ gives
the following approximation for the singular vectors of the full matrixA:

Ū =

[

Ũ
A21ṼΣ̃−1

]

, and (42)

V̄ =

[

Ṽ
AT

12Ũ Σ̃−1

]

. (43)

If both Ū andV̄ have been computed then the Nyström extensions (42)–(43) also have an interpre-
tation in terms of matrix completion. To see this, setÃ = Ū Σ̃V̄T ; then we have

Ã =

[

Ũ
A21ṼΣ̃−1

]

Σ̃
[

ṼT Σ̃−1ŨTA12
]

(44)

=

[

A11 ŨŨTA12

A21ṼṼT A21A
+
11A12

]

(45)

=

[

A11

A21

]

A+
11

[

A11 A12
]

. (46)

Note that ifA11 is nonsingular, then (45) becomes

Ã =

[

A11 A12

A21 A21A
−1
11 A12

]

. (47)

In this case, the Nyström extension implicitly approximatesA22 usingA21A
−1
11 A12, and the quality

of the approximation ofA by Ã can be quantified by the norm of the Schur complement
∥

∥A22−A21A
−1
11 A12

∥

∥

ξ ,ξ = 2,F.

The size of this error norm is governed, e.g., by the extent to which the columns ofA21 provide a
good basis for the columns ofA22. If A11 is rectangular or square and singular then other terms in the
matrix Ã also contribute to the error. Note that (46) is of the formA≈ Ã = CA+

11R . If A is a SPSD
matrix and the chosen rows are the same as the chosen columns then (45) is modified appropriately
and (46) is of the formA≈ Ã = CW+CT , which is the form of our main decomposition for a Gram
matrix G. Note, however, that neither̃U nor Ū are actually computed by our main approximation
algorithm. In Sections 5.2 and 5.3, we discuss these issues further.

5.2 Relationship to the Randomized Singular Value Decompositions

Recall that the LINEARTIMESVD of Drineas, Kannan, and Mahoney (2004b) computes exactly the
low-dimensional singular vectors ofC. Let the SVD ofC beC= HΣZT . Then, the high-dimensional
singular vectors ofC are computed by extending the low-dimensional singular vectors as

H = CZΣ−1, (48)

and it is these that are taken as approximations of the left singular vectors of the original matrixA,
in the sense that under appropriate assumptions,

∥

∥A−HHTA
∥

∥

ξ ≤ ‖A−Ak‖ξ + ε‖A‖F , (49)
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in expectation and with high probability, for bothξ = 2,F. This is not a Nystr̈om extension in the
sense of Section 5.1 since although sampling is used to construct the matrixC a second level of
sampling is never performed to constructA11.

On the other hand, the CONSTANTTIMESVD algorithm of Drineas, Kannan, and Mahoney
(2004b) (and thus the algorithm of Frieze, Kannan, and Vempala, 1998)is similar except that it
approximatesthe low-dimensional singular vectors ofC. It does this by randomly samplingw rows
of C and rescaling each appropriately to form aw×c matrixA11 (this matrix is calledW in Drineas,
Kannan, and Mahoney (2004b,c), but it is constructed with different sampling probabilities than the
W defined in this paper) and computing the eigenvectors ofAT

11A11. These eigenvectors are then
Nyström-extended via (42) to vectors̄U (denoted byH̃ in Drineas, Kannan, and Mahoney (2004b))
that approximate the left singular vectors ofA. In this case, the projectionHHT = C(CTC)+CT of
the LINEARTIMESVD algorithm is replaced by an approximate projection onto the column space
of C of the formŪŪ = C(AT

11A11)
+CT . From this perspective, sinceCTC ≈ AT

11A11 we may view
the LINEARTIMESVD of Drineas, Kannan, and Mahoney (2004b) as performing a Nyström-based
extension of approximations of the eigenvectors ofAT

11A11.

We emphasize these points since we would like to clarify several potential misunderstandings
in the literature regarding the relationship between the Nyström-based algorithm of Williams and
Seeger (2001) and the approximate SVD algorithm of Frieze, Kannan, and Vempala (1998). For ex-
ample, in some work (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer, and Tresp,
2002; Fowlkes, Belongie, Chung, and Malik, 2004) it is claimed that their Nyström-based methods
are a special case of Frieze, Kannan, and Vempala (1998) and thus ofthe CONSTANTTIMESVD
algorithm of Drineas, Kannan, and Mahoney (2004b). Although the SVDalgorithms of Drineas,
Kannan, and Mahoney (2004b) and Frieze, Kannan, and Vempala (1998) do represent a Nyström-
based extension in the sense just described, several things should be noted. First, in order to obtain
provable performance guarantees, the CONSTANTTIMESVD algorithm used by Drineas, Kannan,
and Mahoney (2004b) and Frieze, Kannan, and Vempala (1998) approximates the left (or right, but
not both) singular vectors in a single Nyström-like extension of the form (42) (or (43) for the right
singular vectors). This algorithm makes no assumptions about the symmetry orpositive definite-
ness of the input matrix, and it does not take advantage of this structure if itexists. Second, and
relatedly, in this algorithm there are two levels of sampling, and only the first depends directly on
the elements of the matrixA; the second depends on the lengths of the rows ofC. Thus, in general,
the matrixA11 does not consist of the same rows as columns, even ifA is a SPSD matrix. IfA is
a SPSD matrix, then one could approximateA asÃ = Ū Σ̃ŪT , but the error associated with this is
not the error that the theorems of Drineas, Kannan, and Mahoney (2004b) and Frieze, Kannan, and
Vempala (1998) bound. Third, the structure of the approximation obtained by Drineas, Kannan,
and Mahoney (2004b) and Frieze, Kannan, and Vempala (1998) is quitedifferent from that of the
approximation of Williams and Seeger (2001) and (14). In the latter case it is of the formCW+CT ,
while in the former case it is of the formPCA, wherePC is an exact or approximate projection onto
the column space ofC.

5.3 Relationship to the Randomized CUR Decompositions

To shed further light on the relationship between the CONSTANTTIMESVD algorithm (Drineas,
Kannan, and Mahoney, 2004b; Frieze, Kannan, and Vempala, 1998)and the Nystr̈om-based meth-
ods (Williams and Seeger, 2001; Williams, Rasmussen, Schwaighofer, and Tresp, 2002; Fowlkes,
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Belongie, Chung, and Malik, 2004), it is worth considering the CUR decompositions of Drineas,
Kannan, and Mahoney (2004c), which are structurally a generalizationof our main matrix decom-
position. ACUR decompositionis a low-rank matrix decomposition of the formA≈CUR, whereC
is a matrix consisting of a small number of columns ofA, R is a matrix consisting of a small number
of rows ofA, andU is an appropriately-defined low-dimensional matrix. Examples may be found
in Drineas, Kannan, and Mahoney (2004c), and also in Goreinov, Tyrtyshnikov, and Zamarashkin
(1997); Goreinov and Tyrtyshnikov (2001). In particular, the LINEARTIMECUR and CONSTANT-
TIMECUR algorithms of Drineas, Kannan, and Mahoney (2004c) (so named due to their relation-
ship with the correspondingly-named SVD algorithms of Drineas, Kannan, and Mahoney, 2004b)
compute an approximation to a matrixA∈ R

m×n by samplingc columns andr rows of the matrix
A to form matricesC ∈ R

m×c andR∈ R
r×n, respectively. The matricesC andR are constructed

with carefully-chosen and data-dependent nonuniform probability distributions, and fromC andR
a matrixU ∈ R

c×r is constructed such that under appropriate assumptions:

‖A−CUR‖ξ ≤ ‖A−Ak‖ξ + ε‖A‖F , (50)

with high probability, for bothξ = 2, F . Although these algorithms apply to any matrix, and thus
to a SPSD matrix, the computed approximationCUR (with the provable error bounds of the form
(50)) is neither symmetric nor positive semidefinite in the latter case. The SPSD property is an
important property in many applications, and thus it is desirable to obtain a low-rank approximation
that respects this property. The analysis of the MAIN APPROXIMATION algorithm shows that ifG
is a SPSD matrix then we can chooseR= CT andU = A+

11 and obtain a SPSD approximation of the
form G≈ G̃k = CW+

k CT with provable error bounds of the form (1). Note that this bound is worse
than that of (50) since the scale of the additional error is larger. Althoughit may not be surprising
that the bound is somewhat worse since we are requiring that the approximation is not just low rank
but that in addition it respects the nonlinear SPSD property, the worse bound is likely due simply to
the sampling probabilities that were used to obtain provable performance guarantees.

Since the CUR algorithms of Drineas, Kannan, and Mahoney (2004c) relyfor their proofs of
correctness on the corresponding SVD algorithms of Drineas, Kannan,and Mahoney (2004b), the
Nyström discussion about the SVD algorithms is relevant to them. In addition, to understand the
CUR algorithm in terms of matrix completion, consider anm×n matrix A with c columns andr
rows chosen in some manner which is partitioned as in (40). LetU ∈ R

c×r be an appropriately
defined matrix as in Drineas, Kannan, and Mahoney (2004c), and let usdecompose the original
matrixA of (40) asA≈CUR:

CUR =

[

A11

A21

]

U
[

A11 A12
]

(51)

=

[

A11UA11 A11UA12

A21UA11 A21UA12

]

. (52)

In Drineas, Kannan, and Mahoney (2004c)U 6= A11, but we provide a definition forU such that
U ≈ A+

11, in which case the structural similarity between (51) and (46) should be clear, as should the
similarity between (52) and (45). For general matricesA, the CUR decomposition approximatesA22

by A22 = A21UA12, but it also approximatesA21 by A21UA11, A12 by A11UA12, andA11 by A11UA11.
Thus, the quality of the approximation of the full matrix can not be quantified simply by the norm
of the Schur complement

∥

∥A22−A21A
+
11A12

∥

∥

ξ, and in Drineas, Kannan, and Mahoney (2004c) we
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bound‖A−CUR‖ξ directly. Relatedly, the quality of the approximation is determined, e.g., by how
well a basis the chosen columns ofC are for the remaining columns ofA.

6. Conclusion

We have presented and analyzed an algorithm that provides an approximate decomposition of an
n×n Gram matrixG which is of the formG≈ G̃k = CW+

k CT and which has provable error bounds
of the form (1). A crucial feature of this algorithm is the probability distribution used to randomly
sample columns. We conclude with two open problems related to the choice of this distribution.

First, it would be desirable to choose the probabilities in Theorem 3 to bepi =
∣

∣G(i)
∣

∣

2
/‖G‖2

F and
to establish bounds of the form (1) in which the scale of the additional errorwas‖G‖F =

∥

∥XTX
∥

∥

F

rather than∑n
i=1G2

ii = ‖X‖2
F . This would entail extracting linear structure while simultaneously

respecting the SPSD property and obtaining improved scale of error. Thiswould likely be a corollary
of a CUR decomposition for a generalm×n matrix A with error bounds of the form (50) in which
U = W+

k , whereW is now the matrix consisting of the intersection of the chosen columns and (in
general different) rows. This would simplify considerably the form ofU found in Drineas, Kannan,
and Mahoney (2004c) and would lead to improved interpretability. Second,we should also note
that if capturing coarse statistics over the data is not of interest, but insteadone is interested in other
properties of the data, e.g., identifying outliers, then probabilities that depend on the data in some
other manner, e.g., inversely with respect to their lengths squared, may be appropriate. We do not
have provable bounds in this case. We should note, however, that we are empirically evaluating
the applicability of the methodology presented in this paper for problems of interest in machine
learning. We will report the results at a future date.
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B. Scḧolkopf, A. Smola, and K.-R. M̈uller. Nonlinear component analysis as a kernel eigenvalue
problem.Neural Computation, 10:1299–1319, 1998.
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Abstract

We propose a novel framework for approximations to intractable probabilistic models which
is based on a free energy formulation. The approximation can be understood as replacing
an average over the original intractable distribution with a tractable one. It requires two
tractable probability distributions which are made consistent on a set of moments and
encode different features of the original intractable distribution. In this way we are able
to use Gaussian approximations for models with discrete or bounded variables which allow
us to include non-trivial correlations. These are neglected in many other methods. We
test the framework on toy benchmark problems for binary variables on fully connected
graphs and 2D grids and compare with other methods, such as loopy belief propagation.
Good performance is already achieved by using single nodes as tractable substructures.
Significant improvements are obtained when a spanning tree is used instead.

1. Introduction

Recent developments in data acquisition and computational power have spurred an increased
interest in flexible statistical Bayesian models in many areas of science and engineering.
Inference in probabilistic models is in many cases intractable; the computational cost of
marginalization operations can scale exponentially in the number of variables or require
integrals over multivariate non-tractable distributions. In order to treat systems with a large
number of variables, it is therefore necessary to use approximate polynomial complexity
inference methods.

Probably the most prominent and widely developed approximation technique is the so-
called variational (or variational Bayes) approximation (see, e.g. Jordan et al., 1999; Attias,
2000; Bishop et al., 2003). In this approach, the true intractable probability distribution
is approximated by another one which is optimally chosen within a given, tractable family
minimizing the Kullback Leibler (KL) divergence as the measure of dissimilarity between
distributions. We will use the name variational bound for this specific method because the
approximation results in an upper bound to the free energy (an entropic quantity related
to the KL divergence). The alternative approximation methods discussed in this paper can
also be derived from the variation of an approximate free energy which is not necessarily

c©2005 Manfred Opper and Ole Winther.
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a bound. The most important tractable families of distributions in the variational bound
approximation are multivariate Gaussians and distributions often in the exponential family
which factorize in the marginals of all or for certain disjoint groups of variables (Attias,
2000) (this is often called a mean–field approximation). The use of multivariate Gaussians
makes it possible to retain a significant amount of correlation between variables in the
approximation. However, their application in the variational bound approximation is limited
to distributions of continuous variables which have the entire real space as their natural
domain. This is due to the fact that the KL divergence would diverge for distributions with
non-matching support. Hence, in a majority of those applications, where random variables
with constrained values (such as Boolean ones) appear, variational distributions of the mean
field type have to be chosen. However, such factorizing approximations have the drawback
that correlations are neglected and one often observes that fluctuations are underestimated
(MacKay, 2003; Opper and Winther, 2004).

Recently, a lot of effort has been devoted to the development of approximation tech-
niques which give an improved performance compared to the variational bound approxi-
mation. Thomas Minka’s Expectation Propagation (EP) approach (Minka, 2001a,b) seems
to provide a general framework from which many of these developments can be re-derived
and understood. EP is based on a dynamical picture where factors—their product form-
ing a global tractable approximate distribution—are iteratively optimized. In contrast to
the variational bound approach, the optimization proceeds locally by minimizing KL diver-
gences between appropriately defined marginal distributions. Since the resulting algorithm
can be formulated in terms of the matching of marginal moments, this would not rule
out factorizations where discrete distributions are approximated by multivariate Gaussians.
However, such a choice seems to be highly unnatural from the derivation of the EP ap-
proximation (by the infinite KL measure) and has to our knowledge not been suggested so
far (Minka, private communication). Hence, in practice, the correlations between discrete
variables have been mainly treated using tree-based approximations. This includes the cel-
ebrated Bethe-Kikuchi approach (Yedidia et al., 2001; Yuille, 2002; Heskes et al., 2003),
for EP interpretations see Minka (2001a,b) and Minka and Qi (2004). For a variety of re-
lated approximations within statistical physics see Suzuki (1995). However, while tree-type
approximations often work well for sparsely connected graphs they become inadequate for
inference problems in a dense graph regardless of the type of variables.

In this paper we present an alternative view of local-consistency approximations of the
EP–type which we call expectation consistent (EC) approximations. It can be understood
by requiring consistency between two complementary global approximations which may
have different support (say, a Gaussian one and one that factorizes into marginals). Our
method is a generalization of the adaptive TAP approach (ADATAP) (Opper and Winther,
2001a,b) developed for inference on densely connected graphical models. Although it has
been applied successfully to a variety of problems ranging from probabilistic ICA (Hojen-
Sorensen et al., 2002) over Gaussian process models (Opper and Winther, 2000) to bootstrap
methods for kernel machines (Malzahn and Opper, 2003), see Appendix A, its potential as a
fairly general scheme has been somewhat overlooked in the Machine Learning community.1

1. This is probably due to the fact that the most detailed description of the method has so far only
appeared in the statistical physics literature (Opper and Winther, 2001a,b) in a formulation that is not
very accessible to a general audience. Shortly after the method first appeared–in the context of Gaussian
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Although one algorithmic realization of our method can be given an EP-style interpretation
(Csató et al., 2002), we believe that it is more natural and more powerful to base the
derivation on a framework of optimizing a free energy approximation. This not only has
the advantage of providing a simple and clear way for adapting the model parameters
within the empirical Bayes framework, but also motivates different practical optimization
algorithms among which the EP–style may not always be the best choice.

Our paper is organized as follows: Section 2 motivates approximate inference and ex-
plains the notation. The expectation consistent (EC) approximation to the free energy is
derived in Section 3. Examples for EC free energies are given in Section 4. The algorithmic
issues are treated in Section 5, simulations in Section 6 and finally we conclude in Section
7.

2. Motivation: Approximate Inference

We consider the problem of computing expectations, i.e. certain sums or integrals involv-
ing a probability distribution with density p(x) for a vector of random variables x =
(x1, x2, . . . , xN ). We assume that such computations are considered intractable, either be-
cause the necessary sums are over a too large number of variables or because multivariate
integrals cannot be evaluated exactly. A further complication might occur when the density
itself is expressed by a non-normalized multivariate function f(x), say, equal to the product
of a prior and a likelihood, which requires further normalization, i.e.

p(x) =
1

Z
f(x) , (1)

where the partition function Z must be obtained by the (intractable) summation or inte-
gration of f : Z =

∫

dxf(x). In a typical scenario, f(x) is expressed as a product of two
functions

f(x) = fq(x)fr(x) (2)

with fq,r(x) ≥ 0, where fq is “simple” enough to allow for tractable computations. The goal
is to approximate the “complicated” part fr(x) by replacing it with a “simpler” function,
say of some exponential form

exp
(

λTg(x)
)

≡ exp





K
∑

j=1

λjgj(x)



 . (3)

We have used the same vector notation for g-vectors as for the random variables x, however
one should note that vectors will often have different dimensionalities, i.e. K 6= N . The
vector of functions g is chosen in such a way that the desired sums or integrals can be
calculated in an efficient way and the parameters λ are adjusted to optimize certain criteria.
Hence, the word tractability should always be understood as relative to some approximating
set of functions g.

Our framework of approximation will be restricted to problems, where both parts fq

and fr can be considered as tractable relative to some suitable g, and the intractability

processes (Opper and Winther, 2000)–Minka introduced his EP framework and showed the equivalence
of the fixed points of the two methods for Gaussian process models.
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of the density p arises from forming their product.2 In such a case, one may alternatively
retain fr but replace fq by an approximation of the form eq. (3). One would then end up
with two types of approximations

q(x) =
1

Zq(λq)
fq(x) exp

(

λT
q g(x)

)

(4)

r(x) =
1

Zr(λr)
fr(x) exp

(

λT
r g(x)

)

(5)

for the same density, where Zq(λq) =
∫

dx fq(x) exp
(

λT
q g(x)

)

. We will not assume that
either choice q and r is a reasonably good approximation for the global joint density p(x) as
we do in the variational bound approximation. In fact, later we will apply our method to the
case of Ising variables, where the KL divergence between one of them and p is even infinite!
Though, suitable different marginalizations of q and r can give quite accurate answers for
important marginal statistics.

Take, as an example, the density p(x) = f(x)/Z = fq(x)fr(x)/Z—with respect to the
Lebesgue measure in RN—with

fq(x) =
∏

i

ψi(xi) (6)

fr(x) = exp





∑

i<j

xiJijxj +
∑

i

θixi



 , (7)

where, in order to have a nontrivial problem, ψi should be a non-Gaussian function. We will
name this the quadratic model. Usually there will be an ambiguity in the choice of factor-
ization, e.g. we could have included exp (

∑

i θixi) as a part of fq(x). One may approximate
p(x) by a factorizing distribution, thereby replacing fr(x) by some function which factorizes
in the components xi. Alternatively, one can consider replacing fq(x) by a Gaussian func-
tion to make the whole distribution Gaussian. Both approximations are not ideal. The first
completely neglects correlations of the variables but leads to marginal distributions of the
xi, which might qualitatively resemble the non-Gaussian shape of the true marginal. The
second one neglects the non-Gaussian effects but incorporates correlations which might be
used in order to approximate the two variable covariance functions. While within the varia-
tional bound approximation, both approximations appear independent from each other we
will, in the following develop an approach for combining two complimentary approximations
which “communicate” by matching the corresponding expectations of the functions g(x).

2.1 Notation

Throughout the paper, densities p(x) are assumed relative to the Lebesgue measure dx in
RN . Other choices, such as the counting measure, may lead to alternative approximations
for discrete variables. We will denote the expectation of a function h(x) with respect to a

2. This excludes many interesting models, for example mixture models, where tractability cannot be
achieved with one split. These models can be treated by applying the approximation repeatedly. But
for sake of clarity we will limit the treatment here to only one split.
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density p by brackets

〈h(x)〉 =

∫

dx p(x) h(x) =
1

Z

∫

dx f(x) h(x) , (8)

where, in cases of ambiguity, the density will appear as a subscript, like in 〈h(x)〉p. One of
the strengths of our formalism is to allow for a treatment of discrete and continuous random
variables within the same approach.

Example: Ising variables Discrete random variables can be described using Dirac dis-
tributions in the densities. For examples, the density of N independent Ising variables
xi ∈ {−1,+1} which occur with equal probabilities (one-half) has the density

p(x) =
N
∏

i=1

[

1

2
δ(xi + 1) +

1

2
δ(xi − 1)

]

. (9)

3. Expectation Consistent Free Energy Approximation

In this section we will derive an approximation for − lnZ, the negative log-partition function
also called the (Helmholtz) free energy. We will use an approximating distribution q(x) of
the type eq. (4) and split the exact free energy into a corresponding part − lnZq plus a rest
which will be further approximated. The split is obtained by writing

Z = Zq
Z

Zq
= Zq

∫

dxfr(x)fq(x) exp
(

(λq − λq)
Tg(x)

)

∫

dxfq(x) expλT
q g(x)

(10)

= Zq

〈

fr(x) exp
(

−λT
q g(x)

)〉

q
,

where

Zq(λq) =

∫

dx fq(x) exp
(

λT
q g(x)

)

. (11)

This expression can be used to derive a variational bound to the free energy − lnZ. Applying
Jensen’s inequality ln 〈f(x)〉 ≥ 〈ln f(x)〉 we arrive at

− lnZ ≤ − lnZvar = − lnZq − 〈ln fr(x)〉q + λT
q 〈g(x)〉q . (12)

The optimal value for λq is found by minimizing this upper bound.

Our new approximation is obtained by arguing that one may do better by retaining the
fr(x) exp

(

−λT
q g(x)

)

expression in eq. (10) but instead changing the distribution we use in
averaging. Hence, we replace the average with respect to q(x) with an average using a
distribution s(x) containing the same exponential form

s(x) =
1

Zs(λs)
exp

(

λT
s g(x)

)

.

Given a sensible strategy for choosing the parameters λs and λq, we expect that this ap-
proach in most cases gives a more precise approximation than the corresponding variational
bound. Qualitatively, the more one can retain of the intractable function in the averaging
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the closer the result will to the exact partition function. It is difficult to make this state-
ment quantitative and general. However, the method gives nontrivial results for a variety
of cases where the variational bound would be simply infinite! This always happens, when
fq is Gaussian and fr vanishes on a set which has nonzero probability with respect to the
density fq. Examples are when fr is discrete or contains likelihoods which vanish in cer-
tain regions as in noise-free Gaussian process classifiers (Opper and Winther, 1999). Our
approximation is further supported by the fact that for specific choices of fr and fq it is
equivalent to the adaptive TAP (ADATAP) approximation (Opper and Winther, 2001a,b).
ADATAP (unlike the variational bound) gives exact results for certain statistical ensembles
of distributions in an asymptotic (thermodynamic) limit studied in statistical physics.

Using s instead of q, we arrive at the approximation for − lnZ which depends upon two
sets of parameters λq and λs:

− lnZEC(λq,λs) = − lnZq − ln
〈

fr(x) exp
(

−λT
q g(x)

)〉

s

= − ln

∫

dxfq(x) exp
(

λT
q g(x)

)

− ln

∫

dxfr(x) exp
(

(λs − λq)
Tg(x)

)

+ ln

∫

dx exp
(

λT
s g(x)

)

. (13)

Here we have utilized our additional assumption, that also fr is tractable with respect to
the exponential family and thus Zr =

∫

dxfr(x) exp
(

(λs − λq)
Tg(x)

)

can be computed in
polynomial time. Eq. (13) leaves two sets of parameters λq and λs to be determined. We
expect that eq. (13) is a sensible approximation as long as s(x) shares some key properties
with q, for which we choose the matching of the moments 〈g(x)〉q = 〈g(x)〉s. This will fix
λs as a function of λq. Second, we know that the exact expression eq. (10) is independent
of the value of λq. If the replacement of q(x) by s(x) yields a good approximation, one
would still expect that eq. (13) is a fairly flat function of λq (after eliminating λs) in a
certain region. Hence, it makes sense to require that an optimized approximation should
make eq. (13) stationary with respect to variations of λq. This does not imply that we are
expecting a local minimum of eq. (13), see also section 3.1, but saddle points could occur.
Since we are not after a bound on the free energy, this is not necessarily a disadvantage of
the method. Readers who feel uneasy with this argument, might find the alternative, dual
derivation (using the Gibbs free energy) in appendix B more appealing.

Both conditions can be summarized by the expectation consistency (EC) conditions

∂ lnZEC

∂λq
= 0 : 〈g(x)〉q = 〈g(x)〉r (14)

∂ lnZEC

∂λs
= 0 : 〈g(x)〉r = 〈g(x)〉s (15)

for the three approximating distributions

q(x) =
1

Zq(λq)
fq(x) exp(λT

q g(x)) (16)

r(x) =
1

Zr(λr)
fr(x) exp(λT

r g(x)) with λr = λs − λq (17)

s(x) =
1

Zr(λs)
exp(λT

s g(x)) . (18)
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The corresponding EC approximation of the free energy is then

− lnZ ≈ − lnZEC = − lnZq(λq) − lnZr(λs − λq) + lnZs(λs) (19)

where λq and λs are chosen such that the partial derivatives of the right hand side vanish.

3.1 Properties of the EC approximation

Invariances Although our derivation started with approximating one of the two factors
fq and fr by an exponential, the final approximation is completely symmetric in the factors
fq and fr. We could have chosen to define q in terms of fr and still got the same final result.
If f contains multiplicative terms which are of the form exp

(

λTg(x)
)

for some fixed λ, we
are free to include them either in fq or fr without changing the approximation. This can
be easily shown by redefining λq → λq ± λ.

Derivatives with respect to parameters. The following is a useful result about the
derivative of − lnZEC with respect to a parameter t in the density p(x). Setting λ =
(λq,λs), we get

d lnZEC(t)

dt
=

∂ lnZEC(λ, t)

∂t
+

(

∂ lnZEC(λ, t)

∂λ

)

dλT

dt
=
∂ lnZEC(λ, t)

∂t
, (20)

where the second equality holds at the stationary point. The important message is that we
only need to take the explicit t dependence into account, i.e. we can keep the stationary
values λ fixed upon differentiation. This property can also be useful when optimizing the
free energy with respect to parameters in the empirical Bayes framework.

Relation to the variational bound. Applying Jensen’s inequality to (13) yields

− lnZEC(λq,λs) = − lnZq − ln
〈

fr(x) exp
(

−λT
q g(x)

)〉

s

≥ − lnZq − 〈ln fr(x)〉s + λT
q 〈g(x)〉s .

Hence, if fr and g(x) are defined in such a way that the matching of the moments 〈g(x)〉s =
〈g(x)〉q implies 〈ln fr(x)〉q = 〈ln fr(x)〉s then the rhs of the inequality is equal to the vari-
ational (bound) free energy eq. (12) for fixed λq. This will be the case for the models
discussed in this paper. Of course, this does not imply any relation between − lnZEC and
the true free energy. The similarity of EC to the variational bound approximation should
also be interpreted with care. One could be tempted to try solving the EC stationarity
conditions by eliminating λs, i.e. enforcing the moment constraints between q and s, and
minimizing the free energy approximation − lnZEC(λq,λs(λq)) with respect to λq, as in the
variational bound method. Simple counter examples show however that this function maybe
unbounded from below and that the stationary point may not even be a local minimum.

Non-convexity. The log–partition functions lnZq,r,s(λ) are the cumulant generating func-
tions of the random variables g(x). Hence, they are differentiable and convex functions on
their domains of definition, i.e.

H =
∂2 lnZ

∂λT∂λ
=
〈

g(x)g(x)T
〉

− 〈g(x)〉 〈g(x)〉T
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is positive semi-definite. It follows for fixed λs that eq. (19) is concave in the variable λq,
and there is only a single solution to eq. (14) corresponding to a maximum of − lnZq(λq)−
lnZr(λs − λq). On the other hand, eq. (19) is a sum of a concave and a convex function
of λs. Thus, unfortunately there may be more than one stationary point, a property which
the EC approach shares with other approximations such as the variational Bayes and the
Bethe–Kikuchi methods. Nevertheless, we can use a double loop algorithm which alternates
between solving the concave maximization problem for λq at fixed λs and updating λs given
the values of the moments 〈g(x)〉r = 〈g(x)〉q at fixed λq. We will show in Section 5 and in
Appendix B that such a simple heuristic leads to convergence to a stationary point assuming
that a certain cost function is bounded from below.

4. EC Free Energies – Examples

In this section we derive the EC free energy for a specific model, the quadratic, and discuss
several possible choices for the consistent statistics 〈g(x)〉.

4.1 Tractable Free Energies

Our approach applies most naturally to a class of models for which the distribution of
random variables x can be written as a product of a factorizing part eq. (6) and “Gaussian
part” eq. (7).3 The choice of g(x) is then guided by the need to make the computation
of the EC free energy, eq. (19), tractable. The “Gaussian part” stays tractable as long as
we take 〈g(x)〉 to contain first and second moments of x. It will usually be a good idea to
take all first moments, but we have a freedom in choosing the amount of consistency and
the number of second order moments in 〈g(x)〉. To keep Zq tractable (assuming fq it is not
Gaussian), a restriction to diagonal moments, i.e. 〈x2

i 〉 will be sufficient. When variables are
discrete, it is also possible to include second moments 〈xixj〉 for pairs of variables located
at the edges G of a tree.

The following three choices represent approximations of increasing complexity:

• Diagonal restricted: consistency on 〈xi〉, i = 1, . . . , N and
∑

i〈x2
i 〉.

g(x) =

(

x1, . . . , xN ,−
∑

i

x2
i

2

)

and λ = (γ1, . . . , γN ,Λ)

• Diagonal: consistency on 〈xi〉 and 〈x2
i 〉, i = 1, . . . , N

g(x) =

(

x1,−
x2

1

2
, . . . , xN ,−

x2
N

2

)

and λ = (γ1,Λ1, . . . , γN ,ΛN )

• Spanning tree: as above and additional consistency of correlations 〈xixj〉 defined on
a spanning tree (ij) ∈ G. Since we are free to move the terms Jijxixj with (ij) ∈ G
from the Gaussian term fr into the term fq, without changing the approximation, we
find that the number of interaction terms which have to be approximated using the

3. A generalization where fq factorizes into tractable “potentials” ψα defined on disjoint subsets xα of x is
also straightforward.
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complementary Gaussian density is reduced. If the tree is chosen in such a way as to
include the most important couplings (defined in a proper fashion), one can expect
that the approximation will be improved significantly.

It is of course also possible to go beyond a spanning tree to treat a larger part of the
marginalization exactly. We will next give explicit expressions for some free energies which
will be used later for the EC approximation.

Independent Ising random variables. Here, we considerN independent Ising variables
xi ∈ {−1,+1}:

f(x) =
N
∏

i=1

ψi(xi) with ψi(xi) = [δ(xi + 1) + δ(xi − 1)] . (21)

For the case of diagonal moments we get Z(λ) =
∏

i Zi(λi), λi = (γi,Λi):

Zi(λi) =

∫

dxi ψi(xi)e
γixi−Λix

2
i /2 = 2 cosh(γi)e

−Λi/2 . (22)

Multivariate Gaussian. Consider a Gaussian model: p(x) = 1
Z e

x
T
Jx+θ

T
x. We intro-

duce an arbitrary set of first moments 〈xi〉 and second moments −〈xixj〉/2 with conjugate
variables γ and Λ. Here it is understood, that entries of γ and Λ corresponding to the
non-fixed moments are set equal to zero. Λ is chosen to be a symmetric matrix, Λij = Λji,
for notational convenience. The resulting free energy is

lnZ(γ,Λ) =
N

2
ln 2π − 1

2
ln det(Λ − J) +

1

2
(γ + θ)T (Λ − J)−1(γ + θ) .

The free energies for binary and Gaussian tree graphs are given in Appendix C.

4.2 EC Approximation

We can now write down the explicit expression for the free energy, eq. (19) for the model
eqs. (6) and (7) with diagonal moments using the result for the Gaussian model:

− lnZEC = −
∑

i

ln

∫

dxi ψi(xi)e
γq,ixi−Λq,ix

2
i /2 +

1

2
ln det(Λs − Λq − J) (23)

−1

2
(θ + γs − γq)

T (Λs − Λq − J)−1(θ + γs − γq) −
1

2

∑

i

(

ln Λs,i −
γ2

s,i

Λs,i

)

where λq and λs are chosen to make − lnZEC stationary. The lnZs(λs) term is obtained
from the general Gaussian model setting θ = 0 and J = 0.

Generating moments. Derivatives of the free energy with respect to parameters provide
a simple way for generating expectations of functions of the random variable x. We will
explain the method for the second moments 〈xixj〉 of the model defined by the factorization
eqs. (6) and (7). If we consider p(x) as a function of the parameter Jij , we get after a short
calculation

d lnZ(λ, Jij)

dJij
=

1

2
〈xixj〉 . (24)
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Here we assume that the coupling matrix J is augmented to a full matrix with the auxiliary
elements set to zero at the end. Evaluating the left hand side of eq. (24) within the EC
approximation eq. (23) and using eq. (20) yields

〈xxT 〉 − 〈x〉〈x〉T = (Λs − Λq − J)−1 . (25)

The result eq. (25) could have also obtained by computing the covariance matrix directly
from the Gaussian approximating density r(x). We have consistency between r(x) and q(x)
on the second order moments included in g(x), but for those not included, one can argue on
quite general grounds that r(x) will be more precise than q(x) (Opper and Winther, 2004).
Similarly, one may hope that higher order diagonal moments or even the entire marginal
density of variables can be well approximated using the density q(x). An application which
shows the quality of this approximation can be found in Malzahn and Opper (2003).

5. Algorithms

This section deals with the task of solving the EC optimization problem, that is solving
the consistency conditions eqs. (14) and (15): 〈g(x)〉q = 〈g(x)〉r = 〈g(x)〉s for the three
distributions q, r and s, eqs. (16)-(18). As already discussed in section 3, the EC free
energy is not a concave function in the parameters λq, λs and one may have to resort to
double loop approaches (Welling and Teh, 2003; Yuille, 2002; Heskes et al., 2003; Yuille and
Rangarajan, 2003). Heskes and Zoeter (2002) were the first to apply double loop algorithms
EC type of approximations. Since the double loop approaches may be slow in practice it is
also of interest to define single loop algorithms that come with no warranty, but in many
practical cases will converge fast. A pragmatic strategy is thus to first try a single loop
algorithm and switch to a double loop when necessary. In the following we first discuss the
algorithms in general and then specialize to the model eqs. (6) and (7).

5.1 Single Loop Algorithms

The single loop approaches typically are of the form of propagation algorithms which send
“messages” back and forth between the two distributions q(x) and r(x). In each step the
“separator” or “overlap distribution” s(x)4 is updated to be consistent with either q or
r depending upon which way we are propagating. This corresponds to an Expectation
Propagation style scheme with two terms, see also Appendix D. Iteration t of the algorithm
can be sketched as follows:

1. Send message from r to q

• Calculate separator s(x): Solve for λs: 〈g(x)〉s = µµµr(t− 1) ≡ 〈g(x)〉r(t−1)

• Update q(x): λq(t) := λs − λr(t− 1)

2. Send message from q to r

• Calculate separator s(x): Solve for λs: 〈g(x)〉s = µµµq(t) ≡ 〈g(x)〉q(t)
4. These names are chosen because s(x) plays the same role as the separator potential in the junction tree

algorithm and as the overlap distribution in the Bethe approximation.
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• Update r(x): λr(t) := λs − λq(t).

Here r(t) and q(t) denote the distributions q and r computed with the parameters λr(t)
and λq(t). Convergence is reached when µµµr = µµµq since each parameter update ensures
λr = λs − λq. Several modifications of the above algorithm are possible. First of all a
“damping factor” (or “learning rate”) η can be introduced on both or one of the parameter
updates. Secondly we can abandon the parallel update and solve sequentially for factors
containing only subsets of parameters.

5.2 Single Loop Algorithms for Quadratic Model

In the following we will explain details of the algorithm for the quadratic model eqs. (6)
and (7) with consistency for first and second diagonal moments, corresponding to the EC
free energy eq. (23). We will also briefly sketch the algorithm for moment consistency on a
spanning tree. In appendix D we give the algorithmic recipes for a sequential algorithm for
the factorized approximation and a parallel algorithm for tree approximation. These are
simple, fast and quite reliable.

For the diagonal choice of g(x), s(x) is simply the product of univariate Gaussians:
s(x) =

∏

i si(xi) and si(xi) ∝ exp
(

γs,ixi − Λs,ix
2
i /2
)

. Solving for s(x) in terms of the
moments of q and r, respectively, corresponds to a simple marginal moment matching to
the univariate Gaussian ∝ exp

(

−(xi −mi)
2/2vi

)

: γs,i := mi/vi and Λs,i := 1/vi. r(x) is a
multivariate Gaussian with covariance, eq. (25), χr ≡ (Λr − J)−1 and mean mr = χrγr.
Matching the moments with r(x) gives mi := mr,i and vi := χr,ii. The most expensive
operation of the algorithm is the calculation of the moments of r(x) which is O(N3) because
χr = (Λr − J)−1 has to be recalculated after each update of λr. q(x) is a factorized non-
Gaussian distribution for which we have to obtain the mean and variance and match as
above.

The spanning tree algorithm is only slightly more complicated. Now s(x) is a Gaussian
distribution on a spanning tree. Solving for λs can be performed in linear complexity in
N using the tree decomposition of the free energy, see appendix C. r(x) is still a full
multivariate Gaussian and inferring the moments of the spanning tree distribution q(x) is
O(N) using message passing (MacKay, 2003).

5.3 Double Loop Algorithm

Since the EC free energy − lnZEC(λq,λs) is concave in λq, we can attempt a solution of the
stationarity problem eqs. (14) and (15), by first solving the concave maximization problem

F (λs) ≡ max
λq

{

− lnZEC(λq,λs)
}

= max
λq

{− lnZq(λq) − lnZr(λs − λq)} + lnZs(λs) (26)

and subsequently finding a solution to the equation

∂F (λs)

∂λs
= 0 . (27)

Since F (λs) is in general neither a convex nor a concave function, there might be many
solutions to this equation.
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The double loop algorithm aims at finding a solution iteratively. It starts with an
arbitrary admissible value λs(0) and iterates two elementary procedures for updating λs

and λq aiming at matching the moments between the distribution q, r and s. Assume that
at iteration step t λs = λs(t), then iterate over the two steps

1. Solve the concave maximization problem eq. (26) yielding the update

λq(t) = argmax
λq

{

− lnZEC(λq,λs(t))
}

. (28)

With this update, we achieve equality of the moments

µµµ(t) ≡ 〈g(x)〉q(t) = 〈g(x)〉r(t) . (29)

2. Update λs as
λs(t+ 1) = argmin

λs

{

−λT
s µµµ(t) + lnZs(λs)

}

(30)

which is a convex minimization problem. This yields 〈g(x)〉s(t+1) = µµµ(t).

To discuss convergence of these iterations, we prove that F (λs(t)) for t = 0, 1, 2, . . . is a
nondecreasing sequence:

F (λs(t)) = max
λq ,λr

{

− lnZq(λq) − lnZr(λr) + lnZs(λs) + (λq + λr − λs(t))
Tµµµ(t)

}

(31)

≥ max
λq ,λr

{

− lnZq(λq) − lnZr(λr) + (λq + λr)
Tµµµ(t) + min

λs

(

−λT
s µµµ(t) + lnZs(λs)

)

}

= max
λq ,λr

{− lnZq(λq) − lnZr(λr) + lnZs(λs(t+ 1)) + (λq + λr − λs(t+ 1))µµµ(t)}

≥ max
λq ,λr|λq+λr=λs(t+1)

{− lnZq(λq) − lnZr(λr)} + lnZs(λs(t+ 1))

= F (λs(t+ 1)) .

The first equality follows from the fact that λq + λr −λs(t) = 0 and that at the maximum
we have matching moments µµµ(t) for the q and r distributions. The next inequality is
true because we do not increase −λT

s µµµ(t) + lnZs(λs) by minimizing. The next equality
implements the definition of eq. (30). The final inequality follows because we maximize
over a restricted set. Hence, when F is bounded from below we will get convergence.

Hence, the double loop algorithm attempts in fact a minimization of F (λs). It is not
clear a priori why we should search for a minimum rather than a maximum or any other
critical value. However, a reformulation of the EC approach given in Appendix B shows
that we can interpret F (λs) as an upper bound on an approximation to the so–called Gibbs
free energy which is the Lagrange dual to the Helmholtz free energy from which the desired
moments are derived by minimization.

5.4 Double Loop Algorithms for the Quadratic Model

The outer loop optimization problem (step 2 above) for λs is identical to the one for the
single loop algorithm. The concave optimization problem of the inner loop for L(λq) ≡
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− lnZq(λq) − lnZr(λs(t) − λq) (step 1 above) can be solved by standard techniques from
convex optimization (Vandenberghe et al., 1998; Boyd and Vandenberghe, 2004). Here we
will describe a sequential approach that exploits the fact that updating only one element in
Λr = Λs(t)−Λq (or in spanning tree case a two-by-two sub-matrix) is a rank one (or rank
two) update of χr = (Λr − J)−1 that can be performed in O(N2).

Specializing to the quadratic model with diagonal g(x) we have to maximize

L(λq) = −
∑

i

ln

∫

dxiψi(xi) exp

[

γq,ixi −
1

2
Λq,ix

2
i

]

− ln

∫

dx exp

[

−1

2
xT (Λs(t) − Λq − J)x + (γs(t) − γq)

Tx

]

with respect to γq and Λq. We aim at a sequential approach where we optimize the variables
for one element in x, say the ith. We can isolate γq,i and Λq,i in the Gaussian term to obtain
a reduced optimization problem:

L(γq,i,Λq,i) = const +
1

2
ln[1 − vr,i(Λ

0
q,i − Λq,i)] −

(γ0
q,i − γq,i −mr,i/vr,i)

2

2(1/vr,i + Λ0
q,i − Λq,i)

− log

∫

dxiψi(xi) exp

[

γq,ixi +
1

2
Λq,ix

2
i

]

, (32)

where superscript 0 denotes current values of the parameters and we have set mr,i = 〈xi〉r =
[(Λ0

r −J)−1γ0
r]i and vr,i = 〈x2

i 〉r −m2
r,i = [(Λ0

r,i −J)−1]ii, with λ0
r = λs(t)−λ0

q . Introducing
the corresponding two first moments for qi(xi)

mq,i = mq,i(γq,i,Λq,i) = 〈xi〉q =
1

Zqi

∫

dxi xi ψi(xi) exp

[

γq,ixi −
1

2
Λq,ix

2
i

]

(33)

vq,i = vq,i(γq,i,Λq,i) = 〈x2
i 〉q −m2

q,i (34)

we can write the stationarity condition for γq,i and Λq,i as:

γq,i +
mq,i

vq,i
= γ0

q,i +
mr,i

vr,i
(35)

Λq,i +
1

vq,i
= Λ0

q,i +
1

vr,i
(36)

collecting variable terms and constant terms on the lhs and rhs, respectively. These two
equations can be solved very fast with a Newton method. For binary variables the equations
decouple since mq,i = tanh(γq,i) and vq,i = 1 −m2

q,i and we are left with a one dimensional
problem.

Typically, solving these two non-linear equations are not the most computationally
expensive steps because after these have been solved, the first two moments of the r-
distribution have to be recalculated. This final step can be performed using the matrix
inversion lemma (or Sherman-Morrison formula) to reduce the computation to O(N2). The
matrix of second moments χr = (Λr − J)−1 is thus updated as:

χr := χr −
∆Λr,i

1 + ∆Λr,i [χr]ii
[χr]i[χr]

T
i , (37)
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where ∆Λr,i = −∆Λq,i = −(Λq,i − Λ0
q,i) = 1

vq,i
− 1

vr,i
and [χr]i is defined to be the ith row

in χr.

Note that the solution for Λq,i is a coordinate ascent solution which has the nice property
that if we initialize Λq,i with an admissible value, i.e. with χr positive semi-definite then
with this update χr will stay positive definite since the objective has an infinite barrier at
detχr = 0.

6. Simulations

In this section we apply expectation consistent inference (EC) to the model of pair-wise con-
nected Ising variables introduced in Section 4. We consider two versions of EC: “factorized”
with g(x) containing all first and only diagonal second moments and the structured “span-
ning tree” version. The tree is chosen as a maximum spanning tree, where the maximum is
defined over |Jij |, i.e. choose as next pair of nodes to link, the (so far unlinked) pair with
strongest absolute coupling |Jij | that will not cause a loop in the graph. The free energy
is optimized with the parallel single loop algorithm described in section 5 and appendix
D. Whenever non-convergence is encountered we switch to the double loop algorithm. We
compare the performance of the two EC approximations with two other approaches for two
different set-ups that have previously been used as benchmarks in the literature5.

In the first set of simulations we compare with the Bethe and Kikuchi approaches (Heskes
et al., 2003). We consider N = 10 and choose constant “external fields” (observations) θi =
θ = 0.1. The “couplings” Jij are fully connected and generated independently at random
according to Jij = βwij/

√
N , the wijs are Gaussian with zero mean and unit variance.

We consider eight different scalings β = [0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 10.00]. and
compare one-variable marginals p(xi) = 1+ximi

2 and the two-variable marginals p(xi, xj) =
xixjCij

4 +p(xi)p(xj) where Cij is the covariance Cij = 〈xixj〉−〈xi〉〈xj〉. For EC, Cij is given
by eq. (25). In figure 1 we plot maximum absolute deviation (MAD) of our results from the
exact marginals for different scaling parameters:

MAD1 = max
i

|p(xi = 1) − p(xi = 1|Method)|
MAD2 = max

i,j
max

xi=±1,xj=±1
|p(xi, xj) − p(xi, xj |Method)| .

In figure 2 we compare estimates of the free energy. The results show that the simple
factorized EC approach gives performance similar to (and in many case better than) the
structured Bethe and Kikuchi approximations. The EC tree version is almost always better
than the other approximations. The Kikuchi approximation is not uniquely defined, but
depends upon the choice of “cluster-structure”. Different types of structures can give rise to
quite different performance (Minka and Qi, 2004). The results given above is thus just to be
taken as one realization of the Kikuchi method where the clusters are taken as all variable
triplets. We expect the Kikuchi approximation to yield better results (probably better than
EC in some cases) for an appropriate choice of sub-graphs, for example triangles forming
a star for fully connected models and all squares for grids (Yedidia et al., 2001; Minka and
Qi, 2004). EC can also be improved beyond trees as discussed in the Conclusion.

5. All results and programs are available from the authors.
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The second test is the set-up proposed by Wainwright and Jordan (2003, 2005). The
N = 16 nodes are either fully connected or connected to nearest neighbors in a 4-by-4
grid. The external field (observation) strengths θi are drawn from a uniform distribution
θi ∼ U [−dobs, dobs] with dobs = 0.25. Three types of coupling strength statistics are con-
sidered: repulsive (anti-ferromagnetic) Jij ∼ U [−2dcoup, 0], mixed Jij ∼ U [−dcoup,+dcoup]
and attractive (ferromagnetic) Jij ∼ U [0,+2dcoup] with dcoup > 0. We compute the average
absolute deviation on the marginals:

AAD =
1

N

∑

i

|p(xi = 1) − p(xi = 1|method)|

over 100 trials testing the following methods: SP = sum-product (aka loopy belief propaga-
tion (BP) or Bethe approximation) and LD = log-determinant maximization (Wainwright
and Jordan, 2003, 2005), EC factorized and EC tree. Results for SP and LD are taken
from Wainwright and Jordan (2003). Note that instances where SP failed to converge were
excluded from the results. A fact that is likely to bias the results in favor of SP. The
results are summarized in table 6. The Bethe approximation always gives inferior results
compared to EC. This might be a bit surprising for the sparsely connected grids. LD is
a robust method which however seems to be limited in it’s achievable precision. EC tree
is uniformly superior to all other approaches. It would be interesting to compare to the
Kikuchi approximation which is known to give good results on grids.

A few comments about complexity, speed and rates of convergence: Both EC algorithms
are O(N3). For the N = 16 simulations typical wall clock times were 0.5 sec. for exact
computation, half of that for the single-loop tree and one-tenth for the factorized single-
loop. Convergence is defined to be when ||〈g(x)〉q − 〈g(x)〉r||2 is below 10−12. Double loop
algorithms typically were somewhat slower (1-2 sec.) because a lot of outer loop iterations
were required. This indicates that the bound optimized in the inner loop is very conservative
for these binary problems. For the easy problems (small dcoup) all approaches converged.
For the harder problems the factorized EP-style algorithms typically converged in 80-90 %
of the cases. A greedy single-loop variant of the sequential double-loop algorithm, where
the outer loop update is performed after every inner loop update, converged more often
without being much slower than the EP-style algorithm. We treated the grid as a fully
connected system yielding a complexity of O(N3). Exploiting the structure using message
passing, one can reduce the complexity of inference, i.e. calculating the covariance on the
links, to O(N2).

7. Conclusion and Outlook

We have introduced a novel method for approximate inference which tries to overcome lim-
itations of previous approximations in dealing with the correlations of random variables.
While we have demonstrated its accuracy in this paper only for a model with binary ele-
ments, it can also be applied to models with continuous random variables or hybrid models
with both discrete and continuous variables (i.e. cases where further approximations are
needed in order to apply Bethe/Kikuchi approaches).

We expect that our method becomes most powerful when certain tractable substructures
of variables with strong dependencies can be identified in a model. Our approach would then
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Figure 1: Maximal absolute deviation (MAD) for one- (left) and two-
variable (right) marginals. EC factorized: upper full line (blue),
EC tree: lower full line (blue), Bethe: dashed line (green) and
Kikuchi: dash-dotted line (red).
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Figure 2: Left plot: free energy exact: stars, EC factorized and tree: full
lines virtually on top on each others (blue), Bethe: dashed line
(green) and Kikuchi: dash-dotted (red). Right: Absolute devi-
ation (AD) for the three approximations, same line type (and
color) as above. Lower full line is for the EC tree approxima-
tion.

allow us to deal well with the weaker dependencies between substructures. Better heuristics
for determining the choice of substructures will also be useful for improving the performance
(Minka and Qi, 2004). Consider inference on the square grid as a problem where one can
introduce tractable substructures without getting a very large increase in complexity. The
spanning tree treats approximately half of the links exactly, whereas covering the grid with
strips of width L would treat a fraction of 1− 1/2L of the links exactly at a computational
increase of a factor of 2L−1 compared to the spanning tree for the binary part, but keeping
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Problem type Method
SP LD EC factorized EC tree

Graph Coupling dcoup Mean Mean Mean±std Med Max Mean±std Med Max

Repulsive 0.25 0.037 0.020 0.003 ± 0.002 0.002 0.00 0.0017 ± 0.0011 0.001 0.01
Repulsive 0.50 0.071 0.018 0.031 ± 0.045 0.016 0.20 0.0143 ± 0.0141 0.010 0.10

Full Mixed 0.25 0.004 0.020 0.002 ± 0.002 0.002 0.00 0.0013 ± 0.0008 0.001 0.00
Mixed 0.50 0.055 0.021 0.022 ± 0.030 0.013 0.17 0.0151 ± 0.0204 0.010 0.16

Attractive 0.06 0.024 0.027 0.004 ± 0.002 0.004 0.01 0.0025 ± 0.0014 0.002 0.01
Attractive 0.12 0.435 0.033 0.117 ± 0.090 0.112 0.30 0.0211 ± 0.0307 0.012 0.16

Repulsive 1.0 0.294 0.047 0.153 ± 0.123 0.124 0.58 0.0031 ± 0.0021 0.003 0.01
Repulsive 2.0 0.342 0.041 0.198 ± 0.135 0.214 0.49 0.0021 ± 0.0010 0.002 0.01

Grid Mixed 1.0 0.014 0.016 0.011 ± 0.010 0.009 0.08 0.0018 ± 0.0011 0.002 0.01
Mixed 2.0 0.095 0.038 0.082 ± 0.081 0.034 0.32 0.0068 ± 0.0053 0.005 0.03

Attractive 1.0 0.440 0.047 0.125 ± 0.104 0.068 0.36 0.0028 ± 0.0018 0.002 0.01
Attractive 2.0 0.520 0.042 0.177 ± 0.125 0.198 0.41 0.0002 ± 0.0004 0.000 0.00

Table 1: The average one-norm error on marginals for the Wainwright-Jordan set-up.

the complexity of the most computationally expensive part of the inference—calculating
the moments of the Gaussian part—unchanged.

A generalization of our method to treat graphical models beyond pair-wise interaction
may be obtained by iterating the approximation. This is useful in cases, where an initial
three term approximation − lnZEC = − lnZq − lnZr + lnZs still contains non-tractable
component free energies. These individual terms can be further approximated using the
EC approach. We can show that in such a way a variety of other relevant types of graph-
ical models beyond the pair-wise interaction case (on certain directed graphs and mixture
models) become tractable with our method.

For practical applicability of approximate inference techniques improvements in the nu-
merical implementation of the free energy minimization are crucial. In the simulations in
this paper we used both single and double loop algorithms. The single loop algorithms
often converged very fast, i.e. in O(10) iterations to achieve a solution close to the machine
precision. However, whether convergence could be achieved was instance dependent and
depended upon set-up details like parallel/sequential update and damping factor. It seems
that there is a lot of room for improvement here and theoretical analysis of convergence
properties of algorithms will be important in this respect (Heskes and Zoeter, 2002). In the
guaranteed convergent double loop approaches the free energy minimization is formulated
in terms of a sequence of convex optimization problems. This allows for the application
of theoretically well-founded and powerful techniques of convex optimization (Boyd and
Vandenberghe, 2004). Unfortunately, for the problems considered here, convergence is typ-
ically quite slow because we have to solve large number of the convex problems. This again
underlines the need for further algorithmic development.

There are a couple of ways to improve on the EC approximation itself. One may calculate
corrections to the EC free energy and marginals by a perturbative analysis using cumulant
expansions of the approximating distributions. This should also enable a kind of sanity check
of the theory, i.e. when the corrections are predicted to be comparable to original prediction,
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it is a signal that the approximation is breaking down. Another possible improvement could
come from physics of disordered system where methods have be devised to analyze non-
ergodic free energy landscapes (Mézard et al., 1987). This will allow to make improved
estimates of the free energy and marginals for example binary variables with large coupling
strengths.
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Appendix A. Applications

In this appendix we give list of of previous applications of the ADATAP method which is a
special case of the EC approach to models with the factorization eqs. (6) and (7).

Application meaning of xi type of xi Refs.
Channel Division Multiple Access (CDMA) source symbol Ising a

Gaussian Processes (GP) classification latent variable continuous b
GP for wind retrieval wind vector continuous c
Bootstrap estimates latent variable continuous d

Independent component analysis (ICA) source variable arbitrary e
Sparse kernel method latent variable continuous f

Table 2: Examples of applications of simplest version of EC, ADATAP. The references are
a: Fabricius and Winther (2004), b: Opper and Winther (1999, 2000); Minka
(2001a,b), c: Cornford et al. (2004), d: Malzahn and Opper (2003, 2004), e:
Hojen-Sorensen et al. (2002) and f: Quiñonero-Candela and Winther (2003).

Appendix B. Dual Formulation

In this appendix we present an alternative route to EC free energy approximation using a
two stage variational formulation. The result is the so-called Gibbs free energy which is the
Lagragian dual of the Helmholtz free energy eq. (19).

B.1 Gibbs Free Energies and Two Stage Inference

In this framework, one starts with the well known fact that the true, intractable distribution
p(x) = f(x)

Z is implicitly characterized as the solution of an optimization problem defined
through the relative entropy or KL divergence

KL(q, p) =

∫

dx q(x) ln
q(x)

p(x)
(38)
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between p and other trial or approximate distributions q. We introduce the Gibbs free energy
(GFE) approach, (see, e.g. Roepstorff, 1994; Csató et al., 2002; Wainwright and Jordan,
2003, 2005) which splits this optimization into a two stage process. One first constrains the
trial distributions q by fixing the values of the generalized moments 〈g(x)〉q. We define the
Gibbs free energy G(µµµ) as

G(µµµ) = min
q

{KL(q, p) | 〈g(x)〉q = µµµ} − lnZ . (39)

The term lnZ has been subtracted to make the resulting expression independent of the
intractable partition function Z.

In a second step, the moments of the distribution and also the partition function Z are
found within the same approach by relaxing the constraints and further minimizing G(µµµ)
with respect to the µµµ.

min
µµµ
G(µµµ) = − lnZ (40)

〈g(x)〉 = argmin
µµµ

G(µµµ) . (41)

A variational bound approximation is recovered by restricting the minimization in eq. (39)
to a tractable family of densities q. Note that the values for µµµ in the definition of G(µµµ)
cannot be chosen arbitrarily. For a detailed discussion of this problem, see Wainwright
and Jordan (2003, 2005). We will not discuss these constraints here, but leave this, when
necessary, to the discussion of concrete models.

Gibbs free energy and duality. The optimization problem eq. (39) is solved by the
density given by

q(x) =
f(x)

Z(λ)
exp

(

λTg(x)
)

. (42)

λ = λ(µµµ) is the vector of Lagrange parameters chosen such that the moment conditions
〈g(x)〉q = µµµ are fulfilled, i.e. λ satisfies

∂ lnZ(λ)

∂λ
= µµµ . (43)

In the following, it should be clear from the context when λ is a free variable or is to be
determined from eq. (43). Inserting the optimizing distribution eq. (42) into the definition
of the Gibbs free energy eq. (39), we get the simpler expression:

G(µµµ) = − lnZ(λ(µµµ)) + λT (µµµ)µµµ = max
λ

{

− lnZ(λ) + λTµµµ
}

. (44)

showing that G(µµµ) is the Lagrangian dual of lnZ(λ).

Derivatives with respect to parameters. We will use the following result about
the derivative of G with respect to a parameter t in the density. Using the notation
p(x|t) = f(x,t)

Zt
(which should not be confused with a conditional probability), we calcu-

late the derivative of G(µµµ, t) using (43) and (44) as for fixed µµµ:

dG(µµµ, t)

dt
= −∂ lnZ(λ, t)

∂t
+

(

µµµ− ∂ lnZ(λ, t)

∂λ

)

dλT

dt
= −∂ lnZ(λ, t)

∂t
, (45)

where Z(λ, t) =
∫

dx f(x, t) exp
(

λTg(x)
)

.

2195



Opper and Winther

B.2 An Interpolation Representation of Free Energies

If the density p factors into a tractable fq and an intractable part fr, according to eq. (2),
we can construct a representation of the Gibbs free energy which also separates into two
corresponding parts. This is done by treating fr(x) as a perturbation which is smoothly
turned on using a parameter 0 ≤ t ≤ 1. We define fr(x, t) to be a smooth interpolation
between the trivial fr(x, t = 0) = 1 and the “full” intractable fr(x, t = 1) = fr(x). The
most common choice is to set fr(x, t) = [fr(x)]t, but a more complicated construction can be
necessary, when fr contains δ-distributions, see appendix E. However, we will see later, that
an explicit construction of the interpolation will not be necessary for our approximation.

Next, we define the interpolating density and the associated optimizing distribution for
the Gibbs free energy

p(x|t) =
1

Zt
fq(x)fr(x, t) (46)

q(x|t) =
1

Zq(λ, t)
fq(x)fr(x, t) exp

(

λTg(x)
)

, (47)

where

Zq(λ, t) =

∫

dx fq(x)fr(x, t) exp
(

λTg(x)
)

(48)

and the corresponding free energy Gq(µµµ, t) = maxλ

{

− lnZq(λ, t) + λTµµµ
}

. For later conve-
nience, we have given a subscript to G and lnZ to indicate which approximating distribution
is being used. We can now use the following simple identity for the free energy G(µµµ, t)

G(µµµ, 1) −G(µµµ, 0) =

∫ 1

0
dt
dG(µµµ, t)

dt
(49)

to relate the Gibbs free energy of the intractable model G(µµµ) = G(µµµ, t = 1) and tractable
model G(µµµ, t = 0). Using eq. (20), we get

dG(µµµ, t)

dt
= −∂ lnZ(λ, t)

∂t
= −

〈

d ln fr(x, t)

dt

〉

q(x|t)

. (50)

While this representation can be used to re-derive a variational bound approximation (see
Appendix F), we will next re-derive a dual representation of the EC free energy by making
an approximation similar in spirit to the one used in Section 3. We again assume that
besides the family of distributions eq. (4), there is a second family which can be used as an
approximation to the distribution eq. (46). It is defined by

r(x|t) =
1

Zr(λ, t)
fr(x, t) exp

(

λTg(x)
)

, (51)

where, as before the parameters λ are chosen in such a way as to guarantee consistency for
the expectations of g, i.e. 〈g(x)〉r(x|t) = µµµ and

Zr(λ, t) =

∫

dx fr(x, t) exp
(

λTg(x)
)

. (52)
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Obviously, r(x|t) defines another Gibbs free energy which in its dual representation eq. (44)
is given by

Gr(µµµ, t) = max
λ

{

− lnZr(λ, t) + λTµµµ
}

. (53)

Using the density r(x|t) to treat the integral in eq. (49), we make the approximation

∫ 1

0
dt

〈

d ln fr(x, t)

dt

〉

q(x|t)

≈
∫ 1

0
dt

〈

d ln fr(x, t)

dt

〉

r(x|t)

. (54)

The fact that both types of densities eqs. (47) and (51) contain the same exponential factor
fr(x, t) exp

(

λTg(x)
)

allows us to carry out the integral over the interaction strength t on
the right hand side of eq. (54) in closed form without specifying the interpolating term
fr(x, t) explicitly. We simply use the relations eqs. (49) and (50) again, but this time for
the free energy eq. (53) to get

∫ 1

0
dt

〈

d ln fr(x, t)

dt

〉

r(x|t)

= Gr(µµµ, 1) −Gr(µµµ, 0) . (55)

Using the approximation eq. (54) and the two exact relation eqs. (49) for q and r we arrive
at the expectation consistent (EC) approximation:

Gq(µµµ, 1) ≈ Gq(µµµ, 0) +Gr(µµµ, 1) −Gr(µµµ, 0) ≡ GEC(µµµ) . (56)

Recovering the EC free energy eq. (19) Using the duality expression for the free
energies eq. (44), the free energy approximation can be written as

GEC(µµµ) = Gq(µµµ) +Gr(µµµ) −Gs(µµµ) (57)

= max
λq ,λr

min
λs

{

− lnZq(λq) − lnZr(λr) + lnZs(λs) +µµµT (λq + λr − λs)
}

,

where we have defined Gq(µµµ) = Gq(µµµ, 0), Gr(µµµ) = Gr(µµµ, 1) and Gs(µµµ) = Gr(µµµ, 0). To
obtain the corresponding approximation for the Helmholtz free energy − lnZ, we should
minimize this expression with respect to µµµ. Any local minimum will be characterized by the
vanishing of the partial derivative with respect to µµµ. This yields the following constraint
on the Lagrange parameters

λq + λr − λs = 0 , (58)

which can be used to eliminate, say λr and we recover eq. (19).

Recovering the double loop algorithm. Since the free energy given by eq. (44) is a
convex function of µµµ, we can see that the EC approximation eq. (56) appears directly as
a sum of a convex (the first two terms) and a concave function of µµµ. Hence, the approx-
imation is not guaranteed to be convex, and multiple local minima and other stationary
points may occur. However, this natural split allows us to develop a double loop algo-
rithm similar to Yuille (2002); Heskes et al. (2003), which is guaranteed to converge to
at least one of the stationary points, provided that the EC free energy is bounded from
below. Assume that at iteration step t, the current approximation to the minimizer µµµ(t),
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such an algorithm first upper bounds the concave function −Gs(µµµ) by the linear function

− (µµµ−µµµ(t))T ∂Gs(µµµ)
∂µµµ

∣

∣

∣

µµµ=µµµ(t)
.

In terms of the corresponding Lagrange-parameter λs(t) = ∂Gs(µµµ)
∂µµµ

∣

∣

∣

µµµ=µµµ(t)
, this yields

GEC(µµµ) ≤ Gq(µµµ) +Gr(µµµ) − (µµµ−µµµ(t))T
λs(t)

= max
λq ,λr

{

− lnZq(λq) − lnZr(λr) +µµµT (λq + λr) + lnZs(λs(t))
}

≡ GEC
t (µµµ)

Minimizing GEC
t (µµµ) with respect to µµµ, we immediately get

min
µµµ
GEC

t (µµµ) = max
λq

{− lnZq(λq) − lnZr(λs − λq)} + lnZs(λs(t)) = F (λs(t)) , (59)

where F (λs(t)) was introduced in eq. (26). The new approximation is computed as

µµµ(t+ 1) = 〈g(x)〉q(t+1) .

Hence, this double loop procedure is equivalent to the one defined in Section 5, demon-
strating that the sequence F (λs(t)) yields nondecreasing upper bounds to the minimal EC
Gibbs free energy.

Appendix C. Tree-Connected Graphs

For the EC tree approximation we will need to make inference on tree-connected graphs.
To handle a problem with binary variables both binary and Gaussian distributed variables
on a tree will be needed. We will write the model as

p(x) =
1

Z

∏

i

ψi(xi) exp

(

−1

2
xTΛx + γTx

)

,

where ψi(xi) = δ(xi − 1) + δ(xi + 1) for binary and ψi(xi) = 1 for Gaussian. Assuming
that Λ defines a tree one can express the free energy in terms of single- and two-node free
energies (Yedidia et al., 2001):

− lnZ(λ) = −
∑

(ij)∈G

lnZij(λ
(ij)) −

∑

i

(1 − ni) lnZi(λ
(i)) , (60)

where λ(ij) =
(

γ
(ij)
i , γ

(ij)
j ,Λ

(ij)
ii ,Λ

(ij)
ij ,Λ

(ij)
jj

)

are the parameters associated with the moments

g(ij) =

(

xi, xj ,−x2
i

2 ,−xixj ,−
x2

j

2

)

and ni is the number of links to node i. The two-node

partition function Zij is given by

Zij(λ
(ij)) =

∫

dxidxjψi(xi)ψj(xj)e
γixi+γjxj−Λijxixj−Λiix

2
i /2−Λjjx2

j/2 . (61)

The one-node partition function is defined in a similar fashion.
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The Gibbs free energy G(µµµ) = maxλ{− lnZ(λ) + λTµµµ} can be written in terms of one-
and two-node Gibbs free energies:

G(µµµ) =
∑

(ij)∈G

lnGij(µµµ
(ij)) −

∑

i

(1 − ni)Gi(µµµ
(i))

Gij(µµµ
(ij)) = max

λ
(ij)

{− lnZij(λ
(ij)) + (λ(ij))Tµµµ(ij)} , (62)

where µµµ(ij) = 〈g(ij)(x)〉. We can write λ =
∑

(ij)∈G λ(ij) −∑i(1 − ni)λ
(i), where λ(ij) here

should be understood as a vector of the same length as g having non-zero elements for
moments defined for the pair (ij). By solving the max condition we can write the Lagrange
parameters in terms of the mean values mi = 〈xi〉 and covariances χij = 〈xixj〉 −mimj .
This will be useful when we derive algorithms for optimizing the free energy in section 5
where we need to solve for λ in terms of µµµ. For binary variables we get:

γ
(i)
i = tanh−1(mi)

γ
(ij)
i =

1

2
tanh−1

(

mi +mj

1 + 〈xixj〉

)

+
1

2
tanh−1

(

mi −mj

1 − 〈xixj〉

)

γ
(ij)
j =

1

2
tanh−1

(

mi +mj

1 + 〈xixj〉

)

+
1

2
tanh−1

(

mj −mi

1 − 〈xixj〉

)

Λ
(ij)
ij = −1

2
tanh−1

(〈xixj〉 +mi

1 +mj

)

− 1

2
tanh−1

(〈xixj〉 −mi

1 −mj

)

and for Gaussian defining m(ij) =

(

mi

mj

)

and χ(ij) ≡
(

χii χij

χji χjj

)

:

γ
(i)
i = mi/χii and Λ

(i)
i = 1/χii

γ(ij) = (χ(ij))−1m(ij) and Λ(ij) = (χ(ij))−1 .

Finally, we will also need to make inference about the mean values and covariances
on the tree for the binary variables. This can be done effectively by message passing on
the tree. The message from link (ij) to node i denoted by r(ij)→i can be obtained by the
following recursion (MacKay, 2003)

r(ij)→i = tanh(−Λij) tanh(θj\i)

θj\i = θj +
∑

k,(jk)∈G,(jk) 6=(ij)

r(jk)→j .

The recursion converges in one collect and one distribute messages sweep (to/from an ar-
bitrarily chosen root node). Inference is linear because the tree contains N − 1 links. The
mean values and correlations are given by

mi = tanh



θi +
∑

j,(ij)∈G

r(ij)→i





〈xixj〉 =
e−Λij cosh(θi\j + θj\i) − eΛij cosh(θi\j − θj\i)

e−Λij cosh(θi\j + θj\i) + eΛij cosh(θi\j − θj\i)
.
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Appendix D. Single Loop Algorithmic Recipes

In this appendix we give the algorithmic recipes for one sequential algorithm for the factor-
ized EC and a parallel algorithm for tree EC. The sequential algorithm is close in spirit to
Expectation Propagation with ψi(xi) and exp

(

γr,ixi − 1
2Λr,ix

2
i

)

being what is called exact
and approximate factors, respectively (Minka, 2001b):

• Initialize mean and covariance of r-distribution:

mr := (Λr − J)−1(γr + θ)

χr := (Λr − J)−1

with γr = 0 and Λr set such that the covariance is positive definite.

Run sequentially over the nodes:

1. Send message from r to qi

• Calculate separator si: γs,i := mr,i/χr,ii and Λs,i := 1/χr,ii.

• Update qi: γq,i := γs,i − γr,i and Λq,i := Λs,i − Λr,i.

• Update moments of qi: mq,i := tanh(γq,i) and χq,ii = 1 −m2
q,i.

2. Send message from qi to r

• Calculate separator si: γs,i := mq,i/χq,ii and Λs,i := 1/χq,ii.

• Update r: γr,i := γs,i − γq,i, ∆Λr,i := Λs,i − Λq,i − Λr,i and Λr,i := Λs,i − Λq,i.

• Update moments of r (see eq. 37):

χr := χr −
∆Λr,i

1 + ∆Λr,i [χr]ii
[χr]i[χr]

T
i

mr := χr(γr + θ) .

Convergence is reached when and if mr = mq and χr,ii = χq,ii, i = 1, . . . , N . The compu-
tational complexity of the algorithm is O(N3Nite) because each Sherman-Morrison update
is O(N2) and we make N of those in each sweep over the nodes.

The tree EC algorithm is very similar. The only difference is that it is parallel and uses
inference on a tree graph, see appendix C for details on the tree inference:

• Initialize as above.

Update:

1. Send message from r to q

• Calculate separator s: [γs,Λs] := Lagrange Gauss tree(mr, tree(χr)), where
tree() sets all non-tree elements to zero.

• Update q: γq := γs − γr and Λq := Λs − Λr.

• Update moments of q: [mq,χq] := inference binary tree(γq,Λq) will only return
non-zero elements of the covariance on the tree.
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2. Send message from q to r

• Calculate separator s: [γs,Λs] := Lagrange Gauss tree(mq,χq).

• Update r: γr := γs − γq and Λr := Λs − Λq.

• Update moments of r: χr := (Λr − J)−1 and mr := χr(γr + θ).

Convergence is reached when mq = mr and χq = tree(χr). This algorithm is also O(N3Nite)
because of the matrix inverse. All other operations are O(N) even though these will dom-
inate for small N . Typically when convergent both algorithms converge in Nite = O(10)
steps.

Appendix E. Interpolation Scheme for Discrete Variables

The Ising case eq. (9) can be treated by defining the bimodal density

fr(x, t) =
N
∏

i=1





exp
[

− t
1−t(x

4
i − 2x2

i )
]

√
1 − t





which interpolates between a constant function for t = 0 and becomes proportional to the
Dirac measures eq. (9) in the limit t → 1. Other discrete variables can be treated in a
similar fashion.

Appendix F. Re-deriving the Variational Bound Approximation

The choice fr(x, t) = t ln fr(x) for the interpolation can be used for a perturbation expansion
of the free energy G(µµµ, t) in powers of t, where at the end one sets t = 1. The lowest
nontrivial (first) order term is obtained by replacing q(x|t) by q(x|0) in eq. (50). In this
case, one obtains an approximation to the Gibbs free energy given by

G(µµµ) ≈ G(µµµ, 0) −
∫ 1

0
dt

〈

d ln fr(x, t)

dt

〉

q(x|0)

= G(µµµ, 0) − 〈ln fr(x)〉q(x|0) . (63)

For the second order term of this so-called Plefka expansion see, e.g. Plefka (1982) and
several contributions in Opper and Saad (2001).

For comparison, we define a variational bound approximation, where the minimization
in eq. (39) is restricted to the family F of densities of the form eq. (4), i.e.

Gvar(µµµ) = min
q∈F

{KL(q, p) | 〈g(x)〉q = µµµ} − lnZ . (64)

Since we are minimizing in a restricted class of distributions, we obtain the upper bound
G(µµµ) ≤ Gvar(µµµ) on the Gibbs free energy. Using the fact that the density eq. (4) is exactly
of the form of q(x|0), we can show that Gvar(µµµ) coincides exactly with eq. (63).
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