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Abstract

We study the problem of finding an optimal kernel from a prigsat convex set of kernel& for
learning a real-valued function by regularization. We lelésa for a wide variety of regularization
functionals that this leads to a convex optimization probénd, for square loss regularization, we
characterize the solution of this problem. We show thatcaighX may be an uncountable set, the
optimal kernel is always obtained as a convex combinatiat ofostm+ 2 basic kernels, whema

is the number of data examples. In particular, our resulidyap learning the optimal radial kernel
or the optimal dot product kernel.

1. Introduction

A widely used approach to estimate a function from empirical data consists in mimgn@izegu-
larization functional in a Hilbert spac#® of real-valued functions$ : X — R, whereX is a set.
Specifically, regularization estimatésas aminimizerof the functional

Q(Ix(f)) +1Q(f)

wherep is a positive parametely(f) = (f(xj) : j € Nm) is thevectorof values off on theset
x={X;:j€Nm}and Nn={1,...,m}. This functional trades o#mpirical error, measured by the
functionQ : R™ — R, with smoothnesef the solution, measured by the functio®al # — R,..
The empirical error depends upon a finite §4,y;) : j € Nm} C X x R of input-output examples
and the functiorQ depends oty but we suppress it in our notation since it is fixed throughout our
discussion. In particular, one often considers the cas&}imtefined, fov = (vj : j € Nym) € R™,
asQ(V) = Y jen, V(vj,yj) whereV : R x R — R is a prescribedbss function

In this paper we assume thaf is areproducing kernel Hilbert spaclRKHS) #Hy with kernel
K and choos®(f) = (f, f), where(,-) is the inner product irt, although some of the ideas we
develop may be relevant in other circumstances. This leads us to studyititewal problem

Qu(K) :=inf {QIx(F)) +u(f, f): f € 7). (1)

(©2005 Charles Micchelli and Massimiliano Pontil.
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We recall that an RKHS is a Hilbert space of real-valued functions ewesge defined otk such
that, for everyx € X, the point evaluation functional defined, fore #, by Ly(f) := f(x) is con-
tinuous on# (Aronszajn, 1950). This implies th& admits a reproducing kernkl: X x X — R
such that, for everyx € X, K(x,-) € # and f(x) = (f,K(x,-)). In particular, forx,t € X, K(x,t) =
(K(x,-),K(t,-)) implying that them x m matrix Ky := (K(x;,X;) : i, j € Nm) is symmetric and posi-
tive semi-definite foanyset of inputsx C X.

Often RKHS’s are introduced through the notionfeature map® : X — W, where W is a
Hilbert space with inner product denoted @y:). A feature map gives rise to the linear space of all
functionsf : X — R which are a linear combination of features whose norm is taken to be the no
of its coefficients. That s, fow € W, f = (w,®) and(f, f) = (w,w). This space is an RKHS with
kernelK defined, forx,t € X, asK(x,t) = (®(x),®(t)). Using these equations, the regularization
functional in (1) can be rewritten as a functionaheof

Regularization in an RKHS has a number of attractive features, includingviditability of
effective error bounds and stability analysis relative to perturbatiotiseofiata (see, for example,
Bousquet and Elisseeff, 2002; Cucker and Smale, 2002; Mukhetrjak, én press; Scovel and
Steinwart, 2004; Smale and Zhou, 2003; Vapnik, 1998; Ying and ZHa¥4;2Zhang, 2004; Zhou,
2002). Moreover, one can show thaffifs a minimizer of the above functional it has the form

f(x) = CiK(xj,x), xe X (2)
je%m in X

for some real vector = (c; : j € Npy) of coefficients (see, for example, De Vito et al., 2005; Girosi,
1998; Kimeldorf and Wahba, 1971; Micchelli and Pontil, 2005;&kbpf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004). This result is known in Machine Learninthagepresenter theorem
Although it is simple to prove, this result is remarkable as it makes the variatiwoblem (1)
amenable for computations.

If Q is convex, the unique minimizer of problem (1) can be found by replatibyg the right
hand side of equation (2) in equation (1) and then optimizing with respect teettterc. For
example, wheQ is the square error defined for= (vj : j € Nm) € R™asQ(V) = ¥ jen,, (Vi —¥j)?
the functional in the right hand side of (1) is a quadratic in the vextord its minimizer is obtained
by solving a linear system of equations.

Because of their simplicity and generality, kernels and associated RKk§'sip increasingly
important role in Machine Learning, Pattern Recognition and their applicatidns was initiated
with the introduction of support vector machines (see, for example, Vapai8), and continued
with the development of many other kernel-based learning algorithms @esxdmple, Sabikopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004, and refergheesin). As kernels can
be defined on any input space, kernel-based methods have beessullg applied to learning
functions defined on complex data structures, ranging from images aextspeech data, biological
data, among others.

Despite this great success, there still remain important problems to be sefii@ncerning
kernel methods in Machine Learning. When the kernel is fixed, an immediatem with problem
(1) is thechoice of the regularization parameter |Ihis is typically solved by means of cross
validation or generalized cross validation (see, for example, Hastie,ifidbshnd Friedman, 2002;
Wahba, 1990) or by means of regularization path methods (see, for &addgeh, Thibaux and
Jordan, 2004; Hastie et al., 2004; Pontil and Verri, 1998). But, howeikénnel chosen? Indeed,
a challenging and central problem is tbleoice of the kerneiself. As we said before, whef
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is constructed as linear combinations of features associated to the Ketthely can provide some
guideline for the choice of the kernel. Thus, the choice of the kernel isttidbde problem of
choosing a representation of the input. This choice can make a signififfargigice in practice. For
example, techniques such as radial basis functions can perform jfdbdyparameter of the radial
kernel is not tuned to the given data. A similar circumstance occurs falation invariant kernels
modeled by Gaussian mixtures. When the number of parameters is larggalidason encounters
severe computational limitations. To overcome this problem, easily computabiexapations to
the leave-one-out error have been derived (Chapelle et al., 20a12)&V1990). Nonetheless, these
methods are usually non-convex and may lead to undesirable local minima.

In this paper, we propose a method for finding a kernel function whidbngs to acompact
andconvexset K. Our method is based on the minimization of the functional in equation (1), that
is, we consider the variational problem

inf{Qu(K) : K € K}. 3)

This problem shares some similarities with recent progress in the contegtraflkbased methods
(Bach, Lanckriet and Jordan, 2004; Bousquet and Herrmani8; ZD@stianini et al., 2002; Grae-
pel, 2002; Lanckriet et al., 2002, 2004; Lee et al., 2004; Lin and Zha0@3; Herbster, 2001;
Ong, Smola and Williamson, 2003; Wu, Ying and Zhou, 2004; Zhang, Yamagkwok, 2004). In
particular, the third and fifth papers motivated our work. In contrast tgtiet of view of these
papers, our setting applies to convex combinations of kernels parameteyizecompact set, a cir-
cumstance which is relevant for applications. We also wish to emphasizdttimtgh we focus on
learning methods based on the minimization of the functional (1), the ideas wkighesent here
may prove useful for learning kernels or feature representationg dgferent forms of regulariza-
tion such as entropy regularization (Jaakkola, Meila and Jebara, , 1898l density estimation
(see, for example, Vapnik, 1998), or one-class SVM (Tax and D@@9)las well as in other Ma-
chine Learning frameworks such as those arising in Bayesian learniegp\atkernel is seen as the
covariance of a Gaussian process, (see, for example, Wahba \WBgdms and Rasmussen, 1996)
or in online learning, (see, for example, Herbster, 2001).

In Section 2 we establish the existence of a solution to problem (3), shoththhmnctionalQ,,
isconvexn K, and observe that, althoudli may be an uncountable set, the optimal kernel is always
obtained as a convex combination of at most 2 basic kernels (see below), whenes the number
of training data. The simplest case of our setup is a set of convex combisatidinitely many
kernels{K; : j € Nn}. For example eacK; could be a Gaussian, a polynomial kernel, or simply
a kernel consisting of only one feature. In all of these cases our methbdgeak the optimal
convex combination of these kernels. Another example included in our fvarkes learning the
optimal radial kernel or the optimal polynomial kernel in which case theesfads the convex
hull of a prescribed set of kernels parameterized lhycally compactset. In Section 3 we study
square loss regularization and provide improvements and simplifications oéghks in Section
2. In particular, we discuss the connection to minimal norm interpolation aablesh necessary
and sufficient conditions for a kernel to be optimal. Finally, in Section 4 wengent on previous
work, present some numerical simulations based on our analysis andsiésrue extensions of our
framework.
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2. Optimal Convex Combination of Kernels

Let X be a set. By &ernelwe mean a symmetric functidf: X x X — R such that for every finite
set of inputsx = {X; : j € Ny} € X and everyme N, themx mmatrixKy := (K(x;,X;j) :i,j € Nm)

is positive semi-definite. We lef (R™) be the set ofn x m positive semi-definite matrices and
L, (R™M) the subset of positive definite ones. Also, we ) for the set of all kernels on the
setX and A4, (X) for the subset of kernel§ such that, for each inpwt, Ky € £, (R™). We also
occasionally refer to the set afl symmetricm x m matrices and us¢(R™) to denote them.

According to Aronszajn and Moore (see Aronszajn, 1950), evenyekdnas associated to it an
(essentiallyuniqueHilbert spacef with inner product-,-) such thaK is its reproducing kernel.
This means that for everly e Hx andx € X, (f,Ky) = f(X), whereKy is the functionK(x, -).

Let D := {(x,Yj) : ] € Nm} C X x R be prescribed data arydthe vector(y; : j € Nn,). For
eachf € #x, we introduce thenformation operator,|(f) := (f(x;j) : j € Ny) of values off on
the setx := {Xx; : j € Nm}. We prescribe a nonnegative functiQt R™ — R, and introduce the
regularization functional

Qu(f,K) == QUIx()) +Hf I (4)

where||f||Z := (f, f), uis a positive constant an@ depends ory but we suppress it in our no-
tation as it is fixed throughout our discussion. A noteworthy special cB& is thesquare loss
regularizationfunctional given by

Su(F,K) 1= [ly = e (F) 12+ 1l Tl (5)

where|| - | is the standard Euclidean norm o"RThere are many other choices of the functional
Qu which are important for applications, see the work of Vapnik (1998) fdisaussion.
Associated with the function&), and the kerneK is the variational problem

Qu(K) :==inf{Qu(f,K) : f € i} (6)

which defines a functio®, : 4(X) — R,. We remark, in passing, that all of what we say about
problem (6) applies to function® which are bounded from below on"Ras we can merely adjust
the expression (4) by a constant independent ahdK. Let us first point out that the infimum in
(6) is achieved, at least whépis continuous.

Lemmal If Q : R™ — R, is continuous and u is a positive number then the infimum in (6) is
achieved for a function itt. Moreover, when Q is convex this function is unique.

PrRoOOF The proof of this fact is straightforward and usesak compactness the unit ball in
Hg. The uniqueness of the solution relies on the fact that wiés convexQ,, is strictly convex
becauseuis positive. O

The point of view of this paper is that the functional (6) can be useddesegn criterion to
select the kernel KTo this end, we specify an arbitrary convex subigedf 4(.X') and focus on the
problem

Qu(K) =inf{Qu(K) :K e K}. @)

Recall that the solution of (6) is given in the forfn= 3 ;. CjKx, for some vectoc:=(c;: j €
Np), (see, for example, De Vito et al., 2005; Girosi, 1998; Kimeldorf and \@atb71; Micchelli
and Pontil, 2005; Sditkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). Suchdifan
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representation for learning the functidnis central for many diverse applications of kernel-based
algorithms in Machine Learning. Moreover, the coefficient vects found as the solution of the
finite dimensionaVariational problem

Qu(K) := min{Q(Kxc) + p(c,Kyc) : c€ R™}

where(-, ) is the standard inner product ori'R

Before we address basic questions concerning the variational prd@lewe describe some
terminology that allows for a precise description of our observationsrybmput setx and set of
basic kernelsj on X x X determines a set ehatricesin L(R™), namely

G(x):={Gx:Ge G}.

Obviously, it is the set of matriceg (x) that affects the variational problem (7). Note thaix)
being a subset of (R™) is identifiable as a set of vectors iMRwhereN := w As suchg(x)
inherits the standard topology from™R That is, convergence of a sequence of matrice§ (ix)
means that the respective elements of the matrices converge. For this, asses (the closure

of G) to mean the set of all kerneks on X x X with the property that for eack C X, the matrix

K« € G(x), the closure ofG(x) relative to R'. We say a set of kernel§ is closed provided that

G = G. Also, we saygG is a compact convex set of kernels whenever for eachX, G(x) is a
compact convex set of matricesJitR™). Our next result establishes the existence of the solution

to problem (7).

Lemma 2 If X is a compact and convex subsetdf(X) and Q: R™ — R is continuous then the
minimum of (7) exists.

PROOF  Fixx C X, choose a minimizing sequence of kerngfs': ne N }, that is, linh—., Qu(K") =
Qu(X) and a sequence of vectofs' : n € N} such that

Qu(K™) = Q(Kyc") +u(c”, Kic").
Since X is compact there is a subsequereé(®) : ¢ € N} such that lim .« KM — K., for some
kernelK € %. We claim that{c" : n € N} is bounded. Indeed, there is a positive conspastich
that (c",Ki'c") < p. Seta" = ﬁ so that(a",K7a") < W and choose a convergent subsequence
{a"@ : qe N} such that ling_.. a""¥ = a and||al| = 1 for some vectoa € R™. If the sequence
{c": ne N} is not bounded we conclude thi, Kya) = 0 contradicting our hypothesis thite
A, (X). Hence there is a subsequeqc&‘® : g € N} such that liny_.., c"“® = c, for somec € R™.

Therefore, we conclude that

Qu(%) = Q(Kxc) +H(c,Kxc) = Qu(K)
from which it follows thatQ,(X) = Qu(K). O

The proof of this lemma requires that all kernelsXhare in 4, (.X). If we wish to use kernelk
only in 4(X) we may always modify them by addirany positive multiple of thedelta function
kernelA defined, forx,t € X, as

1, x=t

A(xt) = { 5 (8)
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that is, replac& by K + aA wherea is a positive constant.

There are two useful cases of a ggtof kernels which are compact and convex. The first is
formed by the convex hull of finite number of kernels itA (X). The second example extends this
to a compact Hausdorff spa€k (see, for example, Royden, 1988), and a mapgin® — 4, (X).

For eachw € Q, the value of the kerndb(w) at x,t € X is denoted byG(w)(x,t) and we assume
that the function ofo — G(w)(x,t) is continuous o2 for eachx,t € X. When this is the case we
sayG is continuous We let (Q) be the set of alprobability measuresn Q and observe that

%(G) = { | Glwydpo):pe M(Q)} ©)

is a compact and convex set of kernelslin(.X'). The compactness of the s&{(G) is a consequence
of weak-compactness of the unit ball of the dual spac&C), the set of all continuous real-
valued functiongy on Q with norm ||g||q := max{|g(w)| : w € Q} (Royden, 1988). For example,
we chooseQ = [a, b], wherea > 0 andG(w)(x,t) = e @*tI* xt € RY, w e Q, to obtainradial
kernels or G(w)(x,t) = e**Y, x;t € RY to obtaindot product kernelsNote that the choic® = N,
corresponds to our first example.

In preparation for the next theorem we need to express th& 88} in an alternate form. We
have in mind the following basic fact.

Lemma 3 If Q is a compact Hausdorff space,:@ — 4, (.X) a continuous map as defined above
and G = {G(w) : w € Q} then X (G) = cog.

PROOF.  First, we shall show thatoG C X(G). To this end, we leK € coG andx C X. By
the definition of convex hull, we obtain, for some sequence of probabilitysorea{p, : ¢ € N},
thatKy = lim/—.« /o Gx(w)d pr(w) where eactp, is afinite sum of point measures. Since for each
teN, [oGx(w)dp(w) € K(G) and X (G) is closed it follows thaky C X (G), that is, we have
established thatoG C X(G).

On the other hand, if there is a kerrtele % (G) which does not belong tooG then there is
an input sex such thatky ¢ coG(x) while Ky = [ Gx(w)dp(w) for somep € M (Q). Hence,
there exists a hyperplane which separates the miéfrixom the set of matricesoG(x) (Royden,
1988). This means that there is a linear functidnah S(R™) andc € R such thatL(Kx) > ¢ but
L(Gx(w)) < cfor all w € Q. We integrate the last inequality overc Q relative to the measuip
and conclude by the linearity afthatL (Ky) < c, a contradiction. This concludes the proof. [

Observe that the s&l = {G(w) : w € Q} in the above lemma is compact sinBés continuous
andQ compact. In general, we wish to point out a useful fact about the leeimeoG whenever
G is acompactset of kernels. To this end, we recall a theorem of Caratheodoryftseexample,
Rockafellar, 1970, Ch. 17).

Theorem 4 If A is a subset oR" then every & CcOA is a convex combination of at most-i
elements of A.

An immediate consequence of the above theorem is the following fact whichalkeuse later.

Lemma 5 If A is a compact subset #&&" thencoA is compact and every element in it is a convex
combination of at most# 1 elements of A.
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In particular, we have the following corollary.

Corollary 6 If G is a compact set of kernels oki x X thencogG is a compact set of kernels.

Moreover, for each input seta matrix Ce coG(x) if and only if there exists a kernel T which is a

convex combination it mostm +1kernelsinGg and § =C.

Our next result shows whenevé is the closed convex hull of a compact set of kerrglshat
the optimal kernel lies in a the convex hull of sofiméte subset ofG.

Theorem 7 If G C 4, (X) is a compact set of basic kernef&,= coG, Q: R™ — R, is continuous
and u is a positive nu[nber then there exiSts. G containing at most m- 2 basic kernels such that
Qu admit a minimizeK € co7Z and Q(7) = Qu(X).

PROOF Let (€, K) e R™x X be a minimizer ofQ, that is, we have that
Qu(%) = Min{Q(Ry0) + H(c, Rec) : ¢ € R™} = Q(Re6) + H(E,RyC).

We define the set of vectord := {(KxC, (€,K«€)) : K € X} ¢ R™, Note that?l = co?’ where
V ={(GxE, (€,Gx€)) : G e G} and ¥ is compact sinces is compact. By Lemma 5 the vector
(Kx€, (€,K«€)) can be written as a convex combination of at nmst 2 vectors in?/, that is

(K€, (6,Kx€)) = (Kx€, (€,Kx€))
whereK is the convex combination of at mast+ 2 kernels inG. Consequently, we have that

Qu(K) = QRx€)+H(E Ky, E)

> min{Q(Kxc) + p(c,Kyc) : c € R™}

= Qu(K) > Qu(X)

implying thatQ,(K) = Qu(K). O

Note that Theorem 7 asserts #dstencef aqwhich isat most m- 2, that is, an optimal kernel
is expressed by a convex combination of at most 2 kernels.

Note that in the definition () we minimize first overf € #x and then oveK € K. There
arises the question of what would happen if we interchange these minimaddiesa this issue
in the case thatX is the convex hull of a finite set of kernels. To this end, we use the notation
@jeNn}lkj for the direct sum of the Hilbert spac®i; : j € Nn}.

Lemma 8 If %, = {Kj: j € Np} is a family of kernels otk x X and f € @, H; then

inf{|| f||k : K eco%}:min{ [ fillk; = f = % fi, foe H, L€ Nn}. (10)
j€Nn

jeNp
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As the result is not needed in our subsequent analysis we postponedts@ithe appendix (for
related results, see also, Herbster, 2004; Lin and Zhang, 2003) oi#/¢hat the expression on the
right hand side of equation (10) is atermediatenorm for@®;, #H; (see Bennett and Sharpley,
1988, p. 97) for a discussion. This lemma suggests a reformulation ofktren&l problem (7)
for kernels of the form (9) wher& is expressed in terms of a feature map. Although this fact is
interesting, it is not central to our point of view in this paper and, so, gerilee it in the appendix.
Next, we establish that the variational problem (7) isoavex optimization problemSpecif-
ically, we shall show that if the function mappin@: R™ — R is convex then the functional
Qu:AL(X) — Ry is a convex as well. It is curious that this does not seem to follow directly
from thedefinitionof Q. We take a sojourn through the notionazfnjugate functionRecall that
the conjugate function d denoted byQ* : R™ — R is defined, for every € R™, as

Q"(v) = sup{(c.v) —Q(c) :c € R™}
and it follows, for everyc € R™, that
Q(c) = sup{(c,v) —Q"(v) :vE R™}

(see, for example, Rockafellar, 1970; Borwein and Lewis, 2000)icA recent application of the
conjugate function to linear statistical models appears in (Zhang, 2002).

The proof we present below for the convexity @f, : 4, (X) — R, is based upon the von
Neumann minimax theorem which we record in the appendix. We begin by imirggéor each
r > 0 afunctiong : Ry — R, defined, foit € Ry, as

1 , 1
@ (t) = u(ZH\/t' %~ 2t
where(z); := max0,z). Note that
. 1
m e () = -2t

pointwise fort > 0. Also, for each fixed > 0, @ (t) is a non-increasing function ofand, for each
r > 0, ¢ is continuously differentiable, decreasing and convex an R

Lemma9 If K € 4(X), x a set of m distinct points of such thatk € £, (R™) and Q: R™" — R
a convex function, then there exisgs¥ 0 such that for all r> rg there holds the formula

Qu(K) = sup{@ ((v.Kxv)) —Q"(v) :ve R™}. (11)

PROOF. By the definition ofQ, we have that
Qu(K) = min{sup{(Kxc,v) — Q*(v) + p(c,Kxc) : ve R™} :ce R™}.

According to Lemma 2 the minimum above exists. Therefore, thereris>a0 such that for all
r > ro we have that

Qu(K) = min{sup{(Kxc,V) — Q*(v) + (¢, Kxc) : vE R™ : c € R™, (c,KyC) < r?}.
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By the minimax theorem, see Theorem 22 in the appendix, we conclude that
Qu(K) = sup{min{(Kyc,v) — Q*(v) + p(c,KyC) : c € R™, (c,KcC) < r?} :ve R™}.

For eachv € R™, we shall now explicitly compute the minimum of the above expression. To this
end, we leK, := B2 whereB is am x m positive definite matrix, that i€ is the square root dfy,
and observe that

min{(c, KxV) + L(C, KxC) : (¢, KxC) < r?} = min{p||Bc+ %BVHZ— %1||Bv||2 2 ||Bc|| <r}.

If the vectorcy := —iv has the property thagtBo|| <, that is, ||Bv|| < 2ur then the minimum
above is—%HBvHZ, otherwise||Bv|| > 2ur and the triangle inequality says that

1 1 1
Bc+ —Bv|| > —||Bv|| — ||Bc|| > —||BV|| —r.
[Be+ 5BV = 2BV~ [[Be] = o7 BV

Since, for the vectot = —ﬁ, we have that

L1 1
|IBE+ Z_HBVH = ZlHBVH —r
this inequality is sharp. Therefore, we get that

1 1
Qu(K) = sup{ i [Bvl| -2 - ollBvI? - Q () sve RY

and the result follows by the definition gf. O

Let us specialize this lemma to the example of the squareSdséined, fow € R™, asS(w) =
ly —w]||2. In this case, the conjugate function is given explicitly¥ax R™ as

S'(v) = max{(wv) — [lw—y|?:we R"} = %IIVIIZ+ (¥;V)-

We shall show later in Lemma 14 bydirect computatiorwithoutthe use of the conjugate function
thatS, = p(y, (Kx+ul)~ty). Alternatively, if we formally letr = e in the right hand side of equation
(11) we get

sup{—%l(v, (Kx+HhVv) = (y,v) :ve Rm}

which by a direct computation equalsy, (Ky + pl)~ty). This suggests that Lemma 9 may even
hold whenr = « and without the hypothesis thi € £, (R™). We shall confirm this with another
version of the von Neumann minimax theorem.

Lemma 10 If K € 4(X), x a set of m distinct points of such that ik € £, (R™) and Q: R™ — R
a convex function, then there holds the formula

Qu(K) = SUp{i(v, KxV) —Q*(V):ve Rm} .
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PROOF Theorem 23 applies sind§ € £, (R™). Indeed, we letf(c,v) = (Kxc,v) — Q* (V) +

u(c,Kxc), 4 =B = RMandvp = 0 then the sefc: c € R™, f(c,vo) < A} is compact and all the

hypotheses of Theorem 23 hold. Hence, we may proceed as in thegfroemma 9 withr = co.
O

To interpret Lemma 9, we say that=< B wheneverA,B € L(R™), if B— A is positive semi-
definite. We also say, fdf,J € 4(X), thatK < Jif Ky < Jy for everyx C X.

Definition 11 A function@: B — R is said non—decreasing 0B C A4(X) if, for every AB € B
with A=< B it follows thatg(A) < @(B). If the reverse inequality holds we s@ys non—increasing.

Definition 12 A function@: B — R is said convex oB C 4 (X) if, for every AB € B andA € [0, 1]
there holds the inequality

OAA+ (1—-A)B) <AQA)+ (1—N)@(B). (12)
If the reverse of inequality (12) holds we say thatqhis concave.

Proposition 13 If Q : R™ — R is convex then for every ¢ 0 the function Q: 4, (X) — Ry is
convex and non-increasing.

PrROOF The proof of the proposition follows from Lemma 9. Specifically, equatidr) éxpresses
Qu as the supremum of a family of functions which are convex and non-isiogan.A4(X).
O

We note that the convexity of the functi€, was already proven by Lanckriet et al. (2004)
for the hinge loss and stated in (Ong, Smola and Williamson, 2003) for difiat#e convex loss
functions.

3. Square Regularization

In this section we exclusively study the case of the square loss regtitamiaanctionalS, in equa-
tion (5) and provide improvements and simplifications of our previous restsbegin by deter-
mining theexplicit expression for this functional which we briefly mentioned earlier after thefp
of Lemma 9.

Lemma 14 For any kernel K, inputx := {X; : j € N}, samples y= (y; : j € Nm) and positive
constant 4 we have that
Su(K) = (Y, (K1 +Ke) 1Y) (13)

where | is the mx m identity matrix.

PROOF We have thag,(K) = min{R(c) : c € R™} where for eaclt € R™ we setR(c) := ||y —
Kxc||? + p(c, Kyc). We define the vectom := (ul + Ky) 1y, observe thaR(w) = (y, p(pl + Ky)~1y)
and for every vectoc € R, we have that

R(C) = R(W) + [[Kx(W—€)[|* + p(c — W Ky (c— w)).

With this formula the result follows. O
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From this lemma we conclude, when the maktixds in £, (R™) then lim, ot~ 1S,(K) = y(Kx),
where for everyA € £, (R™) we sety(A) := (y,A~ly). The functiony: £, (R™) — R, has the
alternate form

Wi\) :=min{(c,Ac):ce R",(c,y) =1}, Ac L, (R™) (14)

and the unique vector which achieves this minimum is given by
A-ly

c(A) = m (15)

A proof of these facts follow directly from the Cauchy-Schwarz inequdbitythe inner product
(u,Av), u,v € R™. Moreover, this alternate form foi{A) connects the functiog to the minimal
norm interpolantin # to the dateD. Let us explain this connection next.

Recall, for every kerneK on X x X, that the minimal norm interpolation to the dddais the
solution to the variational problem

p(K) :=min{||f||Z : f € #H«, f(X)) =Y, ] € Nm}. (16)
The following result is well-known (for a proof see, for example, Midttsnd Pontil, 2005).

Proposition 15 If K € 4(X) andx is an input set inX such that the matrix Kis in £, (R™) then
the solution of the minimal norm interpolation problem (16) is unique and is\diye

f= CjK(va')
2

where the coefficient vector (c; : j € Ny) solves the linear system of equationg k- y and we
have that

p(K) = ¥(Ky) = (. K¢ 1Y) (17)

The functiony: £, (R™) — R is continuous. We record additional facts about this function in
the next two lemmas.

Lemma 16 The functioryis non—increasing and wheneverB\e £, (R™), y(A) = y(B) if and only
if A=ty =B"1y.

PROOF.  If A=< B then for everyc € R™, (c,Ac) < (c,Bc) and it follows thatﬁ) < W}B)' Clearly
A-ly = B~ly implies thaty(A) = y(B). On the other hand if(A) = y(B), the inequalitie% <
(c(B),Ac(B)) < (c(B),Bc(B)) = WlB) imply thatc(A) = c(B) and the result follows. O

Lemma 17 The functiony is convex and the functiop® concave. Moreover, for every, B €
L (R™M), A €0,1], we have that

1 1
oA v TNy (18)

if and only if dA) = ¢(B) = c(AA+ (1—A)B).
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PROOF  For every\ € [0,1] we define the matri, = AA+ (1—A)B and for allc € R™ for which
(c,y) = 1 note that

1
y(B)

Consequently, we have th@%) > )\WlA) +(1— )‘)Wls)' showing thay ! is concave. Alternatively,

equation (14) expressgsi(A) as the minimum of a family of functions which are linear in the
matrix A and hencg ! is concave. Similarly, using this equation we have that

(c,Dyc) =A(c,Ac)+ (1—A)(c,Bc) > A L

m%—(l—)\)

(19)

y(A) =max{(c,Ac) t:ce R™ (c,y) =1}

thereby expressingas a maximum of a family of convex functions.
If (18) holds, we choose = ¢, := ¢(D,) in (19) and conclude by the uniqueness of the vector
c(A) in equation (15) that) = c(A) = c(B). Conversely, when this conclusion holds we have that

V(éx) = Ay, Ac)+ (1-A)(cy,Bag,)
= A(c(A),Ac(A))+ (1—A)(c(B),Bc(B))
1 1
= )\@—F(l—)\)@
which concludes the proof. d

Lemma 16 and 17 established that the functpor, (R™) — R defined, for some € R™ and
allAc £, (R™), as@(A) = (d,A"1d) is non-increasing and convex (see also the work of Marshall
and Olkin, 1979).

Proposition 15 and Lemma 14 connects minimal norm interpolation to squaresfpdaniza-
tion. This connection allows us in this section to turn our attention to the funptiot(X) — R
and consider the variational problem

P(X) =inf{p(K) :K € K} (20)

where X is a prescribed set of kernels. The approach of Lemma 2 applies direetyablish the
following lemma.

Lemma 18 If X is a compact and convex set of kernelsgin(.X') then the minimum of (20) exists.

Our next result describes the solution of the problem of determipii#j) for the case that
K = coXy wherek, = {K; : £ € Np} is a prescribed finite subset df, (X). In its presentation we
use the notiorkKy ; for the matrix(Ky)x.

Theorem 19 If %, = {K; : j € Np} C 4, (X) there exists a kernél = Y jcaAjKj € cofk,, where
J C Ny, card(J) < min(m+ 1,n) with ¥ jeaj = Lsuch that, for every ¢ J,Aj >0,

(€, Ky j€) = max{(€,Kx(€) : £ € Np}, €=c(Ky),

p(K) = p(K) = (v,K, 1Y)
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and for every = R™ with (c,y) = 1 and every Ke co%k;

(Q KXC) S (67 KXC> S (C7 KXC)' (21)

Inequality (21) expresses the fact that the péiK) is asaddle poinfor the minimax problem

Pt =min{max{(c,Kyc) : K € coky} : c€ R™ (c,y) = 1}.
The existence ofc, K) above implies that the minimum and maximum can be interchanged, that is,

max{min{(c,Kxc) :ce R™ (c,y) =1} : K € co%y} (22)

= min{max{(c,Kxc) : K € co%p} :ce R™ (c,y) = 1}. (23)

Moreover,anyéandK with the properties described in Theorem 19 is a saddle point of this minimax
problem. Indeed, the upper bound in (21) follows from the definition of&wtorc’and the function

y defined earlier, see equations (14) and (15). The lower bound foflowsthe fact that for any

K € coX, we have thafé, Ky€) < max{(€,Ky(€) : ¢ € Np}.

Let us now turn to the existence Kf Note that by equation (14) and Proposition 15 the expres-
sion in (22) is ¥p(X), the reciprocal of the quantity of interest to us. It is the quantity in equation
(23) which we examine in the proof of Theorem 19 and it has been debypi@gd'. A consequence
of Theorem 19 is thgd = p(X). Certainly, by their definitions it is clear that< p(X).

We now present the proof of Theorem 19.

PrROOF Let¢be a solution to problem (23). We define the set

the convex functio : R™ — R by setting for eacle € R™, ¢(c) := max{(c,Ky jC) : j € Ny} and
note that by Lemma 24 the directional derivative¢ofilong the “directiond € R™, denoted by
¢’ (c;d), is given by

¢’ (c;d) =2max(d,Ky jc): j € J(c)}.

Sincec’s a minimum for (14) we have that
max{(d,Ky ;€):jeJ*} >0

for everyd € R™ such thai(d,y) = 0. Let M be the convex hull of the set of vectal§ := {Ky ;€

j €J*} C R™ SinceM C R™, by the Caratheodory theorem (see, for example, Rockafellar, 1970,
Ch. 17) every vector ifM can be expressed as a convex combination of at mpostmin(m+
1,13*|) < min(m+1,n) elements ofA. We will show that intersects the line spanned by the
vectory. Indeed, if these two sets did not intersect then there exists a hypefplane R™, (w, c) +

a =0}, wherea € R, w € R™, which strictly separates them, that is,

(wty)+a>0, teR

and
(W, Ky j€)+0a <0, jeJ, (24)
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(see, for example, Royden, 1988).
The first condition, fot = 0, implies thath > 0 and since can take any real value we also have
that(w,y) = 0. Consequently, from equation (24) we get that

max{(w,Ky €): je€J} <0

which contradicts our hypothesis thais™a minimum. Thus, it must be the case thgte M for
sometp € R, that is,

toy =) YjKx,;C (25)
J; i,

for some subset of J* of cardinality at most] and positive constantg with 3 ;-;y; = 1. Taking
the inner product of both sides of equation (25) wathafid recalling the fact tha€,y) = 1 we

obtain thaty = p~*. Setting A
K:= % YK
2

we have from (25) that = p—1K, 1y, andp = (y,K; ly). Therefore, by Proposition 15 we conclude
thatp = p(K) andc’= € wherec’is defined in the theorem. In particular, we obtair p(X) and so
by our previous remarks just before the beginning of the proof, welada thap = p(X). O

Recall, that earlier we introduced the cla&$G) induced by a continuous mappi@: Q —
A4, (X) whereQ is a compact Hausdorff space. Theorem 15 extends to this generaligsdeatial
difference occur in the proof. However, the conclusion is striking. &fdy do we characterize the
optimal kerneK e K (G) but we show that it comes fromdiscreteprobability measurg & 4 (Q)
with at most mt- 1 atoms that is,K = [, G(w)dp(w).

Theorem 20 If Qs a compact Hausdorff topological space and@— 4 (X) is continuous then
there exists a kernél = [, G(w)dp(w) € K (G) such thatp is a discrete probability measure in
M (Q) with at most m- 1 atoms. Moreover, for any atom € Q of p, we have that

(6,Gx(6)€) = max{ (€, Gx(w)E) : we Q}, &=c(Ky),
P(K) = p(K) = (v, K1)
and for every &= R™ with (c,y) = 1 and every Ke X (G)
(€. Kx€) < (€,Kx€) < (c,KyC).
PROOF Let€be a solution to problem (23) wheteXk, is replaced byX (G) and define the set
Q" =Q(€) :={1:1€Q,(€,Gx(1)€) = max{(€,Cx(w)€) :we Q}}.

where we denoted the matrG(w))x by Gx(w). We define the convex functiop : R™ — R
by setting for eactt € R™, ¢(c) := max{(c,Gy(w)c) : w € Q} and note that by Lemma 24 the
directional derivative o along the “directiond € R™, denoted by, (c;d), is given by

¢’ (c;d) = 2max{(d,Gx(w)c) : we Q*}.
Sincec’is a minimum for (14) we have that

max{(d,Gx(w)€) : we Q(c)} >0

1112



LEARNING THE KERNEL FUNCTION VIA REGULARIZATION

for everyd € R™such tha(d,y) = 0. LetM be the convex hull of the set of vectok§: = { Gx(w)E:

we Q*} ¢ R™ SinceM C R™, by the Caratheodory theorem every vectofiincan be expressed

as a convex combination of at mast- 1 elements ofA\l. We will show thatM intersects the line
spanned by the vectgr Indeed, if these two sets did not intersect then there exist a hyperplane
(w,c)+a =0, aeR,we R™ which strictly separates them, that is,

(wty)+a>0, teR

and
(W, Gx(w)€) +a <0, we Q, (26)

(see Royden, 1988).
The first condition, fot = 0, implies thatr > 0 and sincé can take any real value we also have
that(w,y) = 0. Consequently, from equation (26) we get that

max{ (W, Gx(w)€) : we Q*} < 0.

which contradicts our hypothesis thats™a minimum. Thus, it must be the case ttgte M for
sometp € R, that is,

toy = /Q G(@)EdP(w) 27)

wherep'e M (Q) is a discrete probability measure with at mast- 1 atoms. Taking the inner
product of both sides of equation (27) withdhd recalling the fact thg€,y) = 1 we obtain that
to =P~ 1. Setting

K= /QGx(w)df)(co)

we have from (27) that = p~1K 1y, andp = (y,K~1y). Therefore, by Proposition 15 we conclude
thatp = p(K) andc’= € wherec’is defined in the theorem. In particular, we obtgir p( %) and
so by our previous remarks we conclude that p(X). O

This theorem applies to the Gaussian kernel.
Corollary 21 Ifa>0and N: [a,b] — 4. (X) is defined as
N(w)(xt) =e @t xte Ry weR,

then there exists a kernil = [, N(w)dp(w) € K (N) such thatp is a discrete probability measure
in M (Q) with at most m- 1 atoms. Moreover, for any atota € Q of p, we have that

(€, Ny(@)€) = max{ (&, Nx(w)€) : we Q}, é=c(Ky),

P(X(N)) = p(K) = (v,Kc 1)
and for every = R™and Ke % (N) we have that

(6,Ky€) < (&,Kx€) < (c,KxC).

1113



MICCHELLI AND PONTIL

We note that, in view of equations (13) and (17), Theorem 19 and Thed@eapply directly, up to
an unimportant constapt to the square loss functional by merely adding the kguAdb the class
of kernels considered in these theorems. That is, we minimize the quantitydtieq(L7) over the
compact convex set of kernels

K={K:K=K+pA, Ke K}

where the kerne is defined in equation (8).

An important example of the above construction is to chddse¢o be polynomials on R
namelyK;(x,t) = (x,t)J, x,t € RY. From a practical point of view we should limit the range of the
index j and therefore Theorem 19 adequately covers this case. On the gohivardecide to use,
as it is done often, Gaussians, there arises not only how many Gauss@rmse but also which
ones to choose. This raises the question of looking aihele class of radial basis functions
and trying to choose the best kernel amongst this class. To this endcaleadeautiful result
of Schoenberg (1938). Létbe a real-valued function defined on Rvhich we normalize so that
¢(0) = 1. We form a kerneK on R® by setting for each,t € RY K(x,t) = ¢(||x—t||?). Schoenberg
showed thakK is positive definite formany dif and only if there is a probability measupeon R,
such that

K(x,t) = /R e otPdp(a), xte R
+

Note that the set R is not compact and the kern®(0) is not in 4, (RY). Therefore, on both
accounts Theorem 20 does not apply in this circumstance unless, gecoug impose a positive
lower bound and a finite upper bound on the variance of the Gaussiasl&di(w). We may
overcome this difficulty by a limiting process which can handle kernel mapsaaily compact
Hausdorff spaces. This will lead us to an extension of Theorem 20exhas locally compact.
However, we only describe our approach in detail for the Gaussianara2 = R... An important
ingredient in this discussion presented below is M@b) = A.

For every/ ¢ N we consider the Gaussian kernel map on the inte@val= [¢~1,/] and appeal
to Theorem 20 to produce a sequence of keriels Ja, N(w)d pr(w) with the properties described
there. In particularpy is a discrete probability measure with at most 1 atoms, a numbende-
pendenbf ¢. Let us examine that may happen/aends towards infinity. Each of the atomsmf
as well their corresponding weights have subsequences which gengwme atoms may converge
to zero while others to infinity. In either case, the Gaussian kernelappmaches a limitThere-
fore, we can extract a convergent subsequemge: ¢ € N} of probability measures and kernels
{Kn, 1 £ € N} such that lim .., pn, = P, lim/ . Kn, =K, andK = [ N(w) p(w) with the provision
that p may have atoms at either zero of infinity. In either case, we replace thesi@alyy its limit,
namelyN(0), the identically one kernel, d¥(), the delta kernel, in the integral which defirés
All of the properties described in Theorem 20 and remarks following it hol& foecause of the
simplicity of the objective function for the minimax problem studied there. Hetde the best
radial kernel

4. Discussion

In this final section we comment on two recent papers related to ourgnpresme numerical
simulations and outline possible extensions of the ideas presented above.
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4.1 Related Works

Lanckriet et al. (2004) address learning kernels in the context cfdrastive learning, that is, learn-
ing the value of a function at a finite set of test points. In this case the lkeroemputed only on
the training and test sets and, so, it is regarded as a matrix. The autbposemdifferent criteria
to find a positive semi-definite kernel matrix and discuss how these carstel@s positive semi-
definite programming problems. For example, they maximizerthgyinof a binary support vector
machine (SVM) trained with the kernkl, which is the square root of the reciprocal of the quantity
defined by the equation

Prara(K) = min {||f[[ :y; f(x;) > 1,j € Nm}. (28)

wherey; € {—1,1} are class labels, (see, for example, Vapnik, 1998). The margin is the maximum
distance of the closed point, relative to a set of labeled points, amongstpaltaging functions

in the RKHS. These functions are hyperplanes in the space spanned f@atbres associated to

a Mercer expansion of the kern€l When the optimal separating hyperplane does not exist, the
standard approach is to relax the separation constraints in problem @&gia the so-called soft
margin SVM,

Psoft(K) ::min{ % Ej+quHﬁ:yjf(xj)zl—Ej,Ejzo,jeNm, fe}&}. (29)
jeNm

These two problems are related. Indeed, if problem (28) admits a solutairistithe constraints
are feasible, problem (29) gives the same solution provided the pargwigtemall enough.

Lanckriet et al. (2004) consider the minimization problem (29) whgéns a set of positive
semi-definite matrices which are linear combinations of some prescribed magiiges Nj. In
particular, ifK; are positive semi-definité& could be the set of convex combination of such matri-
ces. They show thgiset(K) is convex inK € K. Our observations in Section 2 confirm that the
margin and the soft margin are convex functions of the kernel. Indeelllgm (29) is equivalent
to the variational problem (1) whe@ is thehinge error functiordefined on R' by

QW)= ¥ (1Y) Wi= (W} € Noy
JENR

wheret, := max0,t), t € R, (see, for example, Evgeniou, Pontil and Poggio, 2000).

Ong, Smola and Williamson (2003) consider learning a kernel functionrrétiaa a kernel
matrix. They choose a seX in the space of kernels which are in a Hilbert space of functions
generated by a so-called hyper-kernel. This is a kefhelx? x X? — R, whereXx? = X x X,
with the property that, for evergx,t) € X2, H((x,t),(-,-)) is a kernel onX x X. This construction
includes convex combinations of a possibly infinite number or kernels prdvitey argointwise
nonnegative For example Gaussian kernels or polynomial kernels with even degtisty shis
assumption although those with odd degree, such as linear kernels oraattatkernels do not.

4.2 Numerical Simulations

In this section we discuss two numerical simulations we carried out to compotevexccombina-
tion of a finite set of kernel§K, : £ € N} which minimizes the square loss regularization functional
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[ [ 10% [ 10° [ 107 | 01 | 1 [ 10 |
Method 1 || 2.41 (1.04)] 1.69 (0.68)] 0.60 (0.11)] 0.27 (0.08)] 0.26 (0.05)| 3.20 (0.48)
Method 2 || 1.54 (0.58)| 0.91 (0.22)| 0.47 (0.08)| 0.40 (0.07)| 0.61 (0.11)| 3.80 (0.58)
Method 3 || 4.65 (7.81)| 0.95 (1.24)| 0.21 (0.06)| 0.10 (0.05)| 0.12 (0.08)| 2.40 (0.60)

Table 1: Experiment 1: Average mean square error with its standaritien (in parenthesis) for methods
1 to 3 for different values of the regularization paramgtésee text for the description). The unit
measure for the errors 19-3.

S, in equation (5). For this purpose, we use an interior point method, thaeisiefine, for every
A= (Ar: £ €Ny € R", the penalized function

Fv()\) = Sl (6% )\gKf) —V InA, (30)

145\

wherev is a positive parameter and solve the variational problem

iN{FA)IAERY, S Ay=1%. 31
mln{ A):Ae é;\ln/ } (31)

Clearly, whenv is small the solution to this problem is close to a minimizeiSgf although the
penalty term in (30) forces this solution to be interior to the{3ety ,cy, A =1, Ay >0, £ € Ny}.

In order to reach such a minimizer we choose an iteration nuleeN and iteratively compute
the solution to problem (31) for a decreasing sequence of values oathmpter. Specifically we
set, forr € Ng, v, = VA1 whereV is the initial value ofv andA € (0,1) is some prescribed pa-
rameter. The optimality conditions for problem (31) (see, for example, &eltkr, 1970; Borwein
and Lewis, 2000) are given by the systemrmoh-linearequations

OR—-ne = 0
—(eN)+1 = 0

wheree is the vector in R all of whose components are one and R is the Lagrange multiplier
associated to the equality constraint in that problem. We solve these equmstiadewton method
(see, for example, Mangasarian, 1994) which consists in iterativelyngotlie system ofinear
equations

~

0%FR, (M)A —Ane = Ae—OR,(A)
—(e,A;\) =0

to obtain the vectah, € R™andA, € R, where\ andn are the previous values dfandn. We then
update the parameters &As- A +ad, andn = A +ad,, where, in order to insure thate [0,1]",
we have setr := min(1,0.5maxa >0 A taby, € [0,1]}). In our experiments below we choose
R=5,v=10andA=0.5.

In both experiments we tried to learn a target functiofi0, 21 — R from a set of its samples. In
the first experiment we fixefl(x) = & (x+ 2(e 8™ X* _-83%” _e-837™%%)) x ¢ [0, 211, and,
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Figure 1: Experiment 1: function learned by method 1 (left), methodeéhfer) and method 3 (right). Regu-

larization parameter j$= 0.1, the number of training points 0. Solid line is the target function,
crosses are the sampled points and the dotted line is theothesied. The vertical scale has been

reduce

| H

107

103

102

01

1

|

10

Method 1

3.46 (1.39)

3.46( 1.39)

3.45 (1.38)

3.35 (1.35)

2.64 (1.10)

14.1 (10.3)

Method 2

4.46 (1.82)

4.46 (1.79)

3.85 (1.18)

3.78 (1.03)

4.00 (1.02)

62.6 (5.11)

Method 3

0.52 (0.56)

0.51 (0.56)

0.51 (0.55)

0.51 (0.57)

0.53 (0.63)

3.51 (1.47)

Table 2: Experiment 2: Average mean square error with its standarigtien (in parenthesis) for methods
1 to 3 for different values of the regularization parametésee text for the description). The unit
measure for the errors 19-3.

for everyx,t € [0, 271, we seK,(x,t) = (xt)!Lif £ € {1,2,3} andK,(x,t) = e >V if /€ {4,5,6}
wherewy, = 28754 We generated a training set of fifty poirftéj,y;) : j € Nso} C [0,21] x R
obtained by sampling with noise. Specifically, we choosg uniformly distributed in the interval
[0,2r] andy; = f(X;) + € with € also uniformly sampled in the interva-0.02,0.02]. We then
computed on a test set of 100 samples the mean square error betweegdhtutationf and the
function learned from the training set for different values of the patame We compare three
methodsMethod 1is our proposed approacmethod 2s the average of the kernels, that is we use
the kerneK = %Z K, andmethod 3s the kerneK = K5 + Ks, the “ideal” kernel, that is, the kernel
used to generate the target function. The results are shown in Tableute Eighows the function
learned by each method.

In our second experiment we fixégx) = sin(x) + %sin(Sx), x € [0, 2r] andK,(x,t) = sin(¢x) sin(¢t),
x,t € [0,211, £ € N,. The set up is similar to that in Experiment Method 1is our proposed ap-
proach,method 2s the average of the kernels amgtthod 3s the ideal kernel given bi{(x,t) =
%sin(x) sin(t) + %sin(3x) sin(3t). The noise is now uniformly sampled in the intervé0.2,0.2].
The results are reported in Table 2. Figure 2 shows the function leayneach method.

4.3 Extensions

We discuss some extensions of the problems studied in this paper. Thedtstad comes to mind
is obtained by taking the expectation of the functional (4) with respect tolzapility measurd
on R™ that s,

Q)= [ QuKYPHIIY Ke X (32)
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Figure 2: Experiment 2: function learned by method 1 (left), methodeéhfer) and method 3 (right). Regu-
larization parameter j$= 0.1, the number of training points 0. Solid line is the target function,
crosses are the sampled points and the dotted line is theotheged.

where we indicated the dependency@f(K) ony by writing Q,(K,y). SinceQu(K,y) is convex
in K for eachy € R™ so0 isQ{(K). We then minimizeQZ'(K) overK € K. For the square loss
regularization we obtain that

SV(K) = ptrace(Kx + ul) %) (33)

whereX is the correlation matrix oP. Minimizing the quantity (33) over a convex clags may
be valuable in image reconstruction and compression where we are mrovitlea collection of
images and we wish to find a good average representation for them. Inskisheainpuk = {x; :
i € Nm} represents the locations of the image pixels. For gray level images we sameshat
y € [0,1]™ and therefore we should chooBeo have support ofd,1]™. Thus, if {y’: £ € Ny} is a
sample of such images with< m andZ is the rankn empirical correlation matrix our goal is to
find a kernel which well-represents this collection on the average.

Another approach is provided by replacing the average in equationv{82ihe maximum over
all y with bounded norm, that is, we minimize the functional

Qr¥(K) :=max{Qu(K,y): lyll <1}, KeX.

Again, this function is convex iK. In particular, for square loss regularization and the Euclidean
norm on R" we obtain

max{Sy(K,y) Iy < 1) = max{uy, () )¢ Iyl < 1 = 3

whereAmin(Kx) is the smallest eigenvalue of the matkix. Consequently, we have that

H

min{max{Su(K.y) IV = 1K € K = () K € K] T

It is well-known thatAymin(Ky) is a concave function dfy, (see, for example, Marshall and OIkin,
1979, p. 475). Therefore, our results provide an alternate prabiofact.

We also remark that instead of learning a functfoinom function values the information oper-
atorl can be of the formh(f) = ((gj, f) : j € Nm), f € #, where{g; : j € N} is a set of prescribed
functions in a Hilbert space, see the work of Micchelli and Pontil (2004 afdiscussion. In this
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case, the matriKy becomes the Gram matrix of these functions. The previous sections amaside
the choiceg; = K(x;, -) and the Gram matrix iKy. This extension has wide applications in inverse
problems, for example for computing the solution of first order integrahgguos.

Lemma 17 indicates th&, : 4, (X) — R is, generally, not strictly convex. We may modify
the functionalQ, with a penalty term which depends on the kernel méfgixo enforce uniqueness
of the optimal kernel ink. Therefore, we consider the variational problem

min{Qu(K) + R(Kx)} (34)

whereR is a strictly convex function oL (R™). In this case, the method of proof of Theorem 7
shows that the optimal kernel can be found as a convex combination ofsa%m(er 1) kernels.
For example, we may choo&¥A) = trace(A?), Ac L(R™).

The variational problem (34) may be a preferred approach for ahgas optimal kernel. In-
deed, ifQ vanishes at some point in"Rand there is a kern& € K such that for alt > 0,tK € K
then it follows thaQ,(X) = 0. This fact follows since lim.. Q,(tK) = 0, by elementary properties
of the norm in%x. However, if the kernels itk have the property that spp; supex K(X,X) < e,
that is, they are uniformly bounded, the above circumstance cannat dé¢gs observation suggests
that our criterion may be free from overfitting. Preliminary experiments withsSian kernels con-
firm that overfitting does not occur (Argyriou, Micchelli and Pontil, 2R0%/e leave for a future
occasion a detailed investigation of this important issue.

As a final comment, let us point out that a kernel map can also be pararedtbgiznatrices.
For example, to each € £(RY) we define the linear kernéla(x,t) = (x,At), x,t € R% and so our
results apply to any convex compact subsetrz0RY) for this kernel map. Another example are
Gaussians parameterized by covariartess(RY), that is,

N(Z)(x,t) = ;e*(“’z*l(xft)), xteRY.
det(z) (29

For compact convex sets of covariances our results say that Gaosgiane models give optimal
kernels.

5. Conclusion

The intent of this paper is to enlarge the theoretical understanding of ttie stwptimal kernels
via the minimization of a regularization functional. Our analysis of this probleid$upon and
extends the work of Lanckriet et al. (2004) and Lin and Zhang (2003)contrast to the point
of view of these papers, our setting applies to convex combinations oélkgrarameterized by a
compact set. Our analysis establishes that the regularization funa@gnsiconvex inK and that
any optimizing kernel can be expressed as the convex combination of atrmo2 basic kernels.
We have also provided a detailed characterization of the resulting minimabeprdor square loss
regularization. We have only marginally addressed at this stage implementadi@garithms for
the search of optimal kernels. Since the proofs provided in Theoremsdl2aare constructive it
should be possible to make use of them to derive practical algorithms fairigaan optimal kernel
such as a mixture of Gaussians, see (Argyriou, Micchelli and Pontil,)Z005ome recent results
in this direction. Finally, an important direction which has not been exploredsrptper is that of
deriving error bounds, see (Micchelli et al., 2005) for some vergmeprogress on this.
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Appendix A

The first result we record here is a useful version of the classicaNeumann minimax theorem.

Theorem 22 Let f: 4 x B — R where4 is a compact convex subset of a Hausdorff topological
vector spaceX and B is a convex subset of a vector spaxelf the function x— f(x,y) is convex
and lower semi-continuous for evergyB and y— f(x,y) is concave for every & 4 then we have
that

min{sup{f(x,y) :y € B} :xe 4} =sup{inf{f(x,y) : xe 4} :y e B} (35)

Theorem 23 Let f: 4 x B — R where 4 is a closed convex subset of a Hausdorff topological
vector spaceX and B is a convex subset of a vector spagelf the function x— f(x,y) is convex
and lower semi-continuous for everygyB, y+— f(X,y) is concave for every & 4 and there exists

a Yo € B such that for allA € R the set

{x:xe A4, f(x,yo) <A}
is compact then there is ap x 4 such that
sup{f(xo,y) :y € B} =sup(inf{f(x,y) :xe 4} :y € B}
in particular, (35) holds

Theorem 22 is subsumed by Theorem 23 whose proof can be foundibin(AL982, Ch. 7). The
hypothesis of lower semi-continuity means, foraf R andy € B, that the se{x: x € 4, f(x,y) <
A} is a closed subset df.

The next result concerns differentiation of a “max” function. The iegrsve use comes from
(Micchelli, 1969). LetX be a topological vector space.dfis a continuous real-valued function on
X, we define its right derivative atc X in the directiony € X by the formula

d, (x,y) = lim g(x+ey) —9(x)

e—0t €

whenever it exists.
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Lemma 24 Let T a compact set and (& x) a real-valued function off” x X such that, for every
X € X G(-,x) is continuous orZ" and, for every t= 7, G(t,-) is convex onX. We define the real-
valued convex function g ok by the formula

g(x) :=max{G(t,x):te T}, xe X

and the set
M(x) :={t:te7T,G(t,x) =9g(X)}.

Then the right derivative of g in the directioreyX is given by

g, (x,y) =maxG, (t,xy) :t e M(x)}
where G_(t,x,y) is the right derivative of G with respect to its second argument in the diregtion
PROOF We first observe, for evetyc M(x) andA > 0, that

g(x+Ay) —g(x) S G(t,x+Ay) — G(t,X)
A - A

which, lettingh — 0™, implies thaty, (x,y) > G/, (t,x,y) and, so,

g, (x,y) > sup{G/ (t,x.y) : t € M(x)}.

To prove the reverse inequality we use the fact th&ti$f convex or0, «) andf (0) = 0 thenf (A) /A
is a nondecreasing function dt> 0. In particular, this is true for the function dfdefined, for every
X,y € X, as

g(x+Ay) —g(x)
X .
Consequently, we obtain, for eveky> 0 that

WAMZI) » 4. (xy).

Now, we define
G(t,x+Ay) —g(x)
A
and observe that, for eatl T, it is a nondecreasing function afoecause
G(t,X+)\y)*G(t,X) g(X)*G(t,X)

h(At) = 5 -=

Therefore, the se®, := {t € 7 : h(A,t) > d/, (x,y)} are nonempty, closed and nestedXor 0 and,
so, the compactness Gf implies that there existsta € (,.oA\, that is,

h(At) == L A>0

G(to,x+Ay) > Ad’, (x.y) +9(X), A>0.
Thus,to € M(x) andd’, (x,y) < G/, (to,X,Y). O

We now present the proof of Lemma 8 in an extended form. To this end, wedstny positive
number and let

coriKn::{K:K: %MK,—,)\ZZO,EGN”, )\5:1},
jE n Je n
Note thatco; K, = coky where K, = {Kj : j € Np}.
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Lemma 25 If &, = {Kj: j € Npn} is a family of kernels oiX x X and fe @jc, Hk;, and s= ri—rl

then
1
inf{fK:Kecq%}min{< |fj||s> f= % fj,fge}&,,feNn}.
j€Nnp j€Nn

PrROOF The first step is to appeal to a result of Aronszajn, (see Aronsz@§i), p. 352-3), which
states that for any < @jeNn}&j we have foK = ¥ jcn, AjKj, with A, > 0, £ € Nj, that

: I£i11%
Ik = min St = Y f fre M LeNg b
j;n Aj j;n 1

Thus, the lemma follows from the following fact.

Lemma 26 Ifr >0, p:=1+%,and{a;: j € N} C Rthen

ajg)% , 5
min — | A >0,/€ Ny, AN<1) = ERE
JEZln)\J jeNp J J;n

and the equality occurs fd¥ e, [aj| > O at

jay |71

Aj = — (36)
(ZjeNn ’aj|”_l)

PROOF.  This fact follows from Hblder inequality. To this end, we let=r +1 so that% +% =1
and, so, we have that

2r

ENE

2
}% ‘aj]q = :; T
j€NR jen)\j‘

r
q
)\J

INA
Y T
oM
> | o
2B aly
\/
ol
—
™M
>
N——
Q-

b\ 2\
<J-§Nnrj) (%f") S(%ﬁ) '

For the choice (36) equality holds above, thereby completing the proof. O

The proof of Lemma 25 is completed. O

1122



LEARNING THE KERNEL FUNCTION VIA REGULARIZATION

References

A. Argyriou, C. A. Micchelliand M. Pontil. Learning convex combinatiorigontinuously parame-
terized basic kernel$roc. 18-th Annual Conference on Learning Theory (COLT, @&rtinoro,
Italy, June, 2005.

N. Aronszajn. Theory of reproducing kernelgans. Amer. Math. So686: 337—-404, 1950.

J. P. Aubin. Mathematical methods of game and economic the8tydies in Mathematics and its
applications, Vol. 7, North-Holland, 1982.

F. R. Bach, G. R. G. Lanckriet and M. I. Jordan. Multiple kernels le&ynconic duality, and the
SMO algorithm. Proc. of the Int. Conf. on Machine Learning (ICMLO4p2.

F. R. Bach, R. Thibaux and M. I. Jordan. Computing regularization dathiearning multiple
kernels.Advances in Neural Information Processing Systels2004.

C. Bennett and R. Sharpleinterpolation of OperatorsVol. 129, Pure and Appl. Math, Academic
Press, Boston, 1988.

J. M. Borwein and A. S. LewisConvex Analysis and Nonlinear Optimization. Theory and Examples
CMS (Canadian Mathematical Society) Springer-Verlag, New York, 2000

O. Bousquet and A. Elisseeff. Stability and generalizatidnof Machine Learning Research:
499-526, 2002.

O. Bousquet and D. J. L. Herrmann. On the complexity of learning theskeratrix. Advances in
Neural Information Processing Systera§, 2003.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing mujtgoiemeters for support
vector machinesMachine Learning46(1): 131-159, 2002.

F. Cucker and S. Smale. On the mathematical foundations of learBuif.Amer. Math. So¢.39
(1): 1-49, 2002.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, J. Kandola. On kerngjebalignmentAdvances in
Neural Information Processing Systemd, T. G. Dietterich, S. Becker, Z. Ghahramani (eds.),
2002.

E. De Vito, L. Rosasco, A. Caponnetto, M. Piana, A. Verri. Some ptagseof regularized kernel
methods.J. of Machine Learning Research(Oct):1363-1390, 2004.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and aup@ctor machines.
Advances in Computational Mathemati¢8: 1-50, 2000.

F. Girosi. An Equivalence Between Sparse Approximation and Suppgatb¥MachinesNeural
Computation10 (6): 1455-1480, 1998.

T. Graepel. Kernel matrix completion by semi-definite programming. ProcCANN, pages
694-699, 2002.

1123



MICCHELLI AND PONTIL

T. Hastie, R. Tibshirani, and J. FriedmaiThe Elements of Statistical Learning: Data Mining,
Inference, and PredictiarSpringer Series in Statistics, 2002.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularizagittmfor support vector
machines,). of Machine Learning Research, 1391-1415, 2004.

M. Herbster. Learning Additive Models Online with Fast Evaluating Kerriétec. of the The 14-th
Annual Conference on Computational Learning Theory (COpayes 444-460, 2001.

M. Herbster. Relative Loss Bounds and Polynomial-time Predictions for th&1&-NET Algo-
rithm. Proc. of the 15-th Int. Conference on Algorithmic Learning TheQrgtober 2004.

T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. KiIFLab Technical
Report, 1999.

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline furscfioMath. Anal. Appl.
33: 82-95, 1971.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, M. I. Jordaearning the kernel matrix
with semi-definite programming. In C. Sammut and A.Hoffmann (Eds.), Prateo19-th Int.
Conf. on Machine Learning, Sydney, Australia, Morgann Kaufmaf022

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. EI Ghaoui, M. I. Jordhearning the kernel matrix
with semi-definite programmingl. of Machine Learning Research: 27—72, 2004.

Y. Lee, Y. Kim, S. Lee and J.-Y. Koo. Structured Multicategory Suppatter Machine with
ANOVA decomposition. Technical Report No. 743, Department of Statjslibe Ohio State
University, October 2004.

Y. Lin and H. H. Zhang. Component Selection and Smoothing in Smoothing Shhagy/sis of
Variance Models — COSSO. Institute of Statistics Mimeo Series 2556, NC8uUada2003.

O. L. MangasarianNonlinear ProgrammingClassics in Applied Mathematics, SIAM, 1994,

A. W. Marshall and I. Olkin.Inequalities: Theory of Majorization and its Application&cademic
Press, San Diego, 1979.

C. A. Micchelli. Saturation Classes and Iterates of OperatoBhD Thesis, Stanford University,
1969.

C. A. Micchelli and M. Pontil. A function representation for learning in BemapacesProc. of
the 17—th Annual Conf. on Learning Theory (COLT'(Banff, Alberta, June 2004.

C. A. Micchelli and M. Pontil. On learning vector—valued functiondeural Computation17:
177-204, 2005.

C. A. Micchelli, M. Pontil, Q. Wu, and D. X. Zhou. Error bounds for legugnthe kernel. Research
Note 05/09, Dept of Computer Science, University College London,, R8G5,

S. Mukherjee, P. Niyogi, T. Poggio, R. Rifkin. Learning theory: stabilitgudficient for general-
ization and necessary and sufficient for empirical risk minimizatiufvances in Computational
Mathematicsto appear, 2004.

1124



LEARNING THE KERNEL FUNCTION VIA REGULARIZATION

C. S. Ong, A. J. Smola, and R. C. Williamson. Hyperkerneiglvances in Neural Information
Processing Systems5, S. Becker, S. Thrun, K. Obermayer (Eds.), MIT Press, CamdridlA,
2003.

M. Pontil and A. Verri. Properties of support vector machindsural Computation10: 955-974,
1998.

R. T. RockafellarConvex AnalysisPrinceton University Press, Princeton, New Jersey, 1970.
H. L. Royden.Real AnalysisMacmillan Publishing Company, New York, 3rd edition, 1988.

I. J. Schoenberg. Metric spaces and completely monotone funcansis of Mathematic89(4):
811-841, 1938.

B. Sclolkopfand A. J. Smola.earning with KernelsThe MIT Press, Cambridge, MA, USA, 2002.
C. Scovel and I. Steinwart. Fast rates for support vector machinggrift, 2004.

J. Shawe-Taylor and N. CristianinKernel Methods for Pattern Analysi<Cambridge University
Press, 2004.

S. Smale, and D. X. Zhou. Estimating the approximation error in learning thaogl. Appl, 1:
1-25, 2003.

D. M. J. Tax and R. P. W. Duin. Support vector domain descriptiéattern Recognition Letters
20: 1191-1199, 1999.

V. N. Vapnik. Statistical Learning TheoryWiley, New York, 1998.

G. Wahba.Splines Models for Observational Dat&eries in Applied Mathematics, Vol. 59, SIAM,
Philadelphia, 1990.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regregsivances in Neural
Processing Systems 8: 598-604, D. S. Touretzky, M. C. Mozer, NHaSselmo (eds.), MIT
Press, Cambridge, MA, 1996.

Q. Wu, Y. Ying and D. X. Zhou. Multi-kernel regularization classifieRreprint, City University
of Hong Kong, 2004.

Y. M. Ying and D. X. Zhou. Learnability of Gaussians with flexible variasmdereprint, City Uni-
versity of Hong Kong, 2004.

T. Zhang. Statistical behavior and consistency of classification methses loa convex risk mini-
mization. Ann. Statis.32: 56—-85, 2004.

T. Zhang. On the dual formulation of regularized linear systems with comskx. Machine Learn-
ing, 46: 91-129, 2002.

Z.Zhang, D.-Y. Yeung and J. T. Kwok. Bayesian inference for lactive learning of kernel matrix
using the Tanner-Wong data augmentation algorittitroc. 21-st Int. Conf. Machine Learning
(ICML-2004) pages 935-942, Banff, Alberta, Canada, July 2004.

D. X. Zhou. The covering number in learning theodyof Complexity18: 739-767, 2002.

1125






Journal of Machine Learning Research 6 (2005) 1127-1168 mitgd 1/05; Revised 6/05; Published 7/05

Analysis of Variance of Cross-Validation Estimators of the
Generalization Error

Marianthi Markatou MM 168 @COLUMBIA.EDU
Hong Tian HT2031@COLUMBIA.EDU
Department of Biostatistics

Columbia University

New York, NY 10032, USA

Shameek Biswas SPE2003@COLUMBIA.EDU
George Hripcsak GH13@COLUMBIA .EDU
Department of Biomedical Informatics

Columbia University

New York, NY 10032, USA

Editor: David Madigan

Abstract

This paper brings together methods from two different giogs: statistics and machine learn-
ing. We address the problem of estimating the variance dfsevalidation (CV) estimators of
the generalization error. In particular, we approach tlublem of variance estimation of the CV
estimators of generalization error as a problem in apprating the moments of a statistic. The
approximation illustrates the role of training and testsetthe performance of the algorithm. It
provides a unifying approach to evaluation of various meshased in obtaining training and test
sets and it takes into account the variability due to difféteaining and test sets. For the simple
problem of predicting the sample mean and in the case of $moss functions, we show that the
variance of the CV estimator of the generalization errorfisnation of the moments of the random
variablesY = Card(S§jNSy) andY* = Card Scﬂ ), whereS;, S are two training sets, arﬁf

SC are the corresponding test sets. We prove that the digtibof Y and Y* is hypergeometric
and we compare our estimator with the one proposed by NadehBengio (2003). We extend
these results in the regression case and the case of abswhrtedss, and indicate how the methods
can be extended to the classification case. We illustrateethéts through simulation.

Keywords: cross-validation, generalization error, moment appratiom, prediction, variance
estimation

1. Introduction

Progress in digital data acquisition and storage technology has resultedgrothth of very large
databases. At the same time, interest has grown in the possibility of tappiregdatsand of
extracting information from the data that might be of value to the owner of ttabdae. A variety
of algorithms have been developed to mine through these databases withgbsepof uncovering
interesting characteristics of the data and generalizing the findings to attzeseats.
One important aspect of algorithmic performance is the generalization dnfmrmally, the

generalization error is the error an algorithm makes on cases that hexrsseew before. Thus, the
generalization performance of a learning method relates to its predictiohikgpan the indepen-
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dent test data. The assessment of the performance of learning algastertsemely important in
practice because it guides the choice of learning methods.

The generalization error of a learning method can be easily estimated viacdhstvalidation
or bootstrap. However, providing a variance estimate of the estimator oféhierglization error
is a more difficult problem. This is because the generalization error depenthe loss function
involved, and the mathematics needed to analyze the variance of the estineatamaplicated.
An estimator of variance of the cross-validation estimator of the generalization is proposed
by Nadeau and Bengio (2003). In a later section of this paper we will sksthis estimator and
compare it with the newly proposed estimator.

In this paper we address estimation of the variance of the cross validatiora&s of the
generalization error, using the method of moment approximation. The idea itesiffipe cross
validation estimator of the generalization error is viewed as a statistic. Asistels,a distribution.
We then approximate the needed moments of this distribution in order to obtairtiuatesof
the variance. We present a framework that allows computation of the variestimator of the
generalization error for k fold cross validation, as well as the usualamnset selection in cross
validation. We address the problem of loss function selection and we slabotha general class
of loss functions, the class of differentiable loss functions with certain &ibbior, and for the
simple problem of prediction of the sample mean, the variance of the crosati@idgstimator
of the generalization error depends on the expectation of the randdableasly = Card(S;NS;)
andY* = Card(S‘J?ﬂS‘J?,). HereS;, S; are two different training sets drawn randomly from the data
universe anch’, SJ?, are their corresponding test sets taken to be the complem&niaoid Sy with
respect to the data universe. We then obtain variance estimators of #mlgaation error for the
k-fold cross validation estimator, and extend the results to the regressienWa also indicate how
the results can be extended to the classification case.

The paper is organized as follows. Section 2 introduces the framewdrkisousses existing
literature on the problem of variance estimation of the cross validation estinodtiies generaliza-
tion error. Section 3 presents the moment approximation method for develbgimgw estimator.
Section 4 presents computer experiments and compares our estimator wittintteécggproposed
by Nadeau and Bengio (2003). Section 5 presents discussion arldsions.

2. Framework and Related Work

In what follows we describe the framework within which we will work.

2.1 The Framework and the Cross Validation Estimator of the Generaliation Error

Let dataXy, X, - -+, Xy be collected such that the data univerg= {X1,X,---,Xn}, is a set of
independent, identically distributed observations which follow an unknowabgbility distribution,
denoted byF. Let Srepresent a subset of siag n; < n, taken fromZ;. This subset of observations
is called a training set; on the basis of a training set a rule is constructededtheet contains all
data that do not belong 1§ that is the test set is the s&t= Z]'\ S, the complement ddwith respect
to the data universg;. Denote byn, the number of elements in a test set=n—ng, n; < n.

LetL:RP xR — R be a function, and assume thats a target variable anfi(x) is a decision
rule. The functiorL(Y, f(X)) that measures the error between the target variable and the prediction
rule is called a loss function.
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As an example, consider the estimation of the sample mean. In this problem thiadezgo-
rithm usesf (x) = n—ll 21X = X, as a decision rule ard Xs;, Xi) = (Xs; — %)%, X € S, the square
error loss, as a loss function. Other typical choices of the loss functadnde the absolute error
loss,|Xs, — Xi| and the 0- 1 loss function mainly used in classification.

Our results take into account the variability in both training and test sets. drf@ee estimate
of the cross validation estimator of the generalization error can be compntied the following
cross validation schemes. The first is what we terrncamplete random selectiolVhen this form
of cross validation is used to compute the estimate of the generalization eartearhing method,
the training sets, and hence the test sets, are randomly selected froraithblaxdata universe. In
the nonoverlapping test set selectioase, the data universe is divided into k nonoverlapping data
subsets. Each data subset is then used as a test set, with the remainirugicigtasaa training set.
This is the case of k-fold cross validation.

We now describe in detail the cross validation estimator of the generalizatmmwdrose vari-
ance we will study. This estimator is constructed under the complete randiectiae case.

Let A; be a random set afi; distinct integers from{1,2,---.,n}, ng <n. Letm=n—n
be the size of the corresponding complement set. Note herethiata fixed number and that
Card(Aj) = ny is fixed. LetAq,A,---,A; be random index sets sampled independently of each
other and denote b)9(‘j3, the complement ofj, j = 1,2,---,J. Denote also bys; = {X : | € A},
j=1,2,---,J. This is the training set obtained by subsampltjgaccording to the random index
setA;. Then the corresponding test se§fs= {X : | € Af}. Now defineL(j,i) = L(Sj, %), where
L is a loss function. Notice thatis defined by its dependence on the trainingSetnd the test set
SJ?. This dependence on the training and test sets is through the statisticseticatgruted using
the elements of these sets. The usual average test set error is then

b= S LG, 2.1)

J
=33 Ry, (2.2)

This version of the cross validation estimator of the generalization errendispon the value
of J, the size of the training and test sets and the size of the data universesfithator has been
studied by Nadeau and Bengio (2003). These authors provided two &s8no& the variance of
nfu. In the next section we review briefly the estimators presented by Nadddieagio (2003) as
well as other work on this subject. In a later section we will see that, Wl&nohosen appropriately,
then the Nadeau and Bengio (2003) estimator is close to and performs simiitrlihe moment
approximation estimator in some of the cases we study.

2.2 Related Work

Related literature for the problem of estimating the variance of the generalizatior includes
work by McLachlan (1972, 1973, 1974, 1976) and work by NadewlLBengio (2003) and Bengio
and Grandvalet (2004). Here, we briefly review this work.

Let Sﬁj = 331 ¥ ]_1(1j — 72fu)? be the sample variance pf,"j = 1,2,---,J. Then Nadeau and
Bengio (2003) show that
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Var(p2y
E(S,) = Var(fu) (2.3)
( + 1_p)
wherep is the correlation betwegn andyij. Therefore, ifp is known,
1,
(3+ ﬁ)%p (2.4)

is an unbiased estimator of thar(i2(;). Nadeau and Bengio (2003) observe that this estimator
depends on the correlatignbetween the differerm,‘s which is difficult to estimate. Thus, they
propose an approximation to the correlatiprs %2, wheren; is the cardinality of the test set. The
final estimator of the variance §ffy is given as

1 m
(3+n—1)$j. (2.5)

Nadeau and Bengio (2003) note that the above suggested estimator is simnjilenby have a
positive or negative bias with respect to the acued(?fly). That is, it will tend to overestimate or
underestimat®ar(;?fly) according to whethgb = 2 > por p < p. Therefore, this estimator is not
exactly unbiased.

Nadeau and Bengio (2003) also suggested another estimator of theceafdine cross-validation
estimator of the generalization error. This estimator is unbiased but overestithevVar(i2{ly). It
is computed as follows. Letbe the size of the data universe and assume, without loss of general-
ity, thatn is even. Randomly split the data set into two, equal size, data subsetscdineute the
cross-validation estimator of the generalization error on these two datatsul®tice that, the size
of the training set is now; = [J] —nz < n, smaller than the original size of the training set, but the
test set size remains the same. Denotglhé estimatoﬂim computed on the first data subset and
o the estimatoﬁim computed on the second data subset. To obtain an estimator of the variance of
the cross validation estimator of the generalization error compute the samiplecesofi; and|b.
The splitting process can be repeakddimes and Nadeau and Bengio(2003) recomnidnd 10.
The proposed unbiased estimator is then given as

Zw }E u2m . (Ziﬂ

This is an unbiased estimator of tder ([} pJ)

Bengio and Grandvalet (2004) showed that there does not exist rarigsed and universal
estimator of the variance of k-fold cross-validation that is valid under dltidigions. Here, we
derive estimators of the variance of the k-fold cross validation estimatoeajeheralization error
that are almost unbiased. However, we also notice that our estimatorpeidien the distribution
of the errors and on the knowledge of the learning algorithm.

In a series of impressive papers McLachlan addressed the problestirogtion of the variance
of the errors of misclassification of the linear discriminant function by deietpa technique for
deriving asymptotic expansions of the variances of the errors of mifadatien of Anderson’s
classification statistic. McLachlan also established an asymptotic expansi@exipectation of the
estimated error rate in discriminant analysis and obtained the distributions cdrld&ional error
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rate and risk associated with Anderson’s classification statistic in the caritéhe two-population
discrimination problem. These derivations were carried out under thiengsi®n of normality for
the population distribution.

Our work has similarities with the work by McLachlan in the sense that we elefproxima-
tions to the moments of the distribution of the cross validation estimator of the djeagoa error
and use these to obtain a variance estimator. However, we do not assumaitycof the underly-
ing mechanism that generated the data.

In what follows, we first present the method of moment approximation ftaiging an estima-
tor of Var(i?{ly). We then study the performance of this estimator and compare it with the Nadeau
and Bengio (2003) estimator.

3. Moment Approximation Estimator for Var(f2fy)

Recall that?fy = 3 57_1 0 = 331 (s: Sies L(j,i)). Thereforezl is a statistic. An estimator
of Var(i2[y) can thus be obtained by approximating the moments of the stgfifsic A simple
calculation shows that

N AR | o
Var(iio) = 1z 3 Var(ly) + 55 3 ; Com({, fyr)- (3.1)
=1 i#

From the formula we see that if we can approximate the two tern{8.2f then we can obtain
an estimator for the variance ;. To achieve this goal, we need to estimBtg; ), E(ﬂjz) and
E(ffy). In the following sections we will develop the theory that allows us to obtain ¢eeled
moment approximations. To illustrate the methodology clearly we treat sepataasse of simple
mean estimation and the regression case. We further treat separatelygenese the loss function
is differentiable from the case of non-differentiable loss functions.

3.1 The Sample Mean Case

We start by analyzing the case of the sample mean. Here, the loss functgpends ors; through
the statisticsXs;, the sample mean computed using the elementS;,ond onS‘J? by elements
X € Sf One of the reasons for presenting the sample mean case separatebuisebiedlustrates
clearly the contribution towards the estimatoiver(2fly) that is due to the variability among the
different training and test sets. A second reason in favor of this cdm#@ise, under square error
loss, we obtain a “ golden standard” against which we can compare thempisically computed
variance estimator and the Nadeau and Bengio (2003) estimator. Thistigtédelard” is the exact
theoretical value of th¥ar(f?{y). The obtained results show that the estimator of the variance of
the cross validation estimator of the generalization error of the algorithms skadifierentiable
functions of the mean as loss functions, depends on the expectation ainth@m variable¥ =
Card(SjNSy) andY* = Card(SN'S;).

Let the loss functionL(j,i) = L(isj;m be differentiable. Below we list the conditions under
which our theory holds.

Assumption 1 The distribution oL()?Sj,Xi) does not depend on the particular realizatio;of
andi.
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Assumption 2 The loss functiorl. as a function ob?sj is such that its first four derivatives
with respect to the first argument exist for all values of the variable thlaniys inl, wherel is an
interval such thaP(v € I) = 1, andv indicates the first argument of the loss function.

Assumption 3 The fourth derivative of is such thatL™)(Xs ;%) < M(X;), EM(X)] < c.

Assumption 1 is also used by Nadeau and Bengio (2003, p. 244). Assms@tiand 3 are
standard in the literature where approximations to the moments of a continaalfsinction of the
mean are discussed. See, for example Cramer (1946), Lehmman (t@PR)ckel and Doksum
(2001). The boundedness of the fourth or some higher derivativecisssary for proposition 3.1 to
hold.

Alternative conditions where stronger assumptions on the distributions déathx; and weaker
conditions on the functioh are imposed exist in the literature (Khan (2004)). Herg a loss func-
tion and it seems reasonable to assume boundedness on some of its hiya&ves

Proposition 3.1 offers an approximation of the expectatioh(&fsj,xi).

Proposition 3.1Let X1, Xo, - - - , X, be independent, identically distributed random variables such
that E(X;) = y, Var(X;) = o and finite fourth moment. Suppose thasatisfies assumptions 1, 2
and 3. Then

E[(L" (W X))] +O( ),

EIL(Xe:%)] = EIL(X)] + =

2

2m

where the remaindeR, is such thaE(R,) is O(n—lz), that is, there existag and A < o such that
1

E(Ry) < n—AZ ,Vn > ng and allp. The prime indicates derivative with respect to the first argument of
1
L.

Proof: We will use a conditional expectation argument. Write
E[L(Xs;:%)] = Es i{Ez[L(Xs:X)IS1,]}, 3.2)
j=1,2,---,J andi indicatesX; and is such thate .
Now expand.(Xs;; X) with respect toXs, around the meap to obtain:
L(Xs:%) = LX) +L'(1X)(Xs — W)+ %L”(M)O?s,- —w?
+ %L”’(u,m)(isj — w3+ 2—14L“V)(u*,>ﬁ)(>?s,- —w* (3.3)

Denote by ‘ 3
Ry = LM (W', %) (Xs, — W)*
and _ 3
Ez{Rn[S;.i} = Ex{L™ (W, X) (X, — W4S;,i}, (3.4)

and since by assumption 1 the distributior.6Y) (u*,xi)(fsj —W)* does not depend on the particular
realization ofS; andi, we obtain

Es,i{Ez[L™ (1, X) (X, — WS} = ELL™ (', X)JE(Xs, — 1)* < M- E(Xs — W)*.
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This is because by assumption 3 we h&je™) (i, X)) < E[M(X)] < . Now Lemma A.5 of the
appendix guarantees thatXs, — W* is of order Jlnf Thus, taking expectations in (3.3) and using
(3.4) we obtain:

E[L(Xs:X)] = Esi{Ez[L(LX)[S;,i]} +Esi{Ez[L (%) (Xs — WIS}, i]}

1 — .
+ Esa{Ezl5L (%) (X —07IS;.il}
1 — . 1
+ Esi{Ezlgl” (W X)(Xs — W3S;,il} +0(5)-
1
By assumption 1 the distribution &f i, X;) does not depend on the particular realizatiosoand
Xi. Thus
Es;i{Ezp[L(KX)[S;, 1]} = Ezg[L(W X))
Similar to the above arguments produce the approximation to the first momentgiven

2

EILOG )] = EILGL X))+ 5 EI(L (40)]+ Ol ).

Remark 1: Note that we do not impose distributional assumptions on the data. The odit co
tion imposed is that samples come from distributions for which the fourth momentites fMany
of the standard families of distributions satisfy this condition.

Remark 2: The requirement of the finiteness of the fourth moment for proposition Gibltb
implies limitations on the data sets on which this estimator can be computed. For examyalg, it
be inappropriate to apply these methods to data sets which involve large vegjaiach as those
from insurance and finance. On the other hand, the results apply to sakeathdistributions,
such as the-distribution with 5 or more degrees of freedom. Thalistribution, for example, is a
thick tail distribution, for which the fourth moment exists.

The following proposition approximates the variance of the lqszsgj %)

Proposition 3.2Let assumptions 1, 2 and 3 hold. If in addition the fourth derivati\iez()fsj , %)
is bounded, then

_ 2
VarlL(Xs )] = VarlL(w.X)] + {E[L (1 ))? + CoYL(1X).L" (1 X))} + O(L/rf).
where the remainder term@(n—li).

Proof: To obtain an expansion of the variancel_(ﬁfzsj;xi) apply proposition 1 to the function
L?(Xs ; X;) using the fact that

LX) = 35[L2(1X)]
= 2(L'(1 %)% + 2L (1, X)L (1, ). (3.5)
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Then substituting the expansion lo(r)?sj , %) and using formula (3.5), proposition 1 and the formula
of conditional variance we obtain:

— 2
Var[L(Xs;; )] = Var[L (W X)] + %{E[(L’(M, Xi))?] +CouL (K, X), L" (X))} +O(1/nf).

To prove the above two propositions we use a series of lemmas that geatiamteate of the
remainder term. These lemmas are presented in the appendix.

We now present a theoretical example that verifies the approximatiorenpedsn propositions
land 2. B B

Example. Assume that (Xs,X) = (Xs; — X)?, the square error loss that is widely used. An
exact calculation of the expectation @fs, — X;)? produces

E{L(Xs.%)} =Var(Xs) +Var(X) = o+ 0—2.

N1
On the other hand, if proposition 3.1 is used, we obtain:
— 0?2 02
E[L(X§ X)) = EO§ —W?+ — = 0%+ —,
ny ny

and the two formulas coincide. Notice that in the case of square errothessecond derivative of
the loss, with respect {g is bounded. The terms of ordefr£ do not enter the formula as all higher
order than two derivatives of the quadratic loss are 0. Thus, the dppation formula agrees with
the exact computation.

We next turn to the variance formula. The exact computation is based oorthelé

VarlL(Xs;, )] = Es i{Varz[(Xs — %)?(S;,i]} +Vars i{Ez[(Xs —%)%S;,i]}. (3:6)
Using this formula we obtain the exact variance as
— 4g*  20*
VarlL(Xs, %) = 20* + — + —-. (3.7)
ni nl
Using the formula given in proposition 3.2 we obtain that the approximate \&rian
o 4g* 1
VarlL(j,i)] = 20*+ — + O(5). (3.8)
Ny nl
Comparing these two formulas we see that the variance approximation forneulfies all first
order terms.

The following proposition establishes the approximation formula for the @vee terms that
enter the computation of the variance of the cross validation estimators ofrtbeatjeation error.

Proposition 3.3 Let S, Sy be two training sets drawn independently and at random from the
data universeZy, and§;, 5)9 the corresponding test sets. Léte §,Xv € §j, D = §NS; and
Y =Card(D). Then, ifi #1i

va vl 02 ! 2 04 " 2 1
CovL(Xs;, Xi),L(Xs,, X)] = ?E(Y)(E[L (L, X%)]) —W(E[L (L, X)]) +O(?)-
1 1 7
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Ifi=V,
— _ 2
CoML(X6, X),L 0K, X0 = Var(L (X)) + - (ELI X)L (&)

2
- E[L(u,m]E[L"m,mm%E(Y)E[L’(M)}Z

ot 1
- 4—n%{EU- (M7><|)]}2+0(n—§)7

whereE(Y) is the expectation of the random variaWevith respect to its distribution.

This proposition indicates that the variability due to random sampling of the teps@tsS; is
quantified by the expectation of the random variable Card(S;NSy), j # J', J,J' € 1,2,---,J.
SinceS;, Sy are random sets o elementsy is such thamax0,2n; —n) <Y < ny.

An additional random variable that enters the variance estimator of the eatidation esti-
mator of the generalization error¥s' = Card(SfﬂSf,), the cardinality of the intersection of two
different test sets. The following two lemmas derive the distribution of thesgandom variables.

Lemma 3.1LetSj andSy be random sets of; distinct elements frord}' and lety = Card(S;NS)),
max0,2n; —n) <Y < n;. Then, the distribution of is
n\ /n—nNg
oty y - IG5
(nl)
a hypergeometric distribution.

Proof. We model the problem as the following<h table.

k11 2 3 n | Total
Sj 0 1 1 0 ny
Sj/ 1 0 1 0 nq
a a a -+ ap| 2m

In the table we indicate whether thih component o} is sampled into the training s& or Sy
by 1, otherwise we indicate it by 0. Denote &ythe sum of the indicators for tHeh component in
the populatiorzZ] overS; andS;.. Then

a1 +a+---+an=2m
0§a|§2 7i:l7"'an'

Now, P(Y =) is equivalent tdP(#{a; = 2}), i = 1,--- ,n. GivenY =Yy, the number of g = 1}

is 2n; — 2y and the number ofa = 0} is n—2n; +y. Since none of these three numbers could
be negative, we obtain the domain of Y msix0,2n; —n) <Y < n;. Recall also tha§;, S are
sampled independently and each containslements. GivelY =y, the distribution of the column
totals is fixed; that iy can only take the values 0,1 or 2. The number of different tables with the

same column totals is theff)) (,, ) (7, ")) and hence

oy - DEDED _BEY

(m) () (m)
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the hypergeometric distribution.

Lemma 3.2Let S; andS; be two training sets anﬁf ande/ are their corresponding test sets.
LetY* = Card(SfﬂSJ%), 0<Y*<n-—n;. Then

P(Y* _ Y) _ (y—nT—an) (nE;Piy) _ (nzniy) (nfn;:(nrfzfy)) '

(m) (n )

Proof. From the proof of lemma 3.P(Y* =y) = P(#{a = 0}), {i = 1,---,n}. Moreover,
Y* =n-2n;+Y. Then, the result follows.

Theorem 3.1 provides the estimator of the varianciaf. We first state the theorem.

Theorem 3.1.The variance of the estimator of the generalization €pjay is given as

" 1 . J-1 "
Var(2fy) = jVar(uj) + TCov(uj ),

where
2
Var(py) = VL)) + {EIL (1) + CoUL X)L (X))}
P10 ) o),
2 1
* 2 4
Coufy) = (1= ) [SEMEL X))~ o EL X020 )
* 2
+ —E(an )‘ Var(L (X)) + B XL (1) - ELX)ELL" (X))
2 , 4 " 1
+ EMEL X = Zo (EIL WX +0(5)].

wherep = EznX;, 02 = Varz (X).

The above formulas indicate clearly the dependencéan{i?{iy) on the first moment of the
random variable¥, Y*. Since the distribution of andY* is known, we can substitute(Y), E(Y*)
by their corresponding values and simplify the above expressionsuBedae distribution of, Y*

2 2
is hypergeometri€(Y) = = andE(Y*) = 2. Then
1. ro? a* 1
0 )

Cov(iy,fy) = (1-7) n(E[L'(H,Xi)])zf4—n%(E[|—”(u,Xa)])2+0(n—§

1 o? 7
+ - [Var(L(w X)) + T {COUL (X)L (X))

2
. %E[L’(u,xi)]z—%(E[L"(H%)])ZJFO(%)]-
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The final estimator of the variance f; is a plug-in estimator and it can be computed using
theorem (3.1). We need to replace the unknown population meard population variance?

by their estimators, the sample mean and sample variance respectively. Ibttagenvenient to
compute the sample variance and mean based on the data universe we mayec&mnand, if
there are many different training sets, take as an estimator of the sample)«nea}1zlexsj.
Moreover,6% = T{l 3%, (X — X )2, thus the variance estimate of the population variance will be
52 1<) A2

0°=337-107

Example. In the case of square error loss the approximations to the varianggasfd”the
Cov([yj, i) are given as:

. 1 40* 1 ot  40*
Var(fy) = n—ZVar[(Xi — W2+ P n—ZE[(Xi -4 - PR (3.9)
oo 1. 0% 140* of 2
Cov(f, fy) = (1- ﬁ)(_n_%) + H(T e +Var[(X — W) (3.10)

If the data are from &l(0,¢?) then the moment approximation estimator of the variangg{of

is given by
~4.2m+2)1  J—-1 2(n+2) 1
4 —_— — —

whered is the sample standard deviation. Thus the estimator of the varjgicis a multiple
of the sample variance and the multiplication factor indicates the dependettoe eftimator on
ni, np andn.

Variance estimator of the k-fold CV estimator of the generalizationerror.

Here we present a variance estimator of the k-fold cross validation estiwfatioe general-
ization error of a learning algorithm. Notice that this is a special case oféhe@rl. Ink-fold
cross validation the data universe is divided iktifferent non-overlapping test sets, each of which

containsy elements. The number of elemenis in any given training set, is them— § = (k_kl)”.
ThereforeY = Card(§NS;) = (kf)”. Theorem 3.1 gives the approximations:

0 k 0? k / 2 "

var(fy) = - Var(L(i X)) + - () EIL (1.X))%) +Cov(L (1. ), L" (1)) }]
n—ko? k , ) 2
+ o EL (X)) + 00/ ny),
and
TP _ 0'2k(k—2) / N\ 2 04 K 2 " N\ 2 1
COV(UJ’UJ’) - n (k—l)z(E[L (|J,X|)]) 4n2<k_1) (E[L (%Xi)]) +O<n%>

Therefore, the variance estimate can be computed using relation (3.1g\Weng;) andCou([y;, i)
are replaced by their estimates. These can be obtained by replacfdy their sample estimates
using data from the training sets.
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Now assume that the loss function used is square error. In thisIlcgges) = 2(u—X) and
L”(kx) = 2. The formulas then for the variance jof &nd the covariance between differgns
simplify as follows:

Var(@y) = Kvariq -7+ 200Ky, @.11)
4
Couy by) =~ T (2o i (3.12)

ThenVar(?fy) can be estimated by using formula (3.1) and replacihgndVar[(X — w)?] by the
sample variance and an appropriate sample estimatéafofX; — p)?). The final approximation of
the variance of?[l is then

1 3ko* 1 o* 3ko*
Ny =& 2 _ = T v
Var(nllJ'J) - n{Var[(X, U) ]}+ (k_l)nz nEle u) ] n + (k_l)nz
A simple estimator oE[(X; — p)4] can be computed from the training sample by taking the sample
version of the above expectatioiﬂ'{,ziesj (X — ij)"'. To illustrate, if we further assume a normal

population thewar[(X; — u)?] = 20* and the variance estimator $fy is given as

g4 3k
raar
whered is the sample standard deviation.

3.2 The Regression Case

The regression case is another case of fitting means. We consider égreolilem of estimat-
ing the variance of the cross validation estimator of the generalization Eftpin the case of
regression. Therefore the data are realizations of random varighl¥s, i = 1,2, --- ,n such that
E(Y;|X) = xT B. Notice that the explanatory variables here are treated as fixed; thislégionuis
known as the fixed design case. The vector of unknown paranfetenssually estimated by least
squares; denote [fythe least square estimatorf@fThen for a new observatidyi,x;) € S; denote
by Vis = X ng, wherefig,j indicates the estimator @ computed by using the data in the training
setS;. The loss functiort. is then dependent ons; andy;, that isL(Yi s;,Vi)-

To derive the estimator dfar(f?{ly) we need to use the moment approximation method to ob-
tain approximations for the moments of the stati§}ity. The idea is the same as in the case of
simple mean estimation. That is, the loss function is expanded with respect tatitarfjument
and evaluated at the poiB{(Y;|X;) = x| Bo, wherefy is the true parameter value. In other words, as
before, the expansion is evaluated at the true mean.

We list now the assumptions under which our theory holds.
Assumption 1.1f §j is a training set wittn; number of elements

.1
lim —(X§Xs) t=V

np—o0 nl
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whereV is finite and positive definite.
Assumption 2. Let x,x denote thekth row of the design matriXs. Then, for eachj =
17 27 e 7J7

T -1
max Xn,k(XeXs ) Xynk — O
1<ken; nlk( SI SJ ) nik

asng — oo,
Notice that this condition is known as the generalized Noether condition.
Under the above conditiongn; (Bs; — ) converges in distribution to(0, ¢°V) random vari-
able.

The following proposition establishes an approximation to the expectation loighé&inctiorL.

Proposition 3.4 Suppose that assumptions 1 and 2 hold. Then

2
E[L (515 ¥1)] = EILOG Bo. )] + SELL" (4 Bo,y)tr[(xix! ) (XE Xs) 72+ R,

where the remainder term is of orc@(n—lz), and the prime indicates derivative with respect to the
1
first argument of the loss function.

Proof: First expand.(Yi s;,Yi) with respect to the first argument to obtain:

L(is.yi) = LOBo.yi) + L' (' Bo,yi)X (Bs — Bo)
£ S0 Bo,)(Bs, —Bo) % (B —Bo) + R (3.13)

whereR, indicates the remainder term.
Now

E{L(Yis.¥i)} = Es.i{Ex[L(Vis,¥)IS;,i]}
= Es.i{Ez[L(4 Bo.Yi)IS;,i]} +Es i {Ezr[L' (X Bo,i)X' |Sj,i]Ez[(Bs, — Bo)[Sj. i]}

b SEs {EIL (4 Bo.y)IS; (7 [(Bs — Bo) xo{ (Bs, — Bo)lS. i}

But the expectatioEzQ[(fBSj —Bo)|S;,i] =0 becaus«EZ?([ASSj 1Sj,i) = Ezg(ﬁsj) = Bo. Also since the
distribution offs; is asymptoticaII)N(Bo,GZ(X;XSJ.)‘1), under assumptions 1 and 2 we obtain:

s, i{Ez7[(Bs —Bo) ' (Bs —Bo)IS;.il} = Ezl(Bs —Bo) %' (Bs —Bo)]
= cztr[(xm-T)(ngXs,-)_l]v

whereg? = Varz (%), the variance of the sample, an@Ay stands for the trace of the matrix A.
Therefore

2
E[L(515:91)) = EILOJ Bo.yi)] + S EIL" (4 Bo ) tr [0 (XE Xs) 4]+ R,
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where the expectations are taken with respect to the distribution of the dateeoktr,R, is of
order.
1

Proposition 3.5 establishes the approximation for the variantepg;, vi).

Proposition 3.5 Suppose that assumptions 1 and 2 hold. TWeriL (Y s;,yi)) can be approxi-
mated as follows:

Var{L(Yis.yi)} = VarlL(x Bo,yi)]} +0’tr[(xx")(X§ Xs )~ H{CoUL(X Bo, i),
L" (%' Bo.¥i)) + E[L' (X Bo,¥i)]*} + R,

whereg? = Varz(Yi[X) andR, is the remaining term of orden%.
1

Proof: The proof is similar with that of proposition 3.2, in that we apply proposition 3.4 to
L2(Yi.s.¥i) and we use the fact that

L2(9is.0)]" = 2L(is YL (Gis W) + 2L (is . vi)]%,
where prime indicates derivative with respect to the first argument of sseflmction.

Example. To verify the above approximations we Us@i s, Vi) = (Vi s; —yi)?, the square error
loss and the case of simple regression, that is

yi=a+bz+g=xB+s,

wherex! = (1,z), BT = (a,b) and(yi,x) € S. The notatiory/’s stands fox] Ps;.
The exact expectation &f(yi s, yi) = (X ﬁsj —vyi)?is given as:

EL(is.yi)] =0%+0° (XE Xs) .
The approximate expectation is
EL(is¥)] = 0% +0%r(xx (X§ Xs) ™),
Becausar (X (X§Xs) ™) = X (X§Xs) "X, the approximation to the expectation agrees with
the exact computation. Similarly we can verify that the approximation of thenagiproduces the
same result as the exact computation. To illustrate further the formulas assatye- N(x'B,02),
then the exact calculation gives the variancda(ﬁsj JYi)s
Var(L(¥is,¥i) = 20* + 40 (X§ Xs) % +20% (6 (X§ X)) %)
The approximation is given by
. _ 1
Var(L(Yis.y1) = 20% + 40! (X§Xs) 1% +O(n—§),

that is they agree up to first order terms.
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To complete the variance approximation of the estimgfiay we need an approximation of the
covariance betweeh(y; s;,yi) and L(yi,,sj,,yi,). The following proposition expresses the approxi-

mation ofCov(L (Vi 5;,¥), L(Yis,»¥ir))-

Proposition 3.5 Suppose that assumptions 1 and 2 hold. Therj térj’, j,j’ € {1,2,---,3}
wheni #£ i

COUL (S Y0, L s, W) = O2(EIL (] Bo.yi) )2 (XT X, ) (XTX0) (XT X, )0

T L O Byl (e JOXE X)X Xa) (KT X))

(X§Xs) H(XIX1)(XE,Xs,) 7).
Wheni =i’,
~ ~ 02 n
CoML(Yis, ), L(Firs, - ¥ir)) = Var(L(4 Bo,¥)) + > CovL( Bo,¥i),L" (% Bo,¥i))

(' (X§,Xs,) 7% X (X§ X))
+ OP(E[L'(% Bo, YDA (X, Xs, ) H(XIX1)(X§ Xs ) ™%

+ %4(E[L"(XiTBmYi)])ztr((ﬁxr)(xéjxsj)_1(XIX1)(X§1/XSV)_l(XiXiT)
(XE-XS; ) HXIX1)(XE,Xs,) )

+ _Var(L”(XI Bo,yi))X (X§Xs)™ 1XiX.-T(XEj,ij,)’lxi.
Proposition 3.6 LetS; be a training setj = 1,2,---,J. Then fori # i’
COML(Si.5.31), L(5i5,.yi1)) = OZ(EIL (x] Bo. )] 2tr [(xx) ) (XE Xs) Y]
+ 24( E[L" (% Bo, 1)) Ar [(67 ) (X§ X)) ™06 ) (X§ X)) Y.
The proofs of Proposition 3.5 and Proposition 3.6 can be found in App&hd
Remark: If the loss is square error,
CoML (Y15, %), L(Jr s 1)) = 20°tr [(x ) (XE Xs,) () ) (XE Xs,) - (3.14)
To estimate relationship (3.14) we only need to estintatéVe estimates by the residual mean

square error.
Under square error loss, we have

Var(fy) = 21{204+404x, (X$Xs) %} + = Z ;20 X (X§Xs) )%, (3.15)
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and

. 1Jies dies
Cou.y) = 'ei;éi',e'

(XIX1)(X§,Xs, )"0 ) (XS, Xs,) " H(XIX2) (X§ Xs) "M}

jEEﬁeﬁZVe
R =i
+20%r{ (xix' ) (X§Xs) H(XIX1)(X§, Xs, ) (xix)

(X, Xs,) HXIX1)(X§Xs) T} (3.16)

{20t {(xix ) (X5 Xs)

" (20* + a0 (XL Xs) LX) (X, Xs, ) H)x

The final estimate is obtained from relation (3.1) wheee({};) is estimated by using relation
(3.15),Cov(fyj, [1j) is estimated by using relation (3.16) and replaairidoy an estimator of it. To
obtain an estimator as?, we fit the regression model and obtgjn Thend? is the sample variance
of the errorsg; = y; — ¥, that is the residual mean square.

Remark: Note that to derive the results above, we used as the distribution of thehdata
conditional distribution ofY given X, in effect treatingX as fixed. Now, assume that instead of
using the conditional distribution as the data distribution, we teeas random and use the joint
distribution of (X,Y). In this case, the data distribution is

f(x,y) = gy —x"BIx)k(x)

whereg(-) is the distribution of the errors atd-) is the distribution of thes. We can then derive the
formulas expressing the expectation, variance and covariance ternsseheeded using the joint
distribution of(X,Y). For exampleE (B) = Ex v)[(XTX) " 1XTY] = Ex{Eyx [(XTX) 1XTY|X]} =

Bo, is still unbiased, an¥ar(B) = Ex{Var (B|X)} + Varx{Ey(B|X)} = 02Ex[(X"X)"1]. Other
adjustments that take into account the distributiorXadre needed. These mainly concentrate on
taking expectations, ové{, of terms that are functions of thés, and can be easily computed from
the data by using bootstrap. As an illustration, under square error lesgrthula in proposition
3.4 becomeg|[L(Yi s, ¥i)] = 02+ 0?Ex[tr[(xx' ) (X§ Xs) "]], whereo? is the variance of the error
distribution.

4. Simulation Experiments.

We present here simulation experiments that illustrate the performance abti@spd estimators;
moreover, we compare these estimators with the estimator proposed by Nawdieengio (2003).
The simulation experiments compare the proposed estimators with the Nadeaergial &stimator
under two different error losses, the square error and the absolatdass.

4.1 Square Error Loss

We will first describe the experimental setup for the simple mean case.

We generated data sets of size- 100 from aN(0, 1) distribution in S-plus. For each different
sizeny of the training se; we randomly seleat; data points from the availabteand uses?, the
complement of5; with respect to the generated data universe that contains 100 data psiat®st
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set. We taked to be 15 (as recommended by Nadeau and Bengio, 2003), and 50. Wthpaoted
Srzl e 121 (B — p,]) and the estimator of the variance of the generalization error, given as
G+,
We also computed the moment approximation estimator given by expressionar(@.&.10).
Notice that we estimate? by using the sample variance, thatd,= -1 s, (X — X)2. We also
computed the variance estimatorgfiy using expression,

11 140* J-11 40* o* 1. 04

jn—zvar(xiz)JrjﬁJrT =(— — 5 +Var(X?) — (1—ﬁ)ﬁ}

The population variance? is estimated by using the sample variance averaged over 100 differ-
ent data sets. The terwar(X?) is estimated as foIIows Let = )(12 i=12,- n We created
a new data universe usirty and estimat&/ ar(Z;) = = 1 s 1(Z —Z)?, whereZ = = Lsn 7, over
100 different data sets.

Table 1 presents the results of the simulation. The first column of the tablesghevgize of
the test set. The second column reports the value of the Nadeau and Bstigiator, while the
third column reports its variance. The variance is computed by simply takingthpls variance
of the estimator that was computed over the 100 independent data sets.oufttedolumn of
the table reports the value of the moment approximation estimator of the varifitice oross
validation estimator of the generalization error, while the fifth column reportsdhgle variance
of the moment approximation estimator.

n, NB var(NB) MA | var(MA)
10 | 0.0316| 0.000310| 0.0328| 7.75e-06
15| 0.0265| 0.000241| 0.0282| 5.34e-05
20| 0.0250| 0.000179| 0.0259| 4.50e-05
251 0.0235| 0.000213| 0.0245| 4.03e-05
30| 0.0238| 0.000145| 0.0236| 3.73e-05
35| 0.0227| 0.000175| 0.0229| 3.52e-05
40 | 0.0235| 0.000188| 0.0224 | 3.36e-05
45| 0.0227| 0.000122| 0.0219| 3.23e-05
50 | 0.0246| 0.000236| 0.0216| 3.13e-05

Table 1: Simple mean case n=100, J=15. Nadeau-Bengio (NB) and moppgokination (MA)
estimators of the variance of the cross validation estimator of the generalizatiznand
their sample variances] = 15, and the results are averages over 100 independent data
sets. The size of the data universe is 100.

We notice that the variance of the moment approximation estimator is at leastdeme@bmag-
nitude smaller than the variance of the Nadeau- Bengio estimator, therebgsimg the accuracy
of the moment estimator.

Figure 1 plots the values of the Nadeau-Bengio and moment approximation testfmiée
variance versus the sample size of the test set. Notice that the curvepmrdéng to the moment
approximation is smooth. This is in contrast to the behavior of the Nadeagidestimator, which
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Figure 1: Simple mean case n=100, J=15

seems to fluctuate (this also is indicated by the value of the sample varianceats$avith the
estimator and reported in table 1.)

ny NB var(NB) | MA | var(MA)
10 | 0.0235| 1.24e-04| 0.0241| 7.75e-06
15| 0.0212| 8.77e-05| 0.0227| 3.47e-05
20 | 0.0211]| 6.27e-05| 0.0220| 3.26e-05
25| 0.0204| 7.50e-05| 0.0216| 3.13e-05
30 | 0.0206| 7.28e-05| 0.0213| 3.05e-05
35| 0.0203| 6.79e-05| 0.0211| 2.98e-05
40 | 0.0204 | 7.94e-05| 0.0209| 2.93e-05
45| 0.0213| 8.08e-05| 0.0207 | 2.88e-05
50 | 0.0206| 6.43e-05| 0.0206| 2.84e-05

Table 2: Simple mean case n=100, J=50. Moment approximation (MA) andayaBengio (NB)
estimators of the variance the cross validation estimator of the generalizatisraed
their sample variances] = 50, and the results are averages over 100 independent data
sets. The size of the data universe is 100.
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Table 2 presents the variance estimates of the CV estimators of the genenmaleabiowhen
J =50. In this case we notice that the variance of the moment approximation estisabout half
of the variance of the Nadeau-Bengio estimator.

0.024
1

0.023
1

0.022
1

0.021
1

T T T T T
10 20 30 40 50

size of the test set

Figure 2: Simple mean case n=100, J=50

Figure 2 shows a plot of Nadeau-Bengio and moment approximation estimate\afriance as
a function of the size of the test set. The larger variance of the Nadeagi@estimator that was
reported in table 2 can also be seen again in Figure 2.

Table 3 presents the values of the two variance estimators as well as tlegicearvhen the data
universe has size= 1000, for the cas&= 15 andJ = 50. We notice that the performance, in terms
of variance, of the moment approximation estimator is, in both cases, sufgetier performance
of the Nadeau-Bengio estimator, always having variance that is smallethéa&B variance by one
order of magnitude.

To address the problem of bias we computed the exact (and theoretiked)ofehe variance
estimator of?{y. Therefore, we computed, using formula (3Mar(12fy) under square error loss
and under the assumption of\g0, 1) distribution. The distributional assumption is used to obtain
the theoretical value. This is done only for the purpose of comparison amrdém to allow a bias
computation to be carried out without having to estimate higher order momenfgadtice, the
distribution of the population from which the data arise is not known, andehiglder moments
need to be estimated from the data.

The exact theoretical value War({y;) is
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N

NB

var(NB)

MA

var(MA)

J=15

100
150
200
250
300
350
400
450
500

0.00319
0.00291
0.00252
0.00244
0.00240
0.00214
0.00232
0.00217
0.00206

1.61e-06
1.22e-06
9.62e-07
8.21e-07
9.02e-07
9.27e-07
7.21e-07
5.70e-07
8.24e-07

0.00319
0.00275
0.00253
0.00239
0.00230
0.00224
0.00219
0.00216
0.00213

7.75e-06
5.42e-08
4.58e-08
4.11e-08
3.81e-08
3.60e-08
3.45e-08
3.33e-08
3.24e-08

J=50

100
150
200
250
300
350
400
450
500

0.00241
0.00225
0.00225
0.00216
0.00213
0.00216
0.00211
0.00218
0.00206

3.20e-07
2.82e-07
3.68e-07
2.43e-07
1.96e-07
2.83e-07
2.70e-07
2.36e-07
2.18e-07

0.00235
0.00222
0.00215
0.00211
0.00209
0.00207
0.00205
0.00204
0.00203

5.90e-08
3.54e-08
3.33e-08
3.21e-08
3.12e-08
3.07e-08
3.02e-08
2.99e-08
2.96e-08

Table 3: Simple mean case n=1000, J=15 and J=50. Moment approximatinaih Nadeau-
Bengio (NB) estimators of the variance of the cross validation estimator okthergliza-
tion error under random selection, and their sample variances. The fiiwedata universe
isn= 1000 and] = 15 and 50.

Using theorem 3.1 the approximation to the valu¥af(f};) is

2
— 4+ 0O(
Ny

ks

Var({y))
ng

)}

2
—{1
nz{ +
The same theorem provides the approximatioB@a®({y;, i) as follows:

1

2 2
Cov({j,fy) = =(1+ =) +0(=)-
1H n n ng

The exact theoretical computation of the covariance provides us with timeifa

A 2 2
Cov(i, fiy) = ﬁ(l‘f‘ ﬁ)*‘

2.1 1
()

1 N n
Using these expressions we computed the exact value of the variaffife ér the square error
loss. This computation allows us to get a sense of the bias of the moment iapgtion and
Nadeau-Bengio estimators. Table 4 presents the results for the casetiviaeiata universe is 100
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n, | Exact Variance| Bias of MA estimator| Bias of NB estimator
10 0.0327 0.0001 -0.0011
15 0.0282 0 -0.0017
20 0.0259 0 -0.0009
25 0.0246 -0.0001 -0.0011
30 0.0237 -0.0001 0.0001
35 0.0232 -0.0003 -0.0005
40 0.0227 -0.0003 0.0008
45 0.0223 -0.0004 0.0004
50 0.0222 -0.0006 0.0024

Table 4: Bias of MA and NB estimators. Bias of MA of NB estimators for the addbe simple
mean. The data universe has size 100, J=15. The bias is calculatedeapeistation of
the estimator minus the exact value.

andJ = 15. We observe that the moment approximation estimator has a very smalldnisistently
smaller than the bias of the Nadeau-Bengio estimator. Notice that when thefsilzedraining and
test sets are equaty(= n, = 50) the bias of the Nadeau-Bengio estimator is four times higher, in
absolute value, than that of the moment approximation estimator.

At this point, we remind the reader that the Nadeau-Bengio estimator giverbing generally
applicable. The proposed estimators take advantage of information abaldtdnand the learning
algorithm. Hence, it is not completely surprising that they perform betterttimhadeau Bengio
estimator in terms of variance and bias.

For comparison reasons, after a referee’s suggestion, we competsddbnd estimator pro-
posed by Nadeau and Bengio(2003) and given by (2.6). Table Brgsethe values of the estima-
tors of the variance given by (2.5) and (2.6) and the moment approximagiimnator. Expressions
(3.9) and (3.10) were used to obtain the needed variance and coestgants. The size of the data
universe is 50, 100, 500 and 1000, the size of the test set is taken @ 86,1100 and 200 and J
is either 15 or 50. ¢ From table 5 we see that the estimator given by (2.6) &licdaservative; its
value is almost twice as big as the value of either the cheap to compute NadkBeragio esti-
mator given by (2.5) and the moment approximation estimator. It is interestindite rioat, when
the training set size is the same with the training set size used to compute (2 Heamdment
approximation estimator, the value of (2.6) is comparable to the value of thetath@stimators.
This observation indicates the importance of the size of the training set in theutation of the
variance of the cross-validation estimators of the generalization error.

To exemplify the fact that the framework we propose allows one to computatlace estima-
tor of the k-fold cross validation estimator of the generalization error we atedpthe variance of
leave-one-out cross validation (LOOCYV) estimator of the generalization, éne 4-fold, the 5-fold
and the 10-fold in the case of square error loss and when the datassna@nsisted of 100 data
points generated from a N(0,1) distribution. The case was prediction ofesimgian. We did the
same when the data universe consisted of 1000 normal data points. Tabke6ts the moment ap-
proximation variance estimators together with their variance and the condisgd\B estimators.
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Sample Size Training Set Siz¢ J NB MA | NB(Conserv.)
50 10 15| 0.0539| 0.0537 0.0988
100 10 15| 0.0314| 0.0328 0.0542
50 20 15| 0.0458| 0.0462 0.1213
100 20 15| 0.0257| 0.0259 0.0456
50 10 50 | 0.0443| 0.0456 0.0836
100 10 50 | 0.0236| 0.0241 0.0420
50 20 50 | 0.0421| 0.0430 0.1131
100 20 50 | 0.0218| 0.0220 0.0467
500 100 15| 0.0052| 0.0051 0.0081
1000 100 15| 0.0032| 0.0032 0.0050
500 200 15 | 0.0044| 0.0044 0.0082
1000 200 15| 0.0025| 0.0025 0.0041
500 100 50 | 0.0044| 0.0043 0.0078
1000 100 50 | 0.0023| 0.0023 0.0040
500 200 50 | 0.0042| 0.0041 0.0081
1000 200 50 | 0.0022| 0.0022 0.0040

Table 5: Comparison among three estimators. Values of NB, MA and thergatise NB estimates
for the case of the simple mean. The universe sample size is 50, 100,Q0GMH

k-fold MA Variance NB Variance
4-fold | 0.02096| 0.00003302 0.0417 | 0.001262
n=100 | 5-fold | 0.02093| 0.00003293 0.04516| 0.0009909
10-fold | 0.02089| 0.0000328 | 0.04426| 0.0005567
LOOCV | 0.02086| 0.0000327| 0.04141| 0.0002177
4-fold 0.002 3.02E-08 | 0.00423| 1.308E-05
n=1000| 5-fold 0.002 3.02E-08 | 0.00412| 8.60E-06
10-fold | 0.002 3.02E-08 | 0.00405| 3.74E-06
LOOCV | 0.002 3.02E-08 | 0.00398| 2.00E-07

Table 6: Variance estimators for k-fold CV. Moment approximation and BHad&gengio variance
estimators for k-fold cross-validation estimators of the generalization anatheir vari-
ances.

When the data universe is 100 the 4-fold cross validation divides it intandomerlapping test
sets each containing 25 data points. Similarly, we define 5-fold and 10-dskeksc We notice that
the variance estimation of LOOCYV is not appreciably better than that of the othes validation
estimators. In fact, the slight advantage of the LOOCV diminishes when theidiaterse is large
and the size of the test set becomes large. For illustration purposes senjptiee NB estimator
and its variance. The value of the NB estimator is twice as large as the value afidment
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approximation estimator. However, note that Nadeau and Bengio (2003)tddiscuss the case
of k-fold cross validation.

K MSE Var Bias
4 | 0.02123| 0.02098| 0.002283
10 | 0.02099| 0.02091| 0.002224

Table 7: Comparison between 10-fold and 4-fold Cross Validation Unitiepl& Mean Case. MA
estimator is used to estimate the variance of the cross -validation estimator ohtralge
ization error. The results reported in the table are averages over I&@dtfdata sets.

To understand the effect of the loss function in the performance of theodgethe used the
mean squared error (MSE) to compare the estimators as well as their earifalole 7 presents
the values of the MSE and the variance, as well as the bias for the 4-folticafold estimators of
variance for the simple mean case. We see that the reduction in varianeehehe 4-fold and 10-
fold CV variance estimator is not appreciably different. This differencaase pronounced when
the corresponding MSE are compared. Overall it appears that theld @rbss validation differs
from the 4-fold cross validation an order of magnitude less when the cisopdretween the two
is made on the basis of variance than when the comparison is made on the MSE.o

4.2 Absolute Error Loss

The previous theory was developed for loss functions that are diffatde. One loss that is not
differentiable at the mean is the absolute error loss. However, we artoapely the above theory
in the case of the absolute error loss because we can replgceX;| by the equivalent function

()?gj —X)2+d, whered is a small positive number. The functi({)(‘b?sj — X;)?+d]¥/? replaces

the absolute error loss and is differentiable everywhere. Wedus«% and n—12 and computed the
Nadeau-Bengio estimate and the moment approximation estimate for the sizeslafathmiverse
of 100 and 500. Notice that the Nadeau-Bengio estimate was computed (s#gdx ) = [X — Xs |,
while the moment approximation estimator uses the loss funtiig, %) = [(X — Xs )2+ d]*/2,
which is almost the same with the absolute error loss. We generate data Ko distribution

in S-plus and used = 15.

Table 8 shows the values of the Nadeau-Bengio and moment approximdtinatess together
with their sample variances. Notice that= % was used in the first computation of the moment
approximation estimator, whereis the size of the data universe, athe- n—lz wheren; is the size
of the test set was used in the second computation. The table reports ttesidtee averaged over
100 different data sets.

The first observation we make is that the effeall @in the moment approximation estimator and
its sample variance is almost undetectable, as the values of the estimator amadpits wariance
(averaged over 100 different data sets) do not change with d ﬁeingg. Secondly, we see that the
variance of the Nadeau-Bengio estimator is larger than the variance of themhapproximation
estimator by one order of magnitude.
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ny NB estimator| var(NB) | MA estimator | var(MA)
d=1
100 | 00287 |1.16e-04] 00293 | 1.43e-05
15 0.0271 1.25e-04 0.0252 1.06e-05
20 0.0256 7.93e-05 0.0231 8.93e-06
25 0.0224 7.72e-05 0.0219 7.98e-06
30 0.0218 8.77e-05 0.0210 7.36e-06
35 0.0207 7.53e-05 0.0204 6.92e-06
40 0.0208 6.52e-05 0.0199 6.58e-06
45 0.0191 6.14e-05 0.0194 6.30e-06
50 0.0205 | 7.07e-05| 0.0191 | 6.06e-06
1
n
10 | 00287 |1.16e-04] 00291 | 1.43e-05
15 0.0271 1.25e-04 0.0251 1.06e-05
20 0.0256 7.93e-05 0.0231 8.92e-06
25 0.0224 7.72e-05 0.0218 7.97e-06
30 0.0218 8.77e-05 0.0210 7.36e-06
35 0.0207 7.53e-05 0.0204 6.91e-06
40 0.0208 6.52e-05 0.0199 6.58e-06
45 0.0191 6.14e-05 0.0194 6.30e-06
50 0.0205 7.07e-05 0.0191 6.06e-06

Table 8: Absolute Error Loss Case n=100, J=15. Nadeau-BengipghdBmoment approximation
(MA) estimators and their corresponding variance estimates. Data are) M(@3=15.
The loss function is absolute error.

Table 9 presents the Nadeau-Bengio and moment approximation estimatoosiibie value of
J = 50. Notice that, in contrast with the square error loss case, the NadsagieBestimator has a
higher variance than the moment approximation estimator. Its variance is stitl@nad magnitude
higher than the variance of the moment approximation estimator.

Table 10 presents the two estimators and their corresponding sample ganigimen the size of
the data universe is 500. The population is still N(0,5) drd 1/n. Notice that forJ = 15 the NB
estimate has larger, by two orders of magnitude, variance than the momemtiagation estimator,
while J = 50 it still maintains a larger than the moment approximation estimator variance, @ly th
time by one order of magnitude.

4.3 Regression

In the regression case the data generation was done as follows. Théadogeed was simple
regression, that ig = o +Bx; + ¢, 1 =1,2,--- ,n, whereg; are independent, mean 0 and variance 1,
normal random variables. The parameierf were set to equal 2 and 3 respectively. The explana-
tory variable was generated from a uniform distribution with range [0 Ridjlly, we generated the
errors from a N(0,1) distribution angl=2+3x + ¢, i =1,2,--- ,100. We generated 100 different
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ny NB var(NB) | MA | var(MA)

Sk

10 | 0.0208| 3.18e-05| 0.0216| 7.77e-06
15 | 0.0209| 2.48e-05| 0.0203| 6.89e-06
20 | 0.0206| 2.92e-05| 0.0197| 6.46e-06
25 | 0.0189]| 2.30e-05| 0.0193| 6.19e-06
30 | 0.0199| 2.41e-05| 0.0190| 6.00e-06
35 | 0.0191| 2.45e-05| 0.0187| 5.86e-06
40 | 0.0192| 2.49e-05| 0.0185| 5.73e-06
45 | 0.0188| 3.16e-05| 0.0184| 5.61e-06
50 | 0.0195| 2.56e-05| 0.0182| 5.50e-06

10 | 0.0208| 3.18e-05| 0.0214| 7.75e-06
15 | 0.0209| 2.48e-05| 0.0202| 6.88e-06
20 | 0.0206| 2.92e-05| 0.0196| 6.45e-06
25 | 0.0189| 2.30e-05| 0.0192| 6.19e-06
30 | 0.0199| 2.41e-05| 0.0190| 6.00e-06
35 | 0.0191| 2.45e-05| 0.0187| 5.86e-06
40 | 0.0192| 2.49e-05| 0.0185| 5.73e-06
45 | 0.0188| 3.16e-05| 0.0183| 5.61e-06
50 | 0.0195| 2.56e-05| 0.0182| 5.50e-06

Table 9: Absolute Error Loss Case n=100, J=50. Nadeau-BengipgdNBmoment approximation
(MA) estimators and their sample variance. DataM{®,5) and J=50. The loss function
is absolute error.

data sets; for each data set, and for each value,ai; we computed the Nadeau-Bengio and the
moment approximation estimator and then average those over the 100 diffateisets.

Tables 11 and 12 present the two estimators together with their corresp@aaiiple variances
and for values of J equal to 15 and 50. Notice that the moment approximatioraéor has variance
that is at least one order of magnitude smaller than the variance of N&d#sayie estimator.

Table 13 computes the NB and moment approximation variance estimators oh#éralgeation
error when the size of the data universe is 500. We see that the momeaoxiapgtion estimator
still maintains a variance of an order of magnitude lower than the NB estimator.

We also computed the variance estimators for k-fold cross validation estinwdittivs gener-
alization error in the regression case. Table 14 shows the value of the mapprokimation and
Nadeau-Bengio estimator and their sample variances computed over ¥i@rifflata sets of size
100.

Again, the advantage of LOOCYV in this case is questionable. Moreowem ghe fact that 4-
fold cross validation saves a lot of computing time it seems to be preferable foegsll that 4-fold
CV assigns 25% of the data points in the test set).
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n, NB var(NB) MA var(MA)
J=15

50 0.00651 | 8.31e-06| 0.00588| 1.09e-07
75 0.00527 | 3.19e-06| 0.00506| 8.04e-08
100 | 0.00455 | 3.23e-06| 0.00465| 6.79e-08
125 | 0.00459 | 2.62e-06| 0.00440| 6.09e-08
150 | 0.00428 | 3.10e-06| 0.00424| 5.64e-08
175 | 0.00420 | 2.55e-06| 0.00412| 5.33e-08
200 | 0.003971| 2.41e-06| 0.00403| 5.10e-08
225 | 0.00390 | 1.83e-06| 0.00396| 4.92e-08
250 | 0.00361 | 2.03e-06| 0.00390| 4.78e-08
J=50

50 0.00456 | 1.05e-06| 0.00433| 5.90e-08
75 0.00402 | 6.61e-07| 0.00409| 5.25e-08
100 | 0.00406 | 9.03e-07| 0.00396| 4.93e-08
125 | 0.00404 | 7.45e-07| 0.00389| 4.75e-08
150 | 0.00396 | 7.16e-07| 0.00384| 4.62e-08
175 | 0.00388 | 8.07e-07| 0.00380| 4.54e-08
200 | 0.00377 | 5.23e-07| 0.00377| 4.47e-08
225 | 0.00377 | 5.67e-07| 0.00375| 4.41e-08
250 | 0.00365 | 6.26e-07| 0.00373| 4.36e-08

Table 10: Absolute Error Loss Case n=50G: % Nadeau-Bengio (NB) and moment approxima-
tion (MA) estimators and their sample variance. The size of the data uniges86.

4.4 Classification

In this section we briefly indicate how these results can possibly be extéaded classification
case. We present some ideas that appear promising in treating this casesaptimited simulation
experiment in the simplest case, where the prediction rule is based on theofribariraining set.
The results presented here are promising; however, we would like t@ shraisa more detailed
study than the one presented here, is required to understand thevgeréer of these methods in
classification.

Recall that a central requirement on the loss function is to be differentikllee classification
case the loss function is an indicator function and hence it is discontint@une goint. The idea
is to replace the discontinuous function by a continuous, differentiabti@umthat is close to the
original loss function. We approximate therefore the indicator function pglgnomial of order
3. Let the data béx;,g), i = 1,---,n, wherex; indicates the data value, agdindicates the group
membership. Assume that there are only two groups in the populationgthet if x; belongs in
group 1 andy = 2 if x; belongs in group 2. Moreover, assume that group 1 has smaller mean than
group 2. The prediction rule we use states thgjf— X, > 0 thenX, belongs in group 1, otherwise
it belongs in group 2. Thereforgy IS either 1 or 2 depending on wheth&g — X is greater than O
or less than or equal to 0. The loss function is th@p # 0).
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n, NB var(NB) MA | var(MA)
10 | 0.0327| 0.000493| 0.0326| 1.14e-04
15| 0.0293| 0.000366| 0.0284| 8.44e-05
20 | 0.0259| 0.000184| 0.0260| 7.21e-05
25| 0.0242| 0.000199| 0.0247| 6.29e-05
30| 0.0235| 0.000168| 0.0238| 5.74e-05
35| 0.0226| 0.000176| 0.0232| 5.66e-05
40 | 0.0235| 0.000144| 0.0227| 5.35e-05
45| 0.0249| 0.000255| 0.0223| 5.16e-05
50 | 0.0233| 0.000142| 0.0221| 5.06e-05

Table 11: Regression case n=100, J=15. Moment approximation (VlANadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generaligatiwrand
their sample variances in the regression case. The valdesoi5, and the results are
averages over 100 independent data sets. The size of the dataseans/&00.

0.030 0.032
1

0.028
1

0.026
1

0.024
1

0.022
1

T T T T T
10 20 30 40 50

size of the test set

Figure 3: Regression case n=100, J=15

We can write this loss function as a functionzf= xs, — Xk, & = I (gk = 1) and two continuous
differentiable functions.,; andLy,. Thus

I (9 # Gk) = Oklke + (1—&)Lk2,
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17

NB

var(NB)

MA

var(MA)

10
15
20
25
30
35
40
45
50

0.0253
0.0233
0.0228
0.0223
0.0219
0.0222
0.0215
0.0231
0.0231

1.84e-04
1.29e-04
1.24e-04
1.15e-04
1.07e-04
1.10e-04
1.00e-04
1.31e-04
9.56e-05

0.0242
0.0229
0.0222
0.0218
0.0215
0.0213
0.0212
0.0211
0.0210

6.00e-05
5.41e-05
5.06e-05
4.92e-05
4.79e-05
4.70e-05
4.63e-05
4.60e-05
4.54e-05

Table 12: Regression case n=100, J=50. Moment approximation (VlANadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generaligatiwrand
their sample variances in the regression case. The valdes050, and the results are
averages over 100 independent data sets. The size of the dataseans/&00.

n2

NB

var(NB)

MA

var(MA)

50
75
100
125
150
175
200

0.00653
0.00563
0.00498
0.00470
0.00495
0.00469
0.00450

7.64e-06
4.80e-06
4.10e-06
3.86e-06
4.35e-06
3.57e-06
2.42e-06

0.00643
0.00555
0.00511
0.00483
0.00464
0.00452
0.00443

8.94e-07
6.71e-07
5.92e-07
5.02e-07
4.54e-07
4.32e-07
4.16e-07

Table 13: Regression case n=500, J=15. Moment approximation (MiANadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generalizatiorand
their sample variances in the regression case. The valddsol5, and the results are
averages over 100 independent data sets. The size of the dataseans/s00.

where
1 ,Z < —h
tu=1{ BF&+p& ,~h<z<0
0 % >0
0 ,Zk <0
te={ —3Z+p% ,0<z<h
1 ,Z > h

The needed terms then can be easily computed. For example, we can corpastaton of
the above loss function as

E{E(dLk1+ (1—&)Lk2|0k)} = P(&k = 1)E(Lk1|dk = 1) + P(& = 0)E(Lk2|0k = O)
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Figure 4: Regression case n=100, J=50

k-fold MA Variance NB Variance
4-fold | 0.02132| 0.0000357| 0.04854| 0.00227
5-fold | 0.02135| 0.0000358| 0.04634| 0.00121
10-fold | 0.02138| 0.0000359| 0.04493| 0.00062
LOOCYV | 0.02139| 0.0000359| 0.04323| 0.00023

Table 14: Variance estimators in regression. Variance estimators of k+fudd-validation estima-
tor of the generalization error and their sample variances, in regression.

and the term®(8« = 1), P(d = 0) are computed from the data. Similarly, we can compute from
the data all terms that involve variance and covariance terms.

Table 15 presents the results obtained from a small scale simulation. Dataemeratgd in
Splusfrom two groups of normal distributions; these wé&t€3, 1) andN(1,1). Group membership
is assigned by generating a Bernoulli(0.6) random variable. If the vatles@btained then the data
point is generated fromId(1, 1) distribution, otherwise it is generated fronN&3, 1). The training
set used 80% of the available data points. For example, wheR00 the training set contains 160
elements and thus = 40. The value ohin constructing thé1, Ly, functions was taken to be 0.1.

Table 15 shows the moment approximation variance estimator and NB estimata@rifaus
values of the data universe. For illustration reasons we present tresvafithe MA estimator for
both cases when normality is assumed and when is not. We see that the moprerinagtion
estimator (computed without any distributional assumption) is very competitive.

1155



MARKATOU, TIAN, BISWAS AND HRIPCSAK

Table 15: Simple Classification Example
n MA.Free MA.Normal NB
200 0.0008355 | 0.0008275 | 0.0009240
2000 | 0.00008593| 0.00008273| 0.00010028
20000 | 0.000008603 0.000008299 0.000008815

Table 15. Moment approximation (MA) and Nadeau-Bengio (NB) estirsatbthe variance
of the cross validation estimator of the generalization error and their sarapénces in the
simple classification case. The valuebfs 15, MA.Free denote the MA estimator without
distribution assumption and MA.Normal denote the MA estimator under alodistribution.
The results are averages over 100 independent data sets. 80tpdrties data are used as
training data; h used here is 0.1

5. Discussion and Conclusion

We presented a method for deriving variance estimators of the crosstialidstimator of the
generalization error in the cases of smooth loss functions and the absoart®ss. The approx-
imation we propose illustrates clearly the role of the training and test sets intthatasn of the

variance of the generalization error. We also provide a unifying framewmder which we can
obtain variance estimators of the estimators of the generalization errortfgrdmmplete random
sampling and non-random test set selection.

We compared the moment approximation estimators with an estimator proposeddsuNand
Bengio (2003). The results indicate that the moment approximation estimatféosnpéetter in
terms of both, variance and bias, than the Nadeau and Bengio (2003)testilttee new estimators
use additional information from both the data and the learning algorithm. Ortllee loand, the
Nadeau and Bengio estimator is computationally simpler than the moment approxiestioa-
tor for general loss functions, as it does not require the computatioreafdtivatives of the loss
function. In the case of non-random test set selection, the NadeaagieBestimator is not appro-
priate to use. The moment approximation estimator in this case is a reasonabldéogstimlacan
be computed. It is interesting to notice that the results indicate against use Iefatre-one-out
cross validation (LOOCYV). Its slight advantage is terms of variance, theeother forms of cross-
validation quickly diminishes as the size of the universe, and hence thefdlze test set of other
cross validation schemes increases. Overall, a test set that use 258mohttable data seems to
be a reasonable compromise in selecting among the various forms of k-dskelalidation.

We presented results for general differential loss functions andokwlate error loss. We also
indicated possible extensions of this methodology to the classification probtkdisassed briefly
a very simple version of the classification problem. An extensive study optbldem will be the
subject of a different paper. Finally, we would like to indicate here thatrtbthods presented here
can similarly apply to SVM loss function as well as the kernel regression.
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Appendix A.

Here we present a series of lemmas that guarantee that the remainder teenapproximations
for the case of sample mean.

Before we state these we need the following definitions.

Definition 1. Let (Q, ¥, P) be a probability space. We say that a random varibelongs in
the £, space ifE|X|P < «, p> 0.

Definition 2. A sequence of random numbdRg is said to beD(1/ky) if 3 M andng such that
[knRn| < M, ¥Vn > n, or, equivalentlyksR; is bounded.

Lemma A.1 Let X, Y be independent random variables atd-Y € £, for somer € (0, ).
ThenX € L; andY € ;.
Proof. For a largerg > 0, VA > Ag

A
PIX|>A) < 2P(X| >, I¥]<3)

A
< 2P(IX+Y]| > E)’

If E|X|" < +oo, thenE|X| = / P[X|" > AJdA. Hence, ifX +Y € £; ,
0

/ P(IX[ > ) :/ P(IX| > AT)dA
A>Ao A>Ao

1

AT
< 2/ PIX Y| > 20 )dA
A>Ao 2

A
= 2 P(X+Y| > )d)\<oo.
A>Ao
Thus,E|X|" < . The proof forE|Y|" < « is similar.
Lemma A.21f0 <r’ < randE[X|" < w, thenE|X|" < c.

Proof. Write
(EX|")T <E(IX[")" = EX|" < w,

and the proof is obtained by Jensen’s inequality.

_ - 12

Lemma A.3If E|Xy|P < o, thenE|X;|P < 4+, wherep € Z1, andX, = n ZlXi is the sample
mean. = B

Proof. We will use transfinite induction. Far= 1 andn = 2, it is trivial sinceX, = X;. For
n=2, %X = %(X1+X2) and use lemma 1 to obtain the result, relying on the fact Xha, are

identically distributed. Suppose now that foK k— 1 the result holds. We will prove it true for
n= k. Write

?TIH

E(1XdP) = lelp leﬁ'xk )IP).
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Thus 1 1
ED@“)::E‘E)&%__WZ_)k_ﬂp’
and using lemma 1, we obtalf(|X|) < .
LemmaA.4Letn > 2k anday,ay,- - ,a, be such that

ar+a+--+an =2k (1)
acZa=>0a#1

a1+3-2++an:2k_1 (2)
gecZa>0a+#1

Then the number of solutions for (1) and (2), denoted\p§2k) and A,(2k — 1) respectively,
satisfyAn(2k) = O(nK), andA,(2k — 1) = O(nk~1) .
Proof. The maximal order of thé,(2k) comes from theg/(2,---,2),(0,---,0)}, where(2,---,2)

is a k-tuple. There aréﬂ) solutions for (1) of this form. The order @(n*), because

(n> _ -1kt 5

k ki

The maximal order of thé\,(2k — 1) comes from the((2,---,2,3),(0,---,0)}, where the k-
tuple(2,2,---,2,3) hask— 1 elements equal to 2. There %ﬁi 1
The order iSO(n1) because

n nn—1)---(n—k+2) _
(k_£>: (k—1)! = 0.

) solutions of (2) of this form.

Lemma A.5 Let X;,Xp,---, X, be independent identically distributed random variables with
E(X) =W andk is a positive integer. TheB(X — )& andE(X — W), if they exist, are both
O(1/nk).

Proof. Without loss of generality, we suppoBéX) = u= 0, then

Appendix B.

Here we present the set up we use for the linear regression casenamaddethat guarantee the
validity of the obtained results.

The Gauss-Markov set up for a linear model defigies x' B+ € , whereyy,ys,---,y, are
observable response variables afie= (xj) is anng x p matrix of known constants. Moreover
€1,€2, -+ ,€En are unobservable random variables that follow a probability distribikioand are
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such thatE(gj) = 0 andVar(gj) = 02, €1,€,- - , &y are independent. The least square solution is
B = (XTX)~1XTY, whereY is ann x 1 vector, so thaEp = andVar(B) = 02(XTX)"1

Consider an arbitrary linear combinatitly = AT (3 — B), A € RP. ThenU = AT (XTX)"1XT¢;
with ¢ = AT(XTX)~1XT. To obtain the asymptotic distribution bf all is needed is to verify that
satisfies the regularity condition of Hajek-Sidak central limit theorem.

We need first the following definition.
Definition(Convergence in distribution). A sequenf®,} of random variables with distributions
{Fn} is said to converge in distribution (or in law) to a (possible degeneratepnandriableT with
a distribution functiorf, if for everye > 0, there existsg = ny(€), np € Z* such that at every point
of continuityx of F

[Fa(x) —F(X)| <&,

for all n > ng.

Hajek-Sidak Central Limit Theorm (Sen and Singer, 1993). L¢Y,} be a sequence of inde-
pendent, identically distributed random variables with mgand variance? finite; let {C,} be a
sequence of real vectors. TherCif = (Cn1,Cn2, -+ ,Cnn) " and

maX <i<nCy

n 2
2i=1Chi

—0,as n— 4o

it follows that N
y Yic1Cni(Yi — 1) o

2<h 2
\/ O 2i=a G

where Z is aN(0,1) random variable.

The following theorem completes the proof of the asymptotic distribution of thet sspiares
estimator.
Cramer-Wold Theorem (Sen and Singer, 1993). L&{, X, --- be random vectors iRP; then

Xo 2 X if and only if, for every fixed\ € RP we have\T X, > ATX.

Remark: We note here that the generalized Noether condition (assumption 2) caodiféed to
extend the asymptotic normality result to the heteroscedastic model, that is, tebwhedeE (€) =
0?,i=1,2,---,n. Also notice that the normality of the least squares estimators is not obtained
under normality of the errors. Assumptions 1 and 2 of section 3.2 togethethgifiniteness of the
second moment of the, otherwise unknown, error distribution sufficabdése results to hold.

The following lemmas that are listed without proof are used to arrive at tlendorm of the
covariance terms.

Lemma B.1LetU be distributed as B(0,V) random variable. Then

Var(UTAU) = 2tr (AV)?

whereA is a known matrix.
Lemma B.2LetU be distributed as B(, V) random variable. Then
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(i) E(UTAU) =tr(AV) +uT A,
(i) CoMU,UTAU) = 2VAY
(iii) CoUTPU,UTQU) = 2tr[PVQV] + 4" PV Qu

The following lemmas are used in establishing the equivalence of the diffeases in the
computation of the covariance terms. The first lemma, the well-know Holdexpality, is stated
without proof.

Lemma B.3Denote by||X||, = EYP(]X|P), p > 0, whereX is a random variable, thg-norm
of X. Then, ifX, Y are measurable functions on a probability spacepforl, p’ > 1, r_l)+ % =1

EXY] < [[X][p-[[¥]lp-

The special case whepe= p’ = 2 is known as Schwarz’s inequality.

Lemma B.4Let S, Sy be training sets anSJ?, S‘J’ their corresponding test sets. Assume that
for (yi,x) € S, (yi,x) € S}, for somei € {1,2,---,np}. Assume thak ([L'(x} o, Yir)]?) < e, and
E[L* (X! Bo, Yir)] < oo,

|E[L(xBo, %)L’ (4 Bo.¥i)% (Bs, — Po)]
— E[LCiBo.WIEIL' (4 Bo, i) JED (Bs, —Bo)]| = 0(1)

sup;
R\st/—ﬁol\sk/m

Proof Write

[E[L(xBo, YL () Bo, )X (Bs, — Bo)] — E[L(4Bo, Y1)E[L' (X! Bo,yir) ED (Bs, — Bo)]|
< [E[L(4Bo, YL () Bo,yi)X; (Bs, — Bo)]| + |E[L(Bo, Y)E[L () Bo, Yi)]E[X; (Bs, — Bo)]
< E{|LO4Bo,Y)X (Bs, — Bo)IL'(x) Bo,¥ir) [} + [E[L(xiBo, )] E[L' (X} Bo, yin)] X (Bs, — Bo)]

Using lemma A2.3 and the fact thEtxiT,(fBSj, —Bo)] = 0 the above relationship becomes:

[E[LBo.y0)L' (4 Bo.yi )X (Bs, — Bo)] — E[L(xBo.Y)IEIL' (< Bo. Y |ERKF (Bs, — Bo)]|
< \JE(LOG Bo. )12 /EIL2KT Bo.y) (B, —Bo)xi (Bs, — Bo)]

Apply once more Lemma A2.3 on

E[L2(x' Bo. Y1) (Bs, — Bo)xX! (Bs, — Bo)]
< /EIL4(4 Bo.yi)yEl(Bs, — Bo)x] (s, —Bo)

1160



VARIANCE OF CROSSVALIDATION ESTIMATORS OF THEGENERALIZATION ERROR

Thus
su R\f‘sj/—ﬁougk/\/rJ [L(xBo, i)' (% Bo, ¥ )% (BS/ Bo)]
—E[L(xBo, Y)IE[L' (4 Bo, V) IE[X! (Bs, — Bo)]|
S SURGs, iy (4/5[(&8,-/ — Bo)xix) (Bs, — Bo)?
p K2
<M- (‘/[(Z %)

I=1
'V'_
p

wherec = Me(5F ;% 1) <

Lemma B.5Let §;,S; be two training sets anSjC, Sf, be their corresponding test sets. Under
the assumption thad&|[L” (x" Bo, Vi )] is finite and for soméy;,x;) € S, (i, %) € Sy

SURfBe gy iy [E[L(X Bo, Yi)L” (%) Bo, Yr) (Bs, — Bo)x (B, — Bo)]

—E[L(X Bo.Y)IEIL" (¢ Bo. Y ) E[(Bs, — Bo)xx (Bs, — Bo)]| = 0(1)
Proof. Write
[E[L (X Bo, 1)L () Bo,Yir) (Bs, — Bo)xixi (Bs, — Bo)]
—E[L(X Bo, WIEIL" (X! Bo, Y )E[(Bs, — Bo)xixt (Bs, — Bo)]|
< |E[L(4 Bo, Yi)L" (X Bo, i) (Bs, — Bo)xX; (Bs, — Bo)]|
+|E[L(XiTBO,yi)]E[L”(XIIBO,W)]E[(@S/ Bo)Xir%; (BS/ Bo)l|
The first term of the above relationship gives:
[EILOS Bo,yi)L” (4 Bo,Yir) (Bs, — Bo)xX (Bs, — Bo)l|
< E|{L(X Bo.yi) (Bs, — Bo)xx; (Bs, — Bo) 1" (%) Bo. yi )|
< \/E[L”(XinBo,Yi')z] \/E[LZ(XiTBo,Yi)((BS,-, —Bo)xX] (Bs, —Bo)2)]

c
S_
Ny

wherec is a constant. The second term is
ELL(X Bo, Y1) EIL" (%} Bo. i) E[(Bs, — Bo)xx¥ (Bs, — Bo)]|
sEnL(x-TBo,yoL“(xiTBo,ymHEM@ —Bo)]?
< [E(LOT Bo. I ELIL O Bo.yo)l]

<

3|O
= *
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wherec* is a constant. Thus the lemma is proved. Similarly we can prove that the terms, in the
computation of covariance, whe(g,x;) € Sy and/or(yy,x) € Sj can be replaced and treated as
the case whergy;, x) ¢ Si and/or(yi,x) ¢ Sj in the neighborhood of the true value &f.

Lemma B.6 Suppose

o (8) = ((0). (2 22)

whereuisqx 1 vectoryvis (p—q) x 1 vectorais a knowng x 1 vector,B is known(p—q) x (p—q)
matrix.
Then

E(a"uv'Bv) = 0.
Proof: Using conditional probability argument, we have

E(a’uv'Bv) = E,{E,y[a’ uv' BV}

— Eu{aTuEV|u[VTB\4}

= Eu{a" ultr(BZ224) — (Z21%;1U) T B(Z21Z;;,'U)]}
= Ey{@"u(Zo1Z ) T B(Z135u)}

= Ey{a’uu’' 2 %1,B(221 27 u)}

= E,{a"uu’"Cu)}

—a' E,{uu’Cu}

= a' {Co\(u,u’Cu) +EUE(u"Cu)}
—=a'25,,C-040

=0

wherec = 31151,B%,13 . We use the property thatxfis N(, V), thencou(x, xT Ax) = 2vAp
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Appendix C.

Proof of Proposition 3.5: To obtain the approximation given above we need first an approximation
for the product (¥i.s;,¥i)L(Yir,s,,Yr)- Using expansion (3.13) we obtain:

L(9i.s.Y)L(rs W) = L(xiBo.Yi)L (X} Bo.Yir) +L(xBo,yi)L' (X} Bo,yir)x! (Bs — Bo)
2 L06Bo.9)L" (4 Bo.0 X (B, — o) ] (B, —Po)
(B0 i)' (Bs, —Bo)L(G Boyr)
L' (xiBo, )X (Bs; — Bo)L' (% Bo, Yir )X (Bs, — Bo)
2L0¢ Bo.yi)K] (Bs, — Bo)L (] Bo.yv) (Bs, — Bo)xl (Bs, — Bo)
%'—(XiT/Bo,yi/)L"(XiT Bo,¥i)(Bs, — Bo)x X' (Bs, — Bo)
+ %'—'(XII Bo, Yir )X (ﬁs,-/ —Bo)L" (X Bo, Y1) (Bs, — Bo)xix' (Bs, — Bo)
LT Bo, YL (X Bo,yv) (Bs, — By (Bs, —Po)

(Bs, —Bo) x4 (Bs, —Bo) + R 1)

We need the expectation, over everything random, of relationship ($ume first that =~ i’
Recall thatyi,x) € S and(yi, ) € S, and(y;, %) is independent ofyir, X/). Then the first term of
the above expansion is

E[L(xBo, Y1)IE[L(X Bo,Yir)] = (E[L(xiBo,yi)])*. )

(If L(x"B,yi) = (X Bo—¥i)? = €7 and theE (&?) = 0?).
We need now

+ o+ + o+

+

E{L(4 Bo.¥i)L' (4 Bo.¥i )% (Bs, — Bo)} (3)

Notice that all expectations here are conditionalXgrthat is, we treat the fixed design case.
To evaluate this expectation we need to distinguish between two cases. sthefiesponding to
(Vi,%) ¢ Sy In this case (3) equals 0. The second correspondg tq) € Sy. Lemma B.4 of the
appendix proves that (3) can be replaced by

E[L(x' Bo.Y0)]EL' (X Bo,Yi)EX (Bs, —Bo)] = 0. (4)
Therefore the second term is 0. Similarly, the expectation of the third term is

2
ELLOF B0 YIEIL" (5 Bo. i e (6] ) 0T, X)) ©)

in both cases, whetyi,x) ¢ Sy and wheny;,x) € Sy
The expectation of the fourth term of relationship (1) is 0. To evaluate ihectation of the fifth
term we distinguish four cases:(¥i,x) ¢ Sy and(yy,x:) € S§j, (i) (yi,%i) ¢ Sy and(yi, X)) € Sj,
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(i) (yi,x) € Sy and(yy,x:) ¢ Sj, (iv) (vi,%) € Sy but (yi,x) € S;. Lemma B.6 of the appendix
allows in case (ii), (iii) and (iv), the replacement of the correct value efekpectation by the value
obtained from expression (6) given below. Thus, the expectation difthéerm is:

E[L' (' Bo. Yi)IE[L' (4 Bo.Yi )X Com(Bs;, Bs, )i 6)

SinceSjN Sy # G, and assuming thxs,, ij, have that uppek x p part common, relationship
(.6) can be written as

OZ(E[L/(XiT BOa Yi )DZXIT (X-Sr] XSj )_1(X-]I_-X1) (ng/xsj/ )_1Xi'>

whereX, is of dimensiork x p, k= Card(§NSy), ando? is the population variance. To compute
the expectation of the sixth term we again distinguish between case (i), (iljprdi)iv) as above.
However, all cases reduce to the case (i). For this expectation we roavdsfimma B.6,

%<E[L’<x?rso,yi>]>E[L”<@so,yv>]E[x?(fssj —Bo)(Bs, — Bo)xX (Bs, —Bo)] = 0. (7)

For the expectation of the seventh term we distinguish two casesyi (') ¢ S; and (ii)
(vir, %) € Sj. Both cases can be treated using the following expression for the etipeatéthe
seventh term:

0? T "o T R TN
— E[LO4 Bo. i) I(E[L" (% Bo.Yi))E[(Bs; —Bo)xX (Bs; — o)

o? _

= S EILOG Bo V)l (BIL" (4 Bo, YN [04x' ) (X5 Xs;) ~1]- (8)

The expectation of the eighth term is treated as the expectation of the sixth tenefotk it is
given by relationship (7). For the expectation of last term we distinguisliotinedifferent cases
that are listed above. In this case again all different cases can baltesatase (i). Therefore the
expectation of the ninth term is

ZELL 0 Bo. ) E[(Bs, — Bo)x (Bs, — Bo) (Bs, — Bo) 47 (Bs, — Bo)]

(9)
But
E[(Bs; — Bo) %X (Bs; — Bo) (Bs, —Bo) X! (Bs, — Bo)]
= 2r [0 ) (XE Xs) HXTXa) (X X)) M0 )(XE X ) HXTXa) (XS X, ) Y]
+otr () (X§ X))~ -tr[(6g) ) (XE, Xs,) 7. (10)

Therefore the covariance is given as

CoML(Ji.s Y0);L(Jrss, . ¥ir)) = G2 (E[L' (' Bo, Yi))>X (X§ X)) H(XIX1)(X§, Xs,)

%4(E[L”(X.-Tﬁo,yi)])ztr((KXiT)(XEszj ) HXIX1)(XE, Xs,) ~H(xrxi)

(X§Xs) H(XIX1)(XE,Xs,) 7).

_|_
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Note that, wherk is the square error loss the covariance is given as

20%r {(xx")(X§ Xs )‘1(XIX1)(Xéj,xsj,)‘1(Xv>qT)(X£,-ij )‘1(XIX1)(X£J.,XSJ,)‘1}-
Wheni =i’, the covariance is given as

2
CoML(Yis, ), L (s, - ir)) = Var(L(4 Bo,¥)) + % CouL (% Bo,¥i),L" (% Bo,¥1))
(4 (XE,Xs,) "%+ (X§ Xs) %)
+ OP(E[L'(X Bo, YDA (X, Xs, ) H(XIX1)(X§ Xs ) )
4
%(E[L”(&'Tﬁmyi)])z”((XiXiT)(ngXS,-)_1(XIX1)(X§,./XS,-/)_l(XiXiT)
(X§Xs) HXIX1)(XE,Xs,) )

4
(0] _ _
+ 7 Var(L” (4 Bo.yi))X (X§Xs) X (X§,Xs,) X

Note that, wherk is the square error loss the covariance is given as

20* + 40X (X§, Xs,) HXIX2)(X§ Xs) )%
+20™tr {(xx7 ) (X§ X)) HXIX1)(XE, Xs,) (3 ) (X§ Xg ) H(XIX1)(X§, Xs,) "1}

Proof of Proposition 3.6: Write:

L(is. YL s Yi) = LOGBo,Yi)L(X Bo,ir) +L(xBo,¥i)L' (X Bo,Yir )X} (Bs, — Bo)
%L()q Bo.Y0)L" (! Bo. ) (Bs, — Bo) %X/ (Bs; — o)

L' (% [307Yi)L(><|I[30,yi')><|'T([A3sj —Bo)

L' (xiBo.¥0)X (Bs, — Bo)L' (X} Bo. )X} (Bs, — Bo)

}L’(XiT Bo, Y1)L" (%! Bo, )X (Bs; — Bo) (Bs, — o)X (Bs; — Bo)
SLOKT Bo.Yir)L” (4T Bo. i) (Bs, — Bo)xix{ (Bs; — Bo)

+ ZL (¢ Bo.Yir)L" (' Bo. )% (Bs, — Bo) (Bs, — Bo)xix (Bs, — Bo)

+ o+ + o+
=N

_l_
EYN)

2
U0 Bo.y)L" 04 Bo. i) (Bs, — Bo)d! (s, — o)
(Bs —Bo) %! (Bs; — Bo) + Rn. (11)
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We need to evaluate the expectation of relation (11). We have
E{L(Yis.Yi)L(Jir.s;,¥ir)}
— (E[LOS Bo.y))) 2+ %2 EILOG Bo.)IELL” (4 Bo i) tr [0 ) (XE X ) ]
+ OPE[L' (4 Bo,Y)D)Ar (06X ) (X5 Xs,) ]

+ %2E[L(yJBo,y»]E[L"mTBo,w)]tr[(xm-T)(xgxsj>11

4 SEIL O B, WIEIL” (¢ Bo, WIED (B, —Bo) (B, — Bo)¥] (s, — o)
4 SEIL O3 Bo ) EIL" (4 Bo.WIED (B, —Bo) (Bs, — Bo)d! (s, — o)
+ S (EIL"04 Bo.y) ’El(Bs, — Bo)xx! (Bs, — Bo)(Bs, — Bo)xx] (Bs, — o)l

X (B —Bo) ) _ 0
(e i) =)o @

o? (ﬁ(xéx@)lm &T<X£jxsl->lxv>

Now,

where

2

X (XE Xs) ™% X (XEXs) ™D

Notice here that we do not assume normality of the errors. The assumptiomodlity for the error
distribution is too restrictive. Instead, assumptions A1 and A2 establish yhep#stic distribution
of the least squares estimators as the size of the training, dstcomes larger and larger. That
guarantees that (12) holds. Therefore,

E{L(yi,sjayi)L()7i',Sj>Yi’)}
2
= (ELLOSBoy))?+ S EILOY Bo, Y ELL (4 Bo,yiJtr[(xe) ) (XE Xs;)
+ O%E[L' (4 Bo.y)])tr (64 ) (X Xs) 7]

2
+ SEILS Bo, Y EIL (4 Bo,yo [0 ) (XE X))

+ T EL O o Ar (6 ) (X Xs) Lo ) (KT X

+ %4<E[L”<xrso,yi>1>2tr[<x. D)X Xs) el (X Xs,) Y

— (ELLOTBoy])?+ S EILOT o JEIL" O Bouyi r ()G X )
= 06X Xs) )+ SEIL (T oyl 6 XE Xs)

7 L6 By 6 (XE X)) (X X))

O 1L 6 Bowy ] 0T (X X, )t (XT ) (XE Xs)
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Therefore,
CoML(Yis,¥i), L(¥rs;,¥ir)) = G (E[L' (X' Bo, yi)])2r [0t ) (X X )~
4
+ SEL O Boy)) A (XE Xs) 200! ) (XE Xs) Y.
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Abstract

We present a family of positive definite kernels on measutesacterized by the fact that the value
of the kernel between two measures is a function of their Sthese kernels can be used to derive
kernels on structured objects, such as images and textgpogsenting these objects as sets of
components, such as pixels or words, or more generally asuresaon the space of components.
Several kernels studied in this work make use of common diemtefined on measures such
as entropy or generalized variance to detect similariti@sien an a priori kernel on the space
of components itself, the approach is further extended btatieg the previous results in a more
efficient and flexible framework using the “kernel trick”.rillly, a constructive approach to such
positive definite kernels through an integral represemtatiheorem is proved, before presenting
experimental results on a benchmark experiment of hanwwridigits classification to illustrate
the validity of the approach.

Keywords: kernels on measures, semigroup theory, Jensen diverggeneralized variance,
reproducing kernel Hilbert space

1. Introduction

The challenge of performing classification or regression tasks overlegrapd non vectorial ob-
jects is an increasingly important problem in machine learning, motivated leyséivapplications
such as bioinformatics or multimedia document processing. The kernel magipodach to such
problems (Scbilkopf and Smola, 2002) is grounded on the choice of a proper similarityureas
namely a positive definite (p.d.) kernel defined between pairs of objedtgesst, to be used
alongside with kernel methods such as support vector machines (R@erl®92). While natural
similarities defined through dot-products and related distances are avaitaéahethe objects lie in
a Hilbert space, there is no standard dot-product to compare strings, teleos, graphs or other
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structured objects. This situation motivates the proposal of variouslkegitder tuned and trained
to be efficient on specific applications or useful in more general cases.

One possible approach to kernel design for such complex objects tsoingispresenting them
by sets of basic components easier to manipulate, and designing kernelshosess. Such basic
components can typically be subparts of the original complex objects, othtaynexhaustive enu-
meration or random sampling. For example, a very common way to represnter applications
such as text classification and information retrieval is to break it into wandscansider it as a
bag of words, that is, a finite set of weighted terms. Another possibility isttaeball fixed-length
blocks of consecutive letters and represent the text by the vectounfsof all blocks (Leslie et al.,
2002), or even to add to this representation additional blocks obtaindidjbt/reodifications of the
blocks present in the text with different weighting schemes (Leslie et d&3)2®imilarly, a grey-
level digitalized image can be considered as a finite set of poinks’ efhere each pointx,y, )
stands for the intensitlydisplayed on the pixélx,y) in that image (Kondor and Jebara, 2003).

Once such a representation is obtained, different strategies havadeased to design kernels
on these descriptions of complex objects. When the set of basic companénite, this repre-
sentation amounts to encode a complex object as a finite-dimensional vecturtérs, and any
kernel for vectors can be then translated to a kernel for complex dhjectgh this feature represen-
tation (Joachims, 2002, Leslie et al., 2002, 2003). For more generdiaitsiaseveral authors have
proposed to handle such weighted lists of points by first fitting a probabilityilisivn to each
list, and defining a kernel between the resulting distributions (Laffertylatichnon, 2002, Jebara
et al., 2004, Kondor and Jebara, 2003, Hein and Bousquet, 200&xnatively, Cuturi and Vert
(2005) use a parametric family of densities and a Bayesian framework tedekiernel for strings
based on the mutual information between their sets of variable-length blasikg, the concept of
mutual information kernels (Seeger, 2002). Finally, Wolf and ShasH@3{2ecently proposed a
formulation rooted in kernel canonical correlation analysis (Bach arahdp 2002, Melzer et al.,
2001, Akaho, 2001) which makes use of the principal angles betweesubispaces generated by
the two sets of points to be compared when considered in a feature space.

We explore in this contribution a different direction to kernel design faghted lists of basic
components. Observing that such a list can be conveniently repredgngedolecular measure
on the set of basic components, that is a weighted sum of Dirac measutkat the distribution
of points might be fitted by a statistical model and result in a density on the samweesirmally
focus our attention on the problem of defining a kernel between finite mesagn the space of basic
components. More precisely, we explore the set of kernels betweemrasdisat can be expressed
as a function of their sum, that is:

K(, 1) = O (H+ ). 1)
The rationale behind this formulation is that if two measures or sets of poang/ overlap, then
it is expected that the supn+ I/ is more concentrated and less scattered than if they do not. As a
result, we typically expeab to quantify the dispersion of its argument, increasing when it is more
concentrated. This setting is therefore a broad generalization of thevatiee by Cuturi and Vert
(2005) that a valid kernel for strings, seen as bags of variable-ldnigtiks, is obtained from the
compression rate of trmncatenatiorof the two strings by a particular compression algorithm.

The set of measures endowed with the addition is an Abelian semigroup, ahkertiel (1)
is exactly what Berg et al. (1984) callsemigroup kernel The main contribution of this paper
is to present several valid positive definite (p.d.) semigroup kernels féeamar measures or
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densities. As expected, we prove that several functiptisat quantify the dispersion of measures
through their entropy or through their variance matrix result in valid p.chedsr Using entropy to
compare two measures is not a new idea (Rao, 1987) but it was recestdyerewithin different
frameworks (Hein and Bousquet, 2005, Endres and Schindelin, Fo@zde and Topsge, 2004).
We introduce entropy in this paper slightly differently, noting that it is a semigreegative definite
function defined on measures. On the other hand, the use of genexalimatte to derive a positive
definite kernel between measures as proposed here is new to our dgewi&e further show how
such kernels can be applied to molecular measures through regularizagi@tions. In the case of
the kernel based on the spectrum of the variance matrix, we show how litecapplied implicitly
for molecular measures mapped to a reproducing kernel Hilbert spaee avp.d. kernel on the
space of basic components is provided, thanks to an application of theetikeck”.

Besides these examples of practical relevance, we also consider gt®qud characterizing
all functions¢ that lead to a p.d. kernel through (1). Using the general theory of seapdernels
we state an integral representation of such kernels and study the seamtehsiinvolved in this
representation. This new result provides a constructive charadienizd such kernels, which we
briefly explore by showing that Bayesian mixtures over exponential medel$e seen as natural
functions¢ that lead to p.d. kernels, thus making the link with the particular case treatedtbyi C
and Vert (2005).

This paper is organized as follows. We first introduce elements of meesumesentations of
weighted lists and define the semigroup formalism and the notion of semigrougeme! in Sec-
tion 2. Section 3 contains two examples of semigroup p.d. kernels, whichoarevar usually
not defined for molecular measures: the entropy kernel and the inyensgalized variance (IGV)
kernel. Through regularization procedures, practical applicatioagaf kernels on molecular mea-
sures are proposed in Section 4, and the approach is further extenklehelizing the IGV through
an a priori kernel defined itself on the space of components in Secticectios 6 contains the gen-
eral integral representation of semigroup kernels and Section 7 makasktbetween p.d. kernels
and Bayesian posterior mixture probabilities. Finally, Section 8 contains ainieahpvaluation of
the proposed kernels on a benchmark experiment of handwritten digissficiatson.

2. Notations and Framework: Semigroup Kernels on Measures

In this section we set up the framework and notations of this paper, in gartite idea of semi-
group kernel on the semigroup of measures.

2.1 Measures on Basic Components

We model the space of basic components by a Hausdorff §pac®,v) endowed with its Borel
o-algebra and a Borel dominant measuré\ positive Radon measuges a positive Borel measure
which satisfieqi) u(C) < 4o for any compact subs& C X and (ii) u(B) = sup{p(C)|C C B,C
compact} for anyB € B (see for example Berg et al. (1984) for the construction of Radon mesasu
on Hausdorff spaces). The set of positive bounded (i(&) < +) Radon measures oti is de-
noted byM® (X). We introduce the subset M® (X) of molecular (or atomic) measures Mglx),
namely measures such that

SUPEM) d:ef{x € X||uU) > 0, for all open subsatl s.t.xc U}
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is finite, and we denote by, € Mol (X) the molecular (Dirac) measure of weight 1 »n For

a molecular measung anadmissible basef u is a finite listy of weighted points ofX, namely
y= (xi,a;)f':l, wherex; € X anda > 0 for 1<i <d, such thapjt= zid:laiém. We write in that case
ly| = zidzla; andl(y) = d. Reciprocally, a measuneis said to be the image measure of a list of
weighted elementgif the previous equality holds. Finally, for a Borel measurable funcfienR*
and a Borel measung we writep[f] = [, fdu

2.2 Semigroups and Sets of Points

We follow in this paper the definitions found in Berg et al. (1984), which o recall. AnAbelian
semigroup(S,+) is a nonempty seb endowed with arassociativeand commutative composition
-+ and a neutral element 0. Referring further to the notations used in Bakg#884), note that we
will only use auto-involutive semigroups in this paper, and will hence neaudis other semigroups
which admit different involutions.

A function¢ : § — R is called apositive definit€resp. negative definiten.d.) function on the
semigroup(S,+) if (s,;t) — ¢(s+t) is a p.d. (resp. n.d.) kernel ghx S. The symmetry of the
kernel being ensured by the commutativity-of the positive definiteness is equivalent to the fact
that the inequality

Gicjd (X +xj) >0

i,]=1

™Mz

holds for anyN € N, (xg,...,xy) € SN and(c;...,cy) € RN. Using the same notations, and adding
the additional condition thgt{'_; ¢ = 0 yields the definition of negative definitenesspasatisfying
now

ccjd (x+xj) <O0.
1

™Mz

iy

Hence semigroup kernels are real-valued functipuiefined on the set of interest the similarity
between two elementst of § being just the value taken by that function on their composition,
namelyd(s+t).

Recalling our initial goal to quantify the similarity between two complex objects tfirdinite
weighted lists of elements i, we note tha{?(.X),U) the set of subsets of equipped with the
usual union operatay is a semigroup. Such a semigroup might be used as a feature representation
for complex objects by mapping an object to the set of its components, foggatiout the weights.
The resulting representation would therefore be an elememt(&f). A semigroup kernek on
P(X) measuring the similarity of two sets of poiMsB € P(X) would use the value taken by
a given p.d. functiorp on their union, namelk(A,B) = ¢ (AUB). However we put aside this
framework for two reasons. First, the union composition is idempotent (ireallfé in P(X), we
haveAUA = A) which as noted in Berg et al. (1984, Proposition 4.4.18) drastically restiie class
of possible p.d. functions. Second, such a framework defined by setd Wgnore the frequency (or
weights) of the components described in lists, which can be misleading whingieith finite sets
of components. Other problematic features would include the fack{#aB) would be constant
whenB C Aregardless of its characteristics, and that comparing sets of veryediffeizes should
be difficult.

In order to overcome these limitations we propose to represent a list of tediglintsz =
(xi,a;)?zl, where for 1< i < d we havex; € X anda; > 0, by its image measufe = zi":la;{)xi, and
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focus now on the Abelian semigrogil® (X), +) to define kernels between lists of weighted points.
This representation is richer than the one suggested in the previousgmrag the semigroup
(P(X),U) to consider the merger of two lists. First it performs the union of the supp®tand
the sum of such molecular measures also adds the weights of the points comrotnrieebsures,
with a possible renormalization on those weights. Two important features afridfieal list are
however lost in this mapping: the order of its elements and the original fnegue each element
within the list as a weighted singleton. We assume for the rest of this papehithatformation is
secondary compared to the one contained in the image measure, hamely dsred@upport and
the overall frequency of each point in that support. As a result, we study in the foibpsections
p.d. functions on the semigroyM® (X), +), in particular on molecular measures, in order to define
kernels on weighted lists of simple components.

08, +8,) O

Figure 1. Measure representations of two lisendZ. Each element of (resp. Z) list is repre-
sented by a black circle (resp. a white square), the size of which ssjisgthe associated
weight. Five measures of interest are represented: the image megsamed, of those
weighted finite lists, the smoothed density estim#&gs) and6(d,) of the two lists of
points, and the smoothed density estint¥i® + 6,) of the union of both lists.

Before starting the analysis of such p.d. functions, it should howevpoimed out that several
interesting semigroup p.d. kernels on measures are not directly applicab@doular measures.
For example, the first function we study below is only defined on the sdtsaflately continuous
measures with finite entropy. In order to overcome this limitation and be able tegg@omplex
objects in such situations, it is possible to think about alternative strategigsresent such objects
by measures, as illustrated in Figure 1:

e The molecular measurég andd, as the image measures corresponding to the two weighted
sets of points o andZ, where dots and squares represent the different weights applied on
each points;

¢ Alternatively, smoothed estimates of these distributions obtained for examptebyarametric
or parametric statistical density estimation procedures, and represenéd,byand6(5;)
in Figure 1. Such estimates can be considered if a p.d. kernel is only diéfinabsolutely
continuous measures. When this mapping takes the form of estimation amoey dagnily
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of densities (through maximum likelihood for instance) this can also be seepras belief
assumed on the distribution of the objects;

e Finally, a smoothed estimate of the s 0, corresponding to the merging of both lists,
represented b§(d,+ 8, ), can be considered. Note tHH®, + &, ) might differ from0(d,) +
0(57).

A kernel between two lists of points can therefore be derived from afymdtion on(M® (X), +)
in at least three ways:

$(0,+0z), using¢ directly on molecular measures,
k(z,Z) =< ¢ (8(5,) +6(3,)), usingd on smoothed versions of the molecular measures
¢ (8(0;,+907)), evaluatingd on a smoothed version of the sum

The positive definiteness df on MR(X) ensures positive definiteness lobnly in the first two
cases. The third expression can be seen as a special case of thedjrathere we highlight the
usage of a preliminary mapping on the sum of two measures; in thatpcaBeshould in fact be
p.d. on(M2 (X),+), or at leas{Mol ;. (X),+). Having defined the set of representations on which
we will focus in this paper, namely measures on a set of components, wesgrin the following
section two particular cases of positive definite functions that can be dethfiwough an addition
between the considered measures. We then show how those quantitiescmanguted in the case
of molecular measures in Section 4.

3. The Entropy and Inverse Generalized Variance Kernels

In this section we present two basic p.d. semigroup kernels for measurégated by a common

intuition: the kernel between two measures should increase when the stima ofeasures gets
more “concentrated”. The two kernels differ in the way they quantify thecentration of a mea-
sure, using either its entropy or its variance. They are therefore limited ubsesof measures,
namely the subset of measures with finite entropy and the subset of dudibpity measures with

non-degenerated variance, but are extended to a broader clasasfire® including molecular
measures, in Section 4.

3.1 Entropy Kernel

We consider the subset b (X) of absolutely continuous measures with respect to the dominant
measurey, and identify in this section a measure with its corresponding density withaespe

We further limit the subset to the set of non-negative valuatkeasurable functions oXi with finite

sum, such that

MP () L' : x — R*| f is v-measurablglh(f)| < e, | f| < o}

where we write for any measurable non-negative valued fungtion

h(g)dﬁf—/xglngdv,
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(with 0In0 = 0 by convention) an¢p| def Jx9dv, consistently with the notation used for measures.

If gis such thatg| = 1, h(g) is its differential entropy. Using the following inequalities,

(a+b)In(a+b) <alna+binb+ (a+b)In2, by convexity ofx — xInx,
(a+b)In(a+b) > alna+binb,

we have thatM" (X), +) is an Abelian semigroup since fér f’ in M (X) we have thah(f + ')
is bounded by integrating pointwise the inequalities above, the boundedndss &'| being also
ensured. Following Rao (1987) we consider the quantity

f+f . h(f)+h(f)
f, )% -
I E () - m
known as thelensen divergender Jensen-Shannon divergence) betweamd f’, which as noted

by Fuglede and Topsge (2004) can be seen as a symmetrized versierkofltback-Leibler (KL)
divergenceD, since

(2)

N1 f+f . 1, f+f
3(1,1) = 5D(F]l——=) +5D(F'l—=—):

The expression of Equation (2) fits our framework of devising semigkeupels, unlike the direct
use of the KL divergence (Moreno et al., 2004) which is neither symmaeidrioegative definite. As
recently shown in Endres and Schindelin (2003) @sterreicher and Vajda (2003)J is a metric
on Mi(x) which is a direct consequence $§ negative definiteness proven below, through Berg
et al. (1984, Proposition 3.3.2) for instance. The Jensen-Diveeggas also recently reinterpreted
as a special case of a wider family of metricijh(x) derived from a particular family of Hilber-
tian metrics oriR . as presented in Hein and Bousquet (2005). The comparison betwea&®ihwo
sities f, f' is in that case performed by integrating pointwise the squared disti#i€éx), f/(x))
between the two densities ov&r using ford a distance chosen among a suitable family of metrics
in R, to ensure that the final value is independent of the dominant measufée considered
family for d is described in Fuglede and Topsge (2004) through two parametersiladawhich
the Jensen Divergence is just a special case as detailed in Hein anguBb(8005). The latter
work shares with this paper another similarity, which lies in the “kernelizatidr§ugh quanti-
ties defined on measures through a prior kernel on the space of conpoagmvill be reviewed
in Section 5. However, of all the Hilbertian metrics introduced in Hein and 8aets(2005), the
Jensen-Divergence is the only one that can be related to the semigaougnfork used throughout
this paper.

Note finally that a positive definite kernlels said to be infinitely divisible if- Ink is a negative
definite kernel. As a consequence, any positive exponentilfigh> 0 of an infinitely divisible
kernel is a positive definite kernel.

Proposition 1 h is a negative definite function on the semigroup(M). As a consequence
is a positive definite function on'MX) and its normalized counterparthf'(gfe*J is an infinitely
divisible positive definite kernel onM.X) x M ().

Proof It is known that the real-valued functiony — —yInyis n.d. onR . as a semigroup endowed
with addition (Berg et al., 1984, Example 6.5.16). As a consequence thédur — ro f is n.d.
on M (X) as a pointwise application of sincer o f is integrable w.r.v. For any real-valued
n.d. kernek and any real-valued functiogy we have trivially thaty,y’) — k(y,y') +g(y) + 9(y')
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remains negative definite. This allows first to prove ﬂh(a?t%f/) is also n.d. through the identity
h(™5%) = 1h(f + ')+ N2(|f| + | f|). Subtracting the normalization factdth(f) +h(f')) gives
the negative definiteness &f This finally yields the positive definitenesslgfas the exponential of
the negative of a n.d. function through Schoenberg’s theorem (Batg €984, Theorem 3.2.28

Note that onlye " is a semigroup kernel strictly speaking, siree involves a normalized sum
(through the division by 2) which is not associative. While beth ande™ can be used in practice
on non-normalized measures, we name more explikitlt e the entropy kernelbecause what

it indeed quantifies whef and f’ are normalized (i.e., such thit| = |f’| = 1) is the difference of
the average of the entropy éfand f’ from the entropy of their average. The subset of absolutely
continuousprobability measures oax, v) with finite entropies, namely f € M7 (X), s.t|f| =1}

is not a semigroup since it is not closed by addition, but we can nonethielfass the restriction of

and hencé, on it to obtain a p.d. kernel on probability measures inspired by semigrooafiem.

3.2 Inverse Generalized Variance Kernel

We assume in this subsection thats an Euclidian space of dimensiarendowed with Lebesgue’s
measurev. Following the results obtained in the previous section, we propose unelse tie-
strictions a second semigroup p.d. kernel between measures whichemsgalged variance. The
generalized variance of a measure, namely the determinant of its variatroe ma quantity ho-
mogeneous to a volume iki. This volume can be interpreted as a typical volume occupied by a
measure when considering only its second order moments, making it hesetubquantification

of its dispersion. Besides being easy to compute in the case of molecularresadbis quantity is
also linked to entropy if we consider that for normal la§m, Z) the following relation holds:

L gehams).
det

Through this observation, we note that considering the Inverse of ther@leed Variance (IGV)
of a measure is equivalent to considering the value takes Byon its maximum likelihood normal
law. We will put aside this interpretation in this section, before reviewing it withraraare in
Section 7.

Let us define the variance operator on measpsesh finite first and second moment b2 (X)
as

def
% (1) = 1] — X
Note that>(p) is always a positive semi-definite matrix whers a sub-probability measure, that is
when|y| < 1, since
Z(H) = M= X)) (x= X)) T+ (2= (M) DR T

We call de® () the generalized variance of a measurand say a measuges non-degeneratei
det>(p) is non-zero, meaning thayy) is of full rank. The subset d¥1? (X) of such measures with
total weight equal to 1 is denoted b¥ (X); MY (X) is convex through the following proposition:
Proposition 2 Mi(x)cj:ef{pe MP (X) : [y = 1,det=(p) > 0} is a convex set, and more generally
for A €[0,1), ¢ € M2 (X) such that{| = 1 and pe MY.(X), (1 —A)u+ A € MY.(X).
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Proof We use the following identity,

(A= N)pA+AW) = (1= NI +AZ() + AL =) (X — L) (WX —H[x)

to derive thatz((1— A)u+ AY) is a (strictly) positive-definite matrix as the sum of two positive
semi-definite matrices and a strictly positive definite mai(). [

MY (X) is not a semigroup, since it is not closed under addition. However we wik wathis
case on the mean of two measures in the same way we used their standard autligsemigroup
framework ofM® (X).

Proposition 3 The real-valued kernekdefined on elements i of MY (X) as

1
k gl [ = /
k) dets(M5¥)

is positive definite.
Proof Lety be an element ok’. For anyN € N, anyc,...,cy € R such thaty;c; = 0 and any
1, ..., N € MY (X) we have

[+ Hj 1 1
zqqy5x“Z“Uw=zpwa<5wvﬂ?+émvﬂy—
1] 5]

% (M‘ DR T+ Ry X X b X T+ [X]T) ) y

= —% > cicyy’ (uj XX+ i (X [x]T) y
1]

2
:—%<zqwum> <0

making thus the functiop, | — yTZ(%“/)y negative-definite for any € X. Using again Schoen-
e

berg’s theorem (Berg et al., 1984, Theorem 3.2.2) we havautpat— eV 25 yis positive defi-
nite and so is the surgﬁ)r{ &Y 25 Wv(dy) which is equal to 1,/detz(“5#) ensuring thus the
positive-definiteness &, as its square. |
Both entropy and IGV kernels are defined on subsetdldf.X). Since we are most likely to use
them on molecular measures or smooth measures (as discussed in Sectior D@sent in the
following section practical ways to apply them in that framework.

4. Semigroup Kernels on Molecular Measures

The two positive definite functions defined in Sections 3.1 and 3.2 canragifed in the general
case to Mol (X) which as exposed in Section 2 is our initial goal. In the case of the entropy
kernel, molecular measures are generally not absolutely continuous wfiatetov (except on
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finite spaces), and they have therefore no entropy; we solve this prdigtemapping them into
MQ(X) through a smoothing kernel. In the case of the IGV, the estimates of vasiamight be
poor if the number of points in the lists is not large enough compared to the doneoisthe
Euclidean space; we perform in that case a regularization by adding-samiance correlation
matrix to the original variance. This regularization is particularly important te pae way to the
kernelized version of the IGV kernel presented in the next sectionpnwhes not Euclidian but
simply endowed with a prior kernel

The application of both the entropy kernel and the IGV kernel to moleculasuores requires a
previous renormalization to set the total mass of the measures to 1. This tdcekenormalization
is also beneficial, since it allows a consistent comparison of two weighted Vists vehen their
size and total mass is very different. All molecular measures in this sectidrequivalently all
admissible bases, will hence be supposed to be normalized such that tHeivelgtat is 1, and
Mol (X) denotes the subset of Mal.X) of such measures.

4.1 Entropy Kernel on Smoothed Estimates

We first define the Parzen smoothing procedure which allows to map moleneksures onto
measures with finite entropy:

Definition 4 Let kK be a probability kernel onX with finite entropy, i.e., a real-valued function
defined onx? such that for any x X, K(X,-) : y+ K(X,y) satisfiex(x, -) € M (X) and|k(x,-)| = 1.
Thek-Parzen smoothed measure of y is the probability measure whose dsitlitgspect to is

O« (1), where

B :Molt (x) — M (x)
He S HOK(X).
XESUPL
Note that for any admissible baga,a)l_; of pwe have thadq () = 3¢ ; ak(x;,-). Once this
mapping is defined, we use the entropy kernel to propose the followimgeken two molecular

measuregl andyl,
K (i, ) = eI O 8c1)),

As an example, lek be an Euclidian space of dimensinendowed with Lebesgue’s measure,
andk the isotropic Gaussian RBF kernel on that space, namely

A Y
K(X,y) = I
(2ro)2

Given two weighted listg andZ of components inX, 6(5,) and 6«(d,) are thus mixtures of
Gaussian distributions oki. The resulting kernel computes the entroppfd,) andby () taken

separately and compares it with that of their mean, providing a positiveitdedimantification of
their overlap.

4.2 Regularized Inverse Generalized Variance of Molecular Measures

In the case of a molecular measyrdefined on an Euclidian spagéof dimensiomn, the variance
> () is simply the usual empirical estimate of the variance matrix expressed in anomthal basis
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of X:

d d d T
Z (1) = upoc'] — updupd :_Ziaaon—(Zam) <§la>q> :

where we use an admissible base (xi,ai)id:l of uto give a matrix expression &f(p), with all
pointsx; expressed as column vectors. Note that this matrix expression, as woergdeted from
a function defined on measures, does not depend on the chosen akintiasiéy. Given such an
admissible base, lef, = [x]i—1.4 be then x d matrix made of all column vectorg andA, the
diagonal matrix of weights of taken in the same ordéa;)1<,<q. If we write |4 for the identity
matrix of rankd and14 4 for thed x d matrix composed of ones, we have for any baeép that:

Z(H) = Xy(By — ByLa.ady) X,/

which can be rewritten as
Z(H) = Xy(lg — ByLa.a)Ay(lg — Laady) X,

noting that(Ay144)? = AyLgg Since tracé, = 1.

The determinant oE(p) can be equal to zero when the size of the suppoptisfsmaller than
n, the dimension ofX, or more generally when the linear span of the points in the suppaqrt of
does not cover the whole spade This problematic case is encountered in Section 5 when we
consider kernelized versions of the IGV, using an embeddinj ofto a functional Hilbert space
of potentially infinite dimension. Mapping an element of &I(JK) into MY (X) by adding to it any
element oMY (X) through Proposition 2 would work as a regularization technique; for laitrary
p € MY (X) and a weighh < [0,1) we could use the kernel defined as

1
dets (A%M(l—mp)'

W —

We use in this section a different strategy inspired by previous workisufRizu et al., 2004,
Bach and Jordan, 2002) further motivated in the case of covariameatops on infinite dimensional
spaces as shown by Cuturi and Vert (2005). The considered rizgtilan consists in modifying
directly the matrixz(p) by adding a small diagonal componept wheren > 0 so that its spectrum
never vanishes. When considering the determinant of such a regdlaneteix > () + nl, this is
equivalent to considering the determinant%(ﬁ(p) + Iy up to a factom”, which will be a more

suitable expression in practice. We thus introduce the regularized Keruiglfined on measures
(1, 1) € M2 (X) with finite second moment as

def 1
0 e () o)

It is straightforward to prove that the regularized functignis a positive definite kernel on the
measures o2 (X) with finite second-order moments using the same proof used in Proposition 3.
If we now introduce

def [ T
Ky = [xi X;

Lgi,de’
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for thed x d matrix of dot-products associated with the elements of a fpaemed

d d

> def
RyE 06— 5 ao) " (x5 — Y &) = (la —Ta.ady)Ky(la — AylLaa),
k=1 k=1 1<i,j<d

for its centered expression with respect to the megn ofe have the following result:

Proposition 5 Let X be an Euclidian space of dimension n. For ang Moli(x) and anyadmis-
sible basey of u we have

1. 1

Proof We omit the references tp andy in this proof to simplify matrix notations, and write
d =1(y). Let X be then x d matrix [x; — Z(jj:lanj]i:]md of centered column vectors enumerated in
y, namelyX = X(Iq — Algq). We have
T =XAXT,
KA = XTXA.
Through the singular value decompositionfm%, it is straightforward to see that the non-zero

elements of the spectrums of matridéa, Az X " XAz and are identical. Thus, regardless of the
difference between andd, we have

det(%KAJr |d> = det(%A%XTXA% + |d> = det<%)~(A)N(T + |n> = det<%2+ |n) ,

where the addition of identity matrices only introduces an offset of 1 forigdirevalues. |
Given two measurgs [ € Mol}r(x), the following theorem can be seen as a regularized equivalent
of Proposition 3 through an application of Proposition plte= “*T“

Theorem 6 Let X be an Euclidian space. The kerngl étefined on two measuresiiof Moli(x)

as
1

det( 2Ry + 1)

k) (b 1) =

wherey is any admissible base @%’ is p.d. and independent of the choiceyof

Given two objectg,Z and their respective molecular measubeandd,, the computation of the

IGV for two such objects requires in practice an admissible bagﬁé—acﬁ as seenin Theorem 6. This
admissible base can be chosen to be of the cardinality of the support of thearokd, andd,, or
alternatively be the simple merger of two admissible basesaflZ with their weights divided by
2, without searching for overlapped points between both lists. This chagao impact on the final
value taken by the regularized IGV-kernel and can be arbitrated by utatignal considerations.

If we now take a practical look at the IGV’s definition, we note that it canmalied but to cases
where the component spaggeis Euclidian, and only if the studied measures can be summarized
efficiently by their second order moments. These limitations do not seemeadigtic in practice,
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sinceX may not have a vectorial structure, and the distribution of the components©otayen
be well represented by Gaussians in the Euclidian case. We proposeatsstihis issue and intro-
duce the usage of the IGV in a more flexible framework by using the keliokldn the previous
guantities, since the IGV of a measure can be expressed only througbttheoducts between the
elements of the support of the considered measure.

5. Inverse Generalized Variance on the RKHS Associated with Kernel k

As with many quantities defined by dot-products, one is tempted to replaceubkeda-product
matrix K of Theorem 6 by an alternative Gram-matrix obtained through a p.d. kerdefined
on X. The advantage of such a substitution, which follows the well known ‘&erick” princi-
ple (Scldlkopf and Smola, 2002), is multiple as it first enables us to use the IGV lkkemany
non-vectorial space endowed with a kernel, thus in practice on any campgpace endowed with
a kernel; second, it is also useful whanhis a dot-product space where a non-linear kernel can
however be used (e.g., using Gaussian kernel) to incorporate into the t@Mputation higher-
order moment comparisons. We prove in this section that the inverse ofgthlanieed generalized
variance, computed in Proposition 5 through the centered dot-produdx rﬁ@tuf elements of any
admissible basgof |, is still a positive definite quantity if we repla&q by a centered Gram-matrix
56,, computed through an a priori kernebn X, namely

Ky = [K(%,Xj)]1<i,j<d

Ky = (la — Lgady) Ky(la — ByLag)-

This substitution follows also a general principle when considering keametseasures. The “ker-
nelization” of a given kernel defined on measures to take into accounbagimilarity on the
components, when computationally feasible, is likely to improve its overall pedoce in classifi-
cation tasks, as observed in Kondor and Jebara (2003) but also irahigiBousquet (2005) under
the “Structural Kernel” appellation. The following theorem proves thatghlsstitution is valid in
the case of the IGV.

Theorem 7 Let X be a set endowed with a p.d. kermelThe kernel
1

det(%i@AerI,(y))’

defined on two elementsyiin Mol? (X) is positive definite, whergis anyadmissible base df;—“

ke (W) =

(3)

Proof LetN € N, p, .., iy € Molt (X) and(ci)N ; € RN. Let us now study the quantity ; cicj ke (14, 1j)-
To do so we introduce by the Moore-Aronszajn theorem (Berlinet amuniBis-Agnan, 2003, p.19)
the reproducing kernel Hilbert spagewith reproducing kernet indexed onX. The usual mapping
from X to = is denoted byp, that is@: X > x+— K(X,-). We define

def N
9" = supp M| CX,
(2)

the finite set which numbers all elements in the support oNtleensidered measures, and

def

Y='sparmp(9’) C =,
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the linear span of the elements in the image)othrough@. Y is a vector space whose finite
dimension is upper-bounded by the cardinality)af Endowed with the dot-product inherited from
=, we further have that'is Euclidian. Given a molecular measyre Mol (%), let () denote the
image measure gfin Y, namely@(l) = ¥ yco H(X)9¢x). One can easily check that any admissible

basey = (x,a)", of p can be used to provide an admissible basg %' (g(x),a)d_, of @(u).
The weight matrjce&y andAyy, are identical and we further ha\zk, = Kq,(y) by the reproducing
property, whereK is defined by the dot-product of the Euclidian spaténduced byk. As a
result, we have thak (W, 1) = KJ (@), ®(1;)) whereky is defined on Mdl(Y), ensuring the
non-negativity
N N
2 GC kd (b by) = 3 cici K (@), 0(k;)) > 0

i= i
and hence positive-definitenesskff |

As bserved in the experimental section, the kernelized version of the 1G¥tiis likely to be suc-
cessful to solve practical tasks since it incorporates meaningful inf@man the components. Be-
fore observing these practical improvements, we provide a generglattite family of semigroup
kernels oan(X) by casting the theory of integral representations of positive definitditurgcon
a semigroup (Berg et al., 1984) in the framework of measures, providnwgesults and possible
interpretations of this class of kernels.

6. Integral Representation of Positive Definite Functions o a Set of Measures

In this section we study a general characterizatiomlbfp.d. functions on the whole semigroup
(M2 (X),+), including thus measures which are not normalized. This characterizatiases lon
a general integral representation theorem valid for any semigrouplkard is similar in spirit to
the representation of p.d. functions obtained on Abelian groups throaghrr's theorem (Rudin,
1962). Before stating the main results in this section we need to recall béisitidies of semichar-
acters and exponentially bounded function (Berg et al., 1984, chap. 4)

Definition 8 A real-valued functiomp on an Abelian semigrouf, +) is called asemicharacteif
it satisfies the following properties:

() p(0)=1
(i) Vs,teSp(s+t)=p(s)p(t).

It follows from the previous definition and the fact thak (X) is 2-divisible(i.e., Ve M2 (X), 3y €

MP (X) s.t. p= 2) that semicharacters are nonnegative valued since it suffices to write tha
p(p) = p(LZ‘)Z. Note also that semicharacters are trivially positive definite functionS. dive de-

note byS' the set of semicharacters ®f (X), and bySc S the set of bounded semicharacters.
S is a Hausdorff space when endowed with the topology inherited fkSrhaving the topology

of pointwise convergence. Therefore we can consider the set arRagasures o8, namely

MP (S9).

Definition 9 A function f: M2 (X) — R is calledexponentially bounde there exists a function
o M2(X) — R, (called anabsolute valupsatisfyinga(0) = 1 and a(p+ ) < a(pa(y) for
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w1 € M2 (X), and a constant G- 0 such that:
Ve MR(X),  f(W) < Ca(w.

We can now state two general integral representation theorems formpctiofus on semigroups (Berg
etal., 1984, Theorems 4.2.5 and 4.2.8). These theorems being valid oaraigy@up, they hold in
particular on the particular semigrogil® (X), +).

Theorem 10 e A function¢ : M® (X) — R is p.d. and exponentially bounded if and only if it
has an integral representation:

6(5) = [ pls)dw(p).
with w € M$(S*) (the set of Radon measures onviBth compact support).

e A function¢ : MQ(X) — R is p.d. and bounded if and only if it has an integral representation
of the form:

0(9) = [,p(s)dep)
withw e M (S).
In both cases, if the integral representation exists, then there is unigaafiehe measum in
M., (S).

In order to make these representations more constructive, we needydtstutdass of (bounded)
semicharacters ofM® (X), +). Even though we are not able to provide a complete characterization,
even of bounded semicharacters, the following proposition introducegeadtass of semicharac-
ters, and completely characterizes tdmmtinuoussemicharacters. For matters related to continuity
of functions defined oM® (), we will consider the weak topology 1% (X) which is defined in
simple terms through thgortmanteauheorem (Berg et al., 1984, Theorem 2.3.1). Note simply that
if W, converges tq in the weak topology then for aryoundedmeasurable and continuous function

f we have thapi,[f] — p[f]. We further denote b@(X) the set of continuous real-valued functions
on X and byCP(X) its subset of bounded functions. Both sets are endowed with the topology o
pointwise convergence. For a functidne R we write ps for the functionp — e'fl when the
integral is well defined.

Proposition 11 A semicharactep : M? (X) — R is continuous or{M® (X), +) endowed with the
weak topology if and only if there exists=fC°(X) such thatp = ps. In that casep is a bounded
semicharacter on IQI(X) if and only if f<O0.

Proof For a continuous and bounded functibrthe semicharacter; is well-defined. If a sequence
Hn in M2 (X) converges tqu weakly, we haveu,[f] — p[f], which implies the continuity ops.

Conversely, suppose is weakly continuous. Definé : X — [—o, ) by f(x) = logp(dx). If a
sequence, converges tax in X, obviously we havéy, — d in the weak topology, and

P(d) —  P(d),
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which means the continuity df. To see the boundednessfgfassume the contrary. Then, we can
find x, € X such that either of & f(x,) — c0 or 0> f(x,) — —oo holds. LetB, =|f(xn)|. Because
the measur%ém converges weakly to zero, the continuitypimeans

P(3:8) — 1,

which contradicts with the faq:t(ﬁ—lnéxn) _ g 100) _ g1 Thus,ps is well-defined, weakly contin-

uous onM® (X) and equal tg on the set of molecular measures. It is further equal 6o M® (X)
through the denseness of molecular measurmﬁihx), both in the weak and the pointwise topol-
ogy (Berg et al., 1984, Proposition 3.3.5). Finally suppose nowghas bounded and that there
existsx in X such thatf (x) > 0. By ps(ndy) = €"® which diverges wittn we see a contradiction.
The converse is straightforward. [ |

Let w be a bounded nonnegative Radon measure on the Hausdorff spamtiofious real-valued
functions onx, namelyw € M2 (C(X)). Given such a measure, we first define the subkgof
MP (X) as
Mo = {ne M2 (X)| sup p[f] < oo},
fesuppw
M, contains the null measure and is a semigroup.

Corollary 12 For any bounded Radon measusec M (C(X)), the following function is a
p.d. function on the semigroy,, +):

040 = [ o1 (). @

If suppw C C°(x) thend is continuous on M endowed with the topology of weak convergence.

Proof For f € suppw, pr is a well defined semicharacter dh, and hence positive definite. Since

o) <|w| sup Wf]
fesuppw

is boundedy is well defined and hence positive definite. Suppose now thatsup@®(x) and

let u, be a sequence dfl, converging weakly tql. By the bounded convergence theorem and
continuity of all considered semicharacters (since all considered funsdtiare bounded) we have
that:

n—oo Nn—oo

im 0(ko) = | o, im i () e ) = 91

and hence is continuous w.r.t the weak topology. |

When the measum@is chosen in such a way that the integral (4) is tractable or can be apptegima
then a valid p.d. kernel for measures is obtained; an example involving nextwer exponential
families is provided in Section 7.

Before exploiting this constructive representation, a few remarks sheupbinted out. When
using non-bounded functions (as is the case when using expectatienardsorder moments of
measures) the continuity of the integualis left undetermined to our knowledge, even when its
existence is ensured. However, whéis compact we have th&(_x) = CP(x) and hence continuity
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on M, of any function¢ constructed through corollary 12. Conversely, there exist continuous
p.d. functions or(ME(X), +) that can not be represented in the form (4). Although any continuous
p.d. function can necessarily be represented as an integral of seatitdrarby Theorem 10, the
semicharacters involved in the representation are not necessarily cugiasiin (4). An example of
such a continuous p.d. function written as an integral of non-continnigharacters is exposed in
Appendix A. It is an open problem to our knowledge to fully characterargiouous p.d. functions

on (M2 (X),+).

7. Projection on Exponential Families through Laplace’s Appoximation

The constructive approach presented in corollary 12 can be useddtigarto define kernels by
restricting the spadg(X) to subspaces where computations are tractable. A natural way to do so is
to consider a vector space of finite dimensswf C(X), namely the span of a free family ehon-
constant functionds, ..., fs of C(X), and define a measure on that subspace by applying a measure
on the weights associated with each function. The previous integrakesgegion (4) would then

take the form:
W= [ 201 ),
€]

wherew is now a bounded measure on a compact subsetR® andp is such thap[ f;] < +oo for

1 <i <s The subspace @(X) considered in this section is however slightly different, in order to
take advantage of the natural benefits of exponential densities gehbyaddl functionsfy, ..., fs.
Following Amari and Nagaoka (2001, p.69), this requires the definitioneo€timulant generating
function ofv with respect tof4, ..., fsas

W(8) ='logv[e2"1% )

po = exp (iei fi — UJ(9)> v,

is a probability density, which defines an exponential family of densitiex as 0 varies in©.
Rather than the direct span of functiofis..., fs on ©, this is equivalent to considering the hyper-
surface{y? 1 6i fi —W(0)} in spar f1, .., fs, —1}. This yields the following expression:

/ 321810 (g,

such that for each € O,

Following the notations of Amari and Nagaoka (2001)rjhparameters (or expectation parameters)

of pare defined as
~ def 1

fi
T

and® stands for th®-parameters off. We assume in the following approximations that © and
recall two identities (Amari and Nagaoka, 2001, Chapters 3.5 & 3.6):

Hfi], 1<i<s

S
0) d:ef_zleim — () = —h(8), the dual potential
i=

S
D(0]|6') = w(B) +X(8') — Zle‘”i/’ the KL divergence
i=
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where we used the abbreviatiom®) = h(pg) andD(8]|6’) = D(pe||pe’). We can then write

u{_iei fi— (@) = I (geiﬁi - w<e>>
~ (iéﬁm—wé)i(e B + () - w<e>>

= —|u/ (h(8) +D(8]®)).,

to obtain the following factorized expression,

(W) :e—lulh(é)/e MD®@18) ¢y dg). 5)

(©]

The quantitye M"®) was already evoked in Section 3.2 when multivariate normal distributions
were used to express the IGV kernel. Whéis an Euclidian space of dimensianthis is indeed
equivalent to defining = n+n(n+ 1)/2 base functions, more precisefy= x and fj; = xx;,
and dropping the integral of Equation (5). Note that such functions @réounded and thal,,
corresponds here to the set of measures with finite first and secosrdnoothents.

The integral of Equation (5) cannot be computed in a general caseusenef conjugate priors
can however yield exact calculations, such as in the setting proposedthyi @d Vert (2005).
In their work X is a finite set of short sequences formed over an alphabet, fundtians all pos-
sible indicator functions o andw is an additive mixture of Dirichlet priors. The kernel value
is computed through a factorization inspired by the context-tree weightingitalgo(Willems
et al., 1995). In the general case a numerical approximation can alseribedlusing Laplace’s
method (Dieudon@, 1968) under the assumption thatis large enough. To do so, first notice that

o@|e), .
ael ’6 e — ael ‘e 3] 7r]| - 07
aD(6|le) oy

5600, 6,08,  9i(®)

whereGg = [g;j(8)] is the Fisher information matrix computed@rand hence a p.d. matrix. The
following approximation then holds:

~ e—\u\h(é) w(é)e—%(e—é)TGQ(e—é)de _ e_|u|h(é) <2_T[> 2 w(9)

W —oo RS W/ /detGy

which can be simplified by choosing to be Jeffrey’s prior (Amari and Nagaoka, 2001, p.44),
namely

= \E/«/detGedB, whereV :/ \/detGg db.
©

Up to a multiplication by this provides an approximation ¢fby ¢ as

N def _|uh@) [ 2T :
o ~ BEe (M)
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The n-coordinates ofi1 are independent of the total weiglp, henced (2u) = ¢(u)2(%)§. This
identity can be used to propose a renormalized kernel for two measures as

k = =
) oms ) & W WRB | Jul+ W]

,)d_ef O(p+) e (NP ) <2 ‘“Hlﬂ)?

wherep, stands forpé“. Whenp andl are normalized such that their total weight coincides and is
equal toB, we have that

k<U7 U’) =€ ) (6)

wherepl” = p+ (/. From Equation (6), we see th@tcan be tuned in practice and thought of as a
width parameter. It should be large enough to ensure the consisten@plaice’s approximation
and thus positive definiteness, while not too large at the same time to avoichdiatgminance
issues. In the case of the IGV kernel this tradeoff can however bagilg since the inverse of the
IGV is directly p.d. as was proved in Proposition 3. However and to ouwladyge this assertion
does not stand in a more general case when the functigns fs are freely chosen.

8. Experiments on Images of the MNIST Database

We present in this section experimental results and discussions on draofid@mentations of
the IGV kernels on a benchmark experiment of handwritten digits classificath®e focus more
specifically on the kernelized version of the IGV and discuss its perfarenasith respect to other
kernels. The entropy kernel performed very poorly in the series pérxents presented here,
besides requiring a time consuming Monte Carlo computation, which is why wetdoonsider
it in this section. We believe however that in more favourable cases, notdigly the considered
measures are multinomials, the entropy kernel and its structural variantsgiirteBousquet, 2005)
may provide good results.

8.1 Linear IGV Kernel

Following the previous work of Kondor and Jebara (2003), we handwcted experiments on 500
and 1000 images (28 28 pixels) taken from the MNIST database of handwritten digits (black
shapes on a white background), with 50 (resp. 100) images for eaith Gigeach image we
randomly associate a set dfdistinct points which are black (intensity superior to 190) in the
image. In this case the set of componentd1s..,28} x {1,..,28} which we map onto points
with coordinates between 0 and 1, thus definiig= [0,1]2. The linear IGV kernel as described
in Section 3.2 is equivalent to using the linear kem@lxi,y1), (X2,¥2)) = XaX2 + y1y2 on a non-
regularized version of the kernelized-IGV. It also boils down to fitting €&@an bivariate-laws on
the points and measuring the similarity of two measures by performing variatioceagon on the
samples taken first separately and then together. The resulting varizarté® diagonalized to
obtain three diagonal variance matrices, which can be seen as perfd?@fgn the sample,

_ 2171 0 AN zél.,l 0 N Zlilf,l 0
Z(U) - ( O 2272 > ) z(l-l) - < 0 2/272 ) Z(Il ) - 0 2/2/72 .

1187



CUTURI, FUKUMIZU AND VERT

and the value of the kernel is computed through

/21122221125,

7Y
z1,122,2

kv(Ua IJ'I) =

This ratio is for instance equal to3B20 for two handwritten digits in the case shown in Figure 2.
The linear IGV manages a good discrimination between ones and zereedlnohes are shaped

511 = 0.0552 %), =0.0441 ¥}, = 0.0497
552 =0.0013 %), = 0.0237 %4 ,=0.0139

Figure 2: Weighted PCA of two different measures and their mean, with th&tipfincipal com-
ponent shown. Below are the variances captured by the first anddpdacipal compo-
nents, the generalized variance being the product of those two values.

as sticks, and hence usually have a strong variance carried by theaociinponent, followed by
a weak second component. On the other hand, the variance of zeroseismally distributed
between the first and second axes. When both weighted sets of poinisite®, the variance
of the mean of both measures has an intermediary behaviour in that rempedhis suffices to
discriminate numerically both images. However this strategy fails when usingemsmilhich are
not so clearly distinct in shape, or more precisely whose surface tharefficiently expressed in
terms of Gaussian ellipsoids. To illustrate this we show in Figure 3 the Gram méttie tinear
IGV on 60 images, namely 20 zeros, 20 ones and 20 twos. Though imagestan be efficiently
discriminated from the two other digits, we clearly see that this is not the casedre zeros and
twos, whose support may seem similar if we try to capture them through i@alsas. In practice,
the results obtained with the linear IGV on this particular task where so uteatiipthe learning
goal that the SVM’s trained based on that methodology did not convergmat cases, which is
why we discarded it.

8.2 Kernelized IGV

Following previous works (Kondor and Jebara, 2003, Wolf and Skes2003) and as suggested in
the initial discussion of Section 5, we use in this section a Gaussian kenviltbfo to incorporate

a prior knowledge on the pixels, and equivalently to define the reprogikemel Hilbert space

by using

(%)% +(y1-¥p)?
Lol Vo)

K((X1,y1), (%2, ¥2)) =€ 2
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Figure 3: Normalized Gram matrix computed with the linear IGV kernel of twentyesaf “0”,
“1" and “2” displayed in that order. Darker spots mean values closer stfidwing that
the restriction to “0” and “1” yields good separation results, while “0” a@tican hardly
be discriminated using variance analysis.

As pointed out by Kondor and Jebara (2003), the pixels are no loeger & points but rather as
functions (Gaussian bells) defined on the components gpatié. To illustrate this approach we
show in Figure 4 the first four eigenfunctions of three measpgesly and % built from the
image of a handwritten “1” and “0” with their corresponding eigenvalussyell as for images of
“2" and “0” in Figure 5.

Settingo, the width ofk, to define the functions contained in the RKHSs not enough to fully
characterize the values taken by the kernelized IGV. We further neegfiteed, the regularization
parameter, to control the weight assigned to smaller eigenvalues in theusp@ttGram matrices.
Both parameters are strongly related, since the value @introls the range of the typical eigen-
values found in the spectrum of Gram matrices of admissible bases, wheeeds as a scaling
parameter for those eigenvalues as can be seen in Equation (3). Indeepa very smalb value,
which means is only defined by peaked Gaussian bells around each pixels, yieldsdihgdom-
inant Gram matrices very close to the identity matrix. The resulting eigenvaduek/t are then
all very close to%, the inverse of the amount of considered points. On the contrary, avahge
for o yields higher values for the kernel, since all points would be similar to eadr atid Gram
matrices would turn close to the matfliy 4 with a single significant eigenvalue and all others close
to zero. We address these issues and study the robustness of thetfinalad the k-IGV kernel in
terms of classification error by doing preliminary experiments whereipathdo vary freely.

8.3 Experiments on the SVM Generalization Error

To study the behaviour and the robustness of the IGV kernel undereiff parameter settings, we
used two ranges of values farando:
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0.276 0.168 0.184

0.169 0.122

0.119

0.0691 0.0962 0.0886

Figure 4: The four first eigenfunctions of respectively three empiroedsuresy (first column),
Ho (second column) and5 (third column), displayed with their corresponding eigen-
values, using) = 0.01 ando = 0.1.
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0.146 0.168 0.142

. . . . . . +
Figure 5: Same representation as in Figure 4, wthi and%.
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ne102x{0.1,0.3,0.5,0.8,1,1.5,2,3,5,8,10,20}
o € {0.05,0.1,0.12,0.15,0.18,0.20,0.25,0.3}..

For each kerndky defined by ad@,n) couple, we trained 10 binary SVM classifiers (each one
trained to recognize each digit versus all other digits) on a training foldio560 images dataset
such that the proportion of each class was kept to be one tenth of theiggtadfshe training
set. Using then the test fold, our decision for each submitted image was degdrpyirthe highest
SVM score proposed by the 10 trained binary SVM's. To determine trairtest points, we led a
3-fold cross validation, namely randomly splitting our total dataset into 3 bethaabsets, using
successively 2 subsets for training and the remaining one for testingqtloaighly 332 images for
training and 168 for testing). The test error was not only averagedase ttross-validations folds
but also on 5 different fold divisions. All the SVM experiments in this eipental section were
run using the spidértoolbox. Most results shown here did not improve by choosing diffesefit
marginC parameters, we hence just €et « as suggested by default by the authors of the toolbox.

102
01 03 05 08 1 15 2 3 5 8 10 20

T T T T T
o .

0.1 e<22% 1

012 e<19.5% 7

0.15 b

e<22%

0.18 T

0.2 4

0.251

Figure 6: Average test error (displayed as a grey level) of diffegarfivl handwritten character
recognition experiments using 500 images from the MNIST database (eeclas a set
of 25 to 30 randomly selected black pixels), carried out with 3-fold (2 faintng, 1 for
test) cross validations with 5 repeats, where parametérsgularization) and (width
of the Gaussian kernel) have been tuned to different values.

The error rates are graphically displayed in Figure 6 using a grey-plmleNote that for this
benchmark the best testing errors were reached usingadue of 012 with ann parameter within
0.008 and 02, this error being roughly 18%. All values below and on the right side of this zone

1. seenttp://lwww.kyb.tuebingen.mpg.de/bs/people/spider/
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are below 35%, which is the value reached on the lower right corner. All standaratiens with
respect to multiple cross-validations of those results were inferior3% 2the whole region under
22% being under a standard deviation of 1%. Those preliminary tests shabwhéhIGV kernel
has an overall robust performance within what could be consideracgasnd range of values for
bothn ando. Note that the optimal range of parameter found in this experiment only appliks
specific sampling procedure that was used in this case (25 to 30 pointshagmabt be optimal for
larger matrices. However the stability observed here led us to discardihgiftuning ofc andn
when the amount of sampled points is different. We simply appdied0.1 andn = 0.01 for the
remaining of the experimental section.

As in Kondor and Jebara (2003), we also compared the results obtaittedhes k-IGV to
the standard RBF kernel performed on the images seen as binary vettfsl}?®*2® further
normalized so that their components sums up to 1. Using the same rargthfiirwas previously

=4

tested, we applied the formuldz, Z) = e TZH Since the RBF kernel is grounded on the exact
overlapping between two images we expect it to perform poorly with fewipixed significantly
better wherd grows, while we expect the k-IGV to capture more quickly the structureediniages
with fewer pixels through the kernel This is illustrated in Figure 7 where the k-IGV outperforms
significantly the RBF kernel, reaching with a sample of less than 30 pointf@mpence the RBF
kernel only reaches above 100 points. Taking roughly all black pointsdrimages, by setting

d = 200 for instance, the RBF kernel error is still.%, an error the IGV kernel reaches with
roughly 35 points.

Finally, we compared the kernelized-version of the Bhattacharrya lkéxg proposed in Kon-
dor and Jebara (2003), the k-IGV, the polynomial kernel and the RB8Rek by using a larger
database of the first 1,000 images in MNIST (100 images for each of thegit§) dselecting ran-
domlyd = 40,50,60,70 and 80 points and performing the cross-validation methodology préyious
detailed. The polynomial kernel was performed seeing the images as bawtoys of{0,1}28<28
and applying the formulé, 4(z,Z) = (z-Z +b)9. We followed the observations of Kondor and
Jebara (2003) concerning parameter tuning for the k-B kernel batifout that it performed better
using the same set of parameters used for the k-IGV. The results e sedable 1 of the k-IGV
kernel show a consistent improvement over all other kernels for thishipeark of 1000 images,
under all sampling schemes.

We did not use the kernel described by Wolf and Shashua (2003) iexp@riments because
of its poor scaling properties for a large amount of considered pointieebh the kernel proposed
by Wolf and Shashua (2003) takes the form of the produad ebsines values where is the
cardinality of the considered sets of points, thus yielding negligible valuesactipe wherd is
large as in our case. Their SVM experiments were limited to 6 or 7 points while vsdyremn-
sider lists of more than 40 points here. This problem of poor scaling whichaictipe produces a
diagonal-dominant kernel led us to discarding this method in our compadbsemigroup ker-
nels presented in this paper are grounded on statistical estimation, whick thekevalues stable
under variable sizes of samples through renormalization, a propergdsivéh the work of Kondor
and Jebara (2003). Beyond a minimal amount of points needed to pestarnd estimation, the
size of submitted samples influences positively the accuracy of the k-I@ékeA large sample
size can lead however to computational problems since the value of the-kdf®¥l requires not
only the computation of the centered Gram-matf{xand a few matrix multiplications, but also
the computation of a determinant, an operation which can quickly become jisehgiince it has a
complexity ofO(d?2) whered is the size of the considered Gram matrix. Although we did not opti-
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0.7

i — IGV Kernel
/"\ —— RBF Kernel
\\

Error rate

0 I I I I I I I I ]
10 20 30 40 50 60 70 80 90 100

Amount of Sampled Pixels

Figure 7: Average test error with RBB & 0.2) and k-IGV = 0.1 andn = 0.01) kernels led on
90 different samplings of 500 images. The curves show an overall themthoth kernels
perform better when they are given more points to compute the similarity between
images. If we considat = 200, the RBF kernel error isD75, that is 15%, a threshold
the IGV kernel reaches with slightly more than 35 points. Each samplingspmmels to
a different amount of sampled poirdsthose samplings being ordered increasingly with
d. Each sampling has been performed independently which explains the mamih
those curves.
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mize the computations of both k-B and k-IGV kernels (by storing precompuatiees for instance
or using numerical approximations in the computation of the determinant), thisutatigmal cost
in the case of a naive implementation, illustrated by the running times displayetlmTaemains
an issue that needs to be addressed in practical applications.

Sample Size Gaussian Polynomial k-B k-IGV
0=01|b=10;d=4|n=0.01;0=01|n=001,0=01
40 pixels 32.2(1) 31.3(1.5) 19.1 (1500) 16.2 (1000)
50" 28.5(1) 26.3 (1.5) 17.1 (2500) 14.7 (1400)
60" 24.5(1) 22.0(1.5) 15.8 (3600) 14.6 (2400)
70" 22.2 (1) 19.5(1.5) 15.1 (4100) 13.1 (2500)
80" 20.3(1) 17.4 (1.5) 14.5 (5500) 12.8 (3200)

Table 1: SVM Error rate in percents of different kernels used on ahraark test of recognizing
digits images, where only 40 to 80 black points where sampled from the origiagks.
The 1,000 images where randomly split into 3 balanced sets to performvedatation (2
for training and 1 for testing), the error being first averaged overch splits, the whole
process being repeated again over 3 different random samples ¢§.pBianning times
are indicated in minutes.

9. Conclusion

We presented in this work a new family of kernels between measures. 8unhlkare defined
through prior functions which should ideally quantify the concentration mieasure. Once such
a function is properly defined, the kernel computation goes through tieation of the function
on the two measures to be compared and on their mixture. As expected wdigg deth con-
centration of measures, two intuitive tools grounded on information theahparbability, namely
entropy and variance, prove to be useful to define such functiongir €Rkpression is however
still complex in terms of computational complexity, notably for the k-IGV kernedbmputational
improvements or numerical simplifications should be brought forward torerssteasible imple-
mentation for large-scale tasks involving tens of thousands of objects.

An attempt to define and understand the general structure of p.d. funciomeasures was
also presented, through a representation as integrals of elementargrigikmown as semicharac-
ters. We are investigating further theoretical properties and charaatteriz of both semicharacters
and positive definite functions on measures. The choice of alternative pn semicharacters to
propose other meaningful kernels, with convenient properties on mateneasures for instance, is
also a subject of future research. As for practical applications, ersels can be naturally applied
on complex objects seen as molecular measures. We also expect to penfitien €xperiments to
measure the performance of semigroup kernels on a diversified samgialtgnging tasks, in-
cluding cases where the space of components is not a vector spadsy mdtan the considered
measures are multinomials on a finite component space endowed with a kernel.
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Appendix A : an Example of Continuous Positive Definite Functon Given by
Noncontinuous Semicharacters

Let X be the unit interval0, 1] hereafter. For anyin X, a semicharacter aM® (X) is defined by

pn () = €00,

whereh (x) = ljgy (X) is the index function of the interv¢0,t]. Note thatpy, is not continuous for
t € [0,1) by Proposition 11.
Forpe M2 (), the functiort — p([0,t)) is bounded and non-decreasing, thus, Borel-measurable,
since the discontinuous points are countable at most. A positive definitediaon M (X) is de-
fined by

(W = /01 Ph (Wdt.

This function is continuous, while it is given by the integral of noncontirsueemicharacters.
Proposition The positive definite functiapis continuous and exponentially bounded.

Proof Supposg, converges tpuweakly inMP (X). We writeFs(t) = i ([0,t]) andF (t) = p([0,t]).
Becausegl, andp are finite measures, the weak convergence means

Fat) —  F(t)

for any continuous point oF. Since the set of discontinuous pointsffis at most countable,
the above convergence holds almost everywherX amth Lebesgue measure. From the weak
convergence, we havg (1) — F(1), which means there exisk8 > 0 such that syp ey Fn(t) <

M. By the bounded convergence theorem, we obtain '

1 1
lim ¢ () = lim an<t>dt:/ FOdt— ¢ (u).
0 0

Nn—oo n—oo

For the exponential boundedness, by taking an absolute s@jye= e“X) we have
1

B0 < | alWdt=a(k.

0
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Abstract

When acquiring an image of a paper document, the image promettie back page sometimes
shows through. The mixture of the front- and back-page imaiges obtained is markedly nonlin-
ear, and thus constitutes a good real-life test case foimeari blind source separation.

This paper addresses a difficult version of this problemresmonding to the use of “onion
skin” paper, which results in a relatively strong nonlirisaof the mixture, which becomes close
to singular in the lighter regions of the images. The separas achieved through the MISEP
technique, which is an extension of the well known INFOMAXthal. The separation results
are assessed with objective quality measures. They show@ovement over the results obtained
with linear separation, but have room for further improveime

Keywords: ICA, blind source separation, nonlinear mixtures, nordingeparation, image mix-
ture, image separation

1. Introduction

When an image of a paper document is acquired, e.g. through scanhatggmphing or photo-
copying, the image printed on the back page sometimes shows through. Tbisnally due to
partial transparency of the paper, and results in the acquisition of a modttine images from the
front and back pages. Itis usually possible to obtain two different migtimeacquiring both sides
of the document. This is a situation that seems suited for handling by blindesseparation (BSS)
techniques. The main difficulty is that the images that are acquired are ramtimetures of the
original images printed on each of the sides of the paper. This is, theyefointeresting test case
for nonlinear BSS methods, with potential application in scanners, phdaesamd in document
processing in general.

This paper addresses a difficult instance of this problem, in which the fregdes used is of the
“onion skin” type. This creates a mixture that has a relatively strong naniityeand that is close
to singular in the lighter parts of the images. For separation we use MISEEh vgha nonlinear
independent component analysis (ICA) technique (Almeida, 20033ERIis a generalization of
the well known INFOMAX technique of linear ICA (Bell and Sejnowski, 539extending it in
two directions: (1) being able to handle nonlinear mixtures, and (2) usitpgibnonlinearities that
adapt to the statistical distributions of the extracted components.

(©2005 Lus Henrique Martins Borges de Almeida.
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Besides the separation itself, an important practical issue in this specifitiaitisathe align-
ment of the two mixture images. One might think that, by an appropriate translatibrotation,
the images from the two sides of the document could be brought into goodnaigrwith each
other. It was found, however, that scanners normally introduce sjigbitnetrical distortions that
make it necessary to use local alignment techniques to obtain an image alighatdatadequate
for separation. That alignment issue is also addressed in this papauskedtis an important step
of the image processing that needs to be done.

Published results concerning nonlinear BSS in real-life problems are siilfe®. To the au-
thor’s knowledge, and apart from an earlier version of the preserit pAlmeida and Faria, 2004),
the only published report of blind source separation of a real-life ncerlingxture in which the
recovery of the original sources can be confirmed is (Haritopoulols, &0®2). Some other appli-
cations of nonlinear ICA to real-life data, e.g. (Lappalainen and HonROR0; Lee and Batzoglou,
2003), do not provide means to confirm whether real sources wereard.

This manuscript’s structure is as follows: Section 2 provides a brief ewreof nonlinear
separation methods. Section 3 presents a short summary of the MISEP ntetbotline its basic
principles and to set the notation. Section 4 describes the experimentiéia@ondncluding image
printing, acquisition and alignment. Section 5 presents the experimental regitth are assessed
with objective measures of separation quality. Section 6 concludes.

In the printed version of this paper some of the details of some images may bedotst the
printing process. However, the paper is freely available online, and ieldwtronic online ver-
sion one can zoom in on the images (scatter plots and images of sourcesematdr separated
components) to better view the details. In the pdf version/(MB) the images are encoded in
JPEG format and therefore show some artifacts, which become noticeatliese inspection. The
postscript version shows the images without artifacts, but correspgoradtarger file & 14 MB).
The two versions are available at
http:/iwww.Ix.it.pt/ ~Ibalmeida/papers/AlmeidaJMLRO5. pdf , and
http:/www.Ix.it.pt/ ~Ibalmeida/papers/AlmeidaJMLRO5.ps.zip

The source and mixture images used in this paper are available online at

http:/www.Ix.it.pt/ ~Ibalmeidalica/seethrough
The separation routines that were used to produce the results are lavailab
http:/www.Ix.it.pt/ ~Ibalmeida/ica/seethrough/code/jmir05

2. Overview of Nonlinear ICA Methods

In this section we provide a short overview of some of the main nonlinearn@#thods. This
overview is necessarily very brief, and the reader is referred to anview paper (Jutten and
Karhunen, 2004) for more complete information.

It is interesting to note that one of the very early works on ICA (Schmidhut#92) already
proposed a nonlinear method. Although being based on an interestingpl@ifminimization of
predictability of each extracted component by the other components) itatfeey impractical and
computationally heavy.

The essential uniqueness of the solution of linear ICA (Comon, 1994thegwith the greater
simplicity of linear separation and with the fact that many naturally occurring n&stare essen-
tially linear, led to a quick development of linear ICA. The work on nonlin€z& lprobably was
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slowed down mostly by its inherent ill-posedness and by its greater complexttgevelopment
of nonlinear methods has continued steadily (e.q. Burel, 1992; Deco an@kiBrl995; Marques
and Almeida,, 1999; Palmieri et al., 1999; Theis et/al., 2003). The methodkdhatreceived the
strongest attention in recent years are very briefly outlined in the nex¢j@phs.

Ensemble learning (Lappalainen and Honkela, 2000) is a Bayesian mettpdsasuch, uses
prior distributions as a form of regularization, to handle the ill-posednesgsdgm. It is computa-
tionally heavy, but has produced some interesting results, including amsextteto the separation
of nonlinearly mixed dynamical processes (Valpola and Karhunen,)2002

Kernel-based nonlinear ICA (Harmeling et al., 2003) essentially considiaa#r ICA per-
formed on a high-dimensional space that is a nonlinear transformation ofi¢feal space of mix-
ture observations. In the form in which it was presented in the cited referé used the temporal
structure of the signals to perform the linear ICA operation. This appareelbed it to effectively
deal with the ill-posedness problem, and allowed it to yield some impressivisres artificial,
strongly nonlinear mixtures. The method seems to be quite tractable, in compaitéions.

MISEP (Almeida, 2003b) is an extension of INFOMAX (Bell and Sejnow4ki95) into the
nonlinear domain. It uses regularization to deal with the ill-posednesgpnpbnd is computation-
ally tractable. It is described in more detail in the next section, since it is theocheited in the
present paper.

A special class of methods that deserves mention deals with nonlinear mixtoidsare con-
strained so as to make the result of ICA essentially unique, as in linear IBAMDst representative
class corresponds to the so-called post-nonlinear (PNL) mixtures (datbButten, 1999). These
are linear mixtures followed by component-wise invertible nonlinearities. Tieedst of this class
resides both in its unique separability and in the fact that it correspondsltidentified practical
situations: linear mixtures observed by nonlinear sensors. PNL mixtudedhain extensions have
had a considerable development (see Jutten and Karhunen, 20@fefences).

3. Overview of the MISEP Method

MISEP (Almeida, 2003b) is a generalization of the INFOMAX method of lin€aA I(Bell and
Sejnowski, 1995). We recall that the latter method, although initially introduoe@r a principle
of maximum information preservation, was later shown to be interpretable asiauma likelihood
method (Pearlmutter and Parra, 1996), and also as a method based on theatimimizhe mutual
information (MI) of the extracted components (Hyinen and Oja, 2000). We briefly recall the
latter interpretation, albeit using a reasoning different from the onengivehat reference.

If Y is a vector with random componentswe define the mutual information of the components
of Y as

1(Y) = S H(Y) —H(Y) (1)
|
where, for continuous variables, as is the case htdenotes Shannon’s differential entropy
H(X) =~ [ px)logp(x)dx. @

In this equationp(x) is the probability density of the scalar random varia¥léwe denote proba-
bility density functions byp(-), the function’s argument clarifying which random variable is being
considered; this is a slight abuse of notation, but helps to keep expresampler and does not cre-
ate any confusion). A similar definition holds feli(X), whereX is a random vector, the difference
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being that the random variable is now multidimensional and the integral in (@nfes a multiple
integral, encompassing the whole domairXof

Mutual information is a good measure of statistical dependehfé) measures the amount
of information that is shared among the random varialflest is always positive, except if these
variables are mutually statistically independent, in which case it is 2¢€¥0. is also equal to the
Kullback-Leibler divergence between the product of the marginalitesis[]; p(y;) and the true
joint density, p(y). These two densities are equal if and only if the compon¥négse mutually
independent.

Minimization of the mutual information of the extracted components is therefoomd grite-
rion for independent component analysis. An interesting and usefpépty of mutual information,
that we shall use ahead, is that if we apply invertible, possibly nonline@asformations to the ran-
dom variablesz; = Y;(Y;), the mutual information doesn’t chandéz) = I(Y).

INFOMAX uses a network with the structure depicted in Fig. 1. Blécgerforms the sepa-
ration proper, the separated components bgin§ is linear, corresponding just to a product by a
matrix. The blocksp; are auxiliary, being used only during the training phase. Each of thesksblo
performs an invertible, increasing transformat®e- ;(y;), whose counter-domain is the interval
(0,1).

ol —_ yl ()Ul IS Zl

Figure 1: Network structure used in INFOMAX and in MISEP. In INFOMAK is an adaptive
linear block, and thg); are fixed a priori. In MISEH; can be nonlinear, and bokhand
yJ; are adaptive.

If we choose eacly; as the cumulative distribution function (CDF) of the correspondini is
easy to see that each of tAewill be uniformly distributed in(0, 1), resulting inp(z) = 1 for z in
that interval, andd (Z;) = 0. Therefore,

) = 1(2)
— YH@)-H@)

= —H(2). 3)

Mutual information is hard to minimize directly, but (3) shows that, under thedstateditions, this
minimization is equivalent to the maximization of the output entrbigy ), a maximization which
is much easier to achieve. INFOMAX works by optimiziRgsuch thatH(Z) is maximized. We
won't go into the details here, but the reader can consult (Bell and @skno01995) or (Hywérinen
and Oja, 2000) for a deeper discussion.

As said above, MISEP extends INFOMAX in two directions. The first is ¢paiple to deal with
nonlinear mixtures. This is achieved by allowing bldekin Fig./1, to be nonlinear. We have often
implemented this block by means of a multilayer perceptron (MLP), but esserdiafiyadaptive
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nonlinear structure can be used. For example, a radial basis functieorkehas been used in
(Almeida, 2003a), and a specialized structure in (Almeida and Faria, 2004)

The second direction in which MISEP extends INFOMAX, is by making theuutpnsforma-
tionsy; adaptive. As we have seen above, egicbhould correspond to the CDF of the correspond-
ing extracted source, for the maximization of the output entropy to comelsfpothe minimization
of the mutual information of the extracted components. The a-priori chdittreeap; functions in
INFOMAX can be seen as a user-made, prior assumption about the distibof the sources. In
MISEP they; blocks are adaptive, being implemented by means of adequately constvélifsd
It can be shown that maximization of the output entrbjfy ) leads each of these blocks to estimate
the corresponding CDF, while simultaneously leadihp minimize the mutual informatioh(Y)
(Almeida, 2003b). Therefore, maximizing the output entropy simultaneouwslpta tha; blocks
and leads to the minimization of the mutual informati@¥ ).

An issue that has frequently been discussed is whether nonlinear blircesseparation, based
on ICA, is feasible in practice. This debate has to do with the fact that namli@A, with no
additional constraints, is an ill-posed problem, having an infinite numberloficas that are not
related to one another in any simple way (Darmois, 1953;dtipen and Pajunen, 1999; Marques
and Almeida, 1999). Therefore we cannot expect that, just by extgaictitependent components,
one will be able to recover the original sources that were nonlinearly miXed is to be contrasted
with the situation in linear ICA/BSS in which, under very mild constraints, therdaegssentially
only one solution (Comon, 1994). In linear ICA, if independent comptsare extracted, they
must correspond to the original sources, apart from possible scalthgexmutation. This author
has argued that in the nonlinear case, when the mixture is not too strongipe®ar, adequate
regularization should allow the handling of the ill-posedness of nonlinear $Gll allowing the
approximate recovery of the sources. The nonlinearities considered peier would be classified
by the author as of “medium intensity”. As we shall see below, approximatesgecovery was
possible, and the indetermination of nonlinear ICA didn’t lead to inadeqegration.

4. Experimental Setup

In this section we describe the experimental setup, including details of imagmgr acquisition
and preprocessing

4.1 Source Images

We used five image mixtures as test cases. The corresponding paitg@# snages are shown in
Figs. 2 and 3. The main properties of these image pairs are as follows:

1. In the first pair, each image consists of 25 uniform bars with intensitieésatkauniformly
spaced between black and white, and are randomly ordered. The figs hmaa vertical bars,
and the second image is just the first one rotated By BBus, by construction, the intensities
of the two images are independent, and each of the images has an intenshytibstwhich
is close to uniform.

2. The second pair consists of images of natural scenes with a relatigblgiégree of variability
and relatively small details. This causes a strong “mixing” of intensities, anthih sources
are approximately independent from each other. However, the smaillsdetad to make
image superposition (due to imperfect separation) hard to notice visually.
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In this example we are creating mixtures that involve natural images, printed text and graphs. The special
characteristic of printed text and graphs is that they normally involve just two intensity levels (black and white)
although, due to the above mentioned noise, these will appear, in the scanned images, as two clusters of
intensity levels.

b

The separation of mixtures of two-level images, such as printed text, may be much easier than the separation of
grayscale images. In fact, at least in the case of mixtures that are not too strong, a simple thresholding
procedure may yield the desired results. Such a procedure can be casily performed by hand with m
processing programs, and should not be hard to automate. In such a case the use of more general blind source
separation methods might be an overkill, both because it would involve a much larger amount of processing
and because it might actually yield worse results. This is an extreme case in which prior knowledge about the
sources can strongly simplify the separation process.

In the case of grayscale mixtures, the use of a separation method based on a good model of the physical mixing
process should yield much better results that the use of a generic nonlinear separation method. A physical
model could have a small number of parameters 1o be estimated, and would thus allow a much more precise
estimation. Furthermore, it might avoid the inherent ill-posedness of nonlinear blind separation, which is
currently addressed through regularization. The parameters of such a model could be estimated by an
independent component analysis criterion.

Another issue of interest is the definition of separation criteria that are more suited for images or for printed
documents than statistical independence. In fact, images and/or text from the opposite pages of a printed
document can casily happen not to be independent from one other. For examples, images of landscapes tend to
be lighter on the top than on the bottom, inducing a correlation between intensities of both. Also, in printed text
with regularly spaced lines, the lines from both sides of the paper may happen to fall on top of each other, or
the lines from one side may fall on the intervals of the lines from the other side. also inducin: significant
correlation between intensities from both sides of the document. It would be interesting to use criteria based on
anotion of image complexity, but these may not be easy to define, and may be even harder to use as criteria for
optimizing a source separation system.

Figure 2: The first three pairs of source images, before printing. Thgasaave been cropped, and
one image in each pair has been horizontally flipped, to correspond to it®pas the
acquired images. Each image was then reduced in resolution and alignedespond,
as well as possible, to the acquired images.
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Separation of nonlinear image mixtures

When acquiring an image of a printed document, the image printed on the
opposite page often shows through, due to partial transparency of the
paper. Here we are dealing with quite a strong case of that effect, because
we’re using onion skin paper which is quite transparent.

The mixture that is obtained is rather nonlinear, as can be observed from
the top figure on the right, which shows a scatter plot of the intensities of
corresponding pairs of points from the two pages of a printed document.
The scatter plot of the original images, shown in the bottom figure, filled a
square, and had only a relatively small number of discrete intensity levels
for each image. The fact that the shape of the scatter plot of Fig. 1 is very
different from a parallelogram shows that the mixture was strongly
nonlinear. The fact that this scatter plot becomes quite narrow in the upper-
tight corner (which corresponds to the lighter intensities in both images)
indicates that, for those intensities, the mixture is close to singular, Finally,
the fact that the discrete levels of Fig. 2 became largely blurred in Fig. 1 is
due 10 noise in the process. The process leading from the sources 10 the
abservations involved printing the images, on both sides of  sheet of onion
skin paper, at 1200 dpi, with a black and white laser printer (with the
inherent halftoning of gray levels), and then scanning both sides of the
printed sheet at 100 dpi. The noise is due, at least, to the printing process
(including the halftoning), to the scanning process and o the non-
uniformity in the onion skin paper, especially in its transparency.

The purpose of separation is o recover, from the mixed images that are
obtained by scanning both faces of the printed document, the images that
had been printe each of its faces, with as little interference from the
other image as possible.

In this example we are creating mixtures that involve natural images, printed text and graphs. The special

[ 1. Introduction

Within the area of unsupervised learning, a problem that has been receiving increasing attention is the one of

transforming a set of patterns into new patterns whose components are mutually statistically independent.

Consider that we are given d-dimensional input data vectors Xx=(x,.x,.---.x,) obeying a probability

distribution with density p_. In general, the various components x of the data will be statistically

interdependent. The problem that we wish to address consists of finding output vectors
¥= ey syy) = fxy

, are mutually i

)

such that the output

If d’=d and fis invertible, we are simply recoding the data without any loss of information. If d”<d we are
reducing the amount of information present in the data. In the latter case. we usually wish (o ensure that the
extracted features y, are the most important ones, in some appropriate sense.

In this paper we will discuss the first sitwation, d”=d . If the output components are independent, then

ry=[]r, 00 @
=l
i.e., the probability density can be factored into a product of the marginal densities of the output components.

If we assume that the data X result from a linear of ind Cl
the function ft0 be linear.

then we can restrict

There are several reasons for the growing interest that independent component analysis has been receiving in
recent yea

¢ It can afford a means to perform source separarion. Assuming that the observed data x result from an
unknown transformation of independent variables z . i.e.
X=g(z) 3y
where the 2=(z.z,,-+,z,) are unknown source, one may ask whether the independent output
components y, that we obtain will coincide with the original z,. We will discuss this issue ahead.

Figure 3: The fourth and fifth pairs of source images, before printinge iage in the last pair has
been horizontally flipped. In the fourth pair no flipping has been perfdrrimeorder to
keep the text's readability. Note, however, that the right-hand image op#iaappears
flipped in the mixtures shown ahead.
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3. The third pair consists of an image of a natural scene, on one side jpdplee, and an image
of printed text (Times New Roman, 12-point font) on the other side. Sincetéas many
large changes of intensity in very small areas, a good “mixing” of the inteaditen both
images takes place, and the two sources are approximately independent.

4. The fourth pair consists of printed text on both sides of the paper, Wétv graphs on one
of the sides. Once again, the intensities from the two sides of the paperefirenixed,
and therefore approximately independent. The peculiarity of this pair isdimae printed
text has a much larger area of white than of black, only a very small pagenf pixels is
simultaneously dark on both sides of the paper. This has some influence eaghration
results that are obtained, as we shall see.

5. The fifth pair consists of images of natural scenes that have large @aith quasi-uniform
intensity. This causes a relatively weak mixing of intensities, making the intensii@stiie
two sides of the paper non-independent. This fact has some impact cepiraison results,
as we shall see. The large, relatively uniform areas of the images makdegctseparation
easier to notice visually than in case 2 above.

The leftmost columns of Figs.| 4 and 5 illustrate the joint distributions of the saorages.
These plots deserve some comments. First of all we should note that, foirthdigributions of
the two sources of each pair to be meaningful, the source images had tjubkddn resolution
and aligned, so as to be in the same relative position as in the acquired mixkmethat pur-
pose each source image was reduced in resolution to the same size asdbparating acquired
mixture images, and was then aligned with the corresponding separatedreamhfrom nonlinear
separation (see Section 4.3 for the alignment procedure and Sectiom the fmnlinear separation
procedure). Both the resizing and the alignment procedures involvadibimterpolation of the
pixel intensities. The result of such interpolation is visible in the edges ofdhednd of the text
characters, in Figs. 2 ahd 3, which show the source images after reasimirelignment.

Some more comments are useful for a better understanding of the souritriticns:

e The “grid” look of the first scatter plot reflects the fact that each of theree images had
only 25 equally spaced intensities. Some intermediate intensities also appeapiot tthee
to the intensity interpolation performed in the resizing and alignment processes

e The second scatter plot shows that, in this case, the two sources are ialiepstndent from
each other. The plot shows some evidence of saturation in the lightesttieten§the right-
hand source image (vertical axis of the scatter plot). Since this saturatiorilie source
image, before printing, it should have no significant influence on the misingeseparation
processes.

e The third and fourth scatter plots also show that the correspondingespaiis are approxi-
mately independent. The distributions of the sources that are images dfidexttzat a very
large percentage of their pixels is white. The non-white pixels show a canisistribution,
instead of just a black level, due to the interpolation performed in the resinthglagnment
processes. The interpolation effect is much more noticeable here thanfirsthmage pair
because, the character sizes being much smaller than the widths of thebaysixels fell
on black-white edges, and only a very small percentage fell completely viithok regions
of the characters.
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Figure 4: Scatter plots of the first three image pairs. From left to right:ceounages, acquired
images, linear separation and nonlinear separation. The three rovesmand to the
three pairs of images of Fig. 2. In each scatter plot, the horizontal axisspmnds to
intensities from the left-hand image and the vertical axis to intensities from thielrand
image. The scale of each plot ranges from black (left/bottom) to white (right/Egch
scatter plot shows 5000 randomly selected points from the correspopaiingf images.
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Figure 5: Scatter plots of the fourth and fifth image pairs. From left to rightirce images, ac-
quired images, linear separation and nonlinear separation. The two coresgond to
the two pairs of images of Fig. 3.

e The fifth scatter plot clearly shows that the sources of this pair are nepérdlent. The plot
shows some evidence of intensity quantization in the darkest levels of thealedt-source
image (horizontal axis of the scatter plot), and of saturation in the lightestsitie=nof the
same image. Since the quantization and saturation are in the source image,pbiefiing,
they should have no significant influence on the mixture and separatioags®s.

4.2 The Mixture Process: Printing and Acquisition

The images from each pair were printed on opposite faces of a shesibof skin paper. Printing

was done with a 1200 dpi laser printer, using the printer's default hafigosystem. Both faces
of the sheet of onion skin paper were then scanned with a desktopescaram resolution of 100
dpi. This low resolution was chosen on purpose, so that the printert®hizal§ grid would not be

apparent in the scanned images. The scanner’s “descreening” ¢pliose purpose is to minimize
the visibility of the halftoning grid) was turned on.

We tried to keep the printing and acquisition processes as symmetrical aslgrosise two
source images in each pair were handled in an identical way, and the twiveatmixture images
in each pair were also handled in an identical way. This implied disabling tm@eca “automatic
image adjustment” feature, which adjusts the acquired image’s brightnedsastcemd gamma
value in a manner that is not specified in the scanner’s documentation.

The second column of scatter plots of Figs. 4 and 5 shows the joint distribuifdhe mixture
components (after alignment, which is discussed in the next section). &@peslof the mixture
distributions show that the mixtures are nonlinear. This is especially clear iirshémage pair,
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in which the joint distribution of the sources is approximately uniform within aasgu A linear
mixture process would have resulted in a mixture uniformly distributed withinalpbogram. The
observed distribution has a shape that is far from a parallelogram ani than-uniform, being
more dense toward darker intensities than toward lighter ones. Both faitatethat the mixture
is nonlinear. The deviation from a parallelogram shape gives an idea afhtlount of nonlinearity.

The mixture distribution, in the first pair, shows no traces of the discretesityelevels that
were present in the source images. This is due to noise introduced by theerprbeess. This
noise comes from three sources, at least: (1) the printing process, wiktalitioning to reproduce
grayscale levels; (2) the noise from the scanning process (from tetstsrof the same scanner this
noise appears to be rather weak, essentially amounting to the intensity qtiantizi@ 256 levels),
and (3) inhomogeneity of the onion skin paper (from our experience pipisaas to be the strongest
source of noise). Later we'll have the possibility to have a better idea abthbamount of noise
introduced by the mixture process.

On close inspection, the mixture scatter plots show that the points are atramgesquare grid.
This is a result of the intensity quantization performed by the scanner.

4.3 Preprocessing

In the preprocessing stage, in each pair of acquired images one of thefirsthorizontally flipped,
so that both images would have the same orientation. Then the images of @askneaaligned
with each other by hand. In preliminary tests we found that even a veejutalignment, using
translation, rotation and shear operations on the whole images, couldrfmmpa good simulta-
neous alignment of all parts of the images. This was probably due to slightegecal distortions
introduced by the scanner. It indicated that an automatic, local alignmen&eded. The use of
the automatic local alignment relaxed the demands placed on the initial manuaiafgn

In the alignment procedure that was finally adopted, the first step cahgisteof a manual
displacement of one of the images by an integer number of pixels in eacliaireso that the two
images would be coarsely aligned with each other. In a second step an tatdéocal alignment
was performed. For this, the resolution of both images was first incréasedfactor of 4 in
each direction, using bicubic interpolation. Then, one of the images watediinto 100x 100
pixel squares (corresponding to 225 pixels in the original image), and for each square the best
displacement was found, based on the maximum of the cross-correlatiothevibther image. The
whole image was then rebuilt, based on these optimal displacements, andlitdioasuas reduced
by a factor of 4. In this way a local alignment with a resolution ¢é pixel was achieved. Note
that, although the alignment consisted only of local translations, it did hanellentiall rotations
and shears that occur in problems of this kind, because these deforsnatiasist just of different
displacements for different points of the image. The fact that we usedathe displacement for
each 25« 25 subimage caused only a negligible misalignment, relative to the true displadéaten
would be appropriate for each pixel.

There is a large variety of image alignment methods described in the literatny@&y due to
such aspects as the kinds of images to be aligned, the purpose of the aligetmiefihe reader can
find an overview, somewhat oriented toward medical images, in (Maint8)19%he method that
we used was designed specifically for handling the problem we needetiv& but bears strong
resemblances to some of the methods mentioned in that overview, and we meleénmoto its
originality.
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As a final preprocessing step, the intensity range of each pair of imeggeaavmalized to the
interval[0, 1], 0 corresponding to the darkest pixel in the image pair and 1 to the lightesFayures
6 and 7 show the acquired images after preprocessing.

As said above, we tried to keep the processing of both images in each pgimasetrical as
possible. An obvious asymmetry is due to the fact that only one image in eackigzamodified
in the alignment procedure. We used a high quality intensity interpolation mdbieubic) in the
alignment procedure, so as to affect the image’s quality as little as posshseseparation results
that we present ahead, based on a symmetry constraint, seem to coafittimetimixture process
was kept very close to symmetrical, despite the asymmetry in the alignment preced

5. Separation Results

One of the main purposes of the work reported in this paper was to assegmliiity and the
advantage of performing nonlinear source separation, in a real-lifitnean mixture problem, by
means of an ICA-based separation system. Therefore we used seperation by linear ICA as a
baseline for comparison. The next sections present the results easepdy linear and nonlinear
ICA, followed by an assessment of the results with objective quality messure

The mixture process that we used was as symmetrical as possible, so thahange of the
source images should result just in a corresponding exchange of therenixtages (apart from
noise). Therefore we applied symmetry constraints to the separation syatedetailed ahead.

5.1 Linear Separation

The linear ICA method that we used was MISEP with a linEadblock, which corresponds to
INFOMAX with adaptive nonlinearities. Eaah block was formed by an MLP with a single input
and a single output, and with a hidden layer of 20 sigmoidal units. The outgiudfteach of these
MLPs was linear, and there were no “shortcut” connections betweenamoubutput. The training
set consisted of 5000 pairs of intensities, from randomly chosen piksl gfethe acquired images.
TheF block was initialized with the identity matrix, and training was performed duringeifiiths,
which were sufficient for convergence. TRélock was constrained to be symmetrical. Symmetry
was not enforced on thg blocks because the distributions of the two sources were, in general,
different from each other.

For each image pair, ten runs of the separation were made. Thesedifffereone another in
the selection of the 5000 pairs of pixels used to form the training set, andiartiem initialization
of the weights of th&y MLPs. The results of the ten runs were very similar to one another. Figures
and 9 show the results that were best, according to quality me@siisee Section 5/3). We see that
a reasonable degree of separation was achieved in all cases, buinserfgzence remained. The
scatter plots in Figs. 4 and 5 (third column) show that, although a certain ambsgparation was
achieved, the nonlinear character of the mixture could not be undonedar liEA, as expected.
Note: The arrangement of the scatter plots’ points into lines (and, in factaigtl-like structure,
although that is less apparent) is a result of the intensity quantization peddry the scanner.

2. All images of mixtures and of separation results displayed in this pager adjusted in brightness and contrast so
as to saturate the 1% brightest and 1% darkest pixels. This is a pro¢eduie commonly used for better display
of images. This adjustment was performed for image display only: aratrfage separation and also not for the
computation of quality measures.
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In this example we are creating mixtures that involve natural images, printed fext 5. T a In this example we are creating mixtures that involve natural images, printed text and grapl

characteristic nfpnmed " it characteristic of printed jaxt and g;-iphs is that they mxmﬂly mvohe Jjust two i

mnimuldmvnlvelmh'l <p th because it would 'mvolvnmuchh;w
ts. This is an extreme case in which prior ki h o8 its. This is an extreme case in which prior ki

Figure 6: The first three pairs of acquired images, after preprogessin
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In this example we arc creating mixtures that involve natural images, printed text and graphs. The special
characteristic of printed text and graphs is that they normally involve just two intensity levels (black and white)
although, due to the above mentioned noise, these will appear, in the scanned images, as two clusiers of
Il‘m’hﬂl

In the case of grayscale mixtures, the use of a separation method based on a good model of the physical mixing
process should yield much better results that the use of a generic nonlinear separation method. A physical
mmm-mmwmhhmmmmm-@mm
estimation. Furthermore, it might avoid the inherent ill-posedness of nonlinear blind separation, which is
miymmmmmmam-mmumwm
independent component analysis criterion.
Another issue of interest is the definition of scparation criteria that are more suited for images or for printed
than statistical i In fact, images and/or text from the opposite pages of a printed
document can casily happen not to be independent from one other. For examples, images of landseapes tend to
be lighter on the top than on the bottom, induci ion between i ities of both. Also, in printed text
with regularly spaced lines, the lines. from both sides of the paper may happen to fal on top of each other, or
the lines from one side may fall on the intervals of the lines from the other side, also inducing a significant
mmmmmmuﬁmkmumwmmmm
awdw%hhmmhmh%mﬂwkmhﬂawwsm-m
oplimizing a source separation system.

Figure 8: “Best” results of linear separation: first three image pairs.
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5.2 Nonlinear Separation

For nonlinear separation we used MISEP with a nonlirfedslock. This block consisted of a
multilayer perceptron with two inputs, two outputs and a hidden layer of 40 sigihoidts. The
output units were linear, and the hidden units were divided into two gro@@, @ach group being
connected to one of the output units. This MLP also had direct, “shortacutih@ctions between
inputs and outputs. Since the output units were linear, the block could impldimesnt separation
exactly, by setting the weights of the hidden layer’s connections to zero.

As noted above, regularization plays an important role in dealing with the idgy@ss of non-
linear ICA. In our case regularization was achieved by three meansiti@izing the F network to
perform an identity mapping, (ii) constraining that network to be symmetricdl(idnconstraining
that network to be linear during the first 100 training epochs (by keepmgukput weights of the
hidden layer equal to zero during those epochs). Training was st@p@d epochs. At that point
the progress of the optimization was in general very slow. As a test, in age@sthe optimization
was extended to a much larger number of epochs, without any significange in the separation
results. Therefore the exact stopping point that was chosen degg@ar to have had any signifi-
cant influence on the results. Theblocks had the same structure as in the linear separation case.
Each 400-epoch training run took approximately 9 minutes on a 1.6 GHz Pehtig@entrino)
processor.

For each image pair, ten runs of the separation were made, with differghtm selections of
weights (excluding, of course, those weights that were initially set to théift@ematrix or to zero).
Figures 10 and 11 show the best results that were obtained (“best'daugdo quality measure
Q). The scatter plots corresponding to these separations are shown ightreast column of
Figs./4 and 5. Figures 12 and|13 show the worst separation results eéhatoltained (“worst”
again according tQ).

5.3 Measures of Separation Quality

The images shown in the previous section give an idea of the separatidwy, duue their evaluation
is rather subjective. It depends on the viewer, as well as on other damtich as the conditions
under which the images were printed or are viewed. Furthermore, angzecamount of image
superposition can pass unnoticed in regions in which the “main” image has vadebility. For
these reasons we decided to also use objective measures of separalitynvghich are not sensitive
to such effects.

Experience with objective quality measures for nonlinear source depaiastill very limited.
This led us to compute four different quality measures. The fisrt, that wetddyQ;, was simply
the signal to noise ratio (SNR) of the extracted component relative to thespamding sourc@We
should note that, in a nonlinear separation context, the SNR, besides basitive to incomplete
source separation and to noise, is also sensitive to any nonlinear traastim of the intensity scale
that may be caused by the mixture and separation processes. It is wet kimat, in linear separa-
tion, the sources are recovered with unknown scale factors. In nanli@é&-based separation, each
recovered source may be subject to an unknown nonlinear, invertibifdranation. Measur®;
gives a global indication of the distortion of the extracted component reltdithe corresponding

3. For the computation of all quality measures we used the resized anddigaorce images.
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In this example we are creating mixtures that involve natural images, printed text and graphs. The special
characteristic of printed text and graphs is that they normally involve just two intensity levels (black and white)
ﬂmmduemduabovemnoﬂedmu,mmmuw in the scanned images, as two clusters of
intensity levels,

The separation of mixtures of two-level images, such as printed text, may be much casier than the separation of
grayscale images. Infaa,ukmmmecuefmmmnmmlmmumkmmidmg
procedure may yield the desired results. Such a procedure can be casily performed by hand with most image
processing programs, and should not be hard to automate. In such a case the use of more general blind source
separation methods might be an overkill, both because it would involve a much larger amount of processing
and because it might actually yield worse results. This is an extreme case in which prior knowledge about the
sources can strongly simplify the separation process.

In the case of grayscale mixtures, the use of a separation method based on a good model of the physical mixing.
process should yield much better results that the use of a generic nonlinear separation method. A physical
mimuhweamﬂlmbqn!mmbemmwwouldilnu-llawnmnr.hnmpmn
estimation. Furthermore, it might avoid the inherent ill-posedness of nonlinear blind separation, which is
currently addressed through regularization. The parameters of such a model could be estimated by an
independent component analysis criterion.

Anmhumuofmmmdwdnﬁmmufmmmmmmmmmu for images or for printed

than statistical i In fact, images and/or text from the opposite pages of a printed
document can casily happen not 1o be independent from one other. For examples, images of landscapes tend to
be lighter on the top than on the bottom, inducing a correlation between intensities of both. Also, in printed text
with regularly spaced lines, the lines from both sides of the paper may happen to fall on top of each other, or
the lines from one side may fall on the intervals of the lines from the other side, also inducing a significant
correlation between intensities from both sides of the document. It would be interesting to use criteria based on
anotwnofmug:mmplmty.b\nlhscmymib:wymdcﬁne,mdnuybecvmlmduwmummﬁm
optimizing a source separation system.

Figure 10: “Best” results of nonlinear separation: first three image.pairs
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Separation of nonlinear image mixtures
mm-woramwmmmmmm
mpmommm 1o partial transparency of the
paper. Here we are dealing with quite a strong case of that effect, because
‘we're using onion skin paper which is quite transparent.

The mixture that is obtained is rather nonlinear, as can be observed from

for each image. The fact that the shape of the scatter plot of Fig. 1 is very
different from a parallclogram shows that the mixture was strongly
nonlinear. mﬁammmmmmmnuw
right comer (which corresponds to the lighter i
indicates that, for those intensities, the mixture is close to singular, Finally, T
the fact that the discrete levels of Fig. 2 became largely blurred in Fig. 1 is
due to noise in the process. The process leading from the sources to the
observations involved printing the images, on both sides of a sheet of onion
nlnnm at 1200 dpi, with a black and white laser printer (with the

inherent halftoning of gray levels), and then scanning both sides of the
printed sheet at 100 dpi. The noise is due, at least, to the printing process
(including the halfioning), to the scanning process and to the non-

uniformity in the onion skin paper, especially in its transparency.

The purpose of scparation is w recover, from ihe mixed images that arc
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other image as possible.
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Figure 11: “Best” results of nonlinear separation: fourth and fifth imagesp
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In this example we are creating mixtures that involve natural images, printed text and graphs. The special
characteristic of printed text and graphs is that they normally involve just two intensity levels (black and white)
although, due to the above mentioned noise, these will appear, in the scanned images, as two clusters of
intensity levels.
The separation of mixtures of two-level images, such as prinied text, may be much casier than the separation of
grayscale images. In fact, at least in the case of mixtures that are not 100 strong, a simple thresholding
procedure may yield the desired results. Such a procedure can be casily performed by hand with most image
pmcmingpmmmdmauldmbemmmne.lnnlchlt&ﬂ\euuormmeﬂlblhdnm
separation methods might be an overkill, both because it would involve a much larger amount of processing
and because it might actually yield worse results. This is an extreme case in which prior knowledge about the
sources can strongly simplify the separation process.
In the case of grayscale mixtures, the use of a separation method based on a good model of the physical mixing.
process should yield much better results that the use of a generic nonlinear separation method. A physical
model could have a small number of parameters to be estimated, and would thus allow a much more precise
estimation. Furthermore, it might avoid the inherent ill-posedness of nonlinear blind separation, which is
currently addressed through regularization. The parameters of such a model could be estimated by an
independent component analysis criterion.
Another issuc of interest is the definition of separation criteria that arc more suited for images or for printed
than statistical i In fact, images and/or text from the opposite pages of a printed
document can casily happen not 1o be independent from one other. For examples, images of landscapes tend 1o
be lighter on the top than on the bottom, inducing a correlation between intensities of both. Also, in printed text
with regularly spaced lines, the lines from both sides of the paper may happen to fall on top of each other, or
the lines from one side may fall on the intervals of the lines from the other side, also inducing a significant
comelation between intensities from both sides of the document. It would be interesting to use criteria based on
4 notion of image complexity, but these may not be casy to define, and may be even harder to use as criteria for
optimizing a source separation system.

Figure 12: “Worst” results of nonlinear separation: first three imagespair
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Separation of nonlinear image mixtures
wmmg-mmmmwwmmm
opposite page oflen. shows through, due to partial transparency of the

paper. Here we are dealing with quite a strong case of that effect, because

we’re using onion skin paper which is quite transparent.

The mixture that is obtained is rather nonlinear, as can be observed from
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Figure 13: “Worst” results of nonlinear separation: fourth and fifth imaajes.
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source, including any nonlinear transformation of the intensity scale,dxesidluding incomplete
separation and noise.

Due to the possible presence of a nonlinear transformation of the intersigy sar other three
quality measures were defined so as to be invariant to such transformatibasecond quality
measureQ),, was a signal to noise ratio, modified so that it had the invariance propertianed

above. It was given by _
variance ofS

=" 5 4

variance ofN @
whereS was the source image amtiwas the noise that was present in the extracted component.
This noise was computed as

2

N=f(Y)-S (5)

Y being the extracted component, ahldeing a nonlinear, monotonic transformation chosen so that
Q2 was maximal. In other terms, we chose a nonlinear, monotonic transformatiba ftensity
scale of the extracted component that made it become as close as possildedorédsponding
source in SNR terms, and then used its SNR as the quality measure. The dgtimals computed
in table form. This was possible because the number of intensity levels in eagh isfinite, since
each image has a finite number of pixels.

The other two measures that we used were information-theoretic:

e Q3 was the mutual information between each extracted component and thepoomeng
source. The mutual information was estimated from a set of 5000 randofabtex pixel
pairs, chosen independently from those forming the training set, andorgsuted using the
| estimator described in (Kraskov et al., 2004), wite 3 (k is the nearest neighbor order
used in that estimation algorithm; its recommended range, given in that reéeistetween
2 and 4).

e Q4 was the mutual information between each extracted component and thetegoosce,
computed in the same manner as@y.

Note that other quality measures could easily be envisaged. For exapapleQs would be a
measure similar in spirit to the well known Amari index (Amari et al., 1996),daged on mutual
information, to account for nonlinearities, and using a difference instééadquotient due to its
logarithmic character.

Another kind of measure that might come to mind would be simil&4¢indicating the amount
of interference, from the “wrong” source, that is present in the et@thcomponent) but measured
in terms of SNR instead of mutual information. Such a measure would not hale mach sense,
however, because in a nonlinear context the interference can hévebim some parts of the image
and “negative” in other parts. These positive and negative parts wemnddto cancel out. Therefore
such a measure could sometimes indicate a misleadingly low amount of intefeteracmeasure
like Q4, based on mutual information, such positive and negative interferelocast cancel out,
but instead have a cumulative effect.

As a reference for assessing the amount of separation achieved kgribes methods, we
show in Table 1 the values of the quality measures for the mixture compon&rtpr@processing,
without any separation.

The mean values of the quality measures for each of the ten-run seregsapftons are shown
in Table 2. Note that fo®;, Q, andQs higher values are best, while fQ; lower values are best.
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No separation
Image pair | Quality measure | source 1 source 2

Q1 1.9 1.9

1 Q2 6.2 6.2
Q3 1.21 1.23

Q4 0.48 0.49

Q1 -1.7 6.0

2 Q2 3.7 8.9
Q3 1.11 1.34
Qs 0.56 0.60

Q1 -4.5 6.6

3 Q2 3.8 8.1
Q3 0.38 1.65
Qa 1.35 0.12

Q1 0.9 -2.3

4 Q2 5.6 3.3
Q3 0.56 0.29
Qs 0.23 0.43

Q1 9.6 -6.4

5 Q2 11.7 2.7
Q3 1.85 1.07
Qa 0.86 1.18

Table 1: Values of the objective quality measures for the unseparated enodmponents. In this
and in the following tabl€; andQ, are given in dB an®3; andQ; in bits.
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Linear separation | Nonlinear separation
Image pair | Quality measure | source 1 source 2source 1l  source 2
Q1 9.0 8.7 13.8 13.1
1 Q2 11.9 11.6 14.7 14.2
Q3 2.03 1.96 2.45 2.39
Qs 0.48 0.46 0.23 0.26
Q1 5.2 10.5 9.3 13.9
2 Q2 8.1 12.9 11.0 15.0
Q3 1.56 1.78 1.83 1.95
Qa1 0.37 0.53 0.24 0.40
Q1 4.5 11.2 6.2 11.2
3 Q2 7.8 12.4 9.1 13.8
Qs 0.80 1.99 0.85 2.11
Qa4 0.36 0.18 0.09 0.15
Q1 5.8 3.4 6.0 3.7
4 Q2 8.8 6.7 9.1 7.1
Q3 0.74 0.48 0.75 0.51
Qa1 0.11 0.16 0.11 0.16
Q1 13.4 6.6 14.2 6.4
5 Q2 14.7 7.9 15.3 7.8
Q3 2.13 1.34 2.19 1.29
Qa 0.71 0.46 0.56 0.49

Table 2: Objective quality results. The results shown are the averagadarof the sets of ten test
runs. For each pair (linear and nonlinear, for the same source), shedsailt is shown
in bold if the difference was significant at the 95% confidence level.G101Q, and Q3
higher results are better, while fQ lower results are better.

The cases in which the difference between linear and nonlinear sepanasignificant at the
95% confidence level are shown in bold in the table.

The measure that seemed to correlate best with our subjective evaluatiepastion quality
wasQy, and this is why we chose it for the selection of the “best” and “worst” examghown
in Sections 5.1 and 5.2. The next best vi@as Qs, which was intended to measure the amount
of interference from the “wrong” source, was the one which corrélaterst with our subjective
quality evaluation.

5.4 Assessment of the Results

For the first three image pairs, both the objective quality measures andilgectve evaluation
showed a clear advantage of nonlinear separation over linear sepai&tien the worst results of
nonlinear separation seemed to be better, in general, than the best relfudtarseparation. Com-
parison of the third and fourth columns of scatter plots (Figs. 4 and 5) alsfirms the advantage
of nonlinear separation. This advantage was not so clear, howevehef fourth and fifth image
pairs. We discuss now why we think this was so.
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For the fourth image pair, most objective quality measures still show an tdyaof nonlinear
separation, but this advantage is very small, and our subjective evalsaiioved the results of
linear and nonlinear separation to be very similar in quality. This is also corfibpeomparing
the corresponding scatter plots in Figs. 4 and 5. In this image pair, most piealghite in at least
one of the sources. The source scatter plot is dominated by two lines @$ ploicated on the top
and right-hand edges of the plot. This has the consequence that, withettiBcsmixture that was
involved in the problem under study, linear ICA was able to perform a rathed separation. We
see from the scatter plot of the linearly separated components that theléftaeea, corresponding
to simultaneously dark pixels on both sources, was left unfilled by linear BL&this represented
a rather small percentage of pixels, and had little impact on the overalksiepaguality.

We also see, from the rightmost scatter plot, that nonlinear separation filttueléower-left
area unfilled. This may seem to be due to an incomplete optimization, but we ttettiag the
optimization to a much larger number of epochs without any significant chanipe results. It
is possible that the result shown corresponds to a local optimum. By playthgtive network
structure, with the initial conditions and with the constraints, we were sometineajet a result
in which the lower left area of the scatter plot was filled. However, this madglittle difference
in the subjective or objective quality of the separation.

The results for the fifth image pair show that one of the sources wasdpzstged by the linear
method, while the other was best separated by the nonlinear one. Butfdrenties between the
two methods were rather small, even though most of them were statistically sighifidonlinear
separation apparently suffered a negative impact from the fact thadtliees were not independent
from each other and we were using independence as the separatidarcritée nonlinear separa-
tion network had many more degrees of freedom than the linear one, addh&n to try to make
the extracted components more independent from each other. In dairighpaired the separation
of one of the sources, instead of improving it, since the actual sourgesnetindependent.

An important aspect of the results that we obtained is that, although the mixtoess was
nonlinear, and nonlinear separation could, in principle, introduce atnagbnonlinear transforma-
tion in each separated component, the total amount of nonlinearity introdhycesd mixture and
separation processes was relatively small. This is clear from the sepdnatiges that were shown
(which were only normalized in brightness and contrast, as mentioned)adnodérom the values
of the Q; measure. We also illustrate this, in a more clear form, in|Fig. 14. This figumessho
scatter plot of the first extracted component versus the corresposolimge, for the “average” case
of the first image pair (the “average” case was chosen as the one whloseofQ, was closest to
the average for the ten runs).

From our experience, there were two factors that were important invaichithis low level of
nonlinearity. One was the fact that we linearly “primed” the separation &ty constraining it to
be linear during the first 100 epochs. The other factor was that weapgresat amount of flexibility
to the Y networks, by implementing them with a large number of hidden units. In prevests
in which these networks had only 6 hidden units, the separation results, aasirad byQ,, Qs
or Q4 were not very different from those presented here, but there waféana significant amount
of nonlinearity introduced in the extracted components. This seems to hamechased by thE
block trying to compensate for the limitations of ttpenetworks which could not, by themselves,
make the distribution of eact) close to uniform.

There are some other aspects of the results, and of the experiencestgatned in studying
this problem, that are worth discussing. One of them has to do with the amiourise introduced
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Figure 14: Scatter plot of the first extracted component versus thespainding source, in an “av-
erage” run of nonlinear separation of the first image pair. Horizonial arurce; verti-
cal axis: extracted component.

by the mixture process. We can take advantage of the fact that the smages that contain
text have a large percentage of purely white pixels, which show up asgstvery thin lines in
the corresponding scatter plots in the first column of Figs. 4/and 5, fdndpan idea of the
amount of noise present in the mixtures and in the separated componetasthafmixture, and
also after linear or nonlinear separation, these lines appear broaiethedscatter plots, looking
like fuzzy dark bands. The widths of these bands give an idea of therdnobunoise that was
introduced by the mixing, or by the mixing plus separation. In the separatguitsethe noise
represents a significant percentage of the whole intensity range. Notf¢hseparation process
does not, by itself, introduce any noise. However, since it essentiallgisterof performing a
weighted difference between the two mixture components, it does increaamthunt of noise that
is present, in relative terms.

Another interesting aspect has to do with understanding the “scale” ofuhlgygmeasures
based on mutual information (especially@f since, as we've already sai@, seemed to be less
meaningful). We were surprised by the relatively low values of mutual iné&bion between source
and extracted component, even when the images looked well separat€d ericated relatively
high SNR values after compensation of nonlinearities. For natural scegesme mutual infor-
mation between source and extracted component was roughly around &@Hlésfor text images
it was below 1 bit. We can also observe from Table 2 that, for each souege, a change of 1 dB
in SNR (i.e. inQy) corresponded, approximately, to a change of 0.1 l@4nSmall changes in the
value of mutual information seem to be much more significant than we expesfiare [performing
these tests.
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An important aspect of the mixture process, that we have not mentioned, $® that it didn’t
seem to be a purely point-wise process. The intensity of each source #hageh point appeared
to affect the observed mixture intensities in a small neighborhood of that. pbiis is especially
noticeable by closely examining the separation results in the cases in which the tonbe sup-
pressed was a text image. The cause of this phenomenon probably madaseral diffusion of
light inside the paper. The effect was relatively weak at the scannsgjuteon that we used, but
should become more pronounced at higher resolutions. A more pegfgatagion system should
take this into account. However, non-point-wise nonlinear ICA is still éssinan unstudied topic,
and is beyond the scope of this paper.

Another important aspect has to do with the use of the symmetry constraint.evéecareful
in ensuring that, both during scanning and in the preprocessing stagesithes of the paper were
handled in the same way. This allowed us to use a symmetry constraint in thiatsepaetworks.
Such symmetry conditions in the mixture can probably be obtained when usirsjesrslike our
desktop scanner, in which the paper has to be flipped, and the sameseesofs is used to acquire
both sides. However, industrial scanners, which are used to digitize darantities of documents,
normally acquire both sides of the document at the same time, using two diffatsrof sensors.
Such scanners often are strongly non-symmetric. In such cases the syroorestraint couldn’t
probably be used, or would have to be used only in an initial part of therigaiafter which it
would have to be relaxed. We had no access to images from such s;aamtherefore couldn't
assess what degree of separation would be achievable with them.

Still regarding a possible application to an actual scanning or photocoggirige, there are two
other aspects worth mentioning. One is that it doesn’t seem to be possilalecta fixed separator,
optimized at the factory for a specific device. This is because the mixtuendsat least on the
paper being used, and possibly also on the printing ink, halftoning macesother similar factors.
It seems possible, however, to develop a physical model of the mixturegsoeith a small number
of parameters, and then to find (algebraically or by approximate meansamgt@rized inverse
system. Its parameters may then be estimated through an ICA criterion. MERER suited for
this task, since it can use essentially any parameterized nonlinear systefribltdtk.

Another practical aspect has to do with the possible warping (existengapt#s) in the doc-
ument being processed. We found that even very weak ripples, bastteable in the scanned
images, would result in very strong light and dark bands in the separatg@smiaoth with linear
and with nonlinear separation. This was, of course, a situation in which thenmmiwas spatially
variant, and could not be adequately undone by a spatially invariantisybieour case we solved
the problem by applying a very strong pressure to the cover of the ecavhile scanning the
documents, in order to eliminate the ripples. This might become an important isaygdactical
application.

6. Conclusion

We showed an application of ICA to nonlinear source separation in a regiftiblem of practical
interest. One of the main issues that have been discussed in the last fepcpa@erning nonlinear
ICA, is whether its inherent ill-posedness can be handled in practical sitsatur results show
that it can, at least in this specific problem. We should say, howeverijtttwik quite a bit of
experimentation to find a set of conditions that could be used for all imagg, g&éiding a good
separation with relatively little variability in the separation results. In an earle@k Almeida
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and Faria, 2004) we had not yet been able to achieve an adequateffoegularization, without
resorting to arf block with a specialized form.

We presented comparisons of MISEP-based nonlinear ICA with lineard@éof the main pur-
poses being to demonstrate the feasibility and the advantage of nonlinesg separation through
ICA in a practical situation. It would also be very interesting to compare tidimesar separation
results presented here with those obtained with other nonlinear separattordsiesuch as ensem-
ble learning (Lappalainen and Honkela, 2000), kernel-based nonli@égHarmeling et al., 2003)
or geometric ICA|(Theis et al., 2003). That comparison would have betside the scope of the
present paper. First of all, it would have involved a very large amofatiditional work. Further-
more, the results obtained with a specific method are often much better if the nietiuoed by
someone experienced in its use. We have a reasonable amount of mz@énieising MISEP, but
virtually no experience with any of the other methods. To enable compangemose to make
our test data, as well as our separation routines, available online (seedioé Section 4.3).

Future work will address several different issues, among which weremtion:

e The development of separation criteria that are more adequate for thiemrthan statistical
independence. We have seen that, in this problem, the images to be sepzgtedppen
not to be independent. In such a case the quality of separation suffemsore adequate
separation criterion would not cause such degradation and might alddéb&oavercome
much of the ill-posedness of nonlinear ICA, decreasing the dependermegularization.

e The use of the spatial redundancy of images to reduce the ill-posedribegpooblem, hope-
fully achieving separation with less dependence on regularization. Soblishrd results
(Harmeling et al., 2003) suggest that the use of signal structure may hedjpdoate nonlin-
ear mixtures with much reduced ill-posedness. That may make kernel+haskakar ICA a
good candidate for handling this problem.

e The study of models of the mixture process that involve relatively few paemelt seems
possible to develop physically based and/or empirical models that deperféwrparameters
(such as paper transparency and reflectivity, among others). H#aingarameters, such
models may have no ill-posedness, and may also be able to easily handignmoeisical
systems.
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Abstract

We show several high-probability concentration bound$gaming unigram language models.
One interesting quantity is the probability of all words eppng exactlk times in a sample of size
m. A standard estimator for this quantity is the Good-Turistjreator. The existing analysis on

its error shows a high-probability bound of approxima@(%). We improve its dependency

onktoO (4—\/‘{_'; + %) . We also analyze the empirical frequencies estimator, Bigpthat with high

probability its error is bounded by approximaté]&(% + %) We derive a combined estimator,

which has an error of approximateﬂy(mﬁ%) , for anyk.

A standard measure for the quality of a learning algorithntsi€xpected per-word log-loss.
The leave-one-out method can be used for estimating thivksgef the unigram model. We show
that its error has a high-probability bound of approxirrya@l(\iﬂ), for any underlying distribu-
tion.

We also bound the log-loss a priori, as a function of varicasmeters of the distribution.
Keywords: Good-Turing estimators, logarithmic loss, leave-oneeastimation, Chernoff bounds

1. Introduction and Overview

Natural language processing (NLP) has developed rapidly over th#deades. It has a wide range
of applications, including speech recognition, optical character rétogtext categorization and
many more. The theoretical analysis has also advanced significantly,htmoaigy fundamental
guestions remain unanswered. One clear challenge, both practicakanetital, concerns deriving
stochastic models for natural languages.

Consider a simple language model, where the distribution of each word in this Bssumed
to be independent. Even for such a simplistic model, fundamental questiotisgs@mple size to
the learning accuracy are already challenging. This is mainly due to thih&dhe sample size is
almost always insufficient, regardless of how large it is.

To demonstrate this phenomena, consider the following example. We would lgsitoate
the distribution of first names in the university. For that, we are given theesdist of a graduate
seminar: Alice, Bob, Charlie, Dan, Eve, Frank, two Georges, and twwieke How can we use this
sample to estimate the distribution of students’ first names? An empirical fregastimator would

(©2005 Evgeny Drukh and Yishay Mansour.
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assign Alice the probability of.@, since there is one Alice in the list of 10 names, while George,
appearing twice, would get estimation aR0 Unfortunately, unseen names, such as Michael, will
get an estimation of 0. Clearly, in this simple example the empirical frequenaeasntikely to
estimate well the desired distribution.

In general, the empirical frequencies estimate well the probabilities of popataes, but are
rather inaccurate for rare names. Is there a sample size, which assutes all the names (or
most of them) will appear enough times to allow accurate probabilities estimatian@igthibution
of first names can be conjectured to follow the Zipf's law. In such distribgtidhere will be a
significant fraction of rare items, as well as a considerable number eéppearing items, in any
sample of reasonable size. The same holds for the language unigram mddelstry to estimate
the distribution of single words. As it has been observed empirically on mecgs@mns (Chen,
1996; Curran and Osborne, 2002), there are always many radswaod a considerable number
of unseen words, regardless of the sample size. Given this obsenationdamental issue is to
estimate the distribution the best way possible.

1.1 Good-Turing Estimators

An important quantity, given a sample, is the probability mass of unseen Jalsis called “the
missing mass”). Several methods exist for smoothing the probability andnasgigrobability
mass to unseen items. The almost standard method for estimating the missinglipyaialss

is the Good-Turing estimator. It estimates the missing mass as the total numbéqué itams,
divided by the sample size. In the names example above, the Good-Turinggmssss estimator

is equal 06, meaning that the list of the class names does not reflect the true distrjotipat

it mildly. The Good-Turing estimator can be extended for higher orders,igh&stimating the
probability of all names appearing exacklyimes. Such estimators can also be used for estimating
the probability of individual words.

The Good-Turing estimators dates back to World War I, and were pulifaiséin 1953 (Good,
1953, 2000). It has been extensively used in language modeling afpikaince then (Katz, 1987;
Church and Gale, 1991; Chen, 1996; Chen and Goodman, 1998)eudgwheir theoretical con-
vergence rate in various models has been studied only in the recen{lMeddéester and Schapire,
2000, 2001; Kutin, 2002; McAllester and Ortiz, 2003; Orlitsky et al., 200r estimation of the
probability of all words appearing exactktimes in a sample of size, McAllester and Schapire

(2000) derive a high probability bound on Good-Turing estimator erffrapproximatelyO (%)

One of our main results improves the dependendyairthis bound to approximatel® (% + K) .

m
We also show that the empirical frequencies estimator has an error ab@appiely O (% + %)
for large values ok. Based on the two estimators, we derive a combined estimator with an error of
approximatelyO (m*%), for anyk. We also derive a weak lower bound@f(%) for an error of
any estimator based on an independent sample.
Our results give theoretical justification for using the Good-Turing estinfat@mall values of
k, and the empirical frequencies estimator for large valuds afhough in most applications the

Good-Turing estimator is used for very small valuekdior examplek < 5, as by Katz (1987) or
Chen (1996), we show that it is fairly accurate in a much wider range.
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1.2 Logarithmic Loss

The Good-Turing estimators are used to approximate the probability masstio¢ alords with a
certain frequency. For many applications, estimating this probability masstisenstain optimiza-
tion criteria. Instead, a certain distance measure between the true andinmetess distributions
needs to be minimized.

The most popular distance measure used in NLP applications kutliEack-Leibler (KL) di-
vergenceFor a true distributio® = { p«}, and an estimated distributi&gp= {qy}, both over some
setX, this measure is defined s pxIn %. An equivalent measure, up to the entropyPofs the
logarithmic losg(log-losg, which equalsy , pxIn q—lx.

Many NLP applications use the value lof)-lossto evaluate the quality of the estimated dis-
tribution. However, thdog-losscannot be directly calculated, since it depends on the underlying
distribution, which is unknown. Therefore, estimatilog-lossusing the sample is important, al-
though the sample cannot be independently used for both estimating the tistridnod testing it.
The hold-out estimation splits the sample into two parts: training and testing. The training part
is used for learning the distribution, whereas the testing sample is usedaloatrg the average
per-word log-loss. The main disadvantage of this method is the fact thatstardy part of the
available information for learning, whereas in practice one would like to liigessample.

A widely used general estimation method is calleave-one-outBasically, it performs aver-
aging all the possible estimations, where a single item is chosen for testinthenekt are used
for training. This procedure has an advantage of using the entire saanpl@ addition it is rather
simple and usually can be easily implemented. The existing theoretical analysislefve-one-
out method (Holden, 1996; Kearns and Ron, 1999) shows general hafalpitity concentration
bounds for the generalization error. However, these technique®aapplicable in our setting.

We show that thdeave-one-ouestimation error for thdog-lossis approximatelyO (ﬁ)
for any underlying distribution and a general family of learning algorithmgivies a theoretical
justification for effective use deave-one-ouéstimation for théog-loss

We also analyze the concentration of tlog-lossitself, not based of an empirical measure.
We address the characteristics of the underlying distribution affectinipghi®ss We find such a
characteristic, defining a tight bound for tlog-lossvalue.

1.3 Model and Semantics

We denote the set of all words ¥s andN = |V|. Let P be a distribution ove¥, wherep,, is the
probability of a wordv € V. Given a sampl&of sizem, drawn i.i.d. usind®, we denote the number
of appearances of a wowdin Sasc;, or simplyc,, when a sampl8is clear from the contextWe
defineS = {weV : ¢ =k}, andn, = |S(|.

For a claim® regarding a sampl§, we write Y°S @[S for P(®[S)) > 1 8. For some error
bound functionf (-), which holds with probability 1- &, we write O(f(-)) for O (f(-) (In)%),
wherec > 0 is some constant.

1.4 Paper Organization

Section 2 shows several standard concentration inequalities, togethaheiittechnical applica-
tions regarding the maximum-likelihood approximation. Section 3 shows the®ytmds for the

1. Unless mentioned otherwise, all further sample-dependent defmd&pend on the sampe
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k-hitting mass estimation. Section 4 bounds the error for the leave-one-out @stimoithe loga-
rithmic loss. Section 5 shows the bounds for the a priori logarithmic loss. #gipd includes the
technical proofs.

2. Concentration Inequalities

In this section we state several standard Chernoff-style concentragqnoatities. We also show
some of their corollaries regarding the maximum-likelihood approximatiqm,dfy py = .

Lemma 1 (Hoeffding, 1963) Let ¥=VY1,...,Y, be a set of n independent random variables, such

that X € [b;, b + di]. Then, for any > 0,
>g| < 2 exp<—2—82>
B yid?/)

(lpv-els

The next lemma is a variant of an extension of Hoeffding’s inequality, bipidianid (1989).

Lemma?2 LetY=Yi,...,Y, be a set of n independent random variables, afd)fsuch that any
change of Yvalue changes () by at most d that is

sup ([f(Y)—f(Y)]) <d.
viAN=Y]

Let d=maxd;. Then,

oY (YY) —E[f(Y)]| <d L;%

Lemma 3 (Angluin and Valiant, 1979) Let = Yi,..., Y, be a set of n independent random vari-
ables, where¥c [0,B]. Let p=E[5;Yi]. Then, for any > 0,

e2
P(IZYi<u—s> exp(—m?’),
e2

P (ZY. > u+s> < exp(—m> )

Definition 4 (Dubhashi and Ranjan, 1998) A set of random variablgs.Y,Y; is called “nega-
tively associated”, if it satisfies for any two disjoint subsets | and Jof..,n}, and any two
non-decreasing, or any two non-increasing, functions f frdmt&R and g from R! to R:

IN

E[f(Yiziel)g(Y;:jed)] <E[f(Yi:ie)EQY;:]ed).

The next lemma is based on thegative associatioanalysis. It follows directly from Theorem
14 and Proposition 7 of Dubhashi and Ranjan (1998).
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Lemma 5 For any set of N non-decreasing, or N non-increasing functiofig: w € V}, any
Chernoff-style bound oy fw(Cw), pretending that ¢ are independent, is valid. In particular,
Lemmas 1 and 2 apply fdiYs,...,Yn} = { fw(cw) :we V}.

The next lemma shows an explicit upper bound on the binomial distributiorapilit.

Lemma 6 Let X ~ Bin(n, p) be a sum of n i.i.d. Bernoulli random variables withe0,1). Let
n=E[X] = np. For xe (0,n], there exists some function F exp (3 +O(5)), such thatvk
{0,...,n}, we have PX = k) < I For integral values of 1, the equality is achieved

1
V2r(1—p) Tulo-u
at k= p. (Note that for x> 1, we have J=0(1).)

The next lemma deals with the number of successes in independent trials.

Lemma 7 (Hoeffding, 1956) Lety...,Y, € {0,1} be a sequence of independent trials, with=p
E[Yi]. Let X=3;Y; be the number of successes, and ﬁzi p; be the average trial success proba-
bility. For any integers b and ¢ such that< b < np<c < n, we have

c

kzb <E) P1—p"k<P(b<X<c)<1.

Using the above lemma, the next lemma shows a general concentration wumddm of
arbitrary real-valued functions of a multinomial distribution components. Vdsvghat with a
small penalty, any Chernoff-style bound pretending the components elegendent is valid.
We recall that, or equivalentlyc,, is the number of appearances of the warth a sampleS of
sizem.

Lemma 8 Let{c|, ~ Bin(m, py) : w€ V} be independent binomial random variables. £&(x) :
w € V} be a set of real valued functions. LetFy,, fw(cy) and F = 5, fw(c},). For anye > 0,

P(F-E[F]|>¢) < 3ymP(|[F —E[F]|>¢).

The following lemmas provide concentration bounds for maximum-likelihood estimatip,,
by pw = 2. The first lemma shows that words with “high” probability have a “high” doiarthe
sample.

Lemma 9 Letd > 0, and\ > 3. We have/®S:

2
YwevV, st. mpy>3Ing, \mp,\,—cwygy/Bmlen%n;

YwevV, st. mpy>AInZE, ¢y > <1—\/§> mpy.

2. Its proof is based on Stirling approximation directly, though local limit tees could be used. This form of bound
is needed for the proof of Theorem 30.

3. Thenegative associatioanalysis (Lemma 5) shows that a sum of monotone functions of multinafisbution
components must obey Chernoff-style bounds pretending that thepar@mts are independent. In some sense, our
result extends this notion, since it does not require the functions to betoran
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The second lemma shows that words with “low” probability have a “low” comithe sample.

Lemma 10 Letd € (0,1), and m> 1. Then,¥3S: Yw e V such that mp < 3In %, we have g <
6InD,
3

The following lemma derives the bound as a function of the count in the sammienpt as a
function of the unknown probability).

Lemma 11 Letd > 0. Then,¥°S:

4m
YwevV, st. cy>18In%,  mpy—cyl < \/GC\NH’IF.

The following is a general concentration bound.

Lemma 12 For anyd > 0, and any word we V, we have

2
5 Cw LI
V°S, - p,v‘< o

The following lemma bounds the probability of words that do not appear inaimplke.
Lemma 13 Letd > 0. Then,v°S:

Ywé¢ S mp,v<|n%].

3. K-Hitting Mass Estimation

In this section our goal is to estimate the probability of the set of words apgesxactlyk times
in the sample, which we call “thk-hitting mass”. We analyze the Good-Turing estimator, the
empirical frequencies estimator, and a combined estimator.

Definition 14 We define the k-hitting mass,Mits empirical frequencies estimatddy, and its
Good-Turing estimator Gas*

N k k+1
Mg = Pw Mg = (—) Nk Gy = (—) Nk41.-
W; m m—k

The outline of this section is as follows. Definition 16 slightly redefineskthéting mass and
its estimators. Lemma 17 shows that this redefinition has a negligible influenea, Wik analyze
the estimation errors using the concentration inequalities from Section 2.

Lemmas 20 and 21 bound the expectation of the Good-Turing estimatorfelimving McAllester
and Schapire (2000). Lemma 23 bounds the deviation of the error, ugnuetiative association
analysis. A tighter bound, based on Lemma 8, is achieved at Theorenh@8trem 26 analyzes the
error of the empirical frequencies estimator. Theorem 29 refers to thbined estimator. Finally,
Theorem 30 shows a weak lower bound for kHeitting mass estimation.

4. The Good-Turing estimator is usually defined%)nkﬂ. The two definitions are almost identical for small values
of k, as their quotient equals&#]. Following McAllester and Schapire (2000), our definition makes the tztions
slightly simpler.
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Definition 15 For any we V and i€ {0,---,m}, we define ¥; as a random variable equal 1 if
cw = i, and 0 otherwise.

The following definition concentrates on words whose frequencieslase to their probabili-
ties.

Definition 16 Leta > 0 and k> 3a2. We defineldq = [k*ﬁ‘n\/k, ktlbay "*1}, and Vg = {weV:
Pw € lka }. We define:

Mk,(} = g pVV = prW7k7
WeSNVk o WEVka
k+1 k+1
Gka = — 0 |SeaNVia] = o
Ka p— k\5<+1 kal m— K2 Xwk4-15
A k k
Mia = —|SNVka| == Xk
m m 4.

By Lemma 11, for large values &fthe redefinition coincides with the original definition with
high probability:

Lemma 17 For 3 > 0, leta = /6In4". For k > 18In*®, we havev®S: My = Myq, G = Ga,
andhﬁk::Mkﬂ.

Proof By Lemma 11, we have

am
¥0S, vw:c, > 18Il |mpy—cyl < \/GC\NInF —a,/Cy.

This means that any word with ¢, = k has

k—rt;\& < py< k+:1\/R - k+1+:]\/k+1‘

Thereforew € Vi o, completing the proof foMy and M. Sincea < vk, any wordw with
cw=k+1 has

k—avk _ k+1—avk+1 < P < k+1+avk+ 1’
m m m
which yieldsw € Vi o, completing the proof foGy. |

Since the minimal probability of a word M« is Q (£ ), we derive:

Lemma 18 Leta > 0 and k> 3a2. Then,|Via| = O (F).
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Proof We havea < % Any wordw € Vi o haspy > %‘ > % (1— \%) Therefore,

Vil < ?é ~o(7).

which completes the proof. |
Using Lemma 6, we derive:
Lemma 19 Leta > 0and3a? < k < 2. Let we Viq. Then, BEXyy ] =P(cy=k) =0 (l)

Proof Sincecy, ~ Bin(m, py) is a binomial random variable, we use Lemma 6:

1 Tm
EXux] = P(cw=k) < '
[Xai] = P(ew=k) < 2rmpy(1— pw) Tmpy Tma—pw)
Forw € Vikq, we havemp, = Q(k), which imp”esm = O(1). Sincepy € la and
302 <k < 2, we have
1 < !
2rmpy (1 - pw) \/Zn(k—O(\/R) (1 (gt
1
<
Jo(i-) (18 (1)
1
<
2k (1- %) (- G+ ) (24 5)

which completes the proof. |

3.1 Good-Turing Estimator

The following lemma, directly based on the definition of the binomial distributiors steown in
Theorem 1 of McAllester and Schapire (2000).

Lemma 20 For any k< m, and we V, we have

PuP(C = K) = ST P(ey = K+ 1)(1- pu).

The following lemma bounds the expectations of the redefirkitting mass, its Good-Turing
estimator, and their difference.
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Lemma 21 Leta > 0 and 302 < k < T. We have BMyq] = O(ﬁ) E[Gka] = O(\%() and
[E[Gka] ~ EMyall = O ().

Lemma 22 Letd >0, ke {1,...,m}. LetUCV, such thaiU| = O (). Let{by:we U}, such
thatvw € U, by, > 0 and mageubw = O (£). Let % = S yeu buXuk. We havers:

kin £
X~ EXJ|=0 (\/ nf) .

Proof We defineYyk = Yi<kXwi be random variable indicatingy < k and Zyx = 3 «Xwi =
Yuk — Xwk be random variable indicatingy, < k. LetYx = 5 ey bwYwk andZy = 3 ey bwZwk. We
have

X = ng bwXwk = ng bw [Yuk — Zwk] = Y — Zk.

Both Yy andZ,, can be bounded using the Hoeffding inequality. SiflogYy} and {bwZyx}
are monotone with respect {@,}, Lemma 5 applies for them. This means that the concentra-
tion of their sum is at least as tight as if they were independent. Recallingthat O () and
maxyeu bw = O (X), and using Lemma 2 fof andZy, we have

VIS [W—EMJ =0(&/FIn}).

VS, |Z—E[Z]] :o(n%,/%‘ln%).

Therefore,

X—EXd] = [Y«—Z—E[M— 24|

IN

1
YkE[Yk]+ZkE[Zk]O( 6) ,
which completes the proof. |

Using thenegative associationotion, we can show a preliminary bound for Good-Turing esti-
mation error:

Lemma 23 For 8> 0and18In&" < k < T, we havey°s:

G M—0 kin
|Gk — M| = — |

1239



DRUKH AND MANSOUR

Proof Leta = 4/6In8". By Lemma 17, we have

¥3S Gy= Gka N Mk = Mygq. (1)

By Lemma 21,

|E[Gk — Mk]| = [E[Gka —Mkal| =O ({f) . 2)

By Definition 16,Mka = Y wey,, PwXwk @andGra = Twevy, (£:1) X1, By Lemma 18, we
have|Vi«| = O ('"—If) Therefore, using Lemma 22 withfor My , and withk+ 1 for Gy o, we have

IS |Mia — E[Mal| = 0<\/ %) , @3)
S |Gea — E[Gral| = 0(\/%> . @)

Combining Equations (1), (2), (3), and (4), we ha¥&:

|IGk—My| = |Gka—Mkal
< |Gk,c1_E[Gk,q”+|Mk,a_E[Mk,a]|+|E[Gk,q]—E[Mka”

o) o) ()

which completes the proof. |

Lemma 24 Letd >0, k> 0. LetUCV. Let{by,:we U} be a set of weights, such tha{ kb [0, B].
Let X = ¥ weu bwXwk, and p= E[X]. We have

vS  [Xk—u gmax{ 4Bpln<6\é_> 2BIn (6\?>}.

Proof By Lemma 8, combined with Lemma 3, we have

P(X—H >¢) < Gmexp< (21812+8)>
) el g} @

g2

< max{ 6v/m exp<
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where Equation (5) follows by considerigg< 21 ande > 2 separately. The lemma follows sub-
stitutinge = max{ 4Bpin (@),ZBIn (%") } n

We now derive the concentration bound on the error of the Good-Testignator.

Theorem 25 For & > 0 and18In8® < k < 7, we havey®S:

KIn? KkIn?
|Gk— M| =0 \/b—i-—é
m m

Proof Leta = ,/6In%m. Using Lemma 17, we havés S: Gk = Gk q, andMy = M q. Recall that
Mia = Yweviq PwXuk aNdGra = Ywevi, Kt Xuks1- BothMyq andGyq are linear combinations
of Xwk andXyk+1, respectively, where the coefficients’ magnitud@i@%), and the expectation, by
Lemma 21, i<0 <i> By Lemma 24, we have

vk
WIS Mo~ EMal| =0 (y/¥RE+ 08, ©
viS |G —E[Gkall = 0( S k'?f) (7)
Combining Equations (6), (7), and Lemma 21, we hel&
|Gk—Mk| = |Gxa— Mgl
< |Gka — E[Gkal| + Mka — E[Mkg]| +[E[Gka] — E[Mkdl]|
kKin?  Kkin% kin® KkIn%
= o(\/“+5+ﬁ) o(,/\[é+a) ’
m m m m m
which completes the proof. |

3.2 Empirical Frequencies Estimator

In this section we bound the error of the empirical frequencies estirvitor

Theorem 26 For 6 > Oand18ln%m <k< ”g we have

3
vk(ng)®  vIng
m

VoS, |Mk—My| =0 "
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Proof Leta =,/6In&". By Lemma 17, we havé?S My = Mq, andMy = My LetV,, =
{WeVia 1 pw < £}, andViy = {we Viq : pu > £} Let

K K
e 3 (e e 3 (e e

and letX; specify eitheiX_ or X,.. By the definition, fow € Vi « we have| X — p,| =0 (%ﬁ() .

By Lemma 18)Vi«| = O (). By Lemma 19, fomw € Vi o we haveE [X,x] = O (%() Therefore,

%—pW‘E[xwk]:0<T“*/Ri> —o(%). ®

[ED]| < WgM K m vk

Both X_ and X, are linear combinations of,x, where the coefficients a@ (%) and the
expectation i€ (% ). Therefore, by Lemma 24, we have

mvk m

By the definition ofX_ andX,, My q — I\7Ik7a = X, — X_. Combining Equations (8) and (9), we
haveV%S:

ViS:  [Xe—EP6]| = o<-ﬂi+a%&>. )

‘Mk—Mk‘ = ‘Mk,a—mk,alzlﬁ_x—‘
< X BRG] B+ IXe = EXC ][+ [EX]]

B ot odvk o) \/R(Inm)% InT
) O(Vm—ﬂ<+ m +k)0( mot k5)7

sinceyvab= O(a+b), and we usa = &n\{k andb= ¢. |

3.3 Combined Estimator

In this section we combine the Good-Turing estimator with the empirical freigeie derive a
combined estimator, which is uniformly accurate for all valuek. of

Definition 27 We definéVly, a combined estimator for Mby
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Lemma 28 (McAllester and Schapire, 2000) Letk{0,...,m}. For anyd > 0, we have

Ini m
dc. o _ 7 o
VoS Gk—M =0 [ 1/~ (k+|n6)

The following theorem shows thif, has an error bounded ln'?y(m*%>, for anyk. For smallk,

we use Lemma 28. Theorem 25 is used for 1%%{ k< mé. Theorem 26 is used fans <k< %
The complete proof also handles> 3. The theorem refers thly as a probability estimator, and
does not show that it is a probability distribution by itself.

Theorem 29 Letd > 0. For any ke {0,...,m}, we have

Vés, ||\7|k—|\/|k| = é(m*%> .

The following theorem shows a weak lower bound for approximatiRglt applies to estimat-
ing My based on a different independent sample. This is a very “weak” nojaiioceGy, as well
asMy, are based on the same sampl&/fas

Theorem 30 Suppose that the vocabulary consistsiofvords distributed uniformly (that isyp=
%), wherel < k < m. The variance of iis © (%)

4. Leave-One-Out Estimation of Log-Loss

Many NLP applications use log-loss as the learning performance criténiee $e log-loss depends
on the underlying probabilitl, its value cannot be explicitly calculated, and must be approximated.
The main result of this section, Theorem 32, is an upper bound on thedeaveut estimation of
the log-loss, assuming a general family of learning algorithms.

Given a sampl&S= {s;,...,Sn}, the goal of a learning algorithm is to approximate the true
probability P by some probabilityQ. We denote the probability assigned by the learning algorithm
to a wordw by gy

Definition 31 We assume that any two words with equal sample frequency are assiguaicrob-
abilities in Q, and therefore denote,dpy g(cy). Let the log-loss of a distribution Q be

1 1
L = zpwln—: MgIn ——.
we Ow k; q(k)

Let the leave-one-out estimatior},,dpe the probability assigned to w, when one of its instances
is removed. We assume that any two words with equal sample frequenaysigned equal leave-
one-out probability estimation, and therefore denojghy d(cy). We define the leave-one-out
estimation of the log-loss as averaging the loss of each sample word,iinkeaxtracted from the
sample and pretended to be the test sample:
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Cw, 1
T _ M= = ¥ X n———.
eave-one W; m q(N k% m q/(k)

_ L _ —n_1 :
LetLy=L(cy) =1In oy @nd L, =L'(cw) =In Fley- Letthe maximal loss be
Lmax = mkaxmax{L(k), L'(k+1)}.

In this section we discuss a family of learning algorithms, that receive thelsamspan input.
Assuming an accuracy paramedemve require the following properties to hold:

1. Starting from a certain number of appearances, the estimation is closs#mipke frequency.
Specifically, for somex, 3 € [0, 1],

vk > In (%") . qk) = :1_—% (10)

2. The algorithm is stable when a single word is extracted from the sample:

vm, 2<k<10In%", IL'(k+1) = L(K)| :o(ri), (12)
vm, VSst.n?>0, ke {0,1}, |L'(k+1)—L(K)] :o<nis>. (12)
1

An example of such an algorithm is the following leave-one-out algorithma@seime that the
vocabulary is large enough so thgt+ n1 > 0):

N—ng—1
o= { Tormmn WSt
Y Cw > 2.

m-1

Equation (10) is satisfied y= 3 = 1. Equation (11) is satisfied fé&r> 2 byL(k) —L'(k+1) =
In(M=1) =0O(3). Equation (12) is satisfied fdr< 1:

m-2
oy et | (N=no—1m=2\| 11\ (1
L) L(O)|_‘In<N—nO—2m—1 =0 N—no+m =0 n/’

Np+n+1m-—2 1 1 1
|L’(2)—L(1)\:‘In< ot >‘=o( +—)=o<—>.
np+n m-1 Nop+Ny m Ny
The following is the main theorem of this section. It bounds the deviation bettheebetween
the true loss and theave one ouéstimate. This bound shows that for a general family of learning
algorithms, leave-one-out technique can be effectively used to estimdtegtv@éhmic loss, given

the sample only. The estimation error bound decreases roughly in proptwtibe square root of
the sample size, regardless of the underlying distribution.
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Theorem 32 For a learning algorithm satisfying Equations (10), (11), and (12), &nd 0, we
have:

InT)41 5
Vs, IL — Lieave-onel = O (Lmax %) :

The proof of Theorem 32 bounds the estimation error separately forighephobability and
low-probability words. We use Lemma 20 (McAllester and Schapire, 200@)tad the estimation
error for low-probability words. The expected estimation error for thdadgigpbability words is
bounded elementarily using the definition of the binomial distribution (Lemma 33ll¥f5 we use
McDiarmid’s inequality (Lemma 2) to bound its deviation.

The next lemma shows that the expectation of the leave-one-out methodid agaroximation
for the per-word expectation of the logarithmic loss.

Lemma33 Let0<a <1, and y> 1. Let B, ~ Bin(n, p) be a binomial random variable. Let
fy(X) = In(max(x,y)). Then,

0<E [pfy(Bn—a)—%fy(Bn—a—l)

Proof For a real valued functioR (hereF (x) = fy(x—a)), we have:

n X

n (X ) ) D (¢ 1)
= pXE[F Bn-1)]

E[%F(Bn—l)} — i(n p(1—p)X T (x-1)

><

I
o

where we used}) % = (- l) SinceB,, ~ B,_1 + By, we have:

€ [Ph(Bn )~ (B 1)| = PEL(Br1+ By 0] Elfy(Bos - )

max(Bn1+Bl—a,y)]

max(Bn-1 —a,y)

max(Bn-1—a+B1,y+ Bl)}
max(Bn_1—a,y)

= pE]|In

< PpE]|In

B:

max(Bn_l—a,y))}

-
< E .
=P _max<Bn1—a,y>]

= pE|In(1+

SinceB; andBy,_; are independent, we get
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B, 1
PE max(Bn_l—a,y)} - pE[Bl]E[maX(Bn—l—O‘,YJ

1
- ve| }
PE | maxBa 1 —ay)
1

N i Lo LR —
X;] X max(x—a.,y)

n-1
L T A PR | X+ 1
B pX: < X )p(l P) X+ 1 maxx—a,y)

P X+1 i n +1 n—(x+1)
< = - _
. nmf‘x<max<x—a,y>>x; x+1)P P

< T(A-1-ph) < (13)

Equation (13) follows by the following observationi 1 < 3(x—a) for x > 2, andx+ 1 < 2y

for x < 1. Finally, pE [In %} > 0, which implies the lower bound of the lemma.

The following lemma bounds, as a function of;.

Lemma 34 Letd > 0. We have/dS: mp = O(( min } +n1> In %)

Theorem 32 Proof Lety,, = (1— \/§> pwm—2. By Lemma 9, withh = 5, we havevgs

3In4 . 3pyIn 27

Ywev:py> e lpw— 2| < /TS (14)
5|n4m

YweV:py> m5, Cu > Yw+2> (5—/15)In 40 > In4m, (15)

4m
5In7g
m

LetVH :{wev:pw> }andVL:V\VH.We have

+ . (16)

||— - I—Ieav&one| <

2, (v L)

EVH

Cw,
pwblw — —L
W;L ( m W)

We start by bounding the first term of Equation (16). By Equation (18)hewvevw € iy, cyy >
Yw-+2> In 4. Equation (10) implies thay, = g thereforeLy, = In Q”;jf’x =In maﬂﬁw‘_ﬁaw ,and
L, =InDiB —jp__m1B et

cw—1-a max(cy—1—0,yw)
Cw m-— m-
Errt = In —pywln—————.
Y M maoe—1— o) max(Gy — oY)
We have
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W;H (%WL\’N—prW) = ; Errfl +in " 1BBW;H &
< W;HErr\,'f, +O<E>' a7)

We bound ¥ ey, Errit| using McDiarmid's inequality. As in Lemma 33, 1&4(x) = In(max(x, yw)).
We have

E[Errly] = In(m—B)E [ — pu| +E [pufiu(cw— o) — 2 fulcu—1-a0)]

The first expectation equals 0, the second can be bounded using Lemma 33

< Z )E [prW(CW—G)—%fW(C\N_l_G>H

3Pu —o<1>. (18)

z E[Errl)]
WeVH

who, M m
In order to use McDiarmid’s inequality, we bound the changg gfy,, Errf! as a function of a

single change in the sample. Suppose that a wasdeplaced by a word. This results in decrease

for ¢,, and increase for,. Recalling that,, = Q(mpy), the change oErr!!, as well as the change

of Err!!, is bounded byd (!"M), as follows:
The change ofyIn m)(f;‘u;iw would be 0 ifc, — a <y,. Otherwise,

m-p m-p

_ |n—
max(cy —1—a,yy) Pu max(Cy —a,Yy)

< pulln(cu—a) —In(cy—1—a)] = pyln <l+w+w> :O<&>'

Cu

puln

Sincecy > yu = Q(mpy), the change is bounded B &) = O( ). The change oft In m(c[.n—;f—am
would beO("™™) if ¢, — 1 —a < y,. Otherwise,

cu—1 m—3 Cu m—3
In ——1In
m max(c,—2—0a,y;) m maxc,—1—a,yy)
< -t m-—p —In m-Pp +1im m-—p
m max(cy —2—a,Yy) maxcy—1—a,yy)| m maxc,—1-—a,yy)

IN

C”_1In<1+ 1 >+In_m_o<lnm>'
m Cu—2—a m m
The change oErr!! is bounded in a similar way.
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By Equations (17) and (18), and Lemma 2, we helves:

2, (it pt)

1
< Errt—E Errt ||+ |E ErrH +O<—)
W;H v [WEZH v W;H v m
| 1 1 1 Inm)2In i
< o(ln mln++>0< (nm*Ing . (19)
m d m m m

Next, we bound the second term of Equation (16). By Lemma 10, wethese

4m

3In
YweV st. py < mé’ Cw < 6In4. (20)

Letb=5In=" 4”‘ . By Equations (14) and (20), for amysuch thatp,, < < , we have

In4M G|n4m v [n 4m
<max{nm+\/3pwr: 6,6:15 }<(5+ 3:]5” 0 <2—n:).

Thereforevw € i, we havec,, < 2b. Letnf = [V NS, G = — k+1nk, andMg = ¥ ey, s, Pw-
We have

32

W;L@L;V_MW)

2b 2b-1

k=1

2b rt 2b—1 2b 1 1
< L/( MEL(K kneL' (k <7——)
- kzm k+1 Z) +k; neL (k) m—k+1 m
= ZG" L'(k) szlM'-L(k) +o<b"max>
- k—1 - k

=1 o m

2b-1 2b-1
_ Z)GLL’ (k+1)— Z MEL (k (b"r;“ax)

2b—1 L 2b—1 L L bl—max
< Y GUK+D) LK+ 5 |Gk—Mk\L(k)+O< - > (21)

—0 k=0

The first sum of Equation (21) is bounded using Equations (11) anddhd Lemma 34
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2b-1
Y GilL'(k+1) - L(K)|
=0

2b—1
Y GilL'(k+1) —L(K)|+GolL'(1) ~ L(0)| + Gy L'(2) — L(D)]- (22)
=2

The first term of Equation (22) is bounded by Equation (11):

2b—-1 2b—-1 1 1
Zsz“_/ (k+1)— < Z Gk - ( ) o<a). (23)

The other two terms are bounded using Lemma 34nor0, we havefl%s n=0 (b (w /min % + n1> ) .
By Equation (12), we have

GolL'(1) — L(0)] + Ga|L'(2) — L(1)]

Ro(@) o)) e

Forn; =0, Lemma 34 results inp =0 (b min %) , and Equation (24) transforms into

2mL In3
G1|L/(2) - L(l)| < mZ_rr:\Lax =0 (bLmax m ) . (25)

Equations (22), (23), (24), and (25) sum up to

2b—-1 |n
Y GlL'(k+1)—L(k)| = O bLmax m5 . (26)
k=0

The second sum of Equation (21) is bounded using Lemma 28 separatelyefgk < 2b with
accuracy%. Since the proof of Lemma 28 also holds ték and Ml'; (instead ofGx andMy), we

havev$ S, for everyk < 2b, |Gk — ML| = (b In 5). Therefore, together with Equations (21) and
(26), we have

W; (%L\’N—pWLW) < o(bLmax mﬁ%) ZbZ:L ( '”6) +o(er:’1"aX>
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The proof follows by combining Equations (16), (19), and (27). |

5. Log-Loss A Priori

Section 4 bounds the error of the leave-one-out estimation of the logHabaws that the log-loss
can be effectively estimated, for a general family of learning algorithms.

Another question to be considered is the log-loss distribution itself, withowdrtiggrical esti-
mation. That is, how large (or low) is it expected to be, and which parameteng distribution
affect it.

We denote the learning error (equivalent to the log-loss) as the Klrgéinee between the true
and the estimated distribution. We refer to a general family of learning algoritmdsshow lower
and upper bounds for the learning error.

The upper bound (Theorem 39) can be divided to three parts. Thpditds the missing mass.
The other two build a trade-off between a threshold (lower thresholds teaallower bound), and
the number of words with probability exceeding this threshold (fewer wieat$to a lower bound).
It seems that this number of words is a necessary lower bound, as wesfibheorem 35.

Theorem 35 Let the distribution be uniformivw eV : py, = % with N < m. Also, suppose that the
learning algorithm just uses maximum-likelihood approximation, meaning &. Then, a typical
learning error would beQ(}).

The proof of Theorem 35 bases on the Pinsker inequality (Lemma 36)stisfiows a lower
bound forL; norm between the true and the expected distributions, and then transfdortfet
form of the learning error.

Lemma 36 (Pinsker Inequality) Given any two distributions P and Q, we have
1
KL(P[|Q) > 5(L1(P.Q)).

Theorem 35 Proof We first show that; (P, Q) concentrates ne& Q/g) Then, we use Pinsker

inequality to show lower bourcf KL(P||Q).
First we find a lower bound fdE|[|py — ow|]. Sincec, is a binomial random variable?[c,] =
mpw(1— pw) = Q (§), and with some constant probabilitgy — mp,| > o[c,). Therefore, we have

Ellgu—pul] = ~Ellow—mpu]

ZoleuP(ou—ma > oie) - 2 (1) <0 (1)

e |3 s -a (v ) -a(yh)

5. This proof does not optimize the constants. Asymptotic analysis ofitbgac transform of binomial variables by
Flajolet (1999) can be used to achieve explicit valuesfio(P||Q).

v
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A single change in the sample chanda$P, Q) by at most%. Using McDiarmid inequality
(Lemma 2) oL (P, Q) as a function of sample words, we haves:

L(PQ) = E[Li(PQ)-[Li(PQ) —E[La(RQ)

Using Pinsker inequality (Lemma 36), we have

2
1 pw 1 <N>
V2 In—> = - =Q(—=),
S W§€ Pw qw_2<w§€ | Pw qw|> =

which completes the proof. [ |

Definition 37 Leta € (0,1) andt > 1. We define an (absolute discounting) algorithgyAwhich
‘removes” = probability mass from words appearing at mastimes, and uniformly spreads it
among the unseen words. We denote py A= S7_; n; the number of words with count betwekn
andt. The learned probability Q is defined by :

Gn]%r CW:O
Ow = & 1<cy<T

&y
u T < Cu.

L3

The a parameter can be set to some constant, or to make the missing mass match the Good-
Turing missing mass estimator, that#.-x = 7.

Definition 38 Given a distribution P, and x [0,1], let F = ¥ yev:.p,<xPw: @nd No= {w e V .
pw > x}|. Clearly, for any distribution P, fis a monotone function of x, varying from 0 to 1, and
Ny is @ monotone function of x, varying from NGoNote that N is bounded b;&.

The next theorem shows an upper bound for the learning error.

Theorem 39 For anyd > 0 andA > 3, such thatt < (A —v/3\)In &2, the learning error of 4 is
bounded?®S by

noln 2 Aln & 3Iné
0< mln(ﬂ) < Moln | —3 |+ 535 /222 1 Mg
We Cw any .t l1-a m
a 3Iné 3AIn&m
——Fppen +1) —2 5 N, on.
+1—(1 A|nm%+ m +2(\/X—\/§)2m )\Inm%
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The proof of Theorem 39 bases directly on Lemmas 40, 41, and 43. Wewaite this bound
roughly as

This bound implies the characteristics of the distribution influencing the log-ltéisshows
that a “good” distribution can involve many low-probability words, giventttiee missing mass
is low. However, the learning error would increase if the dictionary incdudeny mid-range-
probability words. For example, if a typical word’s probability weme%, the bound would become

6 <M0+m‘%).

Lemma 40 For anyd > 0, the learning error for non-appearing words can be bounded with high
probability by

5 Puw noin g
v°S, z pwin <QW> < Mpln (—Gnl...r .

w¢S

Proof By Lemma 13, we have®S, the real probability of any non-appearing word does not exceed
'nﬁ. Therefore,

Pw m nNg
In —_— = In —_
v%spW <qW> ¥ Spw <pw0‘ nl...r)

N®m n npin T
< Zp\,\,ln<—5— 0>:Moln( 5),

which completes the proof. |

2m
Aln 57
m

Lemma4l Letd>0,A > 0. Let\[ = {WEV Dpw <
forV/ can be bounded with high probability by

Pw )\In%m 3In% a
o In( ) < M — F. on.
L

Proof We use Iii1+x) < x.

}, and\{ =V_.NS. The learning error

Zlcmln(;M < D P —

weV/ w weV/ Cw

For any appearing word, q,, > 1*?“ Therefore,
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me » sijmwmmr%)
PR TR
. HWGZVL,F’W(F’W—C%V) a2, m
< TS et e
< )\1"12;3” WEZVL/(QN_%W) +%mezém. (28)

We apply Lemma 12 omy, the union of words iV,. Let py, = Y ey Pw @ndcy = 3 ey, Cw-
We havey®S:

SRR N

weV/ weVL\S
Cw
< Pv—— )|+ Pw
WEZ/L ( m) We%\s
Cy,
3In2

< 4/ —2+Mo. 29
< m -+ Mo (29)
The proof follows combining Equations (28) and (29). |

Lemma 42 Let0 < A < 1. For any xe [-A, A}, we havdn(14x) > x— 2(1+2A)2'

Lemma 43 Letd > 0, A > 3, such thatr < (A —v/3\)In4P. Let the high-probability words set be
Mn } and\{; =Vy NS. The learning error for ¥/ can be bounded with high

m

Vi = {w ev:pw>
probability by

Pw /3In3 3AIn 4
Vo In (-) < 4 N, , an.
> wezv.qm a/) VM T2V v3pPm ME
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Proof

3|£’|§

) 20 (3)

) WGVHZ,QNST Puln <0\me a ) : (30)

Zn(e) = g e
= z pWIn<

weV,

5\3

Using Lemma 9 with\, we havev? S

YW € Vi, ‘m——‘_\/spwrl:m, 31)

YW € Wy, c\,\,z()\—\/&.’i)\)lnF

This means that for a reasonable choice fheaningt < (A —+v/3A)In 4m) the second term of
Equation (30) is 0, and/, = V4. Also,

%W—pw‘< 1 /3pv\,ln‘%m< m 3In2m
Pv |~ Pw m =\ AInZ

Therefore, we can use Lemma 42 with= \/g:

M py == Pw
QNIn< > = — pwin <1+ >
mgé’ Cw Wg% Pw

IA
|
2
=1
|
2
|
|_\
VN
319
|
2
N———

(32)

" <pw_m>+2<\/)_\_\/§>2w;|4 5

We apply Lemma 12 on they, the union of all words iny. Let py, = 3 wey, Pw andcy, =

Y wevi; Cw- The bound on the first term of Equation (32) is:
Cw 3In%
- <\ —9
W;H (p‘” m) =V m (33)

Assuming that Equation (31) holds, the second term of Equation (32)sababounded:

Vs,
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(% — 3pwin 4 3In 4m
2 mi < Z L SPw 3 N, 4m . (34)
WV Pw M m e
The proof follows by combining Equations (30), (32), (33) and (34). [ |
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Appendix A. Technical Proofs

A.1 Concentration Inequalities

Lemma6 Proof We use Stirling approximatioR(x+ 1) = v/2mx (X)* T, where
1 1
Tx= — .

P =k = (i) pr*

r(n+1) M=\
< FrDrnogrD () <T>
V2m " -t Ty

V2T /21(n — p) (N —p)"H n i TuTh—p

(
B 1 n Th
V2 n—pTThy
1 T

V21— p) Ty

Clearly, for integral values gi, the equality is achieved &t= . [ |

Lemma 8 Proof Letn' = ¥,y c,. Using Lemma 7 fom’ with b =c = E[m/] = m, the prob-
ability P(m = m) achieves its minimum whevw € V, py = % Under this assumption, we have
n ~ Bin(mN, ). Using Lemma 6, we have
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J— Z .
\/anN 1) TnTon-m = 3y/m

rrfm

Therefore, for any distributiofipy : w € V}, we have

P =m) > 3.

Obviously,E[F'] = S E[fw(cy)] = E[F]. Also, the distribution of c,} given thatn? = mis
identical to the distribution ofcy,}, therefore the distribution d¥’ given thatm’ = mis identical to
the distribution ofF. We have

P(|F' —E[F]|>¢) = ZP(r’d =1)P(|[F' —E[F]| > g|m =1i)

> P(m =m)P(|F' —E[F']| > ¢|m =m)
= P(mM =m)P(|F —E[F]| > ¢)
1
> 3 mPIF—EF]>e),
which completes the proof. [ |

2
Lemma 44 For anyd > 0, and a word we V, such that > 3'% we have

Proof The proof follows by applying Lemma 3, substitutiag- ,/3mpyIn . Note that for 31rg <
mpy we havee < mpy:

P((pw% 3“”'“§> — P(mpu—cul 2 8)

m
82
< 2 R —
= eXp( 2E[cw]+e>

3 In 2
Zexp<_m> _s

IN

3mpy

which completes the proof. |
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2m
Lemma9 Proof There are at moshwords with probabilityp,, > 3"1T5 The first claim follows

using Lemma 44 together with union bound over all these words (with aqcﬁ{w each word).

2m
Using the first claim, we derive the second. We show a lower boun%fcusing'nT6 < Fpw

Cw 3pw"1% vﬁg V/§
= >py— —2 — Z=(1-4/= ,
~ 2 Pw > Pw — Pw A 1 A Pw

The final inequality follows from simple algebra. |

Lemma 10 Proof Letb=3In(¥§). Note thatd € [0,1] andm> 1 yieldb > 2. First, suppose that
there are up ton words withp,, < n% For each such word, we apply Lemma 3@n with € = b.
We have:

b? )
P(CW> 6Ing> <P(cy>mpy+¢) < exp(—m> < et

Since we assume that there are upntsuch words, the total mistake probabilitydis

Now we assume the general case, that is, without any assumption on themafmiords. Our
goal is to reduce the problem to the former conditions, that is, to createbse¢m of words with
probability smaller tharg.

We first createn empty sets,...,vy. Let the probability of each sef, py,, be the sum of the
probabilities of all the words it includes. Let the actual count;ot,,, be the sum of the sample
counts of all the wordsy it includes.

We divide all the wordsv between these sets in a bin-packing-approximation manner. We sort
the wordsw in decreasing probability order. Then, we do the following loop: insertd word
w to the sew; with the currently smallesp, .

We claim thatp,, < % for eachy; at the end of the loop. If this inequality does not hold, then
some wordv made this “overflow” first. Obviouslyp, must be smaller thaﬁ?ﬁ, otherwise it would
be one of the first%m < mwords ordered, and would enter an empty setp,lf< % and it made
an “overflow”, then the probability of each set at the momentas entered must exceg}{, since
w must have entered the lightest set available. This means that the total iptpledlall words
entered by that moment was greater thazﬁ»] > 1.

Applying the case ofmwords to the sets;, ..., Vm, we havey®S: for everyv;, cy, < 2b. Also, if
the count of each set does not exceed2so does the count of each wosde v;. That is,

P<3w:pwg%cw>2b> gP(Hvi:p\,i g%,cvi >2b> <9,

which completes the proof. |
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Lemma 11l Proof By Lemma 9 with some > 3 (which will be set later), we have S

3In4e
YW pw > et Impy — Cw| < 3mpNIn (35)

Aln 4
YW py > 0 (36)

/ 4m<

()\ + \/_) In4". By Lemma 10, we have

V2SS, vwst. p\,\,<3'n4m, cw < 6In L%m

It means that for anw: mpy < Aln 4%“, we havec, < ()\ + \/§> In 4%“. This means that for
any w such thatc,, > ()\+\/§> In%4", we havemp, > AIn“%". By Equation (36), this means

1
TR

Cw, and by Equation (35):

4
3cwIn

4m
Mpw— G| < |/3mpyin = <

Substitutingh = 12 results in

4
¥°S:  Vwst. cy > 18In4", |mpN—cW\§\/6qun%n,

which completes the proof. [ |

2
Lemma 12 Proof If py > 3'# we can apply Lemma 44. We have

o 3pwin2 3In2
Vo w_ ‘< 5 5
S m FM—\/ m —\/ m

Otherwise, we can apply Lemma 10. We have:

Cu Cur 6InT 3In2
Vo ’—— ‘<max < 20 < 5
S m Pw] = {pw m}— m — m ’

which completes the proof. |
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Lemma 13 Proof Letb=In. We note that there are at mdStwords with probabilityp, > %
b
Pl3w:cy=0,py>—| < Z P(cw =0)
m wpw>2
m
= > (1pw)m§T(1E> <meP” =3,
. b b m
W:Pw= 1
which completes the proof. [ |
A.2 K-Hitting Mass Estimation
Lemma 21 Proof We havey e, , Pw < 1. Using Lemma 19, we bourfé(c,, = k) andP(cy =
k+1):
E[Mal pPleu—k =0 ( 7|
k, = = = P —
* WEVi a \/R
E[Geal ~ ElMia]| = K p(oy =k 1) - puP(eu=K)
k,a k,a = Wg m—k Cw = pwP(Cw =
k.a
k+1 vk
= pv——P(Cw=k+1)=0( — |. (37)
WEVi a m-— m
Equation (37) follows by Lemma 20. By Lemma 18, we hae,| = O (}):
k+1 km 1 1
E[Gka] = —— Plcy=k+1)=0(—-——]=0( =),
[ k,a] m_kwe ko (CW ) <m k \/R> (\/R>
which completes the proof. |

Theorem 29 Proof The proof is done by examining four casekofork < 18In%m, we can use
Lemma 28. We have

- ;| )
7S, M~ My| =[G —My| = O<\/ 5 (k+1In %‘)) = O(\/—%) :

For 18In%m <k< mé, we can use Theorem 25. We have

VoS, [Mk— M| = |Gk —My| = O(\/ L k'"m%> = 6<m—§> .
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2
Forms < k < 7, we can use Theorem 26. We have

m k

3
VS, [Mi— M| = [My — My =O<ﬁ(ln5)2 + X In3> :C~)<m‘§>.

Fork> T, leta =,/6In8". By Lemma 17, we have?S, M= Mg A My = My o. By Lemma

18, Vkal| = O(”F‘) = O(1). Letc be the bound otk o|. Using Lemma 12 for eacl € Vi o with
accuracy, we have

Ini
v3S YW e Vi, ‘(:nN“”O< mé)

Therefore, we havedSs:

My — My| = Mk g — My o] < Z
WEVi o

K B ng\ ~/1
mWKWO(m>OCm>

which completes the proof. [ |

Theorem 30 Proof First, we show that for any two wordsandv, Cov( Xk, Xvk) = © (%) Note
that{c,|cy = K} ~ Bin(m—k, —%). By Lemma 6, we have:

’ m—k

1 T,
2k (1— K TeTm-k
1 T
P(cy=klcu=k) = - TkT’“ k2k.
Mk (1— %) '™

Using Tx = O(1) for x > k, we have

COV(Xu,kp xv7k)
= E[XuxXuk] — EPXuk] E[Xux]
= P(cy=K)[P(cy = Kloy = k) — P(cy = k)]

Tk Tm- T T Tk Tm-
a1t Tk | J(a— i) B2 ffa— ) T
Tm—k 1 T,

e<%) { 1 T2k - ]
\/@ m-2k MTm,k
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B e<1){ka( 11 )
A\ Ja-de g
1 Tm_k Tm
* k <Tm—2k_Tm—k> ' (39)
(1-3)
We can bound the first term of Equation (39):

L1 (Va ) (Ve
\/(l_m_lik) \/(1_%) \/(1_ﬂ)(1_m) \/1—§+\/1—m_'jk

k ko k?

SinceTy = exp( g3 + O (%)) = 1+ 13 + O(5) for x> m— 2k (note thak < m), we have

Tm—k Tm . Tnzkk—Tme—Zk
Tm72k Tm k Tm72kTmfk

= Tm_ziTm_ {s(ml_ k)~ 1;11‘ 12(m1— 2k) +O<$>]
R ORE

Combining Equations (39), (40), and (41), we have

o= (2) () -o(5) ro(3)]-o(3)

Now we show that?[Xyx] = (\/R) By Equation (38), we have

orei-r e -o( ) (-o( ) -o(3)

Now we find a bound foo?[My].

o’M] = o2

Z waw,k}

w

-3 P20 [Xuuk] + > PupCOMXuk, Xuk)
W UV
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which completes the proof. |

A.3 Leave-One-Out Estimation of Log-Loss

Lemma 34 Proof Using Lemma 9, we have?: n, = lUNS|andn = |UNS |, whereU = {we
V:mpy <cIn§}, for somec > 0. Letn, = [UNS| andny = [UNS,|. Letb=1InF.
First, we show thaE[n,] = O(bE[n}]).

m

e, = é;(2>pm1—pmm4

= 3 mai-p" e

- ZJ mpy(1— pw)™ "O(b) = O(bE[n})).

Next, we bound the deviation of andn,. A single change in the sample changésas well
asn,, by at most 1. Therefore, using Lemma 2 fgrandn,, we have

vis: n&zE[n’ﬂ—O(Umln%),
L / / 1
VaS: n, <E[ny]+0 mIn?S .

Therefore,
/ / l / 1 / l
n, < E[ny]+ 0O mInS =0 bE[n}] + mInS =0(b{n+ mlnS ,
which completes the proof. [ |

A.4 Log-Loss A Priori

Theorem 39 Proof The KL-divergence is of course non-negative. By Lemma 40, we have

5 Pw noln 4"
V4 In{ — ) <Mgln . 42
L (B) <m0 (anl‘..r “2)
By Lemma 41 withi, we haver4 S

1262



CONCENTRATION BOUNDS FORUNIGRAM LANGUAGE MODELS

Pw Aln &0 3Ing o
a. < A - m .
ZMnfLm pWIn<qW> ~1l-a m +Mo +1—(XFMnmST (43)

WeS pw< —x2

By Lemma 43 with\, we havev?S

Pw 3Ing 3AIn g
In{ — | < + N, 8m . 44
2 > (%)‘V m " 2(/A-3)m F (44
WES P> —0
The proof follows by combining Equations (42), (43), and (44). |

Lemma42 Proof Let f(x) = 2(1%2)2 —X+In(1+x). Then,

X 1
f/ = -1
0 = o Y
" _ ; . } 2
f'(x) = e .(1+x)
Clearly, f (0) = f/(0) = 0. Also, f”(x) > 0 for anyx € [—A, A]. Therefore,f(x) is non-negative
in the range above, and the lemma follows. |
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Abstract

Typical recommender systems adopt a static view of the revsemdation process and treat it as
a prediction problem. We argue that it is more appropriatgi¢éwv the problem of generating
recommendations as a sequential optimization problem @ntsequently, that Markov decision
processes (MDPs) provide a more appropriate model for rewmder systems. MDPs introduce
two benefits: they take into account the long-term effectsaoh recommendation and the expected
value of each recommendation. To succeed in practice, an-bH3Bd recommender system must
employ a strong initial model, must be solvable quickly, ahduld not consume too much memory.
In this paper, we describe our particular MDP model, itali#ation using a predictive model, the
solution and update algorithm, and its actual performamce commercial site. We also describe
the particular predictive model we used which outperformevipus models. Our system is one
of a small number of commercially deployed recommenderesyst As far as we know, it is the
first to report experimental analysis conducted on a reahseruial site. These results validate the
commercial value of recommender systems, and in particoflaur MDP-based approach.

Keywords: recommender systems, Markov decision processes, leandngnercial applications

1. Introduction

In many markets, consumers are faced with a wealth of products and infonnfram which they
can choose. To alleviate this problem, many web sites attempt to help usersobyoirating a
recommender systefResnick and Varian, 1997) that provides users with a list of items anaflor w
pages that are likely to interest them. Once the user makes her choice liatr@wecommended
items is presented. Thus, the recommendation process is a sequentiaspidoeeover, in many
domains, user choices are sequential in nature — for example, we buykebfpdhe author of a
recent book we liked.

x. Parts of this paper appeared in the proceedings of UAI'02 under théAiti®MDP-Based Recommender System,”
and the proceedings of ICAPS’03 under the title “Recommendation achastiic Sequential Decision Problem.”

(©2005 Guy Shani, Ronen |. Brafman and David Heckerman.
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The sequential nature of the recommendation process was noticed in tH&ipadars et al.,
2001). Taking this idea one step farther, we suggest that recommengatioirsimply a sequential
prediction problem, but rather, a sequential decision problem. At eaich {i@ Recommender
System makes a decision: which recommendation to issue. This decision &iauldto account
the sequential process involved and the optimization criteria suitable forcbmneender system,
such as the profit generated from selling an item. Thus, we suggestdh® Markov decision
processes (MDP) (Puterman, 1994), a well known stochastic modetjaéstial decisions.

With this view in mind, a more sophisticated approach to recommender systemssnfergt,
one can take into account the utility of a particular recommendation — for examglmight want
to recommend a product that has a slightly lower probability of being boughtyemerates higher
profits. Second, we might suggest an item whose immediate reward is lawdealls to more
likely or more profitable rewards in the future.

These considerations are taken into account automatically by any gogqdimabpolicy gen-
erated for an MDP model of the recommendation process. In particulaptamal policy will take
into account the likelihood of a recommendation to be accepted by the usienntegliate value to
the site of such an acceptance, and the long-term implications of this on ttefutigre choices.
These considerations are taken with the appropriate balance to ensgeadnation of the maximal
expected reward stream.

For instance, consider a site selling electronic appliances faced with then dptsuggest a
video camera with a success probability of 0.5, or a VCR with a probability of Thé. site may
choose the camera, which is less profitable, because the camera hesoaesdahat are likely to
be purchased, whereas the VCR does not. If a video-game consoteli&aaption with a smaller
success probability, the large profit from the likely future event of selljagne cartridges may tip
the balance toward this latter choice. Similarly, when the products sold aks dmorecommending
a book for which there is a sequel, we may increase the likelihood that thisls&ilj be purchased
later.

Indeed, in our implemented system, we observed less obvious instancesho$equential
behavior: users who purchased novels by the well-known sciencenfiatithor, Roger Zelazny,
who uses many mythological themes in his writing, often later purchase boo&sezk or Hindu
mythology. On the other hand, users who buy mythology books do notappbuy Roger Zelazny
novels afterwards.

The benefits of an MDP-based recommender system discussed akoofisat by the fact
that the model parameters are unknown. Standard reinforcement tpaectmiques that learn
optimal behaviors will not do — they take considerable time to converge airdrthial behavior
is random. No commercial site will deploy a system with such behavior. Theisnust find ways
for generating good initial estimates for the MDP parameters. The appnaastiggest initializes a
predictive model of user behavior using data gathered on the site priar tmfgtementation of the
recommender system. We then use the predictive model to provide initial gararfee the MDP.

Our initialization process can be performed usamypredictive model. In this paper we suggest
a particular model that outperforms previous approaches. The pvediotdel we describe is
motivated by our sequential view of the recommendation process, but ctestta independent
contribution. The model can be thought of asragram model (Chen and Goodman, 1996) or,
equivalently, a (first-order) Markov chain in which states corresgorsgquences of events. In this
paper, we emphasize the latter interpretation due to its natural relationshipnAMiDBR. We note
that Su et al. (2000) have described the use of simgieam models for predicting web pages.
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Their methods, however, yield poor performance on our data, proba&lsluse in our case, due to
the relatively limited data set, the use of the enhancement techniques disbekse is needed.

Validating recommender system algorithms is not simple. Most recommendemsystach
as dependency networks (Heckerman et al., 2000), are tested ornchistiata for their predictive
accuracy. That is, the system is trained using historical data from sitedahmeot provide recom-
mendations, and tested to see whether the recommendations conform tauaetua¢havior. We
present the results of a similar test with our system showing it to perfornr ltlettie the previous
leading approach.

However, predictive accuracy is not an ideal measure, as it doggstidiow user behavior is
influenced by the system’s suggestions or what percentage of recomatiomisdare accepted by
users. To obtain this data, one must employ the system at a real site witseegland compare the
performance of this site with and without the system (or with this and otherrsgitelhe extent
to which such experiments are possible is limited, as commercial site ownerslikedyuto allow
experiments which can degrade the performance or the “look-anddetiéir systems. However,
we were able to perform a certain set of experiments using our commeystehs at the online
bookstore Mitos (www.mitos.co.il) by running two models simultaneously on diftewsers: one
based on a predictive model and one based on an MDP model. We weablksfor a short period,
to compare user behavior with and without recommendations. These re¢hiltk, to the best of
our knowledge are among the first reports of online performance in a coiainste, are reported
in Section 6, providing very encouraging validation to recommender systegemaral, and to our
sequential optimization approach in particular.

The main contributions of this paper are: (1) A novel approach to recomenaystems based
on an MDP model together with appropriate initialization and solution techniq(fsA novel
predictive model that outperforms previous predictive models. (3) @aesmall number of com-
mercial applications based on MDPs. (4) The first (to the best of ouvledge) experimental
analysis of a commercially deployed recommender system.

We note that the use of MDPs for recommender systems was previouskisseddpy Bohnen-
berger and Jameson (2001). They used an MDP to model the procassonSumer navigating
within an airport. The state of this MDP was the consumer’s position and rewetk obtained
when the consumer entered a store or bought an item. Recommendatiosswedson a palm-top,
suggesting routes and stores to visit. However, the MDP model was loaiedt@and experiments
were conducted with students rather than real users.

The paper is structured as follows. In Section 2 we review the necelsaekground on rec-
ommender systems, MDPs, and reinforcement learning. In Section 3 wabdethe predictive
model we constructed whose goal is to accurately predict user belmanrenvironment without
recommendations. In Section 4 we present our empirical evaluation ofétdifive model. In Sec-
tion 5 we explain how we use this predictive model as a basis for a more soatdd MDP-based
model for the recommender system. In Section 6 we provide an empiricab&ealwf the actual
recommender system based on data gathered from our deployed systezondlude the paper in
Section 7 discussing our current and future work.

2. Background

In this section we provide the necessary background on recommerstemsyN-gram models, and
MDPs.
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2.1 Recommender Systems

Early in the 1990s, when the Internet became widely used as a sourderofi&tion,information
explosionbecame an issue that needed addressing. Many web sites presentirg \zargtly of
content (such as articles, news stories, or items to purchase) distdlhataisers had difficulties
finding the items that interested them out of the total selecBR@Tommender Systeffesnick and
Varian, 1997) help users limit their search by supplying a list of items that rmigrest a specific
user. Different approaches were suggested for supplying meahimegbmmendations to users and
some were implemented in modern sites (Schafer et al., 2001). Traditionahitate techniques
such as association rules were tried at the early stages of the develagmeagmmender systems.
Initially, they proved to be insufficient for the task, but more recent atteingve yielded some
successful systems (Kitts et al., 2000).

Approaches originating from the field aiformation retrieval (IR)rely on thecontentof the
items (such as description, category, title, author) and therefore avenkagcontent-based rec-
ommendationgMooney and Roy, 2000). These methods use some similarity score to match items
based on their content. Based on this score, a list of items similar to the onesttgreviously se-
lected can be suppliednowledge-basetcecommender systems (Burke, 2000) go one step farther
by using deeper knowledge about the user and the domain. In parttbelaser is able to introduce
explicitinformation about her preferences. Thus, for instance, thieaasild specify interest in Thai
cuisine, and the system might suggest a restaurant serving some attieAs@n cuisine.

Another possibility is to avoid using information about the content, but ratkerhistorical
data gathered from other users in order to make a recommendation. Theésmlsnare widely
known ascollaborative filtering (CF)(Resnick et al., 1994), and we discuss them in more depth
below. Finally, some systems try to create hybrid models that combine collalofiteéring and
content-based recommendations (Balabanovic and Shoham, 1997; BOoRS.

2.2 Collaborative Filtering

The collaborative filtering approach originates in human behavior: pesgaleching for an inter-
esting item they know little of, such as a movie to rent at the video store, tendytorrdriends
to recommend items they tried and liked. The person asking for advice is uésnga#l) commu-
nity of friends that know her taste and can therefore make good predic®ito whether she will
like a certain item. Over the net however, a larger community that can recomiteemsito our
user is available, but the persons in this large community know little or nothingt &ach other.
Conceptually, the goal of a collaborative filtering engine is to identify thasesuwhose taste in
items is predictive of the taste of a certain person (usually calledighborhood, and use their
recommendations to construct a list of items interesting for her.

To build a user’s neighborhood, these methods rely on a databasd aspesinteractions with
the system. Early systems usexplicit ratings In such systems, users grade items (e.g., 5 stars to
a great movie, 1 star to a horrible one) and then receive recommendhtiatsr systems shifted
towardimplicit ratings A common approach assumes that people like what they buy. A binary
grading method is used when a value of 1 is given to items the user has laoaghto other items.
Many modern recommender systems successfully implement this approaghod@llat al. (2001)
have suggested the use of other implicit grading methods through a spebibrawser that keeps
track of user behavior such as the time spent looking at the web pagertiieng of the page by

1. An example of such a system can be found at http://www.movielensegiohn
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[t [ X2 | X[ %]
1| - - X1
2| - X1 X2
3 x1 X2 X3
4| % X3 X4

Table 1: An auto-regressive transformation of the sequenee, x3, x4 for k = 2.

the user, and movements of the mouse over the page. Their evaluationehdiaibed to establish
a method of rating that gave results consistently better than the binary methtidmadrabove.

As described in Breese et al. (1998), collaborative filtering systemsitimer memory based
or model based. Memory-based systems work directly with user datan @ieeselections of a
given user, a memory-based system identifies similar users and makesmendations based on
the items selected by these users. Model-based systems compress suldtauseo a predictive
model. Examples of model-based collaborative filtering systems are Bayestiaonrks (Breese
et al., 1998) and dependency networks (Heckerman et al., 2000js Ipaper, we consider model-
based systems.

2.3 The Sequential Nature of the Recommendation Process

Most recommender systems work in a sequential manner: they suggest itdrasuser who can
then accept one of the recommendations. At the next stage a new listoofimended items is
calculated and presented to the user. This sequential nature of the recdatime process, where
at each stage a new list is calculated based on the user’s past ratingsaills naturally to our
reformulation of the recommendation process as a sequential optimizati@sproc

There is yet another sequential aspect to the recommendation procaselyNoptimal rec-
ommendations may depend not only on previous items pruchased, but aise order in which
those items are purchased. Zimdars et al. (2001) recognized this padsii@adency and sug-
gested the use of an auto-regressive modé&tdeder Markov chain) to represent it. They divided
a sequence of transactioNs, ..., Xr (for example, product purchases, web-page views) into cases
(Xe—ks -, %—1,%) fort =1,...,T as shown in Table 1. They then built a model (in particular, a
dependency network) to predict the last column given the other columdsr the assumption that
the cases were exchangeable. Our model will also incorporate thisdidjueew.

2.4 N-gram Models

N-gram models originate in the field of language modeling. They are used dicptee next
word in a sentence given the last- 1 words. In the simplest form of the model, probabilities
for the next word are estimated via maximum likelihood; and many methods exighfmov-
ing this simple approach including skipping, clustering, and smoothing. Skigsagmes that
the probability of the next word; depends on words other than just the previousl. A sepa-
rate model is built using skipping and then combined with the stanalgram model. Clustering
is an approach that groups some states together for purposes oftipcediext states. For ex-
ample, we can group items such a basketball, football, and volleyball intocatéspall” class.
Such grouping helps to address the problem of data sparsity. Smoothingeiseaal name for
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methods that modify the estimates of probabilities to achieve higher accuraagjisting zero
or low probabilities upward. One type of smoothing is finite mixture modeling, wbarhbines
multiple models via a convex combination. In particular, gikecomponent models fox; given
a prior sequenc&X—pw, (X|X),..., pm (X|X)—we can define th&-component mixture model
P(XiIX) = 10 - pwy (X [X) + - - + T, - pw (%] X), whereSk ;1 = 1 are its mixture weights. Details
of these and other methods are given in Chen and Goodman (1996).

2.5 MDPs

An MDP is a model for sequential stochastic decision problems. As suchwiidely used in
applications where an autonomous agent is influencing its surroundiirgement through actions
(for example, a navigating robot). MDPs (Bellman, 1962) have been kiothe literature for quite
some time, but due to some fundamental problems discussed below, few coatmeptications
have been implemented.

An MDP is by definition a four-tuple{S A,Rwdtr), whereSis a set of states\ is a set of
actions,Rwdis a reward function that assigns a real value to each state/action pair, entthe
state-transition function, which provides the probability of a transition betweeery pair of states
given each action.

In an MDP, the decision-maker’s goal is to behave so that some functitsrefvard stream is
maximized — typically the average reward or the sum of discounted rewardp#imal solution to
the MDP is such a maximizing behavior. Formally, a stationary policy for an Mi¥a mapping
from states to actions, specifying which action to perform in each stateenGimch an optimal
policy 1, at each stage of the decision process, the agent need only estaldis$tatésit is in and
execute the actioa = 11(s).

Various exact and approximate algorithms exist for computing an optimal pdiejow we
briefly review the algorithm known gmlicy-iteration(Howard, 1960), which we use in our imple-
mentation. A basic concept in all approaches is that ofveidae function The value function of
a policy, denotedV™, assigns to each stasea value which corresponds to the expected infinite-
horizon discounted sum of rewards obtained when ugistarting froms. This function satisfies
the following recursive equation:

VT(s) = Rwds,1(s)) +y ) tr(s,1(s),sj)V'(s;) 1)
Sj€S
where 0< y < 1 is the discount factdrAn optimalvalue function, denoted*, assigns to each state

sits value according to an optimal poliey and satisfies

V'(s) = maxRwdsa)) +y ¥ trisa sV (s)). @

Sj€S

To find am* andV* using the policy-iteration algorithm, we search the space of possible poli-
cies. We start with an initial policyp(s) = argmaxRwd(s,a). At each step we compute the value
acA

2. We use discounting mostly for mathematical convenience. True digngwf reward would have to take into account
the actual time in which each book is purchased, which does not seaimtwerextra effort involved.
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function based on the former policy and update the policy given the new ahgetion:

Vi(s) = RWC‘(S’TT@(S)HVZSIF(SJE(S%SJ')Vi(Sj), 3)
Ti+1(S) = argmax[RWd(s,a)+yztr(s,a,sj)\/i(sj)]. 4)
acA SIS

These iterations will converge to an optimal policy (Howard, 1960).

Solving MDPs is known to be a polynomial problem in the number of states (\@duwection to
linear programming (Puterman, 1994)). It is usually more natural to reptéise problem in terms
of states variables, where each state is a possible assignment to thelslesanal the number of
states is hence exponential in the number of state variables. This well Koavge of dimension-
ality” makes algorithms based on an explicit representation of the state-ispa@etical. Thus, a
major research effort in the area of MDPs during the last decade kasimecomputing an optimal
policy in a tractable manner using factored representations of the stateamdother techniques
(for example Boutilier et al. (2000); Koller and Parr (2000)). Unfodtaty, these recent methods
do not seem applicable in our domain in which the structure of the state spquiteiglifferent —
that is, each state can be viewed as an assignment to a very small numbagablies (three in the
typical case) each with very large domains. Moreover, the values oftliebles (describing items
bought recently) are correlated. However, we were able to exploifpea structure of our state
and action spaces using different techniques. In addition, we intrapm®ximations that exploit
the fact that most states — that is, most item sequences — are highly unlikedgup (@ detailed
explanation will follow in Section 3).

MDPs extend the simpler Markov chain (MC) model — a well known model o&dyic systems.
A Markov chain is simply an MDP without actions. It contains a set of statelsaastochastic
transition function between states. In both models the next state does patdmpany states other
than the current state.

In the context of recommender systems, if we equate actions with recommersgdtion an
MDP can be used to model user behavior with recommendations — as we sloww-bwhereas an
MC can be used to model user behavior without recommendations. Mahlaivscare also closely
related ton-gram models. In a bi-gram model, the choice of the next word depenbsalpitistically
on the previous word only. Thus, a bi-gram is simply a first-order Marklo&in whose states
correspond to words. Anrgram is an — 1-order Markovian model in which the next state depends
on the previous — 1 states. Such variants of MDP-models are well known. A non-firstrorde
Markovian model can be converted into a first-order model by makingstatdinclude information
related to the previous— 1 states. More general transformation techniques that attempt to reduce
the size of the state space have been investigated in the literature (for exaegiacchus et al.
(1996); Thebaux et al. (2002)).

3. The Predictive Model

Ouir first step is to construct a predictive model of user purchasesstteamodel that can predict
what item the user will buy next. This model does not take into account itemdkion the user, as
it does not model the recommendation process and its effects. Nonethvedesisall use a Markov
chain, with an appropriate formulation of the state space, as our model. ctioi5d we shall
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show that our predictive model outperforms previous models, and in &écti@ shall intialize our
MDP-based recommender system using this predictive model.

3.1 The Basic Model

A Markov chain is a model of system dynamics — in our case, user “dyndmisise it, we need

to formulate an appropriate notion of a user state and to estimate the state-tnefasititon.

States. The states in our MC model represent the relevant information that weglee the user.
This information corresponds to previous choices made by users in timedoa set of ordered
sequences of selections. We ignore data such as age or genderglalthoauld be beneficial.
Thus, the set of states contains all possible sequences of user ssleCtiaourse, this formulation
leads to an unmanageable state space with the usual associated problémnspatkity and MDP
solution complexity. To reduce the size of the state space, we consideregpulgrices of at mokt
items, for some relatively small value kafWe note that this approach is consistent with the intuition
that the near history (for example, the current user session) often & melevant than selections
made less recently (for example, past user sessions). These sexjaencepresented as vectors of
sizek. In particular, we usgxy,...,x) to denote the state in which the user’s laselected items
werexy, ..., X. Selection sequences with< k items are transformed into a vector in whigh
throughxy,_ have the valuenissing The initial state in the Markov chain is the state in which every
entry has the valumissing* In our experiments, we used valueskatinging from 1 to 5.

The Transition Function. The transition function for our Markov chain describes the proba-
bility that a user whosd recent selections weng,...,xx will select the itemx' next, denoted
trme (X1, X2, ..., Xk), (X2, ..., %, X)). Initially, this transition function is unknown to us; and we
would like to estimate it based on user data. As mentioned, a maximum-likelihood estanate
used:

count((x, Xz, X, X))
trMC(<X1aX2>X3>7 <X27X37X4>> = COU”t((X]_ Xo X3>)

wherecount((x1, %y, ..., X)) is the number of times the sequengexy, ..., X was observed in the
data set. This model, however, still suffers from the problem of dats#pdfor example, see
Sarwar et al. (2000a)) and performs poorly in practice. In the netiose we describe several
techniques for improving the estimate.

(5)

3.2 Some Improvements

We experimented with several enhancements to the maximume-likelihapdm model on data
different from that used in our formal evaluation. The improvementsritestand used here are
those that were found to work well.

One enhancement is a form skipping(Chen and Goodman, 1996), and is based on the ob-
servation that the occurrence of the sequeace, X3 lends some likelihood to the sequengexs.
Thatis, if a person bought, xo, X3, then it is likely that someone will buys afterx;. The particular

3. Those user attributes could be incorporated into our model by ad@itegvariables. Attributes with large domains,
such as age, can be joined into a (small) number of groups (for exaag#egroups) to avoid an explosion of the
state space. Our similarity and clustering methods (see below) can beddaghare training data between states
with different, but related, attribute values (such as age group 258agagroup 30-40).

4. To accommodate systems that collect explicit rather than implicit rateegsh itemx; would be replaced by an
item-rating element — for examplbg, =high.
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skipping model that we found to work well is a simple additive model. First, theictor each
state transition is initialized to the number of observed transitions in the data, Jilien a user se-
qUENCEXy, X2, ..., Xn, we add the fractional count/2(-(1+3) to the transition from(x;, i1, X+2) to
(Xi+1,Xi+2,Xj), foralli+3 < j < n. This fractional count corresponds to a diminishing probability
of skipping a large number of transactions in the sequence. We then naitiedizounts to obtain
the transition probabilities:

count(s,s)

trve(S:9) = 5 counts )

(6)
wherecount(s, s') is the (fractional) count associated with the transition foims'.

A second enhancement is a form of clustering that we have not found litetature. Motivated
by properties of our domain, the approach exploits similarity of sequefrce@sexample, the state
(x,y,2) and the statéw,y, z) are similar because some of the items appearing in the former appear
in the latter as well. The essence of our approach is that the likelihood aittcenfromsto s
can be predicted by occurrences fromo s, wheres andt are similar. In particular, we define the
similarity of statess ands; to be

k
Sim(s,s) = 5 8("9]) (m+ 1) ()

whered(-,-) is the Kronecker delta function argl' is themth item in states. This similarity is
arbitrary up to a constant. In addition, we define $imailarity countfrom statesto s’ to be

simcouns,s) = § sim(s,s) -trya (s, s) (8)
5

wheretr,?,lg(s,-,s’) is the original transition function, with or without skipping (we shall compare the

models created with and without the benefit of skipping). The new transitarapility froms’ to
sis then given by

1 simcounts,s)
25 ¢ simcounfs, ")

trmc(s,s) = }trﬁ},g(s,s’)Jr

5 ©)

A third enhancement is the use of finite mixture modefingimilar methods are used m
gram models, where—for example—a trigram, a bigram, and a unigram iat@reed into a single
model. Our mixture model is motivated by the fact that larger valuédesdd to states that are more
informative whereas smaller valueslotiead to states on which we have more statistics. To balance
these conflicting properties, we mikxmodels, where théh model looks at the lasttransactions.
Thus, fork = 3, we mix three models that predict the next transaction based on the |astdtian,
the last two transactions, and the last three transactions. In generayvieacn mixture weights
from data. We can even allow the mixture weights to depend on the given(@agenformal
experiments on our data suggest that such context-specificity would impredictive accuracy).
Nonetheless, for simplicity, we usg = --- = T = 1/k in our experiments. Because our primary
model is based on thk last items, the generation of the models for smaller values entails little
computational overhead.

5. We examined several weighing techniques and the one describeeldytblelbest results. The use of more complex
techniques as well as attempts to learn the proper weights resulted in venyahanges.
6. Note that Equation 9 is also a simple mixture model.
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4. Evaluation of the Predictive Model

Before incorporating our predictive model into an MDP-based recomeresystem, we evaluated
the accuracy of the predictive model. Our evaluation used data condisgoto user behavior
on a web site (without recommendation) and employed the evaluation metrics céyrused in
the collaborative filtering literature. In Section 6 we evaluate the MDP-bapptbach using an
experimental approach in which recommendations on an e-commerce siterapeilatad by our
algorithms.

4.1 Data Sets

We base our evaluations on real user transactions from the Israek twalakstordvitos (www.mitos.co.il).
Two data sets were used: one containing user transactions (punchagesne containing user
browsing paths obtained from web logs. We filtered out items that werehleigited less than
100 times and users who bought/browsed no more than one item as is commoshyfuem eval-
uating predictive models (for example, Zimdars et al. (2001)). We wetenidi 116 items and
10820 users in the transactions data set, and 65 items and 6678 usersrowtsiadp data set.In
our browsing data, no cookies were used by the site. If the same used vimtsite with a new IP
address, then we would treat her as a new user. Also, activity on thelBaaddress was attributed
to a new user whenever there were no requests for two hours. Tatsseads were randomly split
into a training set (90% of the users) and a test set (10% of the users).

The rational for removing items that were rarely bought is that they cdrenaliably predicted.
This is a conservative approach which implies, in practice, that a raratediigem will not be
recommended by the system, at least initially.

We evaluated predictions as follows. For every user sequiree..,t, in the test set, we
generated the following test cases:

<t1>, <t1,t2>, ceey <tn7k,tn7k+1, ...,tn71> (10)

closely following tests done by Zimdars et al. (2001). For each case,emaiged our various mod-
els to determine the probability distribution fipgivent; .t _«.1,...,ti_1 and ordered the items by
this distribution. Finally, we used the actually observed in conjunction with the list of recom-
mended items to compute a score for the list.

4.2 Evaluation Metrics

We used two scores: Recommendation Score (RC) (Microsoft, 200Bgwhential Decay Score
(ED) (Breese et al., 1998) with slight modifications to fit into our sequentiaiain.

4.2.1 RECOMMENDATION SCORE

For this measure of accuracy, a recommendation is deemed successéubligérved itent is
among the topn recommended itemsr(is varied in the experiments). The sc&€is the percent-
age of cases in which the prediction is successful. A score of 100 mearthé¢hrecommendation
was successful in all cases. This score is meaningful for commercdtstegquire a short list of
recommendations and therefore care little about the ordering of the items intthe lis

7. There are more items and users in the transaction data set sincedarmunsactions over one year, whereas browsing
data was collected only during one week.
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4.2.2 BEXPONENTIAL DECAY SCORE

This measure of accuracy is based on the position of the obsgreadhe recommendation list,
thus evaluating not only the content of the list but also the order of items in i& uRlderlying
assumption is that users are more likely to select a recommendation near thietheplist. In
particular, it is assumed that a user will actually seenttteitem in the list with probability

p(m) =2~ (MD/@-1) (m> 1) (11)

wherea is the half-life parameter—the index of the item in the list with probability 0.5 of being
seen. The score is given by

100- 2ceC p(mE’ pog(ti|c)) (12)

whereC is the set of all cases,= ti_y,ti_ki1,...,ti_1 iS a case, angogti|c) is the position of the

observed itent; in the list of recommended items for We usedx = 5 in our experiments in order
to be consistent with the experiments of Breese et al. (1998) and Zimdarg2201). The relative

performance of the models was not sensitiva to

4.3 Comparison Models
4.3.1 ®OMMERCE SERVER 2000 RREDICTOR

A model to which we compared our results is fedictortool developed by Microsoft as a part
of Microsoft Commerce Server 2000, based on the models of Heckerna@n(2000). This tool
builds dependency-network models in which the local distributions areapiiidtic decision trees.
We used these models in both a non-sequential and sequential form. tWweapproaches are
described in Heckerman et al. (2000) and Zimdars et al. (2001),atdaglg. In the non-sequential
approach, for every item, a decision tree is built that predicts whether timewitt be selected
based on whether the remaining items were or were not selected. In thentgabjapproach, for
every item, a decision tree is built that predicts whether the item will be seleei¢dnased on the
previousk items that were selected. The predictions are normalized to account factitadt only
one item can be predicted next. Zimdars et al. (2001) also use a “caatiable, but preliminary
experiments showed it to decrease predictive accuracy. Consequeattlid not use the cache
variable in our formal evaluation.

These algorithms appear to be the most competitive among published workcoffrti@ned
results of Breese et al. (1998) and Heckerman et al. (2000) shonthrasequential) dependency
networks are no less accurate than Bayesian-network or clusteringsnadd about as accurate
asCorrelation the most accurate (but computationally expensive) memory-based m&haodar
et al. (2000b) apply dimensionality reduction techniques to the user ratingphatrtheir approach
fails to be consistently more accurate than Correlation. Only the sequentiattaigof Zimdars
et al. (2001) is more accurate than the non-sequential dependenayrkétvour knowledge.

We built five sequential models<Lk < 5 for each of the data sets. We refer to the non-sequential
Predictor models as Predictor-NS, and to the Predictor models built usingtdnexpansion meth-
ods with a history of lengtk as Predictok.
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(b) Browsing data set.

Figure 1: Exponential decay score for different models.

4.3.2 UINORDEREDMCS

We also evaluated a non-sequential version of our predictive modelewbguences such asy, z)
and(y,z x) are mapped to the same state. If our assumption about the sequential hatoeno
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mendations is incorrect, then we should expect this model to perform bedteotihr MC model,

as it learns the probabilities using more training data for each state, gathérihg ordered data
into one unordered set. Skipping, clustering, and mixture modeling weragxtlas described in
section 2. We call this model UMC (Unordered Markov chain).
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Recommendation Score

(a) Transactions data set.

4.4 Variations of the MC Model

In order to measure how eackgram enhancement influenced predictive accuracy, we also evalu-
ated models that excluded some of the enhancements. In reporting dis, esurefer to a model
that uses skipping and similarity clustering with the terms SK and SM, resplgctivaddition, we

use numbers to denote which mixture components are used. Thus, forlexampise MC 123 SK

to denote a Markov chain model learned with three mixture components—arhigigram, and
guadgram—where each component employs skipping but not clustering.

4.5 Experimental Results

Figure 1(a) and figure 1(b) show the exponential decay score fobéhemodels of each type
(Markov chain, Unordered Markov chain, Non-Sequential Predintodel, and Sequential Predic-
tor Model). It is important to note thatll the MC models using skipping, clustering, and mixture
modelling yielded better results thavery one ofthe Predictor-k models and the non-sequential
Predictor model. We see that the sequence-sensitive models are batietopsethan those that
ignore sequence information. Furthermore, the Markov chain predistddreboth data sets.

Figure 2(a) and Figure 2(b) show the recommendation score as a fuottish length ().
Once again, sequential models are superior to non-sequential modktsedviarkov chain models
are superior to the Predictor models.
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Figure 2: Recommendation score for different models.
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Figure 3: Exponential decay score for different Markov chainioes

Figure 3(a) and Figure 3(b) show how different versions of the hadhain performed under
the exponential decay score in both data sets. We see that multi-comporaeis raot-perform
single-component models, and that similarity clustering is beneficial. In aiva find that skip-
ping is only beneficial for the transactions data set. Perhaps users tésltbwothe same paths
in a rather conservative manner, or site structure does not allow usgusrip ahead”. In either
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case, once recommendations are available in the site (thus changing theusitiera)r skipping
may prove beneficial.

5. An MDP-Based Recommender Model

The predictive model we described above does not attempt to captuteotthi@sd long-term effect
of recommendations on the user, nor does it try to optimize its behavior by tatngccount such
effects. We now move to an MDP model that explicitly models the recommendaticegz@and
attempts to optimize it. The predictive model plays an important role in the construitithis
model.

We assume that we are given a set of cases describing user behétioravsite that does
not provide recommendations, as well as a probabilistic predictive modelesér acting without
recommendations generated from this data. The set of cases is needgigpdot some of the
approximations we make, and in particular, the lazy initialization approach e Tdle predictive
model provides the probability the user will purchase a particular Xgigen that her sequence of
past purchases ig,...,x.. We denote this value bigryreq(X|X1, . .., X), wherek = 3 in our case.
It is important to stress that the approach presented here is indepehdeafparticular technique
by which the above predictive value is approximated. Naturally, in our impl&tien we used the
predictive model developed in Section 3, but there are other ways efraoting such a model (for
example, Zimdars et al. (2001); Kadie et al. (2002)).

5.1 Defining the MDP

Recall that to define an MDP, we need to provide a set of states, actiansitibn function, and a
reward function. We now describe each of these elements. The statesMDia for our recom-
mender system atetuples of items (for example, books, CDs), some prefix of which may contain
null values corresponding to missing items. This allows us to model shorteeisegs of purchases.

The actions of the MDP correspond to a recommendation of an item. One msideomultiple
recommendations but, to keep our presentation simple, we start by discssgjlegrecommenda-
tions.

Rewards in our MDP encode the utility of selling an item (or showing a web)mepdefined by
the site. Because the state encodes the list of items purchased, the repandsion the last item
defining the current state only. For example, the reward for $tat®, x3) is the reward generated
by the site from the sale of itemy. In this paper, we use net profit for reward.

The state following each recommendation is determined by the user’s resjootisat recom-
mendation. When we recommend an itefithe user has three options:

e Accept this recommendation, thus transferring from stagec, x3) into (xz, X3, x')
e Select some non-recommended it€mthus transferring the state, X2, X3) into (X2, x3,X").

e Select nothing (for example, when the user terminates the session), in edsielihe system
remains in the same state.

Thus, the stochastic element in our model is the user’s actual choice.afsé&ityn function for the
MDP model:

tryop( (X1, X2, X3), X, (X2, X3,X")) (13)
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is the probability that the user will select iteri given that itemx’ is recommended in state
(x1,%2,X3). We writetry,p to denote that only single item recommendations are used.

5.1.1 INITIALIZING trypp

Proper initialization of the transition function is an important implementation issuerisystem.
Unlike traditional model-based reinforcement learning algorithms that learpribper values for
the transition function and hence an optimal policy online, our system nedmsforly accurate
when it is first deployed. A for-profit e-commefcsite is unlikely to use a recommender system
that generates irrelevant recommendations for a long period, while waitingté converge to an
optimal policy. We therefore need to initialize the transition function carefully.cah do so based
on any good predictive model, making the following assumptions:

e A recommendation increases the probability that a user will buy an item. THhislpitiy
is proportional to the probability that the user will buy this item in the absenceaam-
mendations. This assumption is made by most collaborative filtering models deating
e-commerce sites.We denote the proportionality constant for recommendationstates
by asr, whereas, > 1.

e The probability that a user will buy an item that was not recommended is lowaer ttie
probability that she will buy when the system issues no recommendations atbtill
proportional to it. We denote the proportionality constant for recommendatiostates by
Bsr, wherefs, < 1.

To allow for a simpler representation of the equations, for a statéx,,...,xx) and a recommen-
dationr let us uses-r to denote the state = (Xp,..., X, ). We USEtr predict(S,S- I') to denote the
probability that the user will choosenext, given that its current statesaccording to the predictive
model in which recommendations are not considered, th&riseq(r|s). Thus, withas, and s,
constant oves andr and equal ta andp, respectively, we have

tl’pr(S, rsr)= a‘trpredict(sas'r), (14)

the probability that a user will buy next if it was recommended,;

trpp(S,r', S 1) = B-trpredict(S,S-1), I’ #T, (15)
the probability that a user will buyif something else was recommended; and
trl%/IDP(Sa r S) = 1_tr|%/|DP(Sa r,s: r) - Z trl%/lDP(& r,s r/)7 (16)
r'#r

the probability that a user will not buy any new item aftewas recommended. We do not see a
reason to stipulate a particular relationship betweemd3, although we must have

triop(S,1,ST) + Z tripp(sr’,s-r) < 1. (17)
r'=£r

8. We use the term e-commerce, although our system, and recommnsgatians in general, can be used in content sites
and other applications.

9. Actually CF models do not refer to the presence of recommendaliohgsing such systems to generate recommen-
dations to users in commercial applications has the underlying assumgtdheétrecommendation will increase the
likelihood that a user will purchase an item.
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The exact values afis, andBs, should be chosen carefully. Choosing, andfs, to be con-
stants over all states and recommendations ¢say2, 3 = 0.5) might cause the sum of transition
probabilities in the MDP to exceed 1. The approach we took was motivatedttsyekal. (2000),
who showed that thacreasein the probability of following a recommendation is large when one
recommends items having hidjft, defined to be%. Thus, it is not unreasonable to assume that
this increase in probability is proportional to lift:

p(r|s)
p(r) (18)

wherep(r) is the prior probability of buying. Fixing as, to be a little larger than 1 as follows:

Osr = y+pr) P(r) (19)

p(r)

wherey is a very small constant (we uge= ﬁo), and solving fo3s,, we obtain

pr(rs,r) —pr(ris,r') ~y

1- er Qs p(S' I‘/’S)
BT Ty 0

If Bsr is negative, we set it to a very small positive value and normalize the piitieatafterwards.

There are a few things to note abdutd,p(s,1',s- 1), the probability that a user will buy if
something else was recommended, and its representation. Firstrgjpgés,r’,s-r) = Bsr -tr(s,s-
r), the MDP’s initial transition probability does not dependrbbecause our initialization is based
on data that was collected without the benefit of recommendations. Ofe;aoluosie has access to
data that reflects the effect of recommendatiqrg£qict(S-r|S,r)), one can use it to provide a more
accurate initial model. Next, note that we can represent this transition farsaiaocisely using at
most two values for every state-item pair: the probability that an item will becteglen a state
when it is recommended (that igt(s- r|s,r)) and the probability that an item will be selected when
it is not recommended (that ipr(s-r|s,r’)). Because the number of items is much smaller than the
number of states, we obtain significant reduction in the space requirenfdnésroodel.

5.1.2 GENERATING MULTIPLE RECOMMENDATIONS

When moving to multiple recommendations, we make the assumption that recommendation
independent. Namely we assume that for every pair of sets of recommitechegR, R, we have
that

(reRATeR)V(réRAT¢R) = trupp(s,Rs 1) =trupp(s,R,s-r) (21)

This assumption might prove to be false. It seems reasonable that, as tHedisbmmendations
grows, the probability of selecting any item decreases. Another more sxatieple is the case
where the system “thinks” that the user is interested in an inexpensikéngoloook. It can then
recommend a few very expensive cooking books and one is reasqratag (but in no way cheap)
cooking book. The reasonably priced book will seem like a bargain caedpa the expensive ones,
thus making the user more likely to buy it.

Nevertheless, we make this assumption so as not to be forced to createraaleign space
where actions are ordered combinations of recommendations. Taking the sipgpoach for rep-
resenting the transition function we defined above, we still keep only twes#étu every state—item
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pair:
trmpp(S,T € R S-1) =triypp(S,1,s-1), (22)

the probability that will be bought if it appeared in the list of recommendations; and
trmpp(S,F ¢ Rs-1) =tripp(s,r',s-r) forall r' #r, (23)

the probability that will be bought if it did not appear in the list.

As beforetrppe(s,r ¢ R,s-r) does not depend an and will not depend oR in the discussion
that follows. We note again, that these values are merely reasonable iaitiak\and are adjusted
by our system based on actual user behavior, as we shall discuss.

5.2 Solving the MDP

Having defined the MDP, we now consider how to solve it in order to obtaapéimal policy. Such

a policy will, in effect, tell us what item to recommend given any sequenceeaf purchases. For
the domains we studied, we found policy iteration (Howard, 1960)—with agfggvoximations to

be described—to be a tractable solution method. In fact, on tests usingatealee found that
policy iteration terminates after a few iterations. This stems from the speciakenattwur state

space and the approximations we make, as we now explain.

Our state space enjoys a number of features that lead to fast corsefehe policy iteration
algorithm:

Directionality. Transitions in our state space seem to have inherent directionality: Fitatea s
representing a short sequence cannot follow a state representingeat BBguence. Second, the
success of the sequential prediction model indicates that typicabyisiflikely to follow vy, y is
less likely to followx — otherwise, the sequenggy andy,x would have similar probabilities, and
we could simply use sets. Thus, loops, which in principle could occur in ddiP vhodel because
we maintain only a limited amount of history, are not very likely. Indeed, amixation of the
loops in our state space graph reveals them to be small and scarce. vBfpliecthe web site
implementation, it is easy enough to filter out items that were already boughelsér from our
list of recommendations. It is well-known that directionality can be used tacethe running time
of MDP solution algorithm (for example, Bonet and Geffner (2003)).

Insensitivity to k. We have also found that the computation of an optimal policy is not heav-
ily sensitive to variations itkk—the number of past transactions we encapsulate in a stat&k As
increases, so does the number of states, but the number of positives @mwig transition matrix
remains similar. Note that, at most, a state can have as many successors asdliems. When
k is small, the number of observed successors for a state can be large k\ttosvs, however, the
number of successors decreases considerably. Table 2 demonbisatglation in our implemented
model.

Despite these properties of the state space, policy evaluation still requioksaffiort given the
large state and action space we have to deal with. To alleviate this problepsart to a number
of approximations.

Ignoring Unobserved States.The vast majority of states in our models do not correspond to
sequences that were observed in our training set because most ctiomsioditems are extremely
unlikely. For example, it is unlikely to find adjacent purchases of a sciéotien and a gardening
book. We leverage this fact to save both space and computation time. Finstaiwiin transition
probabilities only for states for which a transition occurred in our training.d&hese transitions
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[ k | Number of stateg Average number of successolrs

1| 16,859 15.56
2| 79,640 11.98
3| 89,221 3.92

Table 2: The number of initialized states and the average number of stagssorfor different
values ofk.

correspond to pairs of states of the fosmands-r. Thus, the number of transitions required per
state is bounded by the number of items rather than by an amount exponekiratlie worst case.
The non-zero transitions are stored explicitly, and as can be inferwed Table 2, their number
is much smaller than the total number of entries in the explicit transition matrix. Arile wiuch
memory is still required, in Section 6.2, we show that these requirements atemtarge for
modern computers to handle.

Moreover, we do hot compute a policy choice for a state that was not Btered in our training
data. When the value of such a state is needed for the computation of an gmimglof some
observed state, we simply use its immediate reward. That is, if the seq@ena did not appear
in the training data, we do not calculate a policy for it and assume its valueR@zpe-the reward
for the last item in the sequence. Note that given the skipping and clustasgtigpds we use, the
probability of making a transition from some (observed) sequéncey) to (w,X,y) is not zero
even thoughx,y,z) was never observed. This approximation, although risky in generalsyIBP
motivated by the fact that in our initial model, for each state there is a relasvegll number of
items that are likely to be selected; and the probability of making a transition inte-aneountered
state is very low. Moreover, the reward (that is, profit) does not abaigificantly across different
states, so, there are no “hidden treasures” in the future that we could miss

When a recommendation must be generated for a state that was not eredumtthe past,
we compute the value of the policy for this state online. This requires us to estineatt@nsition
probabilities for a state that did not appear in our training data. We handtermw states in the
same manner that we handled states for which we had sparse data in the liadiatipe model
— that is, using the techniques of skipping, clustering, and finite mixture igfam, bigram, and
trigrams described in Section 3.2.

Using the Independence of RecommendationOne of the basic steps in policy iteration is
policy determination. At each iteration, we compute the best action for eaesstahat is, the
action satisfying:

argmax(Rwd(s) +y¥ ¢estr (s,R,)Vi(s)] =
R
argmaxRwd(s) +Y(3crtrmpp(S,r € R;s-r)Vi(s-r)+ (24)
R
SrertrMDP(S, I € RS- 1)Vi(s-1))]

wheretr(s,r € R;s-r) andtr(s,r ¢ R s-r) follow the definitions above.

The above equation requires maximization over the set of possible recoratioeisdfor each
state. The number of possible recommendatiom& isvheren is the number of items arxlis the
number of items we recommend each time. To handle this large action space, weiseaif our
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independence assumption. Recall that we assumed that the probabilityuseatlauys a particular
item depends on her current state, the item, and whether or not this itenoismsnded. It does
not depend on the identity of the other recommended items. The following meslesdhis fact to
quickly generate an optimal set of recommendations for each state.

Let us definé)(s,r) — the additional value of recommendingn states:

A(s,r) = (tr(s,r e Ris-r)—tr(s,;r ¢ Rs-r))V(s-r). (25)
Now define «
Roion = 111, -, k|A(S,r1) > ... > A(s, 1) and (26)
Vr#ri(i=1,...,K),A(s,r¢) > A(S,r)}.
" IS the set ok items that have the maximAls,r) values.
Theorem 1 R> , is the set that maximizeg;Y(s) — that is,
Viji(s) =
RWA(S) + V(3 cree tr(sT € R s 1)Vi(s-1)+ (27)

Yrgre (ST ER S TVi(s:T)).

Proof Let us assume that there exists some other setretommendationB # R>¢ ., that maxi-
mizesVi,1(s). For simplicity, we shall assume that Allvalues are different. If that is not the case,

thenR should be a set of recommendations not equivaleREfg, . Letr be an item irR but not in

o andr’ be an item irR> | but not inR. Let R be the set we get when we replaceith r’ in

R. We need only show that, 1(s,R) < Vi 1(s,R):
Vit1(s,R) —Vis1(s,R) =
Rwd(s) + S¢tr(s,R S)Vi(s) — (Rwd(s) + S« tr(s,R,s)Vi(s)) =
Yrertr (1" € RS- I")Vi(s-1) + Fgrtr(s,r” ¢ Rs-r")Vi(s-r")—
Srer (1" € R s I"Vi(s:1) = Fgrtr(sr” ¢ R,s-r")Vi(s-1") = (28)
tr(s,r e Rs-r)Vi(s-r) —tr(s;r’ ¢ Ris-r')Vi(s-r')—
(tr(s,;r’ e R,s-r)Vi(s-r)—tr(s;r ¢ R,s-r')Vi(s-r)) =
A(s,r)—A(sr') >0

To compute/;1(s) we therefore need to compute Alls,r) and finde;lg)ﬂ, making the compu-
tation ofVi, 1(s) independent of the number of subsets (or even worse—ordereets)ibf items.
The complexity of finding an optimal policy when recommending multiple items at eagh sta
der our assumptions remains the same as the complexity of computing an optimaf@uodingle
item recommendations.
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By construction, our MDP optimizes site profits. In particular, the systers doerecommend
items that are likely to be bought whether recommended or not, but ratloenneends items whose
likelihood of being purchased iacreasedwhen they are recommended. Nonetheless, when rec-
ommendations are based solely on lift, it is possible that many recommendations widdbe for
which the absolute probability of a purchase (or click) is small. In this casecdmmendations
are seldom followed, users might start ignoring them altogether, makingvidralbbenefit zero.
Our model does not capture such effects. One way to remedy this possiblem is to alter the
reward function so as to provide a certain immediate reward for the accepddia recommenda-
tion. Another way to handle this problem is to recommend a book with a large Mbfe snly if
the probability of buying it passes some threshold. We did not find it nagess introduce these
modifications in our current system.

5.3 Updating the Model Online

Once the recommender system is deployed with its initial model, we need to updateotiel
according to actual observations. One approach is to use some foeinfafrcement learning—
methods that improve the model after each recommendation is made. Althodgimedels need
little administration to improve, the implementation requires many calls and computatiaghs by
recommender system online, which will lead to slower responses—anitatdesesult. A simpler
approach is to perform off-line updates at fixed time intervals. The site oy keep track of the
recommendations and the user selections and, say, once a week usgadtistes to build a new
model and replace it with the old one. This is the approach we used.

In order to re-estimate the transition function the following counts are obté&ioexthe recently
collected statistics:

e Cin(s,r,s-r)—the number of times therecommendation was accepted in state

e Cout(S,1,8-r)—the number of times the user took itemin states even though it was not
recommended,

e Ciotal(S, S r)—the number of times a user took itemwhile being in states, regardless of
whether it was recommended or not.

We compute the new counts and the new approximation for the transition fuattiiomet + 1
based on the counts and probabilities at ttnas follows:

d(srsr) = d,(srs-r)+countsr,s-r), (29)
CE;;;(S,S'I') = C:ota|(s,r,5'r)—l—COUﬂt(S,S'I'), (30)
dtlsrsr) = d(sr,sr)+countss-r)—countsr,s-r), (31)
t+1
ctl(sr,s-r
tr(sreRsr) = %, (32)
Ctotal(s’ S I’)
t+1
(s r, s r
tr(sr¢Rs-r) = % (33)
Ctotal(s7 S I')

Note that at this stage the constaats andfs, no longer play a role—they were used only to
generate the initial model. We still need to define how the counts atttim@ are initialized. We
showed in section 5.1.1 how the transition functiors initialized, and now we define:
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Ci(l)’l(sarvs'r> = ES'tr(SaraS'r)a (34)
Cgut(57 r,S'r) = ES'tr(SvraS'r)a (35)
Ctootal(sas' N = &, (36)

whereés is proportional to the number of times the stateas observed in the training data (in
our implementation we used 10ount(s)). This initialization causes states that were observed
infrequently to be updated faster than states that were observedritoaed in whose estimated
transition probabilities we have more confideAge.

To ensure convergence to an optimal solution, the system must obtaimtecestimates of the
transition probabilities. This, in turn, requires that for each stated for every recommendation
r, we observe the response of users to a recommendatioinadtates sufficiently many times.

If at each state the system always returns the best recommendationshenlynost values for
count(s,r,s-r) would be 0, because most items will not appear among the best recommesdation
Thus, the system needs to recommend non-optimal items occasionally in omgir dounts for
those items. This problem is widely known in computational learning agxpéoration versus
exploitation tradeofffor some discussion of learning rate decay and exploration vs. exploitation
reinforcement learning, see, for example Kaelbling et al. (1996) attdrsand Barto (1998)). The
system balances the need to explore unobserved options in order to énisrmodel and the desire

to exploit the data it has gathered so far in order to get rewards.

One possible solution is to select some constaatich that recommendations whose expected
value ise-close to optimal will be allowed—for example, by following a Boltzmann distribution

. V) (37)
Y j—1exp—>
with an € cutoff—meaning that only items whose value is witlgiof the optimal value will be
allowed. The exact value @fcan be determined by the site operators. The price of such a conser-
vative exploration policy is that we are not guaranteed convergenae aptanal policy. Another
possible solution is to show the best recommendation on the top of the list, butiteas less
likely to be purchased as the second and third items on the list. In our implementatioseva list
of three recommendations where the first one is always the optimal onthebsécond and third
items are selected using the Boltzman distribution without a cutoff.

We also had to equip our system to change with frequent changes éopéx, addition and
removal of items). When new items are added, users will start buying thémasitive counts for
them will appear. At this stage, our system adds new states for these nesy &ed the transition
function is expanded to express the transitions for these new states.u@écerior to updating
the model, the system is not able to recommend those new items (the well-kndaistad” prob-
lem (Good et al., 1999) in recommender systems). In our implementation, wiérsthransition to
a states-r is observed, its probability is initialized to®the probability of the most likely next item
in states with & = 10. This approach causes the new items to be recommended quite frequently.

One possible approach to handling removed items is to do nothing to our systerhjcim
case the transition probabilities slowly decay to zero. Using this approaualever, we may still

Pr(chooséri)) =

10. This approach is similar to assigning an independent learning ra¢adbrstate and decaying it based on the amount
of observed data.
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insert deleted items into the list of recommended items — an undesirable featmsedDently,
in our Mitos implementation, items are programmatically removed from the model doiffiige
updates. Another solution that we have implemented but not evaluated isweigdded data and
to exponentially decay the weights in time, thus placing more weight on moretiseobserved
transitions.

6. Evaluation of the MDP Recommender Model

The main thesis of this work is that (1) recommendation should be viewed gsierg&l optimiza-
tion problem, and (2) MDPs provide an adequate model for this view. This is tmbtrasted with
previous systems which used predictive models for generating recomtiersdaln this section,
we present an empirical validation of our thesis. We compare the perfogmadrour MDP-based
recommender system (denoted MDP) with the performance of a recomnsstie based on our
predictive model (denoted MC) as well as other variants.

Our studies were performed on the online book store Mitos (www.mitos.co.if) fsagust,
2002 till April, 2004. During our evaluations, approximately 5008000 different users visited
the Mitos site daily. Of those, around 900 users inserted items into their basket, tteumgrour
data-set! On average, each customer inserte@7litems into the shopping basket. Over QG0
items were available for purchase on the site.

Users received recommendations when adding items to the shoppirlg dare recommen-
dations were based on the l&stems added to the cart ordered by the time they were added. An
example is shown in Figure 4 where the three book covers at the bottoneasztimmended items.
Every time a user was presented with a list of recommendations on eithertbagystem stored
the recommendations that were presented and recorded whether thanebased a recommended
item. Cart deletions were rare and ignored. Once every two or threeswagkocess was run to
update the model given the data that was collected over the latest time period.

We compared the MDP and MC models both in terms of their value or utility to the sitelas w
as their computational costs.

6.1 Utility Performance

Our first set of results is based on the assumption that the transition fumetidearn for our
MDP using data collectedith recommendations, provides the the best available model of user
behavior under recommendation. Under this assumption, we can measufetherdifferent
recommendation policies. An important caveat is that the states in our MD&sporrd to truncated
(that is, lastk) user sequences. Thus, the model does not exclude repeatedgmgati the same
item. Despite this shortcoming, we proceeded with the evaluation.

As discussed above, a predictive model can answer queries in th&féxth)—the probability
that itemx will be purchased given user histoty Recommender systems may employ differ-
ent strategies when generating recommendations using such a predictige Wgsuming that an
MDP formalizes the recommendation problem well, we may use the learned MD& to@valuate
these strategies. The evaluation of the quality of different possible pdiarigse MDP, each corre-

11. We do not supply accurate numbers for number of users anal aetdits due to the request of the site owners.

12. Users also received recommendations when looking at the déestigp a book, but these recommendations where
based only on the user’s visit to the current page and not on her cart.

13. The update process was executed by the site administrator manubiheaefore the update interval varies.
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Figure 4: Recommendations in the shopping cart web page.

sponding to a popular approach to recommending, may shed light on tleerpoefecommendation
strategy.

The MDP model was built using data gathered while the model was running sitéhavith
incremental updates (as described above) for almost a year. We aahipar policies, where the
first policy uses information about the effect of recommendations, anckthaining policies are
based on the predictive model solely:

e Optimal — recommends items based on optimal policy for the MDP.

e Greedy — recommends items that maximizéx|h) - R(x) (wherePr(x/h) is the probability
of buying itemx given user historyn, andR(x) is the value ok to the site — for example, net
profit).

e Most likely — recommends items that maximi2e(x/h).
e Lift—recommends items that maximi S’(()‘(')‘) , WwherePr(x) is the prior probability of buying
itemx.

To evaluate the different policies we ran a simulation of the interaction ofranigethe system.
During the simulation the system generated a list of recommended Refr@m which the simu-
lated user selected the next item, using the distributi¢s) R s- x)—the probability that the next
selected item ix given the current stateand the recommendation liBt simulating the purchase
of x by the user. The length of user session was taken from the learnedutistribf user session
length in the actual site. We ran the simulation ford@ iterations for each policy, and calculated
the average accumulated reward for user session.
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| Policy | Value |
Optimal 1185
Greedy 116.1
Most Likely | 117.0
Lift 112.8

Table 3: Performance of different policies.

The results are presented in Table 3. The calculated value for each {®tley sum of dis-
counted profit in (New Israeli Shekels) averaged over all states.sat aweighted average, where
the weight of each state was the probability of observing it. Obviously, imappolicy results in
the highest value. However, the differences are small, and it app@ai@td can use the predictive
model alone with very good results.

Next, we performed an experiment to compare the performance of the b4B&d system with
that of the MC-based system. In this experiment, each user entering thasiéssigned a randomly
generated cart-id. Based on the last bit of this cart-id, the user waslpdowith recommendations
by the MDP or MC. Reported mean profits were calculated for each usgibaga single visit to
the site). Data gathered in both cases was used to update both ffodels.

The deployed system was built using three mixture components, with histagthleanging
from one to three for both the MDP model and the MC model. Recommendatanstie different
mixture components were combined using an equa3)0weight. We used the policy-iteration
procedure and approximations described in Section 5 to compute an optilicglfpo the MDP.
Our model encoded approximately,2B0 states in the two top mixture componemis=(2, k = 3).

The reported results were gathered after the model was running in thetkiieevemental updates
(as described above) for almost a year.

During the testing period, 5% of the users who made at least one purchase were shown
MDP-based recommendations and the otheB%Pof these users were shown MC-based recom-
mendations. For each user, we computed the average site profit pendesghat user, leaving
out of consideration the first purchase made in each session. Thédimstvas excluded as it
was bought without the benefit of recommendations, and is therefolevarg to the comparison
between the recommender systeiis.

The average site profit generated by the users was 28% higher forRifegvbup® We used
a permutation test (see, for example, Yeh (2000)) to see how likely it waailfibba difference
this large to emerge if there were in fact no systematic difference in thetieéfieess of the two
recommendation method$. We randomly generated 10000 permutations of the assignments of

14. We update the MC model by recording the transition without considéragecommendation used.

15. This is not entirely accurate as the site also provides recommendfatidgtesns in the book description page. We
do not present here any experimental results for those recomtimrgland do not model their effect on the user,
but we note that a user that received MDP recommendations in theacget got MDP recommendations in the book
description page; users who got MC recommendations in the bask&é@aecommendations in the description
page as well.

16. We are not at liberty to provide accurate numbers.

17. We used a permutation test to establish the validity of our results, as thsrnes-parametric, and does not require
any prior assumptions about the distribution of the data, and is quite robusise in the data. We used the one-tailed
version of the test as the directional hypothesis that the MDP recommisrgtter than the MC recommender has
been theoretically motivated above.
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session profits to users, for each permutation computing the ratio of awsasgjen profits between
the MDP and the MC groups. With only 8% of these random assignments weettithas large as
(or larger than) 282. Therefore, the better performance of the MDP recommender is stalystic
significant withp = 0.08 by a one-tailed permutation test.

There are two possible sources for the observed improvement—the MDPenggnerating
more sales or sales of more expensive items. In our experiment, the everagper of items
bought per user session wa8® in favor of the MDP-based recommendpe£f 0.15), whereas the
average price of items was 4% higher in favor of the MDP-based reconanéme: 0.04). Thus,
both effects may have played a role.

In our second and last experiment, we compared site performance withitoit a recom-
mender system. Ideally, we would have liked to assign users randomly tganaence with and
without recommendations. This option was ruled-out by the site owner sedauould have led to
a non-uniform user experience. Fortunately, the site owner was willirenove the recommender
system from the site for one week. Thus, we were able to compare ay@Eads per user session
during two consecutive weeks — one with recommendations and one witttnrhmendation
We found that, when the recommender system was not in use, averageo§itelfopped 17%
(p=0.0). Although, we cannot rule out the possibility that this difference is dusther factors
(for example, seasonal effects or special events), these resgliitgeencouraging.

Overall, our experiments support the claims concerning the added valisingfrecommenda-
tions in commercial web sites and the validity of the MDP-based model for recadensystems.

6.2 Computational Analysis

In this section, we compare computational costs of the MDP-based andetttietBr recommender
system.

Our comparison uses the transaction data set and corresponding mestelbed in Section 4.
In addition to using the full data set, we measured costs associated with sreadliens of the data
in which transactions among only the the tdpgtems were considered, in order to demonstrate the
effect of the size of the data-set on performance.

| [[N=15231] N=2661] N=1142] N=354 N=86 |
MDP 112 63 58 41 16
Predictor-NS|| 3504 631 177 80 25|

Table 4: Required time (seconds) for model building.

First, let us consider the time it takes to make a recommendation. Recommendation time is
typically the most critical of computational costs. If recommendation latency tisaable, no
reasonable site administrator will use the recommender system. Table 5 skeawsnber of rec-
ommendations generated per second by the recommender system. Thesresultsat the MDP
model is faster. This result is due to the fact that, with the MDP model, we do aimosom-
putations online. While predicting, the model simply finds the proper state &umthsethe state’s
pre-calculated list of recommendations.

18. We display recommendations betweg¢2®/2003 and 43/2003, and without recommendations frorfi8/2003 to
3/26/2003.

1290



AN MDP-BASED RECOMMENDERSYSTEM

[[N=15231] N=2661] N=1142] N=354 N=86 |

MDP

250

277

322

384

1030

Predictor-NS

23

74

175

322

1000 |

Table 5: Recommendations per second.

The price paid for faster recommendation is a larger memory footprint. Tableo@s the
amount of memory needed to build and store a model in megabytes. The MDPregpdees more
memory to store than the Predictor model, due to the structured representatitn Rredictor
model using a collection of decision trees.

Finally, we consider the time needed to build a new model. This computationasqustaps
the least important parameter when selecting a recommender system, as uiloifeg s an off-
line task executed at long time intervals (say once a week at most) on a mactidedk not affect
the performance of the site. That being said, as we see in Table 4, the MB¢t has the smallest
build times.

| [[N=15231] N=2661] N=1142] N=354 N=86 |
MDP 138 74 55.7 333 114
Predictor-NS| 50.1 26 25 223 18

Table 6: Required memory (megabytes) for building a model and generatingimendations.

Overall the MDP-based model is quite competitive with the Predictor model.oltiges the
fastest recommendations at the price of more memory use, and builds modelguicidy.

7. Discussion

This paper describes a new model for recommender systems based dPa®OM work presents
one of a few examples of commercial systems that use MDPs, and one afstheffiorts of the
performance of commercially deployed recommender system. Our experimesu#is validate
both the utility of recommender systems and the utility of the MDP-based appimestommender
systems.

To provide the kind of performance required by an online commercial skeused various
approximations and, in particular, made heavy use of the special prapeftier state space and
its sequential origin. Whereas the applicability of these techniques begoathmender systems is
not clear, it represents an interesting case study of a successtystam. Moreover, the sequential
nature of our system stems from the fact that we need to maintain historgtgfyrehases in order
to obtain a Markovian state space. The need to record facts about thin phs current state
arises in various domains, and has been discussed in a number of gapersdling non-first-order
Markov reward functions (see, for example, Bacchus et al. (1996hi&baux et al. (2002)).

Another interesting technique is our use of off-line data to initialize a modelcdraprovide
adequate initial performance.

In the future, we hope to improve our transition function on those statesrtha¢llom encoun-
tered using generalization techniques, such as skipping and clusteahgrelsimilar to the ones
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we employed in the predictive Markov chain model. Other potential improvenaeatie use of a
partially observable MDP to model the user. As a model, this is more approfitéatean MDP, as
it allows us to explicitly model our uncertainty about the true state of the usrrti{ier, 2002).

In fact, our current model can be viewed as approximating a particuliMby using a finite
—rather than an unbounded — window of past history to define the ¢stega. Of course, the com-
putational and representational overhead of POMDPs are significelagropriate techniques for
overcoming these problems must be developed.

Weaknesses of our predictive (Markov chain) model include the uad bbcweighting func-
tions for skipping and similarity functions and the use of fixed mixture weightkhofigh the
recommendations that result from our current model are (empiricallydilufee ranking items, we
have noticed that the model probability distributions are not calibrated. nlcgathe weighting
functions and mixture weights from data should improve calibration. In additioimformal ex-
periments, we have seen evidence that learning case-dependent migtghts should improve
predictive accuracy.

Our predictive model should also make use of relations between items thaeoexplicitly
specified. For example, most sites that sell items have a large catalogue wittchieal struc-
ture such as categories or subjects, a carefully constructed web sttwantd item properties such
as author name. Finally, our models should incorporate information aberg ssch as age and
gender.
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Abstract

This paper is concerned with the construction and analysisiniversal estimator for the regression
problem in supervised learning. Universal means that ttimasor does not depend on any a priori
assumptions about the regression function to be estimatesluniversal estimator studied in this
paper consists of a least-square fitting procedure usiragwise constant functions on a partition
which depends adaptively on the data. The partition is gdedrby a splitting procedure which
differs from those used in CART algorithms. It is proven ttiég estimator performs at the optimal
convergence rate for a wide class of priors on the regredsiwtion. Namely, as will be made
precise in the text, if the regression function is in any of& certain class of approximation spaces
(or smoothness spaces of order not exceeding one — a liomtasulting because the estimator uses
piecewise constants) measured relative to the marginauneahen the estimator converges to the
regression function (in the least squares sense) with amalptate of convergence in terms of the
number of samples. The estimator is also numerically féasifd can be implemented on-line.

Keywords: distribution-free learning theory, nonparametric regi@s, universal algorithms,
adaptive approximation, on-line algorithms
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1. Introduction

This paper addresses the problem of using empirical samples to desbha&liistic or expectation
error estimates for the regression function of some unknown probabilitgunea on a product
spaceZ := X x Y. It will be assumed here thatis a bounded domain of RandY = R. Given the
dataz={z,...,zn} C Z of mindependent random observatians- (x;,y;), i =1,...,m, identically
distributed according tp, we are interested in estimating tregression function{x) defined as
the conditional expectation of the random variaph x:

f(x) == [ ydo(yx)
Y

with p(y|x) the conditional probability measure dhwith respect tox. In this paper, it is assumed
that this probability measure is supported on an intefrvd, M] :

ly| <M,

almost surely. It follows in particular thafy| < M almost everywhere with respectpq.
We denote byx the marginal probability measure dnhdefined by

px(S) = p(SxY).
We shall assume thailx is a Borel measure oXd. We have

dp(x,y) = dp(y|x)dpx (x).

It is easy to check théf, is the minimizer of the risk functional

£(f):= [(y—1(9)%dp, ®

Z

over f € Lo(X, px ) where this space consists of all functions frirto Y which are square integrable
with respect tgy. In fact one has

E(f) = E(fo) + |~ folI?,

where
- 1F= 1 o xpx)- )
Our objective is therefore to find astimator § for f, based orz such that the quantityf, — f,||
is small.
A common approach to this problem is to choose an hypothesimdde) class# and then to
definef,, in analogy to (1), as the minimizer of the empirical risk
l m

fo=1,4 = inE,(f), with E,(f):== (yi— f(x))% 3
v arf%gnf() with () mi;(y (%)) 3)

Typically, H = #, depends on a finite numblr= N(m) of parameters. In many cases, the number
N is chosen using an a priori assumptionfgnin other procedures, the numbéis adapted to the
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data and thereby avoids any a priori assumptions. We shall be interegstinmators of the latter
type.

The usual way of evaluating the performance of the estimigtsrby studying its convergence
either in probability or in expectation, i.e. the rate of decay of the quantities

Probf[|fo—f;|[>n}, n>0 or E(|[fo—f|? (4)

as the sample sizaincreases. Here both the expectation and the probability are taken widttesp
to the product measu@" defined orz™. An estimation of the above probability will automatically
give an estimate in expectation by integrating with respegj.tdstimates for the decay of the
quantities in (4) are usually obtained under certain assumptions (gaited) on f,.

It is important to note that the measyg which appears in the norm (2) is unknown and that
we want to avoid any assumption on this measure. This type of regressiolepris referred to as
distribution-free A recent survey on distribution free regression theory is provideddrbtok by
Gyorfy et al. (2002), which includes most existing approaches as welleaarthlysis of their rate
of convergence in the expectation sense.

Priors onf, are typically expressed by a condition of the typec © whereO® is a class of
functions that necessarily must be contained.ifX, px). If we wish the error, as measured in
(4), to tend to zero as the numbmrof samples tends to infinity then we necessarily need@at
is a compact subset ab(X,px). There are three common ways to measure the compactness of
a set®: (i) minimal coverings, (ii) smoothness conditions on the elemen®,d(ii) the rate of
approximation of the elements &f by a specific approximation process. In the learning problem,
each of these approaches has to deal with the facpthit unknown.

To describe approach (i), for a given Banach spAaghich containgd, we define the entropy
numberen(©,B), n=1,2... as the minimak such that® can be covered by at most Balls of
radiuse in B. The set® is compact inL2(X,px) if and only if €5(©,L2(X,px)) tends to zero as
n — oo, One can therefore quantify the level of compactned® bfy an assumption on the rate of
decay ofen(©,L2(X,px)). A typical prior condition would be to assume that the entropy numbers
satisfy

&n(@,B)<Cn", n=12--- (5)

for somer > 0.

Coverings and entropy numbers have a long history in statistics for dgiytimal bounds for
the rate of decay in statistical estimation (see e.g.8agd Massart, 2001). Several recent works
(Cucker and Smale, 2001; DeVore et al., 2004b; Konyagin and Temly2k®4b) have used this
technique to bound the error for the regression problem in learningslbben communicated to us
by Lucien Birge that one can derive from one of his forthcoming papers é3i2§04) that for any
classO satisfying (5) with®B = Ly(X, px ), there is an estimatd, satisfying

E(|fo—f,|2) <Cmrzit, m=12... (6)

wheneverf, € ©. Lower bounds which match (6) have been given by DeVore et al 4200sing
a slightly different type of entropy.

The estimators constructed using this approach are made theougfk and are more of theo-
retical interest (in giving the best possible bounds) but are not pahsiiccepy is unknown and
therefore these nets are also unknown. Another deficiency in this approach is that the &stima
typically requires the knowledge of the prior clad@s One would like to avoid knowledge @ in

1299



BINEV, COHEN, DAHMEN, DEVORE AND TEMLYAKOV

the construction of an estimator since we do not krfigvand hence would generally not have any
information abou®. One can also usenets to give bounds for Propf, — f,||). This is one of the
main points in the paper by Cucker and Smale (2001) and is carried furteevemal other papers
(see DeVore et al., 2004b; Konyagin and Temlyakov, 2004a,b).

One way to circumvent the problem of not knowing the margmals to use coverings in the
spaceC(X) of continuous functions equipped with the uniform ndfnfj., rather than iz (X, px),
since a good covering fd® in C(X) gives bounds for the covering (X, px) independently of
px. In this approach one would assume tBegatisfies (5) forB = C(X) and then build estimators
which satisfy (6) using nets forC(X). Again this does not lead to practical estimators. But the
main deficiency of this approach is that the assumption@hata compact subset @f(X) is too
severe and does not give a full spectrum of compact subsétgXfpx ).

Concerning (ii), it is well known that whepy is the Lebesgue measure, the unit ball of the
Sobolev spac®/(Lp) is a compact set df, under the condition thaj > % — % We recall that
whenr is an integerW' (L) consists of all, functions which distributional derivatives of order
la| <r are also irLp. It is a Banach space when equipped with the norm

[ llwr(Lp) == supl[D®flL,.
lal<r

Similar remarks hold for Sobolev spaces with non-integeais well as for the Besov spatﬁgs(Lp)
which offer a more refined description of the notiorr afifferentiability in L. We refer to DeVore
(1998) for the precise definition of such spaces.

However, there is no general approach to defining smoothness spitlceespect to general
Borel measurepx which precludes the direct use of classification according to (ii). Onetway
circumvent this is to define smoothnesd(X), that is systematically use the spa¥¢<L..), but
then this suffers from the same deficiency of not giving a full arrayoofigact subsets i (X, px ).

The classification of compactness according to approximation propertidse@ins with a spe-
cific method of approximation and then defines the claSsesterms of a rate of approximation by
the specified method. The simplest example is to take a seq(&r)a# linear spaces of dimension
n and define® as the class of all functionin L>(X, px) which satisfy

inf [|[f—g|| <Ca
in || —g| <Cap

whereC is a fixed constant an@y) is a sequence of positive real numbers tending to zero. Natural
choices for this sequence ang = n~", wherer > 0. Classes defined in such a way will not give
a full spectrum of compact subsetslin(X,px). But this deficiency can be removed by using
nonlinear spaceg,, in place of the linear space% (see the discussion in DeVore et al., 2004b).
An illustrative example is approximation by piecewise polynomials on partitionthelpartitions
are set in advance this corresponds to the linear space approximatian &baonlinear methods
the partitions are allowed to vary but their size is specified. We discuss thisra dedail later
in this paper. An in depth discussion of the approximation theory approduhilting estimators
for the regression problem in learning is given by DeVore et al. (2p@ad the follow up papers
(Konyagin and Temlyakov, 2004a,b).

We should mention that in classical settings, for example whers Lebesgue measure then
the three approaches to measuring compactness are closely related aadamasense equivalent.
This is the main chapter of approximation theory.

1300



UNIVERSAL ALGORITHMS FORLEARNING THEORY

Concrete algorithms have been constructed for the regression problerarining by using
approximation from specific linear spaces such as piecewise polynomialifmnm partitions, con-
volution kernels, and spline functions. The rate of convergence ofstiraaors built from such a
linear approximation process is related to the approximation rate of the ponagiag process on
the clas®.

A very useful method for bounding the performance of such estimatoreveded by the fol-
lowing result (see Girfy et al., 2002, Theorem 11.3): # is taken as a linear space of dimension
N and if the least-square estimator (3) is post-processed by application wiitloation operator

y = Tm(y) = sign(y) min{|y|,M}, then
Nlog(m) . 5
E(||f, — f,||?) <C——=—2 + inf ||f,— gl
(It = fIP) < C=== =+ inf || —g

Using this, one can derive specific rates of convergence in expectatibalancing both terms.
For example, if© is a ball of the Sobolev spad¥' (L.,) and # is taken as a space of piecewise
polynomial functions of degree no larger than 1 on uniform partitions oK, one derives

2r
E(|fp— fl) < Cliggr) = (7)
This estimate is optimal for this clags up to the logarithmic factor.

The deficiency in this approach is twofold. First, it usually chooses thethggis classes in
advance and typically assumes knowledge of the prior for this choiceon8brg it uses linear
methods of approximation and therefore misses our goal of giving an estimhich performs
optimally for the full range of smoothness spaceki(X, px).

The first deficiency motivates the notion aflaptiveor universalestimators: the estimation
algorithm should be able to exhibit the optimal rate without the knowledge ofxhet @mount of
smoothness in the regression functiof,. A classical way to reach this goal is to perform model
selection by adding a complexity regularization term in the empirical risk minimizatiooegs
(see Barron, 1991; Baraud, 2002; Birgnd Massart, 2001; DeVore et al., 2004b8y et al.,
2002, Chapter 12). In particular, one can construct one estimator winezlitaneously obtains the
optimal rate (7) for all finite balls in each of the clad$(L.), 0 < r < k wherek is arbitrary but
fixed, by the selection of an appropriate uniform partition.

Fixing the second deficiency means that in the case where the mapgimalLebesgue mea-
sure, the estimator would necessarily have to be optimal for all Sobolev esavElasses which
compactly embed intb, (X, px). These spaces correspond to smoothness spaces ofandeg
whenevers > %— % (see DeVore, 1998). This can be achieved by introducing spatiallytiedap
partitions. The selection of an appropriate adaptive partition in the complegtfarization frame-
work can be implemented by the CART algorithm (Breiman et al., 1984), which liretsearch
within a set of admissible partitions based on a tree structured splitting rule.

A practical limitation of the above described complexity regularization apprizathat it is not
generally compatible with the practical requiremenbafline computations, by which we mean
that the estimator for the sample simecan be derived by a simple update of the estimator for the
sample sizen— 1, since the minimization problem needs to be globally re-solved when adding a
new sample.

In two slightly different contexts, namely density estimation and denoising ored fesign,
estimation procedures basedwavelet thresholdingave been proposed as a natural alternative to
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model selection by complexity regularization (Donoho and Johnstone, 1998; Donoho et al.,
1996a,b). These procedures are particularly attractive since theyreoyiimal convergence rates
for the largest possible array of unknown priors together with simple astchfgorithms which are
on-line implementable. In the learning theory context, the wavelet threshdidimglso been used
by DeVore et al. (2004a) for estimation of a modification of the regressioation f,, namely,
for estimating(dpx/dx) fo, wherepy is assumed to be absolutely continuous with regard to the
Lebesgue measure. The main difficulty in generalizing such procedutthe tistribution-free
regression context is due to the presence of the marginal probailitythe L, (X, px) norm. This
typically leads to the need of using wavelet-type bases which are ortha@oréibrthogonal) with
respect to this inner product. Such bases might be not easy to handleicallpend cannot be
constructed exactly singe is unknown.

In this paper, we propose an approach which allows us to circumverd thitfisulties, while
staying in spirit close to the ideas of wavelet thresholding. In our approlae hypothesis classgs
are spaces of piecewise constant functions associated to adaptitienmf\. Our partitions have
the same tree structure as those used in the CART algorithm (Breiman et 4)., ¥&8he selection
of the appropriate partition is operated quite differently since it is not basean optimization
problem which would have to be re-solved when a new sample is addedadnste algorithm
selects the partition through a thresholding procedure applied to empiriaatitigs computed at
each node of the tree which play a role similar to wavelet coefficients. Whilmotigection between
CART and thresholding in one or several orthonormal bases is wellstowdel in the fixed design
denoising context (Donoho, 1997), this connection is not clear to usripresent context. As it
will be demonstrated, our estimation schemes enjoy the following properties:

(i) They rely on fast algorithms, which may be implemented by simple on-line upadten the
sample sizenis increased.

(i) The error estimates do not require any regularitydfX) but only in the natural space
L2(X,px)-

(i) The proven convergence rates are optimal in probability and expectatjpto logarithmic
factors) for the largest possible range of smoothness claste&X{npx ).

(iv) The scheme is universal in that it does not involve any a-prioawkedge concerning the
regularity of f,.

The present choice of piecewise constant functions limits the optimal geves rate to classes
of low or no pointwise regularity. While the practical extension of our methotigber order
piecewise polynomial approximations is almost straightforward, its analysissmtbre general
context becomes significantly more difficult and will be given in a forthconpager. This is
so far a weakness of our approach from the theoretical perspectiagpared to the complexity
regularization approach for which optimal convergence results coutibtzened in the piecewise
polynomial context (using for instance Gyy et al., 2002, Theorem 12.1).

Our paper is organized as follows. The learning algorithm as well as theergence results
are described in Section 2. The next two Sections 3 and 4 are devotedotmttie of the two main
results which deal respectively with the error estimates for non-adagtisieadaptive partitions.
Finally, in Section 3 we give results about the consistency of our estimator.
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2. TheBasic Strategy and the Main Results

In this section we start in §2.1 with some basic facts about adaptive apptoimdhen in we
continue in 82.2 with some results about least-squares fitting on fixed partifibe. universal
algorithm is described in 82.3 where the main results of this paper are forhul&te§82.4 we
discuss the on-line implementation of our algorithm.

2.1 Partitionsand Adaptive Approximation

A typical way of generating partition& of X is through a refinement strategy. We first describe
the prototypical example of dyadic partitions. For this, we assumeXhatf0,1]9 and denote by
Dj = D;j(X) the collection of dyadic subcubes ¥fof sidelength 2/ and D := UiLoDj. These
cubes are naturally aligned on a tr€e= 7 (). Each node of the tre€ is a cubd € D. If | € D;,
then its children are the®ayadic cubes of Dj,1 with J C 1. We denote the set of children bf
by C(I). We calll the parent of each such childand writel = ?(J). The cubes irD;(X) form a
uniform partition in which every cube has the same measui® 2

More general adaptive partitions are defined as foIIovpr@persubtreeT of 7 is a collection
of nodes of7 with the properties: (i) the root node= X is in 7, (ii) if 1 # X is in T then its
parent?(l) is also inT. Any finite proper subtred is associated to a unique partitidn= /\(‘I)
which consists of iteuter leavesby which we mean thoske 7 such thatl ¢ 7 but?(J) isin 7.
One way of generating adaptive partitions is through some refinemengstr&ee begins at the
root X and decides whether to refike(i.e. subdivideX) based on some refinement criteriaXlfs
subdivided then one examines each child and decides whether or nfihéosiech a child based on
the refinement strategy.

The results given in this paper can be described for more generameditt. We shall work in
the following setting. We assume that> 2 is a fixed integer. We assume thakifis to be refined
then its children consist @& subsets oK which are a partition oK. Similarly, for each such child
there is a rule which spells out how this child is refined. We assume that theighilsb refined
into a sets which form a partition of the child. Such a refinement strategy alstis@sa tree7’
(called themaster tre¢ and children, parents, proper trees and partitions are defined as favo
the special case of dyadic partitions. The refinement I¢wafla node is the smallest number of
refinements (starting at root) to create this node. We denofg bye proper subtree consisting of
all nodes with levek: j and we denote by\; the partition associated @, which coincides with
D;(X) in the above described dyadic partition case. Note that in contrast to tkisticea children
may not be similar in which case the partitioAg are not spatially uniform (we could also work
with even more generality and allow the number of children to depend on theoded refined,
while remaining globally bounded by some fixay It is important to note that the cardinalities of
a proper treeZ” and of its associated partitigk(‘Z") are equivalent. In fact one easily checks that

#N(T)) = (a— DH#(T)+1,

by remarking that each time a new node gets refined in the process of buifdaugptive partition,
#(T) is incremented by 1 and#) by a— 1.
Given a partitionA\, let us denote by the space of piecewise constant functions subordinate
to A. EachS e Sp can be written
S= Z\ath
I'e
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where forG C X we denote byXg the indicator function, i.eXg(X) = 1 for x € G andXg(x) =0
for x ¢ G. We shall consider approximation of a given functibr L2(X,px) by the elements of
Sh. The best approximation tbin this space is given by

Prf = X 1
A |eZ\CI [ (1)

wherec, = ¢ (f) is given by

C = %, with o ::/fdpx and p; == px(1). (2)
|
|

In the case wherp, = 0, both f, and its projection are undefined bnFor notational reasons, we
set in this case, :=0.

We shall be interested in two types of approximation corresponding to omifefinement and
adaptive refinement. We first discuss uniform refinement. Let

En(f):=|f—Pa,fl, n=0,1,...

which is the error for uniform refinement. The decay of this error to z®m@nnected with the
smoothness of as measured ihy(X, px). We shall denote byi® the approximation class consist-
ing of all functionsf € Lo(X,px) such that

En(f) <Mpa™, n=0,1,.... (3)

Notice that #/\n) = a" so that the decay in (3) is likd—* with N the number of elements in the
partition. The smallesvly for which (3) holds serves to define the semi-ndrfifys on 4. The
space4® can be viewed as a smoothness space of @deO with smoothness measured with
respect t@y.

For example, ipy is the Lebesgue measure and we use dyadic partitioningafién= B, (L>),
0 < s< 1, with equivalent norms. Hefg,(L») is the Besov space which can be described in terms
of differences as

1f(+h) = ()l <Mofh%, xheX.

Instead of working with a-priori fixed partitions there is a second kindppiraximation where
the partition is generated adaptively and will vary withAdaptive partitions are typically generated
by using some refinement criterion that determines whether or not to sudbdigiven cell. We shall
use a refinement criteria that is motivated by adaptive wavelet constrsistimh as those given by
Cohen et al. (2001) for image compression. The criteria we shall usectdedehen to refine is
analogous to thresholding wavelet coefficients. Indeed, it would betlgxais criteria if we were
to construct a wavelet (Haar like) bases g(X, px ).

For each cell in the master tred and anyf € Lo(X,px) we define

({fdpx)z <Iffdpx>2

2. B
g (f) = Je%(l) 5 o (4)
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which describes the amount bj(X, px) energy which is increased in the projectionfgfonto $a
when the elementis refined. It also accounts for the decreased projection error Wiserefined.
In fact, one easily verifies that

€| (f)z = ||f —C Hﬁz(hpx) - Z || f _CJHﬁz(J,px)'
JeC(l)

If we were in a classical situation of Lebesgue measure and dyadicmefiniethere ( f)2 would
be exactly the sum of squares of the Haar coefficientsadrresponding to.

We can use (f) to generate an adaptive partition. Given any 0, we letT(f,n) be the
smallest proper tree that containsla#t 7 for which g (f) > n. This tree can also be described as
the set of allJ € 7" such that there existsC J such thag, (f) > n. Note that sincd € L?(X,px)
the set of nodes such that f) > n is always finite and so i (f,n). Corresponding to this tree
we have the partitioi\(f,n) consisting of the outer leaves Gf(f,n). We shall define some new
smoothness spac&’ which measure the regularity of a given functiérby the size of the tree
T(f,n).

Givens > 0, we letB® be the collection of alf € Ly(X, px) such that the following is finite

|15 := supnP#(T(f,n)), wherep:=(s+1/2)~* (5)
n>0

We obtain the norm fo3° by adding|| f || to | f|3s. One can show that

L o
I —Paryll < ColFIETNZT < Gl f|4sN~S, N :=#(T(f,n)), (6)

where the constarils depends only os. For the proof of this fact we refer the reader to the paper
by Cohen et al. (2001) where a similar result is proven for dyadic paiititgort follows that every
function f € B° can be approximated to ord&N~°) by Px f for some partitiom\ with #(A) = N.
This should be contrasted wit® which has the same approximation order for the uniform partition.
It is easy to see thab® is larger than®. In classical settings, the clags is well understood. For
example, in the case of Lebesgue measure and dyadic partitions we krtosathaBesov space
BS(L:) with T > (s/d+1/2)~* and 0< q < o arbitrary, is contained irB%? (see Cohen et al.,
2001). This should be compared with tH& where we know thafz¥9 = BS (L) as we have noted
earlier.

The distinction between these two forms of approximation is that in the first, thiéqes are
fixed in advance regardless bbut in the second form the partition can adapf to

We have chosen here one particular refinement strategy (based aretbéesg( f)) in generating
our adaptive partitions. According to (6), it provides optimal convecgenates for the class®.
There is actually a slightly better strategy described in the paper by Binebeiate (2004) which
is guaranteed to give near optimal adaptive partitions (independent offthement strategy and
hence not necessarily of the above form) for each individualVe have chosen to stick with the
present refinement strategy since it extends easily to empirical data@ye8d it is much easier
to analyze the convergence properties of this empirical scheme.
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2.2 Least-Squares Fitting on Partitions

We now return to the problem of estimatirig from the given data. We shall use the functions in
S for this purpose. Let us first observe that

Pafp =argminE(f) = argmin/(y— f(x))dp.
fesn fesa 7

Indeed, for allf € Ly(X,px) we have
E(f) = E(fo)+ || f — fopl?

so that minimizingE( f) over Sy is the same as minimizingf, — f|| over f € Sn. Note thatP f,
is obtained by solving\ independent problems misk [ (f, — c)?dpyx for each elemeritc A.
|

As in (3) we define the estimatdg A of f, on S as the empirical counterpart B f, obtained
as the solution of the least-squares problem

m
f, A 1= argminE,(f) = argminE Z(yi —f(x))2
' fesa fesa mi:

We can view our data as a multivalued functiowith y(x;) = yi. Then in analogy t®x f,, we can
view f, A as an orthogonal projection gfonto Sy with respect to the empirical norm

HyHLgxéx' mzl‘yx' ;

and we can compute it by solving4) independent problems

m

min-= 3 (3 — 2K (x).

c|(Z)=p— where o, (z Zy.X| , pi(z le| X)X €1}. (7)

Thus, we can rewrite the estimator as

fon = Z ¢ (2)Xi- (8)
len

In the case wherkcontains no sampbe (which may happen even g > 0), we set; (z) := 0.
A natural way of assessing the erfl, — f, A|| is by splitting it into a bias and stochastic part :
sincef, — Pafj is orthogonal tc,,

Ifo = fanll? = [ fo— Pafoll >+ [Pafo — Tzl = e + 2.

Concerning the variance tereg, we shall establish the following probability estimate.
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Theorem 1 For any partition/A and anyn > 0,

mn?2
Prob{ |[Pafp— foal >N} < 4Ne*F, 9)
where N:= #(A\) and ¢ depends only on M.

As will be explained later in detail, the following estimate of the variance term ie@=gion is
obtained by integration of (9) ovey > O.

Corollary 1 If Ais any partition, the mean square error is bounded by

NlogN

E(HP/\fp— fmuz) <c—

(10)

where N:= #(A\) and the constant C depends only on M.

Let us consider now the case of uniform refinement. We can equilibratdabe¢erm with the
variance term described by Theorem 1 and Corollary 1 and obtain theviiofaesult.

Theorem 2 Assume thatfe 4° and define the estimatog = f, o, with j chosen as the smallest
integer such that 872 > _™__Then, given an > 0, there is a constari = &M, B,a) such that

logm
i logm =51 _
Prob{ 1t > (¢ folw) (P5yr) =} <cm . 1)
and ,
logmy 231
E(IIfo— f2l2) < (C+1flZ) (=) ™ (12)

where C depends only on a and M.

Remark 1 Itis also possible to prove Corollary 1 using the result by of Cucker andl& (2001,
Theorem C*). The expectation estimate (12) in Theorem 2 can also bieedtas a consequence
of Theorem 11.3 by Gyfy et al. (2002) quoted in our introduction. In order to prepare for the
subsequent developments direct proofs of these results are giveimlggr

Theorem 2 is satisfactory in the sense that it is obtained under no assuroptibe measure
px and the assumptiofy, € 4° is measuring smoothness (and hence compactnelsgXnpx), i.e.
the compactness assumption is donk4(px) rather than irL.. Moreover, the raté%q)‘ﬂsl is
known to be optimal (or minimax) over the clag§ save for the logarithmic factor. However, it
is unsatisfactory in the sense that the estimation procedure requires tiuei &dpowledge of the
smoothness parametewhich appears in the choice of the resolution lepeMoreover, as noted
before, the smoothness assumptigre A5 is too severe.

In the context of density estimation or denoising, it is well known that adayptigthods based
on wavelet thresholding (Donoho and Johnstone, 1998, 1995; Doeiadl., 1996a,b) allow one to
treat both defects. Our next goal is to define similar strategies in our lgazairtext, in which two
specific features have to be taken into account : the error is measurednarthL,(X, px) and the
marginal probability measuig is unknown.
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2.3 A Universal Algorithm Based on Adaptive Partitions

The main feature of our algorithm is to adaptively choose a partitier/\(z) depending on the data
z. It will not require a priori knowledge of the smoothnesdspbut rather will learn the smoothness
from the data. Thus, it will automatically choose the right size for the partition
Our starting point is the adaptive procedure introduced in §2.1 applied forcgon f,. We
use the notatios, := ¢ (f,) in this case. Then, by (4),
2= o3 G—'Z.
ey P P

The selection of the partitiof in our learning scheme will be based on the empirical coefficients

E|2(Z) — GE(Z) _ (Xlz(Z) )

/logm
Tm:=K %, (13)

where the constamt is absolute and will be fixed later in the proof of Theorem 3 stated below. Let
y > 0 be an arbitrary but fixed constant. We defjge= jo(m,y) as the largest integgrsuch that

al < TE}/V. We next consider the smallest proper tg, m) which contains the set

We define the threshold

Z(z,m):={l € Tj,; &(2) > tm}.

This tree can also be described as the set ol all7j, such that there existsC J such that
>(z,m). We then define the partitioh = A(z,m) associated to this tree and the corresponding
estimatorf, := f, . In summary, our algorithm consists in the following steps:

(i) Compute theg (z) for the nodes of generationj < jo.

(i) Threshold these quantities at lewig} to obtain the sek(z, m).
(i) CompleteX(z,m) to 7 (z,m) by adding the node3which contain anl € Z(z,m).
(iv) Compute the estimatad, by empirical risk minimization on the partitiofn(z, m).

Further comments on the implementation will be given in the next section. The nsailh oéthis
paper is the following theorem.

Theorem 3 Let,y > 0 be arbitrary. Then, there existg) = Ko(f3,y,M) such that ifk > Ko, then
whenever § € 2YN B° for some s> 0, the following concentration estimate holds

. /logmy =1 B
—f | >l == <
Prob{||fp fz||_c( = ) }_Cm : (14)
as well as the following expectation bound
logm\ 221
E(lfo— fal?) <o (220) 7, (15)

where the constantsand C are independent of m.
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Theorem 3 is more satisfactory than Theorem 2 in two respects: (i) the opamdf%“)ﬁsl iS now
obtained under weaker smoothness assumptions on the regressiomfumatiely,f, € B°in place

of f, € 4% with the extra assumption df, € AY smoothness witly > 0 arbitrarily small, (ii) the
algorithm is universal. Namely, the valuesdloes not enter the definition of the algorithm. Indeed,
the algorithm automatically exploits this unknown smoothness through the sampl&e note
however that the algorithm does require the knowledge of the paragnetdach can be arbitrarily
small. It is actually possible to build an algorithm without assuming knowledgeyof @ by using
the adaptive tree algorithm by Binev and DeVore (2004). However, thiemgmtation of such an
algorithm would involve complications we wish to avoid in this presentation.

2.4 Remarkson Algorithmic Aspects and On-Line Implementation

Our first remarks concern the construction of the adaptive partitignm) for a fixed m which
requires the computation of the numbergz) for | € Aj when j satisfiesal < /Y. This would
require the computation dd(minm) coefficients. One can actually save a substantial amount of
computation by remarking that by definition we always have

&(2)° < E(2)

with £ (z) :=|ly—¢ (z)”fz(,’ax) the least-square error dnlIn contrast tcg; (z), the quantityZ; (z)

is monotone with respect to inclusion:
JC | = E(z) <E(2).

This allows one to organize the search for thbsatisfyinge, (z) > 1, from coarse to fine elements.
In particular, one no longer has to check those descendants of an elefoewhich £ () is less
thantm.

Our next remarks concern the on-line implementation of the algorithm. Supipaisere have
computedp, (z), a;(z) and theg, (z) wherez containsm samples. If we now add a new sample
(Xm+1,Ym+1) to Z to obtainz™, the newp, anda; are

P(z") (Pr(2) +Xi (Xm1))

T m+1

and

a(zh) = %(m (2) + Yms1X1 (Xme1))-

In particular, we see that at each leyelonly onel is affected by the new sample. Therefore, if
we store the quantitigg (z) anda (z) in the current partition, then this new step requires at most
jo additional computations in the case whégges not increased. In the case whggds increased

to jo+ 1 (this may happen becausg is decreased), the computations of the quantjii€¢s) and

0, (z) need to be performed, of course, for all the elements in the newly addéd leve

3. Proof of the Resultson Non-Adaptive Partitions

We first give the proof of Theorem 1. LAtbe any partition. By (1) and (8), we can write

IPAfo—fazll?=S la—c(2)%pr.
o=l = 2
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According to their definitions (2), (7), both andc;(z) are bounded in modulus by. Therefore,

givenn > 0, if we define
2

_ n
= < =
A {IE/\ p|_8NM2}a
we clearly have
2
> la—c@Pp < %

leN~

We next consider the complement 86t= A\ A". In order to prove (9), it now suffices to establish
that for alll € AT

2 n2 —c@ﬁ
Prob? |ci(z) — ¢ ZWDI <de "N, (1)

To see this, we writ@, (z) = (1+ W )p; and remark that ifyy | < 1/2 we have

iz o :;M(z)—m —a

P2 P pi(1+m)
< 20 M (Jou (2) — oy + [ ]).

ci(z) — ¢l

It follows that|c; (z) — ¢| < —i— provided that we have jointly

V2Npy
nyvpi
o (2)—o| < —V———,
@SN

and (since = o, (pr (2) — p1)/P1)

1 npl?
Z)—pil <ming zp;, —————
P1(2) —pi] < {zpl 4\/m|0(||

and therefore

Prob{|c| (2)—¢q?> 22; } < Prob{\ou(z) —oy] > %}

1 r,“:)3/2
+ Probd|p(2)—p| >mind Zp, —12_ L
{lpl() pr| > {Zp' 4@%!}}

In order to estimate these probabilities, we shall use Bernstein’s inequalith whys that for
mindependent realizatiords of a random variablé such thatZ(z) — E(2)| < Mg and Vaf{) = ¢?,
one has forang > 0

Prob{

In our context, we apply this inequality fo= yX; (x) for whichE({) = a;, Mg < 2M anda? < M?py,
and tol = X, (x) for whichE(Z) = p;, Mg < 1, ando? < py.

534 -EQ)

2
_ me
2 S} S 2e 2(02+M0£/3) .
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We first obtain that

_ m?2p;
Prob{!ou (2)—oy| > VO } Do SNz 2w 12
T 4y/2N
B m?2py
< 2e 64N(M2p| +4M2p| /12)

2
_cm?
< 26,

with ¢ = [ZT%MZ]‘l, where we have used in the second inequality kkaf\* to bound the second
term in the denominator of the exponential by the first term in the denominatneit obtain in

3/2
the case whergp, < 4ﬁ\m|

1 o 3 mp
Prob{‘pl (Z) _ p|| 2 §p|} é 2e 8(p+p /6) — 2e_2_ é 2 —C N

with ¢ = [%"Mz]‘l where we have used in the last line that A*. Finally, in the case where

1o > 0"°_ e obtain
2P = 4 /N’

3/2 m?2p 2
Prob{m.(z)—p.r_ B } W

< 2e 64p (o 2(7p; /6) < 2e W
4v/2N|oy |

withc= [%‘8M2]*1 since|a;| < Mp,. Therefore, we obtain (1) with the smallest of the three values
of ¢, namelyc = [%%Mz]*l, which concludes the proof of Theorem 1.

Remark 2 The constant ¢ in the estimate behaves lik#? and therefore degenerates @oas

M — +o0. This is due to the fact that we are using Bernstein’s estimate as a contienireequality
since we are lacking any other information on the conditional fay|x). For more specific models
where we have more information on the conditional [g{x), one can avoid the limitatiofy| < M.

For instance, in the Gaussian regressmn problgra:yf, () + gi where g are i.i.d. Gaussian (and
therefore unbounded) variableg (0, 52), the probabilistic estimate (9) can be obtained by a direct
use of the concentration property of the Gaussian.

The proof of Corollary 1 follows by integration of (9) ovgr

+00
E(I1Paf — fnellZ ) = I MPrOB{IPATy — frllyery >N}

00 . m?2
< f nmln{1,4Ne*°T}dr]

2

whereng is such that Mle ® = = 1, or equivalently)2 = Rlog(4n)

. This proves the estimate (10).
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Finally, to prove the estimates in Theorem 2, we first note that, by assumptier#(Aj) <
_1
altl < a? (%n) *_ Further, from the definition afIS, we have

S
_i logm) =+
[1fo —Past, || < [folasa™® < [fp| as (T) '

Hence, using Theorem 1, we see that the probability on the left of (1buisded from above by

| ﬁsl 7cézlo m
Prob{HP/\ fo— fazl > c(%“) } < 4a2me =&

which does not excegdm P providedc®c > a?(1+ B). The proof of (12) follows in a similar way
from Corollary 1.

4. Proof of Theorem 3

This section is devoted to a proof of Theorem 3. We begin with our notatiecalRthat the tree
T (fo,n) is the smallest tree which contains hfior which g = g (fp) is larger tham. A(fp,n) is
the partition induced by the outer leaves®ff,,n). We usety, as defined in (13) angh = jo(m)
is the largest integer such thaip < Y. For any partitiom\ we write f,A = 3 Ci (2)X)-

If Ag and/\1 are two adaptive partitions respectively associated to tfgasd7Z; we denote by
No VA1 and/\g A A1 the partitions associated to the tregsJ 73 and‘Zp N 73, respectively. Given
anyn > 0, we define the partition&(n) := A(f,,n) AAj, andA(n,z) associated with the smallest
trees containing thosesuch that, > n andg(z) > n, respectively, and such that the refinement
level j of anyl in either one of these two partitions satisfies jo. In these terms our estimatéy
is given by

f,= fz7m = fz,A(Tm,Z)'

With this notation in hand, we begin now with the proof of the Theorem. Using thegie

inequality, we have
[fo—fzml <&1t+e&2+e3+6€4

with each term defined by

er = |[fo—Panzvabm folls

& = |[Pramz)vab) fo = PAtmaanmm) folls
e = [Paamzaacb) fo = fzaamzaacmmlls
€ = [[foaamzrn@m/b) — fzAam) |l

with b:=2v/a— 1> 1. This type of splitting is classically used in the analysis of wavelet threshold-
ing procedures, in order to deal with the fact that the partition built froreghsuch thag, (z) > tm
does not exactly coincides with the partition which would be chosen by atedrased on thode
such thag, > t,. This is accounted by the ternas ande, which correspond to thodesuch that
€1(2) is significantly larger or smaller thag) respectively, and which will be proved to be small
in probability. The remaining termsy andes respectively correspond to the bias and variance of
oracle estimators based on partitions obtained by thresholding the unkoefficientsg, .

1312



UNIVERSAL ALGORITHMS FORLEARNING THEORY

The first terme; is therefore treated by a deterministic estimate. Namely, siag,z) v
A(bty) is a finer partition thar\(bty,), we have with probability one

e | fo = Pncbrm) foll < [1fo = Pact,br) foll + [[PACE, brm) fo — Pacbrm) foll
| fo — Paty.brm) foll + 1/ fo — Pay, foll

Ca(bTm) %71 | s+ fol

Cs(btm) 271 Ty + @¥Trm fo 2.

Therefore we conclude that

INIAN A

IN

s logm\ =11
e < C((bi) &5 +-ali) ma fol s Tl (=0 ) ™, ®
wheneverf € B5N .4V.
The third termes is treated by the estimate (9) of Theorem 1:

2
Prob{es > n} < 4Ne W, )

with
N = #(A(tm, 2) AN(Tm/b)) <#N(Tm/b)) <#A(fp,Tm/b)).

Hence we infer from (5) that

m )251+1

_2 2
N < bPTP| folfps = DPTm ™ | fopf3s = pr_ﬁlm"gs(logm

3
where we have used thatp=1/2+s.

Concerning the two remaining ternes and e4, we shall prove that for a fixed but arbitrary
B> 0, we have

Prob{e; > 0} + Prob{e; > 0} <CmP, (4)
whenevek > Kg with Ko depending oif8, y, andM and withC depending only om.

Before proving this result, let us show that the combination (1), (2), K8) @) imply the
validity of the estimates (14) and (15) in Theorem 3. We fix the valugaid we fix any constant
k for which (4) holds. Let; := &%) =51 with & from (14) andn, = co(*%8™) =1 with ¢p =
CS(Kﬁl +aYk) max{|fp|av, | fp|zs}. From (1) it follows that folc™ co we have Prof|| fy — f;m|| >
N1} < Prob{e; + &3+ e > N1 — Ny} Hence, defining) = (&— co)('%™) "1, the probability on the
left side of (14) does not exceed

Prob{e; > 0} + Prob{e; > n} + Prob{e; > 0} < Prob{ez > n} +Cm P,

Moreover, on account of (2) and (3), we can estimate fepb n} by
1
( m )25+ll 7cm2b*pK_2éI‘fp‘;;S<|o%1>m

< -
Prob{es >n} < logm

= C( g )Klle_CDsz%q)
logm
1

- )P

< lechZ
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whereD? := (f_—cf’)zp. The concentration estimate (14) follows now by takingrge enough so
K21 PP|f [P

that 1— cD? 4B < 0.
For the expectation estimate (15), we recall that according to Corollarg hawe

1

We then remark that we always hase< 4M2, and therefore

2s
m >_2srl
)

E(e2) < 4M2Probe; > 0} < CmrP < c(logm

by choosing3 larger than 8/(2s+ 1), for example = 1. The same holds fa and therefore we
obtain (15).

It remains to prove (4). The main tool here is a probabilistic estimate of howrthérieal
coefficiente; (z) may differ frome; with respect to the threshold. This is expressed by the following
lemma.

Lemma4 For anyn > 0and any element¢ 7, one has
Prob{g (z) <n and g >bn} < Ce e’ (5)

and
Prob{e; <n and g (z) > bn} < Ce ™’ (6)

where the constant ¢ depends only on M and the constant C dependmanly

Before proving Lemma 4, let us show how this result implies (4). We firssiden the sec-
ond termey. Clearlye; = 0 if A(Tm,z) VA(bTm) = A(Tm, Z2) AA(Tm/b) or equivalentlyT (tm,z) U
T (btm) = T (tm,2) N7 (Tm/b). Now if the inclusionZ (1m,z) N T (Tm/b) C 7 (Tm,2) UT (bty) is
strict, then one either habs(tm,z) ¢ T (tm/b) or T (btm) Z 7 (1m,z). Thus, there either exists &n
such that botle, (z) < 1, andg; > bty or there exists ahsuch that botlg, (z) > 1, andg) < Tm/b.
It follows that

Prob{e; >0} < z Prob{e| (z2) <1 and g > by}
€T

0
€ < bt} + Prob{g (z) > 1m and g < 1y/b}. (7)
€7,

Using (5) withn = 1, yields

Yiem, Prob{g(z) <1m and g > bt} < #(‘Z‘jo)e‘c"“rzn
< #(Nj,)e M
< ajoefCKz logm
< .[r—nl/meCK2
< Cmb/Y-*,
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We can treat the second sum in (7) the same way and obtain the same bthmdrae fore, below.
By similar considerations, we obtain

Prob{eq > 0} < Z Prob{g | (z) > 1 and g < Tm/b},
€7

0
and we use (6) witlm = t,/b which yields Proke; > 0} < Cmt/Y-*/Y \We therefore obtain (4)
by choosing > Ko with ck3 = b2(B+1/y).

We are left with the proof of Lemma 4. As a first step, we show that the mabe reduced to the
particular cas@ = 2. To this end, we remark that the splittinglahto itsa children{J;,---,Ja} can

be decomposed inta— 1 steps consisting of splitting an element into a pair of elements: defining
Ih:=1\(JU---UJn) we start froml = lg and refine iteratively,_; into the two elementt, and

Jn, forn=1,---,a— 1. By orthogonality, we can write

o 322
8| = Z)(Eln> ;
n=

where£|2n is the amount of.>(X, px) energy which is increased in the projectionfpfwhenl, 1 is
refined intol, andJ,. In a similar way, we can write for the observed quantities

a—2

& (2) = ;Eln(z)z,

Now if € < n? andg (z)? > b?n? = 4(a— 1)n?, it follows that there exish € {0,---,a— 2} such
that(g,)? < n? andg,, (z)? > 4n°. Therefore,

a—2

Prob{g; <n and g (z) > bn} < Z Prob{e, <n andg,(z) > 2n},
n=0

and similarly

a—2

Prob{g;(z) <n andg >bn} < ZOProb{an(z) <n andg, >2n},
n=

so that the estimates (5) and (6) for- 2 follow from the same estimates establishedder 2 in
which caséb = 2.

In the case = 2, we denote by™ andl ~ the two children of. Note that ifp; =0 forJ=1" or
for J =17, there is nothing to prove, since in this case we find ¢hat € (z) = 0 with probability
one. We therefore assume tipgt> 0 for J = 1™ andl ~. We first rewriteg, as follows

2 2 2

2 i | O | 2 2

g€ = L4 L 5.2 +p-CC —pcC

| o ol o P1+C pPi-C pPIC
= pl+c|2++p|*CI2*_pl((pHCI*"‘pI*CI*)/pl)Z
= %(CH_CI*){
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and therefore, = |B;| with

Bii=/ pl;?‘ (C+ —C-).

In a similar way we obtaig, (z) = |B(z)| with

Bi(2) = | /%&(Z)(cﬁ(z) —q (2).

Introducing the quantitieg,+ = , /pﬂ)} anda- = , /pf"')i and their empirical counterpaat-(z)
anda,- (z) we can rewrite; andp, (z) as

B =a0n+ —a-a-

and
Bi(z2) =a-+(2)a)+(2) —a-(z2)a,-(2).

It follows that
ler —&1(2)] < la+0y+ —a+(2)a1+(2)| + |ay-a,- —a-(z)a-(2)].

We next introduce the numbeds defined by the relatiop;(z) = (1+8;)ps, ford=1",1"orl. It
is easily seen that iB;| <3< 1/4forJ=1",1" andl, one has

a+(2) = (14+1 )ay+

with |57| < 33. This follows indeed from the basic inequalities

(1-8) _ [(1+9)
1-35< \/<1+5)2 < \/<1_5)2 <1435

which hold for 0< & < 1/4. Therefore ifid;| <0< 1/4forJ=1%,I~ andl, we have

a+ ()| —ap ()] + o+ (& —a+(2)]
2ay+|a+ — o+ (z)| + 3day+ |0+ .

a0+ —q+(2)a1+(2)] <
<

By similar considerations, we obtain the estimate
la-a- —a-(2)a1-(2)| < 2a-|oy- — oy~ (2)| + 30y - |ay - |,

and therefore

ler—&(2)| < 2ak |0k — Ok (2)| + 3dax |0k |- (8)
K=T7,1-

We first turn to (5), which corresponds to the case wisgke 2n andg (z) < n. In this case, we
remark that we have ) )
2 _& _ pipi- (G- —C-) 2
<= <M 9
n“< o 7] <M, )
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forL=1",1— andl. Combining (8) and (9), we estimate the probability by

Probfe;(z) <n ande >2n} < % (pK+ > qK,J), (10)
K=IT,I- =11+
with 2
px = Prob{ax — ax (2)] > [8ac] ™ given pc > 11}
and

1 . 2
.o = Prob{[ps — ps(z)| = pamin{;,n[12acax [} } given py > 111
Using Bernstein’s inequality, we can estimateas follows

2 2
mn mn

2(64a2 M2py +8ag NM/3 2(64a2 M2py +8 M2/3 —cnm?

PK < Qe 2AbkgMip+8nM/3) < 2@ 2(64gMopk 8 PKkM/3) < 2@ ,

with ¢ = [(128+16/3)M?]~1, where we have useff < pxM? in the second inequality and the fact
thataZ pk < 1 in the third inequality.
In the case where B2 |ak| < 4n, we estimatel j by

__my 2
—Cl
OK.J < 2e 216+43) < 2¢ m ,

with ¢ = [(32+8/3)M?]~1, where we have usemp > n2/M?2.
In the opposite case &R|ak | > 4n, we estimatey j by

( PJ‘n ‘)2
12ay [ak
—Mm— e mpyn?

PN _
OkJ < 2e Z(WW) < 2e 3122 |y |2

where in the last inequality we use@dok| > n to bound the second term in the denominator.
Since|ak| < Mpk, we haveaz oz < M2(p;-p;+/p1) < M2min{p,-,p+} so thatp; > a0z /M2
Therefore, we obtain

Ok, < g om’

with ¢ = [312v2]~1,

Using these estimates fpk andgk j back in (10), we obtain (5).

We next turn to (6), which corresponds to the opposite case wdpeta) andg (z) > 2n. In
this case, we remark that we have

e(2) i+ (2p1-(2) (6+(2) —¢-(2))?
NP = P (zl) —— <MpL(2),

for L=1%,1- andl. In this case, we do not havi < M?p_, but we shall use the fact thgt <
2M?2p_ with high probability, by writing

Prob{e; <n and g (z) > 2n} < (pK P+ Y (Gkat m)), (11)
K=I+,11 J=I=,1+1

where now )

pk = Prob{|ok —ak(z)| > [8ak] 'n; given px > %}’
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and

1 . 2
Ok.3 := Prob{|p; —pi(2)| > p3 mln{z,n[12aK\aKH*1} given py > %

and the additional probability is given by
py := Prob{n? < M?p;(z) given n? > 2M?p;}.

Clearly, px andgk j are estimated as in the proof of (5). The additional probability is estimated by

fa < Prob{n®>M?p; and |p;— ps(2)| > (n/M)?}
4
2e 2y MmMZn/S)

IN

_ m*#
2e 212MZiM2nZ)3)

_cm?
2e ™M,

VANVAN

with ¢ = (8M2/3)~1. Using these estimates in (11), we obtain (6), which concludes the prttud of
lemma. O

5. Universal Consistency of the Estimator

In this last section, we discuss the consistency of our estimator when ndlsmes assumption is
made on the regression functidp € L2(X,px). Of course it is still assumed tha < M almost
surely, so that we also hayé,| < M. For an arbitrary suchy, we are interested in proving the
convergence property

Jim_E()lfo— fom|?) =0,

which in turn implies the convergence in probability: foralt 0,

mirrlm Prob{|| fo — fzm|| > €} =0.

For this purpose, we use the same estimation of the err@q bye, + e3 + €4 as in the proof of
Theorem 3.
We first remark that the proof of the estimate

E(e5) +E(ej) <Cm P,

remains unchanged under no smoothness assumption mdge on
Concerning the approximation terep, we have seen that

er < | fp— PA(f, btm) foll + 1| fo — P foll-

Under no smoothness assumptions, the convergence to 0 of these twottikousigs whenjg —

+o00 andty, — 0, and therefore am — +o0. This requires however that the union of the spaces
(Sh)j>0 is dense inL2(X,px). This is ensured by imposing natural restrictions on the splitting
procedure generating the partitions which should be such that

lim sup|l| =0,
I=teren;
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where|l| is the Lebesgue measure lof This is obviously true for dyadic partitions, and more
generally when the splitting rule is such that

S <l

JECU)

with v < 1 independent of € 7. Under this restriction, classical results of measure theory state
thatP, f converges td in L2(X,px) asj — +oo for all f € L?(px).

We are therefore ensured thgf, — Pa; fo|| tends to 0 asn — +o. For the first term| f, —
PA(fp.btm) foll, we remark that the convergenceRyf f to f also implies thaff can be written as the
sum of anL?(X, px)-orthogonal series

f=cxXx+ 5 wr, with == 5 cXg—aXi,
Y8 JECN)

We remark that|W, || = & (f). It follows that forn > 0

If =P flP= 5 a(f?< 3 a(f)?
1¢7(t,n) & (f)<n

Since by Parseval inequality,

S & ()2 =[] = lloxXx[? < +oo, 1)
leT

it follows that || f — Pa(¢ ) fol| tends to 0 as) — 0. Therefore|| fo — P+, br,,) foll tends to O as
m— +-o0.
It remains to study the variance teenfor which we have established

E(e%) gCNIOgN,

m

with
N = #(A(Tm,2) AN(Tm/b)) < #HA(Tm/b)).

Note that sincee, ), is a square summable sequence according to (1), we have
#{l €T ;& >n}<Cn?(n),

where¢(n) — 0 asn — 0. Therefore if #\(1n/b)) was simply controlled by # € 7 ; & > tm/b},
we would derive thaE(e%) would tend to 0 according to

<C
m m

(&) < T () Y2 (tm) _ sTPd(tmlogm _

However, #/\(tm/b) can be significantly larger due to the process of completing the set of thresh
olded coefficients into a proper tree. Since this process adds atjgredtnodes] for eachl such

thate; > t/b, we have the estimate

#(A(Tm/b)) < jo#{l € T ; & > Tm/b} < C1n%d () logm,
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whereC depends o andy. It follows that if the threshold, is modified into

o logm

Tm: m

we find thatE (€3) goes to 0 according to

E() < Crr;ZcIJ(Tm) logmlog(t-2¢(tm) logm) <6Tn_12¢(Tm) logm
< = < -

= C~3<1>(Tm)-

It is easily checked that this modification does not affect the other estimates,fe, and e,.
However it induces an additionglfogm factor in the rate of convergence which was obtained in
Theorem 3.

An alternate way of ensuring the convergence to zer& @) is by imposing thaty > 1/2,
since we obviously have

#A (/b)) < #(Aj,) = al° < Ctm”,

so thatNlogN/m tends to O if ¥y > 2. However this is a stronger restriction since the optimal
convergence rate of the algorithm is maintained only for regression funsctwich are at least in
the uniform approximation space®/2.
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Abstract

We present a sparse dynamic programming algorithm thagngivo stringss andt, a gap penalty
A, and an integep, computes the value of the gap-weighted lengsubsequences kernel. The al-
gorithm works in timeO(p|M|log|t|), whereM = {(i, j)|s =t; } is the set of matches of characters
in the two sequences. The algorithm is easily adapted toldddinded length subsequences and
different gap-penalty schemes, including penalizing teyttital length of gaps and the number of
gaps as well as incorporating character-specific matchggaglties.

The new algorithm is empirically evaluated against a fulh@yic programming approach and
a trie-based algorithm both on synthetic and newswire lartiata. Based on the experiments,
the full dynamic programming approach is the fastest ontsftangs, and on long strings if the
alphabet is small. On large alphabets, the new sparse dgmangramming algorithm is the most
efficient. On medium-sized alphabets the trie-based apprizabest if the maximum number of
allowed gaps is strongly restricted.

Keywords: kernel methods, string kernels, text categorization,spdynamic programming

1. Introduction

Machine learning algorithms working on sequence data are needed batiinfobmatics and text
categorization and mining. In contrast, standard machine learning algoritbrk®wfeature vector
representation, thus requiring a feature extraction phase to map seaistadnto feature vectors.

Representing these feature vectors explicitly is often problematic due to tastipdly high
dimensionality. Kernel methods (Vapnik, 1995; Cristianini and Shawdef,a3000) provide an ef-
ficient way of tackling the problem of dimensionality via the use of a kernadtion, corresponding
to the inner product of two feature vectors. With these precomputed imodugts, it is possible
to efficiently accomplish a variety of machine learning and data analysis &sgksclassification,
regression and clustering.

The family of kernel functions defined on feature vectors computed Btiings, are called
string kernelgdWatkins, 2000; Haussler, 1999). These kernels are based oneeaturresponding
to occurrences of certain kinds of subsequences in the string. Tteenads variety of string kernels
depending on how the subsequences are defined: they can be cost@uwon-contiguous, they

(©2005 Juho Rousu and John Shawe-Taylor.
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can have bounded or unbounded length, and the mismatches or gaps pamatized in different
ways.

There are three main approaches in computing string kernels efficientharig programming
approaches (Lodhi et al., 2000; Cancedda et al., 2003) are bassainposing the solution from
simpler subproblems, in this case, from kernel values of shorter sudxsegs and prefixes of the
two strings. These approaches usually have time complexity of @(glg||t|) since one typically
needs to compute intermediate results for each charactespaifor each subsequence length
1 <1 < p. However, there is no extra computational cost associated when ugingegalties
or mismatch costs between the characters. In trie-based approackée éteal., 2003; Leslie
and Kuang, 2003) one makes a depth-first traversal to an implicit trie ttatawse. The search
continues along each trie path while in both of the strings there exist anrencarof thep-gram
corresponding to the trie node. This termination condition prunes the sg@ack very efficiently
if the number of gaps is restricted enough. The third approach is to builffia sae of one of
the strings and then compute matching statistics of the other string by traversiagfiix tree to
compute matching statistics (Vishwanathan and Smola, 2003). The computatienkefnel value
takes a linear time. However, the approach does not deal with gappegsstrin

In this paper, we concentrate on improving the time-efficiency of the dynamgramming ap-
proach to gapped string kernel computation. In Section 2 we review typesrels that are used in
text categorization and sequence analysis tasks. As a full review dlkesised machine learning
is not possible in the context of this article, a reader not familiar with kerngiogls might want to
refer to the introductory text book of Cristianini and Shawe-Taylor @@0, for a more broad treat-
ment, the books by Sétkopf and Smola (2001) and Shawe-Taylor and Cristianini (2004) el S
tion 3, we review trie-based and a dynamic programming approachegfevegjghted string kernel
computation before presenting the main contribution of this article, a spansenity programming
algorithm for efficiently computing the kernel on large alphabets. We alswsksvariants and im-
plementation of the algorithm. In Section 4 the new algorithm is experimentally cechpgainst
the full dynamic programming approach and a trie-based algorithm. Resultgpangroblems are
discussed in Section 5 followed by conclusions in Section 6.

2. Kernels for Sequence Data

Kernel methods encompass a family of pattern analysis methods that sloaner®is aspect: map-
ping the inputx € X to some potentially high-dimensional feature spgcéy defining a feature
map@: X — F, and then solving the pattern analysis task by linear methods, such as fanding
separating hyperplane for instances of different classes (supgcidr machines, SVM), or find-
ing principal components of the feature vect(s) (kernel PCA), or finding correlations between
two views @ (x), @2(x) of the same data (kernel canonical correlation analysis, KCCA). Working
in these high-dimensional spaces in made possible by the use of the so katieel trick’: one
does not need to handle the feature vectors explicitly, as long as the irodercp thekerne|
K(x,2) = o(X)" @(z) has been computed.

For example, support vector machines (Vapnik, 1995) find for the tigugkataf (x;, i) }/_, the
maximum margin separating hyperplane in the feature space. Both learnihggéplane and
classifying points can be done without explicitly using the feature vectamiley requires solving
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a quadratic programme

¢
gllg.é( , aj — l/ZivjzlaiGjyiyjK(Xi,Xj) st. IZGiyi =0,
and the SVM prediction can be expressed @g = sign(3; a;yiK(x;,X) +b). Thus, the learning and
prediction can be performed in space that has dimension in the order afrfigen of the training
points.

When handling input data that already comes in vector form, there is no tibfiga introduce a
special kernel function. The inner product of the ingkits, z) = x" z, also called the ’linear kernel’,
can be used. However, when using structured data such as segjueees or graphs, one needs to
convert the structured representation to a vector form.

For sequences the most common feature representation is to countlotfahegistence of sub-
sequence occurrences, when the subsequences are taken fxethindiex set. Different choices
for the index set and accounting for occurrences give rise to a famifgatfire representations
and kernels. Below we review the main forms of representation for segaemd the computation
kernels for such representations.

Word spectrum (Bag-of-words) kernels. In the most widely used feature representation for
strings in a natural language, informally calledg-of-words(BoW), the index set is taken as the
set of words in the language, possibly excluding some frequently aegwstop words (Salton et
al., 1975). The representation was brought to SVM learning by Joachibas).

In the case of a string containing English text, for each English wardwe define the feature
value

Qu(s) =[{ilsj---Sjrju—1= U}, 1)
as the number of times occurs in some positionj of s. For the example text = 'The cat
was chased by the fat dog’the Bow will contain the following non-zero entrieg;se (S) = 2,
Qaog(S) =1, Puas(S) = 1, Penasea(S) =1, Poy(S) = 1, Pear (S) = 1, Pcar = 1. These occurrence counts
can also be weighted, for example by scaling by the inverse documenefreg (TFIDF, Salton &
Young, 1973):

@u(s) = {ilsj---Sjju = u}] x 10g; N/Ny,
whereN, is the number of documents whareccurs andN is the total number of documents in the
collection.

Although the dimension of the feature space may be very high, computatioa Bbiv kernel
can be efficiently implemented by scanning the two strings, constructingd.(stendL(t) of pairs
(u,cy) of word u and occurrence count, ordered in the lexicographical order of the substrings
and finally traversing the two lists to compute the dot product.

Substring spectrum kernels. For strings that do not encompass a crisply defined word-structure,
for example, biological sequences, a different approach is more &uit@iven an alphabef, a
simple choice is to takldl = >P, the set of strings of length. The featuresy,(s),u € ZP are then
defined as in (1). For example, if we chogse- 4 resulting feature values for our example text
include@pe. = 2, Ptne = 1, Pcar = 1, Qa0 = 1, along with close to thirty additional 4-grams.

There is a two-fold difficulty in focusing in fixed length subsequencesstllgirone may not
know how to best choose the length Secondly, there maybe important subsequences of differ-
ent lengths in the sequences. This problem can be circumvented by alltveirigngths of the

1325



Rousu AND SHAWE-TAYLOR

subsequences vary within a range:
U=390u5%1...uUzP for some 1< q < p. 2)

We call the resulting kernel thieounded-length substringernel. In our example text, we could
setq= 3 andp = 5 to include features such &gog, @chase@Nd@ ¢4, for instance. In the extreme
case, we can takp = 1 andqg = o, thus including in the index set all non-empty sequences of
alphabetx. It should be noted that the choice of parametpesd p has several effects: First, as
will be discussed in the next section, the time to compute the kernels will indogarsereasingp.
Secondly, if all important subsequences have length at least ggrsettingq < go will probably
make the spectrum more 'noisy’. Similarly, settigg< g will probably lose some of the 'signal’.
An interesting direction, that is out of scope of this paper, would be to kb@rparameterp andq
from the data.

The most efficient approaches, working@ip(|s| + [t|)) time, to compute substring spectrum
kernels are based on suffix trees (Leslie et al., 2002; Vishwanathth®mola, 2003), although
dynamic programming and trie-based approaches also can be used.

Gapped substring spectrum kernels. Another way to add flexibility to our feature representation
is to allow gaps in the subsequence occurrences. In that case, thesatd#}2) can still be used
but the definition of the features changes. For convenience of notatidne following we will
use boldface letters to indicate ordered collections of indiges:(j1, jo,...,jq),j1 < j2 < -+ <

jq and denotes(j) = sj, ...sj,. We define the featureg,(s) to count the number of such unique
sequences of indicgsthat the corresponding subsequesge..s;j, equals tou, in other words
@u(s) = [{j|s(j) = u}|. Our example stringThe cat was chased by the fat dog’ canbe seen
to contain, among others, the following gapped substrings of lengp.3= 7, Qreqa = 5, Paog = 2.

This definition does not make a difference between occurrences tiaircéew gaps and those
that contain several gaps, or the lengths thereof; all contribute to therdeealue equally. For
example, the substring éa’ will have a high weight as it occurs many times in the text, although
it never occurs with fewer than two gaps and the total length of gaps issattteae. At the same
time, 'dog’ will have much smaller weight although it occurs in the text without any gaps.

A solution for this problem is to downweight occurrences that contain matong gaps. Such
feature representation is the basigiap-weighted string kernel$n string matching, there are many
approaches for weighting gaps (see e.g. Eppstein, 1989; Gordb2808). We consider two gap-
weighting schemes, both of which downweight occurrences exponeritiatigreasing gap number
or length.

When downweighting by the total length of gaps the weight of an occuereac(iy,...,iq)
with spanspar(i) = iq— i1+ 1 is defined aa3P21) where 0< A < 1 is a fixed penalty constant.
The feature values are then defined as a normalized sum of occuweiytes

Q(s) =1/A% 5 APl

iu=s(i)

The normalization A9 ensures that only gaps—not matches—are penalized. This normalization is
important when using substrings of different lengths as the indek/setherwise short substrings
easily get too much weight.

In some applications the actual length of the gaps may not be important but itiieenof
contiguous substrings that compose the gapped subsequence may belevarg. The features to
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be computed will then be
@u(s) = Z AZilliea=ii>1] 5P,
i:u=s(i)
where the expression inside the indicator functjehcounts pairs of adjacent indic€s,ij1)
within i where there’s a gap in between the two indices.

In literature, two approaches for computing gapped substring kernpésagpa dynamic pro-
gramming approach (Lodhi et al., 2002) and a trie-based approaskiglet al., 2002), both of
which can deal with gap-weighting as well. We review the dynamic programmipgpaph and
a variant of the trie-based computation in Section 3, followed by a present#Htibe new sparse
dynamic programming approach.

Generalized alphabets. We conclude this section by noting that treating text as strings of charac-
ters is not the only and not necessarily the best approach. Depemtihg application, considering
larger units such as syllables (c.f. Saunders et al., 2002) or word<@nicedda et al., 2003) may
be beneficial. Using the texthe cat was chased by the fat dog’ as the example, if words

are used as the alphabet:

e Substrings are word sequences, or phrases: Was chased’.

e Gapped substrings will be phrases with some words skippeat: ? chased ? ? ?
dog’.

e Penalizing gaps will decrease the weight of phrases that span too lortysegenent. For
example, the weight otat was chased’ would be higher than that otat ? chased ?
? ? dog’ as the former phrase exists in the text as such whereas the latter contains tw
gaps of total length four.

Using phrases as features has a potential advantage over the wagdsfrepresentation, as the
ordering and the proximity of the words is taken into account. Thus sugbresentation should be
able to more closely capture syntactically and, ideally, semantically similar taxiesds.

There is, however, one drawback in using words or phrases asahgde, namely the slight
variations in the word occurrences that still correspond to the same meddiryy variations in-
clude alternative spellings, prefixes/suffixes attached to words or stends. These problems can
of course be tackled by preprocessing the documents. An alternapiveaa is the use of sylla-
ble alphabet: the text is treated as a sequence of syllafiles: cat was cha sed by the fat
dog’. The benefit is that small spelling variations or inflection of the word (echja'se’ vs. 'cha
sed’) are likely to retain some of the original syllables.

Compared to the character alphabet, word and syllable alphabets shavernefits. Firstly,
as argued above, using phrases of words or syllables are more likelptare meaning in the
text than arbitrary substring of characters. Secondly, as the docigizendrastically goes down
when moving from character to syllable and word alphabets, computateqatements decrease
as well.

3. Computing Gap-Weighted String Kernels

Let us now concentrate to the question how to efficiently compute the gapmedigtring kernel:

K(Svt) = %%(S)%(t)v 3)
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Figure 1: The co-occurrence trie of the example strings (top), and thetalive indices for the
substringst he’ and 't he dog’ in the two strings with numbers of gaps ranging from O
to 6 (bottom).

where the index set satisfigls=>PorU =9U...3P, and

Q(s) =1/AP 5 A (4)

i:u=s(i)

We will present three algorithms all of which are then experimentally compargdction 4. The
first is based on constructing an implicit trie data structure for the co-oogugapped substrings
in sandt. The second algorithm is the dynamic programming approach by Lodhi €@02), and
the third is a new method based on sparse dynamic programming.

As a running example we we use two strirgys 'The cat was chased by the fat dog’
andt = 'The fat cat bit the dog’ and, for illustration, we apply the word alphabet. Hence,
in the example, ’letters’ corresponds to English words, 'substrings’arisequences’ to English
phrases.

3.1 Trie-Based Computation

Trie-based computation (Leslie and Kuang, 2003; Cristianini and SHawler, 2004) of the gap
weighted subsequence kernel is based on making depth-first sefarcb-accurring subsequences
in the two strings, starting from co-occurring one-letter matches and emtgtite matches letter

by letter until the desired lengtp is reached. The search composes an implicit trie-structure of
matching subsequences in the two strings: each path from root to a nodspmnds to a subse-
guence that co-occurs in the two strings, in one or more locations, with muohlgaps at most
given integeigmax. The number of gaps need to be restricted in order to keep computatioargffic
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Thus the resulting kernel can be considered as an approximation ohgewo-occurrences with
mor thangmax gaps are discarded.

Figure 1 shows the trie structure of co-occurring subsequencesea@xdmple strings, when
the index set is fixed t&) = 23, the three word phrases. Below we briefly describe a trie-based
algorithm that is a slight variation of the one described by Shawe-Taytb€aistianini (2004) and
also bear resemblance to the related mismatch string kernel algorithm by Ltegli¢2003).

In a trie-node corresponding to subsequemeal; - - - Ug the algorithm keeps track of all matches
s(i) = u that could still be extended further. For each such index s .. .ig, the last indexq is
stored in a list ofalive matchesAs(u, g) whereg = sparii) — g is the number of gaps in the match.
Similarly for t the listsA;(u,g) are maintained. To expand a nodethe algorithm looks for all
possible letters the matching subsequence can be extended to a longenen&tmhan alive match
i € As(u,0) and allg’ < gmax— g the algorithm puts the indicast 1+ ¢’ into As(uS111¢,9+9').

The listsA(ut11,¢,9+¢') are constructed the same way. The search is continued for medes
for which both(UgAs(uc, g)) and (UgA[(uc, g)) are non-empty, that is, there is at least one occur-
rence ofucin boths andt, with some number of gaps. This makes the trie much sparser than the
subsequence tries for either one of the strings alone would be.

In our example (Figure 1)} he’ is encountered in positions 1 and 6 gfwith (trivially) no
gaps, and in positions 1 and 5tinTo find the alive indices fort’he dog’ the algorithm searches
for the occurrence ofdog’, in sfrom indices 2 and 7 onwards, and finds the occurrence in position
6, corresponding to an occurrence with 1 and 4 gaps, respectivlijaSanalysis is performed for
t. When a nodei in depthd is encountered one easily obtains the relevant terms in the kernel via
computing the sum

WEXM = T AFA(U,go)| - AT A (U, gy)].
Os,0t
If a lengthp subsequence kernel is being computed this computation only need to bepesf
in the leaves of the trie. For bounded-length subsequence kernel, tgutation needs to be
performed in all trie nodes that are in detkc d < p.

Note that the above approach differs from tlgek)-gapped trie algorithm by Leslie and Kuang
(2003) in two respects: First, the stringandt are not broken into frames before the search but
the algorithm maintains the lisfs(u, g) to keep track of the subsequence occurrences. Second, the
algorithm keeps track of the number of gaps in the occurrences durirsg#tieh. This relieves us
from the need to embark on dynamic programming search in the trie leaves tateothe values
Qu(S)Qult).

The worst-case time complexity of the algoritk@(,(p+gma*) (Is|+1t])), arises whes=t, which
follows from noticing that each position in the two strings is a start location o-accurring
subsequence, and there a)e(p+gmax)) possible combinations of assignipdetters andymax gaps
in a window of lengthp+ gmax Note that if no gaps are allowed we get the time complexity
O(p(|s| + |t|) matching the suffix tree approach.

3.2 Dynamic Programming Computation

The basis of dynamic programming computation of the string kernel (3) is llbe/fog observation:
if there is a co-occurrence of substring. .. ug that ends in positionkth and|’th position ofs and
t, respectively, two conditions must be satisfied:

1. there must be a matching pair of characters in the last positgast;, and
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Figure 2: The co-occurrence weights of length-one (a) and lengthifijveubstrings. Computing
K2(6,8) requires efficiently maintaining the appropriately scaled sum of the weights in
the shaded region af;.

2. there must be a matching prefix...uy—1 that ends in some positian< k in string s and
some positionj < | in stringt.

Moreover, ignoring the normalizatiory429, the co-occurrence weight can be computed by from
the weight of the prefix co-occurrence by extending the subseqgsievitek —i andl — j letters,
respectively:

psparifis...igK) . yspart[is....ig!]) — yspar(fiv.-iq)) . yspar(is-.ial) . \k-iqp! ~ia.

Denoting bykq(k,!) the sum of weights of length-substring co-occurrences, again ignoring the
normalization 1)\2‘1, that end at positionlsandl in sandt, respectively, the above observations can
be summarized in the following recurrence

kg(k.l) = N[sc=1] o forq=1, and )
T T S ja N Ik ) [sc=t],  forg>1,

where Figure 2 depicts the idea behind the recurrence (5): to comg®t&) we need to extend the
length-1 matches in the shaded regiefii, j),i < 5, ] < 6, into length-2 matches by adding gaps.
The weights of two length-1 matches in positiqdsl) and(3,2) are rescaled before summation:
)\8 +)\11 — )\573+672)\2 +)\57l+671)\2_

The dynamic programming algorithm (Figure 4) computes this recurrendatiyng with sub-
sequence length 1, which requires looping through all pairs of positionsin the two strings,
checking for matching letters and summing up the co-occurrence weightscoReenience, the
algorithm computes the sum of weights without the normalizatioxf9that is applied in the final
phase when computing the kernel vakig).

Longer subsequences are handled in increasing order of lengthcondaoce to (5). How-
ever, computing the double sum for egéhl) (e.g. the shaded region in Figure 2) would be very
inefficient, hence instead, a separate table storing the double sum

SIel) =3 3 Nl
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Figure 3: The tablé& (right) stores the scaled sums of co-occurrence weights of the prefites
strings. The valug(k, ) is computed in constant time by addingkip 1(k, 1) AS(k—1,1)
(horizontally striped area) ankiS(k,| — 1) (the vertically striped area) and subtracting
A2S(k—1,1 — 1) (the intersection) that would otherwise be doubly counted.

is maintained. With that auxiliary table, computing the recurrence is very simple
Kq(k,1) = [sc =t ]A2S(k— 1,1 - 1).
Maintenance of the tabl®can be done efficiently via the relationship
S(k,1) = Kg-1(k,1) +AS(k—1,1) +AS(k,| — 1) —A2S(k— 1, — 1), (6)

where the first term computes the contribution of the gell), the two middle terms the regions
{(i, D]i<k,j<l}yand{(i,])|i <k, j <}, respectively, and the last term subtracts the twice counted
region{(i, j)|i <k, j <I}.

In Figure 3 the computation of the val&¢4,5) = A® + A% is depicted. The value can be seen as
the sum of weights of matchinghe ? ? 2 with’the 2 2 2 ?’' (weightA*-A%) and t he’
(A%-A), and cat’with’cat 2 2?2 2 2 (weightA-AS).

The algorithm has time complexit(p|s||t|) which is immediately seen from the pseudocode
in Figure 4. It is possible to optimize the algorithm to consume less memory. As thgutation
proceeds in increasing order of subsequence length and only theysdength is referred to, it
suffices to maintain a single taltethat is reused for values,, ..., K. Also, it suffices to maintain
a one-dimensional vectd¥(j) instead of the matrbXS(i, j), as the computation proceeds in the
increasing order afand only the value§(i — 1,:) are referred to when computirgi, :).

3.3 A Sparse Dynamic Programming Algorithm

In this section we describe a new algorithm for gap-weighted string keoraputation that is
based orsparse dynamic programmir(@&ppstein et al., 1992). These algorithms utilise the fact
that most entries in the dynamic programming matrix do not actually contribute teshés. The
technique has been previously used, for example, to speed up traiaspiogariant string matching
(Makinen, 2003) and, more close to our problem, in computing the longest-cosubsaquence
of two strings given a fixed set of basis fragments (Baker and Giand24s3).
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function K = DYNPROG(s,t,p,lambda)

K1 = zeroglength(s),lengtht));
K(1) = 0; % length-1 co-occurrences
for i =1:length(s)
for j =1 :lengtht)
it s(i) =t(j)
Ki(i, ) =A%
K(1) = K(1) +Ka(i, });
end
end
end
K(1) = K(1)/A?; % renormalize

for | =2: p % co-occurrences of length 2...p
K(l)=0;
S(1:(1—-1),1:lengtht)) =0;S(I : length(s),1: (I —1)) = O0;
for i =1 :length(s)
for j =1:lengtht)
S(i7 J) = Kl—l(i7 J)+)\S(| -1, J)+
NS, j—1)—A2-Si-1,j-1);
it s(i) =t(j)
K|(i,j):)\2'S(i—1,j—1);
K =K +ki(i,j);

end
end
K(I) =K(I)/A?; % renormalize
end

Figure 4: Dynamic programming algorithm for gap-weighted subsequestcelkcomputation. It
takes a input two strings, subsequence lengénd a penalty coefficiet, and returns
the kernel value& (1),...,K(p) corresponding to different subsequence lengths.
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Our algorithm is easiest to understand as a speed-up method for the dypragiamming
approach described in Section 3.2. Despite its relatively low time-complexitgldloeithm makes
unnecessary computations: the vafijk, |) is required only whes, = t;, but computing that value
using (6) dictates that all valuéi, j),i <k, j <| are computed. In the following we present an
algorithm that avoids these unnecessary computations via replacing the 8waitixa query tree
that can be used to retrieve the val@s j) as needed in logtime.

Another change to the original dynamic programming algorithm is that the matisreplaced
with a set of match lists

Mq(i) = ((J1,Kq(i, })), (J2,Kq(i 1)), - )

whereKq(i, j) = A™ 11 . kq(i, j)) can be interpreted as extending the lengtbe-occurrences
ending withs andt;, respectively, with dummy gaps spanning positiohd tomin sand positions
j+1tonint. The use of such dummy gap weighting relieves us from repeatedly scaditkgthel
values as the search progresses: for @b it holds that

Ro(kl) = [8=t] Y ¥ Ko 1(i ) ()
i<kj)<

and the valueS(k,1) = 3y Y j<1Kq-1(i, j) can be updated as the search proceeds without perform-
ing any rescaling of the itenfS(k, 1) = S(k— 1,1) + 5 ;1 Kq-1(K, j). This fact will be essential for
maintaining our range-sum tree data structure, described below.

The data structure used for the queries belongs to the family of one-dimahsimge query
data structures, frequently used in computational geometry, online anbjytizessing (OLAP)
and other fields where efficient range queries are needed (de Balrgk997; Agarwal and Erick-
son, 1999).

Therange sum treéor a set of key-value pait$ = {(j1,v1),...,(jn,Vh)} C {1,...,n} xRisa
binary tree of heighh = [logn| where the nodes are in one-to-one correspondence with the keys
in the range. The root contains the kéy Baves contain all odd keys in the range and and if an
internal node in deptl = {0,...,h— 1} contains keyj, its left child contains the key — 2h-1-d
and the right child, when it exists, contains the key 2"1-9. With each keyj in depthd a value
is stored that represents a sum of item weights in a subrigngg™ 9 + 1, j]. Itis easy to see that
this subrange exactly covers the keys that are covered by the ndtisisdaee and the node itself.
The range sum can be used to return the sum of values within an infgrjiaih O(logn) time by
traversing the path from the nogéo the root, and computing the sum

Rangesurtil, j]) = v; + v
{heAncestor§j)|h<j}

Also, adding an itentj,v)to the tree takes tim@®(logn): we need to add to nodej and the set
{h € Ancestorsj)|h > j}.

For our algorithm, we will use the tree to query the valGég|) = A™*"-IS(k I). To cope
with this two-dimensional query region, we maintain the tree so that, whengwsiogethe match
list Mq(k) the tree will contain itemgj,vj), 1 < j < n, v; = 3 «Kq-1(i, ), and thus the one-
dimensional range query

Rangesurfil,| —1]) = Zvj = Z(Ziq,l(i, i) =98kl

< i<k]<
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Figure 5: The range-sum tree on the right, with a query path (emphagigesg)eand an area of
thek1 matrix corresponding to the query path (grey and black strips) on the taftirt
from the leaf, the values in nodes that are left children of their pareatsdated together.

will return the desired answer.

Figure 5 depicts the state of the range-sum tree when computing thexyggfii6). The node 5
will contain value 0 as there are no subsequence co-occurrences thehstrip(i,5),i < 5. On the
other hand, the key 4 will contain the val& + A4 corresponding to the two co-occurrences within
the (shaded) regiofi, j),i < 5, ] € [1,4], scaled with the dummy gapall = A2A\6-3+8-2 \14 —
A2A\6-1+8-1 The sum of weights in the shaded region is computed by adding the valueo@iérbn
corresponding to the empty black region, the value in node 4 correspptadihe grey region and
skipping node 6 as 6 5.

The sparse dynamic programming algorithm is shown in Figure 6. The algda#tes as input
asetM; = {My(1),...,M1(m)} of match lists

Ma(i) = ((ja,Ka(i, J)), (J2,Ka(i, ])),-- )

that have been created in a preprocessing step t&ing- m+ |Z| + [M1|) time and space. This
preprocessing involves creating for each characterz a list1(c) = {j[tj = c} of indices in the
stringt that contain the character To create a match li$¢1(i) then involves copying the indices
in 1(s) to My(i) and storing the corresponding valuegi, j) = A™ +"~IA2 with the indices.

The main algorithm computes the kerigls,t) = kp(m, n) by incrementally working out match
setsMy, ..., Mp, corresponding to subsequence lengths.2p.

The processing of subsequence lergémtails making one pass through the match Bkts; (k)
in increasing order ok. When constructing match lidélq(k) the algorithm traverses match list
Mq-1(k), and for each itengj, K) in the list makes a range queRangeSuiil,| —1]) = 3« ¥ j< Kq-1(i, ),
and, if the result is non-zero, inserts the itéiyRangeSuiij1,| — 1])) to the listMq(k). After cre-
ating each lisMq(Kk) the tree is updated with the contentsvf_1 (k).

Finally, the kernel valu&(s,t) is computed by traversing the match lidty(k),1 <k <m,
rescaling the stored values to remove the dummy gap and summing up the reatadsd
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function K = SPARSEM1, p,A)

forg=2:(p—1)
RangeSuifi : [t|) = O0; % initially the ranges are empty
fori=p:m
% compute the kappa values for the next level
Mq(i) = {};

for (jn,Kn) € Mg-1(i)
S=queryRangeSuml, j, — 1]); % make range query
if S>0
Ma(i) = Mq(i) U (jn, S);
end
end
% update the range witklq_1 (i)
for (jn,Kn) € Mg-1(i)
updatéRangeSunt jh,Kn));
end
end
end
% compute the values for the final level
K=0;
fori=p:(m-1)
for (jn,Kn) € Mp_1(i);

if jn < n
K = K +KnA!*th: 9% rescale to remove the dummy gap
end
end

end

Figure 6: The algorithm for computing the gap-weighted subsequencasl Ker two stringss
andt. The algorithm takes as input a match 8t = {M1(1),...,M1(m)}, a penalty
coefficient O< A < 1 and subsequence length
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The queries and updates amoun@idogn) per item in the match list so the time complexity to
process leved| is O(|Mq|logn). Since we havéM| > M| > --- > |[My], the total time complexity
will be O(p|M3]|logn). On random stringfM4| ~ |s||t|/|Z|. Hence, the sparse algorithm is likely to
excel when log/|Z| is small, which we verify in the experiments presented in Section 4.

3.4 Variants and Implementation
The presented algorithm can be modified to compute many of the string kemmeaits:

e A kernel only counting the number of co-occurrences of substringsvially obtained by
settingA = 1. In practical implementation, one can remove the scaling/rescaling opearation
from the algorithm, thus reducing the constants hidden in the asymptotic time-ocdtyiple

e Bounded-length subsequence kernels are straight-forward to olftaineach subsequence
lengthg < | < p, the sum of weights in the match lists, rescaled to remove the dummy gaps,
needs to be computed, as opposed for the lepgihly, as in the original algorithm. Thus,
kernels of the fornK(s,t) = zg:lquq(s,t),wq € R are easily obtained.

e Weighting by the number of gaps and the use of character specific gaftipgonly require
minor modifications to the algorithm (see below).

However, soft matching approaches (c.f Saunders et al., 2002)ewiwst of the characters can be
matched with each other with different costs (or utilities), are beyond thisitdgo This is because
the efficiency of the algorithm relies on the match détsto be sparse.

Weighting by the number of gaps. It is straightforward to modify the algorithm to penalize the
number of gaps in the subsequence, instead of the total gap length. rileé ke

Kam(st)= 5 (SO, with ¢f(s) = 3 ATzl y e 5P,
ue2P

iu=s(i)

can be computed via the recurrence
Kq(k,l): [S :td( Z )\qufl(i,j)
i<k-1)<l-1

+ AKg—1(i,1 —=1)+ AKg-1(k—1,]) +Kg-1(k—1,1 —1)) (8)
i<k—1 j<l-1

which again leads to th@(p|g||t|) time complexity. The first term takes into account co-occurrences
where one gap is inserted to both the matched subsequences. Theaeddiidd term correspond
to matches where a gap is inserted to occurrence®inly andt only, respectively. The last term
takes into account matches where no gap is inserted to sitrér

The sparse dynamic programming algorithm can be made to compute this neeusti-
ciently by a simple modification: The range sum tree updates need to be lagagen literation
so that, when creating the match I (k), the tree will not yet contain the values in the match list
Mg-1(k—1); these values will be added to the tree after handling the matdiddig). By such an
arrangement, the recurrence can be computed as

Kq(k,1) =[s =tj] <}\2-Rangesur(r{l,l —2])+A-Rangesurfjl —1,1 —1]) +Ar(j) +Kg-1(k—1,1 — 1)),
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where the values(j) = ¥j-_1Kq-1(k—1,]) are incrementally computed while processing the
match listMq_1(k— 1). The algorithm’s time complexit®( p|M|logn) will not change.

Character-specific gap and match weights. Another variant is to let the gap penalty depend on
the character that was skipped, so that we have a set of perfditiesc ~}. To implement this
we need to precompute a vectg = (Ask)l‘il, Ask = Ag, X -+ X Ag_ @nd an analogous vectdy
for stringt. In the algorithm, when storing the itery_1(i, j) in the range sum tree, it is first
scaled byAsm/As;i - Atn/A,j to introduce a dummy gaggi + 1 : m) andt(j + 1 : n) with character
specific weighting. As with uniform gap weights, when computing the finall leescaling by
Ask/Asm- At /A0 is needed to recover the valug(k, ).

The approach can easily extended to handle different weights for nsaiodeyaps, as suggested
by Cancedda et al., (2003). This only requires performing a scaling

Kq(k,1) = Ya ﬁRangeSuml, I —1]),
)\Sk )\t|
wherey, andA, are the match and gap decays for letiarespectively, to reflect the fact thatwas
matched td; rather than skipped over.

Implementation. The algorithm described above has been implemented in MATLAB 7.0. The
code has been heavily tweaked to ensure that the benefits suggestedreyithal analysis can also
be realized in practise. The major tweaks include

e Range sum tree storageln our MATLAB implementation, the range sum tree is implicitly
stored in a weight vectav storing the sum of the left subtree of each node jI< n. To speed
up computations we also precompute in separate tables the nodes that negibied when
guerying or updating the range sum tree. For example, in the situation dkjpidteure (5)
the precomputeduery pathfor will contain the nodes 4 and 5. The correspondipglate
pathwill contain the nodes 6 and 8.

e Avoiding numerical underflow. The algorithm in Figure 6 stores the items in the form
)\m‘””—qu,l(i, j) and rescales them when computing the lgwelThis approach suffers
from the potential of numerical underflow when handling long stringsrdieioto avoid that,
we divide the index plane into rectangles of height and width sufficiently sfiefiending
on the value\) such that within a rectangle’,x"] x [y,y”] the values are stored in the form

MY == The handling of the boundaries of the rectangles causes a small additivead
to the time complexity. The same technique can be used with the above discasaats\as
well.

The implementation of the sparse dynamic programming algorithm is available via \Wgviw
the home page of Juho Roushitp: //wwwcshelsinkifi/juho.rousu

4. Empirical Evaluation

We compared the time consumption of the following gapped string kernel algitall imple-
mented in MATLAB:

SPARSE The new sparse dynamic programming algorithm.
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Time consumption of SPARSE on random strings Relative time consumption: time(SPARSE)/time(DYNPROG)
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Figure 7: The time consumption of SPARSE in seconds (left) and relative timguogption of
SPARSE relative to the time consumption of DYNPROG (right). The subseguen
lengthp = 10 was used. Note the logarithmic scale on all axes.

DyNPROG. The full dynamic programming approach of Section 3.2.
TRIE. The Trie-based computation approach of Section 3.1.

Note that, differently from RIE, DYyNPROGand S ARSEplace no hard restriction on the gap length
but softly penalize the increase in gap length. We used three data setsfipaxng the algorithms.

e Randomly generated strings, with varying length and alphabet sizes.

e 1000 random English news article pairs from the Reuters-21578 caguesented as se-
quences of syllables. The size of the syllable alphabet was 3769.

e 1000 random document pairs from the Chinese part of the Reuter's muwaliiRCV-2 cor-
pus. The size of the alphabet was 3142.

The tests were run on a 3GHZ Pentium 4 processor with 1.5GB main memory.

4.1 Results on Random Strings

In our first test we tested the time-consumption of the algorittnRSE as a function of string
length and alphabet size. Figure 7 depicts the results. On the left the atgerthsolute time
consumption is shown. The inverse dependency of the time-consumption aipttabet size is
clearly visible. Also, the larger the alphabet, the slower the time-consumpticgases when the
string length is increased.

On therightin Figure 7 the time-consumption of the sparse approach retathefull dynamic
programming approach is shown. With small alphabets and short strimgsHD G is faster than
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Relative time consumption: time(TRIE)/time(SPARSE)
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Figure 8: The relative time consumption time(E)/time(SPARSE of the algorithms, as a function
of alphabet size and gap length. The subsequence lgngttO and string lengttg|, |t| =
512 was used. Note the logarithmic scale.

SPARSE With long strings and large alphabets the roles reverse: on strings litvaget 024 letters
and alphabet sizes over 256, theaBsecan be an order of magnitude faster therNBROG.

In our second test we compare the speed®miETalgorithm to the 8aArRsEalgorithm. Figure 8
depicts the relative time consumption as a function of alphabet size and ggb.|&Subsequence
length of 10 and string length of 512 were used. SineeR&Edoes not place any restriction to
the gap length, in the comparison only the time taken ByeTactually varied when the maximum
number of gaps was varied.

The figure shows thatRiE algorithm gets very significantly slower tharA&RSewhen more
gaps are allowed especially so on small alphabetsleTs faster than BARSE only when the
number of gaps is restricted to 2 or below. On very large alphabets eadloding gaps does not
bring TRIE below the time consumption ofFARSE

The fastest algorithm as a function of string length and alphabet size icteljn Figure 9,
with different settings for the subsequence lengthand the maximum number of gaps allowed in
the TRIE algorithm. DrNPROG s the fastest method on short strings independent on the alphabet
size and the subsequence length (a-d). If no gaps are allowad,i§ competitive on small to
medium-size alphabets and long strings (a). When the subsequence leingiteésed, RIE is
faster than 8ARSE even on large alphabets (c). The situation changes when gaps aredallowe
in TRIE algorithm: then 8ARSEIs the best method on large alphabets, arvakBrROG on small
alphabets, RIE excelling on medium-sized alphabets if long subsequences are seavcled f
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subseq. length p=5, gaps=0 subseq. length p=5, gaps=3
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Figure 9: The fastest algorithm as a function of string length and alpls&metwith different sub-
sequence lengths (p) and upper bounds for the number of gaps irtBal§orithm.

4.2 Results on Reuter’'s News Articles

Our second set of experiments tests the speed of kernel computation dRetwer's newswire
article data sets, English articles from Reuters-21578 corpus repedssssequences of syllables
and Chinese articles from the multilingual RCV-2 corpus.

We computed the gap-weighted string kernel usingNBrROG and SPARSEfor 1000 random
document pairs, varying the subsequence lengths in the range 5@@. preliminary experiments,
TRIE was significantly slower than both of the dynamic programming approachbssadata sets.
Hence, we omitted that algorithm from the comparison.

The results on the English news articles are summarized in Figure 10. Indhe égch docu-
ment pair is plotted to the location corresponding to the (geometric) mean leniyth dbcuments
(x-axis) and the inverse of the match frequensijt|/|M| (y-axis), which also can be thought as
the effective alphabet size: if the syllables were independently randorayndfrom alphabet of
size|Z| = |9||t|/|M], the expected size of the match set wouldMé Note that, due to the skewed
distribution of syllables in the documents this number is usually significantly lovaerttie size of
the syllable alphabet.

The marker type corresponds to the minimum subsequence lpngtijuired to make SARSE
run faster than BNPROG on that document pair. Document pairs marked with '+’ require
20, circles require 1¥ p < 20, boxes require & p < 10, and for diamondp < 5 is sufficient.
Similar behaviour to that observed in the tests involving random strings caede the longer the
documents and the sparser the match matrix, the smaller valpeswafices to make SARSEthe
faster algorithm.
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Subsequence length regimes where SPARSE is faster than DYNPROG, English text, syllable representation
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Figure 10: Regimes of subsequence lengtldocument size (x-axis) and inverse frequency of
matching letters (y-axis), whererSRSEis faster than ®NPROG on English syllable-
represented news articles. Document pairs marked with '+’ require20, circles re-
quire 11< p < 20, boxes require & p < 10, and for diamondp = 5 is sufficient.

The results on Chinese news are summarized in Figure 11. The behaMiberatgorithms can
be seen to be essentially the same as on the syllable converted English textodomgents and a
sparse match matrix favourSRSE

5. Discussion and Open Problems

Based on the presented experiments, the full dynamic programming appsdhe fastest method
on short strings. On longer strings, the best algorithm depends onpattemeters: if the alphabet
is large the new sparse dynamic programming approach is the fastest methed|fpfhabet is small

DYNPROG s the best method. On medium-sized alphabets, the trie-based approantpétitive

if the number of gaps can be strongly restricted.

The observed relative performance can be explained as follows. Wieealphabet size is
small, allowing more gaps rapidly expands the number of partially matching quéisees. Since
TRIE explicitly keeps track of them, its time-consumption increase@RSEalso suffers on small
alphabets. However, it can never be worse thamBroOG by more than a log factor. On large
alphabets, RIE has an overhead of keeping track of all subtrees that may or may nbtode
expanded. The improving performance ®IE by increasing subsequence length is also easy to
explain: the trie becomes the sparser the deeper the search level. Epenitg the search is
relatively cheap.

From the point of view algorithm development, an open question is whethgmtbeomplexity
of the sparse dynamic programming approach could reduced li@{p\M|logn). The literature
on geometric range searching does not a direct route forward: ng stdectures are known for
one or two-dimensional range queries that can be maintained in less thatizathOflogn) time
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Subsequence length regimes where SPARSE is faster than DYNPROG, Chinese text
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